
Chapter 4
Parameter Estimation: Definition
and Sampling Design

Gerard Sanz and Ramon Pérez

4.1 Introduction

According to [48], calibration “consists of determining the physical and operational
characteristics of an existing system and determining the data that when input to the
computer model will yield realistic results”. In [2], the authors used the word verified
in place of calibrated but described a process of calibration: “System simulation is
considered verified during preliminary analysis for design when calculated pressures
are satisfactorily close to observed field gauge readings for given field source send-
out and storage conditions. If simulation is not satisfactory, the possibility of local
aberrations, such as open boundary valves, is investigated. In the absence of other
expected causative factors, the assumed local arterial network loads are adjusted
until computed and observed field pressures are within reasonable agreement for
various levels and extremes of demand, pumping, and storage”.Walski [51] proposed
a more precise definition: “Calibration of a water distribution model is a two step
process consisting of: (1) Comparison of pressures and flows predictedwith observed
pressures and flows for known operating conditions (i.e., pump operation, tank levels,
pressure reducing valve settings); and (2) adjustment of the input data for the model
to improve agreement between observed and predicted valves. Amodel is considered
calibrated for a set of operating conditions and water uses if it can predict flows and
pressures with reasonable agreement”.

A high degree of interest in this topic has been shown by researchers [47], but it
has been considerably less covered by practitioners. A number of questions have to
be answered, such as: (1) What parameters can be calibrated with confidence? (2)
What is the acceptable level of discretization of calibration parameters and what is
the acceptable level of agreement between measurements and model outputs? (3)
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How to parameterize the model when insufficient data are available? and (4) What
objective function type to use?

Orsmbee [33] suggested a seven-step general calibration procedure as follows: (1)
identification of the intended use of the model; (2) determination of initial estimates
of the model parameters; (3) collection of calibration data; (4) evaluation of the
model results; (5) macro-level calibration; (6) sensitivity analysis; and (7) micro-
level calibration.

One of the most important issues in model calibration is the determination of
the purpose of the model [53]. Seven possible purposes of a network model were
identified as follows: pipe sizing for master planning, extended period simulations
for planning studies, subdivision layout, rehabilitation studies, energy usage studies,
water quality models and flushing programmes. In [50], a real system is modelled
for daily pump scheduling and system expansion design to examine the impact of
model purpose on the calibration process.

Battle of the water calibration networks is summarized in [34], the goal of this
competition was to objectively compare the solutions of different approaches to the
calibration ofwater distribution systems through application to realwater distribution
system. Interesting references have been extracted from this work and future work
is well pointed:

• Due to the inherently ill-posed or under-constrained calibration problem inWDN,
the solutions that provide a goodmatch betweenmeasured andmodelled data have
to be validated with extra data.

• Uncertainty has to be included in the model parameters to explore the influence
on the calibrated model outputs.

• Calibration size problem reduction is an important factor to be considered to avoid
model overfitting, avoid unnecessary simulations or reducing the search space.

• Leakage data may be included in hydraulic calibration efforts because leakage
directly affects nodal demand allocation and pump curve characterizations.

• The effect of different field data on model calibration should be investigated (use
of flow and/or pressure measurements).

In [52], the author described the importance of good data collection. In [54], the
same author classified data into three different degrees of usefulness:

• Good data are collectedwhen there is sufficient head loss to draw valid conclusions
about model calibration. It is necessary to have head loss in the system that is
significantly greater than the error in measurement to avoid random adjustments
[55].

• Bad data contain errors because of misread pressure gauge, incorrectly determined
elevation of the pressure gauge or lack of information about which pumps were
running when calibration data were collected. This type of data should be dis-
carded.

• Useless data are collected when the head loss in the system is so low that head loss
and velocity are of a similar order of magnitude as the errors in measurements.
Such data can produce misleading models.
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Ahmed et al. [1] developed a heuristic three-step procedure to assist in identifying
the conditions under which useful data (good data) should be collected. The issue of
data quality and quantity is closely related to that of sampling design, which will be
addressed later in this chapter.

