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Foreword

It is my distinct pleasure to write a foreword for the wonderful research monograph
Formal Methods for Discrete-Time Dynamical Systems written by Calin Belta,
Boyan Yordanov, and Ebru Aydin Gol.

In the era of internet of things and cyber-physical systems, it is becoming evident
that computation is increasingly interacting with safety-critical control systems. In
the absence of software, control theory has provided many tools for the rigorous
design of closed loop systems. In the absence of physical models, the formal
methods community has provided powerful tools for verifying the safe operation of
software (or hardware). As computation and control systems are tightly intercon-
nected in modern complex systems, simply bringing tools from control theory and
formal methods together does not suffice in understanding the software-controlled
system. There are many new safety problems that are created when software
interacts with control systems. Furthermore, a new science needs to be developed
focusing on the rapprochement between formal methods and control.

Over the last two decades, there has been intense research activity on the
interface between formal methods and control systems, under the broader research
agenda of hybrid systems, embedded systems, and now cyber-physical systems.
This is a very challenging area that has the ultimate goal of creating a modern
systems science for systems that include both physical and computational elements.
Researchers from formal methods have introduced notions of physicality into
automata leading to so-called hybrid automata, which are systems that are heavy on
the logic side and light on the physical side. The challenge in this approach is
verifying the discrete side of the hybrid systems regardless of the simple control
dynamics. On the other hand, researchers in control systems have introduced
elements of switching logic in control systems, resulting in switched control sys-
tems, which are heavy on the physical side and light on the discrete side. The
challenge in this approach is ensuring that the control system is stable regardless
of the switching logic.

While both these approaches are very useful, only in the past decade we have
seen truly hybrid approaches where formal method ideas are applied in complex
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control systems. This is the approach that is presented in this research monograph
by the authors who have significantly contributed to the development of this new
theory. While the fundamental system that is being considered in this monograph is
that of a discrete-time linear system, the specification for the systems is no longer
classical stability or controllability, but rather a specification that is formally
described in a suitable temporal logic. This is very important for two reasons. First
we depart from classical control requirements towards requirement that are closer to
software requirements. And second, specifying control system requirements in
temporal logic is formal, rigorous, and compositional, something that is not the case
with classical requirements (such as rise-time, overshoot requirements).

In order to address the problem of analyzing or designing control systems with
specifications expressed in temporal logic, one needs to be very well educated on
both control systems and formal methods. The monograph does an excellent
exposition of relevant topics from formal methods and control systems. The fun-
damental concept that semantically bridges the world of control systems and formal
methods is the concept of simulation and bisimulation, where a discrete-time linear
system is abstracted by a transition system (automaton), which is equivalent from
the perspective of the temporal logic property being considered. The notions of
simulation and bisimulation are fundamental concepts that formally relate systems
across discrete and continuous domains, bridging control systems and software
systems in a formal and rigorous manner.

I have known Calin Belta since his graduate student days here at Penn, and we
have collaborated on many of these topics over the years. Over the past decade he
and his students, two of them being co-authors, have been pushing the state of the
art in the development of a science for formal methods for control systems.
Leveraging much of their outstanding research, the authors are ideal for this
research monograph. While they focus on discrete-time linear systems, the inter-
ested reader will easily see connections to continuous-time systems, nonlinear
systems, or different logics.

The timing of the book is excellent. Over the past decade, the theory in this area
has matured and stabilized to a set of concepts and the authors have captured some
important ones. Readers from formal methods can read this book to get a brief
introduction to control systems and see how formal methods ideas can be expanded
to address these modern challenges. Readers from control theory will get a much
needed introduction to specifying system behavior using temporal logics, and how
to connect their models to discrete models through the notions of simulation and
bisimulation. But I project the biggest impact will be with new graduate students
interested in entering this area that has limited textbook or monograph options. This
wonderful research monograph will serve as fundamental and foundational intro-
duction to this emerging new field.

George J. Pappas
University of Pennsylvania

Philadelphia, USA
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Preface

Motivation and Objectives

In control theory, complex models of physical processes, such as systems of
differential or difference equations, are usually checked against simple specifica-
tions, such as stability and set invariance. In formal methods, rich specifications,
such as languages and formulas of temporal logics, are checked against simple
models of software programs and digital circuits, such as finite transition systems.
With the development and integration of cyber-physical and safety-critical systems,
there is an increasing need for computational tools for verification and control of
complex systems from rich, temporal logic specifications. For example, in a per-
sistent surveillance application, an unmanned aerial vehicle might be required to
“take photos of areas A and B infinitely often while always avoiding unsafe areas
C and D.” In the emergent area of synthetic biology, the goal is to design small
gene networks from specifications that are naturally given as temporal logic
statements about the concentrations of species of interest, e.g., “if inducer u1 is low
and inducer u2 is high, then protein y should eventually be expressed and remain in
this state for all future times.”

Central to the existing approaches for formal verification and control of
infinite-state systems is the notion of abstraction. Roughly, an abstract model can be
seen as a finite transition graph, whose states label equivalent sets of states of the
original system, and whose transitions match the trajectories of the original system
among the equivalence classes. Once constructed, such an abstraction can be used
for verification (using off-the-shelf model checking tools) or control (using auto-
mata game techniques) in lieu of the original system.

The main objective of this book is to present formal verification and control
algorithms for a class of discrete-time systems generically referred to as linear.
Most of the results are formulated for piecewise linear (or affine) systems, which are
described by a collection of linear (affine) dynamics associated to the regions of a
polytopic partition of the state space. Such systems are quite general, as they have
been shown to approximate nonlinear system with arbitrary accuracy. There also
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exist computational tools for identifying such systems (both the polytopes and the
corresponding dynamics) from experimental data.

This book is based on the work of the authors, and is, as a result, biased and
non-comprehensive. The specifications are restricted to formulas of Linear
Temporal Logic (LTL) and fragments of LTL, even though other temporal logics
have been used by other authors. While some of the results can be extended to
continuous-time systems, the focus is on discrete-time systems only. We only cover
deterministic and purely non-deterministic systems, even though existing results,
including ours, show that extensions to stochastic systems and probabilistic tem-
poral logics are possible. The equivalence notion that we use is classical bisimu-
lation—extensions to approximate bisimulations and probabilistic bisimulations
have been developed recently.

Intended Audience

This book is intended to a broad audience of scientists and engineers with interest in
formal methods and controls. In particular, it is our hope that this book will help
bridge the gap between the computer science and control theory communities.
Computer scientists are shown that simulations and bisimulations, normally used to
reduce the size of finite models of computer programs, can be used to abstract
infinite-state systems. The book also provides a self-contained exposition of tem-
poral logic control for finite non-deterministic systems, which is useful even for
seasoned formal methods researchers. Control theorists are introduced to notions
such as abstractions, temporal logics, formal verification, and formal synthesis, and
are shown that such techniques can be used for classical systems such as
discrete-time linear systems.

Book Outline and Usage

This book is self-contained. While some level of mathematical maturity is expected,
no mathematical background in control or automata theory is necessary. Most of the
formal definitions and algorithms are explained in plain language and illustrated
with several examples. Most examples include explanatory illustrations.

The book is organized in three parts. Part I covers the types of systems and
specifications used throughout the rest of the book. Specifically, it introduces
(non-deterministic) transition systems, a formalism that can be used to model a
large spectrum of dynamical systems. Simulation and bisimulations relations and
corresponding abstractions for transitions systems are defined. The syntax and
semantics of Linear Temporal Logic (LTL) and one of its fragments, called syn-
tactically co-safe LTL (scLTL), are introduced and illustrated with several
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examples. Finite state automata, Büchi automata, and Rabin automata accepting
languages satisfying LTL formulas are also defined.

Part II focuses on finite systems, i.e., transition systems with finitely many states,
inputs, and observations. After reviewing the classical LTL model checking
problem, we solve the problem of finding the largest set of states from which all
trajectories of a system satisfy an LTL formula. We show that the control version of
this problem can be mapped to a Büchi game, a Rabin game, or a graph reachability
problem depending on the structure of the specification formula. We present ready
to implement solutions to all these problems and include illustrative examples.

In Part III, which is the most involved part of the book, we bring together the
concepts and techniques introduced in Parts I and II and present computational
frameworks for verification and control of (infinite) discrete-time linear and
piecewise affine systems from LTL specifications. We cover LTL verification
problems for systems with fixed and uncertain parameters, parameter synthesis
problems, and control synthesis problems. We also provide algorithms for the
construction of finite bisimulations for some classes of discrete-time linear systems.
Finally, we establish a connection between optimality and correctness by requiring
a linear system to satisfy a temporal logic correctness requirement while optimizing
a cost function.

This book can be read and used in two ways. First, by covering Parts I and II
(excluding Sect. 1.2 from Chap. 1 in Part I), it can be used as a stand-alone
introduction to verification and control for finite non-deterministic transition sys-
tems from LTL formulas. This can be used as a first mini-course on formal methods
for engineers and computer scientists. It can also be useful for formal methods
researchers who have expertise in verification only. Second, the whole book can be
used as a graduate level course on formal methods for dynamical systems, with
particular focus on discrete-time linear and piecewise affine systems. Most of the
algorithms presented in this book were implemented as user-friendly software
packages that can be downloaded from the first author’s webpage or can be pro-
vided on request.

Related Books

The related books on formal methods for dynamical systems are [123, 5, 162, 144]:
[123, 5] are comprehensive expositions of theory and practice of embedded and
cyber-physical systems, together with corresponding verification and synthesis
techniques; [162, 144] are research monographs on formal methods for hybrid
systems, which combine continuous and discrete dynamics. The focus in [144] is on
theorem proving. The closest related to this book is [162].

There are three main features that set this book apart from [123, 5, 162, 144].
First, we provide a complete and self-contained treatment of the formal synthesis
problem from specifications given as LTL formulas. This can be, for example,
combined with the partition-based abstraction method from [162] to implement a
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computational tool for LTL synthesis for a quite large class of dynamical systems.
Second, we focus on particular types of dynamical systems (i.e., discrete-time
piecewise affine systems) and exploit their geometry to efficiently construct
abstractions. Third, we explore the connection between optimality and correctness
in control.
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Notations

; Empty set
jRj Cardinality of a finite set R
2R Power set (set of all subsets) of a set R
R1 � R2 Cartesian product of sets R1 and R2

wR ¼ wRð1ÞwRð2ÞwRð3Þ . . . ;wRðiÞ 2 R Word over set R
ðwð1Þwð2Þ. . .wðkÞÞx Infinitely many repetitions of sequence

wð1Þwð2Þ. . .wðkÞ
R� Set of finite words over R
Rx Set of infinite words over R
Rþ Set of finite words over R excluding the

empty word
R Set of real numbers
Z Set of integer numbers
N Set of natural numbers (including 0)
Nþ Set of positive natural numbers
R

N Euclidean space of dimension N
xi; i ¼ 1; 2; . . . States in a finite set of states of a

transition system or components of the
state x of a dynamical system

½a b� Row or column vector in R
2 (exact

meaning determined from the context)
⊤ and ⊥ Boolean constants True and False
:; ^; _; !; and $ Boolean operators negation, conjunc-

tion, disjunction, implication, and
equivalence

� “Next” temporal operator
U “Until” temporal operator
} “Eventually” (“Future”) temporal

operator
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h “Always” (“Globally”) temporal
operator

� Observational equivalence relation
� Observation preserving bisimulation
� / /-equivalent relation
�/ Equivalence relation that is both

/-equivalent and :/-equivalent
clðXÞ Closure of polytope X
intðXÞ Interior of polytope X
VðXÞ Set of vertices of polytope X
hullðRÞ Convex hull of set R
� Minkowski (set) sum
	 Product between transition systems or

between a transition system and an
automaton

A⊤ Transpose of matrix A
f ðSÞ and f
1ðSÞ Image and pre-image of set S through

function f
0, 0 (scalar) zero and zero vector
Oð�Þ Complexity class
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Chapter 1
Transition Systems

In this book, we focus on transition systems as a modeling formalism for a wide
range of processes. Although mathematically simple, transition systems are general
enough to capture the behavior of systems defined over discrete (finite or infinite)
or continuous (infinite) spaces. In subsequent chapters, this richness will allow us
to use transition systems as a unifying framework for modeling both (infinite-state)
discrete-time systems and their (finite-state) abstractions. In the following chapters
we will also describe techniques for the analysis and control of finite and infinite
transition systems, which are inspired by automata-theoretic model checking.

In this chapter, we define the syntax and semantics of transition systems, and pro-
vide several illustrative examples. In particular, we present different (deterministic,
nondeterministic, finite, and infinite) transition system representations for discrete-
time dynamical systems. We also introduce simulation and bisimulation relations,
which are central for the construction of finite abstractions throughout the book.

1.1 Definitions and Examples

Definition 1.1 (Transition system) A transition system is a tuple
T = (X,Σ, δ, O, o), where

• X is a (possibly infinite) set of states,
• Σ is a (possibly infinite) set of inputs (controls or actions),
• δ : X × Σ → 2X is a transition function,
• O is a (possibly infinite) set of observations, and
• o : X → O is an observation map.
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A subset Xr ⊆ X is called a region of T . A transition δ(x, σ ) = Xr indicates that,
while the system is in state x , it can make a transition to any state x ′ ∈ Xr in region
Xr ⊆ X under input σ . We denote the set of inputs available at state x ∈ X by

Σ x = {σ ∈ Σ | δ(x, σ ) �= ∅}. (1.1)

A transition δ(x, σ ) is deterministic if |δ(x, σ )| = 1 and the transition system T is
deterministic if for all states x ∈ X and all inputs σ ∈ Σ x , δ(x, σ ) is deterministic.
T is non-blocking if, for every state x ∈ X , Σ x �= ∅. Throughout this book, only
non-blocking transition systems are considered. Transition system T is called finite
if its sets of states X , inputs Σ , and observations O are all finite.

An input word of the system is defined as an infinite sequencewΣ = wΣ(1)wΣ(2)
wΣ(3) . . . ∈ Σω. A trajectory or run of T produced by inputwordwΣ and originating
at state x1 ∈ X is an infinite sequencewX = wX (1)wX (2)wX (3) . . .with the property
that wX (k) ∈ X , wX (1) = x1, and wX (k + 1) ∈ δ(wX (k),wΣ(k)), for all k ≥ 1. We
denote the set of all trajectories of a transition system T originating at x by T (x).
We use T (Xr ) = ∪x ′∈Xr T (x ′) to denote the set of all trajectories of T originating in
region Xr ⊆ X . As a consequence, T (X) will denote the set of all trajectories of T .

A run wX = wX (1)wX (2)wX (3) . . . defines an output word (which we will refer
to simply as word) wO = wO(1)wO(2)wO(3) . . . ∈ Oω, where wO(k) = o(wX (k))
for all k ≥ 1. The set of all words generated by the set of all trajectories starting at
x ∈ X is called the language of T originating at x and is denoted by LT (x). The
language of T originating at a region Xr ⊆ X is LT (Xr ) = ⋃

x ′∈Xr
LT (x ′). The

language of T is defined as LT (X), which for simplicity is also denoted as LT .
We often represent an infinite word as a finite prefix followed by an infinite suffix as
shown in Example 1.1.

For an arbitrary region Xr ⊆ X and set of inputs Σ ′ ⊆ Σ , we define the set of
states PostT (Xr ,Σ

′) that can be reached from Xr in one step by applying an input
in Σ ′ (called successors of Xr under Σ ′) as

PostT (Xr ,Σ
′) = {x ∈ X | ∃x ′ ∈ Xr , ∃σ ∈ Σ ′, x ∈ δ(x ′, σ )} (1.2)

Similarly, the set of states that reach some Xr ⊆ X in one stepunder the application
of some input from Σ ′ ⊆ Σ (called predecessors of Xr under Σ ′) can be defined as

PreT (Xr ,Σ
′) = {x ∈ X | ∃x ′ ∈ Xr , ∃σ ∈ Σ ′, x ′ ∈ δ(x, σ )} (1.3)

For a deterministic T , each state x has a single successor under a given input
σ , i.e. PostT (x, σ ) = δ(x, σ )1 is a singleton, but, in general, can have multiple
predecessors, i.e., PreT (x, σ ) is a region of T . However, for a nondeterministic T
it is possible that both PostT (x, σ ) and PreT (x, σ ) are regions of T .

1Since the Post operator was defined for a set of inputs, the correct notation here is PostT (x, {σ }).
For simplicity, and with a slight abuse of notation, we omit the set notation when only a singleton
input is considered. The same observation applies to the Pre operator.
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Fig. 1.1 Graphical
representation of the
transition system defined in
Example 1.1. Each state is
represented by a circle
containing the state label.
The observation of each state
is shown close to its circle
and transitions are
represented by arrows
between states. The input
enabling a transition is
shown on top of the
corresponding arrow

Example 1.1 The finite, non-deterministic transition system T =
(X,Σ, δ, O, o) shown in Fig. 1.1 is defined formally by

• X = {x1, x2, x3, x4},
• Σ = {σ1, σ2},
• δ(x1, σ1) = {x2, x3}, δ(x2, σ1) = {x2, x3}, δ(x2, σ2) = {x4}, δ(x3, σ2) =

{x2, x3}, δ(x4, σ1) = {x2, x4},
• O = {o1, o2, o3},
• o(x1) = o1, o(x2) = o(x4) = o2, o(x3) = o3.

The set of inputs available at the states of the system are Σ x1 = {σ1},
Σ x2 = {σ1, σ2}, Σ x3 = {σ2}, and Σ x4 = {σ1}. States x1 and x3 form a region
Xr = {x1, x3}. Region Xr can be reached from states x1 and x2 under σ1, and,
therefore, PreT (Xr , σ1) = {x1, x2}. Similarly, states x2 and x3 are reachable
from region Xr under σ1, and therefore PostT (Xr , σ1) = {x2, x3}.

Starting from x1, under input word wΣ = σ1σ1σ2(σ1)
ω, one possible run

of the system is wX = x1x2x2(x4)ω. Sequences σ1σ1σ2, x1x2x2 are prefixes
(repeated once) and σ1, x4 are suffixes (repeated infinitely many times) for
inputword and run, respectively. This run originates in region Xr and defines an
infinite (output) wordwO = o1(o2)ω ∈ LT (Xr ). There is an infinite number of
infinitewords in the languageLT (Xr ) = {o1(o2)ω, o1o2(o3)ω, o1(o3)ω, (o3)ω,

o3o3(o2)ω, . . .}.
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A transition system T = (X,Σ, δ, O, o) is usually referred to as a control tran-
sition system. It is used as a model in control problems, where the goal is to generate
a control strategy from a control specification, possibly given as a temporal logic
statement over the observations of the system. This topic will be addressed in detail
later in the book. For example, a control strategy enforcing the specification “if o1 is
satisfied initially, then eventually reach and remain in a region where either o1 or o2
are satisfied, or o3 is satisfied” is derived in Chap.5 for the transition system from
Example 1.1. In analysis problems, we are usually interested in checking whether all
the trajectories of a system satisfy such a specification, under arbitrary input choices.
Since the input is irrelevant, the input set Σ is a singleton, where the only input
enables all transitions available at all states. For simplicity of notation, this input set
can be omitted completely, leading to a simpler (autonomous, uncontrolled) transi-
tion system T = (X, δ, O, o), where X , O , and o are as given in Definition 1.1 and
the transition function assumes the simpler form δ : X → 2X . In the uncontrolled
case, the definitions of the successor and predecessor sets (Eqs. (1.2) and (1.3)) also
assume simpler forms:

PostT (Xr ) = {x ′ ∈ X | ∃x ∈ Xr , x ′ ∈ δ(x)} =
⋃

x∈Xr

δ(x), (1.4)

PreT (Xr ) = {x ∈ X | ∃x ′ ∈ Xr , x ′ ∈ δ(x)}, (1.5)

where Xr ⊆ X is a region.Wewill use both control transition systems and (autonomous)
transition systems throughout the book. We will refer to both simply as transition
systems and we will use the same symbols to denote their states, transitions, outputs,
and output maps. The exact meaning of the transition function and of the Post and
Pre operators will be clear from the context. In particular, a transition system with
no inputs is deterministic if it has at most one transition from each state.

Example 1.2 An example of a finite, non-deterministic transition system
(without inputs) T = (X, δ, O, o) is given in Fig. 1.2. It is characterized by

• X = {x1, x2, x3, x4},
• δ(x1) = {x1, x2}, δ(x2) = {x4}, δ(x4) = {x3}, δ(x3) = {x3, x1},
• O = {o1, o2, o3},
• o(x1) = o(x2) = o1, o(x3) = o3, o(x4) = o2.

For region Xr = {x1, x3}, we have PreT (Xr ) = {x1, x3, x4} and PostT (Xr ) =
{x1, x2, x3}.
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o1 o1

x1 x2

o2
o3

x3 x4

Fig. 1.2 Graphical representation of the transition system from Example 1.2. Unlike the control
transition system from Fig. 1.1, there are no inputs labeling the transitions between the states

+ +0

-2 -1

- -

. . . 0 1

+

2 . . .

+0

Fig. 1.3 Graphical representation of the transition system defined in Example 1.3

Example 1.3 The infinite, deterministic transition system T = (X, δ, O, o)
shown in Fig. 1.3 is defined formally by

• X = Z,
• δ(x) = x + 1, ∀x ∈ Z

• O = {−, 0,+},

• o(x) =
⎧
⎨

⎩

+ if x > 0
− if x < 0
0 otherwise

At each state, only the sign of the integer labeling the state is observed.

Example 1.4 Consider amessenger robotmoving in the environment depicted
in Fig. 1.4a. The robot (black disk) starts at the base B.When it detects a current
region of interest (base B, data gather regionG, recharge regions R, dangerous
region D) or an intersection I , the robot is required to stop and choose the next
immediate direction ofmotion (West, East, South, North). Then the robot turns
towards the chosen direction and keeps following the road. We assume that
the robot’s actuators and sensors are unreliable, and as a result, the transition
to a next intersection is not guaranteed. For example, while driving East from
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B, the robot can end up at either of the two intersections to the right of B in
Fig. 1.4a, i.e., it can fail to stop at the first intersection. The motion of the robot
in this environment can be modeled as the nondeterministic transition system
T shown in Fig. 1.4b, which is described by

• X = {x1, x2, x3, x4, x5, x6, x7, x8};
• Σ = {W, E, S, N };
• O = {B,G, R, D, I }; and
• δ and o as shown in Fig. 1.4b.

Example 1.5 A simple gene network is represented schematically in Fig. 1.5a.
The network consist of three genes A, B and C expressed from separate pro-
moters. When expressed, each gene produces a different protein (also denoted
respectively by A, B and C). Protein C acts as a repressor and binds to the pro-
moters of genes A and B. Therefore, whenever protein C is present, proteins
A and B are not produced. Similarly, proteins A and B act as activators for the
promoter of gene C, which can be expressed only if either protein A or B is
present.

(a)
(b)

Fig. 1.4 A finite nondeterministic transition system representation for the motion of a robot in an
indoor environment (see Example 1.4)
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The regulatory interactions of this simple gene network can be captured
using the Boolean network model represented schematically in Fig. 1.5b. The
model consists of 3 Boolean variables signifying that each gene can be in one
of two possible states (i.e., expressed (on) or not expressed (off)). At each
step, the model evolves dynamically according to the following rules: the next
state of variable A (denoted by A′) is given by the Boolean formula A′ = ¬C
and, similarly, B ′ = ¬C and C ′ = A ∨ B. At each discrete time step, all the
variables are updated simultaneously.

The Boolean network model from Fig. 1.5b can be translated into the finite,
deterministic transition system T = (X, δ, O, o) shown in Fig. 1.5c. The set
of states of the system X = {x1, x2, . . . , x8} captures all possible valuation of
the Boolean variables from the model (i.e., x1 := (A = ⊥, B = ⊥,C = ⊥),
x2 := (A = ⊥, B = ⊥,C = �), etc., where ⊥ and � denotes the Boolean
“false” and “true”, respectively). Transitions between states of T are assigned
using the dynamics of the Boolean network (i.e., δ(x1) = x7 since at state x1

A
-

B
-

+ +
C

Schematic representation of a simple
gene network consisting of genes A,B and
C.

A
B

C

or
not

not

Boolean network model of the
gene network from (a).

x1 x4

off on

x7 x2

on

on

off

on

x8 x6

off off

x3 x5

ransitioT n system representation of
the Boolean network from (b) where only
the state of geneC (on/o ff ) is observed.

(a) (b)

(c)

Fig. 1.5 Gene networks can be modeled as Boolean networks, which in turn can be described by
finite, deterministic transition systems (see Example 1.5 for additional details)
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wehave (A = ⊥, B = ⊥,C = ⊥) and therefore at the next step (A′ = �, B ′ =
�,C ′ = ⊥), which defines state x7). Assuming that we can only observe
whether gene C is expressed or not, the set of observations can be given by
O = {“on”, “off”} where the observation map of T is defined for all states
x ∈ X by o(x) =“on” if and only if C = � at state x and o(x) =“off” oth-
erwise. Throughout this book, we use quotes around observations defined as
strings (such as “on”,“off”) but not when the observations are symbols (such
as o1, o2, o3 in Example 1.2 or −, 0,+ in Example 1.3).

(a)

(c)
(d)

(b)

Fig. 1.6 Afinite transition system representation of the pedestrian intersection traffic light described
in Example 1.6
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Example 1.6 Consider the model of a traffic light at a pedestrian crossing
(Fig. 1.6) shown graphically in Fig. 1.6d.

The system consists of two components:

(i) a car traffic light with a “red”, “yellow” and a “green” signal, and
(ii) a pedestrian light with a “walk” and “don’t walk” signal.

Initially, the car and pedestrian traffic light components are modeled as sep-
arate transition systems Tc and Tp (shown respectively in Fig. 1.6a, b), where
each signal is captured by an observation (i.e., Oc ={“red”, “yellow”, “green”}
and Op ={“walk”, “don’t walk”}). For both transition systems, each state
has a unique observation (i.e., in each state, each traffic light is displaying a
unique signal). To distinguish between states of Tc and Tp, we denote them by
Xc = {xc1, xc2, xc3} and X p = {x p

1 , x p
2 }, respectively.

By assuming that the transitions of the two systems are perfectly synchro-
nized (i.e., transitions are taken at the same time), the overall model of the
crossing is obtained by constructing the product T = Tc ⊗ Tp (Fig. 1.6c) of
the car and pedestrian traffic light components. Each state of the product T
specifies the entire state of the crossing. The observations are obtained by col-
lecting the individual observations and the transitions are obtained bymatching
the transitions of the individual systems. For example, in state (xc3, x

p
1 ) the car

traffic light displays the “red” signal (i.e., transition system Tc is in state xc3) and
the pedestrian traffic light displays the “walk” signal (i.e., transition system
Tp is in state x

p
1 ).

Note that the pedestrian crossing is modeled as an autonomous, deter-
ministic transition system. In other words, it is assumed that this system is
not influenced by the environment or any external inputs (i.e., the system is
autonomous) and, instead, it keeps changing the signals according to a pre-
determined program, always following the same sequence (i.e., the system is
deterministic).

The traffic lightmodel from this example includes a dangerous state (xc1, x
p
1 )

with the observation “green”, “walk”. Approaches for identifying such unsafe
behaviors will be presented in Part II of this book (Examples 3.1 and 4.3).

Example 1.7 We further complicate Example 1.6 by considering a crossing
where a pedestrian must push a button to request the “walk” signal. As in
Example 1.6, we model the overall crossing as the composition of the car and
pedestrian traffic light components, where the car traffic light component Tc
remains unchanged as in Fig. 1.6a.
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To capture the behavior of the pedestrian traffic light, we use the nonde-
terministic transition system T ′

p shown in Fig. 1.7a. Whenever this system is
in state x p

2 (showing the “don’t walk” signal), a nondeterministic transition to
either states x p

1 (“walk”) or x p
2 (“don’t walk”) can be taken, depending if a

pedestrian pushes the button. An explicit input is not considered in this case
to represent whether the button is pressed. Instead, this action is considered as
a nondeterministic event.

The pedestrian and car traffic light components are synchronized as in
Example 1.6 by constructing the product T ′ = Tc ⊗ T ′

p shown in Fig. 1.7b,
which is nondeterministic since T ′

p is nondeterministic. The product T ′ cap-
tures all possible behavior of the traffic light system — at any discrete time
step, a “walk” request might or might not occur depending on the behavior of
a pedestrian, which results in the nondeterministic transitions in T ′.

Note that the dangerous state (xc1, x
p
1 ) with observation “green”, “walk”

from the initial traffic lightmodel described inExample 1.6 is not eliminated by
considering a “walk” request button. In fact, the set of states remains unchanged
and only additional (nondeterministic) transitions are introduced.

(b)(a)

Fig. 1.7 Afinite transition system representation of the pedestrian intersection traffic light described
in Example 1.7
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1.2 Discrete-Time Dynamical Systems
as Transition Systems

Consider the following discrete-time control system:

D : x(k + 1) = f (x(k), u(k)), k = 0, 1, 2, . . . ,
y(k) = g(x(k)),

(1.6)

where x(k) ∈ R
N is the state at time k, u(k) ∈ U ⊆ R

M is the control input at time k
(U is the control constraint set), f : R

N × R
M → R

N is a vector function describing
the dynamics of the system, y(k) ∈ R

P is the output at time k, and g : R
N → R

P is
the output function.

The discrete-time system from Eq. (1.6) can be easily represented as an infinite
transition system T 1,c

D = (X,Σ, δ, O, o), where

• the set of states X = R
N ,

• the set of inputs Σ = U ,
• the transition function δ = f ,2

• the set of observations O = R
P , and

• the observation map o = g.

The transition system T 1,c
D is called the one-step embedding of D , since it captures

all the transitions that D can take in one discrete-time step. It is also a timed and
controlled embedding, because it preserves the time and control information from the
original system. This is the most natural embedding of D , since T 1,c

D and D include
exactly the same amount of information. It is easy to see that T 1,c

D is non-blocking
and deterministic.

Other types of embeddings can also be defined forD . For example, in an analysis
problem, we might be interested in capturing all the possible runs of D , and we are
not interested in recording the controls. The one-step, control-abstract embedding of
D is defined as a transition system T 1

D = (X, δ, O, o)where X , O , and o are defined
exactly as above. The transition function δ is defined as x ′ = δ(x) if and only if there
exists u ∈ U such that x ′ = f (x, u).

Transition system T 1
D is a particular case of another timed, control-abstract embed-

ding of D . This embedding, which we will denote by TN

D = (X,Σ, δ, O, o), is a
transition system whose X , O , and o are inherited from T 1

D (and T 1,c
D ). Its set of

inputs Σ = N and its transition function δ is defined as x ′ = δ(x, k) if and only
if there exist u(0), u(1), . . . , u(k − 1) ∈ U driving system (1.6) from x(0) = x
to x ′ = x(k). Finally, a time-abstract, control abstract embedding of D , denoted
simply by TD = (X, δ, O, o), is a transition system that can be defined by tak-
ing the transition function δ as x ′ = δ(x) if and only if there exist k ∈ N and
u(0), u(1), . . . , u(k − 1) ∈ U driving system (1.6) from x(0) = x to x ′ = x(k).

2As before, without the risk of confusion, and to keep the notation simple, we slightly abuse the
notation when we refer to singletons and sets made of just one element. Formally, δ outputs a set,
while f outputs a singleton. In this case, the set produced by δ has just one element.
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There are several situations in which only a finite number of properties that the
states can satisfy are of interest. Such properties, or predicates, can be given as a
set of functions over the state space and can be accommodated by our definition of
an embedding transition system. For example, assume that we have a set of scalar
polynomials {p1, p2, . . . , pL} defined in R

n . Each pi defines a partition of R
n into

three regions, which correspond to pi < 0, pi = 0, and pi > 0, and which can be
labeled simply as n, z, and p, respectively. If all L polynomials are considered, the
state space is partitioned into 3L regions that are labeled as (pe1, p

e
2, . . . , p

e
L), with

pei ∈ {n, z, p}, i = 1, 2, . . . , L . If we are interested in how the trajectories ofD move
among these regions, the set of observations can be defined as

O = {(pe1, pe2, . . . , peL) | pei ∈ {n, z, p}, i = 1, 2, . . . , L}. (1.7)

The observation map is given by:

o(x) = (pe1, p
e
2, . . . , p

e
L), (1.8)

where pei = n if pi (x) < 0, pei = z if pi (x) = 0, and pei = p if pi (x) > 0, for all
i = 1, 2, . . . , L .

Alternatively, polynomials pi , i = 1, 2, . . . , L can be used to define a set of pred-
icates, e.g.,

πi : pi < 0, i = 1, 2, . . . , L . (1.9)

The set of observations is then the power set of the set of predicates

O = 2{πi , i=1,2,...,L} (1.10)

and the observation map o : X → O is defined as

o(x) = {πi | pi (x) < 0} (1.11)

Finally, in several practical applications, the observations are defined as labels
{P1, P2, . . . , PL} for a set of possibly overlapping “regions” that cover the state space
(i.e., ∪i=1,..., L Pi = X ). In this case, with the observation set O = 2{P1,P2,..., PL }, the
observation map o : X → O is defined as

o(x) = {Pi | x ∈ Pi } (1.12)

Example 1.8 Consider a planar, discrete-time affine control system described
by

Dlin : x(k + 1) = Ax(k) + Bu(k) + b, k = 0, 1, 2, . . . ,
y(k) = Cx(k), (1.13)
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where

A =
[
0.95 −0.5
0.5 0.65

]

, B =
[−1

2

]

, b =
[

0.5
−1.3

]

, C = [
1 0

]
. (1.14)

Theone-step timedcontrolled embeddingT 1,c
Dlin

= (X,Σ, δ, O, o) is defined
by

• the set of states X = R
2,

• the set of inputs Σ = R,
• the transition function δ(x, u) = Ax + Bu + b,
• the set of observations O = R, and
• the observation map o(x) = Cx .

The input word 0, 0, 0, . . . determines the (autonomous) run
[
8.0
5.0

]

,

[
5.600
5.950

]

,

[
2.8450
5.3675

]

,

[
0.5190
3.6114

]

,

[ −0.8126
1.3069

]

,

[ −0.9255
−0.8568

]

,

[
0.0492

−2.3197

]

, . . .

shown in blue in Fig. 1.8 (left) and the output word

8.0000, 5.6000, 2.8450, 0.5190,−0.8126,−0.9255, 0.0492, . . .

The input word u(0)u(1), . . . , u(100) with u(k) = 0.04k for k ≤ 50 and
u(k) = −0.04k + 4 for 50 < k ≤ 100, shown in Fig. 1.8 (right), produces the
run
[
8.0
5.0

]

,

[
5.600
5.950

]

,

[
2.8042
5.4491

]

,

[
0.3578
3.8073

]

,

[ −1.1862
1.5985

]

,

[ −1.5894
−0.5275

]

,

[ −0.9503
−2.0294

]

, . . .

shown in red in Fig. 1.8 (left) and the output word

8.0000, 5.6000, 2.8042, 0.3578,−1.1862,−1.5894,−0.9503, . . .

Assume now that we are only interested in how the runs of the system
behave with respect to a set of affine functions, e.g.,

p1(x) = [1 − 1]�x + 1.8,

p2(x) = [1 1]�x − 6,

p3(x) = [0.6 − 1]�x − 3.5,

p4(x) = [0.5 1]�x + 1.7.

If the approachdescribed inEqs. (1.7) and (1.8) is used, then thewordgenerated
by the blue run from the left of Fig. 1.8 is
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(p, p, n, p), (p, p, n, p), (n, p, n, p), (n, n, n, p), (n, n, n, p), (p, n, n, p),

(p, n, n, n), (p, n, p, n), . . . . (1.15)

The word generated by the red run coincides with the above word in the first
7 entries; the 8th entry is replaced by (p, n, n, n).

If the properties of interest are formulated in terms of a set of predicates,
as in Eqs. (1.9), (1.10), and (1.11), then the word of the blue run is

{π3}, {π3}, {π1, π3}, {π1, π2, π3}, {π1, π2, π3}, {π2, π3}, {π2, π3, π4}, {π2, π4}, . . . .
(1.16)

In the red run, the 8th entry is replaced by {π2, π3, π4}.

1.3 Simulation and Bisimulation

A number of analysis and control techniques, such as the ones presented in Part II,
have been developed to handle only finite transition systems (e.g. when an explicit
representation of all system states is required). In addition, these methods become
computationally challenging as the size of the state set of the system increases, which
limits the applicability of these methods due to the infamous “curse of dimension-
ality”. In this section, we introduce finite abstractions, which can be used to reduce
the size of a finite system or map an infinite system to a finite one for the purpose of
analysis and control.

Intuitively, an abstraction of a transition system T preserves some of its details
required for analysis and control but ignores aspects that do not influence the results.
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Fig. 1.8 Sample runs of the discrete-time system from Eqs. (1.13), (1.14) are shown on the left the
blue run corresponds to the autonomous system (u(k) = 0, k = 0, 1, 2, . . .), while the red run is
produced by the input shown on the right. The two components of the state vector x are denoted by
x1 and x2
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- +0

X1 X2 X3

Fig. 1.9 An abstraction of the infinite transition system T with a set of states X = Z from Exam-
ple 1.3 might preserve only the observation of a state (the sign of a number) but ignore the other
details (the exact value). All states x ∈ X with the property that o(x) = “−” (o(x) = “+”) are
equivalent and are grouped in an equivalence class X1 (X3)

More specifically, a state of the abstractmodel represents a large or infinite set of states
in the original, concretemodel that are somehow equivalent (e.g. all equivalent states
might have the same observation). An abstraction could be equivalent to the concrete
model with respect to the satisfaction of all specifications. Alternatively, it could
provide an approximation, guaranteeing that satisfaction of a specification in the
abstract model implies satisfaction in the original system. Equivalent abstractions are
based on the notion of bisimulation, while approximate abstractions are constructed
using simulation relations. In Sect. 4.5 we will also explore the idea of constructing
abstractions which are equivalent only with respect to a given specification, and are
therefore coarser than bisimulation. In all these cases, analysis or control of the large
or infinite system can then be performed instead on its finite abstract model (see
Fig. 1.9).

The observation map o of a transition system T = (X,Σ, δ, O, o) induces an
equivalence relation ∼⊆ X × X over the set of states X of T .

Definition 1.2 (Observational equivalence) States x1, x2 ∈ X are observationally
equivalent (written as x1 ∼ x2) if and only if o(x1) = o(x2).

Definition 1.3 (Quotient transition system) The observational equivalence relation
∼naturally induces aquotient transition systemT/∼ = (X/∼,Σ, δ∼, O, o∼),where

• the set of states X/∼ is the quotient space (i.e., the set of all equivalence classes),
• the set of inputs Σ is inherited from the original system,
• the transition relation δ∼ is defined as follows: for states Xi , X j ∈ X/∼ and input

σ ∈ Σ , we include transition X j ∈ δ∼(Xi , σ ) if and only if there exist states x1
and x2 of T in equivalence classes Xi and X j , respectively, such that x2 is reachable
from x1 in one step under input σ (i.e., x2 ∈ δ(x1, σ )),

• the set of observations O is inherited from T , and
• the observation o∼(X) of a state Xi ∈ X/∼ is given by o∼(Xi ) = o(x) for all
states x from equivalence class Xi .

Given an equivalence class Xi ∈ X/∼, we denote the set of all equivalent states
of T in that class by con(Xi ) ⊆ X , where con stands for concretization map. For
a state Xi of T/∼ the set con(Xi ) is, in general, a region of T and if X ⊆ X/∼ is
a region of T/∼, then con(X) = ⋃

Xi∈X
con(Xi ) is a region of T . The observation

map o∼ of T/∼ is well defined, since all states x ∈ con(Xi ) from an equivalence
class Xi ∈ X/∼ have the same observation (i.e., ∀x ∈ con(Xi ), o(x) = o∼(Xi )).
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(a) (b)

Fig. 1.10 The quotient T/∼ (b) of system T (a) under the observational equivalence relation
∼. States that are equivalent in T (i.e., states sharing the same observation) are highlighted (see
Example 1.9 for additional details)

Given states Xi , X j ∈ X/∼,we can assign transitions inT/∼ through computation
of the successor states (Eq. (1.2)) of each equivalence class, i.e.,

X j ∈ δ∼(Xi , σ ) if and only if PostT (con(Xi ), σ ) ∩ con(X j ) �= ∅. (1.17)

Equivalently, we can assign transitions in T/∼ by computing the set of predecessors
(Eq. (1.3)) of each class

X j ∈ δ∼(Xi , σ ) if and only if con(Xi ) ∩ PreT (con(X j ), σ ) �= ∅. (1.18)

Example 1.9 Consider the transition system from Fig. 1.1 shown again for
convenience inFig. 1.10a. The stateswith the sameobservations are equivalent.
The corresponding equivalence classes and highlighted in Fig. 1.10a. The set
of states of the quotient T/∼, shown in Fig. 1.10b, is X/∼ = {X1, X2, X3}. The
set of all states of T in an equivalence class Xi is given by the concretization
map con(): con(X1) = {x1}, con(X2) = {x2, x4}, and con(X3) = {x3}. The
observations of T/∼ are inherited from T . The transitions in δ∼ are assigned
as stated in Definition 1.3.

The above definitions can be immediately adapted for uncontrolled transition
systems by considering the particular case when |Σ | = 1 followed by the deletion
of the control symbol from the transition function.
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Fig. 1.11 The quotient T/∼ (b) of system T (a) under the observational equivalence relation
∼. States that are equivalent in T (i.e., states sharing the same observation) are highlighted (see
Example 1.10 for additional details)

Example 1.10 We construct the finite quotient T/∼ under the observational
equivalence relation ∼ for transition system T given in Fig. 1.11a. Each state
of T from the set X = {x1, . . . , x14} has a single observation from the set
O = {o1, . . . , o5}. States that have the same observation are equivalent and are
highlighted in Fig. 1.11a, revealing the equivalence classes of the system. The
quotient T/∼ has a set of states X/∼ = {X1, . . . , X5}where, for i = 1, . . . , 5,
each state Xi represents the set of equivalent states with an observation oi and,
as a result, the observation map o∼ is clearly defined (i.e., o∼(Xi ) = oi ). The
set of all states of T in an equivalence class Xi is given by the concretiza-
tion map con(): con(X1) = {x1, x2, x3}, con(X2) = {x4, . . . , x9}, con(X3) =
{x10, x11}, con(X4) = {x12} and con(X5) = {x13, x14}. Finally, transitions in
δ∼ are assigned as stated in Definition 1.3, resulting in the finite quotient T/∼

shown in Fig. 1.11b.
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From Definition 1.3, it follows that for all states (equivalence classes) Xi ∈ X/∼

of T/∼, we have
LT (con(Xi )) ⊆ LT/

∼

(Xi ). (1.19)

In other words, the quotient control transition system T/∼ can produce any word
wO that can be produced by the original, concrete transition system T . However, in
general there exists words inLT/

∼

(Xi ) that are spurious and do not represent valid
behavior of T (i.e., they are not part of LT (con(Xi ))).

Since any behavior of T can be reproduced by T/∼, we say that T/∼ simulates
T . As we will discuss later in the book, this guarantees that, if a linear temporal logic
formula is satisfied at some state Xi of T/∼, then the formula will be satisfied at all
the states of T contained in con(Xi ).

Definition 1.4 (Bisimulation) The equivalence relation ∼ induced by the observa-
tion map o is a bisimulation of a transition system T = (X,Σ, δ, O, o) if, for all
states x1, x2 ∈ X , and all inputs σ ∈ Σ , if x1 ∼ x2 and x ′

1 ∈ δ(x1, σ ), then there exist
x ′
2 ∈ X such that x ′

2 ∈ δ(x2, σ ) and x ′
1 ∼ x ′

2.

If ∼ is a bisimulation, then the quotient transition system T/∼ is called a bisim-
ulation quotient of T , and the transition systems T and T/∼ are called bisimilar. To
explicitly distinguish between a simulation and a bisimulation, we sometimes denote
the latter by ≈ and use T/≈ to denote a bisimulation quotient. In other words, the
quotient T/≈ is the quotient T/∼ when Definition 1.4 is satisfied.

Simulations and bisimulations relations are generally defined between transition
systems sharing the same sets of observations, through equivalence relations between
their states. In this book,we restrict our attention to equivalence relations defined over
the states of a transition system, and the simulation/bisimulation relations are between
the original system and its quotient. These notions are usually called observational
simulation/bisimulation but throughout the rest of this book we will simply denote
them as simulation/bisimulation.

For example, in Fig. 1.10b, the quotient T/∼ is not a bisimulation of the transition
system T shown in Fig. 1.10a. Note that x2, which is in the equivalence class X2 has
a transition to some state in the equivalence class X3 under input σ1. However, x4,
which is also in the equivalence class X2 does not have a transition to some state in
the equivalence class X3 under σ1. Examples of transition systems with no inputs for
which the observational equivalence relation ∼ is not or is a bisimulation are given
in Fig. 1.12a, b, respectively.

Definition 1.4 establishes bisimulation as a property of the quotient T/∼, when
transitions originating at equivalent states in T satisfy certain conditions. In the
following, for the particular case of transition systems with no inputs, we consider
alternative conditions guaranteeing that the quotient T/∼ is a bisimulation quotient,
which are easier to test computationally.
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Fig. 1.12 The observational equivalence relation ∼ (shown as shaded rectangles) is a bisimulation
for the transition system from (b) but not for the one from (a) (for both systems only the observations
for the entire equivalence classes are given)

Proposition 1.1 For a transition system T = (X, δ, O, o), the equivalence relation
∼ is a bisimulation if the quotient T/∼ is deterministic.

Proof Assume by contradiction that ∼ is not a bisimulation. Then, there exist
Xi , X j ∈ X/∼, x1, x2 ∈ con(Xi ), and x ′

1 ∈ con(X j ) such that x1 → x ′
1 but there does

not exist x ′
2 ∈ con(X j ) such that x2 → x ′

2. However, since T is nonblocking, there
exists x ′′

2 ∈ X and Xk ∈ X/∼, Xk �= X j such that x ′′
2 ∈ δ(x2), where x ′′

2 ∈ con(Xk).
In the quotient T∼, this induces transitions X j ∈ δ∼(Xi ) and Xk ∈ δ∼(Xi ), which
implies that T/∼ is nondeterministic and contradicts the hypothesis. �

Proposition 1.1 offers a computationally attractive sufficient condition for bisim-
ulation for transition systems with no inputs, where only the number of outgoing
transitions from each state in the quotient is counted. For deterministic transition
systems, this result becomes stronger:

Proposition 1.2 An equivalence relation ∼ defined on a deterministic transition
system T = (X, δ, O, o) is a bisimulation if and only if the quotient T/∼ is deter-
ministic.

Proof From Proposition 1.1 it follows that if the quotient is deterministic then
the equivalence relation is a bisimulation. Assume by contradiction that T/∼ is
not deterministic. Then, there exist Xi , X j , Xk ∈ X/∼ such that X j ∈ δ∼(Xi ) and
Xk ∈ δ∼(Xi ). However, since ∼ is a bisimulation, there exists xi , x j , xk ∈ X, xi ∈
con(Xi ), x j ∈ con(X j ), xk ∈ con(Xk) such that x j ∈ δ(xi ) and xk ∈ δ(xi ), which
implies that T is non-deterministic and contradicts the hypothesis. �

Relevant to model checking and analysis problems that we will define later in the
book, as an immediate consequence of bisimulation, we can guarantee the language
equivalence between the quotient T/≈ and the concrete system T . In other words,
for all states Xi ∈ X/≈, it holds that
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LT (con(Xi )) = LT/
≈

(Xi ). (1.20)

In Definition 1.4, we gave conditions on the transitions originating at equivalent
states in system T , required for the observational equivalence relation ∼ to be a
bisimulation. Following fromDefinition 1.4, a computationally attractive characteri-
zation of bisimulation can be given by considering the set of predecessors (Eq. (1.5))
of each equivalence class.

Theorem 1.1 (Bisimulation characterization)The equivalence relation∼ is a bisim-
ulation for a transition system T = (X,Σ, δ, O, o) if and only if for all equivalence
classes Xi ∈ X/∼ and for all inputs σ ∈ Σ , PreT (con(Xi ), σ ) is either empty or
a finite union of equivalence classes. Equivalently, the bisimulation property from
Definition 1.4 is violated at state Xi ∈ X/∼ if there exist an input σ ∈ Σ and a state
X j ∈ X/∼, such that

∅ ⊂ con(Xi ) ∩ PreT (con(X j ), σ ) ⊂ con(Xi ). (1.21)

As a particular case, for a transition system T = (X, δ, O, o) with no inputs, the
bisimulation characterization takes the form of Eq.1.21 with σ removed.

Example 1.11 Consider the quotient T/∼ (Fig. 1.13) of transition system T
from Fig. 1.12a. Using the characterization from Theorem 1.1, we can verify
that the bisimulation property (Definition 1.4) is violated by equivalence class
X1 ∈ X/∼. The set Pre(con(X3)) = {x2, x3} is not empty and has a nonempty
intersection with con(X1) = {x1, x2, x3} but there exist a state x1 ∈ con(X1)

such that x1 /∈ Pre((con(X3)). Equivalently, Pre((con(X3)) is not a finite
union of equivalence classes but is, in fact, a subset of an equivalence class.
Since the characterization from Theorem 1.1 is violated at state X1 (i.e., Eq.
(1.21) is satisfied at that state), the quotient X/∼ is not bisimilar with T .

Algorithm 1 ≈=Bisimulation(T ): Construct the coarsest observation-preserving
bisimulation quotient ≈ of T = (X,Σ, δ, O, o)
1: Initialize ∼r :=∼

2: while there exist equivalence classes Xi , X j ∈ X/∼r and σ ∈ Σ such that
∅ ⊂ con(Xi ) ∩ PreT (con(X j ), σ ) ⊂ con(Xi ) do

3: Construct equivalence class X1 such that con(X1) := con(Xi ) ∩ PreT (con(X j ), σ )

4: Construct equivalence class X2 such that con(X2) := con(Xi ) \ PreT (con(X j ), σ )

5: X/∼r := X/∼r \ {Xi } ⋃{X1, X2}
6: end while
7: return ∼r (∼r=≈)
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Fig. 1.13 Quotient T/∼ is
the same for the transition
systems from Fig. 1.12a, b.
While T/∼ is a bisimulation
quotient for the system from
Fig. 1.12b, it only simulates
the one from Fig. 1.12a. For
that system, the bisimulation
characterization from
Theorem 1.1 is violated at
state X1. See Example 1.11
for details

Equation (1.21) leads to an approach for the construction of the coarsest bisimu-
lation ≈. Given a transition system T , the iterative procedure known as the “bisimu-
lation algorithm” (summarized as Algorithm 1) starts with the observational equiv-
alence relation ∼ and uses it to identify equivalence classes from X/∼ that satisfy
Eq. (1.21). Then, it iteratively refines these classes until the characterization from
Theorem 1.1 is satisfied. This guarantees that the equivalence relation ∼r returned
after the algorithm terminates is indeed ≈—a bisimulation of T , which can be used
to construct the bisimulation quotient T/≈.

Example 1.12 Consider transition system T from Fig. 1.12a, with quotient
T/∼ (Fig. 1.13) induced by the observational equivalence relation ∼. As
already discussed in Example 1.11, T/∼ is not a bisimulation quotient (the
characterization from Theorem 1.1 is violated at state X1, for which Eq. (1.21)
is satisfied). In order to obtain the coarsest observation preserving equivalence
relation of T , the bisimulation algorithm (Algorithm 1) is applied to T .

First, equivalence classes X1 and X3 of T/∼ are considered, where ∅ ⊂
con(X1) ∩ Pre(con(X3)) ⊂ con(X1). Equivalence class X1 is refined into
X1.1 and X1.2, such that con(X1.1) = con(X1) \ Pre(con(X3)) = {x1} and
con(X1.2) = Pre(con(X3)) ∩ con(X1) = {x2, x3}, which leads to the con-
struction of the intermediate equivalence relation∼1 represented in Fig. 1.14a.
Equivalence relation ∼1 induces quotient T/∼1 (Fig. 1.14b) but is still not a
bisimulation (the characterization from Theorem 1.1 is violated for X1.2 ∈
X/∼1 ). Therefore, Algorithm 1 is applied again.

Equivalence classes X1.2 and X2 of X/∼1 are then considered and X1.2

is refined into X1.2.1 and X1.2.2, such that con(X1.2.1) = con(X1.2) ∩ Pre
(con(X2)) = {x3} and con(X1.2.2) = con(X1.2) \ Pre(con(X2)) = {x2}. The
resulting equivalence relation ∼2 represented in Fig. 1.14c is a bisimulation
and induces the bisimulation quotient T/∼2 = T/≈ shown in Fig. 1.14d.
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Fig. 1.14 The equivalence relations ∼1 and ∼2, obtained at successive steps while applying the
bisimulation algorithm to system T from Fig. 1.12a, induce quotients T/∼1 and T/∼2 , respectively.
See Example 1.12 for additional details

1.4 Notes

In this chapter we introduced transition systems as a modeling formalism for a wide
range of processes [11]. Besides capturing the behavior of many processes directly,
transition systems provide a semantical model for various high-level formalisms for
concurrent systems includingKripke structures [45], process algebras [88, 131, 132],
statecharts [81] andPetri nets [140] (also see [39] for additional discussion on discrete
event systems). In addition, the formalisms of Mealy and Moore machines, which
are related to finite state automata and are commonly used in hardware synthesis and
analysis, can be described by transition systems [110]. Finally, in biological appli-
cations, Boolean networks [101] are a popular model approximating the behavior of
large genetic and signaling networks. The state spaces of both Boolean networks and
their extending qualitative networks [154] and generalized logical networks [166]
can also be expressed as finite, and in many cases deterministic, transition systems.
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We showed that infinite transition systems are rich enough to describe dynamical
(control) systems. Such embeddings have been proposed by several authors [5, 7,
72, 74, 105, 106, 138, 162, 163, 180, 184, 185]. While such embeddings can be
easily defined for continuous-time systems as well [105, 106, 138], we do not give
these definitions as the focus in this book is on discrete-time systems only.

The transition system definition that we consider here is somewhat different from
the ones encountered elsewhere [11, 15, 45]. We allow a state x ∈ X of the system
to have only a single observation from the set of observations O , which is given
by the observation map o(x) ∈ O . In more classical definitions, a state can have
several observations from the set O (or, equivalently, a state might satisfy several
propositions from a given set) and, as a result, the observation map o gives the set of
observations o(x) ∈ 2O at state x ∈ X . Such a formulation can be reduced without
loss of generality to the one we use by redefining the set of observations (i.e., by
defining a new observation for each subset from 2O ). As it will become clear in
Chap.2, this assumption will also induce a slightly different interpretation of the
semantics of the temporal logic formulas.

In this book, we deal with transition systems that are not initialized (i.e., we do
not specify a set of initial states for the system) unlike the systems that are commonly
encountered elsewhere [15, 45]. Such a definition is more appropriate for the analy-
sis applications we consider in subsequent chapters. We still formulate the model
checking problem as deciding if all runs from a given region satisfy a specification,
which is equivalent to model checking a transition system that is initialized at that
region. In other texts, only transition systems that have been initialized at a single
state can be deterministic but according to our formulation, determinism is a property
of the transitions and not of the initial states of a system. This allows us to search for
sets of initial states rather than individual initial states as part of the analysis problem
we consider in Chap.4, even when deterministic systems are considered.

As probabilistic dynamics are not covered in this book, the transition systems
defined in this chapter capture only purely deterministic and nondeterministic behav-
iors. The probabilistic version of the transition system considered here is the well
known Markov decision process (MDP), in which the inputs enable transitions with
given probability distributions among the states of the system [15]. Throughout the
book, we also assume that the states of the system are observable. In other words, the
current state of the system is known and available for state-feedback control. Readers
interested in systems for which this assumption is relaxed are referred to transition
systems with nondeterministic observations [8], for which the current state is known
only to belong to a given set, and probabilistic versions such as hiddenMarkov mod-
els (HMM) [26], partially observable Markov decision processes (POMDP) [98],
and mixed observability Markov decision processes (MOMDPs) [135].

The notions of simulation and bisimulation that we consider here are relations
between systems and their quotients. Such relations can be defined, in general,
between systems sharing the same sets of observations [11]. There also exist relaxed
notions of bisimulations, such as alternating [6], weak [131], probabilistic [116], and
approximate bisimulations [67, 145], which go beyond the scope of this book.



Chapter 2
Temporal Logics and Automata

Throughout this book, we consider analysis and control specifications given as for-
mulas of a particular type of temporal logic, called Linear Temporal Logic (LTL).
Such formulas are expressive enough to capture a rich spectrum of properties, includ-
ing safety (nothing bad will ever happen), liveness (something good will eventually
happen), and more complex combinations of Boolean and temporal statements. For
example, for the robot from Example 1.4, an LTL formula can express a rich mission
specification such as: “Keep on collecting messages from data gather region G and
bring them back to the base B. Collect a message and recharge at one of the R regions
between any two visits to the base. Always avoid the dangerous region D”. In this
chapter, we introduce the syntax and semantics of LTL and of one of its fragments,
called syntactically co-safe LTL (scLTL), and we illustrate them through several
examples. We also define the automata that will be later used for system analysis and
control from such specifications.

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) formulas are constructed from a set of observations,
Boolean operators, and temporal operators. We use the standard notation for the
Boolean operators (i.e., � (true), ¬ (negation), ∧ (conjunction)) and the graphical
notation for the temporal operators (e.g.,© (“next”),U (“until”)). The© operator is
a unary prefix operator and is followed by a single LTL formula, whileU is a binary
infix operator. Formally, we define the syntax of LTL formulas as follows:

Definition 2.1 (LTL Syntax) A (propositional) Linear Temporal Logic (LTL) for-
mula φ over a given set of observations O is recursively defined as

φ = � | o |φ1 ∧ φ2 | ¬φ | © φ | φ1Uφ2, (2.1)

where o ∈ O is an observation and φ, φ1 and φ2 are LTL formulas.
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Unary operators have a higher precedence than binary ones and ¬ and © bind
equally strong. The temporal operator U takes precedence over ¬ and ∧ and is
right-associative (e.g., φ1Uφ2Uφ3 stands for φ1U (φ2Uφ3)).

To obtain the full expressivity of propositional logic, additional operators are
defined as

φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2 := ¬φ1 ∨ φ2

φ1 ↔ φ2 := (φ1 → φ2) ∧ (φ2 → φ1)

In addition, the temporal operators ♦ (“eventually”) and � (“always”) are defined
as follows:

♦φ := �Uφ

�φ := ¬♦¬φ

By combining the various temporal operators, more complicated expressions can be
obtained. For example, we will frequently use the combinations ♦� (“eventually
always”) and �♦ (“always eventually”).

LTL formulas are interpreted over infinite words made of observations from O ,
i.e., over Oω. Formally, the LTL semantics are defined as follows:

Definition 2.2 (LTL Semantics) The satisfaction of formula φ over a set of obser-
vations O at position k ∈ N+ by word wO = wO(1)wO(2)wO(3) . . . ∈ Oω, denoted
by wO(k) � φ, is defined recursively as follows:

• wO(k) � �,
• wO(k) � o for some o ∈ O if wO(k) = o,
• wO(k) � ¬φ if wO(k) � φ,
• wO(k) � φ1 ∧ φ2 if wO(k) � φ1 and wO(k) � φ2,
• wO(k) � ©φ if wO(k + 1) � φ,
• wO(k) � φ1Uφ2 if there exist j ≥ k such that wO( j) � φ2 and, for all k ≤ i < j ,
we have wO(i) � φ1.

A word wO satisfies an LTL formula φ, written as wO � φ, if wO(1) � φ. We denote
the language of infinite words that satisfy formula φ by Lφ .

In the following, we give an informal interpretation of the satisfaction of some
frequently used LTL formulas.

• ©φ is satisfied at the current step if φ is satisfied at the next step.
• φ1Uφ2 is satisfied if φ1 is satisfied “until” φ2 becomes satisfied,
• �φ is satisfied if φ is satisfied at each step (i.e., φ is “always” satisfied).
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• �¬φ is satisfied if ¬φ is satisfied at each step (i.e., φ is “never” satisfied).
• ♦φ is satisfied if φ is satisfied at some future step (i.e., φ is “eventually” satisfied).
• ♦�φ is satisfied if φ becomes satisfied at some future step and remains satisfied
for all following steps (i.e., φ is satisfied “eventually forever”).

• Formula �♦φ is satisfied if φ always becomes satisfied at some future step (i.e.,
φ is satisfied “infinitely often”).

Example 2.1 Consider the transition system T defined in Example 1.2 and
shown in Fig. 1.2. A possible run of the system wX = x1x2x4x3(x1)ω defines
the output word wO = o1o1o2o3(o1)ω which satisfies LTL formulas φ1 = o1,
φ2 = ♦�o1 and φ3 = o1Uo2. A different run w′

X = (x1x2x4x3)ω defines
the output word w′

O = (o1o1o2o3)ω which satisfies formulas φ1, φ3 and φ4 =
�♦o3. However, wordwO does not satisfy formula φ4 and w′

O does not satisfy
φ2.

Example 2.2 Consider the robot transition system described in Example 1.4.
Assume that the robot is required to keep collecting messages from data gather
region G and to bring them back to the base B. While doing this, it needs to
recharge at one of the recharge regions R. The robot must always avoid the
dangerous region D. This task can be represented as an LTL formula

φ = �♦G ∧ �♦B ∧ �♦R ∧ �¬D.

An additional requirement might be that the robot needs to collect a message
and recharge between any two visits to the base. The overall task can be
expressed as the following LTL formula

ψ = �♦B ∧ �¬D ∧ �(B ⇒ ©(¬BUG)) ∧ �(B ⇒ ©(¬BU R)).

Control strategies for the transition system from Example 1.4 from these spec-
ifications will be derived in Example 5.8.

An LTL formula belongs to the class of syntactically co-safe LTL formulas if it
contains only the temporal operators©,U and♦, and it is written in positive normal
form (the negation operator ¬ occurs only in front of an observation). Formally, we
define the syntax of scLTL formulas as follows:
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Definition 2.3 (scLTL Syntax) A (propositional) syntactically co-safe linear tem-
poral logic (scLTL) formula φ over a set of observations O is recursively defined
as

φ = � | o | ¬o |φ1 ∧ φ2 |φ1 ∨ φ2 | © φ | φ1Uφ2 (2.2)

where o ∈ O is an observation and φ, φ1 and φ2 are scLTL formulas.

Temporal operator ♦ is defined in scLTL as before, i.e., ♦φ := �Uφ. However,
temporal operator � can not be expressed in scLTL since only observations can be
negated, i.e., ¬♦¬φ does not belong to the scLTL fragment.

Even though scLTL formulas are interpreted over infinite words, i.e., over Oω, as
explained in Definition 2.2, their satisfaction is guaranteed in finite time. Any infinite
word wO = wO(1)wO(2)wO(3) . . . that satisfies formula φ contains a finite “good”
prefix wO(1)wO(2) . . .wO(n) such that all infinite words that contain the prefix, i.e.,
wO(1)wO(2) . . .wO(n)w′

O , w
′
O ∈ Oω, also satisfy φ. We denote the language of

finite good prefixes of an scLTL formula φ byLpre f,φ .

Example 2.3 Consider again transition system T from Example 1.2 and
Fig. 1.2. The run wX = x2x4(x3)ω defines the output word wO = o1o2(o3)ω.
The word wO satisfies scLTL formulas φ1 = ♦o1 and φ2 = ♦o3 ∧ (o1Uo2)
since wO contains a good prefix of each of the formulas, i.e., o1 for φ1 and
o1o2o3 forφ2. In particular, all output words defined by system runs originating
from Xr = {x1, x2} contain the finite prefix o1, and therefore satisfy φ1.

Fig. 2.1 The partitioned
planar environment for
Example 2.4. A control
strategy driving a simple
vehicle modeled as a
discrete-time double
integrator such that its
motion satisfies specification
(2.3) will be derived in
Example 11.5
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Example 2.4 Consider an agent moving in the planar environment from
Fig. 2.1. The specification is to visit regions X2 or X9 and then the target
region X7, while avoiding X11 and X12, and staying inside X = [−10, 2]2
until the target region is reached. This specification translates to the following
scLTL formula:

φ = ((¬X11 ∧ ¬X12 ∧ ¬Out) U X7) ∧ (¬X7 U (X2 ∨ X9)), (2.3)

where Out = R
2 \ X.

2.2 Automata

Wewill use automata that accept languages satisfying LTL and scLTL formulas over
the set of observations O . There is, therefore, no coincidence that the input alphabets
of the automata defined below is O .

Definition 2.4 (Finite state automaton) A finite state automaton (FSA) is a tuple
A = (S, s0, O, δ, F), where

• S is a finite set of states,
• s0 ∈ S is the initial state,
• O is the input alphabet,
• δ : S × O → S is a transition function, and
• F ⊆ S is the set of accepting (final) states.

The semantics of a finite state automaton are defined over finite input words in
O∗. A run of A over a word wO = wO(1)wO(2), . . . ,wO(n) ∈ O∗ is a sequence
wS = wS(1)wS(2), . . . ,wS(n + 1) ∈ S∗ where wS(1) = s0 and wS(k + 1) =
δ(wS(k),wO(k)) for all k = 1, 2, . . . , n. The word wO is accepted by A if and only
if the corresponding run ends in a final automaton state, i.e., wS(n + 1) ∈ F . The
language accepted by A is the set of all words accepted by A, and is denoted byLA.

A finite state automaton with a non-deterministic transition function, i.e., δ: S ×
O → 2S , and a set of initial states S0 ⊆ S instead of the singleton s0 is called a
non-deterministic finite state automaton (NFA). Every NFA can be translated to an
equivalent FSA. For this reason, we only consider deterministic finite state automata
in this book.

An scLTL formula φ over a set O can always be translated into an FSA Aφ with
input alphabet O withO(22

|φ|
) states (|φ| denotes the length of φ, which is defined as

the total number of occurrences of observations and operators) that accepts all and
only good prefixes of φ (i.e.,LAφ

= Lpre f,φ). Some notes on available tools for this
translation are given in Sect. 2.3 at the end of the chapter.
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Fig. 2.2 Graphical representation of the finite state automata for some scLTL formulas over the
set of observations O = {o1, o2, o3, o4}. For all automata, s0 is the initial state and the final state is
indicated by a double circle. For simplicity of the representation, if several transitions are present
between two states, only one transition labeled by the set of all inputs (separated by the symbol |)
labeling all transitions is shown

Example 2.5 The finite state automata that accept the good prefixes of scLTL
formulas φ1 = ♦o1, φ2 = ♦o3 ∧ (o1Uo2), and φ3 = (¬o3U (o1 ∨ o2)) ∧ ♦o3
over the set of observations O = {o1, o2, o3, o4} are shown in Fig. 2.2.

Definition 2.5 (Büchi automaton) A (nondeterministic) Büchi automaton is a tuple
B = (S, S0, O, δ, F), where

• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• O is the input alphabet,
• δ : S × O → 2S is a nondeterministic transition function, and
• F ⊆ S is the set of accepting (final) states.

A Büchi automaton is deterministic if S0 is a singleton and δ(s, o) is either ∅ or a sin-
gleton for all s ∈ S and o ∈ O . The semantics of a Büchi automaton are defined over
infinite input words in Oω. A run of B over a word wO = wO(1)wO(2)wO(3) . . . ∈
Oω is a sequence wS = wS(1)wS(2)wS(3) . . . ∈ Sω where wS(1) ∈ S0 and
wS(k + 1) ∈ δ(wS(k),wO(k)) for all k ≥ 1.

Definition 2.6 (Büchi acceptance) Let inf(wS) denote the set of states that appear
in the run wS infinitely often. An input word wO is accepted by B if and only if there
exists at least one run wS over wO that visits F infinitely often, i.e., inf(wS)∩ F �= ∅.

We denote byLB the language accepted by B, i.e., the set of all words accepted by
B. An LTL formula φ over a set O can always be translated into a Büchi automaton
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Bφ with input alphabet O and O(|φ| · 2|φ|) states (|φ| denotes the length of φ, which
is defined as the total number of occurrences of observations and operators) that
accepts all and only words satisfying φ (i.e., LBφ

= Lφ). This translation can be
performed using efficient, off-the-shelf software tools, which are reviewed at the end
of the chapter in Sect. 2.3.

Note that, in general, a nondeterministic Büchi automaton is obtained by translat-
ing an LTL formula. While certain Büchi automata can be determinized, a sound and
complete procedure for determinizing general Büchi automata does not exist and,
in fact, there exist LTL formulas which cannot be converted to deterministic Büchi
automata.

Example 2.6 Examples of Büchi automata for some commonly encountered
LTL formulas are shown in Fig. 2.3. Even when a nondeterministic Büchi
automaton was obtained through the translation with ltl2ba tool, the automa-
ton was simplified and determinized by hand whenever possible (e.g., for for-
mulas φ1, φ4 and φ5). Even so, some of the automata, such as the ones obtained
for LTL formulasφ3, φ6 andφ7 cannot be determinized. In fact, it is known that
formulas of the type♦�φ cannot be converted to a deterministicBüchi automa-
ton. For example, the Büchi automaton for LTL formula φ3 in Fig. 2.3c can be
naively converted into a deterministic automaton by removing o1 from the self
transition at s0. However, then word o1o2(o1)ω, which is obviously satisfying,
would not be accepted. While, in general, deterministic Büchi automata can
be obtained for a class of LTL formulas through alternative approaches other
than simply converting non-deterministic to deterministic Büchi automata, no
such automaton exists for φ3. To understand why formulas φ6 and φ7 result in
nondeterministic Büchi automata, we can rewrite them as

φ6 = �♦o1 ∧ ¬�♦o2 = �♦o1 ∧ ♦�¬o2 (2.4)

φ7 = �♦o1 ⇒ �♦o2 = (�♦o1 ∧ �♦o2) ∨ ¬�♦o1 = (2.5)

= (�♦o1 ∧ �♦o2) ∨ ♦�¬o1 (2.6)

to reveal that both contain a ♦� sub-formula.

Definition 2.7 (Rabin automaton) A (nondeterministic) Rabin automaton is a tuple
R = (S, S0, O, δ, F), where

• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• O is the input alphabet,
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Fig. 2.3 Graphical representation of the Büchi automata for some commonly used LTL formulas
over the set of observations O = {o1, . . . , o4}. For all automata, s0 is the initial state and the
final states are indicated by double circles. As in Fig. 2.2, for simplicity of the representation if
several transitions are present between two states, only one transition labeled by the set of all inputs
(separated by the symbol |) labeling all transitions is shown. For additional details, see Example 2.6

• δ : S × O → 2S is a transition map, and
• F = {(G1, B1), . . . , (Gn, Bn)}, where Gi , Bi ⊆ S, i = 1, 2, . . . , n is the accep-
tance condition.

