
Chapter 5
Finite Temporal Logic Control

In this chapter, we treat the general problem of controlling non-deterministic finite
transition systems from specifications given as LTL formulas over their sets of obser-
vations. We show that, in general, this control problem can be mapped to a Rabin
game. For the particular case when the LTL formula translates to a deterministic
Büchi automaton, we show that a more efficient solution to the control problem can
be found via a Büchi game. Finally, for specifications given in the syntactically co-
safe fragment of LTL, we show that the control problem maps to a simple reachability
problem. For all three cases, we present all the details of the involved algorithms and
several illustrative examples. In Part III, we combine these algorithms with abstrac-
tions to derive LTL control strategies for systems with infinitely many states. The
problem that we consider in this chapter can be formally stated as follows:

Definition 5.1 (Control strategy) A (history dependent) control function1

Ω : X+ → Σ for control transition system T = (X,Σ, δ, O, o) maps a finite, non-
empty sequence of states to an input of T . A control function Ω and a set of initial
states X0 ⊆ X provide a control strategy for T .

We denote a control strategy by (X0,Ω), the set of all trajectories of the closed loop
system T under the control strategy by T (X0,Ω), and the set of all words produced
by the closed loop T as LT (X0,Ω). For any trajectory x1x2x3 . . . ∈ T (X0,Ω) we
have x1 ∈ X0 and xk+1 ∈ δ(xk, σk), where σk = Ω(x1, . . . , xk), for all k ≥ 1.

Definition 5.2 (Largest Controlled Satisfying Region) Given a transition system
T = (X,Σ, δ, O, o) and an LTL formula φ over O , the largest controlled satisfying
region Xφ

T ⊆ X is the largest set of states for which there exists a control function
Ω : X+ → Σ such that all trajectories T (Xφ

T ,Ω) of the closed loop system satisfy
φ (i.e., LT (Xφ

T ,Ω) ⊆ Lφ).

The LTL control problem is analogous to LTL analysis problem (Problem 4.1),
and can be formulated as:

1In general, the control function Ω is a partial function, i.e. not every finite sequence of states is
mapped to an input.

© Springer International Publishing AG 2017
C. Belta et al., Formal Methods for Discrete-Time Dynamical Systems,
Studies in Systems, Decision and Control 89, DOI 10.1007/978-3-319-50763-7_5

81

82 5 Finite Temporal Logic Control

Problem 5.1 (Largest Controlled Satisfying Region Problem) Given a finite tran-
sition system T = (X,Σ, δ, O, o) and an LTL formula φ over O , find a con-
trol strategy (Xφ

T ,Ω) such that Xφ

T is the largest controlled satisfying region and
LT (Xφ

T ,Ω) ⊆ Lφ .

The control problem for transition systems from LTL specifications is stated in
most general form in Problem 5.1, i.e., for nondeterministic transition systems and
full LTL specifications. In the following section, we present an algorithm to solve this
problem and discuss the related complexity. In the presented algorithm, the control
synthesis problem is treated as a game played on a finite graph and approached
using automata theoretic methods. Such game semantics are introduced due to the
nondeterminism of the transition system and the accepting condition of a Rabin
automaton. However, if the transition system is deterministic, the control problem
can be solved through model checking techniques in a more efficient way. In the
subsequent sections, we focus on particular cases of this problem, e.g., when the LTL
formula can be translated to a deterministic Büchi automaton (a dLTL specification),
and when the LTL formula can be translated to an FSA (an scLTL formula), and
present more efficient solutions to the control problem and discuss the associated
complexities.

5.1 Control of Transition Systems from LTL Specifications

In this section, we provide a solution to the general problem of controlling finite,
nondeterministic systems from LTL specifications (Problem 5.1). The procedure
involves the translation of the LTL formula into a deterministic Rabin automaton,
the construction of the product automaton of the transition system and the Rabin
automaton, followed by the solution of a Rabin game on this product. The solution
of the Rabin game is a control strategy for the product automaton, and finally this
solution is transformed into a control strategy for the transition system. The resulting
control strategy takes the form of a feedback control automaton, which reads the
current state of T and produces the control input to be applied at that state. The
overall control procedure is summarized in Algorithm 9. In the rest of this section,
we provide the details of this procedure.

Algorithm9 ltl control(T, φ): Control strategy (Xφ

T ,Ω) such that all trajectories
in T (Xφ

T ,Ω) satisfy φ

1: Translate φ into a deterministic Rabin automaton R = (S, S0, O, δR, F).
2: Build a product automaton P = T ⊗ R
3: Transform P into a Rabin game
4: Solve the Rabin game
5: Map the solution to the Rabin game into a control strategy for the original transition system T

5.1 Control of Transition Systems from LTL Specifications 83

o1

o2

o2
o3

2
1

1

2

2

(a) Transition system T

o3

o1|o2

o3

o1|o2

o1

(b) φ = o1 ∧ (��(o1 ∨o2)∨��o3)

Fig. 5.1 Graphical representations of transition system (a) and the Rabin automaton (b) from
Example 5.1. For the automaton, s0 is the initial state and the acceptance condition is defined by
F = {(G1, B1), (G2, B2)}, where G1 = B2 = {s2} and B1 = G2 = {s1}

Step 1: Construction of the Rabin Automaton

The first step is to translate the LTL specification φ into a deterministic Rabin
automaton R. Note that there are readily available off-the-shelf tools for such trans-
lations (see Sect. 5.4).

Example 5.1 Consider the nondeterministic transition system T =
(X,Σ, δ, O, o) from Example 1.1 shown in Fig. 1.1, and reproduced for
convenience in Fig. 5.1a. We consider the following specification “a trajectory
of T originates at a state where o1 is satisfied, and it eventually reaches and
remains in a region where either o1 or o2 are satisfied, or o3 is satisfied”. The
specification is formally defined as the LTL formula

φ = o1 ∧ (♦�(o1 ∨ o2) ∨ ♦�o3).

A Rabin automaton representation of the formula φ is shown in Fig. 5.1b.

Step 2: Construction of the Product Automaton

The second step is the construction of a product automaton between the transition
system T and the Rabin automaton R, which is formally defined as:

Definition 5.3 (Controlled Rabin Product Automaton) The controlled Rabin prod-
uct automaton P = T ⊗ R of a finite (control) transition systemT = (X,Σ, δ, O, o)
and a Rabin automaton R = (S, S0, O, δR, F) is defined as P=(SP , SP0,Σ, δP , FP),
where

84 5 Finite Temporal Logic Control

• SP = X × S is the set of states,
• SP0 = X × S0 is the set of initial states,
• Σ is the input alphabet,
• δP : SP × Σ → 2SP is the transition map, where δP((x, s), σ) = {(x ′, s ′) ∈ SP |
x ′ ∈ δ(x, σ), and s ′ = δR(s, o(x))}, and

• FP = {(X × G1, X × B1), . . . , (X × Gn, X × Bn)} is the Rabin acceptance con-
dition.