Formulas may assist the user in deciding whether to adjust roughness or water use
and by how much [51]. They are based on fire flow test. To correct for inaccuracies
in input data, it is necessary to first understand the sources of these inaccuracies.
These can be grouped into several categories: (1) incorrect estimate of water use;
(2) incorrect pipe carrying capacity; (3) incorrect head at constant head points (i.e.,
pumps, tanks, pressure reducing valves); or (4) poor representation of system in
model (e.g., too many pipes removed in skeletonizing the system). The major source
of error in simulation of contemporary performance will be in the assumed loadings
distributions and their variations. On the other hand, [15] states: “theweakest piece of
input information is not the assumed loadings condition, but the pipe friction factor”.
The certainties of a previous model must be stated so that the effort in calibration is
in the good direction.

The most important uncertainty sources are demands and model simplifications
[18], but uncertainty also originates from measurement errors, incorrect boundary
conditions, inherent model structural errors or unknown status of valves [20, 55].
The calibration in this and next chapters focuses on demands due to their daily vari-
ability and continuous evolution depending generally on social and climate factors
comparing to the more stable evolution of roughness.

The sensitivity matrix plays an important role in the solution of the direct/inverse
problem [58], as well as in many of the methodologies developed in this book. Some
of the existing general methods for the calculation of the sensitivity matrix are as
follows [22]: (a) influence coefficient method (or perturbation method), (b) sensi-
tivity equation method, (c) variational method (or adjoin method) and (d) automatic
differentiation method.

The influence coefficient method uses the concept of parameter perturbation.
At each simulation, one of the model parameters is perturbed [4], and the outputs
measured. This method can be easily implemented, though computationally slow
and relatively inaccurate when compared to other methods. N + 1 simulations are
required, where N is the number of parameters in the model.

In the sensitivity equation method, a set of sensitivity equations are obtained
by taking the partial derivatives with respect to each parameter in the governing
equation and initial and boundary conditions. The same number of simulation runs
as in the influence coefficient method is required. The method requires a solution
of the forward problem (heads and flows) prior to the determination of unknown
sensitivities. The calculated sensitivities are quite accurate [22].

The adjoin method computes relevant sensitivities once Lagrange multipliers are
determined from a set of adjoin equations, which are derived from the basic WDN
hydraulic model equations. This method also has a high accuracy and only requires
Ns simulation runs, where Ns is the number of selected model’s predicted variables.

The automatic differentiation method [19] is based on the differentiation of algo-
rithms. Despite the good accuracy and computational performance, it produces a



56 G. Sanz and R. Pérez

lengthy and complex computer code and requires a large number of changes to the
source code of the appropriate hydraulic model [10].

Finally, amatrix analysis of theWDN linearizedmodel where only one simulation
is required at each iteration is proposed in [11].

The calculation of sensitivitymatrices can be computationally demanding, as each
element in the network generates an extra row or column in the matrix.

4.1.1 Identifiability

The calibration problem is often ill-posed. The ill-posedness is generally character-
ized by the non-uniqueness of the identified parameters. The uniqueness problem in
parameter estimation is intimately related to identifiability [58].

Observability and identifiability terms are sometimes confused. System observ-
ability determines if the state of a system, i.e., the system variables (head, flow), can
be estimated. On the other hand, system identifiability resolves if the parameters of
the system (consumptions, roughness coefficients) can be calibrated. In conclusion,
observability refers to system state (dynamic variables) while identifiability refers to
system parameters (assumed constant in a certain time horizon).

An important contribution to the solution of the observability problem was made
by [25], who formulated necessary and sufficient conditions for observability in
power system state estimation in terms of meter location and network topology.
According to their analysis, a network is observable if and only if it contains a
spanning tree of full rank. The same problem for water systems is formulated in [5].
The identifiability can be classified as static and dynamic [36]. In [9], the study of
identifiability is performed for the static problem using graph analysis based on [35].
The idea is that some operations in graphs are equivalent to operation on equations.

Conditions of identifiability for nonlinear dynamic systems can be found in the
literature. The state-space formulation by means of the dynamic information of the
system can be used [56]. For the linear case, the invertibility of the matrix of the
equations set was studied by [49].

The complexity of the transient equations in dynamic identifiability makes their
use difficult for real networks. The extended period identifiability is based on quasi-
static equations, which allows to use simpler equations related from one time step
to the next one by tank equations. The extended period identifiability is based on
the sensitivity matrix rank in both linear and nonlinear cases [36]. The author stated
that if many measurements are taken in the same conditions they will not add any
information (without increasing the rank of the sensitivitymatrix) but could be useful
for filtering the noise in the measurements.