A Rabin automaton R is deterministic if S0 is a singleton and δ(s, o) is either ∅
or a singleton, for all s ∈ S and o ∈ O . The semantics of a Rabin automa-
ton are defined over infinite input words in Oω. A run of R over a word wO =
wO(1)wO(2)wO(3) . . . ∈ Oω is a sequencewS = wS(1)wS(2)wS(3) . . . ∈ Sω, where
wS(1) ∈ S0 and wS(k + 1) ∈ δ(wS(k),wO(k)) for all k ≥ 1.

Definition 2.8 (Rabin acceptance) Let inf(wS) denote the set of states that appear
in the run wS infinitely often. A run wS is accepted by R if inf(wS) ∩ Gi �= ∅ ∧
inf(wS)∩ Bi = ∅ for some i ∈ {1, . . . , n}. An input word wO is accepted by a Rabin
automaton R if some run over wO is accepted by R.
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We denote by LR the language accepted by R, i.e., the set of all words accepted
by R. Given an LTL formula φ, one can build a deterministic Rabin automaton R
with input alphabet O , 22

O(|φ|·log |φ|)
states, and 2O(|φ|) pairs in its acceptance condition,

such that LR = Lφ . The translation can be done using off-the-shelf software tools
reviewed in Sect. 2.3. Note that a Büchi automaton B is a Rabin automaton R with
one pair in its acceptance condition FR = {(G, B)} where G = FB and B = ∅.

Example 2.7 Even though LTL formulas φ3, φ6 and φ7 could only be trans-
lated into nondeterministic Büchi automata in Example 2.6, we can translate
them instead into the deterministic Rabin automata shown in Fig. 2.4. The
Rabin automata for formulas φ3 and φ6 contain only a single pair in their
acceptance conditions, while the one for φ7 contains two pairs.

Fig. 2.4 Graphical representation of the Rabin automata for the LTL formulas from Example 2.6
resulting in nondeterministic Büchi automata. For each automaton, s0 is the initial state. For the
automata accepting formulas φ3 and φ6 the acceptance condition F is defined by one pair of
singletons (G, B) where G = {s1}, B = {s0} in (a) and G = {s2}, B = {s1} in (b) (good and
bad states are denoted by unshaded or shaded double circles, respectively). For the automaton
accepting φ7 the acceptance condition includes two pairs where G1 = {s1, s2}, B1 = {s0} and
G2 = {s1}, B2 = ∅ (the single bad state is denoted by a shaded circle and the good state that is
common for both pairs of the acceptance conditions is denoted by a solid and dashed circle in (c)).
As in Fig. 2.3, for simplicity of the representation if several transitions are present between two
states, only one transition labeled by the set of all inputs (separated by the symbol |) labeling all
transitions is shown. For additional details, see Example 2.7
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2.3 Notes

Temporal logics were originally developed by philosophers to reason about how truth
and knowledge change over time. They were later adapted in computer science and
used to specify the correctness of digital circuits and computer programs. Besides
severalmore expressive temporal logics, Linear Temporal Logic (LTL), Computation
Tree Logic (CTL) and the CTL* framework [45, 56], which is a superset of LTL
and CTL, are the most commonly encountered. For the applications we consider, the
computational expense involved in model checking (see Chap. 3) CTL* outweighs
the gains in expressivity and therefore this logic is not considered. LTL and CTL are
incomparable in the sense that there exist LTL formulas that cannot be expressed in
CTL and vice versa. CTL is a branching time logic that allows for the quantification
of specifications over the executions of the system. In other words, a CTL property
can be satisfied by the system if it is satisfied over all paths (universal quantification)
or if there exists a path that satisfies it (existential quantification). However, the
additional semantics of CTL might make the formulation of specifications prone to
errors [130, 155], as onemust consider all possible executions of a system at the same
time. On the other hand, expressing specifications in LTL is more natural because
executions are considered one at a time. In the worst case, model checking CTL and
LTL specifications respectively requires polynomial and exponential time in the size
of the formula. While CTL model checking is computationally cheaper, empirical
results suggest that performance is similar [172] for formulas expressible in both
logics, since formulas in CTL can be larger than their equivalent LTL representation.
Because of its resemblance to natural language, we adopt LTL as a specification
formalism.

Fragments of LTL, such as GR(1) [143] and syntactically co-safe LTL (scLTL)
[111, 156], have also been proposed as specification languages for verification and
control. With particular relevance to this book, scLTL has been primarily used to ver-
ify safety of a system [111, 156]. As we will discuss in the next chapter, analysis of a
system from an LTL formulaφ involves constructing an automaton from the negation
of the formula, i.e., B¬φ . A safety property asserts that nothing bad happens to the
system, e.g., � “safe”, and negation of a safety formula is called a co-safe formula,
e.g.,♦¬ “safe”. As we presented in this chapter, an FSA is sufficient to recognize the
words that satisfy a syntactically co-safe LTL formula, which reduces the computa-
tional complexity associated with the analysis of the corresponding safety property
due to the simple acceptance condition of an FSA. In addition to analysis of safety
properties, scLTL formulas are also used to express finite horizon specifications [30].

There are also some differences between the terms used here and elsewhere. The
symbols appearing in an LTL formula are usually called atomic propositions in the
formal methods community [45]. However, we call them observations as in this book
we use LTL formulas to specify properties of words over observations O produced
by transition systems T = (X, �, δ, O, o) (see Definition 1.1). This is consistent
with control theoretic nomenclatures, where the term output is also used [162].
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The semantics of LTL formulas are usually given over infinite words in the power
set of the set of observations 2O , as they are normally used to specify properties of
transition systems with possibly several observations (atomic propositions satisfied)
at each state (see Sect. 1.4). The available off-the-shelf tools for construction of FSA
from scLTL formulas (scheck2 [117], based on the algorithm from [111]), Büchi
automata fromLTL formulas (ltl2ba [65, 66], based on algorithms from [173]), and
Rabin automata from LTL formulas (ltl2dstar [102]) produce automata with input
alphabet 2O , i.e., which accept words over 2O . This is commonly denoted by labeling
transitions of the automaton with Boolean formulas over the observations from O
(see Example 2.8). A transition is enabled by the set of subsets of O (i.e., the elements
of 2O ) that satisfies the corresponding Boolean formula. However, as the transition
systems that we consider in this book have exactly one observation at each state
(see Definition 1.1), we simplify the automata produced by scheck2, ltl2ba, and
ltl2dstar to only accept satisfying words over O . For example, Boolean terms or
formulas that cannot be satisfied by any individual element of O (e.g., the conjunction
o1 ∧ o2 of any two observations o1, o2 ∈ O) are not relevant for the applications we
consider and can therefore be simplified. Such a simplification for a Büchi automa-
ton is shown in Example 2.8 and similar simplifications apply to FSA and Rabin
automata.

Example 2.8 Consider the LTL formula φ = (o1Uo2) ∧ ♦o3, defined over
observations O = {o1, o2, o3, o4}. The Büchi automaton representation of
the formula is obtained using ltl2ba and is given in Fig. 2.5 (states s0
and s3 are respectively the initial and final (accepting) state). A transi-
tion labeled by an observation is enabled by any subset of O that includes
the observations (e.g., the self loop at state s0 is enabled by observations
(o1),(o1, o2),(o1, o3),. . .,(o1, o2, o3),. . .). Similarly, a transition labeled by a
conjunction of observations is enabled under any subset of observations
that includes both observations (e.g., the transition between states s0 and
s1 labeled by the conjunction o1 ∧ o3, is enabled by observations (o1, o3),
(o1, o2, o3),(o1, o3, o4),. . .). Finally, a transition labeled by “true” is enabled
by any subset from 2O .

In this book, we consider only observation from the set O and not the set of
subsets 2O . Therefore, a transition under any conjunction of inputs can never
be enabled (i.e., the set of observations satisfying such conjunctions is always
empty) and transitions that are never enabled can be safely ignored. In Fig. 2.5,
we ignore the transitions from state s0 to state s1 and from s0 to s3. As a result,
state s1 becomes unreachable and can be ignored as well. This simplification
reduces the number of states and transitions in the Büchi automaton, which
improves the complexity of the methods that will be discussed subsequently.
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Fig. 2.5 Büchi automata used for our applications can be simplified as described in Example 2.8

Most temporal logics, including LTL, have probabilistic versions. In particular,
the probabilistic version of LTL, called Probabilistic LTL (PLTL), is simply defined
by adding a probability operator that quantifies the satisfaction probability in front
of the formula. Its semantics is defined over a Markov decision process (MDP),
the probabilistic version of the transition system defined in Chap.1 (see Sect. 1.4).
Probabilistic temporal logics go beyond the scope of this book, and the interested
reader is referred to [4, 14, 15].

There also exist logics, such as Bounded Linear Temporal Logic (BLTL) [188],
Signal Temporal Logic (STL) [126], and Metric Temporal Logic (MTL) [108], in
which the temporal operators have specific time intervals. In such logics, one can
specify eventuality with deadlines (e.g., ♦[2,4]o1—“o1 will happen in between times
2 and 4”), persistence with time bounds (e.g., �[3,7]o2—“o2 will be true for all times
between 3 and 7”), etc. In particular, MTL and STL also have quantitative semantics,
which allow to quantify how far a systemexecution is from satisfying a given formula.
Recent works [3, 12, 19–21, 54, 59, 91, 94, 95, 107, 151, 176] showed that logics
with quantitative semantics can be used to formulate machine learning and control
problems as optimization problems with costs induced by quantitative semantics.
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Chapter 3
Model Checking

In this chapter, we introduce model checking, which is the most basic analysis
problem in formal verification. As the focus of the book is on LTL, we restrict our
attention to LTL specifications. Since we focus on analysis, we consider transition
systems with no inputs. Informally, the LTL model checking problem consists of
determining whether the language originating at a state of a finite transition system
satisfies an LTL formula over its set of observations. The algorithms presented in
this chapter will be extended in subsequent chapters to solve more difficult problems,
such as finding the largest satisfying region for finite transition systems and infinite
transition systems embedding discrete-time dynamical systems.

Given a finite transition system with no inputs T = (X, δ, O, o) and an LTL
formula φ over O , checking whether all output words of T from a given subset of its
states satisfy φ is called LTL model checking. Since we only use LTL in this book,
LTL model checking is simply referred to as model checking.

Definition 3.1 (LTL satisfaction) Transition system T satisfies formula φ from a
given region Xr ⊆ X , written as T (Xr ) � φ, if and only if all words wO ∈ LT (Xr )

produced by trajectories of T originating in Xr satisfy φ. Formally,

T (Xr ) � φ ⇔ ∀wO ∈ LT (Xr ),wO � φ, (3.1)

which can be expressed equivalently as

T (Xr ) � φ ⇔ LT (Xr ) ⊆ Lφ. (3.2)

Problem 3.1 (Model checking)Given a finite transition system T , a region Xr ⊆ X
of T , and an LTL formula φ over its set of observations O , determine if T (Xr ) � φ.
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Model checking provides a technique for automatically determining if T satisfies
φ when T is finite. An off-the-shelf model checker (see Sect. 3.1 for a review of such
tools) takes as input a finite transition system T and a formula φ and returns a positive
verification result only if all words produced by runs of the system originating in
Xr satisfy the formula (i.e., if Eq. (3.2) is satisfied). Otherwise, the model-checker
returns a non-satisfying run of T as a counterexample certifying the violation of the
formula.

Deciding if the inclusion fromEq. (3.2) holds can be computationally challenging.
Therefore, model checking algorithms often rely on computation using the negation
of the LTL formula and the following equivalence:

LT (Xr ) ⊆ Lφ ⇔ LT (Xr ) ∩ L¬φ = ∅ (3.3)

In other words, through Eq. (3.3) the model checking problem reduces to finding a
word wO ∈ LT (Xr ) ∩ L¬φ and, if no such word exists, it is guaranteed that the
system satisfies the formula from region Xr . To find a runwX of T , which produces a
word wO such that wO � ¬φ (i.e., wX is a counterexample in T ), automata-theoretic
model checking algorithms rely on the construction of a product automaton between
the transition system and the Büchi automaton corresponding to the formula ¬φ.

Definition 3.2 (Uncontrolled Büchi Product Automaton)1 The uncontrolled Büchi
product automaton P = T ⊗ B of a finite uncontrolled transition system T =
(X, δ, O, o) and a Büchi automaton B = (S, S0, O, δB, F) is defined as P =
(SP , S0P , δP , FP), where

• SP = X × S is the set of states,
• S0P = X × S0 is the set of initial states,
• δP is the transition function where, for a state (x, s) ∈ SP , we have

δP((x, s)) = {(x ′, s ′) ∈ SP | x ′ ∈ δ(x) and s ′ ∈ δB(s, o(x))},
• FP = X × F is the set of accepting states.

This product automaton is a nondeterministic Büchi automaton with input alphabet
containing only one element, which is therefore omitted. In addition, P is finite
since both T and B are finite. A state (x, s) ∈ SP of P can be projected into a
state x ∈ X of T . We denote this projection by α : SP → X , where α(x, s) = x .
A run wSP = (x1, s1)(x2, s2) . . . that is accepted by P can be projected into a run
wX = α(wSP ) = α(x1, s1)α(x2, s2) . . . = x1x2 . . . of T , such that o(x1)o(x2) . . . is
accepted by B. If the product automaton Pφ = T ⊗ Bφ of a transition system T and
the Büchi automaton Bφ is constructed (where Bφ accepts the languageLφ for some

1There will be several versions of product automata throughout the book, e.g., controlled Büchi
product automaton, controlled Rabin product automaton, controlled finite state product automaton.
We will have formal definitions for all these product automata. However, whenever possible, we
will call them simply product automata in the text, as their meaning will be clear from the context.
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LTL formula φ as described in Definition 2.5), a run accepted by Pφ is projected into
a run of T that produces a word wO over O accepted by Bφ (i.e., wO satisfies φ).

Note that a product automaton P = T ⊗ R analogous to the one from Defini-
tion 3.2 can be constructed with a Rabin automaton R (see Definition 5.3). In that
case, the acceptance condition is inherited from the Rabin acceptance condition (see
Definition 2.8).

In model checking a finite transition system T from region Xr , we construct the
product automaton P¬φ = T ⊗ B¬φ and restrict the set of initial states of P¬φ to
S0P¬φ

= Xr × S0. A run wSP¬φ
= (x1, s1)(x2, s2) . . . that is accepted by P¬φ can be

projected into a run wX = x1x2 . . . of T . If wO is the word produced by wX , then we
have wO � ¬φ or, equivalently, wO � φ. Therefore, wX is a counterexample proving
that T (Xr ) � φ and the model-checking problem reduces to finding the run wSP¬φ

that is accepted by P¬φ .
Finding an accepting run in P¬φ can be accomplished efficiently by treating it as

a directed graph and decomposing it into maximal strongly connected components
(SCCs)—maximal regions of P¬φ for which each state is reachable from every other
one. Considering states of P¬φ that belong to the same SCC as equivalent induces a
quotient system, where each state is a SCC (an equivalence class of states from SP¬φ

)
and a transition between states (SCCs) C1 and C2 exists if and only if there was a
transition between some states s1 ∈ C1 and s2 ∈ C2 in P¬φ . The corresponding SCC
quotient is a directed acyclic graph. Initial and accepting states of the quotient system
are SCCs that contain at least one initial or accepting state from SP¬φ

, respectively.
The existence of an accepting state (SCC) in the quotient system that is reachable
from an initial state (SCC) is equivalent with the existence of a run that is accepted by
P¬φ . The former can be checked efficiently with basic graph algorithms. This com-
putation provides the core of an LTL model checking algorithm and is summarized
as Algorithm 2. The overall complexity of LTL model checking is O(|X | · 2|φ|).

Algorithm 2 model- check(T, Xr , φ): Determine if finite transition system T sat-
isfies LTL formula φ from region Xr

1: Translate the negation of the formula ¬φ to Büchi automaton B¬φ

2: Construct the product automaton P¬φ = T ⊗ B¬φ

3: Restrict the initial states of P¬φ to S0P¬φ
= Xr × S0

4: Decompose P¬φ into SCCs
5: if there exists a run from an SCC containing an initial state (a state in S0P¬φ

)
to an SCC containing an accepting state (a state from FP¬φ

) then
6: return false and the corresponding counterexample (T (Xr ) � φ)
7: else
8: return true (T (Xr ) � φ)
9: end if
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Example 3.1 In order to illustrate the model checking procedure, we consider
the pedestrian crossing traffic light system introduced in Example 1.6. For
this system, the crucial safety property requires that pedestrians and cars are
not allowed through the intersection at the same time—a mutual exclusion
specification. Formally, we can express this requirement with the LTL for-
mula φ = �¬ “green, walk” (shown as a Büchi automaton Bφ in Fig. 3.1a),
specifying that the system should never visit a state where the car traffic light
displays the “green” signal, while the pedestrian light displays the “walk” sig-
nal. To guarantee that the crossing operates safely, we are interested in model
checking system T from Example 1.6 against specification φ from region
Xr = {(xc1, x p

1 ) . . . (xc3, x
p
2 )}, which includes all states of the system.

For transition system T shown in Fig. 1.6c it is clear that, regardless of the
initial state, every trajectory of the system visits state (xc1, x

p
1 ), where “green,

walk” is satisfied, and therefore specification φ is violated. To illustrate the
process, in the following we go through the individual steps of the model
checking procedure summarized in Algorithm 2.

i. The negation ¬φ of specification φ = �¬ “green, walk” (shown as a
Büchi automaton in Fig. 3.1a) is translated into the Büchi automaton B¬φ

shown in Fig. 3.1b (s0 is the initial state of B¬φ). Transitions of B¬φ are
enabled by observations from the set O = {“yellow, don’t walk”, “red,
walk”, “green, don’t walk”, “yellow, walk”, “red, don’t walk”, “green,
walk” }.

ii. The product automaton P¬φ = T ⊗ B¬φ shown in Fig. 3.1c is constructed.
Since all states are initial in T and only state s0 is initial in B¬φ , all states
(xc1, x

p
1 , s0) . . . (xc3, x

p
2 , s0) are initial in P¬φ . Similarly, since state s1 is

accepting in B¬φ , all states (xc1, x
p
1 , s1) . . . (xc3, x

p
2 , s1) are accepting in

P¬φ .
iii. The product automaton P¬φ is decomposed into strongly connected com-

ponents (SCCs) and the corresponding quotient system is shown in
Fig. 3.1d, where state S0 is initial and state S1 is accepting.

iv. Since a run from state S0 to state S1 exists in the SCC quotient of P¬φ ,
then there exists a trajectory of T that violates the specification. In other
words, there exists a sequence of signals displayed at the intersection that
eventually leads to the unsafe “green,walk” signal being displayed. In fact,
for this particular system, all trajectories eventually lead to such unsafe
behavior and can therefore serve as counterexamples.
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Fig. 3.1 Automata involved in the model checking problem described in Example 3.1 for the
pedestrian intersection traffic light system. For the Büchi automaton shown in (a), the transition
labeled by ¬ “green, walk” signifies that there exists a transition enabled by each observation from
the set O , except for one enabled by observation “green, walk”. For the Büchi automaton shown in
(b), a transition labeled by the set of observations O signifies that there exists a transition enabled
by each observation from O . See Example 3.1 for additional details
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3.1 Notes

An in-depth discussion on model checking can be found in [45], where model
checking algorithms for branching-time logics such as CTL are also included. For
a more recent and comprehensive treatment, the reader is referred to [15], which
also includes probabilistic verification, in which a Markov Chain is checked against
a probabilistic CTL or LTL formula. Model checking algorithms based on nested
depth-first search [48] have been developed as more memory-efficient alternatives to
the SCC-based approach discussed in this chapter. Popular off-the-shelf implemen-
tations of model checking algorithms include tools such as SPIN [89],NuSMV [43],
PRISM [114], and DiVinE [18].

As the complexity of model checking algorithms increases very fast with the sizes
of systems, various symbolic representations have been developed to describe and
manipulate finite transition systems. The most popular symbolic approach is based
on binary decision diagrams (BDDs) [129]. The main limitation of the BDD-based
representation is that its size depends onvariable ordering andmanual adjustments are
usually necessary. Methods based on encodings such as Boolean satisfiability (SAT)
problems, which take advantage of modern SAT solvers, were shown to performwell
on large systems despite theoretical hardness results [31]. To deal with the difficulty
of framing model checking problems as Boolean satisfiability problems, encodings
based on Satisfiability Modulo Theories (SMT) have also been proposed [10].

In this book, model checking is performed against finite models or finite (simu-
lation or bisimulation) abstractions of infinite models. There exist, however, model
checking algorithms specifically adapted to apply directly to some classes of infinite
systems, such as timed automata [7], pushdown automata [34, 58], or,more generally,
well structured systems [2]. Even though the abstraction is not explicitly constructed
in these methods, they are based on notions of decidability and computability similar
to the ones used in this book.



Chapter 4
Largest Finite Satisfying Region

In Chap.3, we introduced LTL model checking—a computational method for decid-
ing automatically if a finite transition system T (Definition 1.1) satisfies an LTL
formula φ (Sect. 2.1). This technique produces Yes/No answers (i.e., T satisfies φ or
the specification is violated). In many applications, more quantitative results for the
satisfaction of φ by T are required. For example, if the set of states was partitioned
into satisfying and non-satisfying states, then the ratio of the cardinalities of the two
sets would give us some indication on the degree of satisfaction. In this chapter, we
focus on the problem of analyzing a finite transition system with the goal of parti-
tioning its state space into satisfying and non-satisfying subsets of states. Since the
focus is on analysis, as in Chap. 3, we consider transition systems with no inputs. In
Chap.5, we will present a control version of the same problem for finite transition
systems. These techniques will then be extended in Chaps. 7 and 9 to infinite tran-
sition systems embedding discrete-time dynamical systems. The problem that we
consider in this chapter can be formally stated as follows:

Problem 4.1 (Largest satisfying region problem) Given a finite transition system
T = (X, δ, O, o) and an LTL formula φ over its set of observations O , find the
largest subset of X from which φ is satisfied.

Before we begin developing our solution to Problem 4.1 in the following sections,
we introduce several additional definitions necessary to formalize the problem and
give an overview of our approach.

Definition 4.1 (Largest satisfying region) Given a transition system T = (X, δ,

O, o) and an LTL formula φ over O ,

Xφ

T = {x ∈ X | T (x) � φ} (4.1)

is the largest satisfying region of T—the set of all states of T where φ is satisfied.
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The set Xφ

T is the largest region of T satisfying φ since, for all states x of T where
x /∈ Xφ

T , there exists a word in LT (x) that violates φ. While any subset of Xφ

T
contains only satisfying states and is therefore a “satisfying region” of T , the largest
satisfying region Xφ

T is uniquely defined.

Definition 4.2 (Largest violating region)Given a transition systemT = (X, δ, O, o)
and an LTL formula φ over O , the set of all states of T where φ is not satisfied is the
largest violating region of T

X \ Xφ

T = {x ∈ X | T (x) � φ} (4.2)

Equivalently, there exists at least one run of T that violates φ originating in every
state from the largest violating region.

Definition 4.3 (Strictly violating region)Given a transition system T = (X, δ, O, o)
and an LTL formula φ over O ,

X¬φ

T = {x ∈ X | T (x) � ¬φ} (4.3)

is the strictly violating region of T—the set of all states of T where the negation ¬φ

is satisfied.

Relevant to analysis applications, no runs of T satisfying φ originate at any state
x ∈ X¬φ

T . Therefore, the strictly violating region is always a subset of the largest
violating region. When T is deterministic, only a single run originates at each state
x ∈ X and satisfies either the formula φ or its negation ¬φ (i.e., T (x) � φ or
T (x) � ¬φ), allowing x to be included respectively in Xφ

T or X¬φ

T (see Example 4.1).
As a result, Xφ

T and X¬φ

T partition the states of T (i.e., X = Xφ

T ∪ X¬φ

T ) for a
deterministic T and the strictly violating region is also the largest violating region.

Example 4.1 Consider the finite, deterministic transition system T from
Example 1.5 (Fig. 4.1) and specification φ = © “on” requiring that, in the
next time step, a state with the observation “on” is visited. The largest region
of T satisfying φ is Xφ

T = {x3, . . . , x8} and the strictly violating region for φ is
X¬φ

T = {x1, x2} (both regions are shown in Fig. 4.1). Since transition system T
is deterministic, the strictly violating region is also the largest region violating
of T and the set of states X = {x1, . . . , x8} is partitioned into Xφ

T and X¬φ

T , as
shown in Fig. 4.1.

In general, when T is nondeterministic it is possible that both runs satisfying φ

and runs satisfying ¬φ originate at a state x ∈ X and therefore T does not satisfy
either φ or ¬φ from x (i.e., T (x) � φ and T (x) � ¬φ). Then, state x is an uncertain
state of T with respect to the satisfaction of φ and is not included in either Xφ

T or
X¬φ

T (see Example 4.2).
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Fig. 4.1 Satisfying (light
gray) and violating (dark
gray) states of the
deterministic system
introduced in Example 1.5
(Fig. 1.5) for specification
φ = © “on” (for additional
details, see Example 4.1)

Definition 4.4 (Uncertain region) Given a transition system T = (X, δ, O, o) and
an LTL formula φ over O ,

Xφ?
T = {x ∈ X | T (x) � φ and T (x) � ¬φ}. (4.4)

is the uncertain region of T—the set of all states of T where neither φ nor ¬φ is
satisfied.

The set Xφ?
T includes all uncertain states and, for a nondeterministic T where Xφ?

T �=
∅, the states of T is partitioned into the largest satisfying, strictly violating and
uncertain regions X = Xφ

T ∪ X¬φ

T ∪ Xφ?
T . As a result, the strictly violating region

X¬φ

T is not necessarily the largest violating region (as for a deterministic T ). Instead,
the largest violating region is the union of the strictly violating and the uncertain
regions, expressed equivalently as X \ Xφ

T .

Example 4.2 Consider the finite, nondeterministic transition system T from
Example 1.2 and specification φ = ©o1 requiring that, in the next time step,
a state with the observation o1 is visited. The largest region of T satisfying
φ is Xφ

T = {x1}, while the strictly violating region for φ is X¬φ

T = {x2, x4}.
Runs satisfying both φ and ¬φ originate at state x3, so x3 /∈ Xφ

T and x3 /∈ X¬φ

T

and, therefore, state x3 is uncertain (i.e., x3 ∈ Xφ?
T ). The set of states X =

{x1, . . . , x4} of T is partitioned into Xφ

T , X
¬φ

T and Xφ?
T , which are shown in

Fig. 4.2.

While the solution to Problem 4.1 amounts to the computation of set Xφ

T only, sets
X¬φ

T and Xφ?
T provide valuable information about system T and their explicit com-

putation leads to significant optimizations of the overall analysis procedure, as it will
become clear in the following sections. In the following, we refer to the computation
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Fig. 4.2 Satisfying (light
gray), violating (dark gray)
and uncertain (unshaded)
states of the nondeterministic
system introduced in
Example 1.2 (Fig. 1.2) for
specification φ = ©o1 (for
additional details, see
Example 4.2)

o1 o1

x1 x2

oo3 23

x3 x4

of Xφ

T , X
¬φ

T and Xφ?
T as the analysis of a transition system. For a finite T , which is

the focus of this chapter, all three sets are computable through a direct application of
model checking (as illustrated in Sect. 4.1), thus providing a solution to Problem 4.1.
However, such analysis becomes computationally challenging when T is large. To
address this issue, in the following sections we present alternative abstraction-based
analysis strategies, generally leading to conservative solutions of Problem 4.1, where
under-approximations of sets Xφ

T and X¬φ

T are computed. Specifically, we focus on
approaches for the iterative refinement and analysis of quotients of T , allowing an
approximate solution to be computed and improved incrementally. In addition, we
derive conditions guaranteeing that an exact solution to Problem 4.1 is obtained.
Besides providing a more feasible strategy for the analysis of large finite transi-
tion systems, these abstraction techniques are also applicable to infinite transition
systems, which we will exploit in Chap.7.

4.1 Model-Checking-Based Solution

Given a finite transition system T , the subset of states where an LTL formula φ is
satisfied is computable by model-checking T against φ from individual states. We
denote this procedure by analyze() where, given a region Xr ⊆ X ,

analyze(T, Xr , φ) = {x ∈ Xr | T (x) � φ} (4.5)

is the subset of Xr satisfying the formula φ. For a finite transition system T , the
largest satisfying region is computed as Xφ

T =analyze(T, X, φ), which provides
a solution to Problem 4.1. Similarly, the strictly violating region is computed as
X¬φ

T =analyze(T, X,¬φ). Once Xφ

T and X¬φ

T have been computed, the uncertain
region of T is computed as Xφ?

T = X \ (Xφ

T ∪ X¬φ

T ).
An implementation of analyze(), based on the functionmodel- check() (Algo-

rithm 2) from Chap.3, is given in Algorithm 3. This implementation is applicable
whenever model checking is feasible (i.e., when T is finite) but might require many
model-checking steps. Therefore, if T has a large number of states, applying func-
tion analyze() is computationally expensive. In the following sections we develop
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analysis procedures suitable for larger systems, based on the construction and analy-
sis of finite abstractions of T .

Example 4.3 In Example 3.1 we showed that the traffic light system described
in Example 1.6 was unsafe with respect to specification φ1 = �¬ “green,
walk”. In other words, there existed runs of the system which led to an unsafe
state, where both cars and pedestrians were allowed to cross the intersection
simultaneously. In this example, we modify the system and use the analysis
procedure described in Algorithm 3 to find initial states, guaranteeing the safe
behavior of the traffic light.

As before, we construct the overall system as the product T s = Tc ⊗ T s
p

of the car and pedestrian traffic light components, where the car traffic light
component Tc remains unchanged as inExample 3.1 (Fig. 1.6a). The pedestrian
traffic light component T s

p is modified from the one described in Example 1.6
and includes one additional state x p

3 with the observation “don’t walk” (see
Fig. 4.3a).

By analyzing the product T s with specification φ1 = �¬ “green, walk”,
we compute the violating region X¬φ1

T s = {(xc1, x p
1 ), (xc2, x

p
2 ), (xc3, x

p
3 )}, where

all other states of the system are satisfying and belong to Xφ1
T s (see Fig. 4.3b).

Therefore, we can guarantee that the safety specification φ1 is satisfied, as long
as the system is initialized in a state from the satisfying region Xφ1

T s .
We can also analyze the system with the stronger safety specification

φ2 = �¬ (“green, walk” ∨ “yellow, walk”), which requires that the poten-
tially unsafe state of the system where pedestrians are allowed to cross but
cars are not explicitly stopped by a red signal is also avoided. Analysis using
Algorithm 3 reveals the satisfying region Xφ2

T s = {(xc1, x p
2 ), (xc2, x

p
3 ), (xc3, x

p
1 )}

(Fig. 4.3c) and allows us to guarantee that the intersection is safe with respect
to specification φ2, provided that the system is initialized at a state from Xφ2

T s .

Algorithm 3 analyze(T, Xr , φ): Set of states of T in region Xr satisfying φ

1: Initialize Xφ
T := ∅

2: for each state x ∈ Xr do
3: if model- check(T, x, φ) then
4: Xφ

T := Xφ
T

⋃{x}
5: end if
6: end for
7: return Xφ

T
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Fig. 4.3 Satisfying (light gray) and violating (dark gray) regions are computed by analyzing the
safe pedestrian intersection traffic light described in Example 4.3

4.2 Abstraction-Based Solution

In Sect. 1.3 we introduced the notion of a quotient transition system T/∼ =
(X/∼, δ∼, O, o∼) as an abstraction of the concrete transition system T = (X, δ,

O, o). The language inclusion property of Eq. (1.19) stated that, for all quotient
states (equivalence classes of T ) Xi ∈ X/∼, all words from the language of T orig-
inating from region con(Xi ) (representing the equivalent states of T from class Xi )
are included in the language of the quotient T/∼ originating from state Xi (i.e.,
LT (con(Xi )) ⊆ LT/

∼

(Xi )). In other words, any behavior of T is reproduced by
T/∼ (i.e., T/∼ simulates T ), which guarantees that, for all quotient states Xi ∈ X/∼

and all LTL formulas φ, the concrete system T satisfies φ from region con(Xi ) only
if the quotient T/∼ (usually much smaller than T ) satisfies the formula from state
Xi , i.e.,

T/∼(Xi ) � φ ⇒ T (con(Xi )) � φ (4.6)
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This property is relevant to model checking, since it allows us to extend results
obtained for the quotient T/∼ to the concrete transition system T . Equation (4.6)
also guarantees that when a state Xi of T/∼ satisfies the negation ¬φ, all states
x ∈ con(Xi ) of T satisfy ¬φ and, therefore, violate φ. Note that this strategy is
conservative, since identifying states of T/∼ that do not satisfy φ or ¬φ does not
lead directly to any guarantees for T .

Similar to the model checking approach described above, we apply Eq. (4.6) in
order to extend analysis results obtained for the quotient T/∼ to the original, concrete
system T . Given LTL formula φ, we use Algorithm 3 to compute the largest satis-
fying region Xφ

T/
∼

of T/∼ (i.e., Xφ

T/
∼

=analyze(T/∼, X/∼, φ)). From Eq. (4.6)

we guarantee that con(Xφ

T/
∼

) is a satisfying region in T but, in general, it is not the

largest satisfying region (i.e., con(Xφ

T/
∼

) ⊆ Xφ

T ). However, this computation pro-

vides a strategy for obtaining satisfying regions of T when Xφ

T =analyze(T, X, φ)

cannot be computed directly (e.g., when T is large or infinite). The same approach
is used to compute the strictly violating region X¬φ

T/
∼

=analyze(T/∼, X/∼,¬φ)

in T/∼ with the guarantee that con(X¬φ

T/
∼

) is a violating region of T but, in general,

only a subset of its strictly violating region (i.e., con(X¬φ

T/
∼

) ⊆ X¬φ

T ). While the

computation of the uncertain region of T/∼ as Xφ?
T/

∼

= X/∼ \ (Xφ

T/
∼

∪ X¬φ

T/
∼

) is

straightforward, in general, region con(Xφ?
T/

∼

) is not the uncertainty region of T (i.e.,
it is possible that formula φ or its negation ¬φ is satisfied by all runs originating
at a state x ∈ con(Xφ?

T/
∼

)). In fact, due to the under-approximation of the largest
satisfying and strictly violating regions of T through the analysis of the quotient
T/∼, region con(Xφ?

T/
∼

) provides an over-approximation of the uncertain region of

T (i.e., Xφ?
T ⊆ con(Xφ?

T/
∼

).

Example 4.4 We apply the analysis procedure based on quotient construc-
tion and Algorithm 3 to the transition system T from Example 1.10. We
consider specification φ = �♦o3, requiring that runs of the system keep
visiting states with the observation o3. The quotient T/∼ is constructed and,
by applying the analysis procedure from Algorithm 3, the largest satisfying
region Xφ

T/
∼

= {X1, X3, X4} and the strictly violating region X¬φ

T/
∼

= {X5}
of T/∼ are identified (see Fig. 4.4a). This implies that the sets con(Xφ

T/
∼

) =
{x1, x2, x3, x10, x11, x12} and con(X¬φ

T/
∼

) = {x13, x14} are respectively a satis-
fying and violating region of T (see Fig. 4.4b). However, these sets are only
subsets of the largest satisfying and violating regions Xφ

T = {x1, x2, x3, x4, x10,
x11, x12} and X¬φ

T = {x5, x6, x9, x13, x14} (Fig. 4.4c). We can also compute the
uncertain region Xφ?

T/
∼

= {X2} but region con(Xφ?
T/

∼

) = {x4, . . . , x9} is an
over-approximation of the uncertain region of T (i.e., only states x7 and x8 are
uncertain in T ).
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Fig. 4.4 Analysis of the finite quotient T/∼ with specification�♦o3 allows us to identify satisfying
and violating states of T (see Example 4.4 for additional details)

The analysis approach discussed so far was conservative, due to the construction
and analysis of a conservative simulation quotient of T—a limitation that is addressed
through the construction of a bisimulation quotient. Equation (1.20) stated that the
language of such a quotient is equivalent to the language of T (i.e.,LT (con(Xi )) =
LT/

≈

(Xi )), which allows us to guarantee that for all quotient states (equivalence
classes of T ) Xi ∈ X/≈ and all LTL formulas φ, we have

T/≈(Xi ) � φ ⇔ T (con(Xi )) � φ. (4.7)

Following from Eq. (4.7), we use the bisimulation quotient T/≈ equivalently instead
of T for model checking (which was not true for the simulation quotient T/∼). In
other words, by applying Algorithm 3 to the bisimulation quotient T/≈, we can
compute the largest satisfying and violating regions of T through the computation
of the largest satisfying and violating regions of T/≈ as
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Xφ

T = con(Xφ

T/
≈

) and X¬φ

T = con(X¬φ

T/
≈

) (4.8)

As a consequence of Eq. (4.8), the set of uncertain states is computed as Xφ?
T =

con(Xφ?
T/

≈

), where Xφ?
T/

≈

= X/≈ \ (Xφ

T/
≈

∪ X¬φ

T/
≈

).
Using the results discussed so far, we obtain a solution to Problem 4.1, even when

system T cannot be analyzed directly (e.g., when model checking is not feasible
because T has too many or infinitely many states). The approach requires the com-
putation of the quotient T/∼ induced by the observational equivalence relation ∼.
When T/∼ simulates T , only an approximate solution to Problem 4.1 is obtained
using this technique but the solution is exact when a bisimulation quotient T/≈ can
be constructed. A strategy for the computation of bisimulation quotients was already
presented in Sect. 1.3 as Algorithm 1. Thus, the overall analysis procedure described
in this section involves (i) computing the coarsest observation-preserving equivalence
relation≈=Bisimulation(T ) (Algorithm 1), (ii) constructing the bisimulation quo-
tient T/≈ and (iii) identifying the largest satisfying, strictly violating and uncertain
regions of T through analysis of T/≈ using Algorithm 3 (see Example 4.5).

Example 4.5 The analysis approach discussed in this section is applied to
study transition system T from Fig. 1.11a with specification �♦o3. In Exam-
ple 4.4, we showed that simply constructing the quotient T/∼ under the obser-
vational equivalence relation ∼ and analyzing it using Algorithm 3 led to the
identification of the satisfying region {x1, x2, x3, x10, x11, x12} and violating
region {x13, x14} of T but the largest satisfying and strictly violating regions of
T were not identified (i.e., the exact solution to Problem 4.1 was not obtained).

By applying the bisimulation algorithm to T we compute the bisimulation≈

and construct the bisimulationquotient T/≈ (Fig. 4.5bwith equivalence classes
shown in Fig. 4.5a). Using Algorithm 3, we identify the largest satisfying and
strictly violating regions of T/≈ as Xφ

T/
≈

= {X1.1, X1.2, X2.1, X3, X4} and

X¬φ

T/
≈

= {X2.3, X2.4, X5}, respectively. Following from the discussion from

Sect. 1.3, we can guarantee that regions con(Xφ

T/
≈

) = {x1, x2, x3, x4, x10, x11,
x12} and con(X¬φ

T/
≈

) = {x5, x6, x9, x13, x14} are respectively the largest sat-
isfying and strictly violating region in T (see Fig. 4.5c). In addition, we can
compute the region of uncertain states Xφ?

T/
≈

= X/∼\(Xφ

T/
≈

∪X¬φ

T/
≈

) = {X2.2}
of T/≈ and guarantee that all states from the region con(Xφ?

T/
≈

) = {x7, x8} are
uncertain in T .
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Fig. 4.5 The bisimulation ≈ (a) of system T from Fig. 1.11a is obtained using Algorithm 1 by
refining the equivalence classes X/∼ highlighted in Fig. 1.11a (the quotient T/∼ was shown in
Fig. 1.11b). This allows the construction of the bisimulation quotient T/≈ (b). The largest satisfying
(light gray), strictly violating (dark gray) and uncertain (white) regions of T/≈ for specification
�♦o3 can then be identified using Algorithm 3. This allows for the computation of the largest
satisfying, strictly violating and uncertain regions of T (c). For additional details, see Example 4.5

4.3 Iterative Strategies

In Sect. 4.1, we presented a model-checking-based strategy (Algorithm 3), which
could be applied directly on T to provide a complete solution to Problem 4.1. How-
ever, this approach was computationally expensive when T included a large number
of states and could not be used directly when T was infinite as will be discussed in
subsequent chapters. Algorithm 3 could also be applied to the quotient T/∼ (con-
structed with the observational equivalence relation ∼) but in general this led only
to an approximate solution to Problem 4.1, which was too conservative as illustrated
in Sect. 4.2. Finally, Algorithm 3 could also be applied to the bisimulation quotient
T/≈, thus providing a complete solution to Problem 4.1 as discussed in the previous
section. However, such an analysis strategy required that the bisimulation algorithm
(Algorithm1) has terminated before applyingmodel-checking techniques.While this
approach guarantees that the largest satisfying region of the system is identified, it
is not practical for certain systems (e.g., when many refinement steps are required to
compute a bisimulation quotient) and cannot be applied directly to infinite systems,
which will be our focus in subsequent chapters. As a compromise, instead of relying
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on the termination of the bisimulation algorithm, the equivalence relation produced
at each step of Algorithm 1 allows the construction of simulation quotients. Apply-
ing the analysis procedure (Algorithm 3) to these quotients leads to approximate
solutions to Problem 4.1, which get increasingly better with subsequent iterations of
Algorithm 1.

Formally, the equivalence relation ∼r , initialized with the observational equiva-
lence relation ∼ in Algorithm 1 and refined within the main loop of the algorithm,
is used to construct quotient T/∼r at each step. Computing the largest satisfying and
strictly violating regions Xφ

T/
∼r

and X¬φ

T/
∼r

of T/∼r through Algorithm 3 allows the

computation of the subsets con(Xφ

T/
∼r

) and con(X¬φ

T/
∼r
) of the largest satisfying and

strictly violating region of T . While the solution to Problem 4.1 obtained this way is
not exact, a major advantage of the procedure is that an initial, rough approximation
is obtained at little computational cost during the initial iterations and is improved
through additional refinement (if more computational resources are available).

Let ∼1 and ∼2 denote the equivalence relation ∼r obtained during successive
iterations of Algorithm 1 and consider the quotients T/∼1 = (X/∼1 , δ∼1 , O, o∼1)

and T/∼2 = (X/∼2 , δ∼2 , O, o∼2). For any state Xi ∈ X/∼2 , con(Xi ) ⊆ con(X j ) for
some X j ∈ X/∼1 (i.e., the equivalence classes of X/∼1 are refined in X/∼2 ). Given
states X1, X2 ∈ X/∼2 such that con(X1)∪con(X2) = con(Xi ) for some Xi ∈ X/∼1

(i.e., equivalence class Xi was refined into X1 and X2)

i. o∼2(X1) = o∼2(X2) = o∼1(Xi ) (i.e., all subsets of a refined equivalence class
inherit the observation of the parent) and

ii. for any X j ∈ X/∼2 such that X j ∈ δ∼2(X1) or X j ∈ δ∼2(X2), there exist an
Xk ∈ X/∼1 such that con(X j ) ⊆ con(Xk) and Xk ∈ δ∼1(Xi ) (i.e., all transitions
are preserved).

Since words can only be removed from the language of the quotient through refine-
ment

LT ⊆ LT/
∼2

⊆ LT/
∼1

. (4.9)

and, from Eq. (4.9),
con(Xφ

T/
∼1

) ⊆ con(Xφ

T/
∼2

) ⊆ Xφ

T . (4.10)

Therefore, the largest satisfying region Xφ

T/
∼r

of the quotient T/∼r obtained after
more iterations of Algorithm 1 provides a better approximation of the largest satisfy-
ing region Xφ

T of T than the one obtained with less iterations. The same result holds
for the largest violating region X¬φ

T/
∼r
.

The analysis strategy described in this section is summarized as Algorithm 4.
While this illustrates the combination of quotient refinement and model checking,
performing analysis after every single refinement step is prohibitive. To develop a
solution more amenable to practical implementations, in the following section we
present a number of improvements and optimizations to this method.
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Algorithm 4 [Xφ, X¬φ] =IterativeAnalysis(T, φ): Given formula φ, compute
the (under-approximations) Xφ ⊆ Xφ

T and X¬φ ⊆ X¬φ

T .
1: Initialize ∼r :=∼

2: while there exist equivalence classes Xi , X j ∈ X/∼r such that∅ ⊂ con(Xi ) ∩ Pre(con(X j )) ⊂ con(Xi ) do
3: Construct equivalence class X1 such that con(X1) := con(Xi ) ∩ Pre(con(X j ))

4: Construct equivalence class X2 such that con(X2) := con(Xi ) \ Pre(con(X j ))

5: X/∼r := X/∼r \ {Xi } ⋃{X1, X2}
6: Construct quotient T/∼r

7: Xφ
T/

∼r
:=analyze(T/∼r , X/∼r , φ)

8: X¬φ
T/

∼r
:=analyze(T/∼r , X/∼r ,¬φ)

9: Xφ := con(Xφ
T/

∼r
)

10: X¬φ := con(X¬φ
T/

∼r
)

11: end while

4.4 Conservative Quotient Refinement

If the initial steps of the analysis procedure outlined in the previous section fail to
produce an adequate approximation of the solution to Problem 4.1, computation
might become challenging due to the possible explosion in the number of states
of T/∼r as refinement progresses. Therefore, minimizing the amount of refinement
performed at each step is critical to the feasibility of the method. One possible
strategy for controlling the number of states produced during the refinement involves
refining and analyzing the quotient only at states where this can improve the solution
(i.e., increase Xφ

T/
∼r

and X¬φ

T/
∼r
). Targeting our computation in such a way requires

identifying states where refinement might be beneficial and developing a refinement
strategy that operates locally on particular states. Through the rest of this section we
discuss both issues and use the results to develop an improved analysis procedure.

To understand where refinement should be targeted in the quotient T/∼r , we
first provide some additional intuition about why analysis of T/∼r leads only to a
conservative solution to Problem 4.1 and how state refinement can help. Given a state
x ∈ X , system T either satisfies formula φ from x (i.e., T (x) � φ), its negation ¬φ

(i.e., T (x) � ¬φ), or x is uncertain in T with respect to the satisfaction of φ (i.e.,
T (x) � φ and T (x) � ¬φ). Given two states x1, x2 ∈ X such that T (x1) � φ and
T (x2) � ¬φ, if the states are equivalent (i.e., x1 ∼r x2) and belong to equivalence
class Xi ∈ X/∼r (i.e., x1, x2 ∈ con(Xi )), state Xi is uncertain in T/∼r with respect
to the satisfaction of φ. However, refining Xi might separate states x1 and x2 and
allow the resulting subsets of Xi to be characterized as satisfying or violating.
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Example 4.6 Consider analyzing system T from Fig. 1.12a with specification
φ = ♦�o2. We focus on the equivalent states x1, x2 and x3 with observation
o1. All runs of T originating at state x1 satisfy φ and no runs originating at x3
satisfy it (i.e., all runs originating there satisfy ¬φ). Furthermore, state x2 is
uncertain and both runs satisfying φ and ¬φ originate there. In the quotient
T/∼ (Fig. 1.13), con(X1) = {x1, x2, x3} and state X1 is uncertain. However,
refinement of state X1 can separate satisfying and violating states and allow
the subsets of X1 to be characterized. In the refined quotient T/∼2 (Fig. 1.14d),
which is also the bisimulation quotient T/≈ obtained through Algorithm 1,
state X1.1 is satisfying, state X1.2.2 is violating and state X1.2.1 is uncertain.

We hope to apply state refinement in order to separate the subsets of states of
T/∼r , from which only trajectories satisfying either φ or its negation ¬φ originate.
Refinement of the quotient at any state does not change the satisfaction of the for-
mula at state Xi , which has already been characterized (i.e., where Xi ∈ Xφ

T/
∼r

or

Xi ∈ X¬φ

T/
∼r
). More specifically, for any satisfying state of the quotient Xi ∈ Xφ

T/
∼r

refinement of any other states can only “shrink” the language from Xi (as discussed
previously), which guarantees the satisfaction of φ from Xi (the same result holds
for violating states with the negation of the formula). Similarly, refining a state Xi

can only “shrink” the language produced from states outside Xi .
For certain LTL formulas (e.g., ♦�φ and �♦φ, where φ is a logical expression

over the atomic propositions) the refinement of previously characterized states does
not influence the satisfaction of the formula by other, un-characterized states of the
quotient. Therefore, once a state has been identified as satisfying the formula or its
negation it is no longer considered for refinement or analysis. Formally, refinement
of any state of the quotient Xi ∈ X/∼r , where Xi ∈ Xφ

T/
∼r

is unnecessary, since
all trajectories originating there satisfy the formula. Similarly, refinement of any
state Xi ∈ X¬φ

T/
∼r

is also unnecessary, since only trajectories violating the formula
originate there. The approximation of the solution obtained by analyzing T/∼r might
be improved only by refining states, from which some but not all trajectories satisfy
the formula. Therefore, state refinement is targeted to states Xi ∈ X/∼r , such that
Xi /∈ Xφ

T̂ /
∼r

and Xi /∈ X¬φ

T̂ /
∼r

or, equivalently, Xi ∈ Xφ?

T̂ /
∼r
.While this optimization is

an additional source of conservatism for general formulas, this limitation is addressed
through the improved procedure introduced in the following section.

In order to complete the analysis method described in this section, a refinement
procedure is required that can be applied locally at particular states of a quotient,
where this can improve the solution to Problem 4.1. Motivated by the fact that if
T/∼r becomes the bisimulation quotient T/≈ through refinement, an exact solution is
obtained by applying Algorithm 3, our refinement procedure refine() (Algorithm 5)
is inspired by the bisimulation algorithm (Algorithm 1). Unlike the bisimulation
algorithm, which refines the equivalence relation ∼r globally, refine(T/∼r , Xi )
refines the quotient T/∼r locally at a state Xi ∈ X/∼r . In particular, this procedure
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considers all successors of Xi in T/∼r and refines it in such away that the bisimulation
property (Theorem 1.1) is satisfied at Xi . Note that, this does not guarantee that Xi is
not going to be refined further during subsequent iterations and, in fact, if any of the
successors from δ∼r (Xi ) are refined, refinement of Xi might be necessary. However,
since this procedure is only applied locally at a state, its termination is guaranteed.

Our refinement procedure allows us to target computation to specific states, while
the quotient is updated (by updating the transitions δ∼r and observation map o∼r )
instead of recomputed every time refinement is performed. When refinement is per-
formed using the Pre() operation as part of function refine() (Algorithm 5), out-
going transitions of the newly formed states are implicitly induced. Given states
Xi , X j ∈ X/∼r such that X j ∈ δ∼r (Xi ), the subset con(Xi )∩ Pre(con(X j )) always
has a transition to state X j . Additionally, any subset of con(Xi ) \ Pre(con(X j ))

can never have a transition to state X j . In the particular case when state Xi has a
self transition (Xi ∈ δ∼r (Xi )), transitions from subset con(Xi ) ∩ Pre(con(Xi )) to
all subsets of Xi resulting from its refinement are possible and must be recomputed
using Eq. (1.17) or (1.18)—inAlgorithm 5 this computation is performed by the code
starting at line 11. Incoming transitions from all predecessor states X j ∈ Pre(Xi )

to all newly formed states are updated by the loop starting at line 22 of Algorithm 5,
which completes the construction of δ∼r . All subsets of a refined state inherit the
observation of the parent and, therefore, o∼r is easily updated.

Example 4.7 To demonstrate the refinement procedure implemented byAlgo-
rithm 6, we apply it to state X3 of the quotient T/∼ from Fig. 4.6b with equiv-
alence classes shown in Fig. 4.6a. Only states X3, X4 and X5 are reachable
from X3 and are considered when refining X3, where con(X3) = {x3, x4, x5}.
For the subsets X3.1, X3.2 and X3.3, we have con(X3.1) = (con(X3) ∩
Pre(con(X4))) \ (Pre(con(X3)) ∪ Pre(con(X5))) = {x3}, con(X3.2) =
(con(X3) ∩ Pre(con(X4)) ∩ Pre(con(X5)) and con(X3.3) = (con(X3) ∩
Pre(con(X3)). Transitions δ∼r (X3.1) = {X4} and δ∼r (X3.2) = {X4, X5}
are implicitly induced due to the refinement (lines 5–6 of Algorithm 5).
While we can guarantee that there is a transition from state X3.3 to a sub-
set of X3, additional computation (using Eqs. (1.17) or (1.18)) is required to
find transition δ∼r (X3.3) = {X3.2} (loop starting at line 11 of Algorithm 5).
Incoming transitions from the predecessors X1 and X2 of state X3 are also
recomputed (loop starting at line 22 of Algorithm 5), resulting in the quotient
T/∼r = refine(T/∼, X3) shown in Fig. 4.6d with equivalence classes shown
in Fig. 4.6c.
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Fig. 4.6 Refinement of quotient T/∼ (b) at state X3 using function refine() (Algorithm 5) results
in the construction of quotient T/∼r =refine(T/∼ , X3) (c). For additional details, see Example 4.7

For any states Xi , X j ∈ X/∼, we can guarantee that the intersection con(Xi ) ∩
Pre(con(X j )) is nonempty if and only X j is reachable from Xi in T/∼. In other
words,

X j ∈ δ∼(Xi ) ⇔ con(Xi ) ∩ Pre(con(X j )) �= ∅. (4.11)

Then, all nonempty intersections con(Xi ) ∩X j∈X′ Pre(con(X j )) \ ∪Xk∈X′′ Pre
(con(Xk)), where X

′ ∈ 2δ
∼

(Xi ) and X
′′ = δ∼(Xi ) \ X

′, provide a partition of Xi

that satisfies the bisimulation property. Therefore, if m = |δ∼(Xi )| is the number of
successors of Xi , applying Refine(T/∼, Xi ) results in at most 2m subsets.

When T is deterministic, given states Xi , X j , Xk ∈ X/∼ such that X j and Xk

are reachable from Xi (i.e., X j , Xk ∈ δ∼(Xi )), we have con(Xi ) ∩ Pre(con(X j )) ∩
Pre(con(Xk)) = ∅. In other words, there are no states in con(Xi ) that can make a
transition to both con(X j ) and con(Xk) in one step, which would make T non-
deterministic. Then, con(Xi ) ∩ Pre(con(X j )) of all successors X j ∈ δ∼(Xi )
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Algorithm 5 T/∼r =Refine(T/∼, Xi ): Refine T/∼ at state Xi ∈ X/∼

1: X := {Xi } and δ∼r (Xi ) = ∅
2: for all X j ∈ δ∼(Xi ) do
3: X̂ := ∅
4: for all Xk ∈ X do
5: Construct state X1 such that

con(X1) = con(Xk) ∩ Pre(con(X j ))

o∼r (X1) = o∼(Xi )

δ∼r (X1) = δ∼r (Xk) ∪ X j
6: Construct state X2 such that

con(X2) = con(Xk) \ Pre(con(X j ))

o∼r (X2) = o∼(Xi )

δ∼r (X2) = δ∼r (Xk)

7: X̂ := X̂ ∪ {X1, X2}
8: end for
9: X := X̂

10: end for
11: for all X j ∈ X such that Xi ∈ δ∼r (X j ) do
12: for all Xk ∈ X do
13: if Post (con(X j )) ∩ con(Xk) �= ∅ then
14: δ∼r (X j ) := (δ∼r (X j ) \ {Xi }) ∪ {Xk}
15: end if
16: end for
17: end for
18: for all X j ∈ X/∼ \ {Xi } do
19: o∼r (X j ) := o∼(X j )

20: if Xi ∈ δ∼(X j ) then
21: δ∼r (X j ) := δ∼(X j ) \ {Xi }
22: for all Xk ∈ X do
23: if Post (con(X j )) ∩ con(Xk) �= ∅ then
24: δ∼r (X j ) := δ∼r (X j ) ∪ {Xk}
25: end if
26: end for
27: else
28: δ∼r (X j ) := δ∼(X j )

29: end if
30: end for
31: X/∼r := (X/∼ \ {Xi }) ∪ X

32: return T/∼r = (X/∼r , δ∼r , O, o∼r )

provide a partition of state Xi , satisfying the bisimulation property and applying
Refine(T/∼, Xi ) on the quotient of a deterministic system T results in at most
m = |δ∼(Xi )| subsets. For a deterministic T , Refine(T/∼, Xi ) is more efficient and
is summarized as Algorithm 6.
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Fig. 4.7 The quotient T/∼ (Fig. 1.11b) of transition system T (Fig. 1.11a) is refined at states X1
or X2. For additional information, see Example 4.8

Algorithm 6 T/∼r =Refine(T/∼, Xi ): Refine T/∼ at state Xi ∈ X/∼ for a deter-
ministic T
1: X/∼r := X/∼ \ Xi
2: for all X j ∈ X/∼r do
3: δ∼r (X j ) := δ∼(X j ) \ Xi
4: o∼r (X j ) = o∼(X j )

5: end for
6: for all X j ∈ δ∼(Xi ) do
7: X/∼r := X/∼r ∪ Xk , where con(Xk) = con(Xi ) ∩ Pre(con(X j ))

8: δ∼r (Xk) := {X j } and o∼r (Xk) := o(Xi )

9: for all Xl ∈ X/∼r such that Xi ∈ δ∼(Xl ) do
10: if Post (con(Xl )) ∩ con(Xk) �= ∅ then
11: δ∼r (Xl ) := δ∼r (Xl ) ∪ {Xk}
12: end if
13: end for
14: end for
15: return T/∼r = (X/∼r , δ∼r , O, o∼r )
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Example 4.8 Consider the quotient T/∼ (Fig. 1.11b) of transition system T
(Fig. 1.11a). All states of T from the equivalence class con(X1) = {x1, x2, x3}
have deterministic transitions only. Therefore, refining T/∼ at state X3 demon-
strates the refinement procedure implemented by Algorithm 6 and results in
the refined quotient T/∼1 =Refine(T/∼, X1). T/∼1 includes the subsets X1.1

and X1.2 instead of X1, where con(X1.1) = con(X1) ∩ Pre(con(X3)) = {x1}
and con(X1.2) = con(X1) ∩ Pre(con(X4)) = {x2, x3} (see Fig. 4.7a).

Since there exist states of T from the equivalence class con(X2) =
{x4, . . . , x9} with nondeterministic transitions, the more general procedure
implemented by Algorithm 6 must be applied to refine T/∼ at state X2. As
a result, the refined quotient T/∼2 =Refine(T/∼, X2) is obtained, where
subsets X2.1, X2.2, X2.3 and X2.4 are included instead of X2. These sub-
sets are computed as con(X2.1) = con(X2) ∩ Pre(X4) \ Pre(X5) = {x4},
con(X2.2) = con(X2) ∩ Pre(X4) ∩ Pre(X5) = {x7, x8}, con(X2.3) =
con(X2)∩Pre(X5)\Pre(X4) = {x9} and con(X2.4) = con(X2)∩Pre(X2) =
{x5, x6} (see Fig. 4.7a or the equivalence classes shown in Fig. 4.8b).

The analysis approach described in this section is summarized as Algorithm 7.
The overall goal of limiting the size of the quotient T/∼r during the execution of
the algorithm is achieved by targeting specific states, with the hope of improving
the solution by expanding Xφ

T̂ /
∼r

and X¬φ

T̂ /
∼r
. Besides the operations discussed in

Sect. 1.3, this procedure does not require any additional computation. In the fol-
lowing, we consider the conditions guaranteeing that the quotient obtained through
Algorithm 7 provides an exact solution to Problem 4.1.

Proposition 4.1 Given transition system T with quotient T/∼r , an exact solution to
Problem 4.1 is obtained whenever all states of T/∼r can be partitioned between the
largest satisfying and strictly violating regions Xφ

T/
∼r

and X¬φ

T/
∼r
. In other words,

Xφ

T/
∼r

∪ X¬φ

T/
∼r

= X/∼r ⇒ con(Xφ

T/
∼r

) = Xφ

T and con(X¬φ

T/
∼r

) = X¬φ

T (4.12)

Proof By definition, all runs of T originating at a state x ∈ con(Xφ

T/
∼r

) satisfyφ and,

therefore, con(Xφ

T/
∼r

) is a satisfying region of T . For any state x /∈ con(Xφ

T/
∼r

), we

have x ∈ con(Xi ) for some equivalence class Xi ∈ X/∼r , where Xi /∈ Xφ

T/
∼r
. Since

Xφ

T/
∼r

and X¬φ

T/
∼r

partition the set X/∼r , we can guarantee that Xi ∈ X¬φ

T/
∼r

and,

therefore, all runs of T originating at x violate φ, making con(Xφ

T/
∼r

) the largest
satisfying region of T . The same argument can be made for the strictly violating
region con(X¬φ

T/
∼r

) of T . �

For a nondeterministic transition system T , it might be infeasible to partition the
states X/∼r into Xφ

T/
∼r

and X¬φ

T/
∼r
, due to the existence of uncertain states x ∈ Xφ?

T of
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Fig. 4.8 Iterative analysis and refinement of the quotient T/∼r reveals the largest satisfying and

strictly violating regions Xφ
T/

∼r
and X¬φ

T/
∼r

(a) and allows the computation of a satisfying and
violating regions in T (b). See Example 4.9 for additional details

T (see Definition 4.4). However, for a deterministic T the result from Proposition 4.1
becomes stronger:

Proposition 4.2 Given a deterministic transition system T with quotient T/∼r , an
exact solution to Problem 4.1 is obtained only when all states of T/∼r can be parti-
tioned between the largest satisfying and strictly violating regions Xφ

T/
∼r

and X¬φ

T/
∼r
.

In other words,

Xφ

T/
∼r

∪ X¬φ

T/
∼r

= X/∼r ⇔ con(Xφ

T/
∼r

) = Xφ

T and con(X¬φ

T/
∼r

) = X¬φ

T (4.13)

Proof The sufficiency of this proposition follows fromProposition 4.1. For necessity,
assume by contradiction that con(Xφ

T/
∼r

) = Xφ

T and con(X¬φ

T/
∼r

) = Xφ

T but Xφ

T/
∼r

∪
X¬φ

T/
∼r

⊂ X/∼r . Then, there exists an equivalence class Xi ∈ X/∼r such that Xi /∈
Xφ

T/
∼r

and Xi /∈ X¬φ

T/
∼r
. There must exist runs satisfying φ and runs satisfying ¬φ

originating at states from con(Xi ) in T but, since no states from con(Xi ) can be
included in either Xφ

T or X¬φ

T (i.e., con(Xφ

T/
∼r

) and con(Xφ

T/
∼r

) are maximal) both
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types of runs must originate at every state x ∈ con(Xi ). This implies that T is
nondeterministic and contradicts the hypothesis. �

Algorithm 7 [Xφ

T , X¬φ

T ] = TargetedAnalysis(T, φ): Given an LTL formula φ

and transition system T , compute the largest satisfying and strictly violating regions
of T .
Construct T/∼

T/∼r := T/∼

Xr := X/∼r

repeat
Xφ
T/

∼r
:= analyze(T/∼r , Xr , φ)

X¬φ
T/

∼r
:= analyze(T/∼r , Xr ,¬φ)

Xr := X/∼r \ (Xφ
T/

∼r
∪ X¬φ

T/
∼r

)

for all Xi ∈ Xr do
T/∼r := refine(T/∼r , Xi )

end for
until Xr = ∅ or no states from X/∼r were refined

return Xφ
T = con(Xφ

T/
∼r

), X¬φ
T = con(X¬φ

T/
∼r

)

Requiring that the set Xr becomes empty, which is one of the two possible ter-
mination conditions in Algorithm 7, guarantees that the states of T/∼ have been
partitioned between sets Xφ

T/
∼r

and X¬φ

T/
∼r
. From Propositions 4.1 and 4.2 this guar-

antees that an exact solution to Problem 4.1 was obtained. However, unless T is
deterministic where, from Proposition 4.2, this condition is both necessary and suf-
ficient, this requirement might be too strong. In fact, for a general (nondeterministic)
system T it might be impossible to make Xr empty, due to the existence of states
Xi ∈ X/∼r such that, for all states x ∈ con(Xi ) of T , there exist both runs satisfying
φ and ¬φ originating in x . The possibility of such uncertain states necessitates the
second termination condition in Algorithm 7 (no states from X/∼r are refined in
an iteration). Based on our previous discussion, once Algorithm 7 has terminated,
the set of uncertain states of T can be computed as Xφ?

T = con(Xφ?
T/

∼r
), where

Xφ?
T/

∼r
= X/∼r \ (Xφ

T/
∼r

∪ X¬φ

T/
∼r

) is the set of uncertain states of T/∼r . Such
uncertain states will be considered in more detail in Sect. 4.5, where a computational
procedure for their explicit identification during the analysis will be proposed.

Even when both termination conditions are considered, a large number of itera-
tions might be required for Algorithm 7 to terminate when it is applied to large finite
systems, while its termination cannot be guaranteed in general for the infinite sys-
tems that will be discussed in subsequent chapters. To address this issue, a limit on
the number of iterations performed by the algorithm can be imposed or states of the
quotient that become “too small” might not be considered for further refinement by
excluding them from Xr . Reaching such termination conditions leads to an approx-
imate solution to Problem 4.1 but further refinement of any state Xi /∈ Xr might not
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expand Xφ

T/
∼r

significantly since Xi is satisfying (i.e., Xi ∈ Xφ

T/
∼r
), violating (i.e.,

Xi ∈ X¬φ

T/
∼r
), uncertain (i.e., Xi ∈ Xφ?

T/
∼r
), or small.

Even when no additional termination conditions are imposed and Algorithm 7
returns an exact solution to Problem 4.1, the quotient T/∼r is, in general, not a
bisimulation quotient (e.g., see Example 4.9). This motivates us to explore the con-
ditions required to guarantee that an exact solution to Problem 4.1 is obtained in the
following section and to use them later to develop a more efficient analysis strategy.

Example 4.9 Using the procedure from Algorithm 7, we analyze transition
system T introduced originally in Example 1.10 (Fig. 1.11a).

In Example 1.10, we described the construction of the simulation quotient
T/∼ of T (Fig. 1.11b). However, in Example 4.4, we showed that simply
analyzing T/∼ to compute its largest satisfying and strictly violating regions
Xφ

T/
∼

and X¬φ

T/
∼

(Fig. 4.4a) leads only to a conservative solution to Problem 4.1
and the computation of a subset of the largest satisfying and strictly violating
regions Xφ

T and X¬φ

T of T (Fig. 4.4b).
In Example 4.5, we considered an approach where the bisimulation algo-

rithm (Algorithm 1) was used to obtain a quotient T/≈, bisimilar with
T Fig. 4.5b with refined equivalence classes shown in Fig. 4.5a. By computing
the largest satisfying and strictly violating regions of this bisimulation quo-
tient, we were able to obtain the corresponding regions for T Fig. 4.5c (i.e., the
solution to Problem 4.1 was exact). Furthermore, this allowed us to compute
the uncertain region Xφ?

T/
≈

of T/≈ and use it to obtain the uncertain region Xφ?
T

of T .
By applying the procedure implemented in Algorithm 7, we can also obtain

an exact solution to Problem 4.1, without constructing a bisimulation quotient.
Indeed, after the initial quotient T/∼ is constructed and analyzed as in Exam-
ple 4.4, the algorithm targets refinement to state X2 ∈ X/∼ only (see Fig. 4.4a).
Applying the refinement procedure to that state as described in Example 4.8
leads to the construction of quotient T/∼r (Fig. 4.5b).While T/∼r is not bisim-
ilar with T , computing regions Xφ

T/
∼r

and X¬φ

T/
∼r

(Fig. 4.8a with equivalence
classes shown in Fig. 4.8b) provides an exact solution to Problem 4.1.

4.5 Formula-Equivalence

So far in this chapter, we describedmethods for analyzing transition systems based on
the construction of finite quotients, which led to the analysis procedure summarized
as Algorithm 7. While our discussion focused primarily on the analysis of poten-
tially large, finite transition systems, the construction of finite quotients also makes
these approaches suitable for infinite systems—such applications will be considered
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in detail in subsequent chapters. Algorithm 7 combined state refinement inspired
by the bisimulation algorithm (Algorithm 1) with model-checking-based analysis
(Algorithm 3) in an iterative procedure. With a limited number of iterations, the
algorithm was conservative and led to the computation of under-approximations of
the largest satisfying and strictly violating regions (Definitions 4.1 and 4.3), which
could be improved by performing additional iterations. When Algorithm 7 termi-
nates, there could be states left that have not been assigned as either satisfying the
specification or its negation and might be “too small” to undergo additional refine-
ment. Even without a limit on the number of iteration or the size of regions that could
undergo refinement the termination of the algorithm with an exact solution could not
be guaranteed in general (e.g. when applied to an infinite system).

While the solution to Problem 4.1 returned by Algorithm 7 was, in general, only
an approximation, we also encountered cases where an exact solution was obtained.
In Sect. 1.3, we showed that the construction of a bisimulation quotient during refine-
ment guarantees our solutionwas exact but Example 4.9 suggested that this condition
was unnecessarily strong (i.e., bisimulation is a sufficient but not a necessary condi-
tion). The conditions from Propositions 4.1 and 4.2 could also guarantee that an exact
solution was obtained but were too conservative unless only deterministic systems
were considered. In the following, we explore more general conditions guaranteeing
that an exact solution to Problem 4.1 is obtained (Eq. (4.8) holds). Specifically, we
seek necessary and sufficient conditions weaker than bisimulation, guaranteeing that
two transition systems (or a transition system and its quotient) are equivalent with
respect to the satisfaction of a given LTL formula φ.

In Propositions 4.1 and 4.2 we described conditions guaranteeing that the largest
satisfying and strictly violating regions of T were obtained by analyzing the quo-
tient T/∼r (computed as part of Algorithm 7), even when the two systems are not
bisimilar. While these conditions could be used to test whether such a solution to
Problem 4.1 was exact, the approach could be applied only in specific cases (i.e.,
when T was deterministic). In the following, we generalize these results and formu-
late the conditions required to guarantee that two systems are equivalent with respect
to the satisfaction of a specific LTL formula.

