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Abstract. Determining the optimal parameters for a given detection
algorithm is not straightforward and what ends up as the final values is
mostly based on experience and heuristics. In this paper we investigate
the influence of three basic parameters in the widely used Aggregate
Channel Features (ACF) object detector applied for traffic light detec-
tion. Additionally, we perform an exhaustive search for the optimal para-
meters for the night time data from the LISA Traffic Light Dataset. The
optimized detector reaches an Area-Under-Curve of 66.63% on calculated
precision-recall curve.

1 Introduction

The Aggregate Channel Features (ACF) object detector [1], from Piotr’s Com-
puter Vision Matlab Toolbox (PMT) [2], has been used for detecting a wide
range of objects. Originally it was introduced as as a detector for pedestrians in
[1], but have since been applied in several other areas related to driver assistant
systems (DAS). The applied areas are not only limited to looking-out of the
vehicle [3], where other vehicles [4], signs [5], and traffic lights (TLs) [6] have
been popular, but also looking-in areas, such as hands detection [7] has seen
use of the ACF detector. General for all areas is that the ACF object detector
has been adjusted heuristically in a practical manner. Fine-tuning towards the
optimal parameters are a common problem amongst researchers as it can be
difficult without any prior experience of applying the given detector or without
any prior knowledge of the test data. All of the above DAS areas where ACF
has been applied are great challenges and remains important cases as people
unfortunately keeps getting injured in the traffic. In 2012, 683 people died and
133,000 people were injured in crashes related to red light running in the USA
[8]. Traffic light detection is thus an obvious part of DAS system in the transition
towards fully autonomous cars.

A large issue in research is that evaluations are done on small and private
datasets that are captured by the authors themselves. For better and easier
comparison in DAS related areas, benchmarks such as the VIVA-challenge [9]
and KITTI Vision Benchmark Suite [10] can highly beneficial for determine the
prone future research directions.
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In this paper, we will do a comprehensive analysis of three central parameters
for the ACF object detector, applied on the night data from freely available LISA
Traffic Light Dataset used in the VIVA-challenge [11]. The contributions of this
paper are thus threefold:

1. Exhaustive parameter sweep of ACF.
2. Analysis of correlations between detector parameters.
3. Optimized TL detection results on the night data from the LISA Traffic Light

Dataset.

The paper is organized as follows: Relevant previous work is summarized in
Sect. 2. In Sect. 3 we present the detector and the three parameters that are
investigated. The extensive evaluation of the parameter sweep is presented in
Sect. 4. Finally, in Sect. 5 we give our concluding remarks.

2 Related Work

The related work can be split into two parts: model-based and learning-based
approaches. For a more comprehensive overview of the related work, we refer
to [11].

2.1 Model-Based

Model-based object detection is a very popular approach for detecting TLs.
Most model-based detectors are defined by some heuristic parameters, in most
cases relying on color or shape information for detecting TL candidates. The
color information is used by heuristically defining thresholds for the color of
interest in a given color space [12,13]. The shape information is usually found
by applying circular Hough transform on an edge map [14], or finding circles
by applying radial symmetry [15,16]. In [17,18] shape information is fused with
structural information and additionally color information in [19,20]. The output
of using above approaches are usually a binary image with TL candidates. BLOB
analysis is introduced to reduce the number of TL candidates by doing connected
component analysis and examining each BLOB by it’s size, ratio, circular shape,
and so on [21].

2.2 Learning-Based

One of the first learning-based detectors is introduced in [22,23] where a cascad-
ing classifier is tested using Haar-like features, but was unable to perform better
than their Gaussian color classifier. The popular combination of Histogram of
Oriented Gradients (HoG) features and SVM classifier were introduced in [24],
but additionally also relying on prior maps with very precise knowledge of the TL
locations. The learning-based ACF detector has previously been used for TLs,
where features are extracted as summed blocks of pixels in 10 different channels
created from the original input RGB frame. In [25] and [6] the extracted features
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are classified using depth-2 and depth-4 decision trees, respectively. In [6] the
octave parameter, which define the number of octaves to compute above the
original scale, is changed from 0 to 1.

3 Method

The method section is two-fold, firstly the learning-based ACF detector is pre-
sented. Secondly, the method for conducting the comprehensive parameters opti-
mization for the TL detector is presented.

