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Abstract. Determining the number and morphology of individual cells
on microscopy images is one of the most fundamental steps in quantita-
tive biological image analysis. Cultured cells used in genetic perturba-
tion and drug discovery experiments can pile up and nuclei can touch or
even grow on top of each other. Similarly, in tissue sections cell nuclei
can be very close and touch each other as well. This makes single cell
nuclei detection extremely challenging using current segmentation meth-
ods, such as classical edge- and threshold-based methods that can only
detect separate objects, and they fail to separate touching ones. The
pipeline we present here can segment individual cell nuclei by splitting
touching ones. The two-step approach merely based on energy minimiza-
tion principles using an active contour framework. In a presegmentation
phase we use a local region data term with strong edge tracking capa-
bility, while in the splitting phase we introduce a higher-order active
contour model. This model prefers high curvature contour locations at
the opposite side of joint objects grow “cutting arms” that evolve to one
another until they split objects. Synthetic and real experiments show the
strong segmentation and splitting ability of the proposed pipeline and
that it outperforms currently used segmentation models.

1 Introduction

The development of an automated, reliable segmentation method for cellular
images is often challenging due to touching or overlapping cell nuclei clumps.
The segmentation of the individual cells is usually performed in two phases.
In the presegmentation phase, the localization of the foreground objects or the
region of interest (single cells or clumps of cells) is performed followed by the
identification of the individual cells in the clumps during second phase. The
presegmentation methods include simple intensity thresholding [8] (e.g. Otsu
segmentation) variance measures [11]. Energy minimization methods, such as
graph cut [1,20] or active contour models [2-4] are also used with high efficiency
in this area [6]. In the second phase, cell nuclei clumps are separated into indi-
viduals. A big variety of methods were introduced to this area, usually utilizing
a priori knowledge about the shape of individual objects.
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A large family of such priors assume object ellipticity [9,12,16]. These priors
are very effective for clusters of homogeneous objects, but can fail if the cluster is
composed of diverse shapes. Other popular approaches prefer less specific priors
and the separation of cell clusters mainly based on two underlying principles:
either the localization of the individual cell centers [5,15,18,19,23] or the con-
cavity analysis of shape boundaries [6,8]. In the former case, once cell centers
are determined, effective methods such as repulsive active contours [19], voronoi
tessellation [5,10], gradient flow back-tracking [15] or watershed [18] are used,
however the accurate cell-center localization is still a challenging task. Meth-
ods based on the cluster boundary information include: the minimum model
approach [22], graph cut [6,8] and rule based segmentation [13].

In this paper we present a cell segmentation framework merely based on
energy minimization principles. The main components are the following (a)
image normalization, using illumination correction [21], (b) presegmentation,
using anisotrop local region active contour, (c) splitting of clumped objects
using a novel higher order active contour model. The structure of the paper is
as follows: in Sect. 2.2 we analyze the properties of the local region based active
contour model, highlighting its strong edge tracking capability, in Sect.2.3 we
introduce a higher order functional designed for cluster splitting and in Sect. 3
we present our experimental results and compare with the most frequently used
method in cell segmentation.

2 The components of the cell segmentation framework

In this section we introduce the model designed to efficiently segment foreground
objects (cell clumps) and split them into simple, non-further-splittable parts. The
presegmentation is performed by a local-region active contour (see Sect.2.2)
which effectively tracks object boundaries even if they are slightly overlap or
touch each other. After this step, remaining objects have no longer edges to be
tracked. A purely geometric splitting functional (see Sect.2.3) is designed as a
second step that splits these objects further by penalizing high curvature contour
regions (see Fig. 3) and moving them towards each other until they cut.

2.1 Notations

The point set of the image plane is denoted by 2, parameterized by Cartesian
image coordinates x and y, [z,y] € £ C R2. Contours are closed planar curves,
given as vector valued function of a curve parameter ¢ such that: 2> r(t) =
z (t)i+ y(t)j, where i, j are the standard basis vectors and k = i x j is the
unit normal vector of the image plane. The unit tangent vector of the contour
ist = |i—‘, r = %. The unit normal vector of the contour n is defined by the
plane normal k as n = k x t. Note that assuming i, j, k are right-handed,
contours that are parameterized counter-clockwise have normal vectors pointing
inwards. Arclength of the curve is denoted by s. The coordinate differentials and

differential operators are related with ds = |¢|d¢ and d% = ﬁ% respectively.
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Fig. 1. Local regions are defined by the local Cartesian coordinate systems with the
unit tangent and normal basis vectors. The data metric used for segmentation is the
difference of the mean intensities of the regions distinguished by positive/negative local
ordinate values.

The signed curvature of the contour is denoted by k, defined with the help of

the plane normal as ﬁ

2.2 The Local Region Active Contour

The presegmentation is performed by using a local-region active contour dis-
cussed in details in [17]. Here we summarize the theoretical background and the
properties of this method.