In [46], identifiability of the calibration problem is assured by defining a set of
demand components to be calibrated that, considering the available measurements,
generates a full-rank sensitivity matrix. This new parameterization is suitable for
any element that abounds in a complex system. Both nodal demands and roughness



4 Parameter Estimation: Definition and Sampling Design 57

of pipes are grouped [12, 26], and the hydraulic effects of roughness grouping are
thoroughly studied in [30].

4.1.2 Sampling Design

Calibration accuracy should be judged both by the model’s ability to reproduce data
and by a quantitative measure of the uncertainty in calibrated parameter values.
This uncertainty depends on the sampling design, including the measurement type,
number, location, frequency and conditions existing at the time of sampling [8].

In the literature, the sampling design is defined as the procedure to determine the
following [22]: (a) what WDN model predicted variables (pressures, flows, both,
etc.) to observe; (b) where in the WDN to observe them; (c) when to observe (in
terms of duration and frequency); and (d) under what conditions to observe.

In general, a sampling design may have one of the several purposes [29]: ambi-
ent monitoring, detection, compliance or research. Model calibration is considered
research sampling, where the objective is to identify accurately the physical parame-
ters of the system. A sampling design (SD) is a set of specified measurements, y, at
particular locations and times, along with the experimental conditions under which
measurements are made [8].

One of the first sampling designs [51] suggested: (a) monitor pressure near the
high demand locations; (b) conduct fire flow tests on the perimeter of the skeletal
distribution system, away from water sources; (c) use as large as possible test flows
at the fire hydrant; and (d) collect both head and flow measurements.

The importance of sensitivity in inverse problems comes from twoprimary reasons
[28]. First, the need for the measurements to be made at a location where they are
sensitive to the desired calibration parameters. Second, the degree of confidence that
one has in the result depends on the sensitivity. Different approaches for solving the
optimization problem have been developed. Usually, the main objective of finding
the best locations for sensors is combined with other objectives (i.e., devices’ cost).
Genetic algorithms (GA), sensitivity matrix analysis or heuristic methods are some
of the methodologies used.

The meter placement problem becomes a multi-objective optimization by seeking
the best solution in terms of estimation accuracy and metering cost [59]. In this
last reference, the authors developed a method employing dynamic analysis of the
covariance matrix of state variables and the decision trees technique.

The potential location of the sensors may be ranked according to their overall
relative sensitivity of nodal heads with respect to roughness coefficients [16]. Three
general sensitivity-based methods are proposed in [8], and they are derived from the
D-optimality criterion to rank the locations and types ofmeasurements for estimating
the roughness coefficients of a WDN model using pressure measurements, tracer
concentration measurements and a combination of both. The authors outlined that
the proposed methods, although suboptimal, may have some advantages over purely
statistical methods that lack a physical basis. These three sensitivity-based methods
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are compared for selecting the worthwhile pressure and flow sensors’ location in
WDNs for calibrating roughness coefficients [14].

Pinzinger et al. [42] proposed three algorithms based on integer linear program-
ming and greedy paradigm. The SD in [40] is formulated as an optimization problem
which minimizes the influence of measurement errors in the state vector estimation
subject to the constraint that the Jacobian matrix is of maximum rank. A greedy
algorithm was used, which selected at each iteration the optimal location of the sen-
sors. Some of the mentioned approaches used an iterative selection of the sensors,
adding one sensor at each iteration to the set of already located ones. However, [22]
demonstrated that the optimal set of locations for n monitoring points is not always
a superset of the optimal set for n − 1 monitoring points.

Sensitivity-based heuristic sampling design procedure forWDSmodel calibration
to identify preferable conditions for data collection is developed in [27] accounting
for uncertainty in measurements and its impact on both model parameters and pre-
dictions.

Three sampling design approaches are proposed in [13]. The first two were based
on the shortest path algorithm, and set sensors’ locations depending on the distance
between the source and the set of potential sensors nodes. The third approach solved
the optimization problem based on maximization of Shannon’s entropy, locating
sensors in the nodes with highest pressure sensitivity on roughness changes. The
sampling design cost was also taken into account.