Definition 4.5 (Formula equivalence) Given a finite transition system T and an LTL
formula φ, an observational equivalence relation ∼ is a φ-equivalence of T if and
only if, for all states x1, x2 ∈ X such that x1 ∼ x2, we have

T (x1) � φ ⇔ T (x2) � φ

We denote a φ-equivalence relation as ∼φ and refer to the quotient T/∼φ
as φ-

equivalent quotient.
From Eq. (4.7) it follows that a bisimulation relation ∼ is a φ-equivalence for all

LTL formulas φ. Bisimulation is a sufficient condition guaranteeing that Eq. (4.8)
holds but since we are interested in the analysis of T for a specific LTL formula φ it
can be too restrictive.
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Proposition 4.3 Given a transition system T and an LTL formula φ, the equation
Xφ

T = con(Xφ

T/
∼

) is satisfied and an exact solution to Problem 4.1 is obtained by
analyzing the quotient T/∼ if and only if ∼ is a φ-equivalence of T .

Proof Assume that ∼ is a φ-equivalence. From Definition 4.5 it follows that ∀x ∈
X such that T (x) � φ, x ∈ con(Xi ), Xi ∈ T/∼ we have T/∼(Xi ) � φ. Then,
∀x ∈ X , x ∈ Xφ

T ⇔ x ∈ con(Xφ

T/
∼

) and therefore Xφ

T = con(Xφ

T/
∼

). Assume
that ∼ is not a φ-equivalence. Then, ∃x1, x2 ∈ X such that x1 ∼ x2, T (x1) � φ

and T (x2) � φ. Considering the equivalence class Xi ∈ X/∼ such that x1, x2 ∈
con(Xi ) we have T/∼(Xi ) � φ. Then x1 ∈ Xφ

T but x1 /∈ con(Xφ

T/
∼

) and therefore

Xφ

T �= con(Xφ

T/
∼

). �

Proposition 4.3 shows thatφ-equivalence is a necessary and sufficient condition guar-
anteeing that the largest satisfying region of T can be computed through the compu-
tation of the largest satisfying region of the quotient T/∼φ

(i.e., Xφ

T = con(Xφ

T/
∼φ

)).

The condition Xφ

T = con(Xφ

T/
∼

) is similar to the one in Eq. (4.8) (left-hand side) but
is formulated for a quotient T/∼, rather than the bisimulation quotient T/≈. Then,
obtaining an exact solution to Problem4.1 reduces to the computation of con(Xφ

T/
∼φ

),

where T/∼φ
is a finite, φ-equivalent quotient for T (e.g., see Fig. 4.9a, b). As previ-

ously discussed, in order to obtain more information about T , the strictly violating
region of T might also be computed as X¬φ

T = con(X¬φ

T/
∼

), which reduces to the
construction and analysis of the ¬φ-equivalent quotient for T . More generally, to
guarantee the exact computation of both the largest satisfying and strictly violating
regions of T (Eq. (4.8)), a quotient that is both φ-equivalent and ¬φ-equivalent must
be computed.We denote such a quotient as T/≈φ

(e.g., see Fig. 4.9c, d). Constructing

T/≈φ
also allows the computation of the uncertain region Xφ?

T = con(Xφ?
T/

≈φ
) of T

through the computation of the uncertain region Xφ?
T/

≈φ
= X/≈φ

\ (X¬φ

T/
≈

∪ Xφ

T/
≈

)

of T/≈φ
.

Example 4.10 We are interested in analyzing the transition system T shown
in Fig. 4.9b with specification φ = �♦o3. The quotient T/∼φ

(shown in
Fig. 4.9a with equivalence classes highlighted in Fig. 4.9b) of T is not a bisim-
ulation quotient (the characterization from Theorem 1.1 is violated at state
X1.1). Even so, the quotient is φ-equivalent and therefore the largest satis-
fying region Xφ

T = {x1, x2, x5, x6} can be computed as Xφ

T = con(Xφ

T/
∼φ

),

where Xφ

T/
∼φ

= {X1.1, X2, X3}. However, region X
¬φ

T/∼φ
= {X4} provides

only an under-approximation con(X¬φ

T/
∼

) = {x7} of the strictly violating

X¬φ

T = {x4, x7} of T .
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Fig. 4.9 Given LTL formula φ = �♦o3, analysis of the φ-equivalent quotient T/∼φ (a) of a
transition system T allows the computation of the largest satisfying region (light gray) but only a
subset of the strictly violating region (dark gray) of T . Analysis of the quotient T/≈φ (c) that is
both φ-equivalent and ¬φ-equivalent allows the computation of both the largest satisfying (light
gray) and strictly violating (dark gray) regions of T . For additional details, see Example 4.10

While quotient T/≈φ
(shown in Fig. 4.9c with equivalence classes high-

lighted in Fig. 4.9d) is still not a bisimulation quotient, it is both a φ-equivalent
and an ¬φ-equivalent of T . This allows the exact computation of the strictly
violating region X¬φ

T = con(X¬φ

T/
≈φ

) = {x4, x7} through the computation of

region X¬φ

T/
≈φ

= {X1.3, X4}. Constructing quotient T/≈φ
also leads to the

computation of the uncertain region Xφ?
T = con(Xφ?

T/
≈φ

) = {x3} of T , where
Xφ?
T/

≈φ
= X/≈φ

\ (X¬φ

T/
≈φ

∪ Xφ

T/
≈φ

) = {X1.2}.
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Motivated by the strategy for solving Problem 4.1 outlined above, in the following
we develop a procedure for the computation of formula equivalent quotients. While
the approachwedescribed in Sect. 4.3 could, in principle, also lead to the construction
of formula equivalent quotients through iterative analysis and refinement (as was the
case for the system from Example 4.9), a large number of steps was required to
achieve this. Furthermore, the optimizations introduced to control the number of
states produced through refinement as part of this method resulted in an additional
source of conservatism for general formulas. The method we develop next aims
directly at the construction of formula equivalent quotients and is more efficient,
while in addition, it overcomes some of the limitations of the previous procedure.

In the following, we develop an algorithm for the computation of φ-equivalent
quotients of finite transitions systems, leveraging ideas from the bisimulation algo-
rithm (Algorithm 1) and automata-based model checking. To simplify the presenta-
tion of ourmethod,we assume that theLTL formulaφ is translated into a deterministic
Büchi automaton Bφ over the set of observations O—wediscuss how this assumption
is relaxed in Sect. 4.6.

Since the computation of φ-equivalent quotients is guided by formula φ, it is
most natural to perform the computation in the product automaton P = T/∼ ⊗ Bφ

(Definition 3.2), where both the structure of the system (T/∼) and the specification
(Bφ) is captured. The computational techniques we employ in the following will be
described in detail in Chap.5 in the context of control transition systems. In this
chapter we only give a brief overview, sufficient for the presentation of our analysis
procedure.

Let S� ⊆ SP be the set of states of P , from which all runs are accepted (i.e.,
they visit a final state from the set FP infinitely often). The set S� can be computed
efficiently using amethod inspired by automata-theoretic model checking and games
(to be discussed in detail in Chap. 5). We identify a subset F� ⊆ FP of accepting
states of P from which infinitely many revisits to the set FP are guaranteed. S� is
then a set of states from which a visit to F� is guaranteed. The largest satisfying set
Xφ

T/
∼

of T/∼ can be computed as the projection α(S� ∩ SP0) ⊆ X/∼. Similarly, we
can also identify a set of states S⊥ ⊆ SP of P from which no runs are accepting. The
projection α(S⊥ ∩ SP0) ⊆ X/∼ corresponds to X¬φ

T/
∼

(i.e., the largest set of states of
T/∼ from which no runs satisfy φ).

The analysis approach we described in Sect. 4.3 required the construction of both
the product automaton Pφ = T/∼⊗Bφ with the formula and P¬φ = T/∼⊗B¬φ with
its negation in order to compute the largest satisfying and strictly violating regions
Xφ

T/
∼

and X¬φ

T/
∼

. Using the approach from this section, we avoid the construction of
P¬φ and only perform computation on Pφ to find these sets.

Let S? = SP \ (S� ∪ S⊥) be the subset of states, from which some but not all runs
are accepting in P . The projection Xφ?

T/
∼

= α(S? ∩ SP0) ⊆ X/∼ corresponds to the
set of uncertain states of T/∼, where both runs satisfying φ and ¬φ originate. The
φ-equivalence property (Definition 4.5) can only be violated at states from Xφ?

T/
∼

.
As previously discussed, when T is deterministic, each state x ∈ X satisfies either
φ or ¬φ. Then, the existence of states in Xφ?

T/
∼

is only due to the construction of the
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abstraction T/∼ (e.g., for two equivalent states x1, x2 ∈ con(Xi ) for some Xi ∈ X/∼,
if x1 � φ and x2 � ¬φ then Xi ∈ Xφ?

T/
∼

).
As in Sect. 4.3, we can attempt to separate satisfying and violating runs from a

state in the set S? through refinement in order to separate the subsets of that state
between sets S� and S⊥. Since the structure of P is completely determined by Bφ

and T/∼ and Bφ is fixed and determined by the formula φ, states in P can only be
refined through refinement of T/∼. We refine a state (Xi , s) ∈ S? by applying the
procedure Refine (T/∼, α(Xi , s)) (Algorithm 5) Sect. 4.3.

To prevent unnecessary computation, changes made through refinement in the
quotient T/∼ are projected to the product P by applying a function P ′ = Update
(P, T/∼r , (Xi , s)), rather than by recomputing it as P ′ = T/∼r ⊗ Bφ . This further
reduces the number of states in P ′ after refinement since, when a state Xi is refined
in T/∼r , not every state (Xi , s) is necessarily refined in P ′. Due to the one-to-many
correspondence between the states of the refined product P ′ and the refined quotient
T/∼r , after refinement the updated product automaton P ′ might include significantly
fewer states than the recomputed product automaton T/∼r ⊗ Bφ .

When T is nondeterministic, it is possible that for a state Xi ∈ X/∼, there exist
both trajectories satisfyingφ and¬φ originating at all states x ∈ con(Xi ) of T . Then,
state Xi is inherently uncertain in T/∼ and abstraction refinement can never separate
satisfying and violating runs from Xi . We partition the set of states S? into subsets S≺
and S÷, where states of T/∼ from the projectionα(S≺∩SP0) are inherently uncertain,
while refinement should be targeted to states from α(S÷ ∩ SP0). In the following, we
provide a computational characterization of the states from S≺ (Proposition 4.4).

Proposition 4.4 Given a state (Xi , s) ∈ SP , we have (Xi , s) ∈ S≺ if and only if

i. (Xi , s) ∈ S? (i.e., both satisfying and violating runs originate there),
ii. ∀(X j , s ′) ∈ δP((Xi , s)), (X j , s ′) ∈ S�, (X j , s ′) ∈ S⊥ or (X j , s ′) ∈ S≺ (i.e., all

successors states of (Xi , s) have been characterized in P),
iii. T/∼ =Refine(T/∼, Xi ) (i.e., state (Xi , s) cannot be refined further).

Proof All successors of (Xi , s) are characterized in P and, therefore, none of the
successors of Xi = α((Xi , s)) will be considered for further refinement in T/∼.
Since applying Refine(T/∼, Xi ) does not affect Xi , then for all states X j such that
X j ∈ δ∼(Xi )we have ∀x ∈ con(Xi ), ∃x ′ ∈ con(X j ) such that x ′ ∈ δ(x). Therefore,
(Xi , s) ∈ S≺ and Xi is inherently uncertain. �

Finally, in the following we derive the conditions guaranteeing that a φ-equivalent
quotient has been computed based on the computation of sets S�, S⊥, S÷ and S≺ in P .

Proposition 4.5 The equivalence relation ∼ is a φ-equivalence of T if and only if
S÷ ∩ SP0 = ∅.

Proof For necessity, assume S÷ ∩ SP0 �= ∅ where (Xi , s) is a state of P such that
(Xi , s) ∈ S÷. Then, Xi = α((Xi , s)) is a state of T/∼ such that ∃x1, x2 ∈ con(Xi ),
where T (x1) � φ and T (x2) � ¬φ and, therefore, ∼ is not a φ-equivalence. For
sufficiency, assume S÷ ∩ SP0 = ∅. Then, ∀X ∈ X/∼ we have
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i. ∀x ∈ con(Xi ), T (x) � φ,
ii. ∀x ∈ con(Xi ), T (x) � ¬φ or
iii. ∀x ∈ con(Xi ), T (x) � φ and T (x) � ¬φ

and therefore ∼ is a φ-equivalence. �

In general, the set S÷ is nonempty but can be made empty if accepting and non-
accepting runs from each state (Xi , s) ∈ S÷ are separated through refinement as
described above. Following from Proposition 4.5 and the discussion presented in
Sect. 4.5, this provides a solution to Problem 4.1.

There are several additional optimizations that can be introduced in this analy-
sis procedure. The product automaton P can be simplified by respectively replac-
ing each set S�, S⊥ and S≺ by a single dummy state s1, s2 or s3, such that
δP(s1) = {s1}, δP(s2) = {s2}, δP(s3) = {s1, s2} and s1 ∈ FP . The motivation for
this simplification comes from the fact that guaranteeing a visit to a state from (the
previously identified) set S� can be enforced from a state of P is equivalent to guar-
anteeing that the state belong to S� and the same argument holds for set S⊥. When
simplifying P , for a state s ∈ SP \ (S� ∪ S⊥ ∪ S≺) a transition to a dummy state is
included if a transition to a state from the corresponding set was present (e.g., if there
existed a state s ′ ∈ S� such that s ′ ∈ δP(s) then s1 ∈ δP(s)). This simplification is
performed by the function P ′ = Simplify(P), which reduces the number of states
of P and leads to faster computation.

Example 4.11 Weapply our formula-guided analysis procedure (Algorithm8)
in order to study transition system T , defined originally in Example 1.11
(Fig. 1.11a), against specification φ = �♦o3.

i. The specification, given as the LTL formula φ, is translated into a deter-
ministic Büchi automaton Bφ defined by S = {s1, s2}, S0 = {s1}, O =
{o1, . . . , o5}, F = {s2}, δ(s1, o1) = δ(s1, o2) = δ(s1, o4) = δ(s1, o5) =
{s1}, δ(s1, o3) = {s2}, δ(s2, o3)={s2}, δ(s2, o1) = δ(s2, o2) = δ(s2, o4) =
δ(s2, o5) = {s1}. Note that Bφ has a structure that resembles the automaton
shown in Fig. 2.3d but with different transition labels and is indeed deter-
ministic.

ii. The initial quotient T/∼ of T under the observational equivalence rela-
tion ∼ is constructed (the quotient T/∼ was already shown in Fig. 1.11b).
Then, the product automaton P = T/∼ ⊗ Bφ shown in Fig. 4.10a is con-
structed (note that unreachable states in P are removed during the construc-
tion). The set of states of P , from which all runs are guaranteed to visit a
final state of P infinitely often (all runs are accepted in P) are identified
as S� = {(X1, s1), (X4, s1), (X3, s1), (X3, s2), (X4, s2)}. Similarly, the set
of states from which no run visits a final state infinitely often is identified
as S⊥ = {(X5, s1)}. Using this information, we can compute the largest
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Fig. 4.10 Computing the set
of states S� and S⊥ of the
product automaton
P = T/∼ ⊗ Bφ , shown
respectively in light gray and
dark gray in (a), allows both
the simplification of P into
P ′ = Simplify(P) (b) and
the computation of the
largest satisfying and strictly
violating regions of T/∼ ,
together with a set of states
S÷, where refinement is
required. See Example 4.11
(steps i–iii) for details

satisfying and strictly violating regions of T/∼ through the projections
Xφ

T/
∼

= α(S� ∩ SP0) ⊆ X/∼ = {X1, X3, X4} and X¬φ

T/
∼

= α(S⊥ ∩ SP0) =
{X5}, which agrees with the previously computed sets from Example 4.4
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Fig. 4.11 The product P2 is
obtained by updating P1 to
capture the changes made to
the quotient T/∼ through
refinement. The sets of states
S� and S⊥ of P2 (shown
respectively in light gray and
dark gray in (a)) are
computed and allows
expanding the largest
satisfying and strictly
violating regions of T and
the additional simplification
of P2 into P3 =
Simplify(P2) (b). See
Example 4.11 (steps iv, v)
for details

(X0, s0) (X0, s0)

(X2.1, s1)

(X2.4, s1)(X2.2, s1)(X2.3, s1)

(a) Product P2 =UPDATE (P1,REFINE(T/
∼
,X2),(X2,s2)).

(X0, s0) (X0, s0)

(X0, s0)

(b) Simplified product P3 = SIMPLIFY (P2).

(Fig. 4.4a). In this case, no states are inherently uncertain in T/∼—in the
following steps wewill show that state (X2, s1) can be refined and, therefore,
it fails the characterization from Proposition 4.4. Then, the set S≺ is empty
and refinement is targeted to the set S÷ = {(X2, s1)}.

iii. While the sets of states S� and S⊥ computed at the previous step provide
only an under-approximation of the largest satisfying and strictly violating
sets of T (this approximation was already shown in Fig. 4.4b), they allow
us to simplify the product automaton P into P1 = Simplify(P) shown in
Fig. 4.10b. All states from the set S� are replaced by a single dummy state
(X0, s0) and the same simplification is performed for the set S⊥ (note that
one of the dummy states is accepting and the other one is not). Both dummy
states have self loops and all transitions from the remaining states of P to
a state from S� or S⊥ are replaced with a transition to the corresponding
dummy state, thereby preserving the structure of P . Since, in this case, the
set S≺ is empty, the third “inherently uncertain” dummy state is omitted.
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Fig. 4.12 The formula equivalent quotient T/≈φ (a), constructed after refinement of T/∼ , can be
used to equivalently identify the largest satisfying, strictly violating and uncertain regions of T (b).
See Example 4.11 (steps vi) for details

iv. The set of states from the projection α(S÷) = {X2} must be refined in
T/∼. The refined quotient is constructed as T/∼r = Refine(T/∼, X2) (see
Fig. 4.12a), where state X2 is partitioned into the set of subsets {X2.1, X2.2,

X2.3, X2.4} (i.e., con(X2) = con(X2.1)∪ con(X2.2)∪ con(X2.3)∪ con(X2.4)

in Fig. 4.12b). The refinement of T/∼ is projected to the product automaton
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by applying the procedure P2 =Update(P1, T/∼r , (X2, s2)), rather than
recomputing it as P2 = T/∼r ⊗ Bφ , which leads to a simpler structure.

v. Once the updated product P2 is computed, the sets S� and S⊥ can be com-
puted again (which now include the dummy states). State (X2.2, s1) sat-
isfies the characterization from Proposition 4.4. Therefore, the projection
α((X2.2, s1)) = X2.2 corresponds to an inherently uncertain region of T
(i.e., there exists both runs that satisfy φ and that violate it (and satisfy ¬φ)
that originate at each state x ∈ con(X2.2)). Simplifying the product as P3 =
Simplify(P2) results in an automaton containing dummy states only—now,
an inherently uncertain dummy state with transitions to both the satisfying
and rejecting dummy states is included.

vi. All states of P2 have been partitioned between the sets S�, S⊥ and S≺. Fur-
ther refinement of states of T/∼r is not going to improve the solution and,
in fact, a φ-equivalent quotient has been obtained. Furthermore, the compu-
tation from Algorithm 8 guarantees that a quotient that is both φ-equivalent
and ¬φ-equivalent has been obtained and, therefore, T/∼r = T/≈φ

in
Fig. 4.11a. This allows us to guarantee that the largest satisfying, strictly
violating and inherently uncertain regions Xφ

T/
≈φ

, X¬φ

T/
≈φ

and Xφ?
T/

≈φ
of T/≈φ

(Fig. 4.12a) can be used to compute the largest satisfying, strictly violating
and inherently uncertain regions Xφ

T = con(Xφ

T̂ /
∼

), X¬φ

T = con(X¬φ

T̂ /
∼

) and

Xφ?
T = con(Xφ?

T̂ /
∼

) of T (Fig. 4.12a), which provides an exact solution to
Problem 4.1. Note that a coarser quotient that is only φ-equivalent but not
¬φ-equivalent can be constructed by combining equivalence classes X2.1

and X2.2 into a single equivalence class—the corresponding quotient is still
observation preserving, since X2.1 and X2.2 share the same observation o2.

Optimizations based on the decomposition of the product P into strongly con-
nected components (SCCs) and the subsequent construction of an SCC quotient
graph, similar to the ones described for model checking in Chap.3 are also possible.
First, we make the following observations. Given states s, s ′ ∈ SP , such that s ′ is
reachable from s but s is not reachable from s ′, if s ′ ∈ S? then s ∈ S? but character-
izing s as S?, S�, or S⊥ does not have any influence on characterization of s ′. The
product P is viewed as a directed graphGP = (SP , E), where (s, s ′) ∈ E if and only
if s ′ ∈ δP(s). This graph is partitioned into maximal strongly connected components
(SSCs), inducing the directed acyclic quotient graph GP = (C, E). The following
properties are then guaranteed to hold:

i. for each SCC C we have C ⊆ S�, C ⊆ S⊥, or C ⊆ S? (i.e., all states s ∈ C are
equivalent with respect to such characterization) and

ii. for all SCCs C,C ′, such that C ′ is reachable from C in GP it holds that C ′ ⊆
S? ⇒ C ⊆ S?.
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Converting the product automaton to a SCC quotient graph and processing the SCCs
in bottom up manner allows for a more efficient characterization of states within
each SCC and prevents unnecessary refinement.

Algorithm 8 [Xφ

T , X¬φ

T , Xφ?
T ] = FgAnalysis(T, φ): Given an LTL formula φ and

a large or infinite transition system T , compute of the largest satisfying and strictly
violating regions of T .
1: Translate φ to deterministic Büchi automaton Bφ

2: Construct T/∼

3: Construct P = T/∼ ⊗ Bφ

4: Initialize T/∼r := T/∼

5: Compute S� and S⊥ in P
6: S? := SP \ (S� ∪ S⊥)

7: Compute S≺ ⊆ S?, S÷ := S? \ S≺
8: repeat
9: for all (Xi , s) ∈ S÷ do
10: if X not yet refined in T/∼r then
11: T/∼r :=Refine(T/∼r , Xi )

12: end if
13: P :=Update (P, T/∼r , (Xi , s))
14: end for
15: P :=Simplify(P)

16: until S÷ = ∅
17: Xφ

T/
≈φ

= α(S� ∩ SP0), X
¬φ
T/

≈φ
= α(S⊥ ∩ SP0), X

φ?
T/

≈φ
= α(S≺ ∩ SP0)

18: return Xφ
T = con(Xφ

T̂ /
∼

), X¬φ
T = con(X¬φ

T̂ /
∼

), Xφ?
T = con(Xφ?

T̂ /
∼

)

The overall method discussed in this section is summarized in Algorithm 8. As
before, this procedure cannot be guaranteed to terminate for general transitions sys-
tem T returning the formula equivalent quotient T/≈, for which the set S÷ is empty.
Instead, termination can again be ensured by either limiting the number of iterations
or by only refining states of T̂ /∼ that correspond to “large enough” regions of T . If
computation is stopped because an iteration limit is reached or no additional “large
enough” states remain, only an under-approximation of the solution to Problem 4.1
is obtained, which can be improved by adjusting these limits.

4.6 Notes

The analysis methods presented in this chapter were based on the construction,
iterative refinement and verification of finite abstractions (quotients) of large or infi-
nite systems. The verification strategy we used was based on LTL model check-
ing [45] (discussed in Chap. 3), while our refinement procedures were inspired
by bisimulation-based refinement [35, 99]. A related idea of developing iterative
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procedures that combine model checking and refinement was used in [42] for veri-
fication from formulas in the universal fragment ACTL of CTL.

The abstractions we used could be sufficient, providing only approximate results
to analysis problems, in which case they were constructed using simulation relations
[45]. On the other hand, abstractions that were equivalent for all LTL specifications
were constructed using the notion of bisimulation [131]. We also described a refine-
ment procedure aimed at the constructions of abstractions that were equivalent to
large or infinite systems only with respect to given LTL specifications. The related
idea of defining CTL formula-specific equivalences coarser than bisimulation has
been explored in [13] in the context of finite state systems.

Relying on a temporal logic formula to guide the refinement of an abstraction
is also central to verification methods based on counterexample-guided refinement
(CEGAR) [44]. The CEGAR loop involves the iterative generation and invalidation
of counterexamples throughmodel checking and abstraction refinement. Such a veri-
fication proceduremight terminate if no additional counterexamples can be generated
(the specification is satisfied), a valid counterexample is found (the specification is
violated) or the computational resources are exhausted (results are inconclusive).
Instead of performing many model checking steps, our method from Sect. 4.5 aimed
directly at the construction of formula equivalent quotients.

The methods from this chapter provided more informative analysis results than
simple Yes/No answers (as obtained by model-checking) by identifying satisfying
and violating regions (i.e., regions of initial conditions from which all trajectories of
the system are guaranteed to satisfy or violate the specification). In some cases, our
analysis procedure revealed regions of initial conditions for which nothing can be
guaranteed (i.e., trajectories of the system originating in such states might satisfy the
specification) but the satisfaction of such states could be resolved through additional
computation. Labeling sets of states by true, false or maybe with respect to the
satisfaction of the LTL specification as described above was also central to our
methods and is related to the construction and refinement of 3-valued abstractions
[37, 41].

The analysis procedure from Sect. 4.5 was based on the computation of attractor
sets of finite control transition systems, described in [104] and inspired by automata
theoretic model checking and Büchi games. Here, we applied these methods only to
transition systems without inputs but in Chap.5 we will describe the algorithms in
more detail and use them for the construction of control strategies—the original con-
text in which these methods were developed. The approach presented in this chapter
was enabled by the assumption that the LTL specification can be translated into a
deterministic Büchi automaton, which simplified the presentation significantly. It is
known that there exist LTL formulas that can only be translated to nondeterministic
Büchi automata (i.e., the expressivity of specifications used as part of our method
is currently restricted to only a fragment of LTL). However, any LTL formula can
also be translated into a language-equivalent deterministic Rabin automaton [153], a
translation that is associatedwith a higher computational cost but allows an extension
of this method to arbitrary LTL formulas. We will describe such an extension based
on the use of deterministic Rabin automata in Chap.5.



Chapter 5
Finite Temporal Logic Control

In this chapter, we treat the general problem of controlling non-deterministic finite
transition systems from specifications given as LTL formulas over their sets of obser-
vations. We show that, in general, this control problem can be mapped to a Rabin
game. For the particular case when the LTL formula translates to a deterministic
Büchi automaton, we show that a more efficient solution to the control problem can
be found via a Büchi game. Finally, for specifications given in the syntactically co-
safe fragment of LTL, we show that the control problem maps to a simple reachability
problem. For all three cases, we present all the details of the involved algorithms and
several illustrative examples. In Part III, we combine these algorithms with abstrac-
tions to derive LTL control strategies for systems with infinitely many states. The
problem that we consider in this chapter can be formally stated as follows:

Definition 5.1 (Control strategy) A (history dependent) control function1

Ω : X+ → Σ for control transition system T = (X,Σ, δ, O, o) maps a finite, non-
empty sequence of states to an input of T . A control function Ω and a set of initial
states X0 ⊆ X provide a control strategy for T .

We denote a control strategy by (X0,Ω), the set of all trajectories of the closed loop
system T under the control strategy by T (X0,Ω), and the set of all words produced
by the closed loop T as LT (X0,Ω). For any trajectory x1x2x3 . . . ∈ T (X0,Ω) we
have x1 ∈ X0 and xk+1 ∈ δ(xk, σk), where σk = Ω(x1, . . . , xk), for all k ≥ 1.

Definition 5.2 (Largest Controlled Satisfying Region) Given a transition system
T = (X,Σ, δ, O, o) and an LTL formula φ over O , the largest controlled satisfying
region Xφ

T ⊆ X is the largest set of states for which there exists a control function
Ω : X+ → Σ such that all trajectories T (Xφ

T ,Ω) of the closed loop system satisfy
φ (i.e., LT (Xφ

T ,Ω) ⊆ Lφ).

The LTL control problem is analogous to LTL analysis problem (Problem 4.1),
and can be formulated as:

1In general, the control function Ω is a partial function, i.e. not every finite sequence of states is
mapped to an input.
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Problem 5.1 (Largest Controlled Satisfying Region Problem) Given a finite tran-
sition system T = (X,Σ, δ, O, o) and an LTL formula φ over O , find a con-
trol strategy (Xφ

T ,Ω) such that Xφ

T is the largest controlled satisfying region and
LT (Xφ

T ,Ω) ⊆ Lφ .

The control problem for transition systems from LTL specifications is stated in
most general form in Problem 5.1, i.e., for nondeterministic transition systems and
full LTL specifications. In the following section, we present an algorithm to solve this
problem and discuss the related complexity. In the presented algorithm, the control
synthesis problem is treated as a game played on a finite graph and approached
using automata theoretic methods. Such game semantics are introduced due to the
nondeterminism of the transition system and the accepting condition of a Rabin
automaton. However, if the transition system is deterministic, the control problem
can be solved through model checking techniques in a more efficient way. In the
subsequent sections, we focus on particular cases of this problem, e.g., when the LTL
formula can be translated to a deterministic Büchi automaton (a dLTL specification),
and when the LTL formula can be translated to an FSA (an scLTL formula), and
present more efficient solutions to the control problem and discuss the associated
complexities.

5.1 Control of Transition Systems from LTL Specifications

In this section, we provide a solution to the general problem of controlling finite,
nondeterministic systems from LTL specifications (Problem 5.1). The procedure
involves the translation of the LTL formula into a deterministic Rabin automaton,
the construction of the product automaton of the transition system and the Rabin
automaton, followed by the solution of a Rabin game on this product. The solution
of the Rabin game is a control strategy for the product automaton, and finally this
solution is transformed into a control strategy for the transition system. The resulting
control strategy takes the form of a feedback control automaton, which reads the
current state of T and produces the control input to be applied at that state. The
overall control procedure is summarized in Algorithm 9. In the rest of this section,
we provide the details of this procedure.

Algorithm9 ltl control(T, φ): Control strategy (Xφ

T ,Ω) such that all trajectories
in T (Xφ

T ,Ω) satisfy φ

1: Translate φ into a deterministic Rabin automaton R = (S, S0, O, δR, F).
2: Build a product automaton P = T ⊗ R
3: Transform P into a Rabin game
4: Solve the Rabin game
5: Map the solution to the Rabin game into a control strategy for the original transition system T
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Fig. 5.1 Graphical representations of transition system (a) and the Rabin automaton (b) from
Example 5.1. For the automaton, s0 is the initial state and the acceptance condition is defined by
F = {(G1, B1), (G2, B2)}, where G1 = B2 = {s2} and B1 = G2 = {s1}

Step 1: Construction of the Rabin Automaton

The first step is to translate the LTL specification φ into a deterministic Rabin
automaton R. Note that there are readily available off-the-shelf tools for such trans-
lations (see Sect. 5.4).

Example 5.1 Consider the nondeterministic transition system T =
(X,Σ, δ, O, o) from Example 1.1 shown in Fig. 1.1, and reproduced for
convenience in Fig. 5.1a. We consider the following specification “a trajectory
of T originates at a state where o1 is satisfied, and it eventually reaches and
remains in a region where either o1 or o2 are satisfied, or o3 is satisfied”. The
specification is formally defined as the LTL formula

φ = o1 ∧ (♦�(o1 ∨ o2) ∨ ♦�o3).

A Rabin automaton representation of the formula φ is shown in Fig. 5.1b.

Step 2: Construction of the Product Automaton

The second step is the construction of a product automaton between the transition
system T and the Rabin automaton R, which is formally defined as:

Definition 5.3 (Controlled Rabin Product Automaton) The controlled Rabin prod-
uct automaton P = T ⊗ R of a finite (control) transition systemT = (X,Σ, δ, O, o)
and a Rabin automaton R = (S, S0, O, δR, F) is defined as P=(SP , SP0,Σ, δP , FP),
where
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• SP = X × S is the set of states,
• SP0 = X × S0 is the set of initial states,
• Σ is the input alphabet,
• δP : SP × Σ → 2SP is the transition map, where δP((x, s), σ ) = {(x ′, s ′) ∈ SP |
x ′ ∈ δ(x, σ ), and s ′ = δR(s, o(x))}, and

• FP = {(X × G1, X × B1), . . . , (X × Gn, X × Bn)} is the Rabin acceptance con-
dition.

This product automaton is a nondeterministic Rabin automaton with the same
input alphabet Σ as T . Each accepting run (x1, s1)(x2, s2)(x3, s3) . . . of a product
automaton P = T ⊗ R can be projected into a trajectory x1x2x3 . . . of T , such that
the word o(x1)o(x2)o(x3) . . . is accepted by R (i.e., satisfies φ) and vice versa. This
allows us to reduce Problem 5.1 to finding a control strategy for P . We define a control
strategy for a Rabin automaton, and therefore for a product automaton constructed
as in Definition 5.3, similarly as for a transition system. However, instead of history
dependent control strategy, we introduce a memoryless strategy. As we will present
later in this section, control strategies obtained by solving Rabin games (step 4 of
Algorithm 9) are memoryless.

Definition 5.4 (Control strategy for aRabinautomaton) A memoryless control func-
tion π : S → O for a Rabin automaton R = (S, S0, O, δR, F) maps a state of R to
an input of R. A control function π and a set of initial states W0 ⊆ S0 provide a
control strategy (W0, π) for R.

A run s1s2s3 . . . under strategy (W0, π) is a run satisfying the following two
conditions: (1) s1 ∈ W0 and (2) sk+1 ∈ δR(sk, π(sk)), for all k ≥ 1.

The product automaton P allows us to reduce Problem 5.1 to the following prob-
lem:

Problem 5.2 Given a controlled Rabin product automaton P=(SP , SP0,Σ, δP , FP)

find the largest set of initial statesWP0 ⊆ SP0 for which there exists a control function
πP : SP → Σ such that each run of P under the strategy (WP0, πP) satisfies the
Rabin acceptance condition FP .

Example 5.2 The product automaton P = (SP , SP0,Σ, δP , FP) of the tran-
sition system and the Rabin automaton from Example 5.1 (Fig. 5.1) is shown
in Fig. 5.2. Note that the blocking states that are not reachable from the non-
blocking initial state p0 = (x1, s0) are removed from P and are not shown in
Fig. 5.2.
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Fig. 5.2 Graphical representation of the product between the transition system from Fig. 5.1a and
the Rabin automaton from Fig. 5.1b. The initial state is p0 = (x1, s0). The accepting condition is
defined by FP = {(G1, B1), (G2, B2)}, where G1 = B2 = {p4, p5} and G2 = B1 = {p1, p2, p3}

Step 3: Translation to a Rabin Game

A Rabin game consists of a finite graph (V, E) containing a token. The token
is always present in one of the states and can move along the edges. There are two
players: a protagonist and an adversary. V is partitioned into protagonist’s states VP

and adversary’s states VA. The owner of the state containing a token chooses the edge
along which the token moves. A Rabin game is formally defined as:

Definition 5.5 (Rabin Game) A Rabin game played by two players (a protagonist
and an adversary) on a graph (V, E) is a tuple G = (VP, VA, E, FG), where

• VP is the set of protagonist’s states,
• VA is the set of adversary’s states,
• VP ∪ VA = V , VP ∩ VA = ∅,
• E ⊆ V × V is the set of possible actions,
• FG = {(G1, B1), . . . , (Gn, Bn)} is the winning condition for the protagonist,

where Gi , Bi ⊆ V for all i ∈ {1, . . . , n}.
A play p is an infinite sequence of states visited by the token. Each play is winning

either for the protagonist or the adversary. The protagonist wins if in f (p) ∩ Gi �=
∅ ∧ in f (p) ∩ Bi = ∅ for some i ∈ {1, . . . , n}, where inf(p) denotes the set of states
that appear in the play p infinitely often. The adversary wins in the rest of the cases.
The winning region for the protagonist is defined as the set of states WP ⊆ V such
that there exists a control function πP : WP ∩ VP → E , and all plays starting in the
winning region and respecting the winning strategy are winning for the protagonist
regardless of the adversary’s choices. A solution to a Rabin game is a winning region
and winning strategy for the protagonist.
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The third step of Algorithm 9 is the construction of a Rabin game from the product
automaton, which is performed as follows.

Definition 5.6 (Rabin game of a Rabin automaton) A Rabin game
G = (VP, VA, E, FG) of a Rabin automaton P = (SP , SP0,Σ, δP , FP) is defined
as:

• VP = SP is the protagonist’s states,
• VA = SP × Σ is the adversary’s states,
• E ⊆ {VP × VA ∪ VA × VP} is the set of edges, which is defined as

– (qP, qA) ∈ E if qP ∈ VP, qA ∈ VA, and qA = (qP, σ ), where σ ∈ ΣqP (i.e., if
δP(qP, σ ) �= ∅),

– (qA, qP) ∈ E if qA ∈ VA, qP ∈ VP, and qA = (q ′
P, σ ), and qP ∈ δP(q ′

P, σ ),

• FG = FP is the protagonist’s winning condition.

Intuitively, the protagonist chooses action σ , whereas the adversary resolves non-
determinism. Note that in a Rabin game constructed from a Rabin automaton, the
protagonist’s (adversary’s) states can be reached in one step only from the adver-
sary’s (protagonist’s) states. We will show later in this section that a solution to the
Rabin game G can be easily transformed into a solution to Problem 5.2.

Example 5.3 The Rabin game of the product automaton from Example 5.2
is shown in Fig. 5.3, where protagonist’s states are represented as circles and
adversary’s states are represented as rectangles.

Step 4: Solving the Rabin Game

We present Horn’s algorithm for solving Rabin games. The main idea behind the
algorithm is as follows. The protagonist wins if they can infinitely often visit Gi

and avoid Bi for some i ∈ {1, . . . , n}. Conversely, the protagonist can not win if the
adversary can infinitely often visit Bi for each i ∈ {1, . . . , n}. Since it is sufficient
for the protagonist to satisfy one of the conditions (Gi , Bi ) from FG, the protagonist
chooses a condition and tries to avoid visits to Bi and enforce visits to Gi . In turn
the adversary tries to avoid Gi . By removing the states where the protagonist (or
the adversary) can enforce a visit to a desired set, a smaller game is defined and the
algorithm is applied to this game recursively. If the computation ends favorably for
the adversary, then the protagonist chooses a different condition (G j , Bj ) from FG

and tries to win the game by satisfying this condition. For a given set V ′ ⊂ V , the
set of states from which the protagonist (or the adversary) can enforce a visit to V ′
is called an attractor set, which is formally defined as follows:
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Fig. 5.3 Graphical representation of the Rabin game constructed from the Rabin automaton from
Fig. 5.2. An example play is p = p0(p0, σ1)p2(p2, σ2)(p5(p5, σ2))

ω

Definition 5.7 (Protagonist’s direct attractor) The protagonist’s direct attractor of
a set of states V ′, denoted by A1

P(V
′), is the set of all states vP ∈ VP, such that there

exists an edge (vP, vA), where vA ∈ V ′ together with the set of all states vA ∈ VA,
such that for all vP ∈ VP it holds that (vA, vP) ∈ E implies vP ∈ V ′:

A1
P(V

′) := {vP ∈ VP|(vP, vA) ∈ E, vA ∈ V ′}
⋃

{vA ∈ VA|{vP|(vA, vP) ∈ E} ⊆ V ′}.

Definition 5.8 (Adversary’s direct attractor) The adversary’s direct attractor of V ′,
denoted by A1

A(V ′), is the set of all states vA ∈ VA, such that there exists an edge
(vA, vP), where vP ∈ V ′ together with the set of all states vP ∈ VP, such that for all
vA ∈ VA it holds that (vP, vA) ∈ E implies vA ∈ V ′:

A1
A(V ′) := {vA ∈ VA|(vA, vP) ∈ E, vP ∈ V ′}

⋃
{vP ∈ VP|{vA|(vP, vA) ∈ E} ⊆ V ′}.
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In other words, the protagonist can enforce a visit toV ′ from each state v ∈ A1
P(V

′),
regardless of the adversary’s choice. Similarly, the adversary can enforce a visit to
V ′ from each state v ∈ A1

A(V ′), regardless of the protagonist’s choice.

Example 5.4 Consider the Rabin game shown in Fig. 5.3. The protagonist’s
direct attractor set of {p5}, A1

P({p5}) is empty, since p5 can be reached from
(p2, σ2) and (p5, σ2), and for both these states the adversary can choose an
edge incident to p4 instead of p5. On the other hand

A1
P({p4, p5}) = {(p2, σ2), (p5, σ2)},

since at (p2, σ2) (and similarly at (p5, σ2)), the adversary can either choose
the edge ((p2, σ2), p4) or ((p2, σ2), p5) and both lead to {p4, p5}.

The adversary’s direct attractor set of {p5} is A1
A({p5}) =

{(p2, σ2), (p5, σ2)}, since the adversary can enforce a visit to {p5} only
from (p2, σ2) and (p5, σ2). As there are no other adversary states that have an
edge to a state from the set {p4, p5}, we have:

A1
A({p4}) = A1

A({p5}) = A1
A({p4, p5}) = {(p2, σ2), (p5, σ2)}.

The protagonist’s attractor set AP(V ′) is the set of all states from which a visit to
V ′ can be enforced by the protagonist in zero or more steps. AP(V ′) can be computed
iteratively via computation of the converging sequence

A∗
P0(V

′) ⊆ A∗
P1(V

′) ⊆ . . . ,

where A∗
P0(V

′) = V ′ and

A∗
Pi+1(V

′) = A1
P(A

∗
Pi (V

′)) ∪ A∗
Pi (V

′).

The sequence is indeed converging because there are at most |VP ∪ VA| different sets
in the sequence. Intuitively A∗

Pi (V
′) is the set from which a visit to the set V ′ can be

enforced by the protagonist in at most i steps.
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Example 5.5 Consider the Rabin game shown in Fig. 5.3. The protagonist’s
attractor set for V ′ = {p4, p5} is recursively computed as follows:

A∗
P1(V ′) = A∗

P0(V ′) ∪ A1
P({p4, p5}) = {p4, p5, (p2, σ2), (p5, σ2)},

A∗
P2(V ′) = A∗

P1(V ′) ∪ A1
P(A∗

P1(V ′)) = {p2, p4, p5, (p2, σ2), (p5, σ2)},
A∗
P(V ′) = A∗

P3(V ′) = A∗
P2(V ′) ∪ A1

P(A∗
P2(V ′)) = {p2, p4, p5, (p2, σ2), (p5, σ2)}.

The adversary’s attractor set of V ′ is computed similarly. This computation
converges at the fifth iteration, and the resulting set is

A∗
A(V ′) = {p0, p2, p4, p5, (p0, σ1), (p1, σ1), (p2, σ2), (p4, σ1), (p5, σ2)}.

(5.1)

Attractor strategy πAP(V ′) for the protagonist’s attractor set determines how to
ensure a visit to set V ′ from attractor set AP(V ′). For all v ∈ A∗

Pi+1(V
′) \ A∗

Pi (V
′),

the attractor strategy is defined as πAP(V ′)(v) = (v, v′), where v′ is an arbitrary v′ ∈
A∗
Pi (V

′). The adversary’s attractorAA(V ′) and attractor strategy πAA(V ′) are computed
analogously. The protagonist’s and adversary’s attractors of V ′ in a game G are
denoted by AG

P (V ′) and AG
A(V ′), respectively.

Let (V, E) denote the graph of a Rabin game G = (VP, VA, E, FG), where V =
VP ∪ VA. For simplicity, for a set Q ⊆ V , we denoteG \ Q the graph (V \ Q, E \ E ′)
(and the corresponding game), where E ′ is the set of all edges incident with states
from Q.

Horn’s algorithm is summarized in Algorithm 10. First the protagonist chooses
a condition (Gi , Bi ) (line 1). As the protagonist needs to avoid Bi , a sub game G0

i

is defined by removing the adversary’s attractor set for Bi . Then, a sub game G j
i

is defined iteratively by removing winning regions for the adversary (line 7). The
iterative process terminates when no winning region is found for the adversary, i.e.,
G j

i = G j+1
i . In this case, eitherG j

i is empty, or it is winning for the protagonist. IfG j
i

is not empty, then the protagonists attractor of G j
i in game G (line 11) is also winning

for the protagonist. By removing the winning region for the protagonist (line 14), a
new smaller game is defined and the algorithm is run on this game.
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Algorithm 10 RabinGame (G = (VP, VA, E, FG)) : Winning region WP ⊆ (VP ∪
VA) and winning strategy πP for the protagonist, winning region WA ⊆ (VP ∪ VA)

for the adversary
1: for all (Gi , Bi ) ∈ FG do
2: j = 0
3: G j

i = G \ AG
A (Bi ) {remove all states in AG

A (Bi ) and transitions adjacent to them from G}
4: repeat

5: H j
i = G j

i \ AG j
i

P (Gi ) {note that (Gi , Bi ) is not present in H j
i any more}

6: (W ′
P, π ′

P,W ′
A) = RabinGame(H j

i ) {recursive call}

7: G j+1
i = G j

i \ AG j
i

A (W ′
A)

8: j++
9: until G j

i = G j+1
i {G j

i is guaranteed to be winning for the protagonist}

10: if G j
i �= ∅ then

11: WP = WP ∪ AG
P (G j

i ) {The protagonist’s attractor of G j
i in G is winning}

12: πP = πP ∪ π
′
P ∪ π

′′
P , {π

′
P is the protagonist’s attractor strategy computed in line 6}

13: {π
′′
P is the protagonist’s attractor strategy for AG

P (G j
i )}

14: Gs = G \ WP
15: (Ws

P, π s
P,Ws

A) = RabinGame(Gs ) {run the algorithm on a smaller graph;
consider all pairs in the acceptance condition over again}

16: WP = WP ∪ Ws
P

17: πP = πP ∪ π s
P

18: BREAK {break the whole for-cycle 1–18}
19: end if
20: end for
21: WA = G \ WP

Example 5.6 We illustrate Algorithm 10 on the Rabin game shown in Fig. 5.3.
At the first iteration, we consider Rabin pair (G1, B1), where G1 = {p4, p5}
and B1 = {p1, p2, p3}. The adversary’s attractorAG

A (B1) is VP ∪ VA, therefore,
on line 10 of Algorithm 10, the graph G0

1 is empty. As we do not find any states
winning for the protagonist, we continue with the next Rabin pair.

In the second iteration of Algorithm 10, we consider Rabin pair (G2, B2),
where G2 = {p1, p2, p3} and B2 = {p4, p5}. We eliminate AG

A(B2) from the

graph on line 3. The remaining graph is G0
2. We compute A

G0
2

P (G2), and find
out that it is equal to G0

2. This means that H0
2 is empty, G1

2 is equal to G0
2, and

G0
2 is guaranteed to be a part of the protagonist’s winning region. AG

A(B2) and
G0

2 are shown in Fig. 5.4. The protagonist’s attractor of G0
2 in game G is

WP = AG
P (G0

2) = {p1, p3, p4, (p1, σ2), (p3, σ1), (p4, σ2)},
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and the corresponding winning strategy for the protagonist is (lines 11 and 12)

πP(p1) = (p1, (p1, σ2)),

πP(p3) = (p3, (p3, σ1)),

πP(p4) = (p4, (p4, σ2)).

As we find a winning region for the protagonist, we rerun the algorithm
for a smaller game (line 15) as illustrated in Fig. 5.5. Note that the algorithm
is run from the beginning on the subgame and all Rabin acceptance pairs are
considered again.

At the first iteration of Algorithm 10 on the subgame Gs shown in Fig. 5.5,
we consider Rabin pair (Gs

1, B
s
1), where Gs

1 = {p5} and Bs
1 = {p2}. The adver-

sary’s attractor of Bs
1 is {p0, p2, (p0, σ1), (p1, σ1), (p4, σ1)}, and the protag-

onist’s attractor of Gs
1 on G0

1 = Gs \ AGs

A (B1) is G0
1. H0

1 is empty, and the
protagonists wins everywhere in G0

1 and its attractor in Gs . The attractor of G0
1

in Gs covers Gs . Therefore, we find that the protagonist wins everywhere in
Gs with the following strategy:

π s
P(p0) = (p0, (p0, σ1)),

π s
P(p2) = (p2, (p2, σ2)),

π s
P(p5) = (p5, (p5, σ2)).

As Ws
P covers Gs , the algorithm (recursive call on the sub-game Gs) termi-

nates with Ws
P and strategy π s

P. Finally, the winning region for the protagonist
WP on the initial gameG covers VP ∪ VA, and the protagonist wins everywhere
in G with the strategy πP computed in line 17.

Complexity The complexity of Algorithm 10 is O(|V |2nn!). Intuitively, the first
part (O(|V |2n) comes from the two recursions and the second part (n!) comes from the
protagonist’s ability to change the condition. For a Rabin game of a Rabin automaton,
the complexity of the algorithm is O((|SP | + |SP ||Σ |)2nn!), since V = VP ∪ VA,
VP = SP , and VA = SP × Σ .

Step 5: Mapping the Rabin Game Solution to a Control Strategy

In order to complete the solution to Problem 5.1, we transform a solution to
a Rabin game G = (VP, VA, E, FG) of the product automaton P = T ⊗ R into a
control strategy (Xφ

T ,Ω) for T . The solution to the Rabin game is given as a winning
region WP ⊆ VP and a winning strategy πP : WP → E .

We first transform the solution into a memoryless strategy for the product P , and
present the solution to Problem 5.2. Clearly, the winning region for P is WP = WP.
The initial winning region is the subset of initial states that belong to WP , i.e., WP0 =
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Fig. 5.4 Adversary’s attractor of B2 in game G is shown with a red frame in (a). The sub-game G0
2

obtained by removing AG
A(B2) from G is shown in (b). The protagonist’s attractor of G2 in game

G0
2 covers G0

2

Fig. 5.5 Adversary’s attractor set of Bs
1 in game Gs is shown with a red frame in (a). The sub-game

G0
1 is shown in (b). The protagonist’s attractor of G1 in game G0

1 covers G0
1
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WP ∩ SP0. The strategy πP is obtained as follows. For all v ∈ WP, πP(v) = σ , such
that πP(v) = (v, v′), and v′ = (v, σ ).

The remaining task is to adapt (WP0, πP) as a control strategy (Xφ

T ,Ω) for T .
Although the control function πP was memoryless, Ω is history dependent and takes
the form of a feedback control automaton:

Definition 5.9 Given a product automaton P = T ⊗ R, where T = (X,Σ, δ, O, o)
and R = (S, S0, O, δR, F), a winning region WP for P , and a control strategy
(WP0, πP) for P , a feedback control automatonC = (SC , SC0, X, τ,Σ, π) is defined
as

• SC = S is the set of states,
• SC0 = S0 is the set of initial states,
• X is the set of inputs (the set of states of T ),
• τ : SC × X → SC is the memory update function defined as:

τ(s, x) = δR(s, o(x)) if (x, s) ∈ WP , τ (s, x) =⊥ otherwise

• Σ is the set of outputs (the set of inputs of T ),
• π : SC × X → Σ is the output function:

π(s, x) = πP((x, s)) if (x, s) ∈ WP , π(s, x) =⊥ otherwise.

The set of initial states Xφ

T of T is given by α(WP0), where α : SP → X is the
projection from states of P to X . The control function Ω is given by C as follows:
for a sequence x1 . . . xn , x1 ∈ Xφ

T , we have Ω(x1 . . . xn) = σ , where σ = π(sn, xn),
si+1 = τ(si , xi ), and xi+1 ∈ δ(xi , π(si , xi )), for all i ∈ {1, . . . , n − 1}. It is easy to
see that the product automaton of T andC will have the same states as P but contains
only transitions of P closed under πP . Then, all trajectories in T (Xφ

T ,Ω) satisfy φ

and therefore (Xφ

T ,Ω) is a solution to Problem 5.1. Note that if p = (x, s) /∈ WP,
then the adversary wins all the plays starting from p regardless of the protagonists
choices, which implies that there is always a run starting from the product automaton
state (x, s) ∈ SP that does not satisfy the Rabin acceptance condition FP regardless
of the applied control function. Therefore, Algorithm 9 finds the largest controlled
satisfying region.

Example 5.7 We transform the winning region WP and the winning strat-
egy πP found in Example 5.6 into a control strategy (XΦ

T ,Ω) for the tran-
sition system T and formula Φ from Example 5.1. The memoryless con-
trol strategy (WP0, πP) for the product P (Fig. 5.2) is defined as WP0 =
{p0}, πP(p0) = σ1, πP(p1) = σ2, πP(p2) = σ2, πP(p3) = σ1, πP(p4) = σ2,
and πP(p5) = σ2.
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Fig. 5.6 The control
automaton from Example
5.7. The initial state is s0.
The arrows between states
are labeled with the states of
the transition system
depicting the memory update
function. The corresponding
control actions are shown in
red

The set of initial states is XΦ
T = {x1}, and the feedback control automaton

C = (SC , SC0, X, τ,Σ, π), that defines the history dependent control function
Ω , is constructed as in Definition 5.9. The control automaton is shown in
Fig. 5.6 and is formally defined as:

SC = {s0, s1, s2},
SC0 = {s0},
X = {x1, x2, x3, x4},
τ(s0, x1) = s1, τ(s1, x2) = s1, τ(s1, x3) = s2, τ(s1, x4) = s1, τ(s2, x2) = s1,
τ(s2, x3) = s2,
Σ = {σ1, σ2},
π(s0, x1) = σ1, π(s1, x2) = σ2, π(s1, x3) = σ2, π(s1, x4) = σ1, π(s2, x2) =
σ2, π(s2, x3) = σ2.

Example 5.8 Consider the robot transition system described in Example 1.4,
and the motion planning task φ described in Example 2.2. The Rabin automa-
ton representation of the formula φ is shown in Fig. 5.7a. The Rabin automaton,
and therefore the product of the robot transition system and the Rabin automa-
ton, has a single pair (G, B) in its accepting condition. We follow Algorithm
9 and synthesize a control strategy for the robot from the formula φ. The robot
satisfies the motion planning task if it starts from any region except the dan-
gerous region, i.e., Xφ

T = {x1, x2, x3, x4, x5, x7, x8}, and chooses its directions
according to the control automaton C depicted in Fig. 5.7b.
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When the robot starts from x1 (B), the control automaton outputs π(s0, x1) =
W , and updates its memory from s0 to τ(s0, x1) = s1. The robot moves West and
ends in x7 (G). The next action is π(s1, x7) = N , and the next control automaton
state is τ(s1, x7) = s2. The robot moves North and ends in x4 (R). Then, the
robot moves North again and ends in x2 (I) as the control automaton outputs
π(s2, x4) = N and updates its memory as τ(s2, x4) = s3. Then, the control
automaton outputs π(s3, x2) = W , and updates its memory as τ(s3, x2) = s0.
The robot moves West and ends in x0 (B). Since the robot and the control
automaton both are in their initial conditions and all the applied actions are
deterministic, the robot continues by applying the same series of actions, and
produces the satisfying word:

(BGRI )ω

Next, we consider the second motion planning task ψ described in Exam-
ple 2.2. Again, we apply Algorithm 9 and synthesize a control strategy for the
specification formula ψ . The Rabin automaton representation of ψ and the
control automaton generated by the algorithm are shown in Fig. 5.8. The set
of satisfying initial states are Xψ

T = {x1, x2, x3, x4, x5, x7, x8}. When the robot
starts from x1, and chooses its directions according to the control automaton,
it produces

BI RG or BI RIG,

before it returns to x0, and the control automaton state set to s0 again. As both the
robot and the control automaton are in their initial states, the robot repeatedly
produces either BI RG or BI RIG. The corresponding word is represented as

(BI RG | BI RIG)ω.

5.2 Control of Transition Systems from dLTL Specifications

In this section, we present a slightly more efficient and intuitive solution to Problem
5.1 for the case when the LTL specification formula can be translated to a determin-
istic Büchi automaton. The solution follows the main lines of the method presented
in Sect. 5.1 for arbitrary LTL specifications. Instead of the Rabin automaton, we
construct a deterministic Büchi automaton, and take its product with the transition
system. In this case, the product is a nondeterministic Büchi automaton. We find
a control strategy for the product by solving a Büchi game and then transform it
to a strategy for the original transition system. This procedure is summarized in
Algorithm 11. The details are presented in the rest of this section.
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Fig. 5.7 Rabin automaton representation of the specification formula φ (a) and the control automa-
ton (b) from Example 5.8. For the Rabin automaton, s0 is the initial state. There is a single pair
in the accepting condition: F = {(G, B)}, where G = {s3}, and B = {s4}. For the control automa-
ton C , s0 is the initial state. The arrows between states are labeled with the states of the robot
transition system depicting the memory update function. The corresponding control actions are
shown in red. For example τ(s0, x2) = τ(s0, x3) = s0 and the corresponding action is defined as
π(s0, x2) = π(s0, x3) = W . State s4, which is not reachable from the initial state s0, is not shown

Algorithm 11 dltl control(T, φ) : Control strategy (Xφ

T ,Ω) such that all trajec-
tories in T (Xφ

T ,Ω) satisfy φ

1: Translate φ to deterministic Büchi automaton B = (S, S0, O, δB , F)

2: Build a product automaton P = T ⊗ B
3: Solve a Büchi game
4: Map the solution to a control strategy for the original transition system T

The first step of Algorithm 11 is to translate the dLTL specification Φ into a
deterministic Büchi automaton B = (S, S0, O, δB, F). The second step is the con-
struction of a product automaton P of the transition system T = (X,Σ, δ, O, o) and
B. The product automaton P = (SP , SP0,Σ, δP , FP) is constructed as described in
Definition 5.3 with the exception that the set of accepting states of P is defined as
FP = X × F . The product automaton P is a nondeterministic Büchi automaton if
T is nondeterministic, otherwise it is a deterministic Büchi automaton.

Each accepting run ρP = (x1, s1)(x2, s2)(x3, s3) . . . of a product automaton P =
T ⊗ B can be projected into a trajectory x1x2x3 . . . of T , such that the word
o(x1)o(x2)o(x3) . . . is accepted by B (i.e., satisfies φ) and vice versa. Similar to the
solution proposed in the previous section, this allows us to reduce Problem 5.1 to
finding a control strategy for P .
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Fig. 5.8 Rabin automaton representation of the specification formula ψ (a) and the control automa-
ton (b) from Example 5.8. For the Rabin automaton, s0 is the initial state. There is a single pair in
the accepting condition: F = {(G, B)}, where G = {s1}, and B = {s5}. For the control automaton
C , s0 is the initial state. The arrows between states are labeled with the states of the robot transition
system depicting the memory update function. The corresponding control actions are shown in red.
State s5, which is not reachable from the initial state s0, is not shown
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Problem 5.3 Given a controlled Büchi product automaton P=(SP , SP0,Σ, δP , FP),
find the largest set of initial states WP0 ⊆ SP0 for which there exists a control func-
tion πP : SP → Σ such that each run of P under strategy (WP0, πP) satisfies the
Büchi accepting condition FP .

The solution to Problem 5.3 is summarized in Algorithm 12. The main idea behind
the algorithm is to first compute a subset FP of FP such that a visit to FP can be
enforced from FP in a finite number of steps. Then, what remains is to compute the
set of all states WP and a control function πP such that all runs originating from WP

in closed loop with πP can reach FP in a one or more steps. By the definition of
FP , it holds that FP ⊆ WP , and hence these runs satisfy the Büchi condition. To
compute FP and πP , we first define direct and proper attractor sets of a set S ⊆ SP
for a Büchi automaton P:

Definition 5.10 (Direct attractor) The direct attractor of a set S, denoted by A1(S),
is defined as the set of all s ∈ SP from which there can be enforced a visit to S in
one step:

A1(S) = {s ∈ SP | ∃σ ∈ Σ, δP(s, σ ) ⊆ S}.

The direct attractor set induces a strategy π
1,S
P : A1(S) → Σ such that

δP(s, π1
P(s)) ⊆ S.

Definition 5.11 (Proper attractor) The proper attractor of a set S, denoted byA+(S),
is defined as the set of all s ∈ SP from which there can be enforced a visit to S in
one or more steps.

The proper attractor set A+(S) of a set S can be computed iteratively via the
converging sequence

A1(S) ⊆ A2(S) ⊆ . . . ,

where A1(S) is the direct attractor of S, and

Ai+1(S) = A1(Ai (S) ∪ S) ∪ Ai (S).

Intuitively,Ai (S) is the set from which a visit to S in at most i steps can be enforced
by choosing proper controls. The attractor strategy π

+,S
P for A+(S) is defined from

the direct attractor strategies computed through the converging sequence as follows:

π
+,S
P = π

1,Ai (S)
P (s), for alls ∈ Ai+1(S) \ Ai (S).

A recurrent set of a given set A is the set of states from which infinitely many
revisits to A can be enforced. In Algorithm 12, first the recurrent set FP of FP is
computed with an iterative process (lines 3–6). Note that we start with FP = FP

and iteratively remove the states from which a revisit to FP can not be guaranteed.
This loop terminates after a finite number of iterations since FP is a finite set. The
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Algorithm 12 BüchiGame (P = (SP , SP0,Σ, δP , FP)): Winning region WP ⊆ SP
and winning strategy πP .

1: FP = ∅
2: F

new
P = FP

3: while FP �= F
new
P do

4: FP = F
new
P

5: F
new
P = A+(FP ) ∩ FP

6: end while
7: WP = A+(FP ), compute the corresponding attractor strategy πP

termination guarantees FP ⊆ A+(FP), and hence infinitely many revisits to FP

from FP can be enforced. In the final step of the algorithm the proper attractor of
FP and the corresponding attractor strategy is computed. As FP ⊆ A+(FP), πP is
an attractor strategy that solves the Büchi game for all s ∈ WP .

Complexity The time complexity of Algorithm 12 is O(|SP |2|Σ |).
Remark 5.1 A Büchi automaton B can be interpreted as a Rabin automaton with
a single pair {(G1, B1)} in its accepting condition, where G1 = FP and B1 = ∅.
Consequently, Algorithm 10 for the Rabin game can be used for the Büchi automaton
to solve Problem 5.3. In this particular case, n = 1 and the time complexity of
Algorithm 10 is O((|SP | + |SP ||Σ |)2).

The final step of the dLTL control algorithm is to translate the control strategy
(WP0, πP) obtained from Algorithm 12 into a control strategy (Xφ

T ,Ω) for T , where
WP0 = WP ∩ SP0. As in the solution presented for LTL specifications in the previous
section, although the control function πP is memoryless, Ω is history dependent and
takes the form of a feedback control automaton. The control automaton is constructed
from P and πP as in Definition 11, and the control function Ω is defined by the
control automaton. Finally, the set of initial states Xφ

T of T is given by α(WP0),
where α : SP → X is the projection from states of P to X .

Example 5.9 Consider the nondeterministic transition system T shown in
Fig. 5.9a and the following LTL formula over its set of observations:

φ = o1 ∧ �(♦o3 ∧ ♦o4).

We follow Algorithm 11 to find the control strategy (XΦ
T ,Ω) that solves

Problem 5.1 for the transition system T and formula φ.
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Fig. 5.9 Transition system (a), Büchi automaton (b), and their product (c) from Example 5.9. For
the Büchi automaton, s0 is the initial state and s3 is the accepting state. For the product automaton,
(x1, s0) is the initial state, and {(x2, s3), (x3, s3), (x5, s3)} is the set of accepting states. The states
that are not reachable from the non-blocking initial state (x1, s0) are not shown in (c)
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We first construct a deterministic Büchi automaton B (Fig. 5.9b) that accepts
the language satisfying the formula. Then, we construct the product of the sys-
tem and the automaton. The product automaton P , which is shown in Fig. 5.9c,
is a non-deterministic Büchi automaton since T is nondeterministic. Note that
the states that are not reachable from non-blocking initial states are removed
from P and are not shown in Fig. 5.9c.

To find a control strategy for P , we follow Algorithm 12. In the first iteration,
FP = {(x2, s3), (x3, s3), (x5, s3)} (FP ) and we compute the proper attractor of
FP as follows:

A1(FP) = {(x4, s2), (x5, s2)},
A2(FP) = {(x3, s1), (x3, s2), (x3, s3), (x4, s2), (x5, s2)},
A3(FP) = {(x1, s0), (x4, s1), (x3, s1), (x3, s2), (x3, s3), (x4, s2), (x5, s2)}
A4(FP) = {(x2, s1), (x2, s3), (x1, s0), (x4, s1), (x3, s1), (x3, s2),

(x3, s3), (x4, s2), (x5, s2)}

The sequence converges at iteration 4 and A+(FP) = A4(FP). In the first itera-
tion of the main loop of Algorithm 12, F

new
P = {(x2, s3), (x3, s3)}, and (x5, s3)

is eliminated. The main loop terminates after the second iteration as

A+(FP) ∩ FP = FP , where FP = {(x2, s3), (x3, s3)}.
As the last step of Algorithm 12, we compute WP = A+({(x2, s3), (x3, s3)}),
and the corresponding attractor strategy as follows:

A1(FP ) = {(x4, s2)}, πP ((x4, s2)) = σ1,

A2(FP ) = {(x3, s3), (x3, s2), (x3, s1)} ∪ A1(FP ),

πP ((x3, s3)) = σ2, πP ((x3, s2)) = σ2, πP ((x3, s1)) = σ2,

A3(FP ) = {(x1, s0), (x4, s1)} ∪ A2(FP ), πP ((x1, s0)) = σ2, πP ((x4, s1)) = σ1,

A4(FP ) = {(x2, s1), (x2, s3)} ∪ A3(FP ), πP ((x2, s1)) = σ1, πP ((x2, s3)) = σ1,

A4(FP ) = A5(FP ) = A+(FP ).

The control strategy (WP0, πP) solves Problem 5.3 for P , where WP0 =
{(x1, s0)} and πP is as defined above. The final step is the transformation of
(WP0, πP) into a control strategy (XΦ

T ,Ω) for T . The set of initial states is
XΦ
T = {x1}, and the feedback control automaton C = (SC , SC0, X, τ,Σ, π)

(shown in Fig. 5.10), which defines the history dependent control function Ω ,
is constructed as in Definition 5.9, and formally defined as:
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SC = {s0, s1, s2, s3},
SC0 = {s0},
X = {x1, x2, x3, x4, x5},
τ(s0, x1) = s1, τ(s1, x2) = s1, τ(s1, x3) = s2, τ(s1, x4) = s1, τ(s2, x3) = s2,
τ(s2, x4) = s3, τ(s3, x2) = s1, τ(s3, x3) = s2

Σ = {σ1, σ2},
π(s0, x1) = σ2, π(s1, x2) = σ1, π(s1, x3) = σ2, π(s1, x4) = σ1, π(s2, x3) =
σ2, π(s2, x4) = σ1, π(s3, x2) = σ1, π(s3, x3) = σ2.

Remark 5.2 In a Büchi game over a product automaton P = T ⊗ B, a state (x, s)
is added to WP only if there is a control strategy guaranteeing that all runs ρP of
P originating from (x, s) satisfy that the projection of ρP onto S (Büchi automaton
states) is an accepting run of B. The condition is necessary to guarantee that each
run of T that originate from x is satisfying. While the product is a non-deterministic
Büchi automaton, this condition is stronger than the Büchi acceptance: a word is
accepted by a non-deterministic Büchi automaton if there exists an accepting run.
In other words, it is not necessary that all runs are accepting. Due to this difference
in the notion of the satisfying TS states and non-deterministic Büchi acceptance,
an algorithm similar to Algorithm 11 cannot be used for non-deterministic Büchi
automaton, which is illustrated in Example 5.10.

Fig. 5.10 The control
automaton obtained by
solving the Büchi game on
the product automaton
shown in Fig. 5.9c
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Fig. 5.11 Transition system T (a), Büchi automata B1 (b) and B2 (c), the product of T and B1 (d),
and the product of T and B2 (e) from Example 5.10

Example 5.10 Consider the transition system T shown in Fig. 5.11a and speci-
fication φ = ♦o2 over its set of observations. A deterministic Büchi automaton
and a non-deterministic Büchi automaton that accept the language satisfying
the formula are shown in Figs. 5.11b and 5.11d, respectively. The correspond-
ing product automata are shown in Figs. 5.11c and 5.11e. T has a single run
x2x2x2 . . . originating from x2 and it satisfies φ1. Due to the non-determinism
of T , there are multiple runs originating from x1. The run x1x1x1 . . . origi-
nating from x1 produces the word o1o1o1 . . . that violates the formula, and
all other runs originating from x1 satisfy the formula. Therefore, we have
Xφ

T = {x2}. We can easily verify this observation by running Algorithm 12
on the product automaton P1 with Σ = {σ }, i.e., a single control input labels
all the transitions. The algorithm returns WP = A+(FP) = {(x2, s0), (x2, s1)},
hence WP0 = {(x2, s0)} and Xφ

T = {x2}.
Now, consider the product P2 (Fig. 5.11e) of T and the non-deterministic

Büchi automaton B2 accepting the same language as B1. It is not possible to
differentiate (x1, s0) and (x2, s0) on P2 via reachability analysis or recurrence
set construction, since satisfying and violating runs originate from both (x1, s0)

and (x2, s0).

5.3 Control of Transition Systems from scLTL
Specifications

A solution to Problem 5.1 is found more efficiently when the specification φ is an
scLTL formula. This is due to the simple FSA acceptance condition for scLTL for-
mulas. The solution we present here resembles the one we presented in Sect. 5.1
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for arbitrary LTL specifications. The procedure involves the construction of an FSA
from the specification formula φ, the construction of the product automaton of the
system and the FSA, solving a reachability problem on the product automaton to find
a control strategy for the product automaton, and finally translation of this strategy to
the transition system. While a control strategy for the product automaton was found
by solving a Rabin game in Sect. 5.1 and a Büchi game in Sect. 5.2, the product of
an FSA and a nondeterministic transition system is a nondeterministic finite state
automaton (NFA), for which a control strategy can be found by solving a reachability
problem. This step can be interpreted as finding the attractor set of the accepting states
of the product automaton and the corresponding control strategy. Moreover, when T
is deterministic, the product is an FSA and the largest controlled satisfying region
can simply be found by traversing the graph of the product automaton starting from
its set of accepting states. The procedure for determining control strategies for non-
deterministic transition systems from scLTL formulas is summarized in Algorithm
13. The details are presented in the rest of this section.

Algorithm 13 scltl control(T, φ) : Control strategy (Xφ

T ,Ω) such that all tra-
jectories in T (Xφ

T ,Ω) satisfy scLTL formula φ

1: Translate φ into an FSA A = (S, s0, O, δA, F)

2: Build a product automaton P = T ⊗ R
3: Solve a reachability problem on the graph of the product automaton
4: Map the solution to the reachability problem to a control strategy for the original transition

system T

The first step of Algorithm 13 is to translate the scLTL specification φ into an
FSA A = (S, s0, O, δA, F). This can be done using off-the-shelf tool as discussed
in Sect. 2.3. The second step is the construction of a product automaton P of the
transition system T = (X,Σ, δ, O, o) and the FSA A. The product automaton P =
(SP , SP0,Σ, δP , FP) is constructed as described in Definition 5.3 with the exception
that the set of accepting states of P is defined as FP = X × F . The product automaton
P is a NFA if T is nondeterministic, and it is an FSA if T is deterministic.