This product automaton is a nondeterministic Rabin automaton with the same
input alphabet Σ as T . Each accepting run (x1, s1)(x2, s2)(x3, s3) . . . of a product
automaton P = T ⊗ R can be projected into a trajectory x1x2x3 . . . of T , such that
the word o(x1)o(x2)o(x3) . . . is accepted by R (i.e., satisfies φ) and vice versa. This
allows us to reduce Problem 5.1 to finding a control strategy for P . We define a control
strategy for a Rabin automaton, and therefore for a product automaton constructed
as in Definition 5.3, similarly as for a transition system. However, instead of history
dependent control strategy, we introduce a memoryless strategy. As we will present
later in this section, control strategies obtained by solving Rabin games (step 4 of
Algorithm 9) are memoryless.

Definition 5.4 (Control strategy for aRabinautomaton) A memoryless control func-
tion π : S → O for a Rabin automaton R = (S, S0, O, δR, F) maps a state of R to
an input of R. A control function π and a set of initial states W0 ⊆ S0 provide a
control strategy (W0, π) for R.

A run s1s2s3 . . . under strategy (W0, π) is a run satisfying the following two
conditions: (1) s1 ∈ W0 and (2) sk+1 ∈ δR(sk, π(sk)), for all k ≥ 1.

The product automaton P allows us to reduce Problem 5.1 to the following prob-
lem:

Problem 5.2 Given a controlled Rabin product automaton P=(SP , SP0,Σ, δP , FP)

find the largest set of initial statesWP0 ⊆ SP0 for which there exists a control function
πP : SP → Σ such that each run of P under the strategy (WP0, πP) satisfies the
Rabin acceptance condition FP .

Example 5.2 The product automaton P = (SP , SP0,Σ, δP , FP) of the tran-
sition system and the Rabin automaton from Example 5.1 (Fig. 5.1) is shown
in Fig. 5.2. Note that the blocking states that are not reachable from the non-
blocking initial state p0 = (x1, s0) are removed from P and are not shown in
Fig. 5.2.

5.1 Control of Transition Systems from LTL Specifications 85

Fig. 5.2 Graphical representation of the product between the transition system from Fig. 5.1a and
the Rabin automaton from Fig. 5.1b. The initial state is p0 = (x1, s0). The accepting condition is
defined by FP = {(G1, B1), (G2, B2)}, where G1 = B2 = {p4, p5} and G2 = B1 = {p1, p2, p3}

Step 3: Translation to a Rabin Game

A Rabin game consists of a finite graph (V, E) containing a token. The token
is always present in one of the states and can move along the edges. There are two
players: a protagonist and an adversary. V is partitioned into protagonist’s states VP

and adversary’s states VA. The owner of the state containing a token chooses the edge
along which the token moves. A Rabin game is formally defined as:

Definition 5.5 (Rabin Game) A Rabin game played by two players (a protagonist
and an adversary) on a graph (V, E) is a tuple G = (VP, VA, E, FG), where

• VP is the set of protagonist’s states,
• VA is the set of adversary’s states,
• VP ∪ VA = V , VP ∩ VA = ∅,
• E ⊆ V × V is the set of possible actions,
• FG = {(G1, B1), . . . , (Gn, Bn)} is the winning condition for the protagonist,

where Gi , Bi ⊆ V for all i ∈ {1, . . . , n}.
A play p is an infinite sequence of states visited by the token. Each play is winning

either for the protagonist or the adversary. The protagonist wins if in f (p) ∩ Gi �=
∅ ∧ in f (p) ∩ Bi = ∅ for some i ∈ {1, . . . , n}, where inf(p) denotes the set of states
that appear in the play p infinitely often. The adversary wins in the rest of the cases.
The winning region for the protagonist is defined as the set of states WP ⊆ V such
that there exists a control function πP : WP ∩ VP → E , and all plays starting in the
winning region and respecting the winning strategy are winning for the protagonist
regardless of the adversary’s choices. A solution to a Rabin game is a winning region
and winning strategy for the protagonist.

86 5 Finite Temporal Logic Control

The third step of Algorithm 9 is the construction of a Rabin game from the product
automaton, which is performed as follows.

Definition 5.6 (Rabin game of a Rabin automaton) A Rabin game
G = (VP, VA, E, FG) of a Rabin automaton P = (SP , SP0,Σ, δP , FP) is defined
as:

• VP = SP is the protagonist’s states,
• VA = SP × Σ is the adversary’s states,
• E ⊆ {VP × VA ∪ VA × VP} is the set of edges, which is defined as

– (qP, qA) ∈ E if qP ∈ VP, qA ∈ VA, and qA = (qP, σ), where σ ∈ ΣqP (i.e., if
δP(qP, σ) �= ∅),

– (qA, qP) ∈ E if qA ∈ VA, qP ∈ VP, and qA = (q ′
P, σ), and qP ∈ δP(q ′

P, σ),

• FG = FP is the protagonist’s winning condition.

Intuitively, the protagonist chooses action σ , whereas the adversary resolves non-
determinism. Note that in a Rabin game constructed from a Rabin automaton, the
protagonist’s (adversary’s) states can be reached in one step only from the adver-
sary’s (protagonist’s) states. We will show later in this section that a solution to the
Rabin game G can be easily transformed into a solution to Problem 5.2.

Example 5.3 The Rabin game of the product automaton from Example 5.2
is shown in Fig. 5.3, where protagonist’s states are represented as circles and
adversary’s states are represented as rectangles.

Step 4: Solving the Rabin Game

We present Horn’s algorithm for solving Rabin games. The main idea behind the
algorithm is as follows. The protagonist wins if they can infinitely often visit Gi

and avoid Bi for some i ∈ {1, . . . , n}. Conversely, the protagonist can not win if the
adversary can infinitely often visit Bi for each i ∈ {1, . . . , n}. Since it is sufficient
for the protagonist to satisfy one of the conditions (Gi , Bi) from FG, the protagonist
chooses a condition and tries to avoid visits to Bi and enforce visits to Gi . In turn
the adversary tries to avoid Gi . By removing the states where the protagonist (or
the adversary) can enforce a visit to a desired set, a smaller game is defined and the
algorithm is applied to this game recursively. If the computation ends favorably for
the adversary, then the protagonist chooses a different condition (G j , Bj) from FG

and tries to win the game by satisfying this condition. For a given set V ′ ⊂ V , the
set of states from which the protagonist (or the adversary) can enforce a visit to V ′
is called an attractor set, which is formally defined as follows:

5.1 Control of Transition Systems from LTL Specifications 87

Fig. 5.3 Graphical representation of the Rabin game constructed from the Rabin automaton from
Fig. 5.2. An example play is p = p0(p0, σ1)p2(p2, σ2)(p5(p5, σ2))

ω

Definition 5.7 (Protagonist’s direct attractor) The protagonist’s direct attractor of
a set of states V ′, denoted by A1

P(V
′), is the set of all states vP ∈ VP, such that there

exists an edge (vP, vA), where vA ∈ V ′ together with the set of all states vA ∈ VA,
such that for all vP ∈ VP it holds that (vA, vP) ∈ E implies vP ∈ V ′:

A1
P(V

′) := {vP ∈ VP|(vP, vA) ∈ E, vA ∈ V ′}
⋃

{vA ∈ VA|{vP|(vA, vP) ∈ E} ⊆ V ′}.

