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1 Introduction

Surface roughness is an important characteristic in industrial applications and
involves friction, lubrication, heat transmission, corrosion resistance and wear. It is
acknowledged that surface roughness determines the longevity and reliability of
machine parts. Surface roughness is also an indicator of the amount of energy and
other resources consumed during machining [1–5]. Thus, the determination of
surface roughness is an essential factor in industrial applications.

One of the best thermoplastic polymers is Polytetrafluoroethylene (PTFE), which
exhibits high thermal stability as well as good chemical resistance and dielectric
properties. Because of its excellent mechanical properties and low friction coeffi-
cient, PTFE is the preferred engineering plastic for many applications and pro-
cessing techniques. It is used in the production of seals, bearings, O-rings, electrical
insulators, valve bodies and laboratory instruments requiring chemical resistance.
Additionally, it is used in non-stick surfaces, engine parts, and for applications in
the biotechnology and medical fields. At the same time, PTFE is used to coat
automotive parts such as clutches, valves, etc. [6–9].

Glass fiber and carbon fillers can increase the mechanical properties of PTFE.
However, fillers can lead to machining difficulties. Polymer composites differ from
metals during machining processes owing to the time–temperature dependence of
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the polymers and additional structural fillers. The quality of a machined surface can
be determined by taking into account the parameters of surface roughness, cutting
speed, feed rate and depth of cut. Good machinability and superior product quality
with minimum surface roughness values can then be obtained [1, 10].

Artificial neural networks (ANNs) are artificial intelligence nonlinear mapping
systems that can solve problems of modeling and predicting experimental data.
An ANN is commonly designed in a multi-layer form that includes an input layer, a
hidden layer and an output layer. Jeyakumar et al. developed the response surface
method (RSM) and ANN-based prediction models to determine the surface
roughness of Al6061/SiCp. The ANN model was found to perform better than the
RSM model in determining the optimum machining parameters for minimum
surface roughness [11].

In this study, an ANN-based prediction model was developed to determine the
optimum cutting parameters (cutting speed, feed rate, and depth of cut) in terms of
surface roughness in the turning of 25% carbon-filled and 25% glass fiber-filled
PTFE. The performance of the ANN model was compared with the experimental
results in order to determine its efficiency.

2 Materials and Methods

2.1 Measuring of Surface Roughness

The experiments were conducted using the MAHR MARSURF PS 1 mobile
roughness-measuring instrument. The Korloy WNMG-NC5330 TiN-coated carbide
insert was selected as the cutting tool. The machining parameters included two
cutting speeds (150 and 200 m/min), three feed rates (0.1, 0.2, and 0.3 mm/rev) and
three depths of cut (1, 2 and 3 mm) and the response considered was the average
surface roughness (Ra). The experiments were carried out using commercially
available pure (unfilled) PTFE, 25% carbon-filled PTFE and 25% glass fiber-filled
PTFE in the form of cylindrical specimens with a diameter of 50 mm. The values
reported in the study were taken from readings at different points on the circum-
ference of the workpiece samples.

2.2 Production of PTFE

The PTFE was supplied by the APAMEYA Company. The PTFE powder and filler
materials were mixed mechanically in the extruder to produce cylindrical samples
50 mm in diameter, as shown in Fig. 1.
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2.3 Artifical Neural Network

The architectural approach was proposed to deal with the optimization of
machining parameters in order to minimize surface roughness in the turning of
carbon-filled and glass fiber-filled polytetrafluoroethylene. This approach is based
upon nonlinear autoregressive models with exogenous input called NARX recurrent
neural networks. The NARX model is one of the powerful class of models greatly
suited for modeling non-linear systems, especially in time series. Control systems
are one of the principal application fields of the NARX dynamic neural network,
which contains recurrent feedback from several layers of the network to the input
layer [12–14]. The architecture of the NARX neural network is given in Fig. 2.

Fig. 1 Schematic illustration of PTFE sample production

Fig. 2 Architecture of the NARX neural network
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3 Results and Discussion

3.1 Experimental Results of Surface Roughness

The surface roughness tests were conducted on a CNC turning machine under dry
conditions. The effect of feed rate and depth of cut on surface roughness in the
turning of PTFE at a cutting speed of 150 m/min is shown in Fig. 3.

It can be seen that the surface roughness of pure (unfilled), 25% carbon-filled and
25% glass fiber-filled PTFE increases with the increase of feed rate in all depth of
cut parameters. Therefore, an increasing feed rate resulted in higher surface
roughness values, while a low feed rate was assumed to produce a better surface
finish. In addition, the highest Ra value (4.4 µm) was observed on pure (unfilled)
PTFE in turning at a feed rate of 0.3 mm/rev and a depth of cut of 3 mm. However,
under these conditions, the effect of depth of cut on the surface roughness is very
complex and it does not exhibit a regular behavior. Figure 4 presents a comparison
of the surface roughness values of pure (unfilled), 25% carbon-filled and 25% glass
fiber-filled PTFE.