Each accepting run ρP = (x1, s1)(x2, s2) . . . (xn, sn) of the product automaton P
can be projected into a trajectory x1x2 . . . xn of T , such that the word
o(x1)o(x2) . . . o(xn) is accepted by A (i.e., all words that contain the prefix o(x1)

o(x2) . . . o(xn) satisfies φ) and vice versa. Analogous to the solution for arbitrary
LTL specifications presented in Sect. 5.1, this allows us to reduce Problem 5.1 to
finding a control strategy (W0, π) for P , which is defined as in Definition 5.4.

Problem 5.4 Given a product NFA P = (SP , SP0,Σ, δP , FP), find the largest set
of initial states WP0 ⊆ SP0 for which there exists a control function πP : SP → Σ

such that each run of P under the strategy (WP0, πP) reaches the set of accepting
states FP .
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We use WP to denote the set of states of P from which a visit to the set of accepting
states can be enforced by a control function. This set and the corresponding control
strategy can easily be computed with a single attractor computation:

WP = FP ∪ A+(FP),

where A+(FP) is the proper attractor of FP and πP is the corresponding attractor
strategy, which are described in Definition 5.11.

This computation results in a control strategy (WP0, πP) that solves Problem 5.4,
where WP0 = WP ∩ SP0. The final step of Algorithm 13 is the transformation of
the control strategy (WP0, πP) for the product P into a control strategy (XΦ

T ,Ω)

for T . The control function Ω for T is history dependent and takes the form of a
feedback control automaton C = (SC , SC0, X, τ,Σ, π), which is constructed from
P , T and A as described in Definition 5.9. The set of initial states Xφ

T of T is given
by α(WP0), where α : SP → X is the projection from states of P to X . The control
function Ω is given by C as explained in Sect. 5.1. The product automaton of T and
C will have the same states as P but contains only transitions of P closed under
πP . Then, all trajectories in T (Xφ

T ,Ω) satisfy φ. Moreover, if (x1, s1) /∈ WP , then
δP((x1, s1), σ ) � WP for all σ ∈ Σ , which implies that there exists a run of P that
originate at (x1, s1) and can not reach FP regardless of the applied control function.
Therefore, in the case when φ is an scLTL formula, Xφ

T is the largest controlled
satisfying region and the strategy (Xφ

T ,Ω) obtained from Algorithm 13 is a solution
to Problem 5.1.

Complexity The complexity of finding the control strategy for the product
automaton P (step 3 of Algorithm 13) is O(|SP ||Σ |), since an attractor set is com-
puted in maximum O(|SP ||Σ |) iterations.

Example 5.11 Consider the nondeterministic transition system T shown in
Fig. 5.12a and the scLTL formula over its set of observations:

φ = ♦o4 ∧ (¬o3Uo4) ∧ (¬o4Uo2).

We follow Algorithm 13 to find the control strategy (XΦ
T ,Ω) that solves

Problem 5.1 for transition system T and formula φ. We first construct an FSA
A (Fig. 5.12b) that accepts the good prefixes of the formula. Then, we construct
the product of the system and the FSA. The product automaton P , which is
shown in Fig. 5.12c, is an NFA since T is nondeterministic. Note that the states
that are not reachable from non-blocking initial states are removed from P and
are not shown in Fig. 5.12c.
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To find a control strategy for P , we compute the converging sequence Wi∗
P

and control function πP :

W 0∗
P = {(x5, s2)}, πP((x5, s2)) = σ1

W 1∗
P = {(x5, s1)} ∪ W 0∗

P , πP((x5, s1)) = σ1

W 2∗
P = {(x2, s0), (x2, s1)} ∪ W 1∗

P , πP((x2, s0)) = σ1, πP((x2, s1)) = σ1

W 3∗
P = {(x4, s0), (x4, s1)} ∪ W 2∗

P , πP((x4, s0)) = σ1, πP((x4, s1)) = σ1

W 4∗
P = W 3∗

P .

The control strategy (WP0, πP) solves Problem 5.4 for P , where WP0 =
{(x2, s0), (x4, s0)} and πP is as defined above. The final step is the trans-
formation of (WP0, πP) into a control strategy (XΦ

T ,Ω) for T . The set
of initial states is XΦ

T = {x2, x4}, and the feedback control automaton C =
(SC , SC0, X, τ,Σ, π), that defines the history dependent control function Ω ,
is constructed as in Definition 5.9, and formally defined as:

SC = {s0, s1, s2},
SC0 = {s0},
X = {x1, x2, x3, x4, x5},
τ(s0, x2) = s1, τ(s0, x4) = s1, τ(s1, x2) = s1, τ(s1, x4) = s1, τ(s1, x5) = s2,
τ(s2, x5) = s2,
Σ = {σ1, σ2},
π(s0, x2) = σ1, π(s0, x4) = σ1, π(s1, x2) = σ1, π(s1, x4) = σ1, π(s1, x5) =
σ1, π(s2, x5) = σ1.

5.4 Notes

We presented a complete treatment of the LTL control problem for a finite tran-
sition system. If the transition system is deterministic, the problem can be solved
through model-checking-based techniques (see Chap. 3). Indeed, an off-the-shelf
model checker can be used to model check the system against the negation of the
formula. If the negation of the formula is not satisfied at a state, i.e., there exists a run
violating the negation of the formula, then it is returned as a certificate of violation.
This run, which satisfies the formula, can be enforced in the deterministic transition
system by choosing appropriate controls at the states in the run. This approach was
used in [105] to develop a conservative solution to an LTL control problem for a
continuous-time, continuous space linear system.

In this chapter, we focused on the case when the transition system is non-
deterministic. We showed that, in the most general case, the problem can be reduced
to a Rabin game [146]. There are various approaches to solve Rabin games [55, 90,
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Fig. 5.12 Transition system (a), the FSA (b), and the product of them (c) from Example 5.11.
For the FSA, s0 is the initial state and s2 is the accepting state. For the product automaton,
{(x1, s0), (x2, s0), (x3, s0), (x4, s0)} is the set of initial states, and (x5, s2) is the accepting state.
The blocking state (x3, s0) that is reachable from a non-blocking initial state (x1, s0) is shown in
grey
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141]. The solution we presented is based on [90]. The Rabin game based approach
to the control problem from this chapter is based on [170]. For the particular case
when the LTL formula can be translated to a deterministic Büchi automaton, we
showed that the control problem reduced to a Büchi game [38], for which efficient
solutions exist [167]. A treatment of the control problem for this case can be found
in [104]. Finally, if the specification is given in the syntactically co-safe fragment
of LTL, called scLTL [156], then the solution reduced to a reachability problem,
for which we propose an efficient algorithm. In all three cases mentioned above, the
control strategy for the original transition system takes the form of a feedback control
automaton, which is easy to interpret and implement.

For simplicity of exposition, we only consider synthesis from LTL specifications.
Readers interested in CTL and CTL* specifications are referred to [9, 57, 92]. There
has also been some interest in combining optimality with correctness in formal
synthesis. Examples include optimal LTL control for transition systems [51, 161,
171] and Markov decision processes [40, 52, 160], and optimization problems with
costs formulated using the quantitative semantics of logics such as signal temporal
logic (STL) and metric temporal logic (MTL) [12, 19, 54, 59, 94, 95, 107, 176].
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Chapter 6
Discrete-Time Dynamical Systems

In this chapter, we introduce the two classes of discrete-time dynamical systems
that we will focus on in the rest of the book: piecewise affine control systems with
polytopic parameter uncertainties and switched linear systems. As particular instanti-
ations of the first class, we define autonomous systems, fixed parameter systems, and
combinations of the above. By generalizing the ideas already presented in Sect. 1.2
and Example 1.8, we define embeddings of such systems into (infinite) transition sys-
tems. This enables formal definitions for their semantics and the use of abstractions
to map analysis and control problems for such systems to verification and synthesis
problems for finite transition systems, which were treated in Part II.

6.1 Piecewise Affine Systems

Let L be a finite index set and Xl , l ∈ L be a set of open, full dimensional polytopes1

in R
N , such that Xl1 ∩ Xl2 = ∅ for all l1, l2 ∈ L , where l1 �= l2.

Definition 6.1 (PWA Control System) A discrete-time, uncertain-parameter piece-
wise affine (PWA) control system W over X = ⋃

l∈L Xl is defined as:

W : x(k + 1) = Alx(k) + Blu(k) + cl , x(k) ∈ Xl, u(k) ∈ U, l ∈ L (6.1)

where, at each time step k = 0, 1, . . ., x(k) ∈ R
N is the state of the system and u(k)

is the input restricted to a polytopic set U ⊂ R
M . Matrices Al ∈ PA

l , Bl ∈ R
N×M ,

cl ∈ Pc
l are the system parameters for mode l ∈ L , where parameters Al and cl for

each l ∈ L are restricted to polytopic sets PA
l ⊂ R

N×N and Pc
l ⊂ R

N , respectively.

Note that, for technical reasons to become clear later, we assume that there is no
parameter uncertainty in the control parameter matrix Bl .

1In the rest of the book, we assume polytopes are open and full dimensional, unless specifically
mentioned otherwise. See Sect. A.1. This assumption is discussed in Sect. 6.3.
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In the following, we define several subclasses of PWA systems used later in the
book, which are obtained by restricting Definition 6.1.

Definition 6.2 (FixedParameterPWAControl System) A fixed-parameter PWA con-
trol system is a PWA system (Definition 6.1) where, for all modes l ∈ L , the sets PA

l
and Pc

l are singletons, i.e., Al ∈ R
N×N and cl ∈ R

N .

In the particular case when Pc
l = ∅, for all l ∈ L , the system from Definition 6.2

is called a fixed parameter piecewise linear control system. In other words, such a
system is described by x(k + 1) = Alx(k) + Blu(k), x(k) ∈ Xl , u(k) ∈ U, l ∈ L .

Definition 6.3 (Autonomous PWA System) An autonomous PWA system is a PWA
system (Definition 6.1) with input u(k) = 0 for all time steps k = 0, 1, . . . i.e.,

W : x(k + 1) = Alx(k) + cl , x(k) ∈ Xl, l ∈ L . (6.2)

Definition 6.4 (Autonomous Fixed Parameter PWA System) An autonomous, fixed-
parameter PWA system is an autonomous PWA system (Definition 6.3) where, for
all modes l ∈ L , the sets PA

l and Pc
l are singletons, i.e., Al ∈ R

N×N and cl ∈ R
N .

In the particular case when Pc
l = ∅, for all l ∈ L , the system from Definition 6.4

is called a fixed parameter piecewise linear system. In other words, such a system is
described by x(k + 1) = Alx(k), x(k) ∈ Xl , l ∈ L .

Definition 6.5 (Autonomous Additive Uncertainty PWA System) An autonomous,
additive uncertainty PWA system is an autonomous PWA system (Definition 6.3)
where, for all modes l ∈ L , the set PA

l is a singleton, i.e., Al ∈ R
N×N and Pc

l ⊂ R
N

is a polytopic parameter set.

In other words, only the vector component cl is uncertain in Definition 6.5, while
the matrix component Al is fixed. Both the vector and matrix parameter components
are fixed in Definition 6.4.

System W evolves along different affine dynamics in different regions of the
continuous state space X. When W is in a state x(k) ∈ Xl for some l ∈ L , we say
that the system is in mode l ∈ L . Then, the next visited state x(k + 1) is computed
according to the affine map of Eq. (6.1) with parameters Al and cl , specifying the
dynamics ofW in mode l. Starting from initial conditions x(0) ∈ Xl0 for some l0 ∈ L
a trajectory of system W can be obtained by the following (numerical simulation)
procedure:

i. Start from initial conditions x(0) ∈ Xl0 , where the system is in mode l0.
ii. Select parameters A ∈ PA

l0 and c ∈ Pc
l0 from the allowed parameter sets.

iii. Select an input u ∈ U from the allowed input set.
iv. Apply the affine map of Definition 6.1 to compute the next state x(1) = Ax(0) +

Bl0u + c.
v. Find the mode l1 ∈ L of W such that x(1) ∈ Xl1 .

vi. Repeat this procedure iteratively for each subsequent step.
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(a) Cobweb diagram of PWA system . (b) A trajectory produced by .
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Fig. 6.1 A one dimensional PWA system is defined by the three regions of different dynamics,
separated by dashed lines in (a). The parameters of the system in each mode are represented by the
black lines in (a). Applying the PWA map iteratively is represented by the cobweb diagram from
(a) and generates the trajectory of the system shown in (b). See Example 6.1 for additional details

The operating regions Xl, l ∈ L from Definition 6.1 of a PWA system are also
considered as regions of interests of system W . As we are only interested in tra-
jectories of system W evolving in X, we define an additional mode Out with triv-
ial dynamics x(k + 1) = x(k) and region XOut = R

N \ X. Informally, a trajectory
wX = wX(1)wX(2) . . . produces a word wL = wL(1)wL(2) . . . such that wL(i) is the
index of the region visited by state wX(i), i.e., wX(i) ∈ XwL (i), and wL(i) is Out if
wX(i) /∈ X. For example, trajectory x(0)x(1)x(2) . . . satisfying x(0), x(1) ∈ Xl1 and
x(2) ∈ Xl2 for some l1, l2 ∈ L produces word l1l1l2 . . .. After a short example, we
formalize the semantics of PWA trajectories and their satisfaction of LTL formulas
through an embedding into a transition system, which generalizes the one already
introduced in Sect. 1.2.

Example 6.1 We define the fixed-parameter, autonomous, one dimensional
(N = 1) piecewise affine system W shown schematically in Fig. 6.1a, which
has three different modes (L = {1, 2, 3}). RegionsX1,X2 andX3 are open, full
dimensional polytopes in R

1, defined in V-representation (see Definition A.5)
as the interiors of the convex hulls (Definition A.3) X1 = int(hull({1, 25})),
X2 = int(hull({25, 60})) and X3 = int(hull({60, 100}) (i.e., V (X1) = {1, 25},
V (X2) = {25, 60} and V (X3) = {60, 100} are the sets of vertices of closures
of polytopes X1,X2 and X3, respectively). These polytopes define the regions
of the state space of W where the system operates under different parameters
(i.e.,W is in a different mode in each region). They are represented in Fig. 6.1a,
b by dashed lines, partitioning the state space X = X1 ∪ X2 ∪ X3.

The parameters of system W are defined as A1 = 2, b1 = 1, A2 = 1.5,
b2 = 25 and A3 = −0.5, b3 = 60 and are represented as thick black lines
in Fig. 6.1a.
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Selecting initial conditions x(0) = 5 allows us to generate a trajectory
wX of W by applying the update map iteratively (the map update is rep-
resented by the cobweb diagram of Fig. 6.1a). The initial state and the fol-
lowing 10 steps wX(1) . . .wX(11) = x(0) . . . x(10) of this trajectory are rep-
resented in Fig. 6.1b. It is easy to see that in states x(0), x(1), x(2), x(5) ∈
X1, x(3), x(6), x(8), x(10) ∈ X2 and x(4), x(7), x(9) ∈ X3 the system is in
mode 1,2 and 3, respectively. Then, the word produced by this trajectory
is wL where, for the fragment wL(1) . . .wL(11), we have wL(1) = wL(2) =
wL(3) = wL(6) = 1,wL(4) = wL(7) = wL(9) = wL(11) = 2 and wL(5) =
wL(8) = wL(11) = 3 (i.e., wL = 1 1 1 2 3 1 2 3 2 3 2 . . .).

Definition 6.6 (Embedding Transition System for W ) The embedding for PWA
control system W (Definition 6.1) is a transition system (Definition 1.1) TW =
(XW ,ΣW , δW , OW , oW ) with:

• XW = R
n ,

• ΣW = U,
• δW (x, u) = Alx + Blu + cl , if x ∈ Xl ,
• OW = L ∪ {Out},
• oW (x) = l if and only if there exists l ∈ L such that x ∈ Xl and oW (x) = Out

otherwise.

The embedding transition system from Definition 6.6 has an infinite number of
states and inputs and is non-blocking. Furthermore, for the general class of uncertain-
parameter PWA systems, the embedding transition system is non-deterministic.
Indeed, given state x ∈ X and input u ∈ U, multiple states can be reached in a single
step through the dynamics defined in Definition 6.1, depending on the choice of
parameters Al ∈ PA

l and cl ∈ Pc
l —the possible non-deterministic next-state choices

are captured in the set δW (x, u). In contrast, a fixed-parameter PWA system W (Def-
inition 6.2) leads to a deterministic embedding transition system, since for each state
x ∈ X and input u ∈ U, only a single state x ′ = Alx + Blu + cl satisfies the dynam-
ics of W and, therefore, δW (x, u) is a singleton. Since the other PWA subclasses
from Definitions 6.3, 6.4, and 6.5 are particular cases of the general PWA from
Definition 6.1, the embedding TW defined above applies with minor and obvious
adjustments. For example, for the autonomous PWA systems from Definitions 6.3
and 6.5, the embeddings TW are non-deterministic transition systems with no inputs,
while for the PWA from Definition 6.4, the embedding is a deterministic transition
system with no inputs.

Only infinite words are produced by the embedding transition system for each of
the system classes defined above and, therefore, LTL formulas over L ∪ {Out} can
be interpreted over such words, leading to the following definition:

Definition 6.7 (LTL satisfaction for W ) Trajectories of a PWA system W (Defini-
tion 6.1) originating in a polytope X0 ⊆ X satisfy formula φ if and only if TW (X0)

satisfies φ (according to Definition 3.1).
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Fig. 6.2 A two dimensional PWA system W is defined by the four regions of different dynamics
but trajectories of the system might leave the defined state space. In a, such a trajectory is shown
evolving along the state space X of the system, where the initial state and subsequently visited states
are represented by circles. The larger circle at the boundary of the outer polytope represents all
states of index larger than 5. To formulate specifications over linear predicates that do not observe
the initial set of polytopes, additional partitioning of the state space might be necessary as in (b).
See Example 6.2 for additional details

Example 6.2 We define the two dimensional (N = 2) autonomous fixed-
parameter PWA system W (Definition 6.4) shown schematically in Fig. 6.2a,
which has four different modes (L = {1, . . . , 4}). The state space of W is
X = X1 ∪ . . . ∪ X4, where X1, . . . ,X4 are open, full dimensional polytopes
determined by cutting hull({[1, 0], [8, 1], [7, 6], [3, 8], [0, 3]}) with hyper-
planes [1 − 2]x = −1 and [−1.83 − 1]x = −9.65 (Fig. 6.2a). The parameters
of the system in each mode are defined as

A1 =
[

0.55 −0.5
0.7 0.65

]

, c1 =
[

3
−1

]

, A2 =
[

0.35 −0.5
0.5 0.15

]

, c2 =
[

2.5
0

]

,

A3 =
[

0.95 −0.5
0.5 0.65

]

, c3 =
[

0.5
−1.3

]

, A4 =
[

0.95 −0.5
0.5 0.65

]

, c4 =
[

3
0

]

.

(6.3)

A trajectory wXW = wXW (1)wXW (2) . . . of W is generated, starting from
initial conditions wXW (1) = x(0) = [7.7, 2.5]. After five steps, the trajectory
exists X (i.e., wXW (6) = x(5) = [0.5489, 1.2808] /∈ X). Since PWA systems
were defined with trivial dynamics in mode Out (i.e., when a state outside
the defined state space is visited) the trajectory remains in state x(5) for all
future times (i.e., for k = 6, 7, 8, . . . we have wXW (k) = x(5)). The word pro-
duced by trajectory wXW is wOW = wOW (1)wOW (2) . . ., where wOW (1) =
3, wOW (2) = wOW (3) = wOW (4) = 1, wOW (5) = 2 and wOW (k) = Out
for k = 6, 7, 8, . . . (i.e., wOW = 3 1 1 1 2 Out Out . . .).
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If we are interested in behaviors of the PWA system W where the second
component of the state x reaches values above 5, we need to further partition the
state of the system using hyperplane [0, 1]x = 5. This results in a system with
6 polytopic regions (L = {1, . . . , 6}) denoted byX1, . . . ,X6 (see Fig. 6.2b). To
specify that all trajectories eventually visit a state where the second component
of x has a value above 5, we write the LTL formula ♦(2 ∨ 4). In other words,
we require that trajectories eventually visit regions X2 or X4, where the above
specification is satisfied.

6.2 Switched Linear Systems

Definition 6.8 (Switched Linear System) A discrete-time switched linear system
over X ⊂ R

N is defined as

S : x(k + 1) = Aγk x(k), γk ∈ Γ, (6.4)

where, at each time step k = 0, 1, . . ., x(k) ∈ R
N is the state of the system, γk is the

input that selects the active subsystem from a finite index set Γ , and Aγ ∈ R
N×N ,

for all γ ∈ Γ .

System S evolves along different linear dynamics, depending on the chosen
value of γk from Γ at time k. Similar to the terminology for system W defined
above, when S evolves along dynamics γ , we say that the system is in mode γ ∈ Γ .
Starting from initial conditions x(0) ∈ X and initial mode γ0 ∈ Γ , given a function
γ : {0, 1, 2, . . .} → Γ , a trajectory of system S can be obtained by the following
(numerical simulation) procedure:

i. Start from initial conditions x(0) ∈ X and initial mode γ0 ∈ Γ .
ii. Apply the linear map from Eq. (6.4) to compute the next state x(1) = Aγ0x(0).

iii. Update the mode γ1 according to function γ .
iv. Repeat this procedure iteratively for each subsequent step.

We are interested in studying trajectories of system S with respect to a finite
set of semi linear sets Xl , l ∈ L , where Xl1 ∩ Xl2 = ∅, for any l1 �= l2, and X =
∪l∈LXl (see Appendix A.4 and Example 10.1). Informally, similar to the PWA
system W presented above, a trajectory wX = wX(1)wX(2) . . . produces a word
wL = wL(1)wL(2) . . . such that wL(i) is the index of the region visited by state
wX(i), i.e., wX(i) ∈ XwL (i). As it will become clear in Chap. 10, because of the par-
ticular problem of interest, the trajectories of S always stay inside X, and the extra
mode Out is not necessary in this case. Also, as in Sect. 6.1, we informally think
of Xl , l ∈ L as a partition of X, and ignore behaviors on the boundaries of Xl . This
assumption is discussed in Sect. 6.3.
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Definition 6.9 (Embedding Transition System for S ) The embedding for the
switched control system S (Definition 6.8) is a transition system TS = (XS ,ΣS ,

δS , OS , oS ) with:

• XS = X,
• ΣS = Γ ,
• δS (x, γ ) = Aγ x ,
• OS = L ,
• oS (x) = l, l ∈ L if and only if x ∈ Xl .

The embedding transition system from Definition 6.9 has an infinite number of
states and finitely many inputs. It is deterministic and non-blocking. It produces
infinite words, and, therefore, LTL formulas over L can be interpreted over such
words, leading to the following definition:

Definition 6.10 (LTL satisfaction forS ) Trajectories of a switched systemS (Def-
inition 6.8) originating in a region X0 ⊆ X satisfy LTL formula φ over L if and only
if TS (X0) satisfies φ (according to Definition 3.1).

Similar to the PWA system W treated in Sect. 6.1, we can define different types of
embeddings for S as particular cases of the one defined above. With particular rele-
vance to the verification Problem 10.2 treated in Chap. 10, an autonomous embedding
transition system that captures the behavior of S under all possible switchings can
be defined as T A

S = (XS , δA
S , OS , oS ), where XS , OS , and oS are as defined

above and δA
S (x) = {Aγ x, γ ∈ Γ }.

6.3 Notes

Piecewise affine systems (PWA), i.e., systems that evolve along different discrete-
time affine dynamics in different polytopic regions of the (continuous) state space are
widely used as models in many areas. They can approximate nonlinear dynamics with
arbitrary accuracy and are equivalent with several other classes of systems, includ-
ing hybrid systems [82]. In addition, there exist efficient techniques for the identi-
fication of such models from experimental data, which include Bayesian methods,
bounded-error procedures, clustering-based methods, mixed-integer programming,
and algebraic geometric methods (see [64, 97] for a review).

We made some simplifying assumptions in our definition of the PWA system W
and its embedding (Definitions 6.1 and 6.6), which is inspired from [5, 7, 138, 163]
(see also [72, 74, 105, 106, 162, 180, 184, 185]). First, we defined the system on a
set of open full dimensional polytopes, thus ignoring states where the dynamics are
ambiguous (states on the boundaries between regions). This is enough for practical
purposes, since only sets of measure zero are disregarded and it is unreasonable to
assume that equality constraints can be detected in real-world applications. Trajec-
tories starting and remaining in such sets are therefore of no interest. Trajectories
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starting in the interior of full-dimensional polytopes also cannot “vanish” in such
zero-measure sets unless the dynamics of the system satisfy some special condi-
tions, which are easy to derive but omitted. Furthermore, if such sets are of interest,
the results presented throughout the book can be extended to more general case
where the state space is partitioned into polytopes with some of the facets removed.
In particular, facets are simply lower dimensional polytopes and the results can be
extended by induction. Second, the semantics is defined over the polytopesXl , which
are given a priori. However, arbitrary linear inequalities can be accommodated by
including additional polytopes (as long as the region l ∈ L visited at each step can be
observed), in which case the system will have the same dynamics in several modes.

Switched systems have been extensively studied for more than fifty years. They
have numerous applications in mechanical systems, automotive industry, power sys-
tems, aircraft and traffic control. Switched linear systems, as defined in this chapter,
attracted most of the attention. Existing works focus on analysis of stability, control-
lability, reachability, and observability. Excellent overviews can be found in [125,
159]. Note that, for switched linear systems S , we make the same simplifying
assumptions as for the piecewise affine systems W , and the limitations induced by
these assumptions are similar.



Chapter 7
Largest Satisfying Region

In this chapter, we develop a procedure that attempts to find the largest set of initial
states from which an autonomous PWA system (Definition 6.3) satisfies an LTL
formula over the set labeling the polytopes in its definition. The same problem was
considered in Chap. 4 for a finite transition system and an LTL formula over its set
of observations. Several methods were presented to find an exact solution to this
problem. As expected, since PWA systems have infinitely many states, we are only
able to find a subset of the largest satisfying region in this chapter. We formulate the
problem for the general case of autonomous PWA systems with uncertain parameters,
and we show that more efficient solutions can be found for the particular cases of
autonomous PWA systems with fixed parameters and additive uncertainties. The
problem that we consider in this chapter can be formally stated as follows:

Problem 7.1 (Largest Satisfying Region for PWA Systems) Given an autonomous
PWA system W (Definition 6.3) and an LTL formula φ over L ∪ {Out}, find the
largest set of initial states from which all trajectories of W satisfy φ.

From Definition 6.7, solving Problem 7.1 involves working with the infinite
embedding transition system TW (Definition 6.6) and formula φ. In Chap. 3, we
described LTL model checking as an algorithmic procedure for deciding whether a
finite transition systems satisfies an LTL formula. Then, in Sect. 4.1, we used model
checking to develop an analysis procedure for finite transition systems (Algorithm 3).
Since the embedding TW from Definition 6.6 is infinite, neither model checking, nor
the analysis procedure from Algorithm 3 can be applied directly to solve Problem 7.1.

In Chap. 4, we also developed several methods for the analysis of potentially large
transition systems through the construction and refinement of their quotients. In the
following sections, we show that this theory can be extended to infinite transition
systems such as TW , in order to address Problem 7.1.

First, we consider autonomous, fixed-parameter PWA systems (Definition 6.4)
and autonomous, additive-uncertainty systems (Definition 6.5). For these systems,
we show that the quotient construction and refinement procedures from Chap. 4
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are implementable, and use them to solve Problem 7.1 in Sect. 7.1. For general
autonomous PWA systems with uncertain parameters (Definition 6.3), we develop a
conservative procedure in Sect. 7.2.

7.1 PWA Systems with Fixed and Additive Uncertain
Parameters

The following discussion applies to autonomous PWA systems with additive para-
meter uncertainty (Definition 6.5). All the results automatically apply to the subclass
of autonomous fixed-parameter PWA systems (Definition 6.4). We will discuss the
differences as appropriate.

We describe the construction of quotient TW /∼ = (XW /∼, δW ,∼, OW , oW ,∼)

through the construction of its sets of states and observations, and observation and
transition maps. From the definition of the observational equivalence relation ∼

(Definition 1.2), induced by observation map oW of TW (Definition 6.6) and the
definition of the quotient TW /∼ (Definition 1.3), the set of states XW /∼ of quotient
TW /∼ is simply the set of observations XW /∼ = OW = L

⋃{Out} of TW /∼, which
is inherited from TW , and the observation map is identity. Given a state l ∈ XW /∼,
where l �= Out, the set of all equivalent states from l is

con(l) = Xl . (7.1)

In other words, each equivalence class is a polytope from the PWA system definition
(Definition 6.1), while the explicit representation of the set con(Out) = R

N \ X is
not required for our methods.

In order to complete the construction of quotient TW /∼, we need to compute the
transition function δW ,∼. In Sect. 1.3, we showed that through Eq. (1.7), transitions
of the quotient TW /∼ can be found by computing the set of successors of a region
in TW using the Post () operation defined in Eq. (1.4)—given states l1, l2 ∈ XW /∼,
there exists a transition from l1 to l2 (i.e., l2 ∈ δW ,∼(l1)) if and only if the intersection
Post (con(l1))∩con(l2) is non-empty. From the computation of the set of equivalent
states con(l) for an equivalence class l ∈ XW /∼ given in Eq. (7.1), checking if a tran-
sition between states l1, l2 ∈ XW /∼ exists amounts to checking the non-emptiness
of the intersection Post (Xl1) ∩ Xl2 . Formally, the computation of transitions in the
quotient TW /∼ for any states l1, l2 ∈ XW /∼, where l1 �= Out and l2 �= Out is
summarized as

l2 ∈ δW ,∼(l1) if and only if Post (Xl1) ∩ Xl2 �= ∅. (7.2)
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Given a polytope Xl for some l ∈ L , the set of successor states Post (Xl) is
another polytope computable as1:

Post (Xl) = AlXl ⊕ Pc
l , (7.3)

where AlXl is the image of polytope Xl through matrix Al (see Appendix A.3) and
“⊕” denotes the Minkowski (set) sum (Definition A.7). Since Post (Xl) is a polytope,
for any states l1, l2 ∈ XW /∼ the intersection Post (Xl1) ∩Xl2 is also a polytope and
its non-emptiness can be checked easily using polyhedral operations. Note that, for
the particular case of a fixed parameter PWA system, Pc

l in Eq. (7.3) is a singleton
cl ∈ R

N .
Given a state l ∈ XW /∼, where l �= Out, a transition from state l to state Out is

assigned in accordance to Definition 6.6 as

Out ∈ δW ,∼(l) if and only if Post (Xl) � X, (7.4)

which is also checked easily, since both Post (Xl) and X are polytopic sets. To
complete the construction of δW ,∼, transitions for state Out ∈ XW /∼ must be
assigned but, from Definitions 6.1 and 6.6, it only has a transition to itself (i.e.,
δW ,∼(Out) = {Out}).

Algorithm 14 TW /∼ =Quotient(W ) : Compute the quotient TW /∼ of an additive
uncertainty PWA system W

1: XW /∼ := L
⋃{Out}

2: OW := XW /∼

3: for all l ∈ XW /∼ do
4: oW ,∼(l) := l
5: δW ,∼ := ∅
6: if Post (Xl ) � X then
7: δW ,∼(l) := δW ,∼(l) ∪ {Out}
8: end if
9: for all l ′ ∈ XW /∼ do
10: if Post (Xl ) ∩ Xl ′ �= ∅ then
11: δW ,∼(l) := δW ,∼(l) ∪ {l ′}
12: end if
13: end for
14: end for
15: δW ,∼(Out) := {Out}
16: return TW /∼ = (XW /∼ , δW ,∼ , OW , oW ,∼)

The transition map of quotient TW /∼ is constructed using the computation
described above, which completes the quotient’s construction. The computation of

1In this chapter, we assume, for simplicity of presentation, that all matrices Al , l ∈ L are invertible.
This assumption can be easily relaxed as discussed in Sect. 7.4. The technical details are included
in Sects. A.3 and A.4.
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TW /∼ is summarized in Algorithm 14, which is implementable using polyhedral
operations on polytopes. Since the number of regions L of PWA system W is finite,
TW has a finite set of observations OW and, as a result, the set of states XW /∼ of the
quotient is also finite. This allows the application of model checking or analysis of
TW /∼ through Algorithm 3 but the implementation of the more advanced analysis
procedure from Chap. 4 requires additional operations, which will be discussed next.

Example 7.1 We apply Algorithm 14 to construct the quotient TW /∼ for the
PWA system W defined in Example 6.2. Initially, the system had four regions
(Fig. 6.2a) but additional partitioning of the state space was required to accom-
modate some specifications, resulting in a system with six regions denoted by
X1, . . . ,X6 (Fig. 6.2b) with L = {1, . . . , 6}. Therefore, the quotient TW /∼

has six states XW /∼ = {1, . . . , 6} where, for each state l ∈ XW /∼, the set
of equivalent states of TW (and therefore W ) is given by con(l) = Xl as in
Eq. (7.1).

To compute the transitions of TW /∼, we compute the set of successors
Post (Xl) for each region Xl of TW (see Fig. 7.1). Checking the non-emptiness
of the intersection Post (Xl1) ∩ Xl2 allows us to compute the transitions
of TW /∼. Only the set of successors of region 6 is completely included
within the defined state space X and, therefore, all other states have a tran-
sition to state Out (note that Post (X1) �⊂ X, although this is not obvi-
ous from Fig. 7.1a). This leads to the inclusion of transitions δW ,∼(1) =
{1, 2, 3, Out}, δW ,∼(2) = {2, 3, 4, Out}, δW ,∼(3) = {3, 6, Out}, δW ,∼(4) =
{3, Out}, δW ,∼(5) = {1, 2, 3, 5, 6, Out} and δW ,∼(6) = {1, 5, 6}. The result-
ing quotient TW /∼ is shown in Fig. 7.2, where the observations for each state
are omitted but are clear from the state labels.

By embedding the PWA system W into an infinite transition system TW (Defini-
tion 6.6), we reduced Problem 7.1 to Problem 4.1. However, since TW was infinite, the
analysis procedure outlined as Algorithm 3 in Chap. 4 could not be applied directly.
So far, we showed that the quotient TW /∼ of the embedding TW under the observa-
tional equivalence relation ∼ (Definition 1.2) can be constructed using polyhedral
operations (Algorithm 14). Since TW /∼ is finite, this allows us to apply the analy-
sis technique described in Sect. 1.3. However, as discussed there, such an approach
leads to a conservative solution to Problem 7.1. In order to obtain less conservative
results, bisimulation-based and formula-guided quotient refinement techniques were
proposed in Sects. 4.3 and 4.5, respectively. Both methods were initialized by con-
structing a finite quotient such as TW /∼ but in addition required the implementation
of a state refinement procedure.
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(a) Post(X1). (b) Post(X2).

(c) Post(X3). (d) Post(X4).

(e) Post(X5). (f) Post(X6).
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Fig. 7.1 Successor states (shaded gray) of different regions of PWA system W defined in Example
6.2 (Fig. 6.2b). See Example 6.2 for additional details
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Fig. 7.2 Finite quotient
TW /∼ of PWA system W
defined in Example (6.2)
(Fig. 6.2b). Observations of
the states are omitted. See
Example 7.1 for additional
details
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4 2

13

56

In the following, we focus on the implementation of the refinement procedure
Refine() (Algorithm 5, Chap. 4) and show that for autonomous additive uncertainty
(and fixed parameter) PWA systems all its operations are computable through poly-
hedral operations. Specifically, as the embedding of a PWA system with additive
parameter uncertainty is non-deterministic, we will refer to Algorithm 5. For the
particular case of a PWA with fixed parameters, whose embedding is deterministic,
the refinement procedure is described in Algorithm 6.

To implement function Refine() for TW , given states l1, l2 ∈ XW /∼ such that
l2 ∈ δW ,∼(l1) (i.e., l2 is reachable from l1 in TW /∼), we need to be able to construct
a state l ′, such that con(l ′) = con(l1) ∩ Pre(con(l2)) (see Algorithms 5 and 6).
From Eq. (7.1), this computation reduces to the construction of a state l ′ where
con(l ′) = Xl1 ∩ Pre(Xl2).

Under the invertibility assumption made earlier in this chapter, which, as stated,
can be easily relaxed (see Sect. 7.4), this intersection is computable as

Xl1 ∩ Pre(Xl2) = Xl1 ∩ A−1
l1

(Xl2 
 Pc
l1), (7.5)

where 
 denotes the Minkowski difference (Definition A.8). Note that while the
Pre() operation is applied to region Xl2 , the parameters of region Xl1 are used for
the computation, which is consistent with Definition 6.2. Using Eq. (7.5) to refine the
states of TW /∼ and Eq. (7.3) to update its transitions wherever necessary (see Algo-
rithms 5 and 6) allows the implementation of function Refine() and all computation
is performed using polyhedral operations.
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Fig. 7.3 Refined quotient TW /∼r =Refine(TW /∼ , 6) (a) and equivalence classes XW /∼r (b)
of PWA system W from Example 6.2 (Fig. 6.2b). The successor states Post (con(6.1)) (dark gray),
Post (con(6.2)) (medium gray) and Post (con(6.3)) (light gray) are also shown for the refined
subsets 6.1, 6.2, 6.3 ∈ XW /∼r , where con(6.1) ∪ con(6.2) ∪ con(6.3) = con(6) for state 6 ∈
XW /∼ . See Example 7.2 for additional details

Example 7.2 We apply function Refine() (Algorithm 6) to refine the quotient
TW /∼ (constructed in Example 7.1 and shown in Fig. 7.2) of PWA system W
defined in Example 6.2 (Fig. 6.2b). We target refinement to state 6 ∈ XW /∼

and construct the refined quotient TW /∼r =Refine(TW /∼, 6). State 6 has
three successors in XW /∼ (i.e., δW ,∼ = {1, 5, 6}) and, therefore, refine-
ment results in three subsets in XW /∼r denoted as 6.1, 6.2 and 6.3, where
con(6.1) ∪ con(6.2) ∪ con(6.3) = con(6). Each subset has only a single out-
going transitions in TW /∼r (see the sets of successors shown in Fig. 7.3b),
which is implicitly induced through the refinement and incoming transitions
are recomputed (see Algorithm 6). This results in the construction of the refined
quotient TW /∼r shown in Fig. 7.3a.

Note that the notation is abused in this example and in the rest of this
chapter. As we assumed that all the polytopes are open, the equality con(6.1)∪
con(6.2)∪con(6.3) = con(6) does not hold precisely. Indeed, con(6) contains
some facets of con(6.1), con(6.2), and con(6.3), which are not contained in
con(6.1) ∪ con(6.2) ∪ con(6.3). More discussions are included in Sect. 7.4.
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After a state l ∈ XW /∼ is refined into states l1 and l2 such that con(l1)∪con(l2) =
con(l), the computation from Eqs. (7.3) and (7.5) can be applied to the subsets l1
and l2. This enables the iterative refinement of the quotient TW /∼ and allows the
implementation of the bisimulation algorithm (Algorithm 1) and the analysis methods
described in Sects. 4.3 (Algorithm 7) and 4.5 (Algorithm 8) for PWA systems.

A termination condition based on the sizes of equivalence classes was also pro-
posed in Chap. 4 for the analysis procedures discussed there. To determine if a state
l ∈ XW /∼ is “large enough” to undergo additional refinement, we compute the
radius of the largest sphere inscribed in polytope con(l) and apply the refinement
procedure only if it is larger than a certain predefined limit ε. In other words, we
apply the refinement procedure to state l only if r(Xl) > ε, where r(Xl) is the radius
of the Chebyshev ball of Xl (see Definition A.9 in the Appendix).

Example 7.3 We apply the analysis method from Sect. 4.3 summarized as
Algorithm 7 to identify satisfying and violating regions of PWA system W
defined in Example 6.2 and shown in Fig. 6.2a. We are interested in testing
whether trajectories of the system keep reaching values over 5 in the second
component x2 of the system state x . Therefore, we introduce additional par-
titions to the states space of the system as shown in Fig. 6.2b and formulate
the specification as the LTL formula φ = �♦(2 ∨ 4), requiring that states
from regions X2 and X4 are visited infinitely often. Furthermore, we want to
guarantee that trajectories of the system remain within the defined state space
X and therefore augment the specification as φ′ = �♦(2 ∨ 4) ∧ �¬Out.

We set ε = 0.1 as the limit on the states from XW /∼r that can undergo
refinement, which guarantees the termination of the analysis procedure. While
only an under-approximation of the largest satisfying and strictly violating
regions ofTW (and thereforeW ) is obtained as discussed in Chap. 4, most of the
system’s state space is characterized as satisfying or violating (see Fig. 7.4a).

All trajectories originating in the regions shown in dark and medium gray
in Fig. 7.4a violate specification φ′—trajectories originating in the dark gray
region leave the defined state space X, while trajectories originating in the
light gray region oscillate but do not visit states where the values of the sec-
ond component x2 are above 5. However, all trajectories originating in the
satisfying region shown in light gray in Fig. 7.4a are guaranteed to satisfy the
specification.
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Fig. 7.4 Satisfying (light gray) and violating (medium gray) regions of PWA system W defined in
Example 6.2 (Fig. 6.2b) for specification “�♦(2 ∨ 4) ∧ �¬Out” were identified using the analysis
procedure described in Sect. 4.3 (Algorithm 7). Trajectories of W originating in the region shown
in dark gray leave the defined state space of the system and therefore are also violating. A violating
trajectory wX (a) and (b) and a satisfying trajectory w′

X (c) and (d) were obtained by initializing W
in the violating or satisfying regions (initial conditions are shown as large circles). See Example 7.3
for additional details

Note that for an autonomous, fixed-parameter PWA system W (Definition 6.4),
the embedding TW is deterministic, which allows the application of the more effi-
cient refinement strategies from Algorithm 6. The computation from Eq. (7.5) is also
sufficient to implement refinement strategies for autonomous, additive uncertainty
PWA systems (Definition 6.5) through Algorithm 5. Refinement strategies for more
general autonomous, uncertain parameters systems are discussed in the following
Sect. 7.2.
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7.2 PWA Systems with Uncertain Parameters

When the matrix component of the parameters is allowed to vary as in the autonomous
PWA system from Definition 6.3, given a polytope Xl , the set PostTW (Xl) is not
necessarily convex and, in general, there are no algorithms capable of its exact com-
putation. Thus, the computational procedures for the construction and refinement
of quotients described so far in this chapter do not apply directly to such systems.
Instead, in the following we develop an analysis strategy for autonomous, uncertain
parameter PWA systems based on the construction of over-approximation quotients.

Proposition 7.1 Given a polytope Xl , a convex over-approximation of PostTW (Xl)

can be computed as:

PostTW (Xl) = hull{Ax | A ∈ V (PA
l ), x ∈ V (Xl)} ⊕ Pc, (7.6)

where hull() and V () denote the convex hull and set of vertices, respectively (see
Sect.A.1).

Proof Let V (Xl) = {v1, . . . , vR} and V (PA) = {w1, . . . ,wM }. Let x ∈ Xl and
A ∈ PA

l . Then x = ∑R
r=1 λr vr , A = ∑M

m=1 μmwm , and

Ax = (

M∑

m=1

μmwm)(

R∑

r=1

λr vr ) =
M∑

m=1

R∑

r=1

μmλrwmvr

Since μm, λr ≥ 0 and
∑M

m=1 μm = ∑R
r=1 λr = 1 then μmλr ≥ 0 for any m, r and

∑M
m=1

∑R
r=1 μmλr = 1. Therefore

Ax ∈ hull{wv,w ∈ V (PA
l ), v ∈ V (X)}

and the rest of the proof follows from Definition A.7. �

The computation from Eq. (7.6) produces an over-approximation of the reachable
states from a given region and is the smallest convex set containing PostTW (Xl):

PostTW (Xl) ⊆ PostTW (Xl) (7.7)

Although a precise distance between the real set and its over-approximation is hard
to quantify, the volume of PostTW () was not significantly increased by the approxi-
mation for the systems we considered.

Using the over-approximation PostTW (Xl), instead of the exact PostTW (Xl)

an over-approximation quotient TW /∼ = (QW /∼, δW ,∼, OW , oW ,∼) can be con-
structed. From Eq. (7.7), it follows that for all l ∈ QW /∼, we have δW ,∼ ⊆ δW ,∼,
which leads to

LTW ⊆ LTW /
∼

⊆ LTW /
∼

. (7.8)



7.2 PWA Systems with Uncertain Parameters 129

Therefore, the over-approximation quotient TW /∼ simulates the exact quotient
TW /∼ and TW /∼ can be used instead of TW /∼ for the methods we developed
in Chap. 4 but the results become more conservative. The over-approximation quo-
tient TW /∼ can be computed through Algorithm 14 by substituting the PostTW ()

operation with its over-approximation PostTW () when the matrix component of
the parameters of W is uncertain. This leads to the computation of Xφ

TW /
∼

where

Xφ

TW /
∼

⊆ Xφ

TW /
∼

⊆ Xφ

TW
, following from Eq. (7.8). While this is sufficient to apply

some of the analysis strategies developed previously, additional refinement strategies
are required to obtain less conservative analysis results but for autonomous, uncertain
parameter PWA systems, the Pre() operation is not easily computable. Instead, we
apply a refinement approach, where a polytope Xl is split along each dimension e.g.,
through the center of the Chebyshev ball of Xl (Definition A.9). While this strategy
is less efficient since the dynamics of the system are not taken into account during
refinement, it allows an implementation through quad-tree data structures and their
extensions into higher dimensions.

By constructing the over-approximation quotient in Algorithm 7 and using it
within the analysis methods from Chap. 4 (e.g., Algorithm 8) together with the refine-
ments strategy described above, a (more conservative) solution to Problem 7.1 is
obtained even for autonomous, uncertain parameter PWA systems.

Example 7.4 Consider a two dimensional (N = 2) autonomous PWA sys-
tem that has a total of nine rectangular regions X1, . . . ,X9 labeled by L =
{1, 2, . . . , 9}. The parameters for each region for an initial fixed parameter
model (where PA

l ,Pc
l are singletons Al , cl , respectively) are as follows:

A1 = A3 = A9 =
[

0.82 0.00
0.00 0.67

]

, A2 = A8 =
[

0.82 −0.37
0.00 0.67

]

,

A4 = A6 =
[

0.82 0.00
−0.52 0.67

]

, A5 =
[

0.96 −0.39
−0.55 0.80

]

, A7 =
[

0.82 0.00
0.00 0.67

]

,

c1 =
[

16.68
25.55

]

, c2 =
[

19.37
25.55

]

, c3 =
[

3.08
25.55

]

,

c4 =
[

16.68
43.34

]

, c5 =
[

14.66
42.97

]

, c6 =
[

3.08
47.65

]

,

c7 =
[

16.68
2.47

]

, c8 =
[

25.12
2.47

]

, c9 =
[

3.08
2.47

]

Under the fixed parameters, dynamics 3 and 7 have unique, asymptotically
stable equilibria inside rectanglesX3 andX7 (see Fig. 7.5). An interesting prob-
lem is finding the regions of attraction for the two equilibria and exploring how
those regions change when parameter uncertainty is introduced. By exploiting
convexity properties of affine functions on polytopes, it can be easily proved
that under the fixed parameters, X3 and X7 are invariants for dynamics 3 and
7, respectively. From this, we can immediately conclude that X3 and X7 are
regions of attraction for the two equilibria. Therefore, our problem reduces to
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(a) Fixed parameter model
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(b) Uncertain parameter model

Fig. 7.5 Simulated trajectories of the autonomous PWA system from Example 7.4. Initial conditions
are denoted by red squares
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finding maximal regions satisfying LTL formulas φ1 = ♦�3 and φ2 = ♦�7.
In other words, we want to find maximal sets of initial conditions, from which
trajectories will eventually reach regions X3 or X7 and stay there forever.

To explore how the sizes of the attractor regions change, hyper-rectangular
parameter uncertainty was introduced in the model by allowing each compo-
nent of the parameters Al and cl for region l ∈ L to vary in a range of size
specified as a percentage of the fixed parameter value and centered around it
(parameter components equal to 0 were also allowed to vary in a small range).
Results from the computation with various levels of uncertainty are compared
with the ones obtained under fixed parameters (Fig. 7.6). Because of the rectan-
gular initial partition of the state space, 2N -trees could be used as an efficient
splitting strategy for the uncertain parameter case. Our method identifies only
an attracting region for the equilibria at X3 for 5% uncertainty. As expected,
increasing the level of uncertainty in the parameters decreases the size of the
identified regions of state space (but a region identified at higher uncertainty
is always a subset of the one identified at lower uncertainty).

Even if smaller limit ε is used, under parameter uncertainty it is possible
that a subset of the state space is never included in the identified regions—a
property resulting from nondeterminism introduced in the embedding tran-
sitions system. Even though complete partitioning of the state space might
not be possible, decreasing ε provides further refinement and greater detail of
the identified regions (initial iterations attempt to capture large satisfying (or
violating) regions, while subsequent ones expand the solution less but provide
greater resolution on its boundaries).

Example 7.5 Consider the PWA system from Example 7.4, where additive
uncertainty is introduced by allowing each parameter cl for region l ∈ L to
vary in a range of 10% of its original value (as before, parameter components
equal to 0 were also allowed to vary in a small range). This corresponds to the
PWA from Definition 6.5. As in Example 7.4, we are interested in identifying
maximal regions satisfying LTL formulas φ1 = ♦�3 and φ2 = ♦�7. This
problem can be approached by applying the refinement strategy for uncer-
tain parameter systems as in Example 7.4, leading to the identification of the
satisfying and violating regions presented in Fig. 7.7a, b. Alternatively, the spe-
cialized refinement strategy for additive uncertainty systems can be applied,
resulting in the identification of the regions presented in Fig. 7.7c, d. Such a
strategy leads to a finer partition, since at each step a region is refined by con-
sidering all combinations of regions reachable from it. However, this allows
the identification of larger satisfying and violating regions for the same limit
ε = 5, compared to the more general refinement strategy.
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(a) φ1 for fixed parameters (b) φ2 for fixed parameters

(c) φ1 for 1% parameter uncertainty (d) φ2 for 1% parameter uncertainty

(e) φ1 for 5% parameter uncertainty (f) φ2 for 5% parameter uncertainty

Fig. 7.6 Results for Example 7.4. Regions satisfying the formula are shown in green, while regions
satisfying the negation of the formula are shown in red. The refinement exploits the system dynamics
(using Pre) for the case when the parameters are fixed ((a) and (b)) and it uses a generic rectangular
partitions when the parameters are uncertain ((c), (d), (e), and (f))
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(a) φ1 - uncertain parameter refinement (b) φ2 - uncertain parameter refinement

(c) φ1 - additive uncertainty refinement (d) φ2 - additive uncertainty refinement

Fig. 7.7 The general refinement strategy for uncertain parameter systems and the specific refine-
ment strategy for additive uncertainty systems were applied to the PWA system from Example 7.4
with 10% additive uncertainty. Regions satisfying the formula are shown in green, while regions
satisfying the negation of the formula are shown in red. While the general strategy leads to fewer
regions after refinement with the given limit ε = 5, the additive uncertainty refinement allows the
identification of larger satisfying and violating regions

Example 7.6 Consider a three dimensional (N = 3) autonomous PWA
system that has a total of 27 rectangular regions X1, . . . ,X27 labeled by
L = {1, 2, . . . , 27}. The parameters for each region for a fixed parameter
model (where PA

l ,Pc
l are singletons Al , cl , respectively) are as follows:
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A1,3,7,9,19,21,25,27 =
⎡

⎣
0.67 0 0

0 0.67 0
0 0 0.67

⎤

⎦

A2,8,20,26 =
⎡

⎣
0.67 0 0

0 0.67 0
0 −0.63 0.67

⎤

⎦

A4,6,22,24 =
⎡

⎣
0.67 0 0

−0.63 0.67 0
0 0 0.67

⎤

⎦

A5,23 =
⎡

⎣
0.67 0 0

−0.63 0.67 0
0.29 −0.63 0.67

⎤

⎦

A10,12,16,18 =
⎡

⎣
0.67 0 −0.63

0 0.67 0
0 0 0.67

⎤

⎦

A11,17 =
⎡

⎣
0.67 0.29 −0.63

0 0.67 0
0 −0.63 0.67

⎤

⎦

A13,15 =
⎡

⎣
0.67 0 −0.63

−0.63 0.67 0.29
0 0 0.67

⎤

⎦

A14 =
⎡

⎣
0.58 0.29 −0.6
−0.6 0.58 0.29
0.29 −0.6 0.58

⎤

⎦

c1 =
⎡

⎣
26
26
26

⎤

⎦ c2 =
⎡

⎣
26
26
38

⎤

⎦ c3 =
⎡

⎣
26
26
3.3

⎤

⎦ c4 =
⎡

⎣
26
38
26

⎤

⎦ c5 =
⎡

⎣
26
38
31

⎤

⎦ c6 =
⎡

⎣
26
38
3.3

⎤

⎦

c7 =
⎡

⎣
26
3.3
26

⎤

⎦ c8 =
⎡

⎣
26
3.3
48

⎤

⎦ c9 =
⎡

⎣
26
3.3
3.3

⎤

⎦ c10 =
⎡

⎣
38
26
26

⎤

⎦ c11 =
⎡

⎣
31
26
38

⎤

⎦ c12 =
⎡

⎣
48
26
3.3

⎤

⎦

c13 =
⎡

⎣
38
31
26

⎤

⎦ c14 =
⎡

⎣
33
33
33

⎤

⎦ c15 =
⎡

⎣
48
28
3.3

⎤

⎦ c16 =
⎡

⎣
38
3.3
26

⎤

⎦ c17 =
⎡

⎣
28
3.3
48

⎤

⎦ c18 =
⎡

⎣
48
3.3
3.3

⎤

⎦

c19 =
⎡

⎣
3.3
26
26

⎤

⎦ c20 =
⎡

⎣
3.3
26
38

⎤

⎦ c21 =
⎡

⎣
3.3
26
3.3

⎤

⎦ c22 =
⎡

⎣
3.3
48
26

⎤

⎦ c23 =
⎡

⎣
3.3
48
28

⎤

⎦ c24 =
⎡

⎣
3.3
48
3.3

⎤

⎦

c25 =
⎡

⎣
3.3
3.3
26

⎤

⎦ c26 =
⎡

⎣
3.3
3.3
48

⎤

⎦ c27 =
⎡

⎣
3.3
3.3
3.3

⎤

⎦

The dynamics of the system are illustrated by simulated trajectories in Fig. 7.8.
We are interested in testing whether all initial conditions lead to oscillatory
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behavior and define sub-formula φ, which is satisfied when the value of state
variable 1 is above a certain threshold (i.e., φ is the disjunction of all regionsXl

such that ∀x ∈ Xl, [1 0 0]x > 60). By analyzing the system with LTL formula
�(♦φ∧♦¬φ) we search for the maximal set of initial conditions guaranteeing
that trajectories of the system keep oscillating between low and high values
of the first component of the state. No violating region was identifying using
the analysis approach, while most of the region [0, 100]3 was identified as
satisfying, with the exception of a small uncertain region shown in Fig. 7.8.

7.3 Formula-Guided Refinement

The analysis approach for PWA systems described in Sect. 7.1 is based on the con-
struction and refinement of finite quotients inspired by bisimulation algorithms. As
described in Sect. 4.5, an alternative approach to the analysis of large or infinite tran-
sition systems is to perform quotient refinement based on the exact specification for a
particular problem. The goal in this case is to construct a formula-equivalent quotient
(instead of a bisimilar one), which could be used for analysis instead of the original
system, where all results are equivalent for the specific property of interest.

The approach from Sect. 4.5 can be implemented using polyhedral operations,
utilizing the computations already described in Sect. 7.1, together with computational
techniques described in Chap. 5. Using such a formula-guided refinement strategy,

(a) Refinement limit ε = 5 (b) Refinement limit ε = 1

Fig. 7.8 Results of the analysis in Example 7.6. Initial states of simulated trajectories are shown
as circles. The specification is the system oscillates such that the value of the first component of
the state goes above and under 60. Results for two refinement limits are shown. No violating region
was identified for this property, while the largest satisfying region that was identified includes most
of the state space [0, 100]3, with the exception of the uncertain region shown in gray
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the computation is performed on the product automaton and could lead to improved
efficiency, since all refinement is guided by the specification, while the resulting
refined system is simplified at each step. To illustrate this, the two approaches are
compared in Example 7.7.

Example 7.7 To illustrate the differences between the analysis strategies
described in Sects. 7.1 and 7.3, we apply these approaches to the two-
dimensional (N = 2) PWA system introduced in Example 7.4 (denoted as
W2 in the following) and the three-dimensional (N = 3) PWA system intro-
duced in Example 7.6 (denoted as W3).

For W2, we seek the maximal sets of initial conditions guaranteeing that
all trajectories of the system eventually reach regions X3 or X7, respectively,
specified using LTL formulas ♦3 and ♦7.

For W3, we are interested in testing whether all initial conditions lead to
oscillatory behavior and define sub-formulas φ1 and φ2, which are satisfied
when state variable 3 is respectively low and high (i.e., φ1 is the disjunction
of all regions Xl such that ∀x ∈ Xl , [0 0 1]x < 30 and, similarly, φ2 is the
disjunction of all regions Xl such that ∀x ∈ Xl , [0 0 1]x > 60). By analyzing
the system with LTL formula �(♦φ1 ∧♦φ2) we search for the maximal set of
initial conditions guaranteeing that trajectories of the system keep oscillating
between low and high values of state variable 3.

The results obtained by applying the analysis methods described in Sects. 7.1
and 7.3 to both systems are summarized in the following table (the numbers
corresponding to the approach from Sect. 7.1 are given in parentheses). The
reported computation times correspond to a 20-iteration limit. The relative vol-
umes (as a percentage of the total state space) of the identified satisfying and
violating regions are reported as “% Satisfaction” and “% Violation”, respec-
tively. The number of states in the initial quotient and the quotient after all
refinement steps are reported as |X/∼| and |X̂/∼|, respectively. The number
of states in the product automaton after all refinement, updating and simplifi-
cation is reported as |ŜP | (no product simplification is involved for the method
described in Sect. 7.1 and the number of states of the product automaton with
the specification and the negation of the specification are reported separately).
The approach from Sect. 7.3 allows us to consider only a single product automa-
ton, unlike the one from Sect. 7.1, where both the product automaton with the
formula and its negation are constructed. In addition, the minimizations of
this product automaton keep the number of the states to be considered low.
As a result, the computation times are improved significantly by using the
formula-guided approach, while the results (in terms of identified satisfying
and violating regions) are comparable between the two methods.
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System W2 W3

Specification ♦3 ♦7 �(♦φ1 ∧ ♦φ2)

Computation time 29 (97) s 28.9 (96) s 17 (153) min
% Satisfaction 79.7 (79.8) 20.1 (20.1) 99.62 (99.76)
% Violation 20.1 (20.1) 79.7 (79.8) 0 (0)
|X/∼ | 9 9 27
|X̂/∼ | 423 (463) 419 (459) 2845 (2970)
|ŜP | 7 (926,463) 7 (918,459) 17 (8910,8910)

7.4 Notes

In this chapter, which is based on [177, 181–183, 185], we showed that the methods
developed in Chap. 4 for finite transition systems can be extended to autonomous
discrete-time PWA systems with parameter uncertainties. We developed a method
that attempts to find the largest region of initial states from which such a system
satisfies an LTL formula. Motivated by the fact that finite bisimulations only exist
for very limited classes of dynamical systems [83–86], central to our approach is the
notion of simulation. Related, probabilistic versions of this method can be found in
[1, 96, 115].

There are several simplifying assumptions that we made for simplicity of com-
putation and presentation. First, we assumed that the LTL specification is given over
the set of symbols labeling the polytopes from the definition of the PWA system
(Definition 6.3). Note that, as suggested in Example 7.1, this can be easily relaxed
to allow for formulas over arbitrary predicates in the state variables of the system.
Indeed, given a set of such predicates, a finer partition can be constructed by adding
polytopes and labeling them according to the satisfaction of the predicates (see also
Sect. 1.2).

Second, both in the definition of the system (Definitions 6.3, 6.4, and 6.5, which
are particular cases of 6.1) and its semantics (Definitions 6.6 and 6.7), we considered
only open, full dimensional polytopes as discussed in Sect. 6.3. Third, we assumed
that the Al-matrices of the system were non-singular. While seemingly restrictive,
this assumption was made purely for simplicity of presentation. The implementation
of the Post and Pre operators can be easily extended to semi-linear sets and singular
affine functions as discussed in Sect. A.4.

While in this chapter we focused on the problem of finding largest sets of satisfy-
ing initial states, the results presented here can be used to perform “classical” LTL
model checking of PWA using standard tools such as SPIN [89], NuSMV [43],
PRISM [114], or DiVinE [18]. Given a PWA system W , the exact finite quo-
tient TW /∼ or the over-approximation finite quotient TW /∼ can be constructed as
described in Sects. 7.1 and 7.2. Then, TW /∼ or TW /∼ can be checked against an LTL
formula φ over the index set L of W . In addition, the special observation Out can
be used as an atomic proposition in φ. As a simple example, consider the problem
of guaranteeing that region X is an invariant for all trajectories of a PWA system W .
We formulate the specification φ = �¬Out requiring that trajectories of the system
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never visit the region labeled by Out. In other words, satisfying trajectories of W
will never leave X. We can model check the quotient TW /∼ against φ using standard
tools and if TW /∼ satisfies φ we can guarantee that all trajectories of W satisfy
the specification (the same is true for the over-approximation quotient TW /∼). In
subsequent chapters we will use this strategy to guarantee that trajectories of W do
not leave the defined state space of the system.

It is important to note that simply model checking the quotient TW /∼ (and espe-
cially the over-approximation TW /∼) is restrictive as discussed in Chap. 4, which
motivated the development of additional refinement strategies. While the satisfac-
tion of the formula can be guaranteed for all trajectories of W when the quotient
satisfies the formula, nothing can be guaranteed if the formula is violated. Since, in
general, TW /∼ is coarse (it contains few states), positive verification results can be
rarely obtained. In Chap. 4, we extended the standard model checking methods in
order to obtain more informative results. In this chapter, we showed that the con-
struction of quotients is possible for PWA systems and the techniques from Chap. 4
can, therefore, be extended to such systems.

For the computation of an over-approximation of the set of states reachable from
a certain region in a PWA system with parameter uncertainty, we defined the Post
operator. Intuitively, in this treatment we assume that the parameter uncertainty is
inherent in the dynamics of the system and must be handled as such as part of the
analysis problem. An alternative formulation, where such uncertainty is considered
as an allowed range in which the system’s parameters can be tuned (corresponding
to a parameter synthesis problem) is presented in Chap. 8. A treatment related to
Eq. (7.6) can be found in [16], where it is shown that this over-approximation is the
smallest convex set containing the states reachable from a given region.

The methods presented in this chapter involve model checking of the finite quotient
TW /∼ at each step of the iterative procedure. Even though the worst case complexity
of LTL model checking is exponential in the size of the formula, this upper limit is
rarely reached in practice. We use an in-house model checker, which allows us to
model check TW /∼ from specific states only and perform computation (such as the
construction of Büchi automata) only once instead of recomputing at each step.

The construction and refinement of finite quotients used in our approach is based
on polyhedral operations, which also have an exponential upper bound. Therefore, the
applicability of the method depends on controlling the number of states as refinement
progresses. When applied to a state X , the refinement procedure Refine(TW /∼, X )
can, in general, produce a maximum of 2k subsets, where k = |PostTW /

∼

(X)| is the
number of states reachable from state X . In the particular case when the parameters
of the PWA system are fixed, only k subsets can be produced. To limit the explosion
in the number of states in the quotient, we only refine states when this can improve
the solution. Even so, due to its inherent complexity, this method is not suitable for
the analysis of systems in high dimensions or when many iterations are required to
find a solution. As expected, the method performs best if large portions of the state
space can be characterized as satisfying the formula or its negation during earlier
iterations.
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The formula-guided refinement method for PWA systems presented in Sect. 7.3 is
based on the approach for constructing formula-equivalent quotients from Sect. 4.5.
The main advantage of this approach is that the specification is incorporated directly
as part of the refinement procedure and the computation is performed on the prod-
uct automaton, which allows for certain optimizations. Compared to the iterative
refinement approaches presented in Sect. 7.1, this procedure aims at constructing
formula-equivalent abstractions that might be coarser than bisimulation for certain
systems (conditions under which the analysis results from the formula-guided refine-
ment approach are exact are described in Sect. 4.5 although, in general, the overall
procedure is still conservative). Additional notes on the formula-guided refinement
approach (in the context of transition systems rather than PWA systems) are available
in Sect. 4.6.

The analysis of PWA systems for properties such as stability, invariance and reach-
ability has also been considered elsewhere (e.g., [28]) but the approaches presented
in this chapter allow greater expressivity through LTL specifications.

The algorithms presented in this chapter were implemented in Matlab and made
available for download at http://sites.bu.edu/hyness/fapas/. The tools, called FaPAS
(short for “Formal analysis of Piecewise Affine Systems”) and FFaPAS (short for
“Formula-guided Formal analysis of Piecewise Affine Systems”), use the MPT Tool-
box [113] for polyhedral operations and the ltl2ba package [65] for the construction
of Büchi automata from LTL formulas. For the two-dimensional (N = 2) case study
presented in Example 7.4, the computation using FaPAS required under 20 s for the
fixed parameter case, and under 10 min for all the uncertain parameter cases, where
the limit on refinement was set to ε = 1 and ε = 5. For the three-dimensional (N = 3)
case study presented in Example 7.6, the computation required under 20 min where
ε = 5. This computation was performed on a 3.4 GHz machine with 1 GB of mem-
ory. The evaluation presented in Example 7.7, where the iterative and formula-guided
refinement analysis approaches (described in Sects. 7.1 and 7.3) were compared, was
performed on a 3.0 GHz machine with 4GB of memory.

http://sites.bu.edu/hyness/fapas/


Chapter 8
Parameter Synthesis

To study the satisfaction of LTL formulas by trajectories of a PWA system W , in
Chap.6 we defined the embedding transition system TW , which was infinite. We
showed that finite quotients of TW can be computed through polyhedral operations
and in Chap.7 we used such quotients to develop an analysis procedure for PWA
systems. We discussed how this procedure can be used to find a region of initial
conditions of W , from which all trajectories are guaranteed to satisfy the specifi-
cation. Our procedure was also capable of handling PWA systems with uncertain
parameters restricted to polytopic ranges. We assumed that parameter uncertainty
was inherent in the system and, in order to guarantee satisfaction, trajectories must
satisfy the specification regardless of the (nondeterministic) choice of parameters
from the allowed range.

In this chapter, we take a different approach to study autonomous PWA systems
with uncertain parameters. The parameters of the system are allowed to vary in
predefined polytopic ranges as before, but in this chapter we assume that those
ranges can be restricted further. In other words, we treat the parameter ranges not
as an uncertainty inherent in the system, but rather as allowed ranges in which the
systemparametersmust be tuned.Our goal is tofind subsets of the allowedparameters
for each region, such that the satisfaction of a specification can be guaranteed. The
problem that we consider in this chapter can be formally stated as follows:

Problem 8.1 (Parameter synthesis) Given an autonomous, uncertain parameter,
discrete-time piecewise affine system W (Definition 6.3) and an LTL formula φ

over L ∪ {Out}, find subsets of system parameters PA
l,φ ⊆ PA

l and Pc
l,φ ⊆ Pc

l for each
region l ∈ L and a non-empty set of initial states X0,φ , such that all trajectories of
the system originating there satisfy the formula under all identified parameters.

In other words, we are interested in excluding parameters from the allowed setsPA
l

and Pc
l for each region l ∈ L , for which the formula is not satisfied. As it will become

clear later, for each region l ∈ L , our solutionwill be in the form of a union of disjoint
open polytopes, which are subsets of the allowed polytopes PA

l and Pc
l . In general,

it is possible that for some states, no allowed parameters can be found such that the
satisfaction of the specification can be guaranteed. Such states are excluded from the

© Springer International Publishing AG 2017
C. Belta et al., Formal Methods for Discrete-Time Dynamical Systems,
Studies in Systems, Decision and Control 89, DOI 10.1007/978-3-319-50763-7_8

141



142 8 Parameter Synthesis

allowed initial states of the system X0,φ and, therefore, the overall problem involves
searching for both parameter ranges and initial states from which the satisfaction of
the specification can be guaranteed, leading to the formulation of Problem 8.1.

Our approach to Problem 8.1 involves the construction of discrete abstractions in
the form of finite transition systems as described in Chap.7 and a counterexample-
guided strategy allowing the identification and elimination of parameters leading
to violating trajectories in the system. We first embed the autonomous PWA sys-
tem W into TW (see Definition 6.6 in Chap.6), which has infinitely many states
and is, in general, non-deterministic: given a state of TW several states might be
reachable under different parameters from the allowed sets. Thus, there is a corre-
spondence between the transitions of TW and the parameters of W and a possible
approach to Problem 8.1 involves iteratively model checking TW with LTL formula
φ in order to generate counterexamples as described in Chap.3 and eliminating such
violating behavior by restricting the allowed parameters of W to appropriate sub-
sets. When no additional counterexamples can be generated, the satisfaction of the
specification by the system is guaranteed. Such an approach resembles iterative,
counterexample-guided “debugging” of system TW , corresponding to a parameter
synthesis procedure forW . However, since TW is infinite andmodel checking cannot
be applied directly, our parameter synthesis strategy relies on the construction of the
finite over-approximation quotient TW /∼ (or the quotient TW /∼ for autonomous,
additive uncertainty PWA systems), whose language includes the language of TW as
described in Chap.7. Model checking can then be used to cut transitions from TW /∼

and, correspondingly, cut sets of parameters from W until all system trajectories
satisfy the formula.

To provide a solution to Problem 8.1, in Sect. 8.1 we discuss the problem of identi-
fying a subset of the transitions for a finite transition system (such as TW /∼) in order
to satisfy an LTL formula. In Sects. 8.2 and 8.3, we characterize sets of parameters
associated to transitions in quotients of uncertain parameter PWA systems.Then, in
Sect. 8.4, we present a solution to Problem 8.1. Alternatively, in Sect. 8.5, we propose
a method for the direct construction of a bisimulation quotient.