3.1 Learning-Based Detector

The features for the ACF object detector are extracted from 10 feature channels:
1 normalized gradient magnitude channel, 6 histogram of oriented gradients
channels, and 3 channels constituting the LUV color channels. The features are
hence created by single pixel lookups in the feature maps. The channels sub-
sampled corresponds to a halving of the dimensions [4].

The training is done using 3,728 positives TL samples (Fig. 1) with a resized
resolution of 25 × 25, and 5,772 frames without any TLs and hard negatives
generated from 1 execution of bootstrapping on the 5 night training clips from
the LISA TL dataset [11]. Examples of these hard negatives are seen in Fig. 2.
The number of extracted negative samples varies depending on the configuration,
but is limited to maximum of 175,000 samples.

AdaBoost is used to train 3 stages of soft cascades, the three stages con-
sists of 10, 100, and 4000 weakleaners. However, the comprehensive parameters
optimization showed that it often converges earlier. The generated AdaBoost
classifier is using decision trees as weak learners.

For detecting TLs at greater distances, the intervals of scales can be adjusted
by the octave up parameter, e.g. changing it from 0 to 1 will define the number
of octaves to compute above the original scale. The number of extracted samples
from the training will highly depend on the model size, tree-depth, and octave
up parameters.

Finally the detection is done by using a sliding window which is moved across
each of the 10 aggregated feature channels created from the test frame.

Fig. 1. Positives samples cropped from training data.
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Fig. 2. Hard negatives generated from bootstrapping.

3.2 Parameter Optimization

In this paper, a comprehensive parameter optimization is made by adjusting the
dimensions of the sliding window, hereafter defined as mDs, the decision tree’s
depth, hereafter defined as treeDepth, and the number of octaves to compute
above the original scale, hereafter defined as nOctUp. To speed up the parame-
ters optimization, a MATLAB script is developed which uses a FTP connection
to communicate with a master web host, such n-computers can work on the
parameter optimization simultaneously.

The parameter optimization is done by adjusting one parameter at a time,
e.g. creating a TL detector with a nOctUp = 0 and treeDepth = 2, and then
vary the mDs size from [12, 12] to [25, 25]. A total of 142 = 196 detectors are
made with above nOctUp and treeDepth settings. By adjusting the nOctUp
and treeDepth and redoing the sliding window variation, a very comprehensive
overview of what the optimal mDs size is, and how the performance correlate
with the nOctUp and treeDepth.

4 Evaluation

In this paper the parameters optimization will be done according to the para-
meter variations seen in Table 1. The parameters optimization will be performed
on nighttime sequence 1 from the LISA TL dataset which are collected in an
urban environment in San Diego, USA and contain 4,993 frames and 18,984
annotations. The data is generated from a 5 min and 12 s long video sequence
containing 25 physical TLs split between 5 different types: go, go left, warning,
stop, and stop left [11].

The mDs are decreased in the last two iteration in Table 1 as the training
time increases significantly when the nOctUp and treeDepth are increased. As
the training have been done on multiple different computers, the average training
time, defined in Table 1, is calculated from calculated the average training time
from the computer being involved in all 6 iterations for the most comparable
results. The most involved computer is a Lenovo Thinkpad T550 with an Intel
i7-5600U CPU @ 2.6 GHz, 8 GB of memory, and a SSD page file. The parameter
sweep was done using MATLAB R2015b on Windows 7 Enterprise, both 64-bit.
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Table 1. ACF detector parameter variation

mDs Start mDs End nOctUp treeDepth # Detectors Avg Time [DD:HH:MM]

[12, 12] [25, 25] 0 2 196 00:02:59

[12, 12] [25, 25] 0 4 196 00:04:40

[12, 12] [25, 25] 1 2 196 01:02:43

[12, 12] [25, 25] 1 4 196 01:06:34

[15, 15] [22, 22] 2 2 64 02:19:28

[15, 15] [22, 22] 2 4 64 02:21:19

912

Fig. 3. PR-curves of best ACF detector from each heatmap.