GA can find the combination of fire flow test locations that, when analysed col-
lectively, stresses the greatest percentage of the hydraulic network, so the roughness
parameters of grouped pipes can be calibrated [31].Multi-objective sensitivity-based
methods for sampling design minimize both uncertainty and SD cost objectives [22,
24]. Model accuracy was maximized and formulated as the D-optimal criterion,
the A-optimal criterion and the V-optimal criterion. SOGA/MOGA (single/multi-
objective GA)were used and compared, leading to the conclusion that the advantages
inMOGAoutweigh its disadvantages. The Jacobianmatrix usedwas calculated prior
to the optimization model run by assuming the model parameter values. Opposed to
this deterministic approach, this latter assumption is handled by introducing para-
meter uncertainty using some predefined probability density function [6]. Results
in studied cases [23, 24] assessed that the calibration accuracy based on prediction
uncertainty (V-optimality) is preferred over parameter uncertainty (D-optimal and
A-optimal criteria). Similarly, D-optimality is preferred over A-optimality.

The sampling design is posed in [21] as a multi-objective optimization problem,
where the objective functions represented demand estimation uncertainty, pressure
prediction uncertainty and demand estimation accuracy. The optimization problem
was solved using MOGA based on Pareto-optimal solutions.

Not all sampling design approaches are addressed to parameter calibration. The
sampling design is often based on the model application, for example a leakage
detection methodology [37]. One sensor was located at each iteration of the pro-
cedure with the objective of minimizing the maximum number of nodes with the
same binary signature (which cannot be isolated separately). The pressure sensi-
tivity matrix analysis and an exhaustive search strategy produce an optimal sensor
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placement strategy [32]. Different sensor placement methodologies for demand cal-
ibration and leak detection are compared in [38]. Which performance criteria should
be considered to place water quality and quantity sensors for both early detection
and model calibration are investigated in [41].

4.2 Problem Statement

As explained above, the limited number of sensors together with the huge number
of parameters requires a grouping of the parameters to make the calibration viable.
In [44], the authors grouped demands depending on the type of user. Although good
results were obtained with synthetic data, the analysis presented in [45] encourages
the use of the demand components model.

The information extracted from the network depends on the type and location
of the sensors. Each new sensor represents an additional equation in the system of
equations to be solved. In order to have a determined system of equations, the number
of measurements (sensors) has to be at least equal to the number of parameters,
guaranteeing the system identifiability in the linear approximation.

In this chapter, a methodology both for the parameterization and the sampling
design is pursuit. The questions to be answered are as follows:

• How can a huge number of parameters be grouped so that the system becomes
identifiable with a reasonable number of field measurements?

• Where should these measurements be located so that a maximum of information
is extracted for the calibration?

• Both questions use the information available in the sensitivity matrix.

4.3 Proposed Approach

The singular value decomposition (SVD) is amatrix decompositionmethodwhereby
a general ny × nx system matrix A, relating model x and data y:

A · x = y, (4.1)

is factored into
A = U · � · VT , (4.2)

where U is a set of ny orthonormal singular vectors that form a basis of the measured
data vectorial space, V is a set of nx orthonormal vectors that form a basis of the
parameter vectorial space and � is an ny × nx diagonal matrix of singular values
of A, where the additional rows (more measurements than parameters) or columns
(more parameters than measurements) are filled with zeros [3].
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Fig. 4.1 λ singular values
from the SVD of a 10 × 10
example sensitivity matrix
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The SVD has many applications that can be useful for the parameter estimation.
The key step to ensure the success of the calibration is the grouping of nodal demands
into fewer parameters that, in the end, keep the network behaviour as close to the
original behaviour as possible. This grouping ensures the identifiability of the system.

When calibrating parameters in nonlinear systems, the system matrix A in (4.1)
is replaced by the system sensitivity matrix S, which relates changes in data with
changes in parameters. Explanations from now on focus on the sensitivity matrix S.

The SVD allows to compute a reconstructed sensitivity matrix Sr from a subset of
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from the fifth position, indicating that the corresponding columns in matrices U and
V have low importance in the reconstruction of matrix S. Figure4.2 presents the
mean square error (MSE) in the reconstruction of the sensitivity matrix depending
on the number of columns used from matrices U and V, corresponding to the same
number of singular values in �. It can be seen that when considering only the four
first columns, the MSE falls to a quite low value.