The local region along the contour is defined by local Cartesian coordinate
system. The functional ¢ & (r,n) ds contains the local coordinate system explic-
itly, represented by the unit normal vector of the contour. Note that the inclusion
of either the unit normal or the unit tangent vector is equivalent, because in case
of planar curves they are related by n = k x t. This functional was originally
introduced in [7] for 3D reconstruction purpose. Applying this for image seg-
mentation, requires the Lagrangian to be specialized. We use the difference of
the mean image intensities given by local integrals

& (r,n) I%II / p)dA — // ydA | . (1)

as introduced in [17], where the quantities are defined in Fig. 1. Using the local
region active contour has the following advantages:

— its region-based nature does not require preliminary noise removal

— no smoothness term is required, the minimizing contour is not over-smoothed

— anisotropic: the gradient descent direction of the contour points depend on
the image intensity distribution in the local regions

The last two properties explain the advantageous feature of the local-region
active contours: they can track image edges even if the gaps between the fore-
ground objects are very narrow (Fig.2).
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Fig. 2. Comparison of isotropic/anisotropic segmentation results: original image (left),
isotropic segmentation (middle) and anisotropic segmentation (right).

2.3 The Split Functional

To design the split functional we are using an analogy from electrostatics.
The variational formulation of the charge density distribution o (r) on a con-
ductor can be characterized with the total potential energy of the system as:
$bo(r)o(r)i(d(r,x"))d2d2', where d(r,r’) is the Euclidean length between
two points of the conductor, [ (d) = ﬁ The minimizer of this system! is the
equipotential distribution of the charge on the conductor surface. We will use
this analogy with the following differences: (a) the problem is applied to planar
curves; (b) the force acts between the contour points is attractive and anisotropic
(explained later); (c) the “attractive charges” fixed to the contour points hence
the contour evolves to reach the minimal energy.

First, we assume that the set of object that compose the clump of nuclei
cannot be further segmented using the local-region active contour model due
to missing edge information between the parts. The splitting functional should
therefore be based on purely geometric information. Second, we reduce the set
of contour points to a subset satisfying certain concavity and alignment criteria.
We call it “feasible subset”. The complement set of the “feasible subset” remains
intact during the process. The feasible contour points are handled as weighted,
oriented particle set. The associated orientation is defined by their normal vector
n, the weighs by their concavity as shown on Fig. 3. Within an energy minimiza-
tion framework, the concavity is indicated by negative curvature x < 0. The
aliment of two oriented points (indexed by 1, 2) is defined by the relation of their
orientations and relative position such that ais = ny - €13 + ns - €31, where eqs
is the unit normal vector pointing from point 1 to 2, and e3; = —ej5. Note that
this definition of the alignment is symmetric, i.e. a12 = as1. Now one can define
the “anisotropic energy” for a pair of points as Uiz = f (k2) f (k1) g (a12) [ (d12)
with dy2 being the Euclidean distance between the points and f, g, [, are appro-
priately chosen functions discussed in the next subsection. Taking f (x (s)) as
the density of the potential source (the “attractive? charge”) along the contour,
the second-order functional:

- 315 515 F () F (5 () g (a (s, 8) 1 (d(s, ') ds'ds @)

! Extended by the charge conservation principle.
2 Hence the negative sign.
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Fig. 3. llustration of the object cutting method. Contour points connected by contin-
uous line are well aligned, whilst points connected by dashed line are not.

represents the total energy of the contour. The integral is evaluated only on the
feasible subset, defined as:

[r(s)|r(s) <—eAa(ss)>4]. (3)

Points out of the “feasible subset” do not contribute to the total energy. Note that
the minimization of the negative of the simplified functional with ¢ = 1,1 =1
would result in the convex hull of the initial contour. Functional (2) represents
a geometric contour, the associated Euler-Lagrange equation has component
only in the normal direction (see Appendix). We solve it iteratively via gradient
descent, using the Level Set method.

2.4 The Roles of the Functions

The most important part of the Lagrangian (2) is the alignment function
g(a(s,s’)). The appropriately designed function keeps the correct orientation
(prevents biasing from the aligned direction) between the approaching tips of
the “cutting arms” during the evolution process. It also guarantees the stability
of the cutting arm preventing it from unexpected bifurcation. Note that we use
the smooth version of the curvature for the same reasons. (The smoothing is
done by simple averaging the curvatures of a small neighborhood.) The function
in Fig. 4 left acts as potential barrier with minimum at the maximal alignment.
The simplest splitting functional contains only the alignment function (this spe-
cial form can be derived from the general functional setting the other constituent
functions (f, 1) identically constant one). This however, would represent a sys-
tem with energy indiscriminate w.r.t. the distance between the points of the
feasible subset.

To favor point pairs otherwise appropriate, the distance function I (d (s, s)) is
introduced in the functional (2) such that closer points exhibits bigger attractive
force than further ones. The distance function may have limited scope as well.

The suitable function of the curvature can provide further stability for the
“cutting arms” enforcing their tips to favor certain curvature value, thus make
further bifurcations unlikely. This function can be chosen to be potential barrier.
Its minimum value determines the curvature of the cutting tip, hence the width
of the cutting arms (Fig.4) as well.
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Fig. 4. The graphs of the Aligment (left) and the Curvature (right) functions. Both
can be considered potential barriers. Points outside the feasible subset marked with
dashed line.