Definition 5.8 (Adversary’s direct attractor) The adversary’s direct attractor of V ′,
denoted by A1

A(V ′), is the set of all states vA ∈ VA, such that there exists an edge
(vA, vP), where vP ∈ V ′ together with the set of all states vP ∈ VP, such that for all
vA ∈ VA it holds that (vP, vA) ∈ E implies vA ∈ V ′:

A1
A(V ′) := {vA ∈ VA|(vA, vP) ∈ E, vP ∈ V ′}

⋃
{vP ∈ VP|{vA|(vP, vA) ∈ E} ⊆ V ′}.

88 5 Finite Temporal Logic Control

In other words, the protagonist can enforce a visit toV ′ from each state v ∈ A1
P(V

′),
regardless of the adversary’s choice. Similarly, the adversary can enforce a visit to
V ′ from each state v ∈ A1

A(V ′), regardless of the protagonist’s choice.

Example 5.4 Consider the Rabin game shown in Fig. 5.3. The protagonist’s
direct attractor set of {p5}, A1

P({p5}) is empty, since p5 can be reached from
(p2, σ2) and (p5, σ2), and for both these states the adversary can choose an
edge incident to p4 instead of p5. On the other hand

A1
P({p4, p5}) = {(p2, σ2), (p5, σ2)},

since at (p2, σ2) (and similarly at (p5, σ2)), the adversary can either choose
the edge ((p2, σ2), p4) or ((p2, σ2), p5) and both lead to {p4, p5}.

The adversary’s direct attractor set of {p5} is A1
A({p5}) =

{(p2, σ2), (p5, σ2)}, since the adversary can enforce a visit to {p5} only
from (p2, σ2) and (p5, σ2). As there are no other adversary states that have an
edge to a state from the set {p4, p5}, we have:

A1
A({p4}) = A1

A({p5}) = A1
A({p4, p5}) = {(p2, σ2), (p5, σ2)}.

The protagonist’s attractor set AP(V ′) is the set of all states from which a visit to
V ′ can be enforced by the protagonist in zero or more steps. AP(V ′) can be computed
iteratively via computation of the converging sequence

A∗
P0(V

′) ⊆ A∗
P1(V

′) ⊆ . . . ,

where A∗
P0(V

′) = V ′ and

A∗
Pi+1(V

′) = A1
P(A

∗
Pi (V

′)) ∪ A∗
Pi (V

′).

The sequence is indeed converging because there are at most |VP ∪ VA| different sets
in the sequence. Intuitively A∗

Pi (V
′) is the set from which a visit to the set V ′ can be

enforced by the protagonist in at most i steps.

5.1 Control of Transition Systems from LTL Specifications 89

Example 5.5 Consider the Rabin game shown in Fig. 5.3. The protagonist’s
attractor set for V ′ = {p4, p5} is recursively computed as follows:

A∗
P1(V ′) = A∗

P0(V ′) ∪ A1
P({p4, p5}) = {p4, p5, (p2, σ2), (p5, σ2)},

A∗
P2(V ′) = A∗

P1(V ′) ∪ A1
P(A∗

P1(V ′)) = {p2, p4, p5, (p2, σ2), (p5, σ2)},
A∗
P(V ′) = A∗

P3(V ′) = A∗
P2(V ′) ∪ A1

P(A∗
P2(V ′)) = {p2, p4, p5, (p2, σ2), (p5, σ2)}.

The adversary’s attractor set of V ′ is computed similarly. This computation
converges at the fifth iteration, and the resulting set is

A∗
A(V ′) = {p0, p2, p4, p5, (p0, σ1), (p1, σ1), (p2, σ2), (p4, σ1), (p5, σ2)}.

(5.1)

Attractor strategy πAP(V ′) for the protagonist’s attractor set determines how to
ensure a visit to set V ′ from attractor set AP(V ′). For all v ∈ A∗

Pi+1(V
′) \ A∗

Pi (V
′),

the attractor strategy is defined as πAP(V ′)(v) = (v, v′), where v′ is an arbitrary v′ ∈
A∗
Pi (V

′). The adversary’s attractorAA(V ′) and attractor strategy πAA(V ′) are computed
analogously. The protagonist’s and adversary’s attractors of V ′ in a game G are
denoted by AG

P (V ′) and AG
A(V ′), respectively.

Let (V, E) denote the graph of a Rabin game G = (VP, VA, E, FG), where V =
VP ∪ VA. For simplicity, for a set Q ⊆ V , we denoteG \ Q the graph (V \ Q, E \ E ′)
(and the corresponding game), where E ′ is the set of all edges incident with states
from Q.

Horn’s algorithm is summarized in Algorithm 10. First the protagonist chooses
a condition (Gi , Bi) (line 1). As the protagonist needs to avoid Bi , a sub game G0

i

is defined by removing the adversary’s attractor set for Bi . Then, a sub game G j
i

is defined iteratively by removing winning regions for the adversary (line 7). The
iterative process terminates when no winning region is found for the adversary, i.e.,
G j

i = G j+1
i . In this case, eitherG j

i is empty, or it is winning for the protagonist. IfG j
i

is not empty, then the protagonists attractor of G j
i in game G (line 11) is also winning

for the protagonist. By removing the winning region for the protagonist (line 14), a
new smaller game is defined and the algorithm is run on this game.

90 5 Finite Temporal Logic Control

Algorithm 10 RabinGame (G = (VP, VA, E, FG)) : Winning region WP ⊆ (VP ∪
VA) and winning strategy πP for the protagonist, winning region WA ⊆ (VP ∪ VA)

for the adversary
1: for all (Gi , Bi) ∈ FG do
2: j = 0
3: G j

i = G \ AG
A (Bi) {remove all states in AG

A (Bi) and transitions adjacent to them from G}
4: repeat

5: H j
i = G j

i \ AG j
i

P (Gi) {note that (Gi , Bi) is not present in H j
i any more}

6: (W ′
P, π ′

P,W ′
A) = RabinGame(H j

i) {recursive call}

7: G j+1
i = G j

i \ AG j
i

A (W ′
A)

8: j++
9: until G j

i = G j+1
i {G j

i is guaranteed to be winning for the protagonist}

10: if G j
i �= ∅ then

11: WP = WP ∪ AG
P (G j

i) {The protagonist’s attractor of G j
i in G is winning}

12: πP = πP ∪ π
′
P ∪ π

′′
P , {π

′
P is the protagonist’s attractor strategy computed in line 6}

13: {π
′′
P is the protagonist’s attractor strategy for AG

P (G j
i)}

14: Gs = G \ WP
15: (Ws

P, π s
P,Ws

A) = RabinGame(Gs) {run the algorithm on a smaller graph;
consider all pairs in the acceptance condition over again}

16: WP = WP ∪ Ws
P

17: πP = πP ∪ π s
P

18: BREAK {break the whole for-cycle 1–18}
19: end if
20: end for
21: WA = G \ WP

Example 5.6 We illustrate Algorithm 10 on the Rabin game shown in Fig. 5.3.
At the first iteration, we consider Rabin pair (G1, B1), where G1 = {p4, p5}
and B1 = {p1, p2, p3}. The adversary’s attractorAG

A (B1) is VP ∪ VA, therefore,
on line 10 of Algorithm 10, the graph G0

1 is empty. As we do not find any states
winning for the protagonist, we continue with the next Rabin pair.