The reduction ofmatricesU andV is used in themethodology presented to choose
which parameters will be calibrated and which sensors will be used in the calibration
process.

4.3.1 Parameter Definition

The grouping of parameters can be obtained from the analysis of the SVD of the
system sensitivity matrix. “We can think of the eigenvectors vi , where i = 1, . . . , n,
as a new parameterization of the model. These vectors represent a set of n linear
combinations of the old parameters that are fixed by the observations” [57]. Similarly,
it is possible to reduce matrix V into Vr, which is formed by the first nc vectors vi ,
where nc is the number of nonzero singular values of the sensitivity matrix. The new
parameterization is obtained by defining a new parameter correction as follows:

x∗ = Vr
T x. (4.3)

In WDNs, very low singular values appear (as seen in (4.1)); thus, nc is defined in a
way that all values below the nc highest singular values are neglected. Furthermore,
the consideration of quite low singular values leads to an increase of uncertainty
[3]. The main drawback of this approach is the loss of the physical meaning of
the calibrated parameters as they will be generated by a linear combination of the
old parameters at each iteration. The sensors’ data will be fitted, but the calibrated
parameters will not have a direct relation with the WDN.

Consequently, the objective is to define the new parameterization as a static com-
bination of the old parameters. The resolution matrix R, defined as

R = VrVr
T , (4.4)

describes how the generalized inverse solution smears out the original model x into a
recoveredmodel x̂. A perfect resolution is represented by the identity matrix, indicat-
ing that each parameter is perfectly resolved. When only nc parameters correspond-
ing to the highest nc singular values are considered, the resolution matrix computed
with Vr is not the identity matrix. Compact resolution appears, and parameters with
similar sensitivities can be identified.

In the WDN particular case, compact resolution may appear but not being easily
observable in the resolution matrix, as the parameter order in the sensitivity matrix S
columns has no geographic order (inmeshed networks, it is impossible to establish an
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order). The identification can be performed bymeans of the “delta vector generation”
process by [57], which is adapted to define the matrix M with the membership of
each individual demand to each demand component. The resulting parameterization
is used to calibrate groups of demands.

Algorithm 4.1 presents the whole process to generate the matrix M from the
reduced matrix Vr. In lines 1–7, the delta vector generation process is performed,
where the nc vectors with the highest resolving power in the resolution matrix are
obtained and normalized iteratively to generate the delta vectors.

Algorithm 4.1 Computation of nodal demands memberships to demand
components

Require: Vr, nc, nd
1: Compute R = VrVr

T

2: for z = 1 : nc do
3: Find j = max(diag(R))

4: Compute v∗
z = R(:, j)/

√
R( j, j)

5: Compute R = R − v∗
z v∗T

z
6: end for
7: Define V∗ = [v∗

1 | v∗
2 | · · · | v∗

nc ]
8: for i = 1 : nd do
9: Compute M(i,:)=|V∗

(i,:)|/∑ |V∗
(i,:)|

10: end for
11: return : M

In lines 8–11, matrix V∗, which is formed by the v∗ delta vectors, is used to gener-
ate the matrix M, associating each initial parameter to a new parameter (component)
that produces the best resolution if nc components are considered. The normalization
of the rows in V∗ is done so that the weights can be interpreted as memberships of
each element parameter to each parameter component.

Three approaches were studied in [46] before reaching the final procedure: binary
parameterization, positive hybrid parameterization and free hybrid parameterization

• The first approach assigns a single parameter component to each element parame-
ter. After executing lines 1–7 in Algorithm 4.1, each demand is associated with
the parameter component that has the highest value in the corresponding columns
of the matrix V∗.

• The second approach assigns a combination of demand components to each nodal
demand with positive weights, exactly as presented in Algorithm 4.1.

• The free hybrid parameterization considers a combination of demand components
that can include negative weights. For this approach, the absolute value in the
numerator of line 9 of Algorithm 4.1 is ignored.

In all the proposed approaches, the solution tends to generate geographical pat-
terns, as the topological information (incidence matrix B) is included in the sensi-
tivity matrix. Results obtained in [46] concluded that the use of positive weights to
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perform the calibration of parameter components gave the best results in terms of
error minimization.

