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Abstract. This work classifies top-view hand-gestures observed by a
Time of Flight (ToF) camera using Long Short-Term Memory (LSTM)
architecture of neural networks. We demonstrate a performance improve-
ment by a two-phase classification. Therefore we reduce the number of
classes to be separated in each phase and combine the output prob-
abilities. The modified system architecture achieves an average cross-
validation accuracy of 90.75% on a 9-gesture dataset. This is demon-
strated to be an improvement over the single all-class LSTM approach.
The networks are trained to predict the class-label continuously during
the sequence. A frame-based gesture prediction, using accumulated ges-
ture probabilities per frame of the video sequence, is introduced. This
eliminates the latency due to prediction of gesture at the end of the
sequence as is usually the case with majority voting based methods.

Keywords: Driver assistance · Hand gesture · LSTM networks · Hand
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1 Introduction

The touch and tactile based systems in cars cause visual distraction which affects
the attention while driving [1]. The work by [2] shows that simple and natural
interactions with multimedia devices in cars improve the driver’s safety. [3] has
compared various in-vehicular interaction systems and reported that the gesture
based interaction requires least eye contact. Work by [4] also shows that the
performance of the driver can degrade sharply with small increase in the shift of
attention. It can thus be argued that a robust, touch-sensor free gesture based
interactions improve driver safety.

The vision based Hand Gesture Recognition (HGR) techniques can be distrib-
uted into two broad classes, static and dynamic. The first [5,6] only recognizes
a static pose of a hand while the second uses the changing hand pose and hand
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motion over frames in addition. The later scheme supports a potentially larger
and more natural set of gestures. The primary challenge for an HGR system is
the rapidly changing global illumination. Further, defining an optimal location
for a camera that minimises the palm occlusion is a difficult task. It has been
observed that an overhead location is best suited for such problems [7] because
it minimises occlusion due to objects inside the car, however the self occlusion
of the hand remains significant especially when a gesture is performed with ver-
tically downward pointing palm. It is desirable to have a flexible system which
can be modified to identify gestures which were not originally built into it. The
problem of illumination is suppressed by the choice of sensor, on the other hand
the problem of occlusion and flexibility require algorithmic solutions.

The early solutions for HGR used Finite State Machines (FSM) [8], a gesture
was distributed into phases and a set of twelve gestures were classified. Inspired
by the results on handwriting recognition [9] and speech analysis various adap-
tations of a Hidden Markov Model (HMM) have been used [10]. Another branch
of solution includes neural networks and Recurrent Neural Networks (RNN)
[11]. Most often, both the FSM and RNN strategies use the information of the
instantaneous hand-pose for identifying gesture sequences.

The Long Short-Term Memory (LSTM) network [12,13] is a variation of the
traditional RNNs and has been shown to outperform the traditional RNN. It has
been extensively used for hand-writing and speech recognition tasks recently [14].
In contrast to the HMM where some prior experiments are required to identify
the number of states, it is easier to construct an LSTM model. [15] have used
LSTM for gesture identification and demonstrated that it performs better than
HMM and SVM.

Location, orientation and velocity of the palm have been used as features for
gesture recognition problems [16]. This work reaffirms that features like palm
and finger positions along with their velocity are useful for gesture classification.
A two-phase classification scheme using three LSTMs is introduced. It is demon-
strated that distributing the learning in which one phase learns from the hand
pose and the other learns from the direction of motion, simplifies the learning
tasks.

An early-detection system which is capable of predicting gesture class while
the gesture is being completed is introduced. This is an important requirement
for an interaction system. To achieve this a one to one labelling scheme between
the gesture frames and gesture class is used. Some sequences are sub-sampled for
learning fast sequences. The proposed cumulative probability addition scheme
for prediction also help stabilise the system response during discontinuous hand
movements. The HGR with this LSTM architecture demonstrates an overall
frame-wise accuracy of over 90.5%. We observed that, with an equal sized data
the proposed two-phase early hand gesture recognition system outperforms a
single all-class, but larger LSTM based system which provides accuracy of 86%.

Section 2 introduces the gestures used for the experiments and describes the
data collection and feature extraction process along with the data augmentation
method and the data distribution scheme for cross-validation. The overall sys-
tem architecture, the prediction scheme and the cumulative probability method
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is described in Sect. 3. The analysis of the training process, test results and
comparisons with single all-class network prediction is presented in the Sect. 4.
Discussion on results and possible future directions are presented in the Sect. 5.