In the second iteration of Algorithm 10, we consider Rabin pair (G2, B2),
where G2 = {p1, p2, p3} and B2 = {p4, p5}. We eliminate AG

A(B2) from the

graph on line 3. The remaining graph is G0
2. We compute A

G0
2

P (G2), and find
out that it is equal to G0

2. This means that H0
2 is empty, G1

2 is equal to G0
2, and

G0
2 is guaranteed to be a part of the protagonist’s winning region. AG

A(B2) and
G0

2 are shown in Fig. 5.4. The protagonist’s attractor of G0
2 in game G is

WP = AG
P (G0

2) = {p1, p3, p4, (p1, σ2), (p3, σ1), (p4, σ2)},

5.1 Control of Transition Systems from LTL Specifications 91

and the corresponding winning strategy for the protagonist is (lines 11 and 12)

πP(p1) = (p1, (p1, σ2)),

πP(p3) = (p3, (p3, σ1)),

πP(p4) = (p4, (p4, σ2)).

As we find a winning region for the protagonist, we rerun the algorithm
for a smaller game (line 15) as illustrated in Fig. 5.5. Note that the algorithm
is run from the beginning on the subgame and all Rabin acceptance pairs are
considered again.

At the first iteration of Algorithm 10 on the subgame Gs shown in Fig. 5.5,
we consider Rabin pair (Gs

1, B
s
1), where Gs

1 = {p5} and Bs
1 = {p2}. The adver-

sary’s attractor of Bs
1 is {p0, p2, (p0, σ1), (p1, σ1), (p4, σ1)}, and the protag-

onist’s attractor of Gs
1 on G0

1 = Gs \ AGs

A (B1) is G0
1. H0

1 is empty, and the
protagonists wins everywhere in G0

1 and its attractor in Gs . The attractor of G0
1

in Gs covers Gs . Therefore, we find that the protagonist wins everywhere in
Gs with the following strategy:

π s
P(p0) = (p0, (p0, σ1)),

π s
P(p2) = (p2, (p2, σ2)),

π s
P(p5) = (p5, (p5, σ2)).

As Ws
P covers Gs , the algorithm (recursive call on the sub-game Gs) termi-

nates with Ws
P and strategy π s

P. Finally, the winning region for the protagonist
WP on the initial gameG covers VP ∪ VA, and the protagonist wins everywhere
in G with the strategy πP computed in line 17.

Complexity The complexity of Algorithm 10 is O(|V |2nn!). Intuitively, the first
part (O(|V |2n) comes from the two recursions and the second part (n!) comes from the
protagonist’s ability to change the condition. For a Rabin game of a Rabin automaton,
the complexity of the algorithm is O((|SP | + |SP ||Σ |)2nn!), since V = VP ∪ VA,
VP = SP , and VA = SP × Σ .

Step 5: Mapping the Rabin Game Solution to a Control Strategy

In order to complete the solution to Problem 5.1, we transform a solution to
a Rabin game G = (VP, VA, E, FG) of the product automaton P = T ⊗ R into a
control strategy (Xφ

T ,Ω) for T . The solution to the Rabin game is given as a winning
region WP ⊆ VP and a winning strategy πP : WP → E .

We first transform the solution into a memoryless strategy for the product P , and
present the solution to Problem 5.2. Clearly, the winning region for P is WP = WP.
The initial winning region is the subset of initial states that belong to WP , i.e., WP0 =

92 5 Finite Temporal Logic Control

Fig. 5.4 Adversary’s attractor of B2 in game G is shown with a red frame in (a). The sub-game G0
2

obtained by removing AG
A(B2) from G is shown in (b). The protagonist’s attractor of G2 in game

G0
2 covers G0

2

Fig. 5.5 Adversary’s attractor set of Bs
1 in game Gs is shown with a red frame in (a). The sub-game

G0
1 is shown in (b). The protagonist’s attractor of G1 in game G0

1 covers G0
1

5.1 Control of Transition Systems from LTL Specifications 93

WP ∩ SP0. The strategy πP is obtained as follows. For all v ∈ WP, πP(v) = σ , such
that πP(v) = (v, v′), and v′ = (v, σ).

The remaining task is to adapt (WP0, πP) as a control strategy (Xφ

T ,Ω) for T .
Although the control function πP was memoryless, Ω is history dependent and takes
the form of a feedback control automaton:

Definition 5.9 Given a product automaton P = T ⊗ R, where T = (X,Σ, δ, O, o)
and R = (S, S0, O, δR, F), a winning region WP for P , and a control strategy
(WP0, πP) for P , a feedback control automatonC = (SC , SC0, X, τ,Σ, π) is defined
as

• SC = S is the set of states,
• SC0 = S0 is the set of initial states,
• X is the set of inputs (the set of states of T),
• τ : SC × X → SC is the memory update function defined as:

τ(s, x) = δR(s, o(x)) if (x, s) ∈ WP , τ (s, x) =⊥ otherwise

• Σ is the set of outputs (the set of inputs of T),
• π : SC × X → Σ is the output function:

π(s, x) = πP((x, s)) if (x, s) ∈ WP , π(s, x) =⊥ otherwise.

The set of initial states Xφ

T of T is given by α(WP0), where α : SP → X is the
projection from states of P to X . The control function Ω is given by C as follows:
for a sequence x1 . . . xn , x1 ∈ Xφ

T , we have Ω(x1 . . . xn) = σ , where σ = π(sn, xn),
si+1 = τ(si , xi), and xi+1 ∈ δ(xi , π(si , xi)), for all i ∈ {1, . . . , n − 1}. It is easy to
see that the product automaton of T andC will have the same states as P but contains
only transitions of P closed under πP . Then, all trajectories in T (Xφ

T ,Ω) satisfy φ

and therefore (Xφ

T ,Ω) is a solution to Problem 5.1. Note that if p = (x, s) /∈ WP,
then the adversary wins all the plays starting from p regardless of the protagonists
choices, which implies that there is always a run starting from the product automaton
state (x, s) ∈ SP that does not satisfy the Rabin acceptance condition FP regardless
of the applied control function. Therefore, Algorithm 9 finds the largest controlled
satisfying region.