Each detections will be quantified in accordance to the VIVA-challenge [9],
where the Area-Under-Curve (AUC) of a Precision-Recall curve (PR-curve) gen-
erated from the ACF results is used as the final evaluation metric [11]. Further-
more, the true positive criteria in the VIVA-challenge defines a detection as one
that is overlapping with an annotation with more than 50%, as defined in Eq. (1).

a0 =
area(Bd ∩ Bgt)
area(Bd ∪ Bgt)

(1)

where a0 denotes the overlap ratio between the detected bounding box Bd and
the ground truth bounding box Bgt. a0 must be equal or greater that 0.5 to meet
true positive criteria [26].

In Fig. 4, the 6 different parameter variation sweeps, defined in Table 1, are
seen. All of the heatmaps are plotted with the same color range, spanning from
dark blue to dark red indicating a detection rate of 0% and 100%, respectively.
For each heatmap plot in Fig. 4, the model dimension with the highest detection
rate is marked with bold. By examining the figures in pairs, e.g. 4a+4b and
4a+4c, one can determine the effect of changing tree-depth or octave, respec-
tively. Increasing only the octave from 0 to 1 increases the best performance from
33.42% to 49.29%. Furthermore, the average AUC of the entire heatmap is also
increased significantly as a result of the octave increment, which is best illus-
trated by the increase of more bright green areas in Fig. 4c compared to Fig. 4a.
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(a) Heatmap of ACF detector with octave
0 and tree-depth 2.

(b) Heatmap of ACF detector with octave
0 and tree-depth 4.

(c) Heatmap of ACF detector with octave
1 and tree-depth 2.

(d) Heatmap of ACF detector with octave
1 and tree-depth 4.

(e) Heatmap of ACF detector with octave
2 and tree-depth 2.

(f) Heatmap of ACF detector with octave
2 and tree-depth 4.

Fig. 4. Heatmaps of ACF detector with varying octaves and tree-depths. (Color figure
online)

Increasing the tree-depth from 2 to 4 increases the best performing mDs with
6.79%, and the overall average AUC is also increased by comparing the color
schemes of Fig. 4a and b. In Fig. 4d both the octave and tree depth is increased
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to respectively 1 and 4, resulting in an AUC of 56.85% with a mDs of [18, 16].
There are no clear tendency of a groupings of mDs where the detection rate is
good in Fig. 4a. In Fig. 4a–d, a grouping with a lower detection rate is present
in the upper right corner and the lower left corner, which suggests that the
optimal mDs is found between a size of 15 and 22. Finally, the octave increased
in Fig. 4e and f, where only the detection with mDs from 15 to 22 have been
executed due to time restrictions and the previously mentioned low detection
rate grouping analysis. Increasing the octave to 2 increases the AUC to 61.28
with a tree-depth 2, and finally 66.63%, which is the highest achieved AUC in
this parameter sweep.

In Fig. 3, the Precision-Recall curves of the best performing mDs from each
heatmap are seen. The precision is decent when the recall is under 0.35 for all of
the detections, meaning that we have high confidence in our detections until this
point. The detections with octave 0 detects less than 60% of the true positives,
by increasing the octaves the recall, and number of true positives detections,
are greatly improved reaching over 90% with octave 2 and tree-depth 4. By
increasing the octave all detections reaches a recall above 79% resulting in a
higher AUC.

5 Conclusion

Increasing only the octave provides us with better capabilities of detect a larger
size range of TLs, resulting in the most significant AUC increments. The incre-
ments of the tree-depth improves the results when keeping the octave unchanged,
however, the AUC increase is not as high as increasing the octave while keep-
ing the tree-depth the same. The AUC is nearly doubled by increasing both of
tree-depth and octave in Fig. 4a and d, leading to conclusion that these parame-
ters are correlated, as the color scheme strongly show the overall AUC increase.
Finally, the AUC is improved by increasing octave and tree-depth additionally,
as seen in Fig. 4e and f, respectively. As in the first 4 iteration heatmaps, the
best performing AUC is increased when increasing both octave and tree-depth
simultaneously, which supports the conclusion that the parameters are highly
correlated. By examining Fig. 4f it is clear that the best performing AUC is
increased additionally and found at a mDs of [20, 20] with 2 octaves and a tree-
depth of 4.

Further experiments includes finding the convergence points by keep increas-
ing the parameters. Additionally, a similar parameter sweep on the daytime data
from the LISA TL dataset would be interesting.
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