Example 8.1 A 2-dimensional (N = 2) PWA system is defined on the set
of polytopes X1 . . .X9 (L={1…9}) shown in Fig. 8.1a. This system is sim-
ilar to the one defined in Example 1.8 but is autonomous and has uncertain
parameters. For each mode l ∈ L the parameters are restricted to the ranges
PA
l and Pc

l . Initially, all modes have identical allowed parameter ranges (i.e.,
∀l ∈ L , PA

l = PA, Pc
l = Pc), which are defined by restricting the individ-

ual parameter components of A =
[
a1 a2
a3 a4

]

and c = [c1, c2]T to the ranges

0.8 ≤ a1 ≤ 1, −0.55 ≤ a2 ≤ −0.05, 0.05 ≤ a3 ≤ 0.55, 0.8 ≤ a4 ≤ 1,
−1 ≤ c1 ≤ 1 and −1 ≤ c2 ≤ 1.
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(a) Simulated trajectory in state space (b) Simulated trajectory over time

Fig. 8.1 A simulation of an uncertain parameter PWA system in state space (a) and over time (b).
The trajectory’s initial state is marked by a disk in a, while visits to the “unsafe” region X5 are
highlighted in gray in b. See Example 8.1 for details

Fig. 8.2 Quotient of the
example PWA system from
Fig. 8.1 described in
Example 8.1. A dot next to a
state indicates a self-loop
transition, while the Out
state as well as transitions to
it from all other states are
omitted

A simulated trajectory of the system visits region X5 (see Fig. 8.1a, b),
which is considered “unsafe” in this example, and eventually leaves the defined
state space X. Through the rest of this chapter, we will develop a framework
that allows us to formulate requirements such as “stay inside X and never
visit X5”, or richer behaviors such as permanent oscillations, and to enforce
such specifications by restricting the allowed parameters in each mode of the
system to different subsets of the allowed parameters. The method is based on
the construction of finite quotients as in Fig. 8.2.

8.1 Counterexample-Guided Pruning of Finite Systems

In this section, we focus on finite transition systems with no inputs and consider the
following synthesis problem:
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Problem 8.2 (Transition system synthesis) Given a finite transition system T =
(X, δ, O, o) and an LTL formula φ over its set of observations O , find a subset
of transitions δφ ⊆ δ and a region X0,φ ⊆ X such that transition system Tφ =
(X, δφ, O, o) satisfies φ from X0,φ (i.e., Tφ(X0,φ) � φ).

Our goal in Problem 8.2 is to obtain a transition system Tφ that satisfies spec-
ification φ but preserves the states of T . One possible approach to Problem 8.2 is
based on the idea of counterexample guided “debugging”. Using the LTL model
checking procedures described in Chap.3 we generate a counterexample—a run of
T satisfying the negation of the formula¬φ. If such a run exists, then we eliminate it
by removing one of the traversed transitions. Then, we reiterate the process until no
additional counterexamples are found, in which case we obtain the transition system
Tφ satisfying φ.

In general, several different transitions are taken during the generation of a coun-
terexample and removing any one of them will remove the counterexample from the
language of the quotient. Selecting the best transition to remove at each step is non-
trivial and, in general, it is not clear if removing a particular transition will lead to a
solution or to the “best” solution when several solutions exist. In order to obtain more
general results, we exhaustively generate all solutions by testing all transitions taken
by a counterexample. This process can be seen as generating a tree (see Fig. 8.3),
having as its root the initial system T , together with a set of states to be considered
as initial (e.g. X0 = X ). Each child node in the tree represents a transition system
that has the same set of states as the parent, but only a subset of its transitions. To
construct the children of a node, model checking is applied to the system represented
by it and a counterexample is generated. Each child represents the system obtained
by removing one of the transitions traversed by the counterexample from the parent
system. The exact order in which counterexamples are generated is not important
because the entire tree is explored by this procedure.

When transitions are removed, a state might become blocking, resulting in the
appearance of finite words in the system’s language. Since the semantics of LTL are
defined only over infinite words, we recursively make all blocking states unreachable
by removing all their incoming transitions. This allows us to guarantee that blocking
states are never reached. We must also guarantee that the system is not initialized
in a blocking state and, therefore, we remove any blocking states from the initial
set X0. If the initial set X0 becomes empty at a node of the tree, further removal of
transitions will not lead to a solution and such systems are ignored.

A leaf node in the tree constructed as described above represents a transition
system for which computation has stopped and no additional counterexamples can
be generated. Such systems either include empty initial sets (since blocking states
are removed) and are ignored, or otherwise, do not include any blocking states and
therefore their languages are non-empty and contain infinitewords only. Furthermore,
since no additional counterexamples can be generated, all words in the languages of
such transition systems are guaranteed to satisfy the LTL formula.

Someadditional optimizations to the procedure described above canbeperformed.
It is possible that the same transition system is obtained through different branches
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of the tree (i.e., through a different sequence of counterexamples). This might lead
to unnecessary computation and therefore, the tree is always pruned so that repeated
nodes are never added. Furthermore, once a satisfying transition system is found, the
tree is pruned to remove all its subsets, thus preserving the richest system with most
transitions. Finally, if the negation of the LTL formula is satisfied at any step of the
procedure, then no satisfying runs exist in the system and further computation will
not lead to solutions, so the tree is pruned accordingly.

The procedure described so far is summarized as Algorithm 15. Since T is finite
and therefore contains a finite number of transitions, the termination of Algorithm 15
is guaranteed—in the worst case, all transitions of T will be eliminated. Since the
entire computation tree of transition systems described above is explored, the solution
to Problem 8.2 generated by this procedure is complete. When X0 = ∅ for all leaf
nodes of Ttr then no Tφ and X0,φ that solve Problem 8.2 exist. In general, several
satisfying transition systems (represented by leaf nodes in the computation tree)
might be obtained. In this case, selecting the “best” solution (line 15) might involve
additional metrics, for example by ranking all transition systems providing a solution
to Problem 8.2 based on the number of transitions they include or the expressivity
of their languages.

Algorithm 15 Given a finite T = (X, δ, O, o) and an LTL formula φ over O , find
Tφ = (X, δφ, O, o) and X0,φ ⊆ X , such that δφ ⊆ δ and Tφ(X0,φ) � φ

1: Ttr := {(T, X)}
2: for all leaf nodes (T ′, X ′

0), T
′ = (X, δ′, O, o) of Ttr where X ′

0 	= ∅ do
3: Generate a counterexample w ∈ LT ′ ∩ L¬φ

4: for all transitions x ′ ∈ δ′(x) from w do
5: Construct δ′′ by removing x ′ ∈ δ′(x) from δ′
6: Construct T ′′ = (X, δ′′, O, o)
7: Construct X ′′

0 ⊆ X ′
0 and adjust δ′′ to ensure that T ′′ is non-blocking

8: if T ′′ /∈ Ttr and T ′′
� ¬φ then

9: Add (T ′′, X ′′
0 ) as a child of (T ′, X ′

0) in Ttr
10: end if
11: end for
12: end for
13: Select a leaf node (Tφ, X0,φ) of Ttr where X0,φ 	= ∅
14: return (Tφ, X0,φ)

Example 8.2 To illustrate the counterexample-guided pruning of finite sys-
tems, we apply Algorithm 15 to the simple system shown as the root of the tree
in Fig. 8.3. The observations of the system, where each state X = {X1 . . . X5}
has an unique observations o(Xi ) = oi , are omitted in the illustration. We
are interested in pruning the transitions of the system such that all trajectories
keep visiting states with observation o2 (i.e., state X2). Therefore, we apply
Algorithm 15 using the specification �♦o2. To simplify the illustration, we
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Fig. 8.3 The computation tree generated byAlgorithm 15when applied to a simple, finite transition
system (illustrated at the root of the tree) using the specification �♦o2. In other words, we require
that trajectories of the system (originating in state X1) always keep visiting states with observation
o2, which in this case is only state X2 (the unique observations o(Xi ) = oi are omitted from the
illustrations). At each node, the indicated transition is removed from the system and the resulting
transition systems are illustrated next to each node. A dot next to a state indicates a self-transition.
See Example 8.2 for additional details

consider only state X1 as initial, instead of identifying the set of satisfying
initial states while pruning the transitions.

The first counter-example generated by the algorithm is o1o2(o3)ω, which
can be removed by pruning the transition from state X1 to X2, the one from
X2 to X3 or the self-transition at X3. Pruning the transition between states X1

and X2 leads to a blocking system that does not satisfy the specification. The
pruning of each one of the other two transitions is explored separately and
additional counterexamples are generated.

When Algorithm 15 terminates, the entire computation tree illustrated in
Fig. 8.3 is explored. The leaf nodes represent transition systems that have been
pruned in such a way that the specification is satisfied.
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8.2 Parameter Sets and Transitions

For simplicity of presentation, in the rest of this chapter we use a slightly different
notation from the one introduced in Sect. 6.1. There, the parameter ranges for an
autonomous, uncertain-parameter PWA system were defined as PA

l and Pc
l for each

region l ∈ L . For the following discussion, it is convenient to consider a notation
with only a single parameter set for each region. We define the set of parameters Pl

for each region l ∈ L as a polytope in R
(N 2+N ) that combines PA

l and Pc
l . The linear

functions A : R
(N 2+N ) → R

N 2
and c : R

(N 2+N ) → R
N take the first N 2 and the

last N components of p ∈ R
(N 2+N ) and form a N × N matrix and N × 1 vector,

respectively. The dynamics of the autonomous, uncertain parameter PWA system
from Definition 6.3 are then described by

W : x(k + 1) = A(p)x(k) + c(p), x(k) ∈ Xl , p ∈ Pl, l ∈ L , k = 0, 1, . . .
(8.1)

Remark 8.1 For the case when the parameter set Pl is given as an union of polytopes
Pl = ⋃nl

i=1 P
i
l , the formulas for the calculation of Post and Post ofXl fromEqs. (1.4)

and (7.6) can be extended to
⋃nl

i=1 hull({A(p)v + c(p), v ∈ V (Xl), p ∈ V (Pi
l )}.

In Sect. 7.2, we described the construction of the over-approximation quotient
TW /∼ of an uncertain parameter PWA systemW . In this section, we use LTL model
checking to “cut” transitions from TW /∼ until we obtain a transition system TW /∼φ

satisfying the formula φ. Once a satisfying transition system is obtained, we modify
the original PWA system W by removing parameter values in such a way that the
language of the embedding transition TW φ system of the modifiedWφ is included in
the language of TW /∼φ . In other words, TW /∼φ becomes a quotient of the modified
embedding TW φ , which guarantees the satisfaction of the formula by the system.

The finite quotient TW /∼ = (XW /∼, δW ,∼, OW , oW ,∼) is constructed so that it
captures all possible transitions of the embedding TW = (XW , δW , OW , oW ). By
the definition of the embedding, transitions are included in the embedding if and
only if appropriate parameters for such a transition are allowed. Therefore, we can
relate the transitions present in the finite quotient to sets of allowed parameters for
the PWA system. These relationships are formalized in the following and are used
as part of the parameter synthesis procedures.

Definition 8.1 Given states l, l ′ ∈ XW /∼, let

Pl→l ′ = {p ∈ R
N 2+N | Post (Xl, p) ∩ Xl ′ 	= ∅} (8.2)

denote the set of parameters for which a state from region Xl makes a transition into
region Xl ′ in W .

In other words

p ∈ Pl→l ′ ⇔ ∃x ∈ Xl such that A(p)x + c(p) ∈ Xl ′ (8.3)
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and the transition l → l ′ is included in the quotient TW /∼ (or its over-approximation
TW /∼) if and only if some parameters from the setPl→l ′ are allowed inmode l ∈ L of
PWA systemW . This relates the transitions of the quotient with the set of parameters
allowed at a given region as

l ′ ∈ δW ,∼(l) ⇔ Pl ∩ Pl→l ′ 	= ∅. (8.4)

Equivalently, if the set of parameters allowed for W in mode l ∈ L is restricted to
any subset of set

Pl�l ′ = Pl→l ′
c = {p ∈ R

N 2+N | Post (Xl) ∩ Xl ′ = ∅}, (8.5)

where Pl→l ′
c denotes the complement of Pl→l ′ , then a transition between states l and

l ′ is impossible in TW /∼. In other words

l ′ /∈ δW ,∼(l) ⇔ Pl ⊆ Pl�l ′ . (8.6)

The equivalence from Eq. (8.6) provides a strategy for eliminating transitions of
TW /∼ (or TW /∼) by restricting the parameters ofW to appropriate sets. This allows
the implementation of the algorithm developed in Sect. 8.1 to the quotient of W ,
provided that the set Pl�l ′ can be computed.

We first consider the computation of the sets from Definition 8.1 and Eq. (8.5) for
autonomous, additive-uncertainty PWA systems, where the following computation
is possible:

Proposition 8.1 Given states l, l ′ ∈ XW /∼, the V-representation of set Pl→l ′ from
Definition 8.1 can be computed from the V-representations of Xl and Xl ′ as

Pl→l ′ = {p ∈ R
N 2+N | A(p) = Al, c(p) ∈ B} where (8.7)

B = hull({v′ − Alv, v ∈ V (Xl), v
′ ∈ V (Xl ′)})}. (8.8)

Proof We need to show that

p ∈ Pl→l ′ ⇔ A(p) = Al, c(p) ∈ B
?⇔ ∃x ∈ Xl such that Alx + c(p) ∈ Xl ′

(⇐) Let ∃x ∈ Xl such that Alx + c(p) ∈ Xl ′ . Let m = |V (Xl)| and x = �m
i=1λi vi ,

where 0 < λi < 1 for all i = 1, . . . ,m and �m
i=1λi = 1. Let n = |V (Xl ′)| and

x ′ = �n
j=1μ j v′

j , where 0 < μ j < 1 for all j = 1, . . . , n and �n
j=1μ j = 1. Then,

Al�
m
i=1λi vi + c(p) = �n

j=1μ j v
′
j ⇒ c(p) = �n

j=1μ j v
′
j − Al�

m
i=1λi vi =

= �m
i=1�

n
j=1λiμ j (v

′
j − Alvi ) ⇒ c(p) ∈ hull({v′ − Alv, v ∈ V (Xl ), v′ ∈ V (Xl ′)})

(⇒) Let c(p) ∈ hull({v′ − Alv, v ∈ V (Xl), v′ ∈ V (Xl ′)}), c(p) = �m
i=1�

n
j=1νi j

(v′
j − Alvi ), where 0 < νi j < 1, i = 1, . . . ,m, j = 1, . . . , n and �m

i=1�
n
j=1νi j = 1.
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Let λi = �m
j=1νi j and μ j = �n

i=1νi j . Of course, 0 < λi < 1 for all i = 1, . . . ,m,
0 < μ j < 1 for all j = 1, . . . , n and �m

i=1λi = �n
j=1μ j = �m

i=1�
n
j=1νi j = 1.

Then, for x = �m
i=1λi vi and x ′ = �n

j=1μ j v′
j we have Alx + c(p) = x ′ and therefore

∃x ∈ Xl such that Alx + c(p) ∈ Xl ′ . �

In the equations above, Al represents the (singleton) parameter value of the matrix
corresponding to mode l ∈ L . Following from Proposition 8.1, the removal of a
transition between states l and l ′ in TW /∼ amounts to the restriction of the allowed
parameters in mode l of W to any set

P′
l ⊆ Pl \ Pl→l ′ , (8.9)

and all computation can be performed using polyhedral operations.
For autonomous PWA systems where the matrix component of the parameters is

allowed to vary, the set Pl→l ′ cannot be computed easily. Instead, we focus directly
on the computation of a subset

Pl�l ′ ⊆ Pl�l ′ , (8.10)

guaranteeing that a transition from all states in region Xl to any state in region Xl ′

is impossible in TW . This allows the removal of transition l →e∼ l ′ in TW /∼ by
restricting the parameters ofW to a setP′

l ⊆ (Pl∩Pl�l ′). In the following,we develop
two different strategies leading to the the construction of Pl�l ′ , which offer a tradeoff
between computational complexity and the accuracy of the obtained approximation.

Our first computational strategy is based on the following observation: a transition
from l to l ′ is impossible in TW /∼ under parameters p ∈ Pl (i.e., Post (Xl, p)∩Xl ′ =
∅) when one of the inequalities defining the H-representation of regionXl ′ is violated
by all successor states A(p)x + c(p) ∈ Post (Xl), x ∈ Xl .

Proposition 8.2 Given states l, l ′ ∈ XW /∼, the H-representation of a conserv-
ative under-approximation of set Pl�l ′ from Eq. (8.5) can be computed from the
V-representation of Xl and the H-representation of Xl ′ = {x ∈ R

N | hT
i x ≤ ki , i =

1, . . . , n} as

Pl�l ′ =
n⋃

i=1

{p ∈ R
(N 2+N ) | hT

i v̂ p > ki ,∀v ∈ V (Xl),∀i = 1, . . . , n} ⊆ Pl�l ′ ,

(8.11)
where, for any state x ∈ R

N and parameters p ∈ R
N 2+N , the x̂ operator reshapes

vector x so that x̂ p = A(p)x + c(p).

Proof

Let p ∈ Pl�l ′ =
n⋃

i=1

{p ∈ R
(N 2+N ) | hT

i v̂ p > ki ,∀v ∈ V (Xl),∀i = 1, . . . , n} =
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=
n⋃

i=1

{p ∈ R
(N 2+N ) | hT

i (A(p)v + c(p)) > ki ,∀v ∈ V (Xl)} ⇒

⇒ ∃i, 1 ≤ i ≤ n,∀v ∈ V (X), hT
i (A(p)v + c(p)) > ki ⇔

⇔ ∀x ∈ X, hT
i (A(p)v + c(p)) > ki ⇔

⇔ �x ∈ X, A(p)x + c(p) ∈ Xl ′ ⇔
⇔ Post (Xl, p) ∩ Xl ′ = ∅

�

Using the computation from Proposition 8.2, the under-approximation Pl�l ′ is
obtained as a union of polyhedral sets and allows the computation of a set of allowed
parameters P′

l = (Pl ∩ Pl�l ′) for mode l of W , guaranteeing the removal of the
transition between states l and l ′ in TW /∼.

A second strategy for the computationof anunder-approximation toPl�l ′ for some
l, l ′ ∈ XW /∼ is based on the set difference operator � introduced in Definition A.8
and the observation that, given parameters p ∈ Pl ,

Post (Xl, p) ∩ Xl ′ 	= ∅ ⇔ 0 ∈ Post (Xl , p) � Xl ′ (8.12)

Proposition 8.3 Given states l, l ′ ∈ XW /∼ and the V-representations of Xl and Xl ′ ,
the V-representation of a conservative under-approximation of the set from Eq. (8.5)
can be computed as

Pl�l ′ = {p ∈ R
N 2+N | hT v̂ p < hT v′,∀v ∈ V (Xl),∀v′ ∈ V (Xl ′)} ⊆ Pl�l ′ (8.13)

for any h ∈ R
N . Furthermore, a less conservative under-approximation can be

computed as

Pl�l ′ =
⋃

h∈H
{p ∈ R

N 2+N | hT v̂ p < hT v′,∀v ∈ V (Xl),∀v′ ∈ V (Xl ′)} ⊆ Pl�l ′

(8.14)
where H ⊆ R

N .

Proof To guarantee that all points from a polytope x ∈ Xl satisfy a linear inequality
hT x ≤ k it is necessary and sufficient to guarantee that the inequality is satisfied at
all vertices vx ∈ V (Xl)

∀v ∈ V (Xl), h
T v ≤ k ⇔ ∀x ∈ Xl , h

T x ≤ k (8.15)

Let p ∈ Pl�′l . Then, for some h ∈ R
N we have

∀v ∈ V (Xl),∀v ∈ V (Xl), h
T v̂ p < hT v′ ⇒

⇒ ∀v ∈ V (Xl),∀v ∈ V (Xl), h
T (A(p)v + c(p) − v′) < 0,

which, from Eq. (8.15), implies that
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∀x ∈ Post (Xl, p) � Xl ′ , h
T x < 0 ⇒ 0 /∈ Post (Xl, p) � Xl ′ .

From Eq. (8.12) this guarantees that Post (Xl , p) ∩ Xl ′ = ∅. Extending this compu-
tation to a union of sets as in Eq. (8.14) is straightforward, since the result holds for
any h ∈ H , where H ⊂ R

N is a set of samples. �

The quality of the under-approximation Pl�l ′ computed through Proposition 8.3
improves as the number of samples in set H from Eq. (8.14) is increased. To obtain
better coverage, the set H can be obtained through uniform sampling of rotation
groups. While, in terms of computational complexity, this approach could be more
costly than obtaining the under-approximation Pl�l ′ through Proposition 8.2, it
allows control over the quality of the approximation by selecting the number of
samples in H .

8.3 Transient Parameters

In this section, we consider the particular case when a self loop (i.e., a transition
l → l for some l ∈ XW /∼) must be removed during the application of the pro-
cedure described in Sect. 8.1 to the quotient TW /∼. Although such transitions can
be removed by restricting the parameters of PWA system W to appropriate subsets
using the computation from Proposition 8.2 or Proposition 8.3, this might lead to
very conservative results. In fact, such an approach would require that whenever a
self loop at a state l ∈ XW /∼ is removed, all trajectories of W leave region Xl in a
single step, which is hard to enforce. Instead, in the following we derive conditions
guaranteeing that if the parameters are restricted appropriately, trajectories of the
system leave the region eventually, but not necessarily in a single step, which leads
to a less conservative parameter synthesis procedure.

Definition 8.2 A subset of parameters P′
l ⊆ Pl is transient at mode l ∈ L of PWA

system W if and only if, for all trajectories x(0)x(1)x(2) . . . such that x(0) ∈ Xl ,
there exists a finite k > 1 such that x(0), . . . , x(k) ∈ Xl and x(k + 1) /∈ Xl .

Remark 8.2 The above definition of transient parameters is related to the definition
of stuttering inputs from Definition 9.2 in Sect. 9.3 from Chap.9. Propositions 8.4
and 8.5 are stated in more general forms as Propositions 9.5 and 9.6, respectively,
and their proofs are therefore postponed to Chap.9.

Restricting the parameters of a PWA system W to a transient subset P′
l ⊆ Pl

guarantees that regionXl becomes a transient region for all trajectories of the system.
While this does not eliminate the self loop at state l ∈ XW /∼ in the quotient TW /∼,
it guarantees that this loop cannot be followed infinitely often along any trajectory. In
the particular case when a specification expressed as a formula φ from the LTL\©
fragment is considered, this allows us to safely ignore transition l → l without
violating the inclusion of the system languagewithin the quotient language. Formally,



152 8 Parameter Synthesis

this result follows from the stutter equivalence (i.e., an equivalence with respect to
the order of observations visited along all trajectories but not the exact number of
repetitions of each observation) of the quotients constructed with and without stutter
transitions such as the self loop at state l. In the following, we derive a necessary
and sufficient condition characterizing a subset of parameters as transient and use it
to develop a computational procedure based on polyhedral operations for restricting
the parameters of a PWA system to transient subsets.

Proposition 8.4 A subset of parameters P′
l ⊆ Pl is transient at mode l ∈ L of PWA

system W if and only if

0 /∈ hull({(A(p) − I )v + c(p),∀v ∈ V (Xl),∀p ∈ V (P′
l)}) (8.16)

where I ∈ R
N×N denotes the identity matrix.

The characterization from Proposition 8.4 provides a computational procedure that
allows us to check if a set of parameters is transient. Since this condition is necessary
and sufficient, in the following we use it to restrict a set of parameters to a transient
subset.

Proposition 8.5 Given state l ∈ XW /∼ and the V-representation V (Xl) of Xl , the
subset of parameters with the following H-representation

P′
l = {p ∈ R

N 2+N | hT v̂ p < hT v,∀v ∈ V (Xl)} (8.17)

is transient at mode l ∈ L for any h ∈ R
N .

Note that the computation from Proposition 8.4 is similar to the one from Proposi-
tion 8.3 but does not allow a larger transient set of parameters to be computed as
a union of smaller ones as in Eq. (8.14). However, sampling might still be benefi-
cial in order to find larger subsets of parameters that are transient. In other words,
given the set of samples H , generated by uniformly sampling rotation groups as
in Proposition 8.3, we seek to find an h ∈ H that maximizes the volume of the
intersection

P′
l = Pl ∩ {p ∈ R

N 2+N | hT v̂ p < hT v,∀v ∈ V (Xl)}). (8.18)

8.4 Parameter Synthesis for PWA Systems

Using the results described in Sects. 8.3 and 8.2 and themethod discussed in Sect. 8.1,
a solution to Problem 8.1 can be obtained as follows. Given PWA system W with
embedding TW and LTL formula φ, the quotient TW /∼ (or its over-approximation
TW /∼) is constructed as described in Chap.7 and Algorithm 15 is applied to it.
Whenever a transition between states l and l ′ is removed as part of the computation,
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the set of system parameters of W is restricted using Propositions 8.2 or 8.3. In the
particular case when l = l ′ and φ is from the LTL\© fragment, the self loop l → l
is removed through Proposition 8.5 in order to obtain less conservative results.

The computation from Algorithm 15 is guaranteed to terminate returning a tree,
where the root node represents the quotient TW /∼ (or TW /∼) and every other node
represents a transition system that has the same states as TW /∼ (and TW /∼) but
only a subset of its transitions (see Sect. 8.1). Each transition system from this tree
is, in fact, a quotient of a PWA system where parameters have been restricted to
appropriate subsets using the computation described so far. In other words, each
node in the tree represents a triple (T ′

W /∼,W ′,X′
0) where

i. X ′
0 ⊆ X ′

W /∼ is a set of initial states from the quotient T ′
W /∼,

ii. the difference betweenW andW ′ is in the parameter sets where, for each mode
l ∈ L , the parameter set of W ′ is a subset of the allowed parameter set for W
(i.e., P′

l ⊆ Pl for some l ∈ L),
iii. the difference between T ′

W /∼ and TW /∼ is the set of transitions where, for each
state l ∈ XW /∼, the set of reachable states from l in T ′

W /∼ is a subset of the set
of reachable states in TW /∼, and

iv. T ′
W is the embedding of W ′, while T ′

W /∼ is the quotient of T ′
e induced by the

observational equivalence relation ∼.

Therefore, T ′
W /∼ simulates T ′

W and the language inclusionLT ′
W

⊆ LT ′
W /

∼

is guar-
anteed. When a leaf node in the tree returned by Algorithm 15 represents the triple
(T ′

W /∼,W ′, X ′
0), we know that T ′

W /∼ satisfies φ from region X0 (see Sect. 8.1)
and, therefore, W ′ satisfies φ from region con(X0), which provides a solution to
Problem 8.1.

The PWA system structure allows different regions to share the same set of para-
meters, for example, whenever the initial partitioning of X is refined to accommodate
a specification. Therefore, it is possible that additional transitions besides the target
one are removed at each step of the computation described above and, to account for
this, we reconstruct the quotient every time parameters are cut. If, during the com-
putation, the set of allowed parameters for some mode l ∈ L of W becomes empty,
then we consider state l and all states from region con(l) as blocking in TW /∼ and
TW , respectively, and we make them unreachable by restricting the parameters of all
other regions accordingly. Whenever an over-approximation quotient is constructed,
a spurious transition might appear in place of one that was already eliminated but we
prevent this by enforcing that once a transition is removed it never reappears in the
quotient.

The computation described so far in this section is summarized as Algorithm 16,
which covers the most general case of parameter uncertainty in W . This proce-
dure is guaranteed to terminate but, while our solution to the purely discrete prob-
lem discussed in Sect. 8.1 was complete, Algorithm 16 might not find a solution
to Problem 8.1 even when one exists. Due to the construction and use of (over-
approximation) quotients to guide the removal of parameters and the computation of
under-approximate parameter sets for the removal of transitions, the overall method
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becomes conservative, but the correctness of the solution (when one is found) is guar-
anteed. As for Algorithm 16, the procedure summarized in Algorithm 16 returns a
tree, where several solutions to Problem 8.1 might be possible and are represented
by its leaf nodes. Selecting the “best” solution is a non-trivial problem, and might
depend on the application. It is possible to introduce additional constraints (such as
requiring that a particular transition is present) or compare total number of transi-
tions of the solutions, since more reachable states from the initial one with more
transitions result in a richer language.

Both the number of states and transitions in the embedding TW /∼ contribute to
the complexity of Algorithm 16. A high dimensional system with many regions of
different dynamics would be embedded in a transition system with a large number
of states. This, together with the size of the LTL formula affects the time required
to perform model checking on the system. The number of transitions in the original
embedding, on the other hand, depends on the dynamics of the system and determines
how many iterative model checking steps must be performed during the generation
of the computation tree. As a result, Algorithm 16 can perform well even on high
dimensional systems, as long as the total number of transitions is low or only few
transitions must be removed to reach a solution.

Algorithm 16 Given a PWA system W (embedded in TW ) and an LTL formula φ,
identify a region X0,φ and construct a systemW φ that satisfies φ from X0,φ and, for
each mode l ∈ L , its parameters are a subset of the allowed parameters for W .

1: Construct quotient TW /∼ from TW
2: Let X0 := XW /∼ \ {Out}
3: Initialize Ttr := {(TW /∼ ,W , X0)}
4: for all leaf nodes (T̄ ′

W /∼ ,W ′, X ′
0) of Ttr where X ′

0 	= ∅ do
5: Generate a counterexample w ∈ LT̄ ′

W /
∼

∩ L¬φ

6: for all transitions l to l ′ from w do
7: if l = l ′ and φ ∈ LTL\© then
8: Construct P′′

l as a transient subset of P′
l

9: else
10: P′′

l := (P′
l ∩ Pl�l ′ )

11: end if
12: Construct PWA system W ′′ (the parameter set for mode l ∈ L is P′′

l )
13: Construct quotient T̄ ′′

W /∼ of W ′′
14: Enforce no transition between l and l ′ in T̄ ′′

W /∼

15: Recursively make all blocking states of T̄ ′′
W /∼ unreachable and restrict the parameters of

W ′′ appropriately
16: Construct initial set X ′′

0 ⊆ X ′
0 by excluding blocking initial states

17: if no node from Ttr has T̄ ′′
W /∼ as its quotient then

18: add (T̄ ′′
W /∼ ,W ′′, X ′′

0 ) as a child of (T̄ ′
W /∼ ,W ′, X0) in Ttr

19: end if
20: end for
21: end for
22: select a leaf node (T̄W φ /∼ ,W φ, X0,φ) of Ttr where X0,φ 	= ∅
23: return W φ and X0,φ = con(X0,φ)
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Fig. 8.4 First 20 nodes of the computation tree generated byAlgorithm16when applied to the PWA
system from Example 8.1 (simulated trajectory in Fig. 8.1 and quotient in Fig. 8.2). In contrast to
the transition system synthesis algorithm application illustrated in Fig. 8.3, here multiple transitions
are often removed at each node as a result of restricting the parameters of the system as explained
in Sect. 8.2

Remark 8.3 In order to prevent unnecessary computation, we can first model-check
the quotient TW /∼ fromeach initial state against¬φ. The satisfaction of this negation
from an initial state implies that there are no satisfying trajectories originating there
under any of the allowed parameters and a solution to Problem 8.1 will not be found
by our parameter synthesis procedure.

Example 8.3 To illustrate the parameter synthesis for PWA systems approach
presented in this chapter, we apply Algorithm 16 to the PWA system defined
in Example 8.1. The initial system has uncertain parameters and, for some
parameter values, trajectories of the system visit regionX5, which we consider
unsafe. In addition, it is possible that trajectories of the initial system leave
X, which is required to be invariant. Finally, we require that trajectories of
the system oscillate, visiting regions X1 and X9, while avoiding region X5. To
capture all these properties, we use the specification �(¬5 ∧ ¬Out ∧ ♦1 ∧
♦9). The invariant X is enforced as a pre-processing step by restricting the
parameters of the system to suitable sub-sets and therefore the specification
reduces to �(¬5 ∧ ♦1 ∧ ♦9).

The first 20 nodes (corresponding to different quotients) of the computation
tree generated byAlgorithm 16 are shown in Fig. 8.4. Compared to the counter-
example guided pruning of transitions in a finite system (illustrated in Fig. 8.3),
multiple transitions are removed in this case since the parameters of the PWA
system are restricted at each step and the quotient is recomputed.
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Fig. 8.5 A satisfying trajectory in state space (a) and time (b) for the system synthesized in
Example 8.3. The initial state is shown as a disk in a

Fig. 8.6 Resulting quotient
after parameter synthesis for
the system in Example 8.3.
All transitions to state Out
are also removed to enforce
X as an invariant, while
self-transitions are preserved
but the parameters are
restricted as stuttering to
enforce the progress of
trajectories of the system

Only a single satisfying PWA system is identified in this case after the
algorithm terminates and a simulated trajectory of the resulting system is shown
in Fig. 8.5. This illustrates that the system satisfies the specification and the
trajectory oscillates without visiting region X5 or leaving the invariant X. The
quotient of the resulting system is shown in Fig. 8.6, which illustrates that
a number of transitions were removed in order to satisfy the specification
compared to the quotient of the initial system shown in Fig. 8.2.

Interestingly, for this example no solutions are identified unless the com-
putation of transient parameters described in Sect. 8.3 is utilized. Indeed, the
quotient shown in Fig. 8.6 retains self-transitions at a number of the states and
the trajectory illustrated in Fig. 8.5 makes several steps within the same region
before making a transition to an adjacent region along the oscillations.
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8.5 Parameter Synthesis Using Bisimulations

The construction of finite bisimulation quotients for PWA systems is attractive due to
their equivalence with respect to model checking. One possible approach to the com-
putation of bisimulation quotients involves the construction and subsequent refine-
ment of simulation quotients as discussed in Chap. 7. However, this procedure is not
guaranteed to terminate since, in general, a PWA system might not admit a finite
bisimulation quotient. Here, we consider an orthogonal approach where, instead of
attempting to construct a bisimulation quotient for a given PWA system directly
(which might be infeasible), we first restrict the system’s behavior by restricting its
sets of parameters appropriately. While, in doing so, we sacrifice possible behavior
and restrict the richness of the system’s language, we obtain a system for which a
bisimulation quotient can be computed trivially.

A bisimulation quotient constructed using the approach outlined above is not
directly guaranteed to satisfy a given specification (Problem 8.1). However, as it
will become clear in the following, each transition of such a bisimulation quotient
corresponds to a specific set of parameters. Then, a particular property can be easily
enforced (for example by pruning transitions and the corresponding parameter sets
using the approach described in Sect. 8.1). In addition, the bisimulation quotient
can be used interchangeably with the restricted-parameter PWA system for model
checking or analysis.

As before, we begin by studying the relation between the set of parameters ofW
and transitions in the quotient TW /∼.

Definition 8.3 Given states l, l ′ ∈ XW /∼, let

Pl⇒l ′ = {p ∈ R
(N 2+N ) | Post (Xl , p) ⊆ Xl ′ } (8.19)

denote the set of parameters for which every state x ∈ Xl makes transitions to states
in Xl ′ only.

In other words,
p ∈ Pl⇒l ′ ⇔ ∀x ∈ Xl , A(p)x + c(p) ∈ Xl ′ . (8.20)

From Eq. (8.19) it follows that restricting the allowed parameters in mode l ∈ L of
PWA systemW to any subsetP′

l ⊆ (Pl∩Pl⇒l ′) guarantees that only the deterministic
transition l → l ′ is possible in TW /∼.

Proposition 8.6 If, for each mode l ∈ L, the parameters of PWA system W are
restricted to the subset P′

l = Pl ∩ (
⋃

l ′∈L P
Xl⇒Xl′ ), then the quotient TW /∼ is a

bisimulation quotient.

Proof The proof follows immediately from Definitions 8.3, 1.4 (bisimulation)
and 6.6 (embedding of PWA systems). �
After the parameters ofW are restricted as described in Proposition 8.6, the quotient
TW /∼ is still computable as before but its transitions are implicitly induced by
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l → l ′ ⇔ P′
l ∩ Pl⇒l ′ 	= ∅. Note that TW /∼ is in general nondeterministic since the

parameter set Pl ∩ PXl⇒Xl′ might be nonempty for several different l ′ ∈ L .

Proposition 8.7 Given states l, l ′ ∈ XW /∼, the H-representation of parameter set
Pl⇒l ′ from Definition 8.3 can be computed from the V-representation con(l) = Xl =
hull(V (Xl)) and the H-representation con(l ′) = Xl ′ = {x ∈ R

N | hT
i x ≤ ki , i =

1, . . . , n} as

Pl⇒l ′ = {p ∈ R
(N 2+N ) | hT

i (A(p)v + c(p)) < ki ,∀v ∈ V (Xl),∀i = 1, . . . , n}

Proof (⇒) Let p ∈ R
N 2+N such that ∀v ∈ V (Xl),∀i = 1, . . . , n, hT

i (A(p)v +
c(p)) < ki . From Eq. (8.15), this implies that ∀i = 1, . . . , n, ∀x ∈ Xl , hT

i (A(p)x +
c(p)) < ki or, equivalently, ∀x ∈ Xl, A(p)x + c(p) ∈ Xl ′ and therefore
Post (Xl , p) ⊆ Xl ′ .

(⇐) Let p ∈ R
N 2+N such that Post (Xl , p) ⊆ Xl ′ . Then, hull({A(p)v + c(p), v ∈

V (Xl)}) ⊆ Xl ′ ,which implies that∀i = 1, . . . , n, ∀v ∈ V (Xl), hT
i (A(p)v+c(p)) <

ki . �

The computation from Proposition 8.7 allows us to restrict the parameters of W as
described in Proposition 8.6, which guarantees that the quotient TW /∼ is, in fact, a
bisimulation quotient of TW .

Example 8.4 Weillustrate the parameter synthesis usingbisimulationsmethod
presented in this chapter on the two-dimensional (N = 2) PWA system defined
in Example 7.4. As before, we assume hyper-rectangular parameter sets, where
each parameter is restricted to a range defined by±50% of the fixed parameter
values from Example 7.4 (parameters equal to 0 are restricted to the range
[−1.0E−2, 1.0E−2]). Furthermore, the parameters for each region l ∈ L are
restricted to ensure that X is an invariant of all trajectories of the system.
This can be accomplished using a computation similar to the one described in
Proposition 8.7, where the entire X is used as the target (instead of a specific
Xl ′) to restrict the parameters for each region Xl . The quotient of this system
under the uncertain parameters is illustrated in Fig. 8.7a.

We apply the method described in Sect. 8.5 in order to modify the para-
meters of the system and obtain a bisimulation quotient directly. A graphical
representation of the resulting bisimulation quotient is shown in Fig. 8.7. As
expected, a number of transitions of the system are lost when parameters are
restricted to the smaller sets guaranteeing bisimulation. For example, the para-
meter set for regionX7 retains around 50%of its original volume,while the one
for region X5 retains only 0.017% when only parameters guaranteeing bisim-
ulation are preserved. However, due to the language equivalence between the
bisimulation quotient and the initial PWA system, the two systems can be used
equivalently for model checking.



8.6 Notes 159

Fig. 8.7 a Quotient of the
PWA system from
Example 7.4 with uncertain
parameters restricted to
±50% of the fixed-parameter
values. b Bisimulation
quotient after the application
of the parameter synthesis
approach described in
Sect. 8.5. Self-loop
transitions at a state are
indicated by a dot next to it.
See Example 8.4 for details

(a) Initial Quotient

(b) Bisimulation Quotient (after parameter synthesis)

8.6 Notes

In this chapter, which is based on [178], we showed that an iterative procedure can
be used to obtain subsets of parameters for a PWA system, such that an LTL formula
is satisfied (Problem 8.1).

The counterexample-guided pruning method presented in Sect. 8.1 focuses on the
problem of enforcing that a finite transition system satisfies an LTL specification. The
approach involves iteratively generating counterexamples through model-checking
(Chap.3) and removing these violating behaviours by pruning the transitions of the
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system. This approach is similar to counterexample-guided abstraction refinement
(CEGAR) [44] in the sense that counterexamples are generated iteratively. However,
while with CEGAR counterexamples are removed from the language of the system
by refining the abstraction (unless a counterexamples is not spurious, in which case
the analysis terminates), here we directly remove each counterexample by pruning
transitions. More generally, enforcing a particular property for a finite system could
be considered as an instance of the supervisory control problem (e.g., where a sep-
arate controller is synthesized to disable unwanted transitions and behaviors of the
system) but here we consider autonomous systems, while the removal of transitions
corresponds to a memoryless control strategy. The counterexample-guided pruning
approach from this chapter is also different from other synthesis methods, since the
states of the system remain unchanged and only its transitions are modified. This
restriction is required in order to apply the approach for synthesis of PWA sys-
tems, where only the system’s parameters (and the transitions they induced) can be
restricted.

To apply this approach to PWA systems, in Sect. 8.2 we derived conditions guar-
anteeing that a given transition is present or not present in the quotient. For systems
with additive parameter uncertainty only these conditions are exact, while other-
wise the results are conservative (e.g., the sets of parameters preventing a transition
between two states of the quotient are under-approximated). Two strategies were
proposed for computing an under-approximation of parameter subsets guaranteeing
that a transition between two regions (states in the quotient) is not possible. The com-
putation from Proposition 8.3 could bemore costly than the one from Proposition 8.2
but it allows some control over the quality of the approximation (e.g., by sampling
of rotation groups, for example using the methods described in [133]). Using the
properties from Sect. 8.2, the removal of a transition in the finite quotient can then
be enforced in the PWA system by restricting the parameter sets to a suitable subset.
In general, several transitions are removed at each step as a result of restricting the
system’s parameters, which was illustrated in Fig. 8.4.

In addition, weaker conditions were derived for restricting the parameters of a
system to subsets that enforce transitions eventually rather than in a single step or,
equivalently, enforcing that unwanted self-transitions at specific states of the quotient
cannot be taken infinitely. While this computation can be applied only for a subset of
specifications (LTL formulas without the next operator), this enables the synthesis
of satisfying PWA systems in the cases where no subset of parameters can be found
otherwise as in Example 8.4. The computation of such parameter sets is related to
approaches for dealing with liveness properties (e.g., [24]) and stuttering behaviour
in the quotient, which is discussed in more detail in Sect. 9.3.

In Sect. 8.5,we also derived conditions guaranteeing that only deterministic transi-
tions exist in the quotient for certain subsets of parameters. This allowed us to restrict
the parameters of a PWA system to subsets guaranteeing that a finite bisimulation
quotient is constructed. While this restricts the possible behaviour of the system as
illustrated in Example 8.4, it provides a strategy for obtaining finite bisimulation
quotients, which can be used equivalently with the modified, concrete PWA systems
(with restricted parameters) for analysis or model checking.
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In the controls and formalmethods communities, the parameter synthesis problem
has been considered for a variety of systems. For example, in [86] parametric con-
straints were derived for guaranteeing the correctness of hybrid automaton models
with respect to safety properties and a counterexample-guided parameter synthe-
sis approach was developed for linear hybrid automata in [62]. In [53] a parameter
synthesis approach was developed for dynamical systems modeled as nonlinear dif-
ferential equations based on sensitivity analysis and search over initial conditions.
Parameter synthesis has also been explored for other continuous time hybrid models
such as piecewise multi-affine systems [22–25]. These approaches share many simi-
laritieswith themethods for discrete time systems presented in this chapter, including
the construction of finite abstractions as well as the identification of parameter sets
inducing particular transitions or transient behaviors in such quotients.

The counterexample-guided pruning approach employed in this chapter for finite
transition systems to drive the parameter synthesis in Sect. 8.4 is complete (even
though our solution to the overall PWA parameter synthesis method is conservative)
but computationally intensive as it explores the entire computation tree (where each
node corresponded to a PWA system with different parameter sets and quotient)
exhaustively. As formulated, the method performs best when the system has “little”
violating behavior consisting of short executions, which can be removed after the
generation of a small number of counterexamples. However, the conditions relating
the parameter ranges of a PWAsystems to transitions in the resulting quotient can also
serve as a foundation for more efficient approaches, based on improved strategies for
enforcing the satisfaction of an LTL property in a finite transition system or various
heuristics. For example, in [24] a parameter synthesis approach similar to a binary
search was developed. However, this approach cannot be applied directly here, since
the set of parameters cannot always be partitioned into a subset inducing a given
transition and one that does not due to the use of under-approximations. Also, the
parameter sets for each state region were independent rather than linked through a
common parameter. Alternatively, parallel model checking methods could improve
the scalability of parameter synthesis approaches as demonstrated in [17].

The algorithms presented in this chapter were implemented as a software tool
for Parameter Synthesis for Piecewise Affine Systems ParSyPAS, which is freely
downloadable at http://hyness.bu.edu/software. The tool is built under MATLAB,
and uses our in-house LTL model checker described in [103], LTL2BA [65] for the
conversion of an LTL formula to a Büchi automaton, and the MPT toolbox [113]
for polyhedral operations. The evaluation presented in Example 8.4 was performed
on a 3.6GHz machine with 32 GB of memory and required around 70min for the
synthesis of a satisfying PWA system.

http://hyness.bu.edu/software


Chapter 9
Temporal Logic Control

In Chaps. 7 and 8 we considered autonomous PWA systems. We showed that finite
quotients of such systems can be computed and, based on this, developedmethods for
analysis and parameter synthesis from temporal logic specifications. Unlike the sys-
tems we discussed in previous chapters, which evolved autonomously, in this chapter
we consider PWA control systems, which can be affected externally by applying a
control signal. Then, it is possible to guarantee the satisfaction of a specification by
trajectories of a PWA control system if an appropriate control signal is applied. More
specifically, in this chapter we focus on fixed-parameter, PWA control systems and
consider the following problem:

Problem 9.1 (PWAControl) Given a fixed-parameter PWA control systemW (Def-
inition 6.2) and an LTL formula φ over L ∪ {Out}, find a control strategy such that
all trajectories of the closed loop system satisfy φ.

Using Definition 6.6, Problem 9.1 becomes an LTL control problem, where we
seek a feedback control strategy (X0,Ω) for the infinite, deterministic embedding
transition system TW . In this chapter, we assume that the state of the system cannot
be measured precisely or the applied inputs are corrupted by noise and, therefore,
seek control strategies that are robust both with respect to measured state and applied
input. As a result, the set of initial states X0 and control function Ω from the feed-
back control strategy (X0,Ω) (see Definition 5.1) are defined in terms of the initial
regions ofW and no state refinement is performed (such approaches will be consid-
ered in subsequent chapters). In Chap.5 we discussed the problem of controlling a
finite, possibly nondeterministic transition system from LTL specifications. To apply
the methods presented there to Problem 9.1, we develop an approach based on the
construction of a finite abstraction for TW , which we refer to as the control transition
system Tc such that a control strategy generated for Tc using the algorithms from
Chap.5 can be adapted for TW .

More specifically, we construct Tc through a two step process. In the first step, by
using the state equivalence relation induced by the polytopes from the definition of
the PWA system, we construct a quotient TW /∼, which has finitely many states but
an infinite set of inputs. This part of the procedure is similar to the methods we used
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in Chaps. 7 and 8, with the exception that fixed-parameter, PWA control systems are
considered, resulting in the construction of quotient transition systems with inputs.
Thus, these results provide an extension of the methods for the construction of finite
abstraction of autonomous PWA systems from Chap.7 to a control framework. Once
the quotient TW /∼ is constructed, we then define an equivalence relation in the
control space, which leads to the construction of the finite control transition system
Tc, which is suitable for the methods from Chap.5. The solution to Problem 9.1 is
obtained by implementing the control strategy for Tc as a feedback control automaton
for the initial PWA system that reads the index of the region visited at each step and
supplies the next input. As it will become clear later, our approach is robust in the
sense that the closed loop system is guaranteed to satisfy the specification, even when
state measurements and applied inputs are perturbed.

The remainder of this chapter is organized as follows. In Sect. 9.1 we define the
control transition system Tc and outline an algorithm for its computation. In Sect. 9.2
we show how the methods from Chap.5 are applied to Tc to formulate a solution to
Problem 9.1. In Sect. 9.3 we discuss a strategy for reducing the conservatism of the
overall method by characterizing the stuttering behavior (self transitions at a state
of Tc that can be taken infinitely in Tc but do not correspond to real trajectories of
TW ) inherent in the construction of the control transition system. This approach is
related to the characterization of transient regions and parameters from Chap. 8 as
well as the well known Zeno behavior and addresses a major source of conservatism
with the abstraction procedure from Chap.7.

9.1 Control Abstraction

In this section,we define the finite control transition system Tc = (Xc,Σc, δc, Oc, oc)
for the (infinite) embedding TW = (XW ,ΣW , δW , OW , oW ) (Definition 6.6) and
present an algorithm for its computation. In Sect. 9.2 we will show how the control
methods from Chap.5 are applied to Tc to solve Problem 9.1.

9.1.1 Definition

As in Chap.7, the observation map oW of TW induces an observational equiv-
alence relation ∼ over the set of states XW . However, the systems we consid-
ered before were autonomous and here, the quotient transition system TW /∼ =
(XW /∼,ΣW , δW ,∼, OW , oW ,∼) induced by ∼ has an infinite set of inputs ΣW =
U, which is preserved from TW . The set of transitions of TW /∼ is defined as
l ′ ∈ δW ,∼(l, u) if and only if there exist u ∈ U, x ∈ Xl and x ′ ∈ X′ such that
x ′ = δW (x, u). Note that in general TW /∼ is nondeterministic, even though TW is
deterministic. Indeed, for a state of the quotient l ∈ XW /∼ it is possible that different
states x, x ′ ∈ Xl have transitions in TW to states from different equivalence classes
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under the same input. The set of observations OW = L of TW /∼ is preserved from
TW and the observation map oW ,∼ is identity.

The transition map δW ,∼ can be related to the transitions of TW by using the Post
operator defined in Eq. (7.3):

δW ,∼(l, u) = {l ′ ∈ XW /∼ | Post (Xl , {u}) ∩ Xl ′ �= ∅}, (9.1)

for all l ∈ XW /∼ and u ∈ ΣW . For each state l ∈ XW /∼, we define an equivalence
relation ≈l over the set of inputs ΣW as

(u1, u2) ∈≈l iff δW ,∼(l, u1) = δW ,∼(l, u2). (9.2)

In other words, inputs u1 and u2 are equivalent at state l if they produce the same set
of transitions in TW /∼. Let UC

l , l ∈ L , C ∈ 2XW /
∼ denote the equivalence classes

of ΣW in the partition induced by the equivalence relation ≈l :

UC
l = {u ∈ ΣW | δW ,∼(l, u) = C} (9.3)

Let c(UC
l ) be an input in UC

l such that

∀u ∈ ΣW , d(c(UC
l ), u) < ε ⇒ u ∈ UC

l , (9.4)

where d(u, u′) denotes the distance between inputs u, u′ ∈ ΣW and ε is a predefined
parameter specifying the robustness of the control strategy. As it will become clear
in Sect. 9.1.2, d(u, u′) is the Euclidian distance in R

M and c(UC
l ) can be computed

as the center of a sphere inscribed in UC
l .

Initially, the states of Tc are the observations of TW (i.e., Xc = L). The set of
inputs available at a state l ∈ L is Σ l

c = {c(UC
l ) | C ∈ 2XW /

∼} and the transition
map is δc(l, c(UC

l )) = C . In general, it is possible that at a given state l,Σ l
c = ∅,

in which case state l is blocking. As it will become clear in Sect. 9.1.2, such states
are removed from the system in a recursive procedure together with their incoming
transitions and therefore Xc ⊆ L . The set of Xc observations and observation map
of Tc are preserved from TW /∼, which completes the construction of the control
transition system.

Following from the construction described so far, the control transition system Tc
is a finite transition system and a control strategy for it can be generated using the
methods presented in Chap.5. In Sect. 9.2, we will show that a control strategy for
Tc can be adapted as a robust control strategy (with respect to knowledge of exact
state and applied input) for the infinite TW . This will allow us to use Tc as part of
our solution to Problem 9.1.
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9.1.2 Computation

Initially, the states of the control transition system Tc are simply the labels L of the
polytopes from the definition of the PWA system (Definition 6.2). To complete its
construction, we need to be able to compute the set of inputsΣ l

c available at each state
l ∈ Xc and the transition map δc, while eliminating the states that are unreachable in
order to guarantee that Tc remains non-blocking.

Given a polytope Xl from the definition of the PWA system, let

Σ l = {u ∈ ΣW | PostTW (Xl , u) ⊆ X} (9.5)

be the set of all inputs guaranteeing that all states fromXl transit insideX (i.e., Σ l is
the set of all inputs allowed at l). In other words, regardless which u ∈ Σ l and x ∈ Xl

are selected, x will transit inside X under u in TW . Then, in order to guarantee that
X is an invariant for all trajectories of the system (an assumption that we made in the
formulation of Problem 9.1) it is sufficient to restrict the set of inputs Σ l

c available
at each state l ∈ Xc to Σ l

c ⊆ Σ l .

Proposition 9.1 Let X = {x ∈ R
N | Hx < K } be the H-representation of the

polytope X from the definition of the PWA system (Definition 6.2). Then, Σ l is a
polytope with the following H-representation:

Σ l = {u ∈ U | ∀v ∈ V (Xl), HBlu < K − H(Alv + cl)}, (9.6)

where V (Xl) denotes the set of vertices of Xl .

Proof Note that the set defined in Eq. (9.5) can be equivalently written as

Σ l = {u ∈ U | ∀x ∈ Xl , Alx + Blu + cl ∈ X} (9.7)

Let u ∈ U such that ∀x ∈ Xl . Alx + Blu + cl ∈ X. Then,

∀x ∈ Xl . H(Alx + Blu + cl) < K ⇒ ∀x ∈ Xl . HBlu < K − H(Alx + cl) ⇒
⇒ ∀v ∈ V (Xl). HBlu < K − H(Alv + cl)

Let u ∈ U such that ∀v ∈ V (Xl). HBlu < K − H(Alv + cl). Then, ∀v ∈
V (Xl). Alv+Blu+cl ∈ X. Letm = |V (Xl)|, x = Σm

i=1λi vi , where vi ∈ V (Xl), 0 <

λi < 1 for all i = 1, . . . ,m and Σm
i=1λi = 1. Then,

Alx + Blu + cl = AlΣ
m
i=1λi vi + Blu + cl = Σm

i=1λi (Alvi + Blu + cl) ∈ X ⇒
⇒ ∀x ∈ Xl . Alx + Blu + cl ∈ X

�

The set of states reachable from state l in TW /∼ under the allowed inputs is
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PostTW /
∼

(l,Σ l) = {l ′ ∈ XW /∼ | PostTW (Xl,Σ
l) ∩ Xl ′ �= ∅} (9.8)

and can be computed using polyhedral operations, since

PostTW (Xl,Σ
l) = AlXl + BlΣ

l + cl . (9.9)

Given a polytope Xl from the definition of the PWA system (Definition 6.2) and
an arbitrary polytope X′, let

UXl→X′ = {u ∈ ΣW | PostTW (Xl, u) ∩ X′ �= ∅} (9.10)

denote the set of all inputs under which TW can make a transition from a state in Xl

to a state inside X′. Equivalently, applying any input u ∈ U, u /∈ UXl→X′
guarantees

that TW will not make a transition inside X′, from any state in Xl . The following
proposition states that UXl→X′

is a polyhedral set that can be computed from the V-
(vertex) and H- (hyperplane) representations of Xl and X′:

Proposition 9.2 Let H and K be the matrices in the H-representation of the follow-
ing polytope:

{x̂ ∈ R
N | ∃x ∈ Xl, Al x + x̂ + cl ∈ X′} (9.11)

Then UXl→X′
is a polytope with the following H-representation:

UXl→X′ = {u ∈ U | HBlu < K } (9.12)

Proof The set defined in Eq. (9.11) is a polytope with the following
V-representation:

hull{v′ − (Av + c) | v ∈ V (Xl), v′ ∈ V (X′)} (9.13)

Let x ∈ Xl such that Alx + x̂ + cl ∈ X′. Let m = |V (Xl)| and x = Σm
i=1λi vi ,

where 0 < λi < 1 for all i = 1, . . . ,m and Σm
i=1λi = 1. Let n = |V (X′)| and

x ′ = Σn
j=1μ j v′

j , where 0 < μ j < 1 for all j = 1, . . . , n and Σn
j=1μ j = 1. Then,

AlΣ
m
i=1λi vi + x̂ + cl = Σn

j=1μ j v
′
j ⇒ x̂ = Σn

j=1μ j v
′
j − AlΣ

m
i=1λi vi − cl =

= Σm
i=1Σ

n
j=1λiμ j (v

′
j − (Alvi + cl )) ⇒ x̂ ∈ hull{v′ − (Av + c)|v ∈ V (Xl ), v′ ∈ V (X′)}

Let x̂ = Σm
i=1Σ

n
j=1νi j (v

′
j − (Alvi + cl)), where 0 < νi j < 1, i = 1, . . . ,m, j =

1, . . . , n and Σm
i=1Σ

n
j=1νi j = 1. Let λi = Σm

j=1νi j and μ j = Σn
i=1νi j . Of course,

0 < λi < 1 for all i = 1, . . . ,m, 0 < μ j < 1 for all j = 1, . . . , n and Σm
i=1λi =

Σn
j=1μ j = Σm

i=1Σ
n
j=1νi j = 1. Then, for x = Σm

i=1λi vi and x ′ = Σn
j=1μ j v′

j we have
Alx+ x̂+cl = x ′ and therefore ∃x ∈ Xl such that Alx+ x̂+cl ∈ X′. To conclude the
proof of Proposition 9.2, let H, K be the matrices in the H-representation of the set
defined in Eq. (9.11) and note that the set defined in Eq. (9.10) can be equivalently
written as
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UXl→X′ = {u ∈ U | ∃x ∈ Xl, Al x + Blu + cl ∈ X′} (9.14)

�

Proposition 9.3 Given a state l ∈ Xc and a set of states C ∈ 2Xc , the set UC
l from

Eq. (9.3) can be computed as follows:

UC
l =

⋂

l ′∈C
UXl→Xl′ \

⋃

l ′′ /∈C
UXl→Xl′′ (9.15)

Proof From Eqs. (9.1) and (9.3) we have

UC
l = {u ∈ ΣW | ∀l ′ ∈ C, PostTW (Xl, u) ∩ Xl ′ �= ∅,

∀l ′′ /∈ C, PostTW (Xl , u) ∩ Xl ′′ = ∅} =
= {u ∈ ΣW | ∀l ′ ∈ C, PostTW (Xl, u) ∩ Xl ′ �= ∅} \

{u ∈ ΣW | ∃l ′′ /∈ C, PostTW (Xl, u) ∩ Xl ′′ �= ∅} =
=

⋂

l ′∈C
UXl→Xl′ \

⋃

l ′′ /∈C
UXl→Xl′′

�

We can guarantee that if a state l ′ is not reachable from state l in TW /∼ (i.e., l ′ /∈
PostTW /

∼

(l,Σ l)) thenUXl→Xl′ = ∅ and therefore,UC
l = ∅ ifC � PostTW /

∼

(l,Σ l)

and otherwise the computation in Eq. (9.15) reduces to

UC
l =

⋂

l ′∈C
UXl→Xl′ \

⋃

l ′′∈PostTW /
∼

(l,Σ l )\C
UXl→Xl′′ (9.16)

A non-empty input region UC
l is in general nonconvex but can always be repre-

sented as a finite union of open polytopes (see Eq. (9.16)). In order to guarantee the
robustness of the control strategy (as described in Sect. 9.1.1) we only include input
sets that are “large enough” (i.e., r(UC

l ) > ε, where ε is a predefined robustness
parameter and r() is the radius of the Chebyshev ball (Definition A.9). Note that in
general this approach might be conservative, since a sphere inscribed in a union of
polytopes fromUC

l might have a larger radius. Following from the results presented
in this section, the control transition system Tc can be computed using polyhedral
operations only (the computation is summarized in Algorithm 17).

Remark 9.1 It is possible to reduce the size of Tc after it is initially constructed
without sacrificing solutions. More “nondeterminism” available at a state does not
result in more winning strategies for Algorithm 17, while at the same time unnec-
essarily increases the complexity of the method. Formally, let u1 = c(UC1

l ) and
u2 = c(UC2

l ) where C1,C2 ∈ 2Xc ,C1 ⊆ C2 be inputs of Tc available at state l ∈ Xc

(i.e., {u1, u2} ⊆ Σ l
c). If input u2 is used in a control strategy, then the specification



9.1 Control Abstraction 169

Algorithm 17 Tc = Control- TS(W , ε): Construct control transition system Tc
1: Xc := L
2: for each l ∈ Xc do
3: Σ l

c := Σ l [Eq. (9.5)]
4: compute PostTW /

∼

(l,Σ l
c) [Eq. (9.8)]

5: for each C ⊆ PostTW /
∼

(l,Σ l
c) do

6: compute UC
l [Eq. (9.16)]

7: if r(UC
l ) > ε then

8: include input c(UC
l ) in Σ l

c

9: include transition δc(l, c(UC
l )) = C

10: end if
11: end for
12: if Σ l

c = ∅ then
13: recursively make state l unreachable and set Xc := Xc \ l
14: end if
15: end for
16: Σc = ⋃

l∈Xc
Σ l

c
17: return Tc

is satisfied regardless of which state l ′ ∈ C2 is visited in the next step. Clearly, the
same holds for input u1 since C1 is a subset of C2 but keeping both inputs is unnec-
essary. Therefore, at each state l ∈ Xc we set Σ ls

c = Σ ls
c \ u2 if u1, u2 ∈ Σ ls

c or
Σ lu

c = Σ lu
c \ u2 if u1, u2 ∈ Σ lu

c when the property described above holds.

9.2 LTL Control of PWA Systems

In Sect. 9.1 we defined the control transition system Tc as a finite abstraction of
the infinite TW and showed that it can be computed using polyhedral operations.
In Sect. 5.1 of Chap.5, we presented an approach for controlling finite transition
systems (such as Tc) from specifications given as LTL formulas. In this section, we
show that a control strategy generated for Tc can be adapted to the infinite TW , while
the satisfaction of LTL formulas by the closed loop systems is preserved, which
completes the solution to Problem 9.1.

Definition 9.1 (PWA control strategy) A control strategy (Xc
0,Ω

c) for Tc can be
translated into a control strategy (X0,Ω) for TW as follows. The initial set Xc

0 ⊆
Xc gives the initial set X0 = ⋃

l∈Xc
0
Xl ⊆ XW . Given a finite sequence of states

x(0) . . . x(k)where x(0) ∈ X0, the control function is defined asΩ(x(0) . . . x(k)) =
Ωc(oW (x(0)) . . . oW (x(k))).

Proposition 9.4 Given a control strategy (Xc
0,Ω

c) for Tc translated as a con-
trol strategy (X0,Ω) for TW , LTW (X0,Ω) ⊆ LTc(X

c
0,Ω

c), which implies that if
Tc(Qc

0,Ω
c) satisfies an arbitrary LTL formula φ, then so does TW (X0,Ω).
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Proof Transition systems Tc and TW have the same set of observations and therefore
the same LTL formula can be interpreted over both systems. Let x(0) ∈ X0 be an
initial state for TW . Its observation is xc(0) = oW (x(0)), which is a satisfying initial
state for Tc (i.e., xc(0) ∈ Xc

0). The next input to be applied in Tc is given by the control
function (uc(0) = Ω(xc(0)) ∈ Σc ⊂ ΣW ) and we can guarantee that regardless
which input u(0) ∈ ΣW such that d(u(0), uc(0)) < ε is applied in TW , we have
δW (x(0), u(0)) ∈ δc(xc(0), uc(0)). This shows that a finite fragment of a word in
TW (Q0,Ω) is also a finite fragment of a word in Tc(Qc

0,Ω
c) and the rest of the

proof follows by induction. �

The overall solution to Problem 9.1 consists of constructing the control transition
system Tc (Sect. 9.1), finding a satisfying control strategy for Tc and adapting it to
the original TW , or equivalently PWA system (Definition 9.1), which from Propo-
sition 9.4 guarantees the correctness of the solution. It is important to note that a
control strategy generated using this approach is robust with respect to knowledge
of the exact state of the system (i.e., the control strategy depends on the observation
of a state rather than the state itself). In addition, the control strategy is robust with
respect to perturbations in the applied input bounded by ε, which can be used as a
tuning parameter.

9.3 Conservatism and Stuttering Behavior

In Chap.5 we described a solution to the problem of controlling a finite and possibly
nondeterministic transition system from LTL specifications. In order to generate
a control strategy for an infinite transition system such as TW (Problem 9.1) we
described the construction of a finite control abstraction Tc in Sect. 9.1. However, due
to spurious trajectories (i.e., trajectories of Tc not present in TW )we cannot guarantee
that a control strategy will be found for Tc even if one exists for TW and therefore,
the overall method is conservative. In Chap.7, we eliminated spurious trajectories
through state refinement but the states of Tc cannot be refined. Indeed, the control
strategieswe consider in this chapter cannot differentiate between states x1, x2 ∈ XW

when o(x1) = o(x2) and therefore the states of Tc must satisfy oc(l1) = oc(l2) if and
only if l1 = l2 for all l1, l2 ∈ Xc. In the following, we present an alternative approach
for reducing this conservatism.

Similar to the approach for the characterization of transient parameters from
Sect. 8.3, here we characterize stutter steps as a specific class of spurious trajectories,
which we introduce through Example 9.1 and Fig. 9.1.
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x1

x2

x3 x4
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l2

l3 l1 l2 l3

u
u

u

u u

(a) (b)

Fig. 9.1 A trajectory remaining forever in state l2 exists in the finite abstraction (b), although such
a behavior is not necessarily possible in the concrete system (a)

Example 9.1 Assume that a constant input uuu . . . produces a trajectory
x1x2x3x4 . . . in TW where o(x1) = l1, o(x2) = o(x3) = l2, o(x4) = l3
(Fig. 9.1a). The corresponding word l1l2l2l3 . . . is a trajectory of Tc (i.e.,
l1, l2, l3 ∈ Xc) and from the construction described in Sect. 9.1 it follows
that l2 ∈ δc(l1, u) and {l2, l3} ⊆ δc(l2, u) (Fig. 9.1b). Then, there exists a tra-
jectory of Tc that remains infinitely in state l2 ∈ Xc under input u, which is not
necessarily true for TW . Such spurious trajectories do not affect the correctness
of a control strategy but increase the overall conservativeness of the method.
We address this by characterizing stuttering inputs, which guarantee that the
system will leave a state eventually, rather than in a single step, and using this
additional information during the construction of the control strategy for Tc.

Definition 9.2 (Stuttering inputs)Given a state l ∈ Xc and a set of statesC ∈ 2Xc , the
set of inputsUC

l is stuttering if and only if l ∈ C and for all input words u(0)u(1) . . .,
where u(i) ∈ UC

l , there exists a finite k > 1 such that the trajectory x(0)x(1) . . .

produced in TW by the input word satisfies o(x(i)) = l for i = 0, . . . , k − 1 and
o(x(k)) = l ′ ∈ C, l ′ �= l.

Using Definition 9.2 we identify a stuttering subset Σ ls
c ⊆ Σ l

c of the inputs
available at a state l ∈ Xc. Let u = c(UC

l ) ∈ Σ l
c for some C ∈ 2Xc be an input of

Tc computed as described in Sect. 9.1. Then u ∈ Σ ls
c if and only if UC

l is stuttering.
Note that a transition δc(l, u) = C from a state l ∈ Xc where u is stuttering is always
nondeterministic (i.e., |C | > 1) and contains a self loop (i.e., l ∈ C) but the self loop
cannot be taken infinitely in a row (i.e., a trajectory of TW cannot remain infinitely
in region Xl under input word uuu . . .). An input u ∈ Σ lu

c = Σ l
c \ Σ ls

c induces a
transition δc(l, u) = C where: (1) when C = {l} trajectories of Tc and TW produced
by input word uuu . . . remain infinitely in state l and regionXl , respectively, (2) when
l /∈ C trajectories of Tc and TW leave state l and region Xl , respectively in one step
under input u, (3) when {l} ⊂ C trajectories of TW produced by input word uuu . . .

can potentially remain in region Xl infinitely. Although in case (3) it is also possible
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that trajectories of TW produced by input word uuu . . . leave region Xl in finite
time, we have to be conservative in order to guarantee the correctness of the control
strategy.

Note that our definition of stuttering in Definition 9.2 requires that Tc leaves a
state after a finite number of transitions are taken under the same stuttering input
and therefore an infinite stutter cycle is never possible. Second, we identify a set
of stuttering inputs rather than constructing Tc as a time abstract system. While we
only characterize spurious infinite self loops (i.e., cycles of length 1), in general,
it is possible that cycles of arbitrary length are spurious in Tc. Considering higher
order cycles is computationally challenging and decreases the conservativeness of
the approach only for very specific cases, while spurious self loops are commonly
produced during the construction of Tc and can be identified or constructed through
polyhedral operations as described in the following (Propositions 9.5 and 9.6).

Proposition 9.5 Given a state l ∈ Xc and a set of states C ∈ 2Xc , input region
UC

l is stuttering if and only if l ∈ C and 0 /∈ hull{(Al − I )vx + Blvu + cl | ∀vx ∈
V (Xl),∀vu ∈ V (UC

l )}, where hull denotes the convex hull, V (.) is the set of vertices
and I is the identity matrix.

Proof (⇒) Let 0 ∈ hull{(Al − I )vx + Blvu + cl | ∀vx ∈ V (Xl),∀vu ∈ V (UC
l )}.

Then, there exists x ∈ Xl, u ∈ UC
l such that Alx + Blu + cl = x and a trajectory of

the system produced by applying input sequence uuu . . . and starting at x remains
forever inside Xl . Therefore, from Definition 9.2, UC

l is not stuttering.
(⇐) Let 0 /∈ hull{(Al − I )vx + Blvu + cl | ∀vx ∈ V (Xl),∀vu ∈ V (UC

l )}. From
the separating hyperplane theorem it follows that there exists a ∈ R

N such that, for
all z ∈ hull{(Al − I )vx + Blvu +cl | ∀vx ∈ V (Xl)), aT z > 0. Then, any trajectory of
the system originating inXl and produced by input word u1u2u3 . . ., where ui ∈ UC

l
will have a positive displacement along the direction of aT at every step. Since Xl is
bounded, all trajectories will leave it in a finite number of steps and, therefore, UC

l
is stuttering. �

The strategy from Proposition 9.5 provides a computational characterization of
stuttering input regions. In general, however, it is possible that an input region UC

l

cannot be identified as stuttering but a stuttering subset ÛC
l ⊂ UC

l can be identified.
Then, if such a subset is “large enough” (i.e., r(ÛC

l ) > ε) it can be used in Tc and
allowmore general control strategies. In Proposition 9.6we describe the computation
of such stuttering subsets.