Figure 4 reveals that the highest Ra values were obtained on pure PTFE in
turning at all machining parameters. The lower Ra values were observed on
carbon-filled and glass fiber-filled PTFE. This indicated that the carbon and glass
fiber fillers led to a better surface finish with the preferred experimental parameters.
In particular, the carbon fillers provided good machinability and superior product
quality due to minimum surface roughness values. The effect of cutting speed on
surface roughness in the turning of PTFE at a depth of cut of 1 mm is shown in
Fig. 5.

Fig. 3 Effect of feed rate and depth of cut on surface roughness in the turning of PTFE: a Pure
(unfilled), b 25% carbon-filled, c 25% glass fiber-filled
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Fig. 4 Effect of feed rate and filled materials on surface roughness in the turning of PTFE:
a 1 mm depth of cut, b 2 mm depth of cut, c 3 mm depth of cut

Fig. 5 Effect of feed rate and cutting speed on surface roughness in the turning of PTFE: a Pure
(unfilled), b 25% carbon-filled, c 25% glass fiber-filled

Optimization of Machining Parameters to Minimize Surface … 299



It can be seen that the surface roughness values of pure, 25% carbon-filled and
25% glass fiber-filled PTFE generally decrease in all samples with the increase of
cutting speed. Thus, a higher cutting speed resulted in lower surface roughness
values, and a low feed rate was assumed to produce a better surface finish.

3.2 Comparison of ANN Predictions with Experimental
Results

The dataset was taken from the experimental work in order to analyze the surface
roughness during the turning of pure (unfilled), 25% carbon-filled and 25% glass
fiber-filled PTFE. The MATLAB 2015 Neural Network toolbox with the NARX
model was used for the experiments. The NARX network was capable of using
multi-time series input and multi-time series output applications. In the current
study, The Levenberg Marquardt (LM) algorithm, which is fast and consumes less
memory [15], was used for training the algorithm.

The hyperbolic tangent sigmoid transfer function was used for activation of the
function in the hidden layer as well as for the output layer. The learning algorithm
used was the back propagation algorithm, which minimizes the total mean square
error of the output computed by the network via a gradient-descent method. Data
obtained from the experiments (machining parameters and surface roughness val-
ues) were used at the network learning stage. During network learning, the output of
the network was compared with the desired output. The learning process is iterative
and was stopped early to improve generalization by an increase in the mean square
error of the validation samples. In sum, the data from 18 experimental trials were
measured in order to build the neural network for each of the three experimental
samples. In total, data from 54 experimental trials were used for the neural network
modeling study, as shown in Table 1. It was necessary to decide on the number of
neurons based on trial and error. This was accomplished by gradually increasing the
number of neurons and observing the results of the change on the predicted values.
As a result, the structure of the network was selected as 3-9-1 (Fig. 6). It included
three input neurons in the input layer (corresponding to three machining parame-
ters), one hidden layer with nine neurons and one output neuron in the output layer
(corresponding to surface roughness).

No specific rule was employed for determining the number of data items to be
used for training and for testing and validation; however, the general idea was that
more data should be used for training than for testing and validation. Hence, 70% of
the data was used for training, 15% for testing and another 15% for validation. The
correlation coefficient (R-value) between the outputs and targets is a goodness-of-fit
measurement of the variance between the outcomes and targets. The R-values of the
validation data set shown in Table 2 indicate a strong correlation between the
experimental outputs and the network outputs of the designed architecture of the
ANN Ra prediction.
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Table 1 Verification of the developed model with the experimental data

Experiment
No.

Cutting
speed
(m/min)

Depth
of cut
(mm)

Feed rate
(mm/rev)

Material Surface roughness
(µm)

Relative
Error (%)

Experimental ANN
model

1 150 1 0.1 Pure (unfilled)
PTFE

2.45 2.4 2.0408

2 150 1 0.2 3.28 3.51 −7.0122
3 150 1 0.3 4.25 4.18 1.6471

4 150 2 0.1 3.31 3.06 7.5529

5 150 2 0.2 3.58 3.41 4.7486

6 150 2 0.3 3.78 3.55 6.0847

7 150 3 0.1 2.77 2.62 5.4152

8 150 3 0.2 2.88 2.71 5.9028

9 150 3 0.3 4.4 3.9 11.3636

10 200 1 0.1 3.88 3.82 1.5464

11 200 1 0.2 3.97 4.23 −6.5491
12 200 1 0.3 4.50 4.13 8.2222

13 200 2 0.1 2.85 2.90 −1.7544
14 200 2 0.2 2.96 3.13 −5.7432
15 200 2 0.3 3.65 3.99 −9.3151
16 200 3 0.1 2.12 2.22 −4.7169
17 200 3 0.2 3.64 3.80 −4.3956
18 200 3 0.3 4.23 4.27 −0.9456
19 150 1 0.1 25%

carbon-filled
PTFE

1.35 1.41 −4.4444
20 150 1 0.2 1.42 1.57 −10.5634
21 150 1 0.3 1.68 1.67 0.5952

22 150 2 0.1 1.69 1.81 −7.1006
23 150 2 0.2 1.87 1.83 2.1390

24 150 2 0.3 1.89 1.82 3.7037

25 150 3 0.1 1.55 1.58 −1.9355
26 150 3 0.2 1.56 1.57 −0.6410
27 150 3 0.3 1.65 1.70 −3.0303
28 200 1 0.1 1.62 1.64 −1.2346
29 200 1 0.2 1.77 1.74 1.6949