4.3.2 Sampling Design

The sampling design is performed after the distribution of components, selecting
the nc best sensors. The process for locating the sensors uses matrix U in the same
way as the parameterization process uses matrix V. Initially, the sensitivity matrix S∗
relating head and/or flow variations with demand components variations is computed
and decomposed using the SVD.MatrixUr is constructedwith the first nc columns of
U, as the information from the subsequent columns is negligible (they are multiplied
by null rows of the � matrix). Then, the information density matrix Id is computed
as explained in [3], i.e.,

Id = UrUr
T , (4.5)

describes how the generalized inverse solution smears out the original data y into a
predicted data ŷ. Since Id has been constructed from nc orthonormal vectors in Ur, a
set of nc orthonormal vectors can be extracted from Id in a way that they enhance the
delta-like behaviour of the Id matrix [57]. This “delta-like” vector generation process
is presented in Algorithm 4.2 (lines 1–6). This process results in a set of delta-like
vectors u∗ that form matrix U∗. Subsequently, the rows of matrix U∗ are normalized
(line 7), so that sensors with high sensitivity to multiple parameters are not selected.
Finally, the sensor with the highest value in each of the nc columns is selected as
the sensor with highest information density to calibrate a particular parameter (lines
9–11). In the end, ns = nc sensors are selected.

Algorithm 4.2 Sensor selection process
Require: Ur, ns
1: Compute Id = UrUr

T

2: for z = 1 : ns do
3: Find j = max(diag(Id))

4: Compute u∗
z = Id(:, j)/

√
Id( j, j)

5: Compute Id = Id − u∗
z u∗T

z
6: end for
7: Define U∗ = [u∗

1 | u∗
2 | · · · | u∗

ns ]
8: Normalize rows of U∗
9: for z = 1 : ns do
10: Find s(z) = max(U∗

(:,z))
11: end for
12: return : s
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4.4 Simulations and Results

Following the idea of Chap.3, first an academic example is used for illustrating the
methodology, and afterwards, it is applied to a real network. Both examples will be
used in the next chapter where the calibration problem is solved utilizing the results
presented here.

4.4.1 Exemplification

The methodology presented above will be illustrated with the dummy networks
presented in Figs. 4.3 and 4.4, which represent a meshed network and a tree-like
network, respectively, where demands have to be calibrated. The simplicity of the
networks will be useful to exemplify the methodology at each step.

Figures4.5 and 4.6 show the output of the delta vector, v∗, generation process
(subfigure a)), and the memberships obtained after the normalization performed in
lines 8–11 of Algorithm 4.1 (subfigure b)). Three sensors are considered, and there-
fore, three components are generated. The memberships represent the modulation
of each nodal demand by each component and are produced from the delta vectors’
directions.

Figures4.7 and 4.8 depict in each of their subfigures, the memberships of each
demand node to a particular demand component. The darker the colour in the map,
the higher the membership to the depicted demand component.

Fig. 4.3 Dummy meshed
network
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Fig. 4.4 Dummy tree network
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Fig. 4.5 Parameterization process applied to ameshed network: aDelta vectors and bmemberships
of each nodal demand to each demand component

Algorithm 4.1 uses the sensitivity matrix computed at a particular working point.
The procedure can be applied considering multiple boundary conditions to make
the membership definition process more robust. However, the static topology of the
network is not expected to produce significant changes in the sensitivity matrix. The
application of the same process using other working points for the dummy networks
generates the same memberships with only ±1% variations in the memberships.
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Fig. 4.6 Parameterization process applied to a tree-like network:aDelta vectors and bmemberships
of each nodal demand to each demand component
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Fig. 4.7 Graphical representation of the nodal memberships to demand components in a meshed
network

(a) (b) (c)

Fig. 4.8 Graphical representation of the nodal memberships to demand components in a tree-like
network
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(a) (b) (c)

Fig. 4.9 Graphical representation of the nodal memberships to demand components in a meshed
network considering three installed sensors

(a) (b) (c)

Fig. 4.10 Graphical representation of the nodal memberships to demand components in a tree-like
network considering three installed sensors

The calibrationmethodology requires some inner sensors to be distributed through
the samplingdesign. In case the network alreadyhas the sensors installed, theSmatrix
introduced in Algorithm 4.1 would be a reduced sensitivity matrix Sr where only the
rows related to the available sensors would be considered. Figures4.9 and 4.10 depict
the parameterization of the two dummy networks considering that three sensors were
already installed in the networks. These sensors are marked with a black square.