Proposition 9.6 Given an arbitrary a ∈ R
N , the input region ÛC

l = {u ∈ UC
l | ∀v ∈

V (Xl), aT Blu > −aT (Al − IN )v − cl}, where l ∈ C is always stuttering.

Proof

ÛC
l = {u ∈ UC

l | ∀vx ∈ V (Xl), a
T Blu > −aT (Al − I )vx − cl} =

= {u ∈ UC
l | ∀vx ∈ V (Xl), a

T ((Al − I )vx + Blu + cl) > 0} ⇒
⇒ 0 /∈ hull{(Al − I )vx + Blvu + cl | ∀vx ∈ V (Xl),∀vu ∈ V (ÛC

l )},
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which, from Proposition 9.5, guarantees that ÛC
l is stuttering. �

Although Proposition 9.6 is valid for an arbitrary a ∈ R
N , the volume of the

stuttering subset ÛC
l ⊂ UC

l depends on a. Since only “large enough” input regions
are considered in Tc (see Algorithm 17), a should be chosen in such a way that the
radius r(ÛC

l ) is maximized.
The control algorithms we discussed in Sect. 5.1 can be adapted to handle the

additional information about stuttering inputs captured in Tc, while the correctness
and completeness of the control strategy computation for the product automaton P is
still guaranteed. P is constructed as in Sect. 5.1 and therefore it naturally inherits the
partitioned input set Σ l

c = Σ ls
c ∪ Σ lu

c for each state l ∈ Xc. Going back to the Rabin
game interpretation of the control problem discussed in Sect. 5.1, we need to account
for the fact that the adversary cannot take transitions under the same stuttering input
infinitely many times in a row. As a result, the construction of the control strategy
is still performed using the same algorithm and only the computations of the direct
attractors from Definitions 5.7 and 5.8 are modified as follows (the notation used in
the rest of this section was introduced in Chap.5).

Let l ∈ Xc and u ∈ Σ ls
c be a state and a stuttering input of Tc (Definition 9.2).

We are interested in edge (s, u, s ′) of transition δP(s, u) = S′, where α(s) = l and
s ′ ∈ S′ (hereα() is the projection of states from P to states of Tc—see Sect. 4.5). Edge
(s, u, s ′) is called u-nontransient edge if α(s) = α(s ′) = l and transient otherwise.
Note that, even though (l, u, l) is a self loop in Tc, (s, u, s ′) is not necessarily a self
loop in P . In addition, since there is at most one self loop at a state l ∈ Xc and R is
deterministic, there is at most one u-nontransient edge leaving state s.

We refer to a sequence of edges (s1, u1, s2)(s2, u2, s3) . . . (sn−1, un−1, sn), where
si �= s j for any i, j ∈ {1, . . . , n} as a simple path, and to a simple path
(s1, u1, s2) . . . (sn−1, un−1, sn) followed by (sn, un, s1) as a cycle. We can observe
that any sequence of u-nontransient edges (i.e., a run of the product automaton, or
its finite fragment) is of one of the following shapes: a cycle (called a u-nontransient
cycle), a lasso shape (a simple path leading to a u-nontransient cycle), or a simple
path ending at a state where the input u is not available at all. Informally, the existence
of a stuttering self loop in a state l under input u in Tc means that this self loop cannot
be followed infinitely many times in a row. Similarly, any u-nontransient cycle in the
product graph cannot be followed infinitely many times in a row without leaving it.
This leads us to the new definitions of protagonist’s and adversary’s direct attractor.

Definition 9.3 (Modified protagonist’s direct attractor) The protagonist’s direct
attractor of S′, denoted by A1

P(S′), is the set of all states s ∈ SP , such that there
exists an input u satisfying

(1) δP(s, u) ⊆ S′, or
(2) s lies on a u-nontransient cycle, such that each state s ′ of the cycle satisfies that

s ′′ ∈ S′ for all transient edges (s ′, u, s ′′).

In other words, the protagonist can enforce a visit to S′ also by following a u-
nontransient cycle finitely many times and eventually leaving it to S′.
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Definition 9.4 (Modified adversary’s direct attractor) The adversary’s direct attrac-
tor of S′, denoted by A1

S(S
′), is the set of all states s ∈ SP , such that for each input

u there exists a state s ′ such that

(1) s ′ ∈ δP(s, u) ∩ S′, and
(2) s ′ does not lie on a u-nontransient cycle.

In other words, the adversary cannot enforce a visit to S′ via an edge of a u-
nontransient cycle. This edge can be taken only finitely many times in a row and
eventually a different edge under input u has to be chosen.

By identifying stuttering inputs during the construction of the control transition
system Tc (Propositions 9.5 and 9.6) and modifying the approach from Sect. 5.1 to
handle this additional information during the construction of a control strategy for
Tc (Definitions 9.3 and 9.4), we can reduce the conservatism associated with the
overall method. Even so, our solution to Problem 9.1 remains conservative but it
is important to note that the only source of conservativeness is the construction of
Tc—the solution to the LTL control problem for Tc is complete.

Example 9.2 We consider the problem of controlling the two-tank system
shown in Fig. 9.2. The system has two state variables (N = 2) that represent
the water levels in the two tanks and range in (0, 0.7). It has one control
dimension (M = 1) representing the inflow rate, which ranges in (0, 5e−4).
The state space of the system is partitioned into 49 rectangular regions (i.e.,
L = 1, . . . , 49) by 7 evenly spaced thresholds along each dimension. These
thresholds signify that we can only detect whether the water level in each tank
is above or below the marks at 0.1, 0.2, . . . , 0.7 (see Fig. 9.3a). Valve v1 is
opened only if submerged (i.e., if the water level in either tank is above 0.2—
the height of the valve) and, therefore, the valve is closed when the system is in
regions 1, 2, 8, and 9 and opened otherwise (see Figs. 9.2 and 9.3a). Discrete-
time, linear equations describing the dynamics of the system in each mode are
derived using a 5 sec. time step and 1.54e−2 m2, 1e−4 m2, and 2.125e−5 m2 as
the cross sectional areas of the two tanks, valve v1, and valve v2, respectively.
The dynamics of the system for each region l ∈ L are given by

Al =

⎧
⎪⎪⎨

⎪⎪⎩

[
1 0
0 0.9635

]

for l = 1, 2, 8, 9
[
0.8281 0.1719
0.1719 0.7916

]

otherwise,

Bl = [324.6753, 0]T , cl = [0, 0]T for l = 1, . . . , 49.
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We seek a control strategy for the system guaranteeing the satisfaction of
a specification, expressed informally as “whenever tank 2 is empty, it will
eventually get filled up”. To formalize this specification we define the sub-
formulas φ1 = “the level of tank 2 is below 0.1” (i.e., “tank 2 is empty”)
and φ2 = “the level of tank 2 is above 0.4” (i.e., “tank 2 is full”), which
can be expressed as disjunctions of regions from L as φ1 = 1 ∨ . . . ∨ 7 and
φ2 = 29 ∨ . . . ∨ 49. The above specification translates to the following LTL
formula:

φ = �(φ1 ⇒ ♦φ2).

Satisfying control strategies were found from all regions expect 49 when the
required robustness was set to ε = 5e−6 (Fig. 9.3a). If stuttering inputs are
not characterized as described in Sect. 9.3, satisfying control strategies are
identified for regions 29, . . . , 48 only. A simulated trajectory of the closed
loop system is shown in Fig. 9.3b.

Fig. 9.2 A two-tank system. Water is drained at a constant rate from tank 2 though valve v2, while
tank 1 is filled at a rate that is controlled externally. Water can also flow in either direction, from
the tank with more water to the one with less, through valve v1, which is opened only if submerged
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(a) Simulated trajectories of the uncontrolled system.

(b) A simulated trajectory of the closed-loop system.

Fig. 9.3 Simulated trajectories of the uncontrolled and closed-loopwater tank system fromFig.9.2.
Initial conditions are shown as blue circles and regions are labeled only by their indexes in (a).
Control strategies guaranteeing the satisfaction of specification φ = �(φ1 ⇒ ♦φ2) are found
from all shaded regions in (a). The water levels of tanks 1 and 2 are shown respectively as a blue
(solid) and a red (dashed) line in (b) and the trajectory is guaranteed to satisfy specification φ. See
Example 9.2 for additional details
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Example 9.3 Weapply themethod from this chapter to generate control strate-
gies for a simple PWA system with two state variables (N = 2) ranging
in (0, 100). The state space is partitioned into 36 rectangular regions (i.e.,
L = 1, . . . , 36). The system has two control inputs (M = 2) ranging in
(−15, 15) × (−16, 16). The dynamics of the system are defined as follows:

A1...4,9...12,25...28,33...36 =
[
0.9900 0.0
0.0 0.9800

]

A5...8,29...32 =
[

0.9900 0.0
−0.0200 0.9800

]

A13...16,21...24 =
[
0.9900 −0.0300
0.0 0.9800

]

A17...20 =
[

0.9900 −0.0300
−0.0200 0.9800

]

B1...36 =
[
1.0 0.0
0.0 1.0

]

c1...4 =
[
0.9200
1.5300

]

c5...8 =
[
1.3900
1.5300

]

c9...12 =
[
0.1700
1.5300

]

c13...16 =
[
0.9200
2.9000

]

c17...20 =
[
1.3800
2.9000

]

c21...24 =
[
0.1700
2.9200

]

c25...28 =
[
0.9200
0.1500

]

c29...32 =
[
1.4100
0.1500

]

c33...36 =
[
0.1700
0.1500

]

The PWA model captures the characteristic bistability of the system, where
trajectories of the uncontrolled system go towards one of two possible stable
equilibria located in regions X10 and X27 (see Fig. 9.4).

We seek a control strategy that drives the system to low values of state
variable 1 and high values of state variable 2, while avoiding intermediate
values of both state variables. We define sub-formulas φ1 = “state variable 1
is below 20 and state variable 2 is above 75” and φ2 = “state variable 1 is above
40 and below 80 and state variable 2 is above 20 and below 50” which can be
expressed as disjunctions of regions from L asφ1 = 10 andφ2 := 17∨. . .∨20.
The control specification translates to the following LTL formula:

φ = ♦�φ1 ∧ �¬φ2,

which cannot be translated into a deterministic Büchi automaton (see Chap. 2).
A control transition system Tc with 36 states was constructed. Out of the

total 949 nonempty input regions found (denoted by UC
l in Sect. 9.1), 684

were “large enough” (the radii of their inscribed spheres were larger than
ε = 5e−2) to be considered for a robust control strategy and included in Tc.
After reducing the size of Tc (i.e., removing unnecessary nondeterministic
transitions as explained in Remark 9.1) only 222 input regions were included
out of which 42 were deterministic and 109 were identified as stuttering. The
specification φ translates into a deterministic Rabin automaton with 3 states
and 1 pair in its acceptance condition.
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Satisfying control strategies with the required robustness (ε = 5e−2) were
found from all regions expect for 13, . . . , 20 (shown in light gray in Fig.
9.5a). For this particular problem, the target region X10 of specification φ

is reachable only through transitions under stuttering inputs in Tc. Therefore,
a satisfying control strategy can be identified only from region X10, unless
stuttering behavior is considered. The additional computation described in
Sect. 9.3 allowed us to expand the satisfying initial set from X10 only to the
entire region highlighted in Fig. 9.5.

Starting from random initial conditions, trajectories of the closed loop sys-
temwere simulated (Fig. 9.5), where at each step applied inputs were corrupted
by noise bounded by ε. All simulated trajectories avoid the unsafe regions
X17 . . .X20 and satisfy the specification, thereby demonstrating the correct-
ness and robustness of the control strategy.

Fig. 9.4 Trajectories of the
uncontrolled PWA system go
towards one of two possible
stable equilibria located in
regions X10 and X27 (initial
states are shown as small
circles and regions are
labeled only by their
indexes). See Example 9.3
for additional details
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Fig. 9.5 Control strategies
guaranteeing the satisfaction
of specification
φ = ♦�φ1 ∧ �¬φ2 are
found from all shaded
regions (regions are labeled
only by their indexes).
Simulated trajectories from
different regions satisfy the
specification. A simulated
trajectory of the closed loop
system is guaranteed to
satisfy specification φ—the
values of state variables 1
and 2 and the respective
external control values are
shown as a blue (solid) and a
red (dashed) line. See
Example 9.3 for additional
details

(a) Satisfying regions and simulated trajectories
system (in state space)

(b) Simulated trajectory and control values of the
(over time)

of the closed-loops

closed-loop system
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Example 9.4 We seek a control strategy for the PWA system defined in Exam-
ple 9.3 that forces the system to oscillate between states where the values of
one of the state variables is high and the other is low and vice versa, while states
where the values of both state variables are high or low are never reached. We
define sub-formulas φ1 = “state variable 1 is below 40 and state variable 2 is
above 50”, φ2 := “state variable 1 is above 80 and state variable 2 is below
20”, φ3 := “state variable 1 is below 40 and state variable 2 is below 20”, and
φ4 := “state variable 1 is above 80 and state variable 2 is above 50”, which
can be expressed as disjunctions of regions from L as φ1 = 9 ∨ . . . ∨ 12,
φ2 = 25 ∨ . . . ∨ 28, φ3 = 1 ∨ . . . ∨ 4, and φ4 = 33 ∨ . . . ∨ 36. The above
specification translated to the following LTL formula:

φ = �(♦φ1 ∧ ♦φ2 ∧ ¬(φ3 ∨ φ4)).

Satisfying control strategies where found from all regions expect 1, . . . , 4 and
33, . . . , 36 when the required robustness was set to ε = 5e−2 (Fig. 9.6a). If
stuttering inputs are not characterized as described in Sect. 9.3, no satisfy-
ing control strategies are identified. A simulated trajectory of the closed loop
system is shown in Fig. 9.6b.

9.4 Notes

Thematerial presented in this chapter is based on [170, 179, 184].Related approaches
can be found in [138, 164], where the existence of equivalent (bisimulation) quotients
and control strategies under the assumption of controllability for discrete-time linear
systems is characterized. The monotonicity property of a discrete-time piecewise
system is exploited in [46] to develop an efficient abstraction algorithm. Algorithmic
procedures for controlling continuous-time linear systems are given in [104, 105],
where the constructed deterministic (nondeterministic) abstractions are not equiva-
lent to the original system but instead capture only a restricted but controllable subset
of its behavior. An alternative abstraction technique based on quantifier elimination
for real closed fields and theorem proving has been proposed in [168].

To solve Rabin games, we implemented an algorithm from [90] (see details in
Sect. 5.1) but extended it to deal with stuttering behavior, which leads to additional
winning strategies. The concept of stuttering (see Sect. 9.3) has been established pre-
viously [15] and related work has focused on determining if a specification is closed
under stuttering [137], in which case it can be expressed in the LTL\© fragment
(LTLwithout the next operator) [139] and less conservative stutter bisimulation quo-
tients can be constructed [15]. The approach from this chapter does not require any
special structure from either the specification or the quotient. Instead, we charac-
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Fig. 9.6 Control strategies
guaranteeing the satisfaction
of specification φ =
�(♦φ1 ∧ ♦φ2 ∧ ¬(φ3 ∨ φ4))

are found from all shaded
regions (regions are labeled
only by their indexes). A
sample satisfying simulated
trajectory is shown. A
simulated trajectory of the
closed loop toggle switch
system is guaranteed to
satisfy specification φ—state
and control variables are
labeled as in Fig. 9.5b. See
Example 9.4 for additional
details

(a) Satisfying regions and simulated trajectories
system (in state space)

(b) Simulated trajectory and control values of the
(over time)

of the closed-loops

closed-loop system

terize individual transitions as stuttering while constructing the abstraction and use
this additional information during the solution of the Rabin game, which reduces the
conservatism of the overall method but does not restrict the expressivity of the spec-
ification. Another related approach is based on characterizing the sets of transient
states (instead of an individual transition) and augmenting the transition relation with
the corresponding transitions, whichwas applied to switched systems in [136].While
considering transient sets reduces conservatism, it is computationally expensive to
characterize such sets.
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As our proposed solution to Problem 9.1 consists of (1) the construction of the
control transition system Tc and (2) the generation of a control strategy for Tc, the
overall computational complexity is the cumulative complexity of the two parts. The
computation of Tc involves enumerating all subsets of L at any element of L , which
givesO(|L|·2|L|) iterations in theworst case, although in practice this can be reduced
(see Eq. (9.16)). At each iteration, polyhedral operations are performed, which scale
exponentially with N , the size of the continuous state space. The characterization
of stuttering inputs described in this chapter checks each element from Σc through
polyhedral operations.

The overall complexity of the control strategy synthesis for Tc isO(k!nk), where n
is the size of the product automaton and k is the number of pairs in theRabin condition
of the product automaton (see Chap.5). The modifications in the computation of
the direct attractor we made in order to adapt the algorithm to deal with stuttering
behavior do not change the overall complexity. Note that, in general, Rabin games
are NP-complete, so the exponential complexity with respect to k is not surprising.
However, LTL formulas are usually translated into Rabin automata with very few
tuples in their acceptance condition.

The method described in this chapter was implemented in MATLAB as the soft-
ware package conPAS2, where all polyhedral operations were performed using the
MPT toolbox [113]. The tool takes as input a PWA system (Definition 6.2) and an
LTL formula and produces a set of satisfying initial regions and a feedback control
strategy for the system (Definition 9.1). The tool is freely downloadable from our
web site at http://sites.bu.edu/hyness/conpas2/. As an alternative to conPAS2, the
MPT Toolbox [113] and theHybrid Toolbox [27] forMATLABcan also be used
to design piecewise affine control laws but neither can handle the richness of LTL
specifications directly. The problem of controllingMixed Logical Dynamical (MLD)
systems from LTL specifications has been considered in [100] and is related to this
problem, due to the equivalence between MLD and PWA systems [82]. Rather than
relying on the construction of finite quotients as in this chapter, the approach taken
in [100] involves representing LTL specifications as mixed-integer linear constraints
but a finite horizon assumption is imposed.

Other temporal logic control tools include PESSOA [128], LTLMoP [61],
TuLiP [174] (http://tulip-control.sourceforge.net), LTLCon [105], and its extension
BüCon [104]. PESSOA is capable of generating control strategies for linear, nonlin-
ear, and switched systems from temporal logic specifications. Abstractions based on
the notions of approximate simulation and bisimulation are constructed. LTLMoP
uses a fragment of LTL called GR(1) [109, 142], which accounts for the adversarial
nature of the environment. Similar to LTLMoP, TuLiP models the environment as
an adversary and uses a receding horizon framework to alleviate the computational
complexity of synthesis. Similar to conPAS2, TuLiP can handle discrete-time affine
control systems. LTLCon addresses the control problem for linear systems but only
deterministic abstractions are allowed, which leads to very conservative results. Its

http://sites.bu.edu/hyness/conpas2/
http://tulip-control.sourceforge.net
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extension, BüCon, relaxes this but restricts the specification language to the frag-
ment of LTL generated by deterministic Büchi automata (see Sect. 5.2). In contrast,
conPAS2 constructs nondeterministic abstractions of piecewise affine systems and
generates control strategies from full LTL specifications, while conservatism is fur-
ther reduced by identifying stuttering behavior.



Chapter 10
Finite Bisimulations

In this chapter, we focus on verification and control of switched linear systems
(Definition 6.8). We show that a finite bisimulation quotient (see Sect. 1.3) of a stable
switched linear system exists and can be constructed by performing a finite number
of basic polyhedral operations. To construct the quotient system, we use a polyhedral
Lyapunov function. The existence of such a function is a necessary condition for the
stability of a switched linear system. Once a bisimulation quotient is constructed,
the verification and synthesis problems can be solved by using techniques presented
in Chaps. 4 and 5.

Throughout this chapter, we assume that, in Definition 6.8, all matrices Aγ ∈
R

N×N , γ ∈ Γ , are strictly stable (i.e., Schur), for all γ ∈ Γ . We assume also that
the system is asymptotically stable in X under arbitrary switching. Specifically, we
assume that a common infinity norm Lyapunov function (LF) V : R

N → R
+ of

the form (A.13) with contraction rate ρ ∈ (0, 1) is known for system 6.4 and X is
a sublevel set of V . Furthermore, we assume that, among the regions of interest Xl,
l ∈ L, there exist one (denoted by Xlo , lo ∈ L) that is a sublevel set of V .

Remark 10.1 The asymptotic stability assumption implies existence of a common
infinity norm Lyapunov function. An overview of Lyapunov stability and polyhedral
Lyapunov functions is presented in Appendix A.5. The sublevel set assumption onX
is made to simplify the presentation of technical results in this chapter. As discussed
later, this assumption is not necessary.

Example 10.1 Consider a switched linear systemS (Definition 6.8) with two
subsystems:

A1 =
[−0.65 0.32

−0.42 −0.92

]

, A2 =
[

0.65 0.32
−0.42 −0.92

]

, Γ = {1, 2}. (10.1)

The system is globally asymptotically stable, and V (x) = ‖Lx‖∞ is an infinity
norm Lyapunov function with contraction rate ρ = 0.94, where

© Springer International Publishing AG 2017
C. Belta et al., Formal Methods for Discrete-Time Dynamical Systems,
Studies in Systems, Decision and Control 89, DOI 10.1007/978-3-319-50763-7_10
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L =
[−0.0625 0.6815 0.9947 0.9947

1 1 0.6868 −0.0678

]�
. (10.2)

We define X and X0 as sublevel sets of V with bounds 10 and 5.063, i.e.,

X = {x ∈ R
n | V (x) ≤ 10}, and

X0 = {x ∈ R
n | V (x) ≤ 5.063}.

The regions of interests {Xl}l∈L, L = {0, . . . , 4} are shown in Fig. 10.1. In
particular, X0 is a sublevel set, X1, X2 and X3 are non-intersecting polytopes
included in X\X0, and X4 is the remaining region, i.e.

X4 = X \
⋃

l=0,...,3

Xl.

Note that each Xl is a semi-linear set.

We consider both temporal logic control and verification problems for systemS .
In the control problem, we assume that we can choose the dynamics Aγ , γ ∈ Γ to be
applied at each step k. Our goal is to find the largest set of initial states and a control
strategy such that all the corresponding trajectories of S satisfy a temporal logic
specification. In the verification problem, we assume that we do not have control
over the switches, i.e., at every time step a subsystem (mode) is arbitrarily chosen

Fig. 10.1 The state space X
and the regions of interests
of the switched system
defined in Example 10.1.
The boundary of X is shown
with black lines. The
sublevel set X0 is shown in
yellow, X1, X2 and X3 are
shown in cyan, magenta and
green, respectively. X4 is
shown in white
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from the set Γ . A switched system under arbitrary switching is autonomous and non-
deterministic. Our goal is to find the largest set of initial states such that all trajectories
under all possible switching scenarios satisfy a temporal logic specification.

The asymptotic stability assumption implies that all trajectories of S eventu-
ally sink in Xlo , i.e. reach Xlo and stay in there. For this reason, we will focus on
the syntactically co-safe fragment of LTL, which includes all specifications of LTL
where satisfactions of trajectories can be determined by a finite prefix (see Defini-
tion 2.3). Since we are interested in the behavior ofS until Xlo is reached, scLTL is
a sufficiently rich specification language.

The above control and verification problems can be formally stated by using
embedding TS = (XS , �S , δS ,OS , oS ) ofS and its autonomous version TA

S =
(XS , δAS ,OS , oS ), respectively (see Definition 6.9 in Chap.6).

Problem 10.1 (Largest controlled satisfying region for S ) Given an embedding
TS of a switched linear system S and an scLTL formula φ over L, find a control
strategy (Xφ

TS
,Ω) (Definition 5.1) such that Xφ

TS
is the largest controlled satisfying

region (Definition 5.2) of the embedding transition system TS .

The embedding transition systemTS has a finite set of controls (Γ fromEq. (6.4)).
However, it has infinitely many states. Therefore, the methods developed in Chap. 5
on synthesis of control strategies for finite transition systems can not directly be
applied to solve Problem 10.1. We develop a computational procedure to construct
a finite bisimulation quotient TS /≈ for the embedding transition system TS of
an asymptotically stable switched linear system. Since the bisimulation quotient
preserves all properties that are expressible in LTL (and scLTL), and is finite, the
methods developed in Chap.5 can be used to find a control strategy (Xφ

TS /
≈

,Ω/≈)

for TS /≈, which directly maps to a strategy (Xφ

TS
,Ω) for TS solving Problem 10.1.

Problem 10.2 (Largest satisfying region under arbitrary switching for S ) Given
an embedding TA

S of a switched linear system S under arbitrary switching and an
scLTL formula φ over L, find the largest set of states Xφ

TA
S

from which φ is satisfied.

To solve the verification Problem 10.2, we construct the finite bisimulation quo-
tient TA

S /≈ of TA
S from the bisimulation quotient TS /≈ of TS , then employ analysis

techniques presented in Chap.4.

Example 10.2 Consider the switched system defined in Example 10.1, and
the specification “Never visit X2 and eventually visit X1. Moreover, if X3 is
visited, then X1 must not be visited at the next time step.” This specification
can be translated to the scLTL formula over L = {0, 1, 2, 3, 4}:

φ := (¬2 U 0) ∧ ♦ 1 ∧ ((3 ⇒ © ¬1) U 0) (10.3)
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Note that all system trajectories reach X0 in finite time and sink in there since
the system is globally asymptotically stable. Therefore, “never visit X2”, rep-
resented as �¬2 in LTL, can be written as ¬2 U 0 in scLTL for the stable
system.

10.1 Bisimulation Quotient

In this section, we present an algorithm to construct a bisimulation ≈⊆ XS ×XS of
the embedding transition system TS = (XS , Γ, δS ,L, oS ) of systemS (Eq. 6.4).
The proposed algorithm is similar to the bisimulation algorithm (Algorithm 1) pre-
sented in Chap.1 in the sense that it starts with the observational equivalence rela-
tion ∼, and the corresponding equivalence classes X/∼, then iteratively refines these
classes. While in Algorithm 1, an equivalence class that violates the bisimulation
property is refined at each iteration, here we exploit the fact that the system is asymp-
totically stable, and guide the refinement procedure in such a way that starting from
a set X0 ⊂ XS , with 0 ∈ int(X0), we incrementally construct a finite bisimulation
for a larger subset of XS as the algorithm iterates.

10.1.1 Level Sets and Slices

The proposed abstraction algorithm builds upon existence of a sequence of sets
PΘ0 , . . . ,PΘM satisfying properties i–iv:

i. 0 ∈ int(PΘ0),
ii. PΘM = XS ,
iii. PΘi ⊂ PΘi+1 , for all i = 0, . . . ,M − 1
iv. PostTS (PΘi , Γ ) ⊂ PΘi−1 for all i = 1, . . . ,M and PostTS (PΘ0 , Γ ) ⊂ PΘ0 .

We define the sequence of sets from the Lyapunov function V and its contraction
rate ρ. For any Θ > 0,

PΘ = {x ∈ R
N | V (x) ≤ Θ}

is a sublevel set of V . We define a sequence of real positive numbers Θ :=
Θ0, . . . , ΘM such that the induced sequence of sublevel sets PΘ0 , . . . ,PΘM of V
(PΘi = {x ∈ R

N | V (x) ≤ Θi}) satisfies properties i-iv.
It is assumed that XS (= X) and Xl0 , for some l0 ∈ L, are sublevel sets of V .

Let ΘX,Θl0 > 0, such that XS = PΘX and Xl0 = PΘl0
. We define the sequence

Θ := Θ0, . . . , ΘM as
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Θi+1 = ρ−1Θi, i = 0, . . . ,M − 2, (10.4)

Θ0 := Θl0 , ΘM := ΘX, and

M := argmin
M

{ρ−MΘ0 | ρ−MΘ0 ≥ ΘX.} (10.5)

Next, we define a slice of the state spaceX as the region between two consecutive
sets from the induced sequence of sublevel sets P = PΘ0 , . . . ,PΘM :

Si = PΘi \ PΘi−1, i = 1, . . . ,M. (10.6)

For convenience, we also denote S0 := PΘ0 (although S0 is not a slice in between
two level sets). We immediately see that the sets {Si}i=0,...,M form a partition of XS .

Remark 10.2 The slices are bounded semi-linear sets since the sublevel sets are
polytopes. In particular, the slices are always bounded semi-linear sets if the sublevel
sets are also bounded semi-linear sets.

Example 10.3 Consider the switched system given in Example 10.1. The
sequenceΘ is computed fromΘX,Θl0 andρ as described above,which resulted
in M = 11. The polytopic sublevel sets P := PΘ0 , . . . ,PΘ11 are shown in
Fig. 10.2.
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Fig. 10.2 The boundaries of the sublevel sets from Example 10.3 are shown in (a), where S5 is
shown in red. The sublevel sets, and implicitly the slices, are shown together with the regions of
interest in (b)
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Proposition 10.1 Assume that the set of slices {Si}i=0,...,M is obtained from a
sequence Θ satisfying Eq. (10.4). Given a state x in the i-th slice, i.e., x ∈ Si, where
1 ≤ i ≤ M, its successor state x′ ∈ {δS (x, γ ) | γ ∈ Γ } satisfies x′ ∈ Sj for some
j < i.

Proof Each sublevel set PΘi is ρ-contractive (see Appendix A.5). By the definition
of a ρ-contractive set (Definition A.12), we have that

x′ = Aγ x ∈ ρPΘi = {x ∈ R
N | V (x) ≤ ρΘi} for all γ ∈ Γ, x ∈ PΘi .

Hence, it holds that δS (x, σ ) ∈ ρPΘi for all σ ∈ �, x ∈ PΘi . From (10.4), we
have ρΘi = Θi−1. Therefore PΘi−1 = {x ∈ R

N | V (x) ≤ Θi−1} implies that
PΘi−1 = {x ∈ R

N | V (x) ≤ ρΘi} and hence PΘi−1 = ρPΘi and x′ ∈ PΘi−1 . From the
definition of slices (10.6), x′ ∈ Sj for some j < i. �

10.1.2 Abstraction Algorithm

We denote by ∼ the observational equivalence relation (Definition 1.2) induced by
Xl, l ∈ L, i.e., x1 ∼ x2 if x1, x2 ∈ Xl for some l ∈ L. The concretization map of
the equivalence classes in ∼ induces a partition of XS , i.e., {Xl}l∈L. Equivalently, an
observation preserving partition P = {Pi}i=1,...,m of XS (i.e., Pi ∩ Pj = ∅ if i �= j,
X = ∪i=1,...,mPi and Pi ⊆ Xl for some l ∈ L, for each i = 1, . . . ,m), induces a
relation ∼P⊂ X × X such that x1 ∼P x2 if x1, x2 ∈ Pi for some i = 1, . . . ,m.

The proposed abstraction algorithm computes the bisimulation quotient by itera-
tively refining an observation preserving partition with respect to one step control-
lable sets. We first explain two procedures, ComputePre and RefineUpdate,
which are used by the main abstraction algorithm.

The procedure ComputePre(P, γ ) takes as input P, which is a bounded semi-
linear set (e.g., a slice), and γ ∈ �S , which is the switching input, and returns
the set PreTS (P, γ ). In general, if P is a semi-linear set, then PreTS (P, γ ) is also a
semi-linear set and it can be computed via quantifier elimination. In particular,PreTS
of a bounded semi-linear set P can be implemented by convex decompositions and
repeated applications of (A.7) (PreTS of a polytope) as shown in Appendix A.4.

The procedure RefineUpdate(P,T , σ, q) is described in Algorithm 18 and is
formulated for a general transition system T = (X, �, δ,O, o). It takes as input a
partition P, a transition system T , a control input σ ∈ � of T , and a state q ∈ X
of T . The procedure refines P with respect to PreTS (con(q), σ ) and updates T . If P
consists of only bounded semi-linear sets, then the resulting refinement P+ consists
of only bounded semi-linear sets. This fact allows us to compute PreTS (P, γ ) with
ComputePre(P, γ ) only taking bounded semi-linear sets as inputs.



10.1 Bisimulation Quotient 191

Algorithm 18 [P+,T+] = RefineUpdate(P,T , σ, q)
Require: A TS T = (X, �, δ,O, o), a partition P where con(q′) ∈ P for all q′ ∈ X , σ ∈ � and

q ∈ Q.
Ensure: P+ is a finite refinement of P with respect to ComputePre(con(q), σ ), T+ is a TS

updated from T .
1: Set P̃ = ComputePre(con(q), σ ).
2: Set P+ = P and T+ = T .
3: for all q′ ∈ X+ such that con(q′) ∩ P̃ �= ∅ do
4: Replace q′ in Q+ by {q1, q2} and set con(q1) = con(q′) ∩ P̃, con(q2) = con(q′)\P̃.
5: Replace con(q′) in P+ by {con(q1), con(q2)}.
6: Replace each δ+(q′, σ ′) = q′′ by δ+(q1, σ ′) = q′′ and δ+(q2, σ ′) = q′′.
7: Set δ+(q1, σ ) = q
8: end for

We now present the abstraction algorithm (see Algorithm 19) that computes the
bisimulation quotient. The main idea is to start with {Xl}l∈L, refine the partition
according to {Si}i=0,...,M :

P0 = {Xl ∩ Si | l ∈ L, i ∈ {0, . . . ,M}} (10.7)

such that P0 is a refinement to both {Xl}l∈L and {Si}i=0,...,M , and then iteratively refine
P0 using the Pre operator until the bisimulation quotient is obtained. Starting with
{Xl}l∈L is necessary to guarantee that the partition is observation preserving. The
second step guarantees that each element in the partition is included in a slice. The
third step allows us to ensure that at iteration i of the algorithm, the bisimulation
quotient for states within PΘi is completed.

Algorithm 19 Abstraction algorithm
Require: System S with dynamics in Eq.6.4, polyhedral LF V with a contraction rate ρ, sets X

and {Xi}i∈L .
Ensure: Bisimulation quotient TS /≈ of the embedding transition system TS and the correspond-

ing observation preserving partition P.
1: Generate the sequence of sublevel sets P̄Θ = PΘ0 , . . . ,PΘM and slices S0, . . . , SM as defined

in Eq. (10.6).
2: Set P0 = {Xl ∩ Si | l ∈ L, i ∈ {0, . . . ,M}}.
3: Initialize TS /∼0 by setting XS /∼0 as the set labeling P0. Set transitions only for the state

ql0 ∈ XS /∼0 where con(ql0 ) = S0 = Xl0 with δ/∼0 (ql0 , γ ) = ql0 for all γ ∈ Γ .
4: for each i = 0, . . . ,M − 1 do
5: Set TS /∼i+1 = TS /∼i and Pi+1 = Pi.
6: for each q ∈ XS /∼i where con(q) ⊆ Si do
7: for each γ ∈ Γ do
8: Set [Pi+1,TS /∼i+1 ] = RefineUpdate (Pi+1,TS /∼i+1 , γ, q).
9: end for
10: end for
11: end for
12: TS /≈ = TS /∼M , and P = PM .
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The correctness of Algorithm 19 will be shown by an inductive argument. Given
a sublevel set PΘi and a partition Pi as obtained in Algorithm 17, we define P̃i as

P̃i := {P ∈ Pi | P ⊆ PΘi}. (10.8)

From Algorithm 19, we see that P0 partitions all the slices, and since Pi is a
finite refinement of P0, we can directly see that P̃i is a partition of PΘi . Consider an
embedding transition system TS (i) as a subset of TS with set of states {x ∈ XS |
x ∈ PΘi}. Then the following result holds:

Proposition 10.2 At the completion of the i-th iteration (of the outer loop) of Algo-
rithm 19 (where Pi+1 is obtained), if ∼i induced by P̃i as defined in (10.8) is a
bisimulation of TS (i), then ∼i+1 induced by Pi+1 is a bisimulation of TS (i + 1).

Proof We show that at the end of i-th iteration, each transition originating at a state
q ∈ XS /∼i+1 with con(q) ⊆ PΘi+1 satisfies the bisimulation requirement (Defini-
tion 1.4).

By Proposition 10.1, for each x ∈ Si+1 and γ ∈ Γ , x′ = Aγ x must be in a slice
with a lower index and thus x′ ∈ TS (i). Let x ∈ con(q) ∈ Pi. If x′ ∈ Si, then we have
x ∈ ComputePre(con(q′), γ ) (from step 1 of Algorithm 18) for some q′ ∈ XS /∼i .
The RefineUpdate procedure replaces con(q) with con(q1) = con(q) ∩ P and
con(q2) = con(q)\P, and updates TS /∼i+1 . We note from the definition of Pre
operator that for any x ∈ con(q1), x′ = Aγ x ∈ con(q′), thus for any x1, x2 ∈ con(q1),
x1 ∼ x2,Aγ x1 ∼ Aγ x2.Moreover, the same argument holds for any subset of con(q1).
Therefore, the transitions given in steps 6 and7ofAlgorithm1 satisfy the bisimulation
requirement.

On the other hand, if x′ /∈ Si, then x′ ∈ Sj for some j < i and x is already in a set
con(q), where δS /∼i+1(q, γ ) = q′ for some q′ satisfying the bisimulation require-
ment. Therefore, step 8 of Algorithm 19 provides exactly the transitions needed for
all states in Si+1 and thus, ∼i+1 induced by P̃i+1 is a bisimulation of TS (i + 1). �

Theorem 10.1 The quotient transition system TS /≈ obtained from Algorithm 19 is
a bisimulation of the embedding transition system TS .

Proof From Algorithm 1, we have that Pi is a refinement of {Xl}l∈L for any i =
0, . . . ,M. Therefore, PM and its induced relation ∼M are observation preserving.

At step 3 of Algorithm 19, we set δ/∼0(ql0 , γ ) = ql0 ,∀γ ∈ Γ where con(ql0) =
PΘ0 . From the definition of TS , we see that since ql0 is the only state, ∼0 induced
by P̃0 is a bisimulation of TS (0). Using Proposition 10.2 and induction, at iteration
M − 1, we have that ∼M induced by P̃M is a bisimulation of TS (M). Note that P̃M

is exactly PM , PΘM is exactly XS and TS (M) is exactly TS . Therefore ∼M induced
by PM is a bisimulation of TS . �
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Fig. 10.3 a At the end of the forth iteration (i = 3), the bisimulation quotient for states within PΘ4

is completed, which are shown in red (PΘ3 ) and grey (S4). In the forth iteration, the states within
PΘ11 \PΘ4 are partitioned according to PreTS (P, γ ),P ∈ S4. PreTS (S4, 1) and PreTS (S4, 2) are
shown in dark and light blue, respectively. b At the last iteration where i = 10, the algorithm is
completed. The state space covered by the bisimulation quotient is shown in red, covering all of XS

At each iteration i, the number of updated sets is finite as the partition Pi and the
set of inputs Γ are finite, and therefore, we have:

Corollary 10.1 The bisimulation quotient TS /≈ can be generated in a finite number
of steps, which is determined by the contraction rate of the Lyapunov function.

Example 10.4 Algorithm 19 is applied on the same setting as in Example 10.3
to compute the bisimulation quotient. P̃4 and P11 are shown in Fig. 10.3.

Remark 10.3 The assumptions on sets X, and Xl0 are made for simplicity of pre-
sentation. The problem formulation and the approach described in this chapter can
be easily extended to arbitrary positively invariant sets X and Xl0 with Xl0 ⊆ X,
i.e., not obtained as the sublevel sets of a Lyapunov function, by considering the
largest sublevel set that is included in Xl0 and the smallest sublevel set that includes
X (Θ0 and ΘX can be made arbitrarily small and arbitrary large, respectively, so as
to capture any compact subset of R

N ).

10.1.3 Extensions

Although the focus of this chapter is on switched linear systemswith polyhedral Lya-
punov functions, the presented approach for construction of a bisimulation quotient
can also be applied to other classes of discrete-time systems with different Lyapunov
functions, if
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i. the sublevel sets of the Lyapunov function are semi-linear sets,
ii. the pre-image of a bounded semi-linear set is computable and is also a semi-linear

set, and
iii. the dynamical system has a finite set of controls.

The first condition guarantees that the slices are semi-linear sets, and therefore the
initial partition is composed of semi-linear sets. The second condition allows us to
compute pre-images throughout the algorithm. Finally the last condition is necessary
since the pre-images of the partition elements are computed for each control input
(line 7 of Algorithm 19).

For example, consider fixed parameter piecewise linear systems W (see Defin-
ition 6.4 and the accompanying text) described by x(k + 1) = Alx(k), x(k) ∈ Xl,
l ∈ L. The sets Xl, l ∈ L provide a partition of X and are assumed semi-linear. As
discussed in Sect. 10.3, for such systems Lyapunov functions with piecewise polyhe-
dral sublevel sets can be constructed. A fixed parameter piecewise linear systemwith
a piecewise polyhedral Lyapunov function satisfies the three properties stated above.
The extension of the method presented in this chapter for such systems requires to
refine the initial partition according to Xl, l ∈ L. Then, the proposed algorithms can
be used to construct a quotient transition system TW /∼. In this case, in step 3 of
Algorithm 18, it is sufficient to refine a state q′ only if con(q′) ⊂ Xl since only mode
l can be active in con(q′). By eliminating some of the transitions of TW /∼ according
to Xl, i.e., δW (q, l) = q′ only if con(q) ⊆ Xl, we obtain a bisimulation quotient
TW /≈ for the corresponding embedding transition system.

Example 10.5 In this example, we show how the proposed method to con-
struct a bisimulation quotient can be applied to an autonomous fixed-parameter
piecewise linear system (Definition 6.4).

We define a two-dimensional system W with 24 modes (L = 0, . . . , 23).
The operating regions {Xl}l∈L are shown in Fig. 10.4. The dynamics of the
system are defined by

Ai =
[−0.0546 −0.7764

0.0212 −0.8521

]

, i = 0, 1, 2, 12, 13, 14,

Ai =
[−0.0700 −0.8150

0.0700 −0.7300

]

, i = 3, 4, 5, 15, 16, 17,

Ai =
[−0.9200 −0.0200

0.7580 −0.0200

]

, i = 6, 7, 8, 18, 19, 20

Ai =
[−0.9200 0.0200

0.7580 −0.0200

]

, i = 9, 10, 11, 21, 22, 23.

(10.9)

The system is asymptotically stable and admits a piecewise linear Lyapunov
function

V (x) = ‖Lγ x‖∞, if x ∈ Ωγ , Lγ ∈ R
l×N , l ≥ N, l ∈ N, (10.10)
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where {Ωγ }γ∈Γ is a conic partition of R
N , and

L1 = L5 =
[
0.2997 4.8651
4.8651 −0.2997

]

, L2 = L6 =
[
4.7802 0.3846
0.3846 −4.0110

]

,

L3 = L7 =
[−5.0549 0.1099

0.1099 5.0549

]

, L4 = L8 =
[−0.1099 5.0549

5.0549 0.1099

]

.

(10.11)
In particular, the operating regions are defined with respect to the conic

partition as follows:

Xi ⊂ Ω�i/3�+1∀i = 0, . . . , 23.

X and the yellow region (
⋃7

i=0 X3i) are defined as sublevel sets of V with
bounds 19.75 and 10, i.e.,

X = {x ∈ R
N | V (x) ≤ 19.75}, and

7⋃

i=0

X3i = {x ∈ R
N | V (x) ≤ 10}.

Note that X = ⋃23
i=0 Xi, and each operating region Xi are semi-linear sets.

In Fig. 10.4, operating regions X3i−1,X3i−2,X3i−3 that are in the same cone
Ωi are shown with different colors. For example regions X12,X13 and X14 in
Ω3 ∩ X are shown with yellow, white and green, respectively.

The sublevel sets of V (10.10) are not polytopic, however, the slices are still
bounded-semi linear sets and can be computed as explained in Sect. 10.1.1
(M = 11). These slices and sublevelsets are shown in Fig. 10.5a. Algorithm 19
is used to compute a quotient transition system TW /∼. The resulting partition
is shown in Fig. 10.5b. By eliminating some of the transitions according to
{Xl}l∈L, i.e., δW /∼(q, γ ) = q′ only if con(q) ⊂ Xl, we obtain a bisimulation
quotient TW /≈ for the piecewise linear system. Note that each state q of TW /≈

has a single outgoing transition, and the system is not controlled.

10.1.4 Complexity

The proposed algorithm for construction of a bisimulation quotient involves com-
putations of pre-images of bounded semi-linear sets through linear dynamics, inter-
sections and set differences for semi-linear sets at each iteration. The number of
operations performed, and hence the complexity of the algorithm, scale linearly with
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Fig. 10.4 The operating regions of the system from Example 10.5. The inner sublevel set is shown
in yellow. The intersections of cones Ωi withX are shown with black boundaries. There are exactly
3 regions in each intersection (Ωi ∩ X), and these are shown with different colors
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Fig. 10.5 The boundaries of the sublevel sets from Example 10.5 are shown in (a), where S6 is
shown in red. The boundaries of the semi-linear sets from the resulting partition P11 are shown
in (b)

the size of the resulting partition |PM |. Therefore, it is enough to derive an upper
bound on |PM | with respect to the number of slices, observations and controls.

Let si be the number of sets in partition PM that are included in slice Si, i.e.,

si := |{P ∈ PM |P ⊆ Si}|.

Similarly, s0i denotes the number of sets in the initial partition P0 that are included in
slice Si. In the subsequent analysis, r is used to denote the number of observations
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within XS \ Xl0 (r = |L| − 1), and e is used to denote the number of input symbols
(e = |Γ |).
Lemma 10.1 The number si of sets in the resulting partition PM that are included
in slice i ≥ 1 is less than or equal to

si = r

(
i−1∑

k=0

sk

)e

. (10.12)

Proof A set P ∈ P0 with P ⊆ Si is partitioned only if there exists γ ∈ Γ and P′ ∈ Sj
for some j < i such that P ∩ PreTS (P′, γ ) �= ∅ and P\PreTS (P′, γ ) �= ∅ (step 3 of
Algorithm 18). Therefore,

(a) for any two states q1, q2 ∈ XS /≈ with con(q1), con(q2) ⊂ Si if o(q1) = o(q2),
there exists γ ∈ Γ such that δS /≈(q1, γ ) = q′

1, δS /≈(q2, γ ) = q′
2 and q′

1 �= q′
2.

From Proposition 10.1 and the bisimulation requirement (Definition 1.4), we have
that

(b) for each q ∈ XS /≈ with con(q) ⊆ Si and for each γ ∈ Γ , there exists a state
q′ with con(q′) ⊆ Sj for some j < i such that δS /≈(q, γ ) = q′.

Given properties (a) and (b), the number of sets obtained from partitioning a set
P ∈ P0 with P ⊆ Si is bounded by the number of permutations of size e, with
unrestricted repetitions, taken from a set of size

∑i−1
k=0 sk .

The given bound is obtained by observing that s0i ≤ r for all i = 1, . . . ,M, since
the initial partition P0 is obtained by refining the coarsest observation preserving
partition {Xl}l∈L (see (10.7)) according to slice partition. �

Remark 10.4 The bound on si (10.12) is attained when the following conditions are
satisfied.

i. s0i = r.
ii. Let γ1 . . . γe be a sequence of controls such that γj �= γk if j �= k. For each

sequence of states q1 . . . qe from XS /∼i−1 (with unrestricted repetitions), i.e.,
con(qj) ⊆ PΘi−1 , j = 1, . . . , e, there exists a state q ∈ XS /≈ with con(q) ⊆ Si,
such that δS /≈(q, γj) = qj for all j = 1, . . . , e.

The bound is computed through a combinatorial perspective by utilizing the con-
tractive property of the system. Even though the bound is attainable, the underlying
dynamics is not considered explicitly. Therefore, in many cases the bound is not
attained (see Example 10.6).

Remark 10.5 PM is the coarsest refinement ofP0 satisfying the bisimulation require-
ment. This claim follows from statement-(a) of the proof of Lemma 10.1, and can
easily be shown by an inductive argument on the partitions of the sublevel sets, i.e.,
P̃i as defined in (10.8).
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Fig. 10.6 Comparison
between the number si of
elements in a slice and the
corresponding bound si
computed as in Eq. (10.12)
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Example 10.6 The number of sets in partition P11 from Example 10.4 is illus-
trated in Fig. 10.6, where a comparison is made between the slice numbers and
their bounds computed as in (10.12).

Theorem 10.2 Let pi = |{P | P ∈ PM ,P ⊆ PΘi}| for all i = 0, . . . ,M. Then p0 = 1
and

pi ≤ (r + 1)
∑i−1

j=0 e
j
, i = 1, . . . ,M. (10.13)

Proof As PΘ0 is not partitioned, the claim holds for i = 0, i.e., p0 = 1. We prove the
claim for i ≥ 1 by induction. The definitions of pi, si and si imply that

pi+1 = pi + si+1 ≤ pi + si+1.

From (10.12) s1 = r, and hence the claim holds for i = 1 as p1 ≤ 1 + r. Assume
that inequality (10.13) holds for pk for some k ≥ 1. By Lemma 10.1, we have that
sk+1 = rpek . Therefore,

pk+1 ≤ pk + rpek < (r + 1)pek .
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Using the inductive hypothesis on pk , the left hand side can be rewritten as

pk+1 <(r + 1)
(
(r + 1)

∑k−1
j=0 ej

)e

pk+1 <(r + 1)
(
(r + 1)

∑k
j=1 e

j
)

pk+1 <(r + 1)
∑k

j=0 e
j
.

Thus, inequality (10.13) holds for pk+1, and by induction we conclude that (10.13)
holds for all i = 1, . . . ,M. �

The size pM of the resulting partition of the working set X is double exponential
in M when e > 1 (switched systems). Therefore when e > 1 the number of Pre
operations performed, pM−1, is double exponential in M − 1. It is easy to verify
from (10.13) that the bound is exponential inM for linear systems, i.e., e = 1. Note
that the derived bound is an upper bound for the worst case, i.e., when si = si for all
i = 0, . . . ,M.

Remark 10.6 The computational complexity increases with the number of sublevel
sets M, which is computed from the working set X, the target set Xl0 , and the con-
traction rate ρ of the Lyapunov function. Therefore, the amount of computation can
be adjusted by the choice of the working set X and the target set Xl0 for a given Lya-
punov function. For example, the computation time can be decreased by choosing
Xl0 as the largest sublevel set that does not intersect with the regions of observations.
In addition, using a Lyapunov function with a minimal contraction rate can decrease
the computation time.

10.2 Synthesis and Verification

In this section, we present solutions to Problem 10.1 and Problem 10.2. In particular,
our solutions proceed by finding a bisimulation quotient of the embedding transition
system as described above. Then, we use techniques presented in Chap.5 for finite
transition systems.

10.2.1 Synthesis

Problem10.1 aims at finding the largest controlled satisfying region of the embedding
transition system TS of a switched linear systemS . To solve this problem, we first
construct a bisimulation quotient TS /≈ of TS (see Sect. 10.1). Then, we apply the
scltl control algorithm (Algorithm 13) presented in Sect. 5.3 on the quotient
TS /≈ and specification φ. The algorithm outputs a control strategy (Xφ

S /
≈

,Ω) for
the bisimulation quotient. The final step of the proposed solution for Problem 10.1
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is the transformation of the control strategy (Xφ

S /
≈

,Ω) for the bisimulation quotient

to a control strategy (Xφ

S ,ΩS ) for the embedding transition system, and hence for
the original dynamical system. The transformation of the set of satisfying states is
straightforward:

Xφ

S =
⋃

q∈Xφ

S /
≈

con(q).

The control function Ω is history dependent and takes the form of a feedback
control automaton C = (SC, SC0,X, τ, Γ, π), which is constructed from the specifi-
cation automaton A (an FSA constructed from φ), and transition system TS /≈. The
control function Ω can easily be transformed to a control function for S through
the bisimulation relation ≈:

ΩS (x0 . . . xM) := Ω(q0 . . . qM),where xi ∈ con(qi), i = 0, . . . ,M.

Example 10.7 Consider the switched linear system given in Example 10.1
and scLTL formula φ given in Example 10.2. We first apply Algorithm 19 to
construct a bisimulation quotient TS /≈ of the embedding transition system
(see Example 10.4). The quotient system has 9677 states. Then, we apply
Algorithm 13 on TS /≈ and φ to obtain a control strategy (Xφ

S /
≈

,Ω) for
TS /≈. The FSA constructed from φ, and therefore the control automaton,
have 6 states. Finally, we transform the strategy to a strategy (Xφ

S ,ΩS ) for
the embedding transition system as explained above. The set of satisfying
initial states Xφ

S is shown in Fig. 10.7.
Two trajectories of the switched system originating from Xφ

S in closed-
loop with ΩS are shown in Fig. 10.7. The first trajectory (shown in light blue

and labeled with numbers) is generated from

[−4.8676
−5.7102

]

by the switching

sequence 2, 2, 1. The second trajectory (shown in dark blue and labeled with

letters) is generated from

[
4.9276
6.2883

]

by the switching sequence 1, 2, 1, 1. Note

that both trajectories are satisfying.

10.2.2 Verification

In this section, we consider the problem of verifying the switched system under
arbitrary switching, i.e., at every time-step a subsystem is arbitrarily chosen from
the set Γ . Note that the system under arbitrary switching is uncontrolled and non-
deterministic. Therefore, we define an embedding transition system
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Fig. 10.7 Xφ
S from

Example 10.7 is shown in
red. The color code used in
Fig. 10.1 is used for the
boundaries of the regions of
interests. Two simulated
trajectories are indicated by
their labels
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TA
S = (XS , δAS ,L, oS ) that captures arbitrary switching (see Sect. 6.2) from the

embedding transition system TS = (XS , Γ, δS ,L, oS ) by removing the input set
(uncontrolled) and adapting the transitions as follows:

x′ ∈ δAS (x) if there exists γ ∈ Γ and δS (x, γ ) = x′.

Note that TA
S is infinite and non-deterministic.

The verification Problem 10.2 aims at finding the largest satisfying region
of the embedding transition system TA

S . To solve this problem, we first con-
struct a bisimulation quotient TS /≈ of TS (see Sect. 10.1). Then, we convert the
bisimulation quotient TS /≈ = (XS /≈, Γ, δS /≈,L, oS /≈) of TS to TA

S /≈ =
(XS /≈, δAS /≈,L, oS /≈) as follows:

q′ ∈ δAS /≈(q) if there exists γ ∈ Γ and δS /≈(q, γ ) = q′.

In this case,we have a particular bisimulation relation.We consider the embedding
and the quotient transition as systems with a single input labeling all the transitions.
Then, we apply the scltl control algorithm (Algorithm 13) presented in Sect. 5.3
to the quotient TA

S /≈ and specification φ. The algorithm outputs the set of satisfying
initial states (Xφ

S /
≈

) for the bisimulation quotient. Note that we omit the feedback
control function as we have a single “dummy” control. The final step of the proposed
solution for Problem 10.2 is the transformation of the set of satisfying states:

Xφ

S =
⋃

q∈Xφ

S /
≈

con(q). (10.14)
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Fig. 10.8 Xφ
S from

Example 10.8 is shown in
red. The color code used in
Fig. 10.1 is used for the
boundaries of the regions of
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Example 10.8 Consider again the switched linear system from Example 10.1
and scLTL formula φ given in Example 10.2. We first apply Algorithm 19
to construct a bisimulation quotient TS /≈ of the embedding transition sys-
tem (see Example 10.4). Then, we construct the bisimulation quotient TA

S /≈

under arbitrary switching from TS /≈ as explained above. Finally, we apply
Algorithm 13 on TA

S /≈ and φ to obtain a the set of satisfying states Xφ

S /≈ of
TS /≈. The set of satisfying initial states X

φ

S of the switched system is defined
as in (10.14) and is shown in Fig. 10.8. Note that, by definition, this is a subset
of the set of initial states found for the synthesis problem (see Fig. 10.7).

Two trajectories of the switched systemoriginating fromXφ

S under arbitrary
switching are shown in Fig. 10.8. The first trajectory (shown in light blue and

labeledwith numbers) is generated from

[−7.8522
6.9122

]

, and the second trajectory

(shown in dark blue and labeled with letters) is generated from

[
1.0822

−8.1389

]

. At

each time step, the switching input is chosen randomly from the set Γ = {1, 2}
for the simulations. Note that both trajectories are satisfying.

Example 10.9 We consider the piecewise linear system given in Example 10.5
and a specification over its set of observations L = 0, . . . , 23. The specification
is “A system trajectory never visits X2, X23 (magenta regions), X11 and X14

(dark blue regions) and eventually visits X17, X20 (cyan regions), X5 or X8

(green regions)”, which translates to the following scLTL formula:

φ := (¬(2∨23∨11∨14)U(0∨3∨6∨9∨12∨15∨18∨21))∧♦(17∨20∨5∨8).
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Fig. 10.9 Xφ
W from

Example 10.9 is shown in
red. The color code used in
Fig. 10.1 is used for the
boundaries of the regions of
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To verify the system against φ, we first construct a bisimulation quotient
TW /≈ as explained in Sect. 10.1.3 (see Example 10.5). Note that the bisimula-
tion quotient is finite and deterministic, and is not controlled. Then, we apply
Algorithm 13 to TW /≈ and φ to obtain the set of satisfying states Xφ

W /≈ of
TW /≈. Finally, we compute Xφ

W as in (10.14). Xφ

W and two simulated trajec-
tories are shown in Fig. 10.9.

10.3 Notes

In this chapter, which is based on our work [71, 72], we presented an algorithm for
constructing a finite quotient of a stable discrete-time switched linear system in a
bounded subset of its state space with the aid of a polyhedral Lyapunov function. In
particular, infinity norm Lyapunov functions are used in the examples. However, as
explained in Sect. 10.1.3, the proposed methods can be applied if the sublevel sets
of the Lyapunov functions are semi-linear. Furthermore, the use of infinity norm
Lyapunov functions is not limiting since the existence of a common infinity norm
Lyapunov function is a necessary condition for the stability of switched linear sys-
tems [124].

The assumption on the existence of a common Lyapunov function (i.e., the
assumption on the stability under arbitrary switching) can be relaxed by considering
restricted, state dependent switching. In particular, the system from Example 10.5
is adapted from [122], where stabilizing static feedback control laws for discrete-
time piecewise affine (PWA) systems are synthesized. The synthesis framework pre-
sented in [122] involves computation of piecewise linear Lyapunov functions that
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admit piecewise polytopic sublevel sets. Here, we considered the stable closed-loop
system, i.e., state dependent switching.

The construction of finite abstractions for dynamical systems based on stabil-
ity properties and Lyapunov functions was studied in [69, 157]. Specifically,
approximately bisimilar finite abstractions for continuous-time switched systems
were constructed under incremental stability assumptions in [69], where sublevel
sets of a common Lyapunov function (or multiple Lyapunov functions with addi-
tional assumptions) were used. The abstract model was defined by quantizing the
state space of the switched system, and sampling the trajectories originating from
the quantized state space. The approximate bisimulation relation guarantees that the
trajectories of the abstract model and the original system are close to each other [68].
In [69], the accuracy of the abstraction was defined by the quantization parameter
and the Lyapunov function. Themethod developed in [69] is not limited to linear sys-
tems. However, the abstraction is approximate and the case studies presented in [69]
highlight that a considerable accuracy requires a large abstract model. The authors
of [69] relaxed the incremental stability assumption in their work on construction
of approximate simulations [187]. A related approach for stochastic systems can
be found in [186]. Another conceptually related work is [157], where N Lyapunov
functions were used for the abstraction of N-dimensional continuous-time Morse-
Smale systems (e.g., hyperbolic linear systems) to timed automata. The abstraction
proposed therein is weaker than bisimulation, but it can be used to verify safety
properties.

The method presented in this chapter was implemented in Matlab as a tool called
called FBSLS (Finite Bisimulations for Switched Linear Systems), and is available
for download at http://sites.bu.edu/hyness/switchedpolybis/. Given a set of observa-
tions over polytopic subsets of the state space, a switched linear system with stable
subsystems, and a polyhedral Lyapunov function, the tool generates the bisimulation
quotient in a finite number of steps. Starting from a sublevel set that includes the
origin in its interior, the tool iteratively constructs the bisimulation quotient for any
larger sublevel set. The tool also implements synthesis of the switching law and sys-
tem verification with respect to specifications given as syntactically co-safe Linear
Temporal Logic (scLTL) formulas over the observed polytopic subsets, which are
also provided as inputs by the user.

http://sites.bu.edu/hyness/switchedpolybis/


Chapter 11
Language Guided Controller Synthesis

In Chap.9, we treated the temporal logic control problem for a PWA system W .
We presented an abstraction-based solution consisting of three main steps. First, we
constructed an abstract model of the system based on the partition induced by the
polytopic from the definition of W . Second, we synthesized a control strategy for
the abstraction from the LTL specification formula. Finally, we refined the strategy
back to the original system W .

While being able to accommodate full LTL specifications, the method from
Chap.9 was conservative, mainly because the original (rough) partition of the state
space was not refined if a control strategy was not found. In this chapter, we address
this limitation. We restrict our attention to specifications given in the co-safe frag-
ment of LTL (scLTL) and present a language-guided synthesis method. Central to
our approach is the construction and refinement of an automaton that restricts the
search for initial states and control strategies in such a way that the satisfaction of
the specification is guaranteed at all times. We focus on fixed-parameter control
PWA systems W (Definition 6.2). Formally, the problem can be stated by using the
embedding TW = (XW ,ΣW , δW ,OW , oW ) (Definition 6.6) of W as follows:

Problem 11.1 (scLTL Control) Given a fixed-parameter PWA control system W
(Definition 6.2), and an scLTL formula φ over L ∪ {Out}, find a control strategy
(Xφ

TW
,Ω) (Definition 5.1) such that Xφ

TW
is the largest controlled satisfying region

(Definition 5.2) of the embedding transition system TW and LTW (Xφ

TW
,Ω) ⊆ Lφ .

We propose a solution to Problem 11.1 by relating the control synthesis problem
with the construction of a dual automaton from the FSA that accepts the good pre-
fixes of the specification formula φ (Lpref ,φ). The states of the dual automaton will
correspond to polyhedral subsets of XW , and therefore X, and its transitions will be
mapped to state feedback controllers. First, the transitions and the states of the dual
automaton will be removed by checking their feasibility with respect to the transi-
tions of TW , and hence the particular dynamics ofW . Then, its states will be refined
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until feasible region-to-region state feedback controllers are obtained. The refined
dual automaton and the controllers labeling its transitions will provide a solution to
Problem 11.1 in the form of a feedback control automaton, which will be mapped
to a control strategy as given in Definition 5.1. This approach reduces the controller
synthesis part of Problem 11.1 to solving a finite number of region-to-region control
problems. The outlined control procedure is summarized in Algorithm 20. Through
the rest of this section, we provide details of this procedure.

Algorithm 20 scltl control(W , φ):Control strategy (Xφ

TW
,Ω) such that all tra-

jectories in TW (Xφ

TW
,Ω) satisfy φ

1: Construct TW from W
2: Translate φ into an FSA A = (S, s0,L ∪ {Out}, δA,F)

3: Build a dual automaton AD from A
4: Prune the states and the transitions of AD according to TW
5: Refine AD and synthesize transition controllers
6: Transform the refined automaton and its transition controllers into a control strategy for W

Example 11.1 We define a two-dimensional fixed-parameter PWA control
system W (Definition 6.2) with four modes (L = {1, 2, 3, 4}). The operat-
ing regions are shown in Fig. 11.1a. The dynamics of the system are defined
by

A1 =
[
0.92 0
0 0.98

]

, B1 =
[
1 0
0 1

]

, c1 =
[
0.1
0

]

,

A2 =
[
0.95 0.1
0 0.98

]

, B2 =
[
1 0
0 1

]

, c2 =
[

0.2
−0.2

]

,

A3 =
[
0.99 0
0 0.98

]

, B3 =
[
1 0
0 1

]

, c3 =
[
0.1
0

]

,

A4 =
[
0.99 0
0 0.98

]

, B2 =
[
1 0
0 1

]

, c4 =
[−0.2

0.2

]

,

(11.1)

and the controls are constrained to set U = {u | −1 ≤ ui ≤ 1, i = 1, 2}. We
consider the specification “Start inX1 and eventually visitX4. Moreover, until
visitingX4, do not leaveX, do not visitX3, and ifX2 is visited, thenX4 should
be visited at the next time step.” The specification is formally defined as the
scLTL formula

φ = 1 ∧ (¬Out ∧ ¬3 ∧ (¬2 ∨ ©4) U 4)

over L ∪ {Out}. The FSA that accepts the good prefixes of the formula φ is
shown in Fig. 11.1b.We define the embedding transition system TW according
to Definition 6.6. A run
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wXW =
[
2.0000
4.0000

]

,

[
2.5400
4.9200

]

,

[
2.9448
5.8216

]

,

[
3.2271
6.7052

]

,

[
3.3984
7.5711

]

,

[
3.4694
8.4196

]

,

[
5.3379
9.0513

]

,

ofTW originating at

[
2.0000
4.0000

]

∈ XW and generated by the inputwordwΣW =

wΣW (1)wΣW (2)wΣW (3)wΣW (4)wΣW (5)wΣW (6) with wΣW (k) =
[
1.0000
1.0000

]

for k = 1, . . . , 6 is shown in Fig. 11.1a. The run produces the output word
1, 1, 1, 1, 1, 2, 4. The run satisfies the specification, since the word produced
by the run is accepted by the FSA shown in Fig. 11.1b.

11.1 Dual Automaton Construction and Simplification

In this section,we present the dual automaton definition and construction for a general
FSA A = (S, s0,Σ, δA,F). We then consider the particular case of automata with
input alphabet OW and discuss the connection with the control Problem 11.1.

As explained in Sect. 2.2, the good prefixes of an scLTL formula φ over Σ are
accepted by an FSA A = (S, s0,Σ, δA,F). The dual of an FSA A is constructed by
interchanging its states and transitions:

x 2

X1

X2

X3

X4

x1

1|2|3|4|Out

4

1

2

4

1

(b) = 1∧(¬Out ∧¬3 ∧
(¬2

(a) Regions of
∨ ©4)U 4)

Fig. 11.1 The regions of the PWA system and a simulated trajectory (a) and the FSA (b) from
Example 11.1. For the FSA, s0 is the initial state and s1 is the accepting state. For simplicity of the
representation, if several transitions exist between two states, only one transition labeled by the set
of all inputs (separated by the symbol |) is shown
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Definition 11.1 Given an FSA A = (S, s0,Σ, δA,F), its dual automaton is a tuple
AD = (SD, SD0 ,Σ, δD, τD,FD) where

• SD = {(s, l) | δA(s, l) 	= ∅} is the set of states,
• SD0 = {(s0, l) | δA(s0, l) 	= ∅} is the set of initial states,
• Σ is the output alphabet,
• δD : SD → 2SD is the transition map, where

δD((s1, l1)) = {(s2, l2) | s2 = δA(s1, l1), δA(s2, l2) 	= ∅},

• τD : SD → Σ is the output function, where τD((s, l)) = l, and
• FD = {(s, l) | δA(s, l) ∈ F} is the set of accepting (final) states.

Informally, the states of the dual automaton AD are the transitions of the automaton
A. There is a transition between two states of AD if the corresponding transitions are
connected by a state in A. The output alphabet of AD is the same as the input alphabet
of A, i.e., Σ . τD is an output function. For a state of AD, τD produces the symbol
that enables the transition in A. The set of initial states SD0 of AD is the set of all
transitions that leave the initial state in A. Similarly, the set of final states FD of AD

is the set of transitions that end in a final state of A.
An accepting run of a dual automaton is a sequence wSD = wSD(1) . . .wSD(n) ∈

Σ∗, where wSD(1) ∈ SD0 , wSD(n) ∈ FD and wSD(i + 1) ∈ δD(wSD(i)) for all i =
1, . . . , n − 1. An accepting run wSD produces a word wΣ = wΣ(1) . . .wΣ(n), where
wΣ(i) = τ(wSD(i)), for all i = 1, . . . , n. The output languageLAD of a dual automa-
ton AD is the set of all words that are generated by accepting runs of AD. The con-
struction of a dual automaton AD from an FSA A guarantees that any word produced
by AD is accepted by A, and any word accepted by A can be produced by AD:

Proposition 11.1 The output language of the dual automaton AD coincides with the
language accepted by the automaton A, i.e.,LA = LAD .

Proof ⇒: For every word wΣ = wΣ(1) . . .wΣ(n) accepted by automaton A, there
exists a run wS = wS(1) . . .wS(n + 1) such that wS(1) is s0, wS(n + 1) ∈ F and
δA(wS(i),wΣ(i)) = wS(i + 1) for all i = 1, . . . , n. The transition sequence of this
run corresponds to an accepting run

wSD = wSD(1) . . .wSD(n) = (wS(1),wΣ(1)) . . . (wS(n),wΣ(n))

of the dual automaton which generates the word wΣ since wSD(1) = (wS(1),
wΣ(1)) ∈ SD0 , wSD(n) = (wS(n),wΣ(n)) ∈ FD, wSD(i + 1) ∈ δD(wSD(i)) for all i =
1, . . . , n − 1 and τD(wSD(i)) = wΣ(i) for all i = 1, . . . , n.

⇐: Similarly, a run wSD(n) = (wS(1),wΣ(1)) . . . (wS(n),wΣ(n)) of AD that pro-
duces the word wΣ = wΣ(1) . . .wΣ(n) yields a run wS = wS(1) . . .wS(n + 1) of A
which accepts the word wΣ . �
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The final states of the dual automaton AD which correspond to the transitions that
leave a final state of A can only be reached from the initial states of AD through
other final states of AD. In other words, if wSD = wSD(1) . . .wSD(n) is an accepting
run of AD, and wSD(n) corresponds to a transition that leaves a final state of A,
then wSD = wSD(1) . . .wSD(n − 1) is also an accepting run of AD. For simplicity, we
construct a simpler dual automaton AD′ by removing such states and the transitions
adjacent to them from AD. Note that any accepting run of AD′ is also accepted by
AD, and any accepting run of AD contains a prefix that is accepted by AD′ . In the
following, for simplicity and without the risk of confusion, we denote the simplified
dual automaton by AD.

As summarized in Algorithm 20, after we construct the embedding transition
system TW = (XW ,ΣW , δW ,OW , oW ) of the PWA control systemW , we translate
the scLTL specification φ over OW into an FSA A = (S, s0,OW , δA,F), and then
take the dual AD = (SD, SD0,OW , δD, τD,FD) of the FSA A. A word

wOW = wOW (1) . . .wOW (n)

produced by an accepting run

wSD = wSD(1) . . .wSD(n)

of AD, i.e., τD(wSD(i)) = wOW (i) for all i = 1, . . . , n, defines a sequence of sets

XwOW (1) . . .XwOW (n)

in the state space of system TW . Any run

wXW = wXW (1) . . .wXW (n)

of TW with wXW (i) ∈ XwOW (i), i = 1, . . . , n satisfies the specification by Proposi-
tion 11.1. Consequently, the dual automaton construction reduces the controller syn-
thesis part of Problem 11.1 to solving a finite number of region to region control
problems defined by the transitions of AD. Note that these regions correspond to
polyhedral sets in the state space of the PWA control system W .