3 Results

To demonstrate the segmentation ability of the proposed method we present
quantitative results on synthetic images and qualitative results on real images
of cancer cells.

The synthetic data was created using the SIMCEP simulation tool [14]
designed to test and evaluate image analysis methods for fluorescent microscopy.
60 images were generated each containing 20 nuclei of a similar size and clus-
tering into 3-5 clusters. A slight, maximum 5%, overlap was allowed between
individual cells. The method was compared to CellProfiler using its IdentifyPri-
maryObjects module with intensity- and shape-based clumped object splitting
options [10]. To evaluate the segmentation quality of the proposed method and
compare to others we used three metrics that was proposed earlier [16]. To ana-
lyze segmentation accuracy at object level we calculated precision and recall
values. Precision is the ratio of true positives (TP) to the number of detected
objects (Precision = TP/(TP + FP)), while recall (or sensitivity) is the propor-
tion of the objects of interest is found (Recall = TP/(TP + FN)). Values close
to 1 represent more accurate detection. First, a matching between the ground
truth and the set of segmented objects was made. TP is the number of seg-
mented objects with matching ground truth object, while FP is the number of
segmented objects that have no matching ground truth object. FN is the number
of ground truth objects that have no matching segmented object. The third met-
ric was the Jaccard-index for pixel-level accuracy, a similarity measure between
sets: JI(A, B) = |AN B|/|AU Bj, for each matched pair. Figure5 shows sam-
ple images of CellProfiler’s intensity-based (Fig.5 upper left) and shape-based
(Fig. 5 middle) methods and results obtained using the proposed splitting model
(Fig. 5 upper right).

Figure6 represents results obtained using the proposed method on real
images of cancer cell cultures. The method was able to successfully identify
single cells in this highly complex environment.
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Fig. 5. Results on simulated data. Upper row: (left): intensity-based watershed method,
(middle): shape-based watershed method; (right): result with the proposed method.
Bottom plot: precision, recall and Jaccard-index statistics of the methods.

Fig. 6. Sample results on real microscopic image data of cancer cells.

4 Conclusion and Future Work

We presented a novel approach that successfully separates touching cells using
intensity and cell clump geometry properties. The method first performs a seg-
mentation based on local intensity differences, than closes contour arms opposite
to each other. Experimental results show that the method outperforms currently
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used ones and has the potential to became the de facto cell segmentation tool for
certain bioimage segmentation problems. Due to the active contour framework
we used, it is possible to incorporate further shape prior information into the
segmentation.

In the future, we will extend the model to 3D and provide a solution for
the most recent cell segmentation challenges including cancer drug discovery
in 3D environment or tissue analysis using deep imaging. The model will be
implemented on GPU to speed up processes.

Appendix

The derivation of the Euler-Lagrange equation associated to functional (2) is
straightforward albeit long. Here we only provide the result. The notations used
in the equations are the following: the point at contour parameter ¢ is designated
by position vector r (). The bound variable of the integrals is denoted by 7,
hence the invariant arc length: ds = |¢| d7 (the derivatives of the position vector
w.r.t. the contour parameter are denoted by dots: f, ¥...). The unit tangent
and normal vectors of the contour are denoted by e, n, where e = ﬁ Using
right handed coordinate system, they are related with n = k x e, where k is
the normal of the image plane, hence the contour normals point inward. The
(signed) curvature of the contour is given by x = ﬁ The unit direction vector

r.—r

between points given by contour parameters ¢t and 7 is denoted by e, = T
where di; = |r; — | is their Euclidean distance. We also use the normal to
this direction vector with definition n;; = k X €. The alignment between
contour points is defined by atr = n(t) - e + 0 (7) - €14 (€7t = —€47). f, 9,1
are the appropriately chosen functions of the curvature, alignment and distance
respectively, for their derivatives we use prime mark f’, f”... The first and
second derivatives of the curvature w.r.t. the arc length are denoted by 3—’;, %'
The curvature and its derivative are scalars. Note that the derivative w.r.t. the
arc lenght of any scalar quantity ¢ can be calculated on the planar grid using
the formula: (Vq) - e, where V is the gradient operator with components being

the partial derivatives (%, a%) w.r.t. image coordinates x, y.

The formula: A =e, - (e(t) —e (7)), B=e4; - (n(t) —n (1)),
C = [Md) —z'(d”)} D =ey n(t), E=ey-e(t), F=n(r) e(t) are
introduced to simplify the equation. The Euler-Lagrange equation associated to
the half of (2) at point ¢ has the form ‘r (t)‘ Qn (t) = 0, where @ is given by the

following sum:
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The factors outside the integrals are calculated at parameter ¢ (i.e. independent
of the bound variable). Note that any factor depending only on parameter ¢,
could be brought before the integrals, but would lead more complicated expres-
sion.
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