2 Gesture Data and Features

2.1 Gesture Definition

A hand-gesture is a sequence of frames of moving palm. It can involve motion
of palm without change in the hand-pose or it could be defined as a sequence of
hand-poses where the occurrence of the different hand-poses have a predictable,
predetermined order. For this work the recorded hand-gestures include, ‘Click-
ing’, ‘Swiping’ in Left and Right direction and in Up and Down motion, ‘Accept-
ing’, ‘Declining’, ‘Drop’ and ‘Grabbing’. ‘Clicking’ involves a forward horizontal
motion of the pointing finger. Hand motion in horizontal left-right direction is
denoted as ‘Swiping’ in left and right direction. The swiping motion may be
repeated more than once. Similarly vertical palm motion is denoted as vertical
swiping. ‘Accepting’ is a motion of hand outwards from the screen (relative to the
camera). ‘Declining’ is the motion of a hand into the screen. ‘Grabbing’ involves
a transition of a spread hand with the palm facing vertically downwards to a
position of joined fingers accompanied with some vertical motion. ‘Drop’ begins
with joined fingers ending in a spread hand with a short downward motion.

2.2 Data Collection and Properties

The output frames from the camera have two channels, the depth and the ampli-
tude. The amplitude value of the pixels are proportional to the reflectance of
the surface and inversely proportional to the square of the distance values. The
data is recorded with a frame rate of 25 Frames per second.

We use a Photonic Mixer Device (PMD) Nano sensor with a resolution of
120 × 165 pixel for recording data. This ToF based 3-D camera is attached to
the rear-view mirror holder protection. Shown in Fig. 1. Thus the dataset is 3-D
top view of hand gestures, it is used for hand pose recognition problem by [17].
The experiments for hand gesture recognition inside the car are conducted with
seventeen participants. The data is recorded inside the car and each participant
repeats nine gestures around the sat-nav screen of the car. Every participant
repeats each gesture six to twelve times. Each frame of the sequence is marked
with two labels. ‘Accepting’, ‘Declining’, ‘Drop’, ‘Grabbing’, ‘Clicking’, ‘Hori-
zontal’, and ‘Vertical’ are used as the primary labels. Sequences marked as ‘Hor-
izontal’ are marked with a secondary label ‘Left’ and ‘Right’, and those marked
with ‘Vertical’ are marked with secondary labels ‘Up’ and ‘Down’.

As the data is recorded inside a car it allows a combination of depth informa-
tion with the information about the car environment. This information is utilised
to extract the features for hand-shape, location and motion. Note that these fea-
tures are explicitly utilized in the proposed approach and thus no comparison
on a different dataset is shown.
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Fig. 1. The camera setup.

2.3 Training and Testing Strategy

Before training the network, the data was shuffled such that the frames from
a complete gesture sequence stay together, while the gesture sequences were
placed randomly. This shuffling was essential because the participant continu-
ously repeated the same gesture multiple times during recording. Each frame
of the gesture sequence is marked with the label for the entire sequence. This
allows us to train the network in way such that it attempts at predicting the
sequence-label from the start of the gesture.

The total number of available sequences for training the model are increased
by sub-sampling approximately one-fifth of sequences in time. Equal proportion
of sequences from each class of gesture are reduced to half duration. Such down-
sampling effectively creates sample-points on which the duration for completing
a gesture is shorter than the average gesture sequence. The start and end of each
sequence including the sub-sampled once are marked. Both training and testing
phase of the algorithm use these sequence markers. Table 1 gives a description of
the distribution of the data-samples over classes and the number of sub-sampled
sequences created for each class.

For testing a leave-2 cross-validation was performed on the data. The data
from the seventeen participants was distributed into eight sets of two participants
and one set of one. Owing to an otherwise small test dataset a 9-fold cross-
validation is done to report the average accuracy of the model. The sub-sampled
sequences are separately divided into 9 groups and then used in training and
testing accordingly.

Table 1. Number of gesture class samples in dataset

Up Down Left Right Click Accept Decline Grab Drop Total

Data-points 220 226 247 247 160 188 194 172 160 1814

Down-sampled 44 45 49 49 32 47 48 34 32 380

Total 264 271 296 296 192 235 228 204 192 2194
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2.4 Segmentation and Feature Extraction

The palm region is segmented by creating a virtual cuboidal space in the region
where we wish to observe the hand-gesture. The background was generated
by recording a video in the car and keeping the consistent pixels. This 3-D
background image was then removed from each incoming images of the video
sequences. Furthermore, the palm pixel closest to screen is tracked. Hand region
is segmented by assuming a real length of 18 cm, another threshold divides hand
and finger and a Mahalanobis distance based K-mean clustering refines palm-
finger segmentation. The hand palm centroid and finger-tip are estimated and
tracked using Kalman filter. Features are further described in the Table 2. The
features were centred and normalised such that the mean of each feature element
over the training data was zero and the variance was unity.