For a dual automaton state s ∈ SD, we use Rs ⊆ XW to denote the corresponding
region of system TW , e.g., for a state s of the initial dual automaton AD constructed
from A, Rs := XτD(s). For a transition map δD, if s′ ∈ δD(s) and s 	= s′, we denote the
transition from s to s′ by (s, s′), and the set of all transitions between two different
states of AD by

ΔD = ∪s∈SD{(s, s′) | s′ ∈ δD(s), s 	= s′}.
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Example 11.2 The dual AD of the FSA A from Example 11.1 (Fig. 11.1b) is
shown in Fig. 11.2a. A possible accepting runwSD = (s0, 1)(s2, 1)(s2, 2)(s2, 4)
(s1, 4) of AD defines a sequence of regionsX1X1X2X4X4, and any run wXW =
wXW (1)wXW (2)wXW (3)wXW (4)wXW (5) of TW from Example 11.1 that fol-
lows the sequence of regions, i.e., wXW (1) ∈ X1,wXW (2) ∈ X1,wXW (3) ∈
X2,wXW (4) ∈ X4,wXW (5) ∈ X4, satisfies the specification φ. The run of the
embedding transition system TW shown in Fig. 11.1a follows the sequence of
regions defined by the accepting run

wSD = (s0, 1)(s2, 1)(s2, 1)(s2, 1)(s2, 1)(s2, 2)(s3, 4).

The final states of the dual automaton AD which correspond to the tran-
sitions that leave a final state of the FSA A are shown in gray, and the dual
automaton AD′ obtained by removing these states and transitions is shown in
Fig. 11.2b. The run wSD′ = (s0, 1)(s2, 1)(s2, 2)(s3, 4) is accepted by both of
the dual automata.

(a) AD (b) AD′

Fig. 11.2 The dual of the FSA (Fig. 11.1b) from Example 11.1 (a) and the simpli-
fied version of it (b). For the automaton AD shown in (a), (s0, 1) is the initial state,
and {(s2, 4), (s3, 4), (s1, 1), (s1, 2), (s1, 3), (s1, 4), (s1,Out)} is the set of final states. For
simplicity of representation, the states {(s1, 1), (s1, 2), (s1, 3), (s1, 4), (s1,Out)} are shown
together as (s1, 1|2|3|4|Out). The dual automaton AD′ obtained by removing the states
{(s1, 1), (s1, 2), (s1, 3), (s1, 4), (s1,Out)} (represented by (s1, 1|2|3|4|Out)) and the transitions
adjacent to them (shown in gray in (a)) from AD is shown in (b). For automaton AD′ , (s0, 1) is
the initial state, and {(s2, 4), (s3, 4)} is the set of final states
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A transition (s, s′) ∈ ΔD induce a region to region, Rs − to − Rs′ controller syn-
thesis problem. We say that a transition (s, s′) ∈ ΔD is enabled if there exists an
admissible control law that achieves the transition for all x ∈ Rs. Two conditions are
introduced for constructing admissible controllers according to existence of a self
transition of the source state s:

• When the source state has a self loop, s ∈ δD(s), a controller enables a transition
(s, s′) if the corresponding closed-loop trajectories originating in Rs reach Rs′ in
finite time and remain within Rs until they reach Rs′ .

• When the source state does not have a self loop, s /∈ δD(s), a transition (s, s′) is only
enabled if there exists a controller such that the resulting closed-loop trajectory
originating in Rs reaches Rs′ at the next discrete-time instant.

For every transition from the set ΔD, if a controller that enables the transition can be
constructed, then every resulting closed-loop trajectory originating in ∪s∈SD0Rs will
satisfy the specifications by Proposition 11.1. However, existence of such controllers
is not guaranteed for all the states of TW within XW .

Problem 11.1 aims at finding the largest subset of XW for which the region-to-
region control problems induced by the dual automaton are feasible. To this end, first,
the dual automaton is pruned by checking the feasibility of transitions and states for
the embedding transition system TW .

The feasibility of the transitions of the dual automaton is first checked by consid-
ering the transitions of TW , i.e., the particular dynamics of the PWA system W and
the set U where the control input takes values. The set of states that can be reached
from the region of state s ∈ SD in one step is defined as Post(Rs,ΣW ), where Post()
is defined in Eq. (1.2).

For a transition (s, s′) of the dual automaton, if Post(Rs,ΣW ) ∩ Rs′ = ∅, then this
transition is considered infeasible, since there is no admissible controller that enables
this transition. As Rs and ΣW (the control set U) are polyhedral sets, Post(Rs) can
be computed by considering the PWA dynamics:

Post(Rs,U) = hull({AτD(s)v + BτD(s)u + cτD(s) | v ∈ V (Rs), u ∈ V (U)}). (11.2)

Algorithm 21 summarizes the pruning procedure. Once the infeasible transitions
are removed as in line 2, the following feasibility tests are performed. A state and all
of its adjacent transitions are removed from the dual automaton either if it does not
have an outgoing transition to another state and it is not a final state or if it does not
have an incoming transition from another state and it is not an initial state (line 6).
Removing such states and transitions does not reduce the solution space since such
states cannot be part of any satisfying trajectory.
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Algorithm 21 Pruning(TW ,AD = (SD, SD0 ,OW , δD, τD,FD)): Pruned dual
automaton AD′ = (SD′ , SD′

0
,OW , δD′ , τD,FD)

1: SD′ = SD
2: δD′ (s) = {s′ | s′ ∈ δD(s),Post(Rs,ΣW ) ∩ Rs′ 	= ∅}
3: while SD 	= ∅ do
4: for all s ∈ SD do
5: SD = SD \ {s}
6: if (s /∈ FD AND {s′ | (s, s′) ∈ ΔD′ } = ∅ ) OR (s /∈ SD0 AND {s′ | (s′, s) ∈ ΔD′ } = ∅ ) then
7: SD′ = SD0 \ {s}
8: SD = SD ∪ {s′ | (s, s′) ∈ ΔD′ } ∪ {s′ | (s′, s) ∈ ΔD′ }
9: end if
10: end for
11: end while
12: SD′

0
= SD0 ∩ SD′

Example 11.3 The states of the simplified dual automaton AD = (SD, SD0 ,

OW , δD, τD,FD) shown in Fig. 11.2b from Example 11.2 are relabeled and
shown in Fig. 11.3a. The regions of the states of the dual automaton AD are

Rs0 = Rs1 = X1,Rs2 = X2,Rs3 = Rs4 = X4,

where Xi, i = 1, 2, 3, 4 are the operating regions of W (shown in Fig. 11.1a).
We apply Algorithm 21 to the transition system TW and automaton AD, and

obtain the pruned initial dual automaton denoted by AD0 = (SD0, SD00 ,OW ,

δD0, τD0,FD0). We first check the feasibility of the transitions of AD (line 2).
Post(Rs0 ,ΣW )(= Post(Rs1 ,ΣW )) and Post(Rs2 ,ΣW ) are shown in

Fig. 11.4. The transitions leaving s0 in the pruned automaton AD0 are set
as δD0(s0) = {s1, s2} since δD(s0) = {s1, s2, s4} and Post(Rs0 ,ΣW ) ∩ Rs1 	= ∅,
Post(Rs0 ,ΣW ) ∩ Rs2 	= ∅, and Post(Rs0 ,ΣW ) ∩ Rs4 = ∅. Note that the transi-
tion (s0, s4) is not added to the pruned dual automaton sinceRs4 is not reachable
from Rs0 . Similarly, the set of transitions leaving s1 is δD0(s1) = {s1, s2}, since
δD(s1) = {s1, s2, s4}, Post(Rs1 ,ΣW ) ∩ Rs1 	= ∅, Post
(Rs1 ,ΣW ) ∩ Rs2 	= ∅ and Post(Rs1 ,ΣW ) ∩ Rs4 = ∅. Finally, δD0(s2) = {s3},
since δD(s2) = {s3} and Post(Rs2 ,ΣW ) ∩ Rs3 	= ∅.

When transitions (s0, s4) and (s1, s4) are removed, state s4 becomes infeasi-
ble since it is not reachable from the initial state s0. s4 satisfies the second con-
dition given in line 6, and hence s4 and all transitions adjacent to it are removed.
All the remaining states are feasible, and the resulting pruned automaton AD0

is shown in Fig. 11.3b.
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(a) AD (b) AD0

Fig. 11.3 The dual automaton from Fig. 11.2b (a), and the dual automatonAD0 obtained by pruning
AD (b)

X1

x1

x 2

(a) Post(Rs0 )(= Post(Rs1 ))

x1

x 2

X2

(b) Post (Rs2 )

Fig. 11.4 One step reachable sets from X1 (a) and X2 (b) are shown in grey

11.2 Dual Automaton Refinement

Algorithm 21 guarantees that a non-empty subset of a source region Rs is one-step
controllable to the target region Rs′ corresponding to the transition (s, s′) ∈ ΔD0.
However, this does not imply the feasibility of the corresponding region-to-region
control problem, which is formally defined next.
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11.2.1 Transition Controllers

Problem 11.2 (Region-to-region control) For a given transition (s, s′) ∈ ΔD of a
dual automaton AD and transition system TW , construct a control function g : Rs →
ΣW such that for all x ∈ Rs there exists Nx ∈ N+, Nx < ∞ and

x(0) = x,

x(k + 1) = δW (x(k), g(x(k))), k = 0, . . . ,Nx − 1,

x(k) ∈ Rs k = 0, . . . ,Nx − 1,

x(Nx) ∈ Rs′ .

Enabling a transition (s, s′) requires a control function that solves Problem 11.2
for that transition if s ∈ δD(s). If, however, s /∈ δD(s), the transition (s, s′) is enabled
only if there is a solution to the control problem with Nx = 1 for all x ∈ Rs.

For a transition (s, s′) ∈ ΔD, the set of states in Rs that can reach Rs′ in one step is
called a beacon. We use Bss′ to denote the beacon corresponding to transition (s, s′),
which is defined as

Bss′ := Rs ∩ Pre(Rs′ ,ΣW ),

where Pre(Rs′ ,ΣW ) is the set of states that can reach Rs′ in one step as defined
in Eq. (1.3). In particular, for an embedding transition system TW , Bss′ is defined
according to the corresponding affine dynamics:

Bss′ := {x ∈ Rs | ∃u ∈ U : AτD(s)x + BτD(s)u + cτD(s) ∈ Rs′ }. (11.3)

IfRs,Rs′ andU are polytopes, thenBss′ is also a polytope and computed via orthogonal
projection (see Appendix A.3).

By the definition of a beacon Bss′ , Problem 11.2 can be decomposed in two sub-
problems. The first problem concerns the computation of a control function which
generates a closed-loop trajectory, for all x ∈ Bss′ , that reaches Rs′ in one step. The
second problem concerns the construction of a control function which generates a
closed-loop trajectory, for all x ∈ Rs, that reaches Bss′ in a finite number of steps.
These synthesis problems are formally stated next.

Problem 11.3 For a transitions system TW , let B and R be subsets of XW with
B ⊆ Pre(R). Find a control function g : B → ΣW such that δW (x, g(x)) ∈ R for all
x ∈ B.

Problem 11.4 For a transitions system TW , let B and R be subsets of XW with
B ⊆ R. Find a control function g : R → ΣW such that for all x ∈ R, there exists
Nx ∈ N+, Nx < ∞ and:
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x(0) = x,

x(k + 1) = δW (x(k), g(x(k))), k = 0, . . . ,Nx − 1,

x(k) ∈ R k = 0, . . . ,Nx,

x(Nx) ∈ B.

For a transition (s, s′) ∈ ΔD, while Problem 11.3 is always feasible since Bss′ ⊆
Pre(Rs′), Problem 11.4 is not necessarily feasible for any set Rs and corresponding
beacon Bss′ .

Remark 11.1 For the considered PWA dynamics, and polyhedral sets Rs,Rs′ and
Bss′ , Problems 11.3 and 11.4 can be solved via linear programming. We present two
methods for solving these control problems in Appendix A.6. The first solution is
based on vertex interpolation and requires iteratively solving a finite number of linear
programs. The second solution is based on contractive sets.Whilemore conservative,
the latter only requires solving a single linear program.

If a control function gss′(·) that solves Problem 11.2 for the transition (s, s′) is
found, we use W(s, s′) to denote the minimum number of steps necessary for all
states in Rs to reach Rs′ in closed-loop with gss′(·), i.e.,

W(s, s′) = max
x∈Rs

Nx,

whereNx is as defined in Problem 11.2. If no controller can be found, then the weight
W(s, s′) is set to infinity.

11.2.2 Refinement

An iterative algorithm is developed to refine the states of the dual automaton, and
hence the corresponding regions, until the largest set of satisfying initial states of TW
and the corresponding control strategy is found. Algorithm 22 refines the automaton
at each iteration by partitioning the states for which there does not exist an admissible
sequence of control actions with respect to reaching a final state. The algorithm does
not affect the states of TW that can reach a final state region and as such, it results in
a monotonically increasing, with respect to set inclusion, set of states of system TW
for which there exists an admissible control strategy.
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Algorithm 22 Refinement(TW ,AD0 = (SD0, SD00 ,OW , δD0, τD0,FD0)):Refined
dual automaton ADR = (SDR, SDR0 ,OW , δDR, τDR,FDR)

1: W(s, s′) = FeasibilityTest(s, s′), for each (s, s′) ∈ ΔD0
2: WP = ShortestPath(W,FD0)

3: CandidateSet = {(s, s′) | (s, s′) ∈ ΔD0,WP(s) = ∞,WP(s′) 	= ∞}
4: k := 0
5: while CandidateSet 	= ∅ do
6: (sp, st) := minWP(s′){(s, s′) | (s, s′) ∈ CandidateSet}
7: ADk′ = Partitioning(ADk, sp, st)
8: ADk+1 = Pruning(TW ,ADk′ )
9: W(s, s′) = FeasibilityTest(s, s′), for each (s, s′) ∈ ΔDk+1
10: WP = ShortestPath(W,FDk+1)

11: CandidateSet = {(s, s′) | (s, s′) ∈ ΔDk+1,WP(s) = ∞,WP(s′) 	= ∞}
12: k := k + 1
13: end while

At each iteration k of Algorithm 22, for each transition (s, s′) from the transition
set ΔDk , Problem 11.2 is solved and a weight W(s, s′) is assigned according to the
solution. Then, a weight is computed for each state s ∈ SDk . The weight WP(s) of
a state s is defined as the shortest path cost from s to a final state on the graph of
the automaton weighted by W(·). The ShortestPath procedure computes a shortest
path cost for every state of ADk using Dijkstra’s algorithm [47]. Then, the set of
candidate states for partitioning is constructed as follows. A state s that has an infinite
weight (WP(s) = ∞) and a transition ((s, s′) ∈ ΔDk) to a state that has a finite weight
(WP(s′) < ∞) is chosen as a candidate state for partitioning (lines 3 and 11). Then, a
transition (sp, st) is selected from the set of candidate set by considering the path costs
in line 6. The state sp with infinite weight is partitioned according to the transition
(sp, st). This partitioning procedure is explained next. The partitioned automaton
ADk′ is pruned to remove infeasible states and transitions in line 8.

11.2.3 Partitioning

A state sp is partitioned into a set of states SP = {s1, . . . , sd} via a polyhedral partition
of Rsp . The transitions of the new states are inherited from the state sp and new states
are set as initial states if sp ∈ SD0 to preserve the automaton language. The partitioning
procedure is summarized in Algorithm 23.
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Algorithm 23 Partitioning(AD = (SD, SD0 ,OW , δD, τD,FD), sp): Partitioned dual
automaton AD′ = (SD′ , SD′

0
,OW , δD′ , τD′ ,FD)

1: SP = {s1, . . . , sd} such that Rsp = ∪i=1,...,dRsi and Rsi ∩ Rsj = ∅ for any i 	= j
2: SD′ = (SD \ {sp}) ∪ SP
3: SD′

0
= SD′ ∩ SD0

4: SD′
0

= SD′
0
∪ SP if sp ∈ SD0

5: δD′ (s) = δD(s) \ {sp} for each s ∈ SD′ \ SP
6: if sp ∈ δD(s) then
7: δD′ (s) = δD′ (s) ∪ SP
8: end if
9: δD′ (si) = δD(sp) \ {sp} for each si ∈ SP
10: if sp ∈ δD(sp) then
11: δD′ (si) = δD′ (si) ∪ SP
12: end if
13: τD′ (s) = τD(s) for each s ∈ SD′ \ SP
14: τD′ (si) = τD(sp) for each s ∈ SP

While Algorithm 23 is designed for partitioning a state sp via any polytopic par-
tition of Rsp (line 1), here, we follow a heuristic partitioning strategy guided by a
transition (sp, st). Region Rsp is partitioned into two subregions using a hyperplane
of the beacon Bspst . The hyperplane that maximizes the radius of the Chebyshev ball
that can fit in any of the resulting regions is chosen as the partitioning criterion.
Choosing a hyperplane of the beacon ensures that only one of the resulting states
can have a transition to st . Even if a controller that enables the transition to st does
not exist for this state, after further partitioning the beacon becomes a state itself
and the transition is enabled for it. The employed maximal radius criterion is likely
to result in a less-complex partition, as opposed to iteratively computing one-step
controllable sets to Bspst .

The dual automaton at the k-th iteration of Algorithm 22 is denoted by ADk =
(SDk, SDk0 ,OW , δDk, τDk,FDk). For the dual automaton ADk , the set X

φ

k is defined as
the union of the regions corresponding to initial states with finite weights:

Xφ

k :=
⋃

s∈{s′∈SDk0 |WP(s′)<∞}
Rs. (11.4)

The refinement algorithm (Algorithm 22) stops when there are no transitions from
states with infinite weights to states with finite weights, i.e., when the candidate set
for partitioning is empty. Note that when a state is partitioned, the new states inherit
only the transitions that satisfy a reachability condition, as the infeasible transitions
and states are removed by the pruning algorithm in line 8 of Algorithm 22. Therefore,
when the algorithm stops all states havefiniteweights.Moreover, the feasibility check
of the transitions (line 2 of Algorithm 21) and the feasibility check of the states (line 6
of Algorithm 21) guarantees that either
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(a) AD0 (b) AD0 ′

x 2

x1

Rs3Rs2,2 Rs2,1

Rs0 , Rs1

(c) Regions of AD0 ′

Fig. 11.5 The initial dual automaton (a), the partitioned dual automaton (b), and the state regions
(c) in the first iteration of the refinement algorithm. The weights of the states and the transitions are
shown in (a). The infeasible states and infeasible transitions of AD0′ are shown in gray in (b). The
state regions of AD0′ and the beacon Bs2s3 (= Rs2,1 , in gray) are shown in (c)

• the regions of the states removed in line 8 of Algorithm 22 are not reachable from
initial states with finite weights through automaton transitions, or

• the regions of the final states are not reachable from the regions of the states
removed in line 8 of Algorithm 22 through automaton transitions.

Example 11.4 We apply Algorithm 22 to the transition system TW and the
pruned automaton AD0 (shown in Fig. 11.3b) from Example 11.3. We explain
and illustrate schematically the first three iterations of the algorithm. First, for
each transition (s, s′) from the set ΔD0, a region-to-region control problem
(Problem 11.2) is solved and a weight W(s, s′) is assigned (line 1). A control
function is found only for transition (s0, s1), and the weights of the other
transitions are set to infinity. Then, a weight is computed for each state. The
transition and the state weights for AD0 are shown in Fig. 11.5a.

The candidate set for AD0 is {(s2, s3)}. s2 is partitioned into {s2,1, s2,2}
according to the beaconBs2s3 ,which is shown inFig. 11.5c. The refined automa-
ton obtained by partitioning s2 is shown in Fig. 11.5b, where the infeasible
states and the infeasible transitions that are removed by the pruning algorithm
are shown in gray. While the transition (s2,2, s3) is removed via the feasibility
check performed in line 2 of Algorithm 21, state s2,2 and transitions adjacent
to it are removed in line 6 of Algorithm 21.
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The automaton AD1 generated in the first iteration is shown in Fig. 11.6a. In
the second iteration, the transition (s1, s2,1) is chosen from the candidate set
{(s0, s2,1), (s1, s2,1)} for partitioning. The hyperplane of the beacon Bs1s2,1 that
maximizes the radius of the Chebyshev ball that can fit in Rs1,1 and Rs1,1 is used
to partition s1 into {s1,1, s1,2}. The second iteration is illustrated schematically
in Fig. 11.6.

Automaton AD2, the weights of its transitions and states are shown in
Fig. 11.7a. In the third iteration, the transition (s1,2, s2,1) is chosen from the
candidate set {(s0, s2,1), (s1,2, s2,1)}, and s1,2 is partitioned into {s1,2,1, s1,2,2}.
After this refinement step, the beaconBs1,2,s2,1 becomes the region of state s1,2,1,
and the transition (s1,2,1, s2,1) is feasible for s1,2,1 since R1,2,1 ⊆ Pre(s2,1). The
regions of automaton AD2′ are shown in Fig. 11.7b.

The algorithm partitions a state at each iteration and terminates at the 13-th
iteration. For a dual automaton ADk obtained at the k-th iteration, the set of
satisfying initial states Xφ

k of TW is computed as the union of the regions of
the initial states with finite weights (see Eq.11.4). These regions are shown in
Fig. 11.8.

Proposition 11.2 Given an arbitrary iteration k ≥ 1 of Algorithm 22, the set Xφ

k as
defined in Eq. (11.4) has the following properties:

(i) There exists a sequence of admissible control actions such that every closed-
loop trajectory of system TW originating in Xφ

k satisfies the formula φ, and

1 

0 

1 

1 

(a) AD1 (b) AD1′

x 2

x1

Rs3Rs2,1

Rs1,1 Rs1,2

Bs1,s2,1

(c) Regions of AD1′

Fig. 11.6 Automaton AD1 (a), partitioned automaton AD1′ (b), and the state regions (c) in the
second iteration of the refinement algorithm. The weights of the states and the transitions are shown
in (a), and the infeasible transition is shown in gray in (b). The beacon Bs1s2,1 is shown in gray, and
the hyperplane of Bs1s2,1 that is used to partition R1 is shown with a dashed gray line in (c). As s0
is not partitioned, Rs0 = Rs1,1 ∪ Rs1,2
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1 

1 

0 

2 

(a) AD2
x 2

x1

Rs3Rs2,1

Rs1,1 Rs1,2,2

Rs1,2,1

(b) Regions of AD2′

Fig. 11.7 Automaton AD2 (a) and the state regions (b) in the third iteration of the refinement
algorithm. The weights of the states and the transitions are shown in (a)

(ii) Xφ

k−1 ⊆ Xφ

k .

Proof (i) A finite path weight for a state s ∈ SDk0 implies that there exists an accept-
ing automaton run wSDk = wSDk (1), . . . ,wSDk (n) such that s = wSDk (1), W(wSDk (i),
wSDk (i + 1)) < ∞ for all i = 1, . . . , n − 1, and WP(s) = ∑n−1

i=1 W(wSDk (i),
wSDk (i + 1)). As a transition weight is assigned according to the existence of the
controller that enables the transition, there exists a control sequence that ensures that
every closed-loop trajectory originating in RwSDk (1)

reaches RwSDk (n)
by following the

automaton path. Considering that removing states and transitions only reduces the
language of the automaton, by Proposition 11.1 it follows thatLAD0 ⊆ Lpref ,φ . Since
the proposed partitioning procedure preserves the language, we haveLADk ⊆ LADk−1 .
Consequently, LADk ⊆ Lpref ,φ and the resulting trajectories satisfy the formula.

(ii) For any x ∈ Xφ

k−1, there exists an accepting automaton run

wSDk−1 = wSDk−1(1), . . . ,wSDk−1(n)

with x ∈ RwSDk−1 (1)
andWP(wSDk−1(1)) = ∑n−1

i=1 W(wSDk−1(i),wSDk−1(i + 1)). Let sp be
the state chosen for partitioning at iteration k. Then, WP(sp) = ∞ and sp can not
appear in wSDk−1 , i.e., sp 	= wSDk−1(i), i = 1, . . . , n, since WP(wSDk−1(i)) < ∞ for all
i = 1, . . . , n. As only the transitions adjacent to sp, and the stateswith infiniteweights
are affected by partitioning, wSDk−1(i) ∈ SDk for all i = 1, . . . , n, and wSDk−1(i + 1) ∈
δDk(wSDk−1(i)) for all i = 1, . . . , n − 1. Therefore, x ∈ RwSDk (1)

,

wSDk = wSDk (1), . . . ,wSDk (n), where wSDk (i) = wSDk−1(i), for all i = 1, . . . , n,

is an accepting run of ADk with finite weight and thus, x ∈ Xφ

k . Observing that x ∈
Xφ

k−1 was chosen arbitrarily completes the proof. �
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(a) X5 (b) X6 (c) X7

(d) X8 (e) X9 (f) X10

(g) X11 (h) X12 (i) X13

Fig. 11.8 The set of satisfying initial states found at iterations k = 5, . . . , 13 are shown in gray

11.3 Control Strategy

In this section, we provide a solution to Problem 11.1 by using the refined dual
automaton ADR = (SDR, SDR0 ,OW , δDR, τDR,FDR) and its transition controllers syn-
thesized during the refinement, e.g., {gss′(·) | W(s, s′) < ∞}. We first define a suc-
cessor function, which determines the strategy for a given refined dual automaton.

Definition 11.2 A function Γ : SD → SD is called a successor function for a dual
automaton AD = (SD, SD0 ,ΣD, δD, τD,FD) (Definition 11.1), and transition weight
function W : SD × SD → N+ if it satisfies:

i. Γ (s) = s if and only if s ∈ FD.
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ii. Γ (s) ∈ δD(s) and W(s, Γ (s)) 	= ∞ for all s ∈ SD \ FD.
iii. For each s ∈ SD, there exists a finite n ∈ N such thatΓ n(s) ∈ FD, whereΓ n(s) =

Γ (Γ n−1(s)) and Γ 0(s) = s.

A successor function Γ (·) of a dual automaton AD induces a partial order�Γ over
SD such that Γ n(s) �Γ s for all n ∈ N. Moreover final states of AD are fixed points
of the function Γ (·).
Definition 11.3 Given a successor function Γ (·) for a dual automaton AD, the
automaton potential of a state s ∈ SD is defined by the function WΓ : SD → N as
follows:

WΓ (s) =
{
0 if s ∈ FD

W(s, Γ (s)) + WΓ (Γ (s)) otherwise.
(11.5)

For any s, s′ ∈ SD, s �Γ s′ implies that WΓ (s) ≤ WΓ (s′).
A successor function Γ according to Definition 11.2 can easily be constructed by

traversing the graph of the automaton staring from the final states. Let ST denote the
states that are traversed. Initially, setΓ (sf ) := sf , sf ∈ FDR and ST := SDR. Then iter-
atively choose a state s from the set SDR \ ST such that there exists a state s′ ∈ ST and
W(s, s′) < ∞, and set Γ (s) := s′ and ST := ST ∪ {s}. Note that, while constructing
a successor function ΓSP as outlined above, if s′ and the candidate state s are chosen
such that

(s, s′) = arg min
(s,s′)∈{SDR\ST }×ST and s′∈δDR(s)

W(s, s′) + WΓSP(s
′), (11.6)

then WΓSP(s) is the cost of the shortest path from s to a final automaton state on
the graph of the dual automaton weighted by W. The successor function WΓSP can
equivalently be defined as follows:

ΓSP(s) =
{
s s ∈ FDR

argminWP(s′){s′ ∈ δDR(s)} s /∈ FDR
(11.7)

In particular, ΓSP(s) is the state that succeeds s in the shortest path from s to a final
automaton state. The pruning step and the termination condition (CandidateSet = ∅)
guarantee thatWP(s) < ∞ for each s ∈ SDR. Therefore, the function ΓSP(·) satisfies
all the properties of Definition 11.2, and is a successor function forADR. It is clear that
the automaton potential function induced by ΓSP(·) equals toWP(·), i.e.,WΓSP(s) =
WP(s) for each s ∈ SDR.

We define a feedback control automaton from the refined dual automaton ADR

and a successor function. For a given state x0 of TW , there might be more than
one accepting automaton run originating from an initial state s ∈ SDR0 with x0 ∈ Rs.
Essentially, the successor function determines an automaton run among those, and
the corresponding controller sequence.
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Definition 11.4 Given a dual automaton ADR = (SDR, SDR0 ,OW , δDR, τDR,FDR),
its transition controllers, the corresponding transition weight function W : SDR ×
SDR → N+, and a successor function Γ : SDR → SDR, a feedback control automaton
C = (SC, SC0,XW , τC,ΣW , π) is defined as

• SC = SDR is the set of states,
• SC0 = SDR0 is the set of initial states,
• XW is the set of inputs (the set of states of TW ),
• τC : SC × XW → SC is the memory update function defined as:

τC(s, x) =

⎧
⎪⎨

⎪⎩

Γ (s) if x ∈ RΓ (s)

s if x ∈ Rs \ RΓ (s)

⊥ otherwise

• ΣW is the set of outputs (the set of inputs of TW ),
• π : SC × XW → ΣW is the output function:

π(s, x) = gsΓ (s)(x),

where gsΓ (s) : Rs → ΣW is the feedback control function that solves Problem 11.2
for transition (s, Γ (s)).

The set of initial states Xφ

TW
of TW is defined as the union of the regions of the

initial states of C:
Xφ

TW
=

⋃

s∈SC0
Rs. (11.8)

The feedback control automatonC reads the current state ofTW , produces the control
input to be applied at that state of the transition system, and updates its internal
state. The control function Ω is given by C as follows: for a sequence x(1) . . . x(n),
x(1) ∈ Xφ

TW
, we have Ω(x(1) . . . x(n)) = σ , where σ = π(s(n), x(n)), s(i + 1) =

τC(s(i), x(i)), and x(i + 1) = δW (x(i), π(s(i), x(i))), for all i ∈ {1, . . . , n − 1}. As
the controls and the states of the transition system TW and the PWA control system
W are the same, the control function Ω directly maps to a control function for W .

For transition system TW and a control automaton C as constructed in Defini-
tion 11.4, the time required to satisfy the specification for trajectories of TW origi-
nating in Rs, s ∈ SC0 is upper bounded by WΓ (s). Consequently, the time required
to satisfy the specification starting from any state x ∈ Xφ

TW
of system TW is upper

bounded by
max
s∈SC0

WΓ (s).

The successor function defined in Eq. (11.7) minimizes this bound.

Proposition 11.3 Every closed-loop trajectory produced by the control strategy
(Xφ

TW
,Ω) satisfies formula φ.
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Proof The set of states, the set of initial states and the set of final states of the
control automaton C and the refined dual automaton ADR are the same. More-
over, if τC(s, x) = s′, then s′ ∈ δDR(s). Consequently, an accepting run of C cor-
responds to an accepting run of ADR. The proof that all the trajectories of the closed
loop system satisfy the formula follows immediately from Proposition 11.2 since
Xφ

TW
= Xφ

R . �
The following theorem states that when the refinement algorithm terminates, the

proposed solution to Problem 11.1 is complete, i.e., Xφ

TW
is the largest satisfying

region.

Theorem 11.1 Suppose Algorithm 22 terminates. Then any trajectory of the embed-
ding transition system TW that produces a word wXW ∈ Lφ originates in Xφ

TW
(Eq.11.8).

Proof To show that any satisfying trajectory originates in Xφ

TW
, assume by contra-

diction that there exists a trajectory

wXW = wXW (1), . . . ,wXW (n)

such that wXW (1) /∈ Xφ

TW
and the trajectory satisfies the specification, i.e.,

wOW = wOW (1), . . . ,wOW (n) ∈ Lpref ,φ where wOW (i) = oW (wXW (i)) for all i =
1, . . . , n. Then by Proposition 11.1, there exists an accepting run

wSD0 = wSD0(1), . . . ,wSD0(n)

of the initial dual automaton AD0 such that

wXW (i) ∈ RwSD0 (i)
, for all i = 1, . . . , n.

wXW (1) /∈ Xφ

TW
indicates that a state s with wXW (1) ∈ Rs obtained by partitioning

wSD0(1) is removed during the pruning step. Assume that the pruning step is not
employed. Then run wSD0 induces a unique refined dual automaton run

wSDR = wSDR(1), . . . ,wSDR(n),

where wSDR(i) and wSD0(i) coincide or wSDR(i) is obtained from wSD0(i) through par-
titioning and wXW (i) ∈ RwSDR (i) ⊆ RwSD0 (i)

for all i = 1, . . . , n.
Letw′

SDR
= w′

SDR
(n1), . . . ,w′

SDR
(nn′) be obtained by eliminating consecutive dupli-

cates in wSDR , i.e., for each i = 1, . . . , n′:

ni ≤ i, and wXW (k) ∈ Rw′
SDR

(ni), for each k = ni, . . . , i − 1.

Then, wXW (1) /∈ Xφ

TW
indicates that WP(w′

SDR
(n1)) = ∞. Hence, either

Post(Rw′
SDR

(ni)) ∩ Rw′
SDR

(ni+1) = ∅ orW(w′
SDR(ni),w

′
SDR(ni+1)) = ∞
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for some i = 1, . . . , n′ − 1. Let ni be the maximal index where either one of the
equalities given above holds. Therefore, W(w′

SDR
(nk),w′

SDR
(nk+1)) < ∞ for all k =

i + 1, . . . , n′ − 1 andWP(w′
SDR

(nk)) < ∞ for all k = i + 1, . . . , n′. As Algorithm 22
terminates, it holds that

Post(Rs)
⋂ { ⋃

WP(s′)<∞,(s,s′)∈ΔDR

Rs′

}

= ∅ (11.9)

for all s ∈ SDR with WP(s) = ∞. Consequently, Post(Rw′
SDR

(ni)) ∩ Rw′
SDR

(ni+1) = ∅,
there is no control σ ∈ ΣW that satisfies wXW (ni+1) = δW (wXW (ni+1 − 1), σ ).
Therefore wXW is not a trajectory of TW and thus, we reached a contradiction. �

Example 11.5 Weconsider the double integrator dynamicswith sampling time
of 1 second.Weassume that the controls are constrained to setU = [−2, 2], and
the states are constrained to setX = [−10, 2]2. There are 13 regions of interest
Xl, l ∈ L, L = {1, 2, . . . , 13}, which are shown in Fig. 11.9a (see also Exam-
ple 2.4). This system can be written as a two—dimensional fixed-parameter
PWA control system W (Definition 6.2):

A1,...,13 =
[
1 1
0 1

]

, B1,...,13 =
[
0.5
1

]

, c1,...,13 =
[
0
0

]

. (11.10)

We consider the specification described in Example 2.4, which is to visit
regionsX2 orX9 and then the target regionX7, while avoidingX11 andX12, and
staying insideX until the target region is reached. This specification translates
to the following scLTL formula over L ∪ {Out}:

φ = ((¬11 ∧ ¬12 ∧ ¬Out) U 7) ∧ (¬7 U (2 ∨ 9))

WeapplyAlgorithm20 to find the largest set of satisfying initial states of the
system, and the corresponding control strategy. The FSAA that acceptsLpref ,φ

is shown in Fig. 11.9b. The initial dual automaton AD constructed according to
Definition 11.1 from FSA A has 21 states and 194 transitions; 116 of the transi-
tions are removed via the pruning algorithm applied in line 4 of Algorithm 20.
The refinement algorithm (Algorithm 22) terminates after 108 iterations, thus
the largest set of satisfying initial states Tφ

W is found. We define a control
automaton C, which has 116 states, according to the successor function ΓSP(·)
defined in Eq. (11.7). When the control strategy (Tφ

W ,Ω) defined by C is
used, all trajectories originating from Tφ

W satisfy the specification within 15
time steps. The set of satisfying initial states found at iterations k = 20, 50, 80
of the refinement algorithm, the set Tφ

W , and some satisfying trajectories of
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the closed loop system are shown in Fig. 11.10. In this example, the transition
controllers and the corresponding transition weights are computed using the
vertex interpolation method presented in Appendix A.6.2.

Example 11.6 We consider the PWA system with 36 polytopes defined in
Example 9.3 with a slight modification of the control set, U = {u ∈ R

2 |
−2.5 ≤ ui ≤ 2.5, i = 1, 2}.

The specification considered in Example 9.3 was to reachX10 and remain in
there forever, while staying in X and avoiding regions X17,X18,X19 and X20.
Note that the satisfaction of “always remain in X10” can not be guaranteed in
finite time. Therefore, it can not be expressed in scLTL. Here, we consider a
slightly different specification expressed as the following scLTL formula

φ = (¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬Out) U 10.

The trajectories satisfying formula φ reachesX10 while staying inX and avoid-
ing regions X17,X18,X19 and X20. The operating regions of the PWA system
are shown in Fig. 9.4.

x1

x 2

X1 X2 X3

X5

X9

X10

X11

X8

X4

X7X6

X12

X13

(a) Regions of

1|3|4|5|6|8|10|13

1|2|3|4|5|6|8|9|10|13

1|2|3|4|5|6|7|8|9|10|11|12|13|Out

(b) = ((¬11∧¬12 ∧¬Out) U 7)∧
(¬7U (2∨ 9))

Fig. 11.9 The regions of the PWA control system from Example 11.5 (a) and the FSA constructed
from φ (b). For the FSA, s0 is the initial state and s3 is the accepting state. As before, if several
transitions exist between two states, only one transition labeled by the set of all inputs (separated
by the symbol |) is shown
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We apply Algorithm 20 to find the largest set of satisfying initial states of
the system, and the corresponding control strategy. The FSA A that accepts
Lpref ,φ has two states and three transitions. The initial dual automaton AD

constructed according to Definition 11.1 from FSA A has 32 states and 961
transitions (each of the states correspond to an operating region of W , and
the states associated with X17,X18,X19 and X20 are not represented); 796
of the transitions are removed via the pruning algorithm applied in line 4 of
Algorithm 20. We apply two controller synthesis methods presented in A.6,

x1

x 2

(a) Xφ
20

x1

x 2

(b) Xφ
50

x1

x 2

(c) Xφ
80

x1

x 2

(d) T φ

Fig. 11.10 The set of satisfying initial states found at iterations k = 20, 50, 80, 108 are shown in
yellow. Sample trajectories of the closed loop system are shown in (d), where the initial states are
marked by circles. The trajectories coincide in the last 6 steps before they reach the target region
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namely vertex interpolation (see A.6.2) and polyhedral LFs (see A.6.3), to
synthesize transition controllers, i.e., to solve Problem 11.2. In both cases,
we used the successor function ΓSP(·) defined in Eq.11.7 to define control
automata from the corresponding refined dual automata.

When the vertex interpolation method is used with a maximal transition
cost 5 (S = 5, see A.6.2), the refinement algorithm terminates after 75 iter-
ations. The refined dual automata has 107 states and 418 transitions. The
corresponding control automaton guarantees that any trajectory originating
in Tφ

W = X \ ∪i=17,18,19,20Xi satisfies the specification within 54 time steps.
When the contractive sets method is employed, the dual automaton is not
refined since all the states have finite costs. Hence, the corresponding control
automaton has 32 states. In this case any trajectory originating in Tφ

W satisfies
the specification within 175 steps. Note that the sets of satisfying initial states
found in both of the cases are the same, since the termination of the refinement
algorithm guarantees that the resulting set Xφ

R (see (11.4)) is the largest set
of satisfying initial states. The regions of the refined dual automata and some
trajectories of the closed loop systems are shown in Fig. 11.11.

Although a smaller control set is used in this example compared to the
example from Example 9.3, the set of satisfying initial states found in Exam-
ple 9.3 is smaller than Xφ

R. This is due to the refinement procedure and the
differences between control strategies, i.e., a constant control input is assigned
to each partition set in Example 9.3, while, here, a feedback control law is
synthesized for each transition.

x1

x
2

(a) Vertex interpolation
x1

x
2

(b) Contractive sets

Fig. 11.11 The sets of satisfying initial states are shown in yellow. The regions of the refined dual
automata and sample trajectories of the closed loop systems described in Example 11.6 are shown
in (a) and (b). The initial states of the trajectories are marked by circles
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11.4 Notes

This chapter is based on our work [75, 76]. Related approaches include [165, 184], in
which an abstraction is first constructed through the design of polytope-to-polytope
feedback controllers, and then controlled by solving a temporal logic game on the
abstraction. In this chapter, the exploration of the state-space is “guided” by the
specification. In this sense, it is related to [63, 152]. By combining the abstraction
and the automaton control processes, the method proposed in this chapter avoids
regions of the state-space that do not contain satisfying initial states, and is, as a result,
efficient. In addition, it naturally induces an iterative refinement and enlargement of
the set of initial conditions, which was not possible in Chap. 9 (see also [184]) and
was not formula-guided in [165].

This chapter provides two solutions based on linear programming for solving
polytope-to-polytope control problems. The first solution is based on vertex interpo-
lation and requires iteratively solving a finite number of linear programs. The second
solution is based on contractive sets. While more conservative, it only requires solv-
ing a single linear program. Related approaches to solving polytope-to-polytope
control problems for discrete-time systems are based on iterative computations of
one-step controllable sets, e.g., [147]. For continuous-time systems the problem of
controlling a linear system from one polytope to another is defined as a facet reacha-
bility problem [36, 80]. Similar to the proposed vertex interpolation method, to solve
the facet reachability problem, first controls for the vertices are computed via linear
programming, and then these controls are used to define a state feedback control law.
While facet reachability is enforced by a flow constraint in the linear program [80],
in the vertex interpolation method reachability of the polytope is enforced by direct
constraints on the trajectories originating at the vertices.

This chapter can also be seen in the context of results on obstacle avoidance [33,
147, 148]. It provides a systematicway to explore the feasible state-space from “rich”
temporal logic specifications that are not limited to going to a target while avoiding a
set of obstacles. Furthermore, it does not necessarily involve paths characterized by
unions of overlapping polytopes and the existence of artificial closed-loop equilibria.
As a byproduct, the approach developed in this chapter provides an upper bound for
the time necessary to satisfy the temporal logic specifications by all the trajectories
originating from the constructed set of initial states.

The approach presented in this chapter can be extended from scLTL to more
general LTL specifications. The main challenge is to extend the language-guided
approach from the acceptance condition of an FSA to the more complicated accep-
tance condition of a Büchi automaton. The extension involves the solution of a back-
ward reachability problem, which enforces the Büchi acceptance condition. Briefly,
any run accepted by a Büchi automaton has a prefix-suffix structure [158]. The suffix
is an infinite Büchi automaton run that periodically visits some accepting state. Start-
ing from this observation, the scLTL approach can be extended to full LTL in two
steps. First, the refinement algorithm can be used to find a cycle originating from an
accepting state of the Büchi automaton. When a cycle is found, the algorithm can be
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used to find the set of states that can reach the corresponding accepting state. A limi-
tation of this extension is that completeness cannot be guaranteed. Since only a single
cycle is used, the initial states that can reach another cycle are not taken into consid-
eration. The proposed solution provides the maximum time to reach the accepting
state from the cycle (for prefix), and the maximum time between consecutive visits
of an accepting state (for suffix).

The complexity of the proposed language-guided approach is characterized with
respect to the size of the specification formula and the number of iterations of the
refinement algorithm. The construction of an FSA from an scLTL formula φ leads to
a double exponential blowup [111], therefore the initial dual automaton has 22

O(|φ|)

transitions. However, this theoretical bound is not usually achieved in practice [117].
Moreover, the simplification due to the considered observation set (O instead of 2O),
and the pruning algorithm reduce the automaton size. In Algorithm 21, one step
reachable sets are computed for each state to check the feasibility of transitions,
which requires |SD| + |ΔD| basic polyhedral operations. Then, the feasibility of the
states are checked by traversing the underlying graph, which is polynomial in |SD|.

The complexity of Algorithm 22 is dictated by the number of iterations R ∈ Z+,
which depends on the control system, the specification, and the employed region-to-
region controller synthesis method. Initially, transition (W) and state (WP) costs are
computed via FeasibilityCheck and Dijkstra’s algorithm, respectively. The run time
of Dijkstra’s algorithm is O(|SD0|2). The FeasibilityCheck procedure involves basic
polyhedral operations and solving region-to-region controller synthesis problems
(Problems 11.3 and 11.4). Linear programming based solutions to these problems
are given in the Appendix. At each iteration of Algorithm 22, a candidate state
is partitioned into two states, and the FeasibilityCheck procedure is used to com-
pute the costs of the new transitions. Let d be the maximum number of transitions
incident to a state s ∈ SDi for all iterations i = 0, . . . ,R. Then, the total number of
FeasibilityCheck procedure runs is upper bounded by |ΔD0| + 2dR. Note that, at
each iteration it is sufficient to compute costs (WP) for the new states and the states
that can reach these states.

The computational framework presented in this chapter was implemented as a
Matlab software package, called LanGuiCS (Language Guided Control Synthesis),
which is freely downloadable from http://sites.bu.edu/hyness/languics/. The toolbox
takes as input an scLTL formula over a set of linear predicates, the matrices of a
PWA system, the control constraint sets, and the operating regions. It outputs the
maximal set of initial states and feedback controllers such that the trajectories of
the closed loop system originating from the set of initial states satisfy the formula.
The tool uses scheck2 [117] to construct a finite state automaton from an scLTL
formula and theMPT toolbox [113] for polyhedral operations. Both the interpolation
and the set contraction approaches are implemented to compute the polytope-to-
polytope controllers. The toolbox allows for displaying the set of initial states and
for simulating the trajectories of the closed-loop system for 2D and 3D examples.

http://sites.bu.edu/hyness/languics/


Chapter 12
Optimal Temporal Logic Control

In this chapter, we focus on synthesis of an optimal control strategy for a PWA system
constrained to satisfy a temporal logic specification. The specification is a formula
of syntactically co-safe Linear Temporal Logic (scLTL). The cost is a quadratic
function that penalizes the distance from desired state and control trajectories, which
are called reference trajectories. To incorporate dynamic environments, we assume
that the reference trajectories are only available over a finite horizon. The goal is to
find a control strategy such that the trajectory of the closed-loop system originating
from a given initial state satisfies the formula and minimizes the cost. We treat
the temporal logic specifications as constraints in an optimal control problem and
propose a model predictive control (MPC) solution, as the natural approach for such
constrained problems.

Specifically, we consider fixed-parameter PWA control systems W (Defini-
tion 6.2). The specifications are scLTL formulas over arbitrary linear predicates
in the state of the system. The optimization objective is to minimize a quadratic
cost penalizing the distance from reference state and control trajectories denoted by
xr(0), xr(1) . . . and ur(0), ur(1), . . ., respectively. The stage cost at time k is defined
with respect to xr(k) and ur(k) by L : X × U → R+:

L(x(k), u(k)) = (x(k) − xr(k))�Q(x(k) − xr(k))

+ (u(k) − ur(k))�R(u(k) − ur(k)),
(12.1)

where Q ∈ R
N×N and R ∈ R

M×M are positive definite matrices. We assume that, for
some K, at time k the reference state and control trajectories of length K are known.
At time k, the cost of a finite trajectory x(k), . . . , x(k + K − 1) originating at xk and
generated by the control sequence u(k) = u(k), . . . , u(k + K − 1) is defined as

C(x(k),u(k)) =
K−1∑

i=0

L(x(i + k), u(i + k)). (12.2)

© Springer International Publishing AG 2017
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Problem 12.1 (scLTL Optimal Control) Given a fixed-parameter PWA control sys-
tem W (Definition 6.2), an initial state x(0) ∈ X, and an scLTL formula φ over
L ∪ {Out}, find a feedback control strategy such that the closed-loop trajectory orig-
inating at x0 satisfies φ while minimizing the cost defined in (12.2).

Remark 12.1 Note that, as before, restricting the scLTL formula over L ∪ {Out} is
made for simplicity of presentation, and is not limiting. Arbitrary linear predicates
can be accommodated by refining the initial partition and updating L and {Out}.

We propose a two-step solution to Problem 12.1. In the first step, by using the
framework developed in Chap.11, we construct an automaton from the specification
formula and the embedding transition system TW , i.e., the refined dual automaton
obtained from Algorithm 22. The states of the automaton correspond to polyhedral
subsets ofXW (the state space of the embedding transition system), and any satisfying
trajectory of TW follows a sequence of polyhedral sets defined by an accepting run
of the automaton. In the second step, we design an MPC controller that minimizes
the cost over the available reference trajectory, while ensuring that the resulting tra-
jectory satisfies the specification. While the automaton is constructed “offline”, at
each stage, the MPC controller solves an optimization problem “online” and pro-
duces the control action. The constraints of the optimization problem ensure that
the produced trajectory lies within an automaton path. We propose two methods to
ensure that the produced trajectory reaches a final automaton state, and therefore
satisfies the specification. First, we present an MPC scheme with a terminal con-
straint which guarantees that the the produced trajectory makes progress towards a
final state. Second, we present an MPC scheme with a terminal cost function, i.e., a
distance measure to a final automaton state. The weight of the terminal cost function
increases at each time step, which guarantees that the produced trajectory reaches a
final automaton state.

As it will be established, the designed controllers are recursively feasible,meaning
that if the MPC optimization problem is feasible for the initial state at the initial
time instant, then it remains feasible until the specification is satisfied, which is
guaranteed by the constraints of the MPC optimization problem. The correctness of
the solution will therefore be guaranteed. As correctness is independent from the
reference sequences and the cost (Eq. 12.2), these sequences can be chosen freely.
For example, i) a desired control sequence and the corresponding state trajectory can
be used, ii) the reference control sequence can be chosen to minimize the amount
of the applied control (ur(i) = 0,∀i ∈ Z+), iii) the reference trajectory can be used
to steer the trajectory towards a desired region (xr(i) = xc,∀i ∈ Z+, where xc is the
center of the desired region).

12.1 Automaton Generation

As the first step of the approach proposed for solving Problem 12.1, we use the
language-guided framework presented in Chap.11.We applyAlgorithm 22 to system
TW and formula φ. We denote the refined dual automaton by
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AD = (SD, SD0 ,OW , δD, τD,FD), (12.3)

and the corresponding transition weight function byW : SD × SD → N+. We denote
the region of a state s ∈ SD by Rs. Note that the weight of a transition is computed
with respect to a feedback control strategy such that all states in Rs can reach Rs′

withinW(s, s′) steps.
Remark 12.2 As our goal is to find a control strategy for a given initial state x0,
we can terminate the refinement algorithm at the ith iteration if x0 ∈ Xφ

k (11.4).
However, if we do not stop the refinement algorithm, and it terminates in finite time,
then we obtain Xφ

W , and the method developed in this chapter provides a solution to
Problem 12.1 for each initial state from the set Xφ

W .

12.2 Lyapunov-Type Functions for Dual Automaton

In this section, we define Lyapunov-type functions over the state spaces of the
automaton (Eq. 12.3) and TW . These functions are used to enforce the satisfaction
of the specification by the MPC controller.

In control theory, control Lyapunov functions (CLFs) are used to enforce closed-
loop stability of an equilibrium point. An overview of Lyapunov functions is pre-
sented inAppendixA.5. To enforce the satisfaction condition of a dual automaton,we
define a real positive function that we call a potential function (Sect. 12.2.1). We also
introduce a particular type of potential functions, which we call contractive poten-
tial functions (Sect. 12.2.2). These potential functions resemble control Lyapunov
functions. In the remainder of this section, we formally define these functions, and
present candidate functions.

12.2.1 Potential Function

Definition 12.1 A function

V :
⋃

s∈SD
{{s} × Rs} → N+

is called a potential function for a transition system T = (X,Σ, δ,O, o) and a dual
automaton AD = (SD, SD0 ,OW , δD, τD,FD) with Rs ⊆ X,∀s ∈ SD, if it satisfies:

(i) V(s, x) = 0 for all s ∈ FD.
(ii) For each (s, x) ∈ ⋃

s∈SD {{s} × Rs}, if V(s, x) 	= 0, then there exists a control
u ∈ Σ such that x′ = δ(x, u), x′ ∈ Rs′ , s′ ∈ δD(s), and V(s′, x′) < V(s, x).

The definition of a potential function implies that a trajectory of T originating
from x ∈ Rs, for some s ∈ SD0 can satisfy the specification within V(s, x) steps, i.e.,
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follows a sequence of polyhedral sets defined by an accepting run of AD. We define
a class of potential functions that satisfies properties (i) and (ii) of Definition 12.1
by using a successor function (Definition 11.2), and a control potential function:

Definition 12.2 A function

Vcon :
⋃

{(s,s′)|s′∈δD(s),s 	=s′}

{{(s, s′)} × Rs
} −→ N+

is called a control potential function for a transition system T = (X,Σ, δ,O, o)
and a dual automaton AD = (SD, SD0 ,OW , δD, τD,FD) with Rs ⊆ X,∀s ∈ SD and
transition weight function W : SD × SD → N+, if it satisfies:

(i) Vcon((s, s′), x) ≤ W(s, s′).
(ii) IfVcon((s, s′), x) 	= ∞, then there exists a controlu ∈ Σ such that either δ(x, u) ∈

Rs′ or δ(x, u) ∈ Rs and Vcon((s, s′), δ(x, u)) < Vcon((s, s′), x).

The definition of a control potential function implies that for a transition of dual
automaton s′ ∈ δD(s), a trajectory of TW originating from x ∈ Rs can reachRs′ within
Vcon((s, s′), x) steps, while it stays in Rs until it reaches Rs′ . We define a setRk,ss′

Vcon
⊆

Rs, k ∈ N+, for a given control potential function Vcon and a transition s′ = δD(s) as

Rk,ss′
Vcon

= {x ∈ Rs | Vcon((s, s
′), x) ≤ k}. (12.4)

We assume that the set from Eq. 12.4 is described by unions of polytopes, which
will be instrumental for the MPC controller design. We present candidate control
potential functions that satisfy properties of Definition 12.2 in Appendix A.7. In
particular, we define a control potential function based on one step controllable sets,
i.e., Pre operator, and control potential functions based on the feedback controllers
that are used to compute the transition weight function W during the automaton
refinement step, i.e., feedback controllers solving Problem 11.2. For each of the
candidate control potential function Vcon given in Appendix A.7, the set Rk,ss′

Vcon
is

defined as a polytope or union of polytopes.
We define the potential at (s, x) for given successor function Γ (see Defini-

tion 11.2), control potential function Vcon, and automaton potential function WΓ

(see Definition 11.2) as

VΓ (s, x) =
{
0 if s ∈ FD,

Vcon((s, Γ (s)), x) + WΓ (Γ (s)) otherwise.
(12.5)

Informally, the candidate potential function (12.5) at (s, x), s ∈ SD, x ∈ Rs is
defined as an upper bound for the time required to reachRΓ d(s) from x by applying the
corresponding polytope-to-polytope feedback controllers along an automaton path
defined by the successor function sΓ (s) . . . Γ d(s), where d ∈ N+ andΓ d(s) is a final
state of the automaton.
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Fig. 12.1 The constraints
set for a transition s ∈ δD(s′).
The borders of the regions Rs
and Rs′ are shown with thick
black lines. Pre(Rs′ ) and the
beacon Bss′ of the transition
are labeled. The constraint
sets are highlighted with
shades of grey, and two of
them are labeled. Note that
Rk−1,ss′

Vcon ,PL
⊆ Rk,ss′

Vcon ,PL
for

k = 1, . . . , 9
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Example 12.1 We consider the PWA system and the refined dual automaton
fromExample 11.6.We define a control potential functionVcon,PL based on the
feedback controllers synthesized by using the polyhedral LFs method during
the automaton refinement. The definitions of the functions and the correspond-
ing constraint sets Rk,ss′

Vcon ,PL
can be found in A.7.2.2. The constraint sets for a

transition s′ ∈ δD(s) withW(s, s′) = 9 are shown in Fig. 12.1. Each constraint
set of control potential function Vcon,PL is represented as a union of two poly-
topes, i.e., the beacon Bss′ and a sublevel set of a Lyapunov function.

Proposition 12.1 The function defined in (12.5) is a potential function according to
Definition 12.1.

Proof Property (i) of Definition 12.1 is satisfied trivially by the function VΓ (12.5).
To prove that the function satisfies Defintion12.1-(ii), we consider two cases:
Vcon((s, Γ (s)), x) = 1 and Vcon((s, Γ (s)), x) > 1.

Note that Vcon((s, Γ (s)), x) = 1 and property Defintion12.2-(ii) imply that there
exists u ∈ Σ such that δ(x, u) ∈ RΓ (s). As such, in the case Vcon((s, Γ (s)), x) = 1,
the claim holds as

VΓ (Γ (s), x′) ≤ WΓ (Γ (s)) for all x′ ∈ RΓ (s).

In the case when Vcon((s, Γ (s)), x) > 1, from Defintion11.2-(i) and Defin-
tion12.2-(i), it holds that Vcon((s, Γ (s)), x) 	= ∞. By property Defintion12.2-(ii),
there exists u ∈ Σ such that one of the following holds:

(a) δ(x, u) ∈ RΓ (s),
(b) δ(x, u) ∈ Rs and Vcon((s, Γ (s)), δ(x, u)) < Vcon((s, Γ (s)), x).
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The claim is true for (a) by the same argument given for the Vcon((s, Γ (s)), x) =
1 case. For (b), the claim holds trivially by the definition of the function VΓ

(12.5). �

12.2.2 Contractive Potential Function

Definition 12.3 A function Vc : ⋃
s∈SD {{s} × Rs} → R+ is called a contractive

potential function with contraction rate ρ ∈ [0, 1) for a transition system T =
(X,Σ, δ,O, o) and a dual automaton AD = (SD, SD0 ,OW , δD, τD,FD) with Rs ⊆
X,∀s ∈ SD, if it satisfies:

(i) Vc(s, x) = 0 for all s ∈ FD.
(ii) For each (s, x) ∈ ⋃

s∈SD {{s} × Rs}, if Vc(s, x) 	= 0, then there exists a control
u ∈ Σ such that x′ = δ(x, u), x′ ∈ Rs′ , s′ ∈ δD(s), and Vc(s′, x′) ≤ ρVc(s, x).

We define a class of contractive potential functions that satisfy properties (i)
and (ii) of Definition 12.3 by using a successor function (Definition 11.2), and
the transition controllers synthesized during the refinement step. In particular, the
proposed contractive potential function is based on the polyhedral LF polytope-to-
beacon synthesis method presented in Appendix A.6.3. Therefore, the contractive
potential function can only be used if the weight functionW is defined according to
such controllers, i.e., when the polyhedral LF method is used to solve Problem 11.4
during the automaton refinement step.

First, we define a function Vcon
LF : ⋃

{(s,s′)|s′∈δD(s),s 	=s′}
{{(s, s′)} × Rs

} −→ R+
with respect to the feedback control laws synthesized using the polyhedral LFs
method. Consider a transition s′ ∈ δD(s), and let a feedback control law solving
Problem 11.4 for Rs and Bss′ be synthesized by using the polyhedral LFs method.
Furthermore, let ρss′ and xss′ be the corresponding contraction rate and equilibrium
point, respectively (see A.6.3 for details). We define the potential of a state x ∈ Rs

with respect to the transition s′ ∈ δD(s) as

Vcon
LF((s, s′), x) = (W(q, q′) − 1)M (x) + 1, (12.6)

where M is as defined in Eq. (A.23) with respect to Rs and xss′ (Rs is the source
region S and xss′ is the equilibrium point xs in Appendix A.6.3).

Finally, we define the potential at (s, x) for a given successor function Γ and
automaton potential function WΓ as

Vc(s, x) =
{
0 if s ∈ FD,

Vcon
LF((s, Γ (s)), x) + WΓ (Γ (s)) otherwise.

(12.7)

Proposition 12.2 According to Definition 12.3, the function defined in (12.7) is a
contractive potential function with contraction rate
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ρ = max

{

max
s∈SD

WΓ (s)

WΓ (s) + 1
, max
s∈SD\FD

w(s)ρw(s)+1
sΓ (s) + 1 + WΓ (Γ (s))

w(s)ρw(s)
sΓ (s) + 1 + WΓ (Γ (s))

}

, (12.8)

where w(s) = W(s, Γ (s)) − 1.

Proof Property (i) of Definition 12.3 is satisfied trivially by the function Vc(s, x)
(12.7). To prove that the function satisfies property (ii)with contraction rate ρ (12.8),
we consider two cases:

(a) Vcon
LF((s, Γ (s)), x) ≤ w(s)ρw(s)

ss′ + 1, and
(b) Vcon

LF((s, Γ (s)), x) > wρw(s)
ss + 1.

Notice that for any s ∈ SD \ FD and x ∈ Rs, if the case-(a) holds, then

M (x) ≤ ρ
w(s)
sΓ (s). (12.9)

From the solution of the Rs to BsΓ (s) control problem, it holds that

ρ
w(s)
sΓ (s)(Rs ⊕ {−xsΓ (s)}) ⊆ (BsΓ (s) ⊕ {−xsΓ (s)}) (12.10)

Equations (12.9) and (12.10) imply that x ∈ BsΓ (s). By the definition of BsΓ (s), there
exists u ∈ Σ such that δ(x, u) ∈ RΓ (s). Moreover, by the definitions ofW and Vcon

LF ,
we have that Vcon

LF((s, Γ (s)), x) ≥ 1 and Vcon
LF((s, Γ (s)), x) ≤ W(s, Γ (s)). Con-

sequently, it holds that Vc(Γ (s),δ(x,u))
Vc(s,x) ≤ WΓ (Γ (s))

WΓ (Γ (s))+1 . Hence, if the condition (a) is sat-
isfied by s and x, then there exists u ∈ Σ such that δ(x, u) ∈ RΓ (s) and

Vc(Γ (s), δ(x, u)) ≤ ρaV
c(s, x), where ρa = max

s∈SD
WΓ (s)

WΓ (s) + 1
. (12.11)

Assume that case (b) holds for some s ∈ SD and x ∈ Rs. We first note that if (b)
holds, then we have W(s, Γ (s)) > 1, since Vcon

LF((s, Γ (s)), x) ≤ W(s, Γ (s)). The
feedback control law g solving the Rs to BsΓ (s) guarantees that M (δ(x, g(x))) ≤
ρsΓ (s)M (x). Therefore, by the definitions of the functions Vc (12.7) and Vcon

LF

(12.6), we have that

Vc(s, δ(x, g(x)))

Vc(s, x)
≤ ρsΓ (s)w(s)M (x) + 1 + WΓ (Γ (s))

w(s)M (x) + 1 + WΓ (Γ (s))
(12.12)

The right hand side of (12.12) increases as M (x) decreases. If the condition (b)
holds for x ∈ Rs, then it follows from (12.6) that M (x) > ρ

w(s)
sS(s). Hence,

Vc(s, δ(x, g(x)))

Vc(s, x)
≤ w(s)ρw(s)+1

sΓ (s) + 1 + WΓ (Γ (s))

w(s)ρw(s)
sΓ (s) + 1 + WΓ (Γ (s))

. (12.13)

Therefore, for all s ∈ SD \ FD and x ∈ Rs, if (b) is satisfied,
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Vc(s, δ(x, g(x))) ≤ ρbV
c(s, x),whereρb = max

s∈SD\FD

w(s)ρw(s)+1
sΓ (s) + 1 + WΓ (Γ (s))

w(s)ρw(s)
sΓ (s) + 1 + WΓ (Γ (s))

.

(12.14)
Equation (12.8) implies that ρ = max{ρa, ρb}. Notice that ρ < 1, since ρa < 1 and
ρb < 1 by (12.11) and (12.14), respectively. From (12.11) and (12.14), we conclude
that the function Vc is a ρ contractive potential function. �

12.3 MPC Strategies

In this section, we present two Model Predictive Control (MPC) schemes to solve
Problem 12.1 for a given dual automaton AD = (SD, SD0 ,OW , δD, τD,FD), and a
transition weight function W : SD × SD −→ N+. In both cases, we formulate MPC
optimization problems over

⋃
s∈SD {{s} × Rs} to be solved “online” at each time step.

The constraints of the optimization problems guarantee that the resulting closed-
loop trajectory of the embedding transition system TW follows an automaton path.
To guarantee that the trajectory reaches a final automaton state, we propose terminal
constraint and terminal cost techniques,which are implemented by using the potential
functions defined in Sect. 12.2.

Definition 12.4 An automaton-enabled finite trajectory

T = (s(0), x(0)) . . . (s(K), x(K))

is a sequence of automaton (Eq. 12.3) and embedding transition system TW state
pairs such that

(i) for each k = 0, . . . ,K − 1 there existsu ∈ ΣW such that x(k + 1) = δW (x(k), u),
(ii) x(k) ∈ Rs(k), for all k = 0, . . . ,K,

(iii) s(k + 1) ∈ δD(s(k)), for all k = 0, . . . ,K − 1.

The definition of an automaton-enabled trajectory implies that the projection
γSD(T) = s(0) . . . s(K) of the trajectory onto the automaton states is an automaton
path and the projection γXW (T) = x(0) . . . x(K) onto the transition system states is
a trajectory of TW that follows the sequence of polyhedra defined by the automaton
path.

The construction of the dual automaton AD from Chap.11 and Definition 12.4
guarantees that for any satisfying trajectory x = x(0) . . . x(d), d ∈ N of system
TW originating at x(0), there exists an automaton-enabled trajectory T such that
γXW (T) = x and γSD(T) is an accepting run of AD. Therefore, in the MPC controller
design, we restrict our attention to the control sequences that generate automaton-
enabled trajectories. We use UK(s, x) to denote the set of all control sequences of
length K that produce automaton-enabled trajectories starting from (s, x) as charac-
terized in Definition 12.4. By following the standard MPC notation, we use

Tk = (s(0|k), x(0|k)) . . . (s(K|k), x(K|k)),
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to denote a predicted automaton-enabled trajectory originating at (s(k), x(k)), i.e.,
s(0|k) = s(k), x(0|k) = x(k), at time k ∈ N.

Consider the following optimization problem over UK(s(k), x(k)):

min
u(k)=u(0|k),...,s(K−1|k)∈UK(s(k),x(k))

C(x(k),u(k))

subject to x(i + 1|k) = δ(x(i|k), u(i|k)), i = 0, . . . ,K − 1
(12.15a)

x(0|k) = x(k). (12.15b)

We denote the optimal automaton-enabled trajectory

T∗(k) = (s∗(0|k), x∗(0|k)) . . . (s∗(K|k), x∗(K|k))

generated by the optimal control sequence u∗(k) ∈ UK(s(k), x(k)), until a final
automaton state is reached, i.e., s(k) ∈ FD. As the first control of the optimal control
sequence is applied, we have:

x(k + 1) = x∗(1|k), s(k + 1) = s∗(1|k), k = 0, 1, 2, . . . . (12.16)

The constraints of the optimization problem (12.15) guarantee that the controlled
trajectory follows an automaton path. However, the satisfaction of the specification
is not guaranteed since the controlled trajectory might not reach a final automaton
state. For example, assume that s ∈ δD(s), x = δW (x, u) for some x ∈ Rs, xr(i) = x
and ur(i) = u for all i. In this particular case, if the controlled trajectory reaches
(s, x) at time k, then it remains there as u∗(0|k̄) . . . u(K − 1|k̄) with u(i|k̄) = u, i =
0, . . . ,K − 1 is the optimal solution of optimization problem (12.15) for all future
time steps k̄ > k. To guarantee the satisfaction of the specification, we propose two
techniques. First, we introduce a progress constraint over the terminal state of the
predicted trajectory (s(K|k), x(K|k)) by using the potential functions presented in
Sect. 12.2. Second, we define the objective of the optimization as the weighted sum
of the cost given in (12.2), and the cost of the terminal state (s(K|k), x(K|k)) defined
by the contractive potential function presented in Sect. 12.2.

12.3.1 MPC with Terminal Constraints

Suppose that Vcon is a control potential function (Definition 12.2), and Γ , Γ are
successor functions (Definition11.2) such that the corresponding automatonpotential
functions WΓ and WΓ (Definition 11.3) satisfy:

WΓ (s) ≤ WΓ (s), for all s ∈ SD. (12.17)

Furthermore, let VΓ be the potential function defined by Γ (·) and Vcon as given
in (12.5). Given these functions, the MPC optimization problem is formulated as
follows:
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min
u(k)=u(k|0),...,s(K−1|k)∈UK(s(k),x(k))

C(x(k),u(k))

subject to VΓ (s(K|k), x(K|k)) < v(k), (12.18a)

x(i + 1|k) = δ(x(i|k), u(i|k)), i = 0, . . . ,K − 1,
(12.18b)

where x(i | k) = x(k), v(k) ∈ N, v(0) = WΓ (s(0)) and for k ≥ 1, v(k) is defined by

v(k) = min{v(k − 1) − 1,WΓ (s∗(K|k − 1))}. (12.19)

For k ≥ 1, the optimal predicted trajectory obtained at the previous time step
(s∗(K|k − 1)) and v(k − 1) are used to enforce the satisfaction of the specifica-
tion. Specifically, the predicted trajectory at time k must end in a state, for which
there exists a control sequence guaranteeing that the trajectory originating from that
state reaches a final automaton state within v(k) steps by following the sequence of
polyhedra defined by the successor function Γ . It is important to note that the bound
v(k) is computed according to Γ , and by (12.17) and (12.5), WΓ (s∗(K|k − 1)) is
an upper bound on VΓ (s∗(K|k − 1), x∗(K|k − 1)). The key property of the progress
constraint is that the bound of the progress constraint decreases at each time step,
i.e., v(k + 1) < v(k). This property guarantees that the resulting trajectory eventu-
ally reaches a final automaton state. By the definition of the potential function given
in (12.5), the progress constraint given in (12.18a) at time k ≥ 0 takes the following
from:

Vcon((s(K|k), Γ (s(K|k))), x(K|k)) < v(k) − WΓ (Γ (s(K|k))). (12.20)

Let k̄ := v(k) − 1 − WΓ (Γ (s(K|k))). If k̄ ≥ W(s(K|k), Γ (s(K|k))), then the ine-
quality given in (12.20) is trivially satisfied for all x(K|k) ∈ Rs(K|k). If, however
k̄ < W(s(K|k), Γ (s(K|k))), then the inequality is satisfied only if

x(K|k) ∈ R
k̄,s(K|k)Γ (s(K|k))
Vcon

. (12.21)

As such, if the set R k̄,s(K|k)Γ (s(K|k))
Vcon

(see Eq. 12.4) is a polytope or union of poly-
topes, then the set of states of TW that satisfy the terminal constraint can be repre-
sented as a union of polytopes for a given automaton state s(K|k).