Example 5.7 We transform the winning region WP and the winning strat-
egy πP found in Example 5.6 into a control strategy (XΦ

T ,Ω) for the tran-
sition system T and formula Φ from Example 5.1. The memoryless con-
trol strategy (WP0, πP) for the product P (Fig. 5.2) is defined as WP0 =
{p0}, πP(p0) = σ1, πP(p1) = σ2, πP(p2) = σ2, πP(p3) = σ1, πP(p4) = σ2,
and πP(p5) = σ2.

94 5 Finite Temporal Logic Control

Fig. 5.6 The control
automaton from Example
5.7. The initial state is s0.
The arrows between states
are labeled with the states of
the transition system
depicting the memory update
function. The corresponding
control actions are shown in
red

The set of initial states is XΦ
T = {x1}, and the feedback control automaton

C = (SC , SC0, X, τ,Σ, π), that defines the history dependent control function
Ω , is constructed as in Definition 5.9. The control automaton is shown in
Fig. 5.6 and is formally defined as:

SC = {s0, s1, s2},
SC0 = {s0},
X = {x1, x2, x3, x4},
τ(s0, x1) = s1, τ(s1, x2) = s1, τ(s1, x3) = s2, τ(s1, x4) = s1, τ(s2, x2) = s1,
τ(s2, x3) = s2,
Σ = {σ1, σ2},
π(s0, x1) = σ1, π(s1, x2) = σ2, π(s1, x3) = σ2, π(s1, x4) = σ1, π(s2, x2) =
σ2, π(s2, x3) = σ2.

Example 5.8 Consider the robot transition system described in Example 1.4,
and the motion planning task φ described in Example 2.2. The Rabin automa-
ton representation of the formula φ is shown in Fig. 5.7a. The Rabin automaton,
and therefore the product of the robot transition system and the Rabin automa-
ton, has a single pair (G, B) in its accepting condition. We follow Algorithm
9 and synthesize a control strategy for the robot from the formula φ. The robot
satisfies the motion planning task if it starts from any region except the dan-
gerous region, i.e., Xφ

T = {x1, x2, x3, x4, x5, x7, x8}, and chooses its directions
according to the control automaton C depicted in Fig. 5.7b.

5.1 Control of Transition Systems from LTL Specifications 95

When the robot starts from x1 (B), the control automaton outputs π(s0, x1) =
W , and updates its memory from s0 to τ(s0, x1) = s1. The robot moves West and
ends in x7 (G). The next action is π(s1, x7) = N , and the next control automaton
state is τ(s1, x7) = s2. The robot moves North and ends in x4 (R). Then, the
robot moves North again and ends in x2 (I) as the control automaton outputs
π(s2, x4) = N and updates its memory as τ(s2, x4) = s3. Then, the control
automaton outputs π(s3, x2) = W , and updates its memory as τ(s3, x2) = s0.
The robot moves West and ends in x0 (B). Since the robot and the control
automaton both are in their initial conditions and all the applied actions are
deterministic, the robot continues by applying the same series of actions, and
produces the satisfying word:

(BGRI)ω

Next, we consider the second motion planning task ψ described in Exam-
ple 2.2. Again, we apply Algorithm 9 and synthesize a control strategy for the
specification formula ψ . The Rabin automaton representation of ψ and the
control automaton generated by the algorithm are shown in Fig. 5.8. The set
of satisfying initial states are Xψ

T = {x1, x2, x3, x4, x5, x7, x8}. When the robot
starts from x1, and chooses its directions according to the control automaton,
it produces

BI RG or BI RIG,

before it returns to x0, and the control automaton state set to s0 again. As both the
robot and the control automaton are in their initial states, the robot repeatedly
produces either BI RG or BI RIG. The corresponding word is represented as

(BI RG | BI RIG)ω.

5.2 Control of Transition Systems from dLTL Specifications

In this section, we present a slightly more efficient and intuitive solution to Problem
5.1 for the case when the LTL specification formula can be translated to a determin-
istic Büchi automaton. The solution follows the main lines of the method presented
in Sect. 5.1 for arbitrary LTL specifications. Instead of the Rabin automaton, we
construct a deterministic Büchi automaton, and take its product with the transition
system. In this case, the product is a nondeterministic Büchi automaton. We find
a control strategy for the product by solving a Büchi game and then transform it
to a strategy for the original transition system. This procedure is summarized in
Algorithm 11. The details are presented in the rest of this section.

96 5 Finite Temporal Logic Control

Fig. 5.7 Rabin automaton representation of the specification formula φ (a) and the control automa-
ton (b) from Example 5.8. For the Rabin automaton, s0 is the initial state. There is a single pair
in the accepting condition: F = {(G, B)}, where G = {s3}, and B = {s4}. For the control automa-
ton C , s0 is the initial state. The arrows between states are labeled with the states of the robot
transition system depicting the memory update function. The corresponding control actions are
shown in red. For example τ(s0, x2) = τ(s0, x3) = s0 and the corresponding action is defined as
π(s0, x2) = π(s0, x3) = W . State s4, which is not reachable from the initial state s0, is not shown

Algorithm 11 dltl control(T, φ) : Control strategy (Xφ

T ,Ω) such that all trajec-
tories in T (Xφ

T ,Ω) satisfy φ

1: Translate φ to deterministic Büchi automaton B = (S, S0, O, δB , F)

2: Build a product automaton P = T ⊗ B
3: Solve a Büchi game
4: Map the solution to a control strategy for the original transition system T

The first step of Algorithm 11 is to translate the dLTL specification Φ into a
deterministic Büchi automaton B = (S, S0, O, δB, F). The second step is the con-
struction of a product automaton P of the transition system T = (X,Σ, δ, O, o) and
B. The product automaton P = (SP , SP0,Σ, δP , FP) is constructed as described in
Definition 5.3 with the exception that the set of accepting states of P is defined as
FP = X × F . The product automaton P is a nondeterministic Büchi automaton if
T is nondeterministic, otherwise it is a deterministic Büchi automaton.

Each accepting run ρP = (x1, s1)(x2, s2)(x3, s3) . . . of a product automaton P =
T ⊗ B can be projected into a trajectory x1x2x3 . . . of T , such that the word
o(x1)o(x2)o(x3) . . . is accepted by B (i.e., satisfies φ) and vice versa. Similar to the
solution proposed in the previous section, this allows us to reduce Problem 5.1 to
finding a control strategy for P .

5.2 Control of Transition Systems from dLTL Specifications 97

Fig. 5.8 Rabin automaton representation of the specification formula ψ (a) and the control automa-
ton (b) from Example 5.8. For the Rabin automaton, s0 is the initial state. There is a single pair in
the accepting condition: F = {(G, B)}, where G = {s1}, and B = {s5}. For the control automaton
C , s0 is the initial state. The arrows between states are labeled with the states of the robot transition
system depicting the memory update function. The corresponding control actions are shown in red.
State s5, which is not reachable from the initial state s0, is not shown

98 5 Finite Temporal Logic Control

Problem 5.3 Given a controlled Büchi product automaton P=(SP , SP0,Σ, δP , FP),
find the largest set of initial states WP0 ⊆ SP0 for which there exists a control func-
tion πP : SP → Σ such that each run of P under strategy (WP0, πP) satisfies the
Büchi accepting condition FP .