Table 2. Description of features used for the experiments

Type Feature names Description

Location Finger coordinates The X,Y,Z coordinates of the tracked
pixel closest to the screen

Hand coordinates The X,Y,Z coordinates of the tracked
palm centroid

Finger azimuth Polar angle of the principal component
vector of the finger cluster of the palm

Finger polar Azimuth angle of the principal component
vector of the finger cluster of the palm

Velocity Finger Velocity The X,Y,Z components of the tracked
pixel closest to the screen

Hand velocity The X,Y,Z components of the tracked
palm centroid

Shape Concave depth The maximum distance between convex
hull and edge of the segmented palm
region

Convex ratio The ratio of the size of the convex hull
around the palm and the segmented palm
region

Active pixels The number of pixels in the segmented
palms provides an indication of palm-size

3 System Architecture and LSTM Networks

A two-phase classification strategy is employed for classification. To this end,
three neural network based systems are combined. The first network classifies the
seven primary classes describing the nature of motion. The other two networks
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are trained to classify the direction of the motion, i.e. Up vs. Down and Left
vs. Right. These networks are used in series with the first network. Various
neural network architectures were trained and tested for the three classifiers, the
network architectures which provided the best cross-validation results separately
were used for the classification system. These networks are further described in
detail.

Fig. 2. LSTM network with the output decision unit.

Each network has an LSTM layer and several fully connected dot product
layers. The input layer is connected to a dot product layer. Non-linearity is added
to the network by using a tanh activation function with each fully connected
layers. The network for the primary classifier has five layers apart from the input
layer and the output softmax layer. The LSTM layer is placed as the fourth layer
from the input. The output layer has seven output nodes, each node represents
one gesture, see Fig. 2.

The binary classifier identifies the intended direction of the motion when the
palm moves in horizontal or vertical direction. Since the swiping motion may
be repeated more than once while completing the gesture the identification of
the intended gesture is more sophisticated problem than merely identifying the
direction of motion. The binary classifier LSTM network has three hidden layers
along with the one LSTM layer. The output layers have two nodes and a softmax
activation function. The connection weights and bias are independent of each
other in all networks. The three networks are trained independently using the
samples belonging to the corresponding classes from the same training dataset.
The training uses the RPROP Algorithm for the optimisation process [18].

3.1 Prediction

The system is shown in Fig. 3, it can be broadly separated into a frame classi-
fication part Fig. 3a which produces a nine dimensional probability vector

−−→
p(t)

at time t, and an output probability combination part Fig. 3b which results in
another nine dimensional probability vector

−−→
P (t).

In the classification part of the system the primary classifier is connected with
the two motion-direction classifiers, see Fig. 3. It provides a seven dimension
probability vector,

−−→
p1(t).

−−→
p1(t) has five gesture probabilities

−−→
p(t)g = p(t)1−5
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Fig. 3. The system architecture and the cumulative probability addition scheme.

and probability for horizontal and vertical direction of motion p(t)h, p(t)v. On
identifying vertical or horizontal swiping of the hand the vertical or horizontal
motion classifier is activated with binary activation signals Av and Ah. The
activated binary classifiers then detect the intended direction of the swiping
gestures resulting in the two dimension probability vectors

−−−→
p(t)v and

−−−→
p(t)h for

vertical and horizontal direction respectively. The output from these classifiers
replace the motion probabilities in the primary classifier output, (1). The output
probabilities from LSTM units are combined (2) to form a nine dimensional
vector

−−→
p(t) and are weighted by the there values in the primary probability

vector, the resulting output vector is re-normalised to form a probability vector−−→̂
p(t), (3).

−−−→
p(t)

′k =

{
[p(t)

k

2 , p(t)k

2 ] if Ak = 0.−−−→
p(t)k if Ak = 1 where k ∈ [v, h].

(1)

−−→
p(t) = [

∑5
j=1 p(t)

j

5
.
−−→
p(t)g; p(t)v.

−−−→
p(t)

′v; p(t)h.
−−−→
p(t)

′h]. (2)

−−→̂
p(t) =

−−→
p(t)/|−−→p(t)|. (3)

The early predictions of the LSTM based system are stabilised by using a
cumulative probability addition scheme Fig. 3b. The cumulative addition of the
probability regularizes the estimates while making an early prediction. This
adds robustness towards jerks, stops and change in hand direction, during the
completion of the hand-gesture sequence. Also a strategy based on maximum-
probability or majority decision approach predicts the gesture at the end of the
sequence. The described method makes a probability estimation for the gesture
at every frame.

The system output probability is given as
−−→
P (t), (4). The sum is reset to zero

whenever an end of sequence impulse is seen. In is the impulse corresponding to
the nth sequence. The impulse has a value 1 and the impulse time is given by
tIn . The probability addition is initiated again with a sequence-begin impulse.
The nth prediction Gn, corresponds to the index i of the maximum value in
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the probability vector
−−→
P (t) (5). Since the initial frames of the sequence have

little or no temporal context the predictions made during these first td frames
of the input stream are not reliable and thus are not read at the output. This
scheme allows continuous predictions unlike majority-vote like decisions where
prediction is made after viewing the entire sequence.