Figures4.11 and 4.12 depict the final results of the parameterization and sampling
design process. The sensor selection has been performed after the definition of the
demand components (results from the previous section).

4.4.2 Demand Components’ Model for a Real Network

In Chap.3, it has been seen that the most widely used demand models are the
basic demand model and the demand patterns’ model. The basic demand model

http://dx.doi.org/10.1007/978-3-319-50751-4_3
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(a) (b) (c)

Fig. 4.11 Sensor selection results applied to a meshed network with three demand components

(a) (b) (c)

Fig. 4.12 Sensor selection results applied to a tree-like network with three demand components

cannot explain the daily variation of the relative pressure behaviour between two
areas in the network, as it fixes the same behaviour to all demands. On the other
hand, the demand patterns’ model requires a lot of information that is not usually
available (users associated with a given node, type of users) or does not fulfils the
assumptions (incorrect predetermined diurnal demand patterns’ values, users of the
same type behaving differently). An example of the latter is presented in Fig. 4.13:
automaticmetre readings from two different segments (i.e., types of users) from a real
network (Nova Icària) presented inChap.2 have been analysed. Each reading consists
of the daily water consumption of a specific user, metered hourly. The correlation
between every pair of readings within the same segment has been computed to assess
the distance between their profiles, i.e., the similarity or dissimilarity of the users’
behaviours. In each subfigure, the x-axis presents the users’ telemetries, and each
dot in the y-axis indicates the correlation between the user and all the other users in
the same segment: the higher the correlation, the higher the similarity with its own
segment’s profiles.

Figure4.13a presents a type of user with no similarity between its members,
whereas Fig. 4.13b shows a type of user with more similarity between its members,
but not enough to assume that all of them behave in the same way. In conclusion, the

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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1
 Type 1

1
 Type 2(a) (b)

Fig. 4.13 Cross-correlations of Nova Icària DMA telemetries in users of segments a 1 and b 2

assumption of considering that all users of the same type behave in the same way
can lead to incorrect results or high uncertainty in the calibrated parameters.

A new approach to model demands depending on their geographical location is
presented, and their sensitivity to hydraulic variables. Initially, nodes in a specific
zone of the network were assigned to a specific behaviour, which from now on will
be called demand component. This produces a new model

di (t) = bdi∑nd
k=1 bdk

c j→i (t) q
in(t), (4.6)

where c j→i (t) is the value of the demand component j associatedwith node i depend-
ing on the node location. Demand components are calibrated demandmultipliers that
represent the behaviour of nodes in a determined geographical zone, avoiding the
dependency on information of the user type and diurnal pattern behaviour. All nodes
in the same area of node i have the same associated demand component. Conse-
quently, all nodes in the same zone will have the same demand behaviour, weighted
depending on their base demand. This demand model is capable of generating pres-
sure variations in different zones of the network, as it happens in a real situation.
Figure4.14 presents a network where three demand components have been defined.
Each subplot presents the set of nodes that are modulated by the same demand com-
ponent according to (4.6).

However, the assumption that all nodes in the same area behave exactly in the
same way is not realistic. For example, a node in the limit of the effect zone of two
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Component 1 Component 2 Component 3(a) (b) (c)

Fig. 4.14 Example of demand components with binary memberships

demand components should probably have a combination of the behaviour of the
two demand components, instead of only one. To solve that, it is possible to redefine
the demand model in (4.6), so that the degree to which each demand component is
associated with each node is given as a membership, which depends on the nodes’
geographical location. Thus, (4.7) represents the new demand model which can be
written as follows:

di (t) = bdi∑nd
k=1 bdk

qin(t) (αi,1 c1(t) + αi,2 c2(t) + · · · + αi,nc cnc(t)), (4.7)

with
αi,1 + αi,2 + · · · + αi,nc = 1, ∀i,

where αi, j is the association of demand component j with node i , and nc is the
number of demand components. The membership αi, j of each node to each demand
component depends on the geographical location of the node and is computed by
means of the sensitivity analysis presented in Sect. 4.3.1. The model in 4.7 can gen-
erate different behaviours in every demand, while only having to calibrate few (nc)
demand components.