The solution to Problem 5.3 is summarized in Algorithm 12. The main idea behind
the algorithm is to first compute a subset FP of FP such that a visit to FP can be
enforced from FP in a finite number of steps. Then, what remains is to compute the
set of all states WP and a control function πP such that all runs originating from WP

in closed loop with πP can reach FP in a one or more steps. By the definition of
FP , it holds that FP ⊆ WP , and hence these runs satisfy the Büchi condition. To
compute FP and πP , we first define direct and proper attractor sets of a set S ⊆ SP
for a Büchi automaton P:

Definition 5.10 (Direct attractor) The direct attractor of a set S, denoted by A1(S),
is defined as the set of all s ∈ SP from which there can be enforced a visit to S in
one step:

A1(S) = {s ∈ SP | ∃σ ∈ Σ, δP(s, σ) ⊆ S}.

The direct attractor set induces a strategy π
1,S
P : A1(S) → Σ such that

δP(s, π1
P(s)) ⊆ S.

Definition 5.11 (Proper attractor) The proper attractor of a set S, denoted byA+(S),
is defined as the set of all s ∈ SP from which there can be enforced a visit to S in
one or more steps.

The proper attractor set A+(S) of a set S can be computed iteratively via the
converging sequence

A1(S) ⊆ A2(S) ⊆ . . . ,

where A1(S) is the direct attractor of S, and

Ai+1(S) = A1(Ai (S) ∪ S) ∪ Ai (S).

Intuitively,Ai (S) is the set from which a visit to S in at most i steps can be enforced
by choosing proper controls. The attractor strategy π

+,S
P for A+(S) is defined from

the direct attractor strategies computed through the converging sequence as follows:

π
+,S
P = π

1,Ai (S)
P (s), for alls ∈ Ai+1(S) \ Ai (S).

A recurrent set of a given set A is the set of states from which infinitely many
revisits to A can be enforced. In Algorithm 12, first the recurrent set FP of FP is
computed with an iterative process (lines 3–6). Note that we start with FP = FP

and iteratively remove the states from which a revisit to FP can not be guaranteed.
This loop terminates after a finite number of iterations since FP is a finite set. The

5.2 Control of Transition Systems from dLTL Specifications 99

Algorithm 12 BüchiGame (P = (SP , SP0,Σ, δP , FP)): Winning region WP ⊆ SP
and winning strategy πP .

1: FP = ∅
2: F

new
P = FP

3: while FP �= F
new
P do

4: FP = F
new
P

5: F
new
P = A+(FP) ∩ FP

6: end while
7: WP = A+(FP), compute the corresponding attractor strategy πP

termination guarantees FP ⊆ A+(FP), and hence infinitely many revisits to FP

from FP can be enforced. In the final step of the algorithm the proper attractor of
FP and the corresponding attractor strategy is computed. As FP ⊆ A+(FP), πP is
an attractor strategy that solves the Büchi game for all s ∈ WP .

Complexity The time complexity of Algorithm 12 is O(|SP |2|Σ |).
Remark 5.1 A Büchi automaton B can be interpreted as a Rabin automaton with
a single pair {(G1, B1)} in its accepting condition, where G1 = FP and B1 = ∅.
Consequently, Algorithm 10 for the Rabin game can be used for the Büchi automaton
to solve Problem 5.3. In this particular case, n = 1 and the time complexity of
Algorithm 10 is O((|SP | + |SP ||Σ |)2).

The final step of the dLTL control algorithm is to translate the control strategy
(WP0, πP) obtained from Algorithm 12 into a control strategy (Xφ

T ,Ω) for T , where
WP0 = WP ∩ SP0. As in the solution presented for LTL specifications in the previous
section, although the control function πP is memoryless, Ω is history dependent and
takes the form of a feedback control automaton. The control automaton is constructed
from P and πP as in Definition 11, and the control function Ω is defined by the
control automaton. Finally, the set of initial states Xφ

T of T is given by α(WP0),
where α : SP → X is the projection from states of P to X .

Example 5.9 Consider the nondeterministic transition system T shown in
Fig. 5.9a and the following LTL formula over its set of observations:

φ = o1 ∧ �(♦o3 ∧ ♦o4).

We follow Algorithm 11 to find the control strategy (XΦ
T ,Ω) that solves

Problem 5.1 for the transition system T and formula φ.

100 5 Finite Temporal Logic Control

Fig. 5.9 Transition system (a), Büchi automaton (b), and their product (c) from Example 5.9. For
the Büchi automaton, s0 is the initial state and s3 is the accepting state. For the product automaton,
(x1, s0) is the initial state, and {(x2, s3), (x3, s3), (x5, s3)} is the set of accepting states. The states
that are not reachable from the non-blocking initial state (x1, s0) are not shown in (c)

5.2 Control of Transition Systems from dLTL Specifications 101

We first construct a deterministic Büchi automaton B (Fig. 5.9b) that accepts
the language satisfying the formula. Then, we construct the product of the sys-
tem and the automaton. The product automaton P , which is shown in Fig. 5.9c,
is a non-deterministic Büchi automaton since T is nondeterministic. Note that
the states that are not reachable from non-blocking initial states are removed
from P and are not shown in Fig. 5.9c.

To find a control strategy for P , we follow Algorithm 12. In the first iteration,
FP = {(x2, s3), (x3, s3), (x5, s3)} (FP) and we compute the proper attractor of
FP as follows:

A1(FP) = {(x4, s2), (x5, s2)},
A2(FP) = {(x3, s1), (x3, s2), (x3, s3), (x4, s2), (x5, s2)},
A3(FP) = {(x1, s0), (x4, s1), (x3, s1), (x3, s2), (x3, s3), (x4, s2), (x5, s2)}
A4(FP) = {(x2, s1), (x2, s3), (x1, s0), (x4, s1), (x3, s1), (x3, s2),

(x3, s3), (x4, s2), (x5, s2)}

The sequence converges at iteration 4 and A+(FP) = A4(FP). In the first itera-
tion of the main loop of Algorithm 12, F

new
P = {(x2, s3), (x3, s3)}, and (x5, s3)

is eliminated. The main loop terminates after the second iteration as

A+(FP) ∩ FP = FP , where FP = {(x2, s3), (x3, s3)}.
As the last step of Algorithm 12, we compute WP = A+({(x2, s3), (x3, s3)}),
and the corresponding attractor strategy as follows:

A1(FP) = {(x4, s2)}, πP ((x4, s2)) = σ1,

A2(FP) = {(x3, s3), (x3, s2), (x3, s1)} ∪ A1(FP),

πP ((x3, s3)) = σ2, πP ((x3, s2)) = σ2, πP ((x3, s1)) = σ2,

A3(FP) = {(x1, s0), (x4, s1)} ∪ A2(FP), πP ((x1, s0)) = σ2, πP ((x4, s1)) = σ1,

A4(FP) = {(x2, s1), (x2, s3)} ∪ A3(FP), πP ((x2, s1)) = σ1, πP ((x2, s3)) = σ1,

A4(FP) = A5(FP) = A+(FP).