−−→
P (t) =

−−→̂
p(t) + (1 − I) × (

−−−−−→
P (t − 1)) (4)

Gn = argmax
i

(
−−→
P (t)) : t − tIn−1 > td (5)

4 Results and Comparisons

This section describes the training progression of the three models and presents
the performance of the entire system. As mentioned in the last sections the first
few frames of the prediction made by the system are not considered for output,
we also skipped these frames for the evaluation analysis. The output probabilities
for sequences beyond the eighth frame of the gesture, which corresponds to a
time-period of 0.3 s are considered for the analysis.

Fig. 4. Train-Test error progression.

The train-test error progression by learning epochs during a sample cross
validation for primary phase of classification and the left-right binary classifiers
are depicted in Fig. 4. The network was trained for 600 epochs and evaluation was
conducted for every second epoch. The average misclassification rate for the given
training was 5%. The misclassification rate for the test data at the end of the
training was 7%, see Fig. 4a. Both up-down and left-right classifiers were trained
as binary classifiers for 400 epochs. It is observed that the misclassification rate
on training data after the completion of the training for the up-down motion
classifier is 6%, and 1.5% for the left-right classifier. The misclassification rate for
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Table 3. Confusion matrix proposed
system.

% U D L R C A De G Dr

U 84 4 2 0 8 2 0 0 0

D 4 85 0 0 0 0 8 0 3

L 0 0 92 1 0 0 3 3 1

R 0 0 0 93 0 0 3 4 0

C 0 0 0 0 96 0 4 0 0

A 8 4 0 0 1 82 4 1 0

De 3 7 0 0 0 4 84 2 0

G 4 0 0 0 0 5 0 89 2

Dr 1 4 0 0 0 0 4 0 91

Table 4. Confusion matrix single all-
class LSTM

% U D L R C A De G Dr

U 77 8 0 0 0 5 3 3 4

D 7 78 0 0 0 0 9 2 4

L 0 0 88 6 0 2 4 0 0

R 0 0 4 89 0 4 3 0 0

C 0 0 0 0 96 0 2 2 0

A 8 5 0 0 1 78 5 1 3

De 2 9 0 0 0 7 80 0 2

G 2 3 0 0 0 2 0 91 2

Dr 3 1 0 0 0 0 5 0 91

Fig. 5. Test error with early start location.

the test data is 8% and 3%, respectively. Figure 4b shows the left-right classifier
error progression. On combining the three networks as the described system, the
observed misclassification rate for the full system is 9.25%. The Table 3 shows
the confusion matrix for the classification of the nine gesture classes in case of
the architecture following the two level classification strategy.

In comparison with a larger all-class single LSTM, chosen after experi-
ments on multiple LSTM models, the performance was considerably better. The
improvement in the gestures where direction is important is large. In other ges-
tures the performance improves in all classes apart from ‘Drop’ where accuracy
remains the same and ‘Grab’ which has a small decrement. The performance of
the compared LSTM model is shown in Table 4. Confusion matrices are calcu-
lated at each step of the 9-fold cross validation and the mean confusion matrix
are reported.
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5 Discussion and Conclusion

The performance of the system improves when decisions were taken after a longer
delay from the beginning of the sequence. Figure 5 shows the accuracy perfor-
mance when the latency period for the frame-wise prediction is changed. The
decision after a longer latency gained from larger temporal context and is usu-
ally more accurate. Some gestures with similar shape and short motion were
misclassified, which was reflected in the occasional misclassification of ‘Accept’
and ‘Decline’ as ‘up’, ‘down’, respectively. This explains the lower accuracy of
the up-down gestures in the combined system even though the binary classifica-
tion accuracy is high. The accumulated regularization of the system output also
resulted in missing of fast-very short gestures.

5.1 Conclusion

This work presented a one to one gesture-sequence to label-sequence training
procedure to make an immediate decision for a gesture label when the gesture
sequence begins. A performance improvement in the two phase classification,
when one phase classifies gestures by modification in shape and the other by the
direction of motion, is demonstrated. A Modified system architecture achieves
an average cross-validation accuracy of 90.75% on the dataset.

This work introduced an accumulated probability based solution for predict-
ing gesture per frame, this eliminates the requirement of delaying the classifica-
tion until the end of the sequence and also stabilises the prediction outcome to
hand-jerks and motion-discontinuity.

As future work we plan to solve the problem of the misclassification of ges-
tures with similar shapes for which we plan to develop more robust shape descrip-
tors. Moreover, spotting of short intended motion of the palm might help in
identifying the beginning of the sequences. The prediction performance for short
gesture sequences is comparatively worse, using Bayesian filtering approaches
with pose identification solutions may help improve this performance.
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