30 200 1 0.3 1.83 1.74 4.9180

31 200 2 0.1 1.64 1.65 −0.6098
32 200 2 0.2 1.71 1.81 −5.8480
33 200 2 0.3 1.81 1.87 −3.3149
34 200 3 0.1 1.61 1.75 −8.6957
35 200 3 0.2 1.89 1.84 2.6455

36 200 3 0.3 2.05 1.94 5.3659
(continued)
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Table 1 (continued)

Experiment
No.

Cutting
speed
(m/min)

Depth
of cut
(mm)

Feed rate
(mm/rev)

Material Surface roughness
(µm)

Relative
Error (%)

Experimental ANN
model

37 150 1 0.1 25% Glass
fiber-FILLED
PTFE

1.52 1.49 1.9737

38 150 1 0.2 2.00 1.90 5.0000

39 150 1 0.3 2.01 1.96 2.4875

40 150 2 0.1 1.80 1.79 0.5556

41 150 2 0.2 1.97 1.86 5.5838

42 150 2 0.3 1.99 1.83 8.0402

43 150 3 0.1 1.60 1.64 −2.5000
44 150 3 0.2 1.87 1.94 −3.7433
45 150 3 0.3 2.25 2.44 −8.4444
46 200 1 0.1 1.65 1.82 −10.3030
47 200 1 0.2 1.96 1.92 2.0408

48 200 1 0.3 2.21 2.14 3.1674

49 200 2 0.1 1.93 2.02 −4.6632
50 200 2 0.2 2.04 2.02 0.9804

51 200 2 0.3 2.59 2.29 11.5830

52 200 3 0.1 1.90 1.82 4.2105

53 200 3 0.2 2.05 1.89 7.8049

54 200 3 0.3 2.62 2.48 5.3435

Fig. 6 Selected neural network architecture
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The predicted experimental data results are shown in Table 1. The average
relative error between the experimental and predicted values was 4.66%. The
average relative error between the experimental and predicted values together with
the correlation coefficient of validation data (R-value) between the outputs showed
that the well-trained network exhibited reliable accuracy in predicting the surface
roughness values. Figure 7 shows the comparison of the ANN results with the
experimental values. It can be seen that the neural network prediction results are
very close to the experimental values.

4 Conclusion

An ANN-based prediction model was developed to determine the optimum cutting
parameters (cutting speed, feed rate, and depth of cut) in terms of the surface
roughness in the turning of 25% carbon-filled and 25% glass fiber-filled PTFE. In
this study, in order to determine its efficiency, the performance of the ANN model
was compared with the experimental results.

Differences between the average surface roughness values were observed after
applying manufacturing parameters on pure (unfilled), 25% carbon-filled and 25%
glass fiber-filled PTFE samples. It is generally recognized that feed rate is an
important factor in the turning process of PTFE materials, and low cutting speed is

Table 2 Correlation coefficients of validation datasets of the designed ANN

Cutting speed
(m/min)

Pure (unfilled)
PTFE

25% Carbon-filled
PTFE

25% Glass fiber-filled
PTFE

150 0.97 0.98 0.96
200 0.95 0.94 0.99

Fig. 7 Comparison of ANN
results with experimental
values
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believed to produce a better surface finish. Moreover, the effect of depth of cut on
the surface roughness does not exhibit regular behavior. The lowest Ra value
(1.35 µm) was obtained on the carbon-filled PTFE in turning at a cutting speed of
150 m/min, a feed rate of 0.1 mm/rev and a depth of cut of 1 mm, while the highest
Ra value (4.4 µm) was observed on the pure PTFE in turning at a cutting speed of
150 m/min, a feed rate of 0.3 mm/rev and a depth of cut of 3 mm. Consequently, in
the experiments, a better surface finish was obtained with the PTFE containing filler
materials than with the unfilled PTFE.

When the ANN results were compared with the experimental values, the pre-
dictions of the neural network model were found to be accurate and reliable, with
results very close to the experimental values. Thus, the proposed model can be used
for prediction of the surface roughness in turning operations, with a promising
potential for use in many other applications. The NARX model and Levenberg
Marquardt (LM) algorithm were shown to be accurate for the optimization of the
machining parameters.
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