The control strategy (WP0, πP) solves Problem 5.3 for P , where WP0 =
{(x1, s0)} and πP is as defined above. The final step is the transformation of
(WP0, πP) into a control strategy (XΦ

T ,Ω) for T . The set of initial states is
XΦ
T = {x1}, and the feedback control automaton C = (SC , SC0, X, τ,Σ, π)

(shown in Fig. 5.10), which defines the history dependent control function Ω ,
is constructed as in Definition 5.9, and formally defined as:

102 5 Finite Temporal Logic Control

SC = {s0, s1, s2, s3},
SC0 = {s0},
X = {x1, x2, x3, x4, x5},
τ(s0, x1) = s1, τ(s1, x2) = s1, τ(s1, x3) = s2, τ(s1, x4) = s1, τ(s2, x3) = s2,
τ(s2, x4) = s3, τ(s3, x2) = s1, τ(s3, x3) = s2

Σ = {σ1, σ2},
π(s0, x1) = σ2, π(s1, x2) = σ1, π(s1, x3) = σ2, π(s1, x4) = σ1, π(s2, x3) =
σ2, π(s2, x4) = σ1, π(s3, x2) = σ1, π(s3, x3) = σ2.

Remark 5.2 In a Büchi game over a product automaton P = T ⊗ B, a state (x, s)
is added to WP only if there is a control strategy guaranteeing that all runs ρP of
P originating from (x, s) satisfy that the projection of ρP onto S (Büchi automaton
states) is an accepting run of B. The condition is necessary to guarantee that each
run of T that originate from x is satisfying. While the product is a non-deterministic
Büchi automaton, this condition is stronger than the Büchi acceptance: a word is
accepted by a non-deterministic Büchi automaton if there exists an accepting run.
In other words, it is not necessary that all runs are accepting. Due to this difference
in the notion of the satisfying TS states and non-deterministic Büchi acceptance,
an algorithm similar to Algorithm 11 cannot be used for non-deterministic Büchi
automaton, which is illustrated in Example 5.10.

Fig. 5.10 The control
automaton obtained by
solving the Büchi game on
the product automaton
shown in Fig. 5.9c

5.2 Control of Transition Systems from dLTL Specifications 103

Fig. 5.11 Transition system T (a), Büchi automata B1 (b) and B2 (c), the product of T and B1 (d),
and the product of T and B2 (e) from Example 5.10

Example 5.10 Consider the transition system T shown in Fig. 5.11a and speci-
fication φ = ♦o2 over its set of observations. A deterministic Büchi automaton
and a non-deterministic Büchi automaton that accept the language satisfying
the formula are shown in Figs. 5.11b and 5.11d, respectively. The correspond-
ing product automata are shown in Figs. 5.11c and 5.11e. T has a single run
x2x2x2 . . . originating from x2 and it satisfies φ1. Due to the non-determinism
of T , there are multiple runs originating from x1. The run x1x1x1 . . . origi-
nating from x1 produces the word o1o1o1 . . . that violates the formula, and
all other runs originating from x1 satisfy the formula. Therefore, we have
Xφ

T = {x2}. We can easily verify this observation by running Algorithm 12
on the product automaton P1 with Σ = {σ }, i.e., a single control input labels
all the transitions. The algorithm returns WP = A+(FP) = {(x2, s0), (x2, s1)},
hence WP0 = {(x2, s0)} and Xφ

T = {x2}.
Now, consider the product P2 (Fig. 5.11e) of T and the non-deterministic

Büchi automaton B2 accepting the same language as B1. It is not possible to
differentiate (x1, s0) and (x2, s0) on P2 via reachability analysis or recurrence
set construction, since satisfying and violating runs originate from both (x1, s0)

and (x2, s0).

5.3 Control of Transition Systems from scLTL
Specifications

A solution to Problem 5.1 is found more efficiently when the specification φ is an
scLTL formula. This is due to the simple FSA acceptance condition for scLTL for-
mulas. The solution we present here resembles the one we presented in Sect. 5.1

104 5 Finite Temporal Logic Control

for arbitrary LTL specifications. The procedure involves the construction of an FSA
from the specification formula φ, the construction of the product automaton of the
system and the FSA, solving a reachability problem on the product automaton to find
a control strategy for the product automaton, and finally translation of this strategy to
the transition system. While a control strategy for the product automaton was found
by solving a Rabin game in Sect. 5.1 and a Büchi game in Sect. 5.2, the product of
an FSA and a nondeterministic transition system is a nondeterministic finite state
automaton (NFA), for which a control strategy can be found by solving a reachability
problem. This step can be interpreted as finding the attractor set of the accepting states
of the product automaton and the corresponding control strategy. Moreover, when T
is deterministic, the product is an FSA and the largest controlled satisfying region
can simply be found by traversing the graph of the product automaton starting from
its set of accepting states. The procedure for determining control strategies for non-
deterministic transition systems from scLTL formulas is summarized in Algorithm
13. The details are presented in the rest of this section.

Algorithm 13 scltl control(T, φ) : Control strategy (Xφ

T ,Ω) such that all tra-
jectories in T (Xφ

T ,Ω) satisfy scLTL formula φ

1: Translate φ into an FSA A = (S, s0, O, δA, F)

2: Build a product automaton P = T ⊗ R
3: Solve a reachability problem on the graph of the product automaton
4: Map the solution to the reachability problem to a control strategy for the original transition

system T

The first step of Algorithm 13 is to translate the scLTL specification φ into an
FSA A = (S, s0, O, δA, F). This can be done using off-the-shelf tool as discussed
in Sect. 2.3. The second step is the construction of a product automaton P of the
transition system T = (X,Σ, δ, O, o) and the FSA A. The product automaton P =
(SP , SP0,Σ, δP , FP) is constructed as described in Definition 5.3 with the exception
that the set of accepting states of P is defined as FP = X × F . The product automaton
P is a NFA if T is nondeterministic, and it is an FSA if T is deterministic.

Each accepting run ρP = (x1, s1)(x2, s2) . . . (xn, sn) of the product automaton P
can be projected into a trajectory x1x2 . . . xn of T , such that the word
o(x1)o(x2) . . . o(xn) is accepted by A (i.e., all words that contain the prefix o(x1)

o(x2) . . . o(xn) satisfies φ) and vice versa. Analogous to the solution for arbitrary
LTL specifications presented in Sect. 5.1, this allows us to reduce Problem 5.1 to
finding a control strategy (W0, π) for P , which is defined as in Definition 5.4.

Problem 5.4 Given a product NFA P = (SP , SP0,Σ, δP , FP), find the largest set
of initial states WP0 ⊆ SP0 for which there exists a control function πP : SP → Σ

such that each run of P under the strategy (WP0, πP) reaches the set of accepting
states FP .