Next, we show that the optimal solution of the MPC problem from Eq. 12.18 can
be found by solving a finite number of convex optimization problems. First, consider
the set of automaton paths of length K that originate from s(k):

PK
s(k) ={s(0|k)s(1|k) . . . s(K|k) | s(0|k) := s(k),

s(i + 1|k) ∈ δD(s(i|k)), i = 0, . . . ,K − 1}. (12.22)

Since SD is a finite set, PK
s(k) is a finite set. The definition of an automaton-enabled

trajectory Tk of horizon K (Definition 12.4) implies that γSD(Tk) ∈ PK
s(k) for any

trajectory that can be produced by a control sequence from the set UK(s(k), x(k)).
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Note that the weights of the transitions are not considered while constructing the set
PK
s(k). A transition s′ ∈ δD(s) with infinite weight means that the synthesis method

failed to find a feedback control law that solves the corresponding region to region
control problem. However, the problem might have a solution for subsets of Rs and
Rs′ .

Given a finite automaton path s(k) ∈ PK
s(k), letU

s(k)
K (s(k), x(k)) denote the set of all

control sequences that produce an automaton-enabled trajectory Tk with γSD(Tk) =
s(k). Essentially, Us(k)

K (s(k), x(k)) is the set of all control sequences that produce
trajectories of TW that originate at x(k) and follow the sequence of polyhedra defined
by s(k). Then, it is straightforward to see that

UK(s(k), x(k)) =
⋃

s(k)∈PK
s(k)

Us(k)
K (s(k), x(k)). (12.23)

Consider a path s(k) = s(0|k) . . . s(K|k) ∈ PK
s(k) and the following constraints in the

variables u(k) = u(0|k) . . . u(K − 1|k):

x(i + 1|k) = δ(x(i|k), u(i|k)), i = 0, . . . ,K − 1, (12.24a)

x(i|k) ∈ Rs(i|k), i = 1, . . . ,K, (12.24b)

u(i|k) ∈ ΣW , i = 0, . . . ,K − 1. (12.24c)

The set of control sequences that satisfy constraints (12.24) is Us(k)
K (s(k), x(k)).

Therefore, the MPC problem given in (12.18) can be restated as:

min
s(k)∈PK

s(k)

min
u(k)

C(x(k),u(k)) (12.25)

subject to VΓ (s(K|k), x(K|k)) < v(k),

(12.24a), (12.24b), and (12.24c).

As the set of states TW that satisfies the progress constraint can be represented as
unions of polytopes, the optimal solution of the MPC problem (12.18) can be found
by solving a set of convex optimization problems, i.e., quadratic programming (QP)
problems. Note that constraint (12.24a) takes the form of a linear equality according
to the PWA dynamics (AτD(s(i|k)),BτD(s(i|k)), cτD(s(i|k))) active in Rs(i|k):

x(i + 1|k) = AτD(s(i|k))x(i|k) + BτD(s(i|k))u(i|k) + cτD(s(i|k)). (12.26)

To guarantee that the resulting closed-loop trajectory of TW reaches a region Rsf ,
where sf ∈ FD, we proceed as follows: at each time-step k the prediction horizon,
denoted as Ik , is determined with respect to the predicted trajectory obtained at
the previous step. Specifically, the length of the observed reference trajectory, K,
is used as the initial prediction horizon I0 at time-step k = 0. Then, for time-step
k ≥ 1, if the predicted trajectory obtained at the previous step visits a final state at
position j for the first time, j − 1 is used as the prediction horizon Ik . Otherwise, the
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same prediction horizon as in the previous time-step, Ik−1, is used. The following
function is used to determine the prediction horizon for a given trajectory Tk =
(s(0|k), x(0|k)) . . . (s(Ik|k), x(Ik|k)):

I(Tk) =
{
Ik if s(i|k) /∈ FD,∀i = 0, . . . , Ik
j − 1 if s(i|k) /∈ FD,∀i = 0, . . . , j − 1, s(j|k) ∈ FD.

(12.27)

Adapting the prediction horizon according to function I (12.27) allows us to
optimize the cost until the specification is satisfied, i.e., until a final automaton state
is reached.

Algorithm 24 AutomatonGuidedMPC − TCS (AD,W, x(0),K,C,Vcon, Γ , Γ )

Require: Dual automaton AD = (SD, SD0 ,OW , δD, τD,FD), transition weight functionW : SD ×
SD → N+, an initial condition x(0) ∈ Rs(0) for some s(0) ∈ SD0 , MPC horizon K, cost function
C, and functions Vcon, Γ and Γ .

1: Set k = 0, Ik = K, v(0) = WΓ (s(0)). (Initialization)
2: while s(k) /∈ FD do
3: OptCost = ∞, u∗(k) = ∅, T∗

k = ∅.
4: Compute PIk

s(k) .

5: for all s = s(0|k) . . . s(Ik |k) ∈ PIk
s(k) do

6: if WΓ (Γ (s(Ik |k))) < v(k) − 1 then
7: c = minu(k)=u(0|k)...u(Ik−1|k) C(x(k),u(k)) subject to

(12.18a), (12.24a), (12.24b), and (12.24c)
8: if c < OptCost then
9: OptCost := c, setu∗(k) andT∗

k with respect to the solution of the optimization problem
(line 7).

10: end if
11: end if
12: end for
13: Apply u∗(0|k), set s(k + 1) := s∗(1|k), x(k + 1) := x∗(1|k).
14: Ik+1 = I(T∗

k ).
15: v(k + 1) = WΓ (s∗(Ik+1|k)).
16: if Ik+1 == Ik then
17: v(k + 1) = min{v(k) − 1, v(k + 1)}.
18: end if
19: k = k + 1.
20: end while

The proposed MPC controller with a terminal state constraint is summarized
in Algorithm 24, where a set of optimization problems is solved at each time
step until a final automaton state is reached (line 2). At each time step, the lin-
ear quadratic optimization problem given in line 7 is solved for each automaton path
s ∈ PIk

s(k) (12.22), which satisfies the condition given in line 6, and each polytope

from the setR k̄,s(S|k)Γ (s(S|k))
Vcon

(see Eq. 12.21). Note that if an automaton path does not
satisfy the condition given in line 6, the problem given in line 7 becomes infeasible.
When the loop overPIk

s(k) (line 5) is terminated, the first element of the optimal control
sequence u∗(k) is applied and the state (s(k + 1), x(k + 1)) is computed. Notice that
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at each time step, either the prediction horizon or the bound used in the terminal
constraint (12.18a) is reduced (lines 14–19).

Property 12.1 The length of any satisfying trajectory of TW originating at x(0) is
lower bounded by K.

We assume that TW , x(0) and K satisfy Property 12.1. This assumption is made
to simplify the presentation of the following results. The length, K, of the shortest
satisfying trajectory of TW originating at x(0) can be found by solving a set of
optimization problems of the form given in Eq. 12.25. Then, the assumption is not
necessary if K is used as the initial prediction horizon in the case when K < K.

Lemma 12.1 Suppose that Property 12.1 holds, and there exists s(0) ∈ SD0 such
that x(0) ∈ Rs(0). Then, the optimization problem given in line 7 of Algorithm 24 is
feasible for some s(0) ∈ PK

s(0) at the initial condition (s(0), x(0)).

Proof Definition 11.3 imply that v(0) = WΓ (s(0)) < ∞. Since VΓ (s(0), x(0)) ≤
WΓ (s(0)) andWΓ (s(0)) ≤ WΓ (s(0)) for all s(0) ∈ SD, it holds that VΓ (s(0), x(0))
≤ v(0). By Proposition 12.1 and Assumption 12.1, there exists a control sequence
u = u(0) . . . u(K − 1) and an automaton path s = s(0) . . . s(K) such that the value of
the potential function VΓ strictly decreases along the trajectory T = (s(0), x(0)) . . .

(s(K), x(K)) generated by u from the initial condition (s(0), x(0)), and hence,
VΓ (s(K), x(K)) < VΓ (s(0), x(0)) ≤ v(0). As such, the optimization problem is fea-
sible for s. �

If the MPC optimization problem (12.18) is feasible for the initial state at the
initial time step, then it remains feasible until the specification is satisfied. In other
words, the proposed MPC controller is recursively feasible, which is formally stated
as:

Theorem 12.1 Suppose that Property 12.1 holds, and there exists s(0) ∈ SD0 such
that x(0) ∈ Rs(0). Then:

(i) If the optimization problem given in line 7 of Algorithm 24 is feasible for
some s(k) ∈ PIk

s(k) at time k for state (s(k), x(k)), and s(k + 1) /∈ FD, then there

exists s(k + 1) ∈ PIk+1

s(k+1) such that the problem is feasible for s(k + 1) and state
(s(k + 1), x(k + 1)).

(ii) The trajectory of TW produced by the closed-loop system satisfies the specifica-
tion.

Proof (i) Let T∗
k = (s∗(0|k), x∗(0|k)) . . . (s∗(Ik|k), x∗(Ik|k)) be the trajectory gener-

ated by the optimal control sequence u∗(k) = u∗(0|k) . . . u∗(Ik|k) at step k. From
(12.27), we have that Ik+1 ≤ Ik . By Proposition 12.1, there exists a control u ∈ U
and a state s′ ∈ SD such that x′ = δW (x(Ik+1|k), u) ∈ Rs′ , s′ ∈ δD(s(Ik+1|k)) and

VΓ (s′, x′) < VΓ (s∗(Ik+1|k), x∗(Ik+1|k)). (12.28)

By (12.5) and (12.17), it holds that
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VΓ (s∗(Ik+1|k), x∗(Ik+1|k)) ≤ WΓ (s∗(Ik+1|k)) ≤ WΓ (s∗(Ik+1|k)) (12.29)

In the case when Ik = Ik+1, by constraint (12.18a), we have that VΓ (s∗(Ik+1|k),
x∗(Ik+1|k)) < v(k), and as such, by (12.28) and (12.29) it holds that

VΓ (s′, x′) < v(k) − 1. (12.30)

Equations (12.28–12.30) imply that VΓ (s′, x′) < v(k + 1). As such, the control
sequence u∗(1|k) . . . u∗(Ik|k), u′ is a feasible solution of the optimization problem at
step k + 1 for s∗(1|k) . . . s∗(Ik+1|k)s′.

(ii) We first show that the produced trajectory reaches a final automaton state in
finite time. By Lemma 12.1, the optimization problem is feasible at time k = 0 for
some s(0) ∈ Ps(0). From Theorem 12.1-(i) it follows that an optimal predicted trajec-
toryT∗

k exists at each time step until a final state is reached. Let v∗ = maxs∈SD WΓ (s).
By Definition 11.3, v∗ < ∞. From lines 1 and 15 of Algorithm 24, it holds that
v(k) ≤ v∗. From line 17 of Algorithm 24, we have that v(k + 1) < v(k) until a final
automaton state appears in a trajectory. The strict decrease and the progress con-
straint (12.18a) imply that there exists k′ ≤ v(0) such that the trajectory T∗

k′ visits
a final automaton state. The optimization horizon at step k′ + 1 satisfies Ik′+1 < K,
and v(k′ + 1) = WΓ (s∗(Ik′+1|k′)) ≤ v∗.

By applying the same argument iteratively, we conclude that there exists a time
k′′ < Kv∗ such that Ik′′ = 1 and the predicted trajectoryT∗

k′′ ends in a final automaton
state. Therefore, the trajectory produced by the closed-loop system reaches a final
automaton state within Kv∗ steps.

As shown above, the proposed MPC controller produces a finite trajectory
(s(0), x(0)) . . . (s(l), x(l)), l ≤ Kv∗. Next, we show that the projected system tra-
jectory x(0) . . . x(l) satisfies φ. It is assumed that x(0) ∈ Rs(0) and s(0) ∈ SD0 . By the
definition of PIk

s , s(i + 1) ∈ δD(s(i)) for all i = 0, . . . , l − 1 and by the termination
condition s(l) ∈ FD. Consequently, s(0) . . . s(l) is an accepting automaton run. The
constraints of the optimization problem given in line 7 ensure that x(i) ∈ Rs(i) for all
i = 0, . . . , l. Hence, the system trajectory x(0) . . . x(l) satisfies the specification. �

Example 12.2 We consider the double integrator dynamics and the refined
dual automaton from Example 11.5. We define the cost function as in (12.2)
with

Q =
[
0.5 0
0 0.5

]

, R = 0.2. (12.31)

We use the MPC controller with terminal constraints to minimize the cost
with respect to reference trajectories.

The successor function ΓSP as defined in Equation11.7, i.e., ΓSP(s) is the
state that succeeds s in the shortest path from s to FD, and the control potential
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functionVcon,CS , which is defined in Appendix A.7.1, are used in Algorithm 24
forΓ andVcon. The successor functionΓ is constructed by traversing the graph
of the automaton AD as explained in Sect. 11.3 with a slight modification of the
rule given in Eq.11.6, i.e., the states s, s′, with W(s, s′) < ∞ that maximize
the right hand side of Eq.11.6 are chosen.

We apply the MPC controller on satisfying and violating reference trajec-
tories. The reference trajectories xri , i = 1, 2, 3 are generated by the reference

control sequences uri , i = 1, 2, 3 from the initial conditions xr1(0) =
[
1

−6

]

,

xr2(0) =
[
1.4

−2.8

]

and xr3(0) =
[
1
1

]

, respectively, where

ur1 = 1.8, 1.4, 1.8, 1.8, 1, 0, −0.7, 0, 0, 0, 0.1, −1.2, 0.

ur2 = 0.6, 0.6, 0.8, 0.8, 1, 0.4, 0.4, −0.6, −0.6, −0.6, −0.4, −0.6, 1.

ur3 = − 0.6, −1, −0.3, −0.3, −0.4, −0.5, 0.2, 1, 1, 1, 0.4, −0.8, −0.5, −0.5, −0.5, −0.5, 0, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, −0.5, 0.2, 0.2, −0.5, −0.5, −1.2, 0.2, 0.2667, 0.1333.

The reference trajectories xr1 and xr3 satisfy the specification, while xr2 vio-
lates it. The reference trajectories and the corresponding simulated trajectories
generated by Algorithm 24 are shown in Fig. 12.2. As shown in Fig. 12.2a, the
controlled trajectory x1 follows xr1 until the specification is satisfied. However,
as shown in Fig. 12.2b, the controlled trajectory x2 follows the reference trajec-
tory xr2 only for the first 12 steps, then the distance between them increases as
the controlled trajectory visits regionB to satisfy the specification. Even though
reference trajectory xr3 satisfies the specification, as shown in Fig. 12.2e the
controlled trajectories for optimization horizons K = 2 and K = 5 can not
exactly follow xr3 due to the progress constraint.

12.3.2 MPC with Terminal Cost

Suppose that Γ is a successor function (Definition 11.3), and Vc is the corresponding
contractive control potential function (Definition 12.3) defined as in (12.7), and
α ∈ R+ and γ ∈ (0, 1) are given constants. The MPC optimization problem with
additive cost is formulated as follows:

min
u(k)=u(k|0),...,u(K−1|k)∈UK(s(k),x(k))

γ kC(x(k),u(k)) + (1 − γ k)αVc(s(K|k), x(K|k)),
(12.32)

subject to x(i + 1|k) = δ(x(i|k), u(i|k)), i = 0, . . . ,K − 1.

x(0|k) = x(k).

The search space (UK(s(k), x(k))) and the constraints of optimization problems
in Eqs. (12.32) and (12.18) are the same. However, the optimization objectives are
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Fig. 12.2 The reference trajectory (green, satisfying in a and e, and violating in b) and the trajectory
of the controlled system (red and blue). The initial states are marked by black circles in a, b, and
e. The projections of the trajectories shown in (a), (b), and (e) over the first and second dimensions
with respect to time are shown in c, d, and f, respectively. a, c K = 2, total cost = 0. b, d K = 4,
total cost = 58.53. e, f K = 2, total cost = 61.78 (red) and K = 5, total cost = 3.44 (blue). The
color codes in a, b, e and c, d, f are the same

different. In (12.32), the objective of the optimization is to minimize the cost with
respect to the available reference state and control trajectories, while guaranteeing
that the resulting trajectory reaches an accepting state. To enforce the latter part,
the contractive potential function Vc (12.7) is used as the terminal cost. As time
progresses, the weight of the terminal cost, i.e., 1 − γ k , increases, which in turn
guarantees that the resulting trajectory steers towards an accepting state. The value
of the potential function is scaled by a constant factor α ∈ R+, since the objective is
to minimize the potential and trajectory cost together. A candidate scaling factor is
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α = Kmaxs∈SD,x∈Rs V
c(s, x)

L∗ , (12.33)

where L∗ is the maximal value of the function L, i.e.,

L∗ = max
x,xr∈X,u,ur∈U

(x − xr)�Q(x − xr) + (u − ur)�R(u − ur),

and Q and R are as defined in the stage cost Eq. (12.1).
As shown in Sect. 12.3.1, the set of admissible control sequences UK(s(k), x(k))

for state (s(k), x(k)) is the union of admissible control sequencesUs(k)
K (s(k), x(k)) for

each automaton path s(k) from the set PK
s(k) (see (12.22) and (12.23)). Therefore, the

optimal solution of the MPC problem given in (12.32) equals to the optimal solution
of:

min
s(k)∈PK

s(k)

min
u(k)

γ kC(x(k),u(k)) + (1 − γ k)αVc(s(K|k), x(K|k)) (12.34)

subject to (12.24a), (12.24b), and (12.24c).

Therefore, the optimal solution to the MPC problem given in Eq. (12.32) can be
found by solving a QP for each s(k) ∈ PK

s(k).

Algorithm 25 AutomatonGuidedMPC − TCF (AD,W, x(0),N,L,Vc, α, γ )

Require: Dual automaton AD = (SD, SD0 ,OW , δD, τD,FD), transition weight function W: SD ×
SD → N+, an initial condition x(0) ∈ Rs(0) for some s(0) ∈ SD0 , MPC horizon K, cost function
C, contractive potential function Vc, scaling factor α and discount factor γ

1: Set k = 0, Ik = K (Initialization)
2: while s(k) /∈ FD do
3: OptCost = ∞, u∗(k) = ∅, T∗(k) = ∅.
4: Compute PIk

s(k) .

5: for all s = s(0|k) . . . s(Ik |k) ∈ PIk
s(k) do

6: c = minu(k)=u(0|k)...u(Ik−1|k) γ kC(x(k),u(k)) + (1 − γ k)αVc(s(Ik |k), x(Ik |k)) subject to
(12.24a), (12.24b), and (12.24c)

7: if c < OptCost then
8: OptCost := c, set u∗(k) and T∗

k with respect to the solution of the optimization problem
(line 6)

9: end if
10: end for
11: Apply u∗(0|k), s(k + 1) = s∗(1|k), x(k + 1) = x∗(1|k)
12: Ik+1 = I(T∗

k )

13: k = k + 1
14: end while

The proposedMPCcontroller with a terminal cost is summarized inAlgorithm24,
where a set of optimization problems is solved at each time step until a final automaton
state is reached (line 2). At each time step, the linear quadratic optimization problem
given in line 6 is solved for each automaton path s ∈ PIk

s(k) (Eq. 12.22). When the

loop over PIk
s(k) (line 5) is terminated, the first element of the optimal control sequence
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u∗(k) is applied and the state (s(k + 1), x(k + 1)) is computed. As in Algorithm 24,
at each time step, the prediction horizon is updated according to function I (12.27).

Next, we show that the closed-loop trajectory generated by the proposed MPC
controller (Algorithm 25) satisfies the specification. As in Sect. 12.3.1, we first show
that the MPC optimization problem is feasible at the first time step for the initial
state, then we show that it remains feasible until the specification is satisfied.

Lemma 12.2 Suppose that Property 12.1 holds, and there exists s(0) ∈ SD0 such
that x(0) ∈ Rs(0). Then, the optimization problem given in line 6 of Algorithm 25 is
feasible for some s(0) ∈ PK

s(0) at the initial condition (s(0), x(0)).

Proof By construction of the dual automaton, there exists u = u(0), . . . , u(d − 1),
d ∈ Z+ such that the trajectory T = (s(0), x(0)) . . . (s(d), x(d)) generated by u
from the initial condition (s(0), x(0)) satisfies s(d) ∈ FD, and hence s(0), . . . , s(d)

is an accepting automaton run. By Assumption 12.1, K ≤ d. As such s(0) =
s(0), . . . , s(K) ∈ PK

s(0), and the optimization problem is feasible for s(0). �

Theorem 12.2 Suppose that Property 12.1 holds, and there exists s(0) ∈ SD0 such
that x(0) ∈ Rs(0). Then:

(i) If the optimization problem given in line 6 of Algorithm 25 is feasible for
some s(k) ∈ PIk

s(k) at time k for state (s(k), x(k)), and s(k + 1) /∈ FD, then there

exists s(k + 1) ∈ PIk+1

s(k+1) such that the problem is feasible for s(k + 1) and state
(s(k + 1), x(k + 1)).

(ii) The trajectory of TW produced by the closed-loop system satisfies the specifi-
cation.

Proof (i) Let T∗
k = (s∗(0|k), x∗(0|k)) . . . (s∗(Ik|k), x∗(Ik|k)) be the trajectory gen-

erated by the optimal control sequence u∗(k) = u∗(0|k) . . . u∗(Ik|k) at step k. If
s(k + 1) /∈ FD then Ik+1 ≥ 1 and from Eq. (12.27), it follows that Ik+1 ≤ Ik and
Vc(s∗(Ik+1|k), x∗(Ik+1|k)) > 0. By Proposition 12.2, there exists a control u ∈ U
and a state s′ ∈ SD such that x′ = δW (x∗(Ik+1|k), u) and s′ ∈ δD(s∗(Ik+1|k)). As such,
the control sequence u∗(1|k) . . . u∗(Ik|k)u′ is a feasible solution of the optimization
problem at step k + 1 for s∗(1|k) . . . s∗(Ik+1|k)s′.

(ii) We first show that the produced trajectory reaches a final automaton state
in finite time. By Lemma 12.2, the optimization problem is feasible at time k = 0
for some s(0) ∈ PK

s(0). From Theorem 12.2-(i) it follows that an optimal predicted
trajectory exists at each time step until a final state is reached. For time k ∈ Z+
T∗
k = (s∗(0|k), x∗(0|k)) . . . (s∗(Ik|k), x∗(Ik|k)) denotes the trajectory generated by

the optimal control sequence u∗(k) = u∗(0|k) . . . u∗(Ik|k). To prove the claim that
there exists k∗ ∈ Z+ such that Vc(s(k∗), x(k∗)) = 0, we will show that the prediction
horizon eventually decreases, i.e., a final automaton state appears in the optimal
predicted trajectory. Let k̄ ∈ Z+ and Ik̄ = Ik̄+1. By Proposition 12.2, there exists
u′ ∈ U such that x′ = δW (x∗(Ik̄ | k̄), u′) ∈ Rs′ , s′ ∈ δD(s∗(Ik̄ | k̄)) and

Vc(s′, x′) ≤ ρVc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄)), (12.35)



12.3 MPC Strategies 249

where ρ is the contraction rate of Vc. Let u(k̄ + 1) = u∗(1|k̄) . . . u∗(Ik̄|k̄)u′, and
consider:

Ck̄ = (
γ k̄+1C(x(k̄ + 1),u(k̄ + 1)) + (1 − γ k̄+1)αVc(s′, x′)

)

− (
γ k̄C(x(k̄),u∗(k̄)) + (1 − γ k̄)αVc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄)))

(12.36)

= γ k̄+1

⎛

⎝L(x∗(Ik̄ | k̄), u′) +
Ik̄∑

i=1

L(x∗(i | k̄), u∗(i | k̄))
⎞

⎠ + (1 − γ k̄+1)αVc(s′, x′)

− γ k̄

⎛

⎝L(x∗(0 | k̄), u∗(0 | k̄)) +
Ik̄∑

i=1

L(x∗(i | k̄), u∗(i | k̄))
⎞

⎠

+ (1 − γ k̄)αVc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄)).

Consider L∗ as in (12.33). By (12.35) and (12.36), it follows that

Ck̄ < γ k̄+1L∗ + (1 − γ k+1)αρVc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄))
− (1 − γ k̄)αVc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄))

< γ k̄+1L∗ + αVc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄))
(
ρ − 1 + γ k̄

)
. (12.37)

Note that the equality Ik̄ = Ik̄+1 and the definition of function Vc (12.7) imply that
Vc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄)) ≥ 1. Since γ < 1, from (12.37) we reach that Ck̄ < 0 for a
sufficiently large k̄. The bound is found for u(k̄ + 1), which is a feasible solution of
Eq. (12.32) at time step k̄ + 1. As it is not necessarily the optimal solution, we have
that

(
γ k̄+1C(x(k̄ + 1),u∗(k̄ + 1)) + (1 − γ k̄+1)αVc(s∗(Ik̄+1 | k̄ + 1), x∗(Ik̄+1 | k̄ + 1))

)

− (
γ k̄C(x(k̄),u∗(k̄)) + (1 − γ k̄)αVc(s∗(Ik̄ | k̄), x∗(Ik̄ | k̄)))

≤ Ck̄ < 0. (12.38)

Notice that for a sufficiently large k̄, if (12.38) holds, then it holds for all k′ ≥ k̄ until
Ik′+1 	= Ik′ . In the case when Ik′+1 	= Ik′ , by (12.27) we have that Ik′+1 < Ik′ and a
final automaton state appears in the optimal trajectory Tk′ at time step k′. Repeated
applications of the derivation above implies that there exists k∗ ∈ Z+ such that at
time k∗ − 1, the equality Ik∗−1 = 1 holds and s(k∗) ∈ FD.

As shown above the proposed MPC controller produces a finite trajectory

(s(0), x(0)), . . . , (s(k∗), x(k∗)).

Next, we show that the projected system trajectory x(0) . . . x(k∗) satisfies φ. It is
assumed that x(0) ∈ Rs(0) and s(0) ∈ SD0 . By the definition ofP

Ik
s , s(i + 1) ∈ δD(s(i))
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Fig. 12.3 The regions of the
control system from
Example 12.3. The regions
used in the specification are
highlighted
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for all i = 0, . . . , k∗ − 1 and by the termination condition s(k∗) ∈ FD. Consequently,
s(0) . . . s(k∗) is an accepting automaton run. The constraints of the optimization
problem given in line 6 ensure that x(i) ∈ Rs(i) for all i = 0, . . . , k∗. Hence, the
system trajectory x(0) . . . x(k∗) satisfies the specification. �

Example 12.3 We consider a discrete-time, planar linear control system with
controls constrained to U = [−2, 2]2, states constrained to X = [0, 10]2, and
initial state x(0) =

[
1
1

]

. The regions of interest, which are shown in Fig. 12.3,

induce a partition of X into 28 regions Xl, l ∈ L, L = {1, 2, . . . , 28}. This
system can be written as a two-dimensional fixed-parameter PWA control
system W (Definition 6.2) with:

A1,...,28 =
[
0.99 0
0 0.98

]

, B1,...,28 =
[
1 0
0 1

]

, c1,...,28 =
[
0
0

]

. (12.39)

We consider the following specification: “The system originates in X1,
eventually visits X17, and before visiting X17 it either visits X22 and X28 (in
this order), or X7. Moreover, it does not visit X4 before it reaches X17”. The
specification is translated to the following scLTL formula over L ∪ {Out}:

φ =(1 ∧ ♦17) ∧ (¬4 U 17) ∧ (¬17 U(7 ∨ 28)) ∧
((¬28 U 17) ∨ (¬28 U 22)). (12.40)
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First, we apply Algorithm 20 to find the largest set of satisfying initial states
of the system, and the corresponding control strategy. During the refinement,
we use polyhedral LFs method to synthesize transition controllers and transi-
tion weight functionW. The refinement algorithm (Algorithm 22) terminates
at the first iteration with Xφ

TW
= X1, hence there exists a sequence of con-

trollers such that all trajectories that originate from X1 and generated by these
controllers satisfy the specification. The refined dual automaton has 101 finite
cost states and 569 finite cost transitions.

We define a cost function as in Eq. (12.2) with

Q =
[
0.5 0
0 0.5

]

, R =
[
0.2 0
0 0.2

]

. (12.41)

We define reference trajectories according to a sequence of automaton
states. In particular, for a given sequence of automaton states s(0), . . . , s(d),
we define the first K − 1 states of the reference trajectory as xr(i) := xc,0, i =
0, . . . ,K − 2, where xc,0 is the center of the polytope Rs(0). Then, we keep an
index variable j (initialized to j = 0), and at each time step k ≥ 0, we generate
xr(k + K − 1) and update j according to the state x(k) of the controlled system
as follows:

[xr(k + K − 1), j] :=
{

[xc,j+1, j + 1] if x(k) ∈ Rs(j)

[xr(k + K − 2), j] otherwise.
(12.42)

Essentially, we define a sequence of “target” regions Rs(0), . . . ,Rs(d) and
design the reference trajectory such that the cost is minimized when the con-
trolled trajectory visits these regions in the given order. To achieve this, at
each time step, we pick the “target” region Rs(j) from the sequence, and we add
the center of this region xc,j to the reference trajectory. Once the controlled
trajectory visits Rs(j), the next region Rs(j+1) from the sequence is defined as
the target region. Consequently, the cost function penalizes the distance to the
target region Rs(j) until the controlled trajectory visits Rs(j).

The sequence of target regions can be considered as a “soft constraint”.
As opposed to the scLTL specification, the controlled trajectory is allowed
to violate it (e.g., it does not visit a region from the sequence). However,
the violation is penalized with the cost function. Furthermore, while it is not
possible to update the scLTL formula, the sequence of target regions can be
changed “online” in response to the environmental changes.

We apply the MPC controller with terminal cost (Algorithm 25) to the
refined dual automaton AD. Two system trajectories generated by the MPC
controller are shown in Fig. 12.4a, b, where the reference trajectories are gen-
erated as explained above according to the sequences of automaton states
s99, s4, s2 and s92, s100, s2, respectively. For both experiments, the reference
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control sequences are defined as ur(i) =
[
0
0

]

, i ∈ N, the prediction horizon

K is 5, the scaling factor α is 1.45 (computed as in Eq. (12.33)), the weight
constant γ is 0.95, and the successor function is ΓSP as defined in Sect. 11.7.

Note that both trajectories from Fig. 12.4 satisfy specification φ (12.40).
The experiments show that we can use the reference trajectories to steer the
closed-loop trajectory towards the desired regions, which is not possible for
the MPC controller with terminal constraints.

Next, we use a reference trajectory that does not reach a region of a final
automaton state, and compare the controlled trajectories generated by theMPC
controller initialized with different weight constants, i.e., γ = 0.995 and γ =
0.99. The reference control and state trajectories, the scaling constant and the

prediction horizon are defined as xr(i) =
[
1
9

]

, i ∈ N, and ur(i) =
[
0
0

]

, i ∈ N,

α = 1.45 and K = 5, respectively. As shown in Fig. 12.5, both trajectories
satisfy φ (12.40). Due to the exponential increase of the weight of the terminal
cost, the trajectory generated with γ = 0.99 reaches a final automaton region
in 38 time steps, while the trajectory generated with γ = 0.995 reaches a final
automaton region in 239 time steps.

Example 12.4 We consider the PWA system and the specification φ from
Example 11.6. We define the matrices of cost function (12.2) as

Q =
[
0.5 0
0 0.5

]

, R =
[
0.8 0
0 0.8

]

. (12.43)

We apply both the proposed MPC controllers, i.e., MPC with a terminal
constraint and MPC with a terminal cost function, to the refined dual automa-
ton AD. As in Example 12.2, the successor function ΓSP (shortest path), ΓLP

(constructed by choosing the state maximizing the right hand side of (11.6))
and the control potential function Vcon,CS , which is defined in Appendix A.7.1,
are used in Algorithm 24 for Γ , Γ and Vcon, respectively. For Algorithm 25,
the scaling factor α is 148 (computed as in (12.33)), the weight constant γ is
0.95, and the successor function is ΓSP.

The reference control sequence u and the reference trajectory x are defined
as

ur3(i) =
[
0
0

]

, xr3(i) =
[
10
90

]

, for all i = 0, . . . , 99. (12.44)

Note that the reference trajectory corresponds to a point in the interior of
the target region. The reference control sequence and the reference trajectory
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allow us to minimize the magnitude of the control applied and the distance to
the target region.

As shown in Fig. 12.6, both MPC controllers generate similar trajectories,
which advance towards the target region diagonally for the first steps, and
then follow the edge of the grey region, and finally reach the target region. To
prevent trajectories from reaching the boundaries of the grey region, standard
techniques of motion planning such as obstacle inflation can be used. Note
that both terminal cost and the stage cost penalize the distance from the target
region. The average amount of time spent at each iteration of Algorithm 24
and Algorithm 25 are 3.55 sec. and 0.31 sec., respectively. The difference is
due to the amount of time spent to compute the terminal constraint sets, and
additional QPs solved in Algorithm 24.

xc,99 xc,4

xc,2

x1

x
2

x
2

(a)

xc,92

xc,100

xc,2

x1

(b)

Fig. 12.4 The trajectories of the controlled system from Example 12.3. a, b The reference trajec-
tories are generated from automaton sequences s99, s4, s2 and s92, s100, s2, respectively. The center
points of the corresponding polytopes are marked with green dots. The initial states are marked
by black circles. a The controlled trajectory reaches Rs99 , Rs4 and Rs2 at time steps 17, 33 and
38, respectively, i.e., x17 ∈ Rs99 , x33 ∈ Rs4 , and x38 ∈ Rs2 . The corresponding reference trajectory
generated as defined in Eq. (12.42) is xr(i) = xc,99, i = 0, . . . , 20, xr(i) = xc,4, i = 21, . . . , 36 and
xr(i) = xc,2, i = 37, 38. b The controlled trajectory reaches Rs92 , Rs100 and Rs2 at time steps 9, 16
and 24. The corresponding reference trajectory is xr(i) = xc,92, i = 0, . . . , 12, xr(i) = xc,4, i =
13, . . . , 19 and xr(i) = xc,2, i = 20, . . . , 24. Note that prediction horizons are shortened in the last
steps for (a, b) as defined in Eq. (12.27)
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Fig. 12.5 The trajectories
generated with γ = 0.995
and γ = 0.99 are shown in
red and blue, respectively.
The initial state is marked by
a black circle
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12.4 Notes

This chapter is based on our work [70, 73, 77], and can be integrated in the general
area of model predictive control (MPC). This has been shown to be an efficient
and successful method in constrained control, and MPC of linear systems has been
studied quite extensively [150]. With a few exceptions [60, 149, 175], in the MPC

x1

x
2

(a)

x1

x
2

(b)

Fig. 12.6 a The trajectory generated by the MPC controller with terminal constraints (K = 5, sum
of the stage costs 193572). b The trajectory generated by the MPC controller with terminal cost
(K = 5, sum of the stage costs 193447)
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literature, only classical control specifications were considered, such as stability and
safety. A safety specification, i.e., the system trajectory does not leave a safe set,
can be efficiently encoded in the optimization problem through constraints, e.g.,
linear constraints for polyhedral safe sets. For a stability specification, terminal cost
and terminal constraint methods are used for stabilizing model predictive controllers
(see [127] for a review). Several methods were proposed for designing a terminal
constraint set and a terminal cost function to ensure stability [127]. The terminal
constraint and terminal cost methods presented in this chapter resemble the so-called
techniques from MPC literature, while they are set to guarantee the satisfaction of a
terminal logic specification.

The automaton-enabled trajectory is related to the hybrid trajectory of a hybrid
system [87], in the sense that the trajectory is defined over a hybrid state space,
i.e.,

⋃
s∈SD {{s} × Rs}. MPC control schemes were also developed for hybrid systems

such as piece-wise affine systems [121], hybrid dynamical systems with continuous
and discrete states [49, 50], and mixed logical dynamical systems, which include
hybrid automata [29]. However, as in MPC for linear systems, only classical control
specifications were considered in these works. In [49, 50], a hybrid CLF for a hybrid
system with continuous and discrete dynamics was designed to enforce the closed-
loop stability of an equilibrium point. The hybrid CLF combined a Lyapunov-type
function based on a graph distance over the discrete states of the systemand a classical
CLF over the continuous states of the system. While the potential functions from
this chapter also combine two distance measures, they are designed to enforce the
satisfaction of a temporal logic formula.

The complexities of the presented MPC controllers are characterized by the
number of quadratic programs solved at each iteration. The optimal solution of
the MPC problem with terminal constraint given in Eq. (12.18) is found by solv-
ing an optimization problem for each s(k) ∈ PK

s(k) as shown in Eq. (12.25). The
number of paths of length d originating at a node of a graph is upper bounded
by bd , where b is the branching factor of the graph, i.e., the maximum number
of outgoing edges from a node. Therefore, the size of PK

s(k) is upper bounded by
bK. The number of quadratic optimization problems solved to find the optimal
solution for a given path s(k) depends on the representation of the terminal con-

straint set R k̄,s(K|k)Γ (s(K|k))
Vcon

(see Eq. (12.21)), and therefore the choice of the control
potential function. Let w∗ = max(s,s′)|s′∈δD(s),s 	=s′ {W(s, s′) < ∞}. The constraint set
R

k̄,s(K|k)Γ (s(K|k))
Vcon

is represented as unions of at most w∗ − 1 polytopes for the control
potential functions given in Appendix A.7. Therefore, when one of these functions
is used, the optimal solution of the MPC problem with terminal constraints given in
Eq. (12.18) can be found by solving at most bKw∗ quadratic programs. Similarly, the
optimal solution of theMPC problemwith terminal cost given in Eq. (12.32) is found
by solving an optimization problem for each s(k) ∈ PK

s(k) as shown in Eq. (12.34).
In this case, the optimal solution of a given path s(k) is found by solving a single
quadratic program, since all the constraints given in Eq. (12.34) are linear. Therefore,
the optimal solution of the MPC problem with terminal cost (12.32) can be found by
solving at most bK quadratic programs.
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The computational framework presented in this chapter was implemented as a
Matlab software package, called LanGuiMPC (Language Guided Model Predictive
Control), which is freely downloadable from http://sites.bu.edu/hyness/languics/.
This toolbox is an extension of the LanGuiCS toolbox, which is described in
Sect. 11.4. The main Matlab function implements an MPC controller for a discrete
time piece-wise affine system constrained to satisfy an scLTL formula over a set of
linear predicates in its state variables. In addition to the input necessary for Lan-
GuiCS, LanGuiMPC requires a quadratic cost function that penalizes the distance
from desired state and control trajectories, which are assumed to be observable for
a finite time horizon. The toolbox allows to plot the closed loop trajectories for 2D
and 3D examples.

http://sites.bu.edu/hyness/languics/


Appendix A
Background

In this appendix, we provide some background necessary for the material presented
in Part III of the book. Specifically, in Sects.A.1 and A.2 we introduce polytopes
and polyhedral operations. In Sect.A.3, we discuss the computation of images and
pre-images of polytopes through affine functions, under the assumption that the map
is non-singular. We relax this assumption and generalize polytopes to semi-linear
sets in Sect.A.4. An overview of discrete-time Lyapunov stability and polyhedral
Lyapunov functions, which are used in Chap.10, is presented in Sect. A.5. The
details of the vertex interpolation and contractive sets methods used in Chap. 11 to
design polytope-to-polytope controllers are shown in Sect. A.6. Finally, candidate
control potential functions, which are defined and used in Chap.12, are presented in
Sect.A.7.

A.1 Polytopes

Definition A.1 (Convex Set) A set C ⊂ R
N is convex if the line segment between

any two points in C lies in C . In other words, for all x1, x2 ∈ C and 0 ≤ λ ≤ 1, we
have λx1 + (1 − λ)x2 ∈ C .

Definition A.2 (Convex Combination) A point x = ∑n
i=1 λi xi , where

∑n
i=1 λi = 1

and λi ≥ 0 for all i = 1, . . . , n is a convex combination of points x1, . . . , xn .

Similarly, a point x = ∑n
i=1 λi xi , where

∑n
i=1 λi = 1 is an affine combination of

points x1, . . . , xn . Points x1, . . . , xn are called affinely independent if there does
not exist an 1 ≤ i ≤ n such that point xi is an affine combination of points
x1, . . . , xi−1, xi+1, . . . xn .

Definition A.3 (Convex Hull) The convex hull of a set C , denoted as hull(C), is
the set of all convex combinations from points in C :

hull(C) = {x ∈ R
N | x =

n∑

i=1

λi xi , λi ≥ 0, xi ∈ C, i = 1, . . . , n,

n∑

i=1

λi = 1}.
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The convex hull of a set C is the smallest convex set containing C . A hyperplane is
a set of the form

{x ∈ R
N | h�x = k, h ∈ R

N , h �= 0, k ∈ R}.

A hyperplane divides RN into two half-spaces.

Definition A.4 (Half-space) A closed half-space is a set of the form

{x ∈ R
N | h�x ≤ k, h ∈ R

N , h �= 0, k ∈ R}.

A supporting hyperplane of a setC is a hyperplane {h�x = k}, such thatC is entirely
contained in one of the two closed half-spaces defined by the hyperplane and C has
at least one point on the hyperplane.

Definition A.5 (Polytope) A closed full dimensional polytope X ⊂ R
N is defined

as the convex hull of at least N + 1 affinely independent points in RN .

The set of points v1, . . . , vn ∈ R
N whose convex hull gives X and with the prop-

erty that for all i = 1, . . . , n, point vi is not contained in the convex hull of
v1, . . . , vi−1, vi+1, . . . , vn is called the set of vertices of X and is denoted by V (X).
A polytope is completely described by its set of vertices:

X = hull(V (X)). (A.1)

Alternatively, a polytope X can be described as the intersection of at least N + 1
closed half spaces. In other words, there exists a n ≥ N + 1 and hi ∈ R

N , ki ∈ R,
i = 1, . . . , n such that

X =
n⋂

i=1

{x ∈ R
N | h�

i x ≤ ki }. (A.2)

Equivalently, by constructing a matrix H ∈ R
n×N , where H = [h�

1 ; . . . ; h�
n ] and

vector K ∈ R
n , where K = [k1; . . . ; kn]: 1:

X = {x ∈ R
N | Hx ≤ K }, (A.3)

where the comparison “≤” is interpreted element-wise.
Forms (A.1) and (A.2) (or equivalently (A.3)) are referred to as the V- and H-

representations of a polytope, respectively. Given a polytope, there exist algorithms
for translation between its V- and H-representations [113, 134]. A facet of a polytope
X is the intersection ofXwith one of its supporting hyperplanes. A polytope without
its facets is called an open polytope and we use int (X) to denoteX without its facets
(i.e., the interior ofX). Given an open polytopeX, we use cl(X) to denote its closure
(i.e., the union of X and its facets).

1We use standard Matlab notation for constructing concatenations of matrices.
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A.2 Operations on Polytopes

Given polytopes X1,X2 ⊂ R
N , we define the following operations:

Definition A.6 (Set Difference) The set difference of X1 and X2 is defined as:

X1\X2 = {x ∈ R
N | x ∈ X1, x /∈ X2}.

Note that convex polytopes are not closed under the set difference operation (i.e.,
X1\X2 is not necessarily convex, even if X1 and X2 are).

Definition A.7 (Minkowski Sum) The Minkowski sum of X1 and X2 is defined as:

X1 ⊕ X2 = {x1 + x2 ∈ R
N | x1 ∈ X1, x2 ∈ X2}.

Definition A.8 (Minkowski Difference) The Minkowski difference of X1 and X2 is
defined as:

X1 	 X2 = {x1 − x2 ∈ R
N | x1 ∈ X1, x2 ∈ X2}.

The Minkowski difference X1 	 X2 can also be computed as the Minkowski sum
X1 ⊕ (−X2), where (−X2) = {x ∈ R

N | − x ∈ X2} is the mirror image of X2

around the origin. Note that our definition of Minkowski difference follows [118]
and is different from the Pontryagin (Minkowski) difference from [78, 112].

Definition A.9 (Chebyshev Ball) The Chebyshev ball of a polytope X ⊂ R
N is the

largest radius ball Br (xc) = {x ∈ R
N | ||x − xc||2 ≤ r} such that Br (xc) ⊂ X. We

use c(X) to denote the center and r(X) to denote the radius of the Chebyshev ball
of X.

A.3 Affine Functions on Polytopes

Definition A.10 (Affine function) A function f : RN → R
M is called affine if it can

be written as f (x) = Ax + b, A ∈ R
M×N , b ∈ R

M , for all x ∈ R
N .

If X is a full dimensional polytope in R
N with set of vertices V (X) = {v1, . . . , vn}

and f : RN → R
M is an affine function, then

f (X) = hull{ f (v1), . . . , f (vn)}, (A.4)

i.e., the image of a polytope through an affine function is the convex hull of the vertex
images through the affine function.

In the particular case N = M , if matrix A is nonsingular, then the vertices, facets,
and interior of the polytope map through the affine transformation to the vertices,
facets, and interior of the image of the polytope, respectively. Therefore
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f (cl(X)) = cl( f (X)). (A.5)

The pre-image of a polytope X in R
M through an affine function f : RN → R

M

is a convex set in RN and is defined as

f −1(X) = {x ∈ R
N | Ax + b ∈ X}. (A.6)

For a polytope X in R
M represented as the intersection of m ≥ M half-spaces as in

Eq. (A.2), the pre-image is given by

f −1(X) =
m⋂

i=1

{x ∈ R
N | h�

i Ax ≤ ki − h�
i b}. (A.7)

Note that if there are N +1 linearly independent vectors in the set {h�
1 A, . . . , h�

m A},
then f −1(X) is a polytope in RN .

Consider a function g : RN ×R
L → R

M defined as g(x, u) = Ax+Bu+b, where
A ∈ R

M×N , B ∈ R
M×L , b ∈ R

M . The function g can be represented as summation of
two affine functions g1 : RN → R

M and g2 : RL → R
M such that g1(x) = Ax + b

and g2(u) = Bu, i.e., g(x, u) = g1(x) + g2(u) for all x ∈ R
N , u ∈ R

L . Then, the
image of polytopes X ⊂ R

N and U ⊂ R
L through function g can be computed as

g(X,U) = g1(X) ⊕ g2(U),

where⊕denotedMinkowski summation.Also note that function g : RN×R
L → R

M

can equivalently be represented as an affine function f : RN+L → R
M as given in

Definition A.10:

f (x) = Āx̄ + b, where x̄ ∈ R
N+L and Ā = [A, B] ∈ R

M×(N+L). (A.8)

Then, g(X,U) = f (X×U). Moreover, the pre-image of the function g overRN can
be computed through orthogonal projection of f −1(X × U) to RN .

A.4 Semi-linear Sets and Affine Functions

Definition A.11 (Semi-linear set) A semi-linear set S in R
N is defined as unions,

intersections, and complements of sets {x ∈ R
N | a�x ∼ b,∼∈ {=,<}}, for some

a ∈ R
N and b ∈ R.

A semi-linear set is also called a polyhedron. A closed convex bounded semi-
linear set is a polytope, and a convex bounded semi-linear set is a polytope with
some of its facets removed.

Note that the basic set operation definitions, such as Minkowski sum and differ-
ence, and set difference defined above, also apply to semi-linear sets. Furthermore,
the image (or pre-image) of a semi-linear set through an affine function can be
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computed by performing the computation on a finite number of polytopes since a
semi-linear set can be represented as a union of a finite number of convex sets. In
particular, a semi-linear set is either a polytope, or a union of polytopes, or a convex
and bounded set, or a general non-convex set. Therefore, the computation of the
image (or pre-image) of a semi-linear set S through an affine function f falls into
one of the following case:

i. If S is a closed polytope, then f (S) and f −1(S) are computed as explained in
Sect. A.3. Note that the computation applies to a polytope of any dimension.

ii. IfS is a union of polytopes, one can use a standard convex decompositionmethod
to decompose S into a set of polytopes {Pi }i∈I (see, e.g., [79]), i.e.,

S =
⋃

i∈I
Pi , where for any i �= j,Pi ∩ P j = ∅,

and compute the image as
f (S) =

⋃

i∈I
f (Pi )

using case Sect.A.4 (similarly f −1(S) = ⋃
i∈I f −1(Pi )).

iii. If S is a convex and bounded semi-linear set, then, in general,

S = P \
⋃

i∈I
Fi ,

for some polytope P and a subset of its facets {Fi }i∈I . The image is computed as

f (S) = f (P) \
(

⋃

i∈I
f (Fi ) \ f (P)

)

,

where the right hand side can be computed as described in case Sect.A.4. Sim-
ilarly, the pre-image can be computed as

f −1(S) = f −1(P) \
(

⋃

i∈I
f −1(Fi ) \ f −1(P)

)

.

iv. If S is a general (non-convex) bounded semi-linear set, then again it can be
decomposed into convex and bounded semi-linear sets S = ⋃

i∈I Si . Then,

f (S) =
⋃

i∈I
f (Si ),

and each f (S) can be computed as described in case Sect.A.4.
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As summarized above, the image and the pre-image of a semi-linear set through an
affine function can always be implemented by convex decompositions and repeated
applications of Eqs. (A.4) and (A.7), respectively.

A.5 Lyapunov Theory

An autonomous discrete-time system is defined by

x(k + 1) = Φ(x(k)), k ∈ N, (A.9)

where x(k) ∈ R
N is the state at time k and Φ : RN → R

N is an arbitrary map with
Φ(0) = 0. Given a state x ∈ R

N , x ′ := Φ(x) is called a successor state of x .

Definition A.12 (Contractive set and positively invariant set) Let λ ∈ [0, 1]. A set
P ⊆ R

N is called λ-contractive (shortly, contractive) for system (A.9) if for all x ∈ P
it holds that Φ(x) ∈ λP. For λ = 1, P is called a positively invariant set.

Definition A.13 (Class K∞ function) A function α : R+ → R+ belongs to class
K∞ if it is continuous, strictly increasing, α(0) = 0, and lims→∞ α(s) = ∞.

Theorem A.1 Let P be a positively invariant set for (A.9) with 0 ∈ int (P). Fur-
thermore, let α1, α2 ∈ K∞, ρ ∈ (0, 1) and V : RN �→ R+ such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),∀x ∈ P, (A.10)

V (Φ(x)) ≤ ρV (x),∀x ∈ P. (A.11)

Then (the origin of) system (A.9) is asymptotically stable in P [93, 119].

Definition A.14 (Lyapunov function) A function V : RN �→ R+ is called a Lya-
punov function (LF) in P if it satisfies (A.10) and (A.11). If P = R

N , then V is called
a global Lyapunov function.

The parameter ρ is called the contraction rate of V . For any Γ > 0,

PΓ := {x ∈ R
N | V (x) ≤ Γ }

is called a sublevel set of V .
A difference inclusion system is defined as

x(k + 1) ∈ Φ(x(k)), k ∈ N, (A.12)

where x(k) ∈ R
N is the state at time k and Φ : RN → 2R

N
is an arbitrary map with

Φ(0) = 0. Note that the system is non-deterministic, and the successor of state x
takes values from a set Φ(x).
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The invariant set, contractive set, and Lyapunov function definitions apply directly
to difference inclusions in the absolute sense, i.e., given x , the corresponding con-
ditions must hold for all x ′ ∈ Φ(x). For example, a set P is positively invariant if
Φ(x) ⊆ P for all x ∈ P.

An infinity norm Lyapunov function is in the form

V (x) = ‖Lx‖∞, L ∈ R
l×N , l ≥ N , l ∈ N, (A.13)

where L has full-column rank. Infinity norm Lyapunov functions are particular types
of polyhedral Lyapunov functions.

If L ∈ R
l×N has full-column rank and V as defined in (A.13) is a global Lyapunov

function for system (A.9) with contraction rate ρ ∈ (0, 1), then for all Γ > 0, the
induced sublevel set PΓ is a polytope and 0 ∈ int (PΓ ). Moreover, if Φ(x) = Ax for
some A ∈ R

N×N , then for all Γ > 0, the induced sublevel set PΓ is a ρ-contractive
polytope for (A.9) [32, 120].

A.6 Reach Control Problems on Polytopes

Consider an affine control system of the form

x(k + 1) = Ax(k) + Bu(k) + c, x(k) ∈ R
N , u(k) ∈ U, (A.14)

where A ∈ R
N×N , B ∈ R

N×M and c ∈ R
N describe the system dynamics, at each

time step k = 0, 1, . . ., x(k) ∈ R
N is the state of the system and u(k) is the control

restricted to a polytopic set U ⊂ R
M .

Given two polytopes S and T in RN with T ⊆ S, and a control system (A.14), the
reach control problem concerns synthesis of a feedback control law g : RN → R

M

such that for all x ∈ S there exists a kx ∈ N, kx < ∞ and:

x(0) = x,

x(k + 1) = Ax(k) + Bg(x(k)) + c, k = 0, . . . , kx − 1,

x(k) ∈ S k = 0, . . . , kx ,

x(kx ) ∈ T.

The reach control problem might not be feasible, i.e., such a control law g might
not exists. In the remainder of this section, several approaches for synthesis of a
feedback control law solving the reach control problemare provided. For convenience
of notation, a H-representation of a polytope P is denoted by matrices HP,KP, where
P = {x | HPx ≤ KP}.
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A.6.1 Iterative Pre-computation

The set of states of system (A.14) that can reach T in one-step can be computed via
Pre operator and orthogonal projection as explained in Sect.A.3:

Pre(T × U)|N ,

where, for a setP,P|N denotes the orthogonal projection ofP toRN . Simply Pre(T×
U)|N is denoted by Pre(T). Then, the set of statesT1 ⊆ S that can reachT in one-step
is the intersection of Pre(T) with S, i.e.,

T1 = S ∩ Pre(T). (A.15)

By iteratively applying (A.15), one can compute the set of states Tk ⊆ S that can
reach T exactly at step k ∈ N+, k ≥ 1:

Tk = S ∩ Pre(Tk−1), where T0 = T. (A.16)

The set of states T≤k ⊆ S that can reach T within k ∈ N steps is simply the union
of T0, . . . ,Tk :

T≤k =
⋃

i=0,...,k

Tk . (A.17)

Finally, the maximal set of states T≤ ⊆ S that can reach T in a finite number of
steps is defined as

T≤ = T≤k where T≤k = T≤k−1. (A.18)

Note that if T≤ �= S, then the reach-control problem is infeasible.
The above explained steps allows us to compute the maximal setT≤. This method

also induces a control strategy such that the trajectories originating from T≤k reach
S with in k steps.

Consider the sets Tk and Tk−1 defined above, and let V (Tk) = {v1, . . . , vn}.
Consider the following set of linear inequalities in the variables u1, . . . , un:

HTk−1(Avi + Bui + c) ≤ KTk−1 ,

HUu
i ≤ KU. (A.19)

A solution to (A.19) can be obtained by solving a feasibility linear program (LP).
Note that the LP is always feasible since T≤k ⊆ Pre(T≤k−1). The control law

gk(x) :=
n∑

i=1

λi ui , (A.20)
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where λi ∈ R, 0 ≤ λi ≤ 1, are such that x = ∑n
i=1 λi vi , guarantees that the

trajectories originating from Tk reach Tk−1 in the next time instant. The evaluation
of the control law (A.20) requires calculation of the coefficients λ1, . . . , λn , which
amounts to solving a system of linear equations and can also be formulated as a
feasibility LP.

Alternatively, an explicit PWA form of gk can be obtained by a simplicial partition
of Tk . Then, the evaluation of gk requires solving a point location problem [169],
which consists of checking a finite number of linear inequalities. Although efficient
ways to solve point location problems exist, depending on the complexity of the parti-
tion (number of simplices), the point location problemmay be more computationally
expensive than calculating the coefficients λ1, . . . , λn .

For a given state x(0) ∈ S, the control strategy solving the reach control problem
(under the assumption that the problem is feasible, i.e., T≤ = S) amounts to finding
Tk such that x(0) ∈ Tk , and applying the control sequence gk(x(0)), gk−1(x(1)), . . . ,
g1(x(k − 1)), where x(i + 1) = Ax(i) + Bgk−i (x(i)) + c, i = 0, . . . , k − 1.

Note that this method is guaranteed to find the solution to the reach-control prob-
lem if one exists. However, it is computationally expensive. Next, computationally
more efficient, but conservative methods are presented.

A.6.2 Vertex Interpolation

Let V (S) = {v1, . . . , vn} be the vertices of S, and let {u1, . . . ,un} denote a corre-
sponding set of finite sequences of control actions, where ui := ui0, . . . , u

i
S−1 for all

i = 1, . . . , n, and S ≥ 1. For each vi define the following set of linear equality and
inequality constraints in the variables ui0, . . . , u

i
S−1:

xi (0) := vi ,

xi (k + 1) = Axi (k) + Bui (k) + c, ∀k = 0, . . . , S − 1,

HSx
i (k) ≤ KS, ∀k = 0, . . . , S − 1,

HUu
i (k) ≤ KU, ∀k = 0, . . . , S − 1,

HUx
i (S) ≤ KU. (A.21)

A solution to the set of problems (A.21) can be searched by solving repeatedly a
corresponding set of feasibility LPs starting with S = 1, for all i = 1, . . . , n, and
increasing S until a feasible solution is obtained for all LPs and the same value of S.
Let S∗ ≥ 1 denote the minimal S for which a feasible solution was found. Then, it
is straightforward to establish that for any x ∈ S, the control law

g(x(k)) :=
n∑

i=1

λi ui (k), k = 0, . . . , S∗ − 1, (A.22)
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where x(0) = x and λi ∈ R, 0 ≤ λi ≤ 1, are such that x = ∑n
i=1 λi vi , solves the

reach control problem for S and T, and yields that closed-loop trajectories that reach
T in at most S∗ discrete-time instants.

Evaluation of the control law g of (A.22) at time k = 0 requires calculation of
the coefficients λ1, . . . , λn , which is an LP, while at every k = 1, . . . , S∗ − 1 the
analytic expression of g is implemented. However, a faster convergence to T can be
obtained by taking λi ∈ R, 0 ≤ λi ≤ 1, such that x = ∑n

i=1 λi x i ( j∗), where

j∗ := argmax{ j ∈ {0, . . . , S∗} | x ∈ hull(x1( j), . . . , xn( j)).

Then, the resulting closed-loop trajectories will reach T in at most S∗ − j∗ discrete-
time instants.

Similar to the case of the control law from Eq. (A.20), simplicial decompositions
of S can be employed to obtain an explicit PWA form of the control law g(x(k)),
k = 0, . . . , S∗ − 1, both for its standard and faster variants presented above.

A.6.3 Contractive Sets

In this section, first a Lyapunov function based solution to the reach control problem
is presented, which is referred as “polyhedral LFs” method. In this method, the
synthesized feedback controller guarantees that a point xs ∈ int (T) is an equilibrium
point of the closed loop system and P is a sublevel set of a Lyapunov function. The
contractive property of the sublevel set guarantees that the trajectories reach the set
T in finite time. Then, these conditions are relaxed, and a less conservative solution,
referred to as “contractive sets”, is presented.

The set of equilibrium points in the interior of T is defined as

ET := {xs ∈ int (T) | ∃us ∈ U : xs = Axs + Bus + c}.

Polyhedral LFs

If ET �= ∅, an explicit PWA solution to the reach control problem can be obtained
via polyhedral LFs, see, e.g., [33, 120], as follows. Let

W (x) := max
i=1,...,w

W�
i (x − xs) (A.23)

denote a function induced by the polytope S and a point xs ∈ ET, where w ≥ N + 1
is the number of lines of the matrix W = [W�

1 ; . . . ;W�
w ] , which is such that

S = {x ∈ R
N | W (x) ≤ 1}. Next, consider the conic polytopic partitionC1, . . . ,Cw

of S induced by xs , which is constructed as follows:

Ci := {x ∈ S|(W�
i − W�

j )(x − xs) ≥ 0, j = 1, . . . , w} ∪ {xs}. (A.24)
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Notice that ∪i=0,...,wCi = S and int (Ci ) ∩ int (C j ) = ∅ for all i �= j . Let ρ ∈ R

with 0 ≤ ρ < 1 denote a desired convergence rate. Consider the PWA control law

g(x) := Fi x + fi if x ∈ Ci (A.25)

and the following feasibility LP in the variables (F1, f1), . . . , (Fw, fw):

ρW�
i (x − xs) − W�

j (Ax + Bg(x) + c − xs) ≥ 0,

∀x ∈ V (Ci ),∀ j = 1, . . . , w,

Fi x + fi ∈ U, ∀i = 1, . . . , w,

(A + BFi )x
s + Bai + c = xs, ∀i = 1, . . . , w. (A.26)

Note that ρ can beminimized to obtain an optimal convergence rate and a different
ρi can be assigned to each cone Ci , while (A.26) remains an LP.

Proposition A.1 Suppose that the LP (A.26) is feasible. Then the function W is a
Lyapunov function and S is a ρ-contractive set for system (A.14) in closed-loop with
the PWA control law (A.25), with respect to the equilibrium xs ∈ int (T).

The proof of Proposition A.1 follows from Theorem III.6 from [120], i.e., the
constraints given in the LP (A.26) are the necessary conditions for constructing a
Lyapunov function in Theorem III.6 from [120].

Let k∗ := argmin{k ≥ 1 | ρk(S ⊕ {−xs}) ⊆ (T ⊕ {−xs})}. All trajectories
of system (A.14) in closed-loop with (A.25) that start in S reach T in at most k∗
discrete-time instants. Thus, the PWA control law (A.25) solves the reach control
problem for S and T. The evaluation of (A.25) reduces to a point location problem
that can be solved in logarithmic time due to the specific conic partition.

Next, we present a less conservative solution by relaxing the constraints of (A.26).

Contractive Sets

Pick any x̄ ∈ int (T) (not necessarily an equilibrium point) and letW (x) denote the
function induced by S and the point x̄ as defined in (A.23). Moreover, let

α�
x̄ = max

α>0
{α(S ⊕ {−x̄}) ⊆ (T ⊕ {−x̄})}.

Note that α�
x̄ < 1 whenever T ⊆ S and T �= S; pick any αx̄ such that 0 < αx̄ < α�

x̄ .
Let {Ci }i=1,...,w be the conic partition of S induced by x̄ as defined in (A.24), and let
ρ ∈ Rwith 0 ≤ ρ < 1 denote a desired convergence rate. Consider the PWA control
law (A.25), and the following feasibility LP in the variables (F1, f1), . . . , (Fw, fw):

ρ(W�
i (x − x̄) − αx̄ ) − (W�

j (Ax + Bg(x) + c − x̄) − αx̄ ) ≥ 0,

∀x ∈ V (Ci ),∀ j = 1, . . . , w,∀i = 1, . . . , w,

Fi x + fi ∈ U, ∀x ∈ V (Ci ),∀i = 1, . . . , w. (A.27)
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Similar to the polyhedral LFs method, ρ can be minimized to obtain an optimal
convergence rate and a different ρi can be assigned to each cone Ci , while (A.27)
remains an LP. If the LP (A.27) is feasible, then by construction and the definition
of the function W , for all x ∈ S it holds that

ρW (x) − W (Ax + Bg(x) + c) ≥ αx̄ (ρ − 1). (A.28)

The recursive application of (A.28) implies that for a closed-loop trajectory
x(0), x(1), . . ., the following inequality holds for all k ≥ 0:

W (x(k)) ≤ ρkW (x(0)) − αx̄ρ
k + αx̄ . (A.29)

The above property can be exploited to establish the following result.

Lemma A.1 Suppose that the LP (A.27) is feasible and let

k� :=
⎡

⎢
⎢
⎢

ln
(

α�
x̄−αx̄

1−αx̄

)

ln(ρ)

⎤

⎥
⎥
⎥

. (A.30)

Then for all trajectories x(0), x(1), . . .with x(0) ∈ S of system (A.14) in closed-loop
with (A.25) there exists a k ≥ 0 such that x(k) ∈ T and, moreover, k ≤ k�.

Proof Let x(0) ∈ S. To prove the claim consider two cases, i.e., W (x(0)) ≤ α�
x̄

and W (x(0)) > α�
x̄ . Notice that for any x ∈ S, W (x) ≤ α�

x̄ implies that x ∈
(α�

x̄ (S ⊕ {−x̄}) ⊕ {x̄}) and thus, it implies that x ∈ T. As such, in the case when
W (x(0)) ≤ α�

x̄ , the claim holds by the definition of k� (A.30).
Next, consider the case when W (x(0)) > α�

x̄ and suppose that the inequality

α�
x̄ < ρkW (x(0)) − αx̄ρ

k + αx̄ (A.31)

holds for all k ≥ 0. By taking the limit when k tends to infinity in the above inequality
yields that α�

x̄ < αx̄ and thus, a contradiction was reached. As such, there must exist
a k ≥ 0 such that

ρkW (x(0)) − αx̄ρ
k + αx̄ ≤ α�

x̄ (A.32)

holds. Equations (A.29) and (A.32) imply thatW (x(k)) ≤ α�
x̄ and hence, x(k) ∈ T.

Furthermore, reordering the terms and taking the logarithm of both sides in (A.32)
yields

k ≤
ln

(
α�
x̄−αx̄

W (x(0))−αx̄

)

ln(ρ)
. (A.33)

Noticing that W (x) ≤ 1 for all x ∈ S, the fact that k ≤ k� follows directly from the
definition of k� (A.30). As the point x(0) ∈ S was chosen arbitrarily, the claim is
established. �
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If the LP (A.27) is feasible, the PWA control law (A.25) is an admissible solution
to the reach control problem as shown in Lemma A.1. As in polyhedral LFs solution,
the evaluation of (A.25) reduces to a point location problem that can be solved in
logarithmic time due to the specific conic partition.

The contractive sets method is a relaxation of the Lyapunov function based
method. First, x̄ is no longer required to be an equilibrium point. Second, the con-
traction condition of (A.27) is a relaxation of the contraction condition of (A.26).
In particular, if x̄ is an equilibrium point, then by augmenting the constraints of the
LP (A.27) with the equilibrium point constraints, i.e., (A+BFi )x̄+B fi +c = x̄ , for
all i = 1, . . . , w, and setting αx̄ to 0, the polyhedral LFs solution is recovered and the
functionW becomes a standard Lyapunov function with respect to the equilibrium x̄ .

A.7 Control Potential Functions

Control potential functions are formally defined in Definition 12.2 in Chap.12. In
this appendix, candidate control potential functions for a transition system T =
(X,Σ, δ, O, o) and a dual automaton AD = (SD, SD0 , OW , δD, τD, FD) with Rs ⊆
X,∀s ∈ SD and transition weight function W : SD × SD → N+ are presented.

A.7.1 Control Potential Function Based on One Step
Controllable Sets

Consider control potential function Vcon ,CS : ⋃
{(s,s ′)|s ′∈δD(s),s �=s ′}

{{(s, s ′)} × Rs
}

−→ N+:

Vcon ,CS((s, s
′), x) = argmin{k ∈ {1, . . . ,W(s, s ′)} | x ∈ B≤k−1

ss ′ }, (A.34)

where Bk−1
ss ′ denotes the set of states in Rs that can reach the beacon Bss ′ of (s, s ′) in

k − 1 steps, hence Rs ′ in k steps. The set B≤k−1
ss ′ is computed shown in Sect.A.6.1.

Therefore, for Vcon ,CS , the constraint set R
k,ss ′
Vcon

(see (12.4)) is defined as

Rk,ss ′
Vcon ,CS

= B≤k−1
ss ′ .

A.7.2 Control Potential Function Based on Feedback
Controllers

In this section, a control potential function is presented for each of the control syn-
thesis methods given in Sect.A.6 for solving reach control problem.
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A.7.2.1 Vertex Interpolation

Let g : Rs → U be a feedback control law synthesized by using the vertex inter-
polation method to solve the reach control problem from Rs to Bss ′ , and W(s, s ′)
be the corresponding time bound. Let xi (0), . . . , xi (W(s, s ′) − 1) be the trajectory
generated by the feedback control g from the vertex xi (0) ∈ V (Rs). Note that
xi (W(s, s ′) − 1) ∈ Bss ′ for each xi (0) ∈ V (Rs).

Consider control potential function Vcon ,V I : ⋃
s∈SD ,s ′∈δD(s)

{{(s, s ′)} × Rs
}

−→ N+:

Vcon ,V I ((s, s
′), x) = W(s, s ′)− argmax{ j ∈ {0, . . . ,W(s, s ′) − 1} |

x ∈ hull({xi ( j)}i=1,...,|V (Rs )|)}. (A.35)

From (12.4) and (A.35), the constraint set for Vcon ,V I is defined as

Rk,ss ′
Vcon ,V I

=
⋃

j=1,...,k

hull({xi (W(s, s ′) − j)}i=1,...,|V (Rs )|) (A.36)

A.7.2.2 Polyhedral LFs

Let a feedback control law be synthesized by using the polyhedral LFs method to
solve the reach control problem from Rs to Bss ′ , and let ρ and xs be the corresponding
contraction rate and equilibrium point, respectively.

Consider control potential function Vcon ,PL : ⋃
s∈SD ,s ′∈δD(s)

{{(s, s ′)} × Rs
} −→

N+:

Vcon ,PL((s, s
′), x) = W(s, s ′) − argmax{ j ∈ {0, . . . ,W(s, s ′) − 1} |

x ∈ (ρk(Rs ⊕ {−xs}) ⊕ xs)}. (A.37)

For Vcon ,PL , the constraint set is defined as

Rk,ss ′
Vcon ,PL

= ρW(s,s ′)−k(Rs ⊕ {−xs}) ⊕ xs ∪ Bss ′ . (A.38)

A.7.2.3 Contractive Sets

Let a feedback control law be synthesized by using the contractive sets method to
solve the reach control problem from Rs to Bss ′ , and let x̄ , ρ, αx̄ , α�

x̄ and the function
W be defined as in (A.28) with respect to x̄ . For the contractive sets method, a control
potential function Vcon ,C : ⋃

s∈SD ,s ′∈δD(s)

{{(s, s ′)} × Rs
} −→ N+ is defined as:
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Vcon ,C((s, s ′), x) =
⎡

⎢
⎢
⎢

ln
(

α�
x̄−αx̄

W (x0)−αx̄

)

ln(ρ)

⎤

⎥
⎥
⎥

, (A.39)

where �·� denotes the ceiling operation. For Vcon ,C , the constraint set is defined as

Rk,ss ′
Vcon ,C

= α�
x̄ − αx̄ + αx̄ρ

W(s,s ′)−k

ρW(s,s ′)−k
(Rs ⊕ {−x̄}) ⊕ x̄ ∪ Bss ′ . (A.40)
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