5.3 Control of Transition Systems from scLTL Specifications 105

We use WP to denote the set of states of P from which a visit to the set of accepting
states can be enforced by a control function. This set and the corresponding control
strategy can easily be computed with a single attractor computation:

WP = FP ∪ A+(FP),

where A+(FP) is the proper attractor of FP and πP is the corresponding attractor
strategy, which are described in Definition 5.11.

This computation results in a control strategy (WP0, πP) that solves Problem 5.4,
where WP0 = WP ∩ SP0. The final step of Algorithm 13 is the transformation of
the control strategy (WP0, πP) for the product P into a control strategy (XΦ

T ,Ω)

for T . The control function Ω for T is history dependent and takes the form of a
feedback control automaton C = (SC , SC0, X, τ,Σ, π), which is constructed from
P , T and A as described in Definition 5.9. The set of initial states Xφ

T of T is given
by α(WP0), where α : SP → X is the projection from states of P to X . The control
function Ω is given by C as explained in Sect. 5.1. The product automaton of T and
C will have the same states as P but contains only transitions of P closed under
πP . Then, all trajectories in T (Xφ

T ,Ω) satisfy φ. Moreover, if (x1, s1) /∈ WP , then
δP((x1, s1), σ) � WP for all σ ∈ Σ , which implies that there exists a run of P that
originate at (x1, s1) and can not reach FP regardless of the applied control function.
Therefore, in the case when φ is an scLTL formula, Xφ

T is the largest controlled
satisfying region and the strategy (Xφ

T ,Ω) obtained from Algorithm 13 is a solution
to Problem 5.1.

Complexity The complexity of finding the control strategy for the product
automaton P (step 3 of Algorithm 13) is O(|SP ||Σ |), since an attractor set is com-
puted in maximum O(|SP ||Σ |) iterations.

Example 5.11 Consider the nondeterministic transition system T shown in
Fig. 5.12a and the scLTL formula over its set of observations:

φ = ♦o4 ∧ (¬o3Uo4) ∧ (¬o4Uo2).

We follow Algorithm 13 to find the control strategy (XΦ
T ,Ω) that solves

Problem 5.1 for transition system T and formula φ. We first construct an FSA
A (Fig. 5.12b) that accepts the good prefixes of the formula. Then, we construct
the product of the system and the FSA. The product automaton P , which is
shown in Fig. 5.12c, is an NFA since T is nondeterministic. Note that the states
that are not reachable from non-blocking initial states are removed from P and
are not shown in Fig. 5.12c.

106 5 Finite Temporal Logic Control

To find a control strategy for P , we compute the converging sequence Wi∗
P

and control function πP :

W 0∗
P = {(x5, s2)}, πP((x5, s2)) = σ1

W 1∗
P = {(x5, s1)} ∪ W 0∗

P , πP((x5, s1)) = σ1

W 2∗
P = {(x2, s0), (x2, s1)} ∪ W 1∗

P , πP((x2, s0)) = σ1, πP((x2, s1)) = σ1

W 3∗
P = {(x4, s0), (x4, s1)} ∪ W 2∗

P , πP((x4, s0)) = σ1, πP((x4, s1)) = σ1

W 4∗
P = W 3∗

P .

The control strategy (WP0, πP) solves Problem 5.4 for P , where WP0 =
{(x2, s0), (x4, s0)} and πP is as defined above. The final step is the trans-
formation of (WP0, πP) into a control strategy (XΦ

T ,Ω) for T . The set
of initial states is XΦ

T = {x2, x4}, and the feedback control automaton C =
(SC , SC0, X, τ,Σ, π), that defines the history dependent control function Ω ,
is constructed as in Definition 5.9, and formally defined as:

SC = {s0, s1, s2},
SC0 = {s0},
X = {x1, x2, x3, x4, x5},
τ(s0, x2) = s1, τ(s0, x4) = s1, τ(s1, x2) = s1, τ(s1, x4) = s1, τ(s1, x5) = s2,
τ(s2, x5) = s2,
Σ = {σ1, σ2},
π(s0, x2) = σ1, π(s0, x4) = σ1, π(s1, x2) = σ1, π(s1, x4) = σ1, π(s1, x5) =
σ1, π(s2, x5) = σ1.

5.4 Notes

We presented a complete treatment of the LTL control problem for a finite tran-
sition system. If the transition system is deterministic, the problem can be solved
through model-checking-based techniques (see Chap. 3). Indeed, an off-the-shelf
model checker can be used to model check the system against the negation of the
formula. If the negation of the formula is not satisfied at a state, i.e., there exists a run
violating the negation of the formula, then it is returned as a certificate of violation.
This run, which satisfies the formula, can be enforced in the deterministic transition
system by choosing appropriate controls at the states in the run. This approach was
used in [105] to develop a conservative solution to an LTL control problem for a
continuous-time, continuous space linear system.

In this chapter, we focused on the case when the transition system is non-
deterministic. We showed that, in the most general case, the problem can be reduced
to a Rabin game [146]. There are various approaches to solve Rabin games [55, 90,

5.4 Notes 107

Fig. 5.12 Transition system (a), the FSA (b), and the product of them (c) from Example 5.11.
For the FSA, s0 is the initial state and s2 is the accepting state. For the product automaton,
{(x1, s0), (x2, s0), (x3, s0), (x4, s0)} is the set of initial states, and (x5, s2) is the accepting state.
The blocking state (x3, s0) that is reachable from a non-blocking initial state (x1, s0) is shown in
grey

108 5 Finite Temporal Logic Control

141]. The solution we presented is based on [90]. The Rabin game based approach
to the control problem from this chapter is based on [170]. For the particular case
when the LTL formula can be translated to a deterministic Büchi automaton, we
showed that the control problem reduced to a Büchi game [38], for which efficient
solutions exist [167]. A treatment of the control problem for this case can be found
in [104]. Finally, if the specification is given in the syntactically co-safe fragment
of LTL, called scLTL [156], then the solution reduced to a reachability problem,
for which we propose an efficient algorithm. In all three cases mentioned above, the
control strategy for the original transition system takes the form of a feedback control
automaton, which is easy to interpret and implement.

For simplicity of exposition, we only consider synthesis from LTL specifications.
Readers interested in CTL and CTL* specifications are referred to [9, 57, 92]. There
has also been some interest in combining optimality with correctness in formal
synthesis. Examples include optimal LTL control for transition systems [51, 161,
171] and Markov decision processes [40, 52, 160], and optimization problems with
costs formulated using the quantitative semantics of logics such as signal temporal
logic (STL) and metric temporal logic (MTL) [12, 19, 54, 59, 94, 95, 107, 176].

	5 Finite Temporal Logic Control
	5.1 Control of Transition Systems from LTL Specifications
	5.2 Control of Transition Systems from dLTL Specifications
	5.3 Control of Transition Systems from scLTL Specifications
	5.4 Notes