This way of calibrating demands incorporates the usually ignored fact that
demands depend in some ways of head status of the network [17]. For example,
if the pressure in a specific zone of the DMA decreases, the calibration process will
estimate demand component values that decrease the consumption of nodes in that
zone. Demand components presented in this chapter should not be confused with
the ones defined in [17], where demand components were generated with a pre-
vious knowledge of the use of water (human-based, volume-based, non-controlled
orifice-based, leakage-based).
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The calibrated demand components generate individual demands that may not be
exactly as the real ones, but the aggregated demand in a zone at a specific sample and
the cumulative demand of each individual node during a period of time (similar to
the billing) should coincide with the real ones if other parameters (roughness, valve
status, etc.) are well calibrated.

Figure4.15 presents the nodes’memberships to three demand components defined
in the network in Fig. 4.14. The first component is located on the north-west side of
the DMA; the second component is located on the south-west of the DMA; and the
third component is located on the east side of the network. The nodes’ memberships
are depicted in greyscale: the darker the colour of a node, the higher the membership
of that node to the demand component. Table4.1 contains the memberships of the
two nodes highlighted in Fig. 4.15. Demand of node A is modulated (60%) by the
value of demand component 1, while component 3 has a lower (35%) effect on it.
On the other hand, demand of node B is completely (98%) modulated by demand
component 3. Demand component 2 does not have any effect on both demands,
as it is far (geographically and hydraulically) from the two example nodes. Note
the similarity between binary demand components (Fig. 4.14) and hybrid demand
components (Fig. 4.15).

A comparison of the calibration results between type of user-based demand pat-
terns and pressure sensitivity-based demand components is presented in [43], with
better results for the latter: the uncertainty in the calibrated parameters is reduced,
while the geographical distribution is useful for applications requiring parameters to
be related with zones of the network.

(a) (b) 
1

0.5

0

(c) 

Fig. 4.15 Example of demand components and memberships in a network

Table 4.1 Memberships of nodes A and B of the example network

Node A B

Membership to c1 0.6 0.01

Membership to c2 0.05 0.01

Membership to c3 0.35 0.98
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4.4.2.1 Sampling Design

The parameterization and sampling design processes were performed to propose the
location of three pressure sensors and the parameter definition for demand calibration,
as explained in Sects. 4.3.1 and 4.3.2. However, the proposed sensors’ locations differ
from the final ones, which have been obtained from the methodology in [7] (based
on leak detection), developed by Cetaqua (Water Technology Centre of Aguas de
Barcelona and the Suez group). The installed sensors can still be used to calibrate
demands by defining the demand components depending on the available sensors’
locations, thanks to the versatility of the proposed method (Sect. 4.3.1). Figure4.16
depicts the proposed sensors’ locations with circles and the final locations with stars.

The resolution of the sensors is 0.1 mwc (meters of water column), and the sam-
pling times are defined in Table3.2.

4.4.2.2 Data Analysis

Data from 9 March 2015 to 13 March 2015 (Monday–Friday) are used for the cal-
ibration process. Data from the following week, 16 March 2015 to 20 March 2015
(Monday–Friday), are used to validate and analyse the calibrated demand compo-
nents. Previously, weekdays from 3 March 2015 to 6 March 2015 (Tuesday–Friday)
are used to analyse and correct the data coming from the network, and to perform
the parameterization process before the calibration starts. 2 March 2015 (Monday) is
not used due to missing data. These three weeks will be referred, in current and next
chapters, as precalibration week, calibration week and validation week. Weekends

Fig. 4.16 EPANET network
model of Canyars sector with
highlighted sensor locations.
The network water input is
signalled with a triangle, the
installed pressure sensors are
signalled with stars and the
proposed pressure sensors
are signalled with circles.
The flow sensor is installed
at the input pressure
reduction valve, so that the
total flow consumed in the
network is known
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Fig. 4.17 Canyars network real and predicted data from 3 March 2015 to 6 March 2015 (precali-
bration week). Black lines and red dots refer to real and predicted data, respectively

are not considered in this case study but would follow the same calibration procedure
as weekdays.

Figure4.17 shows the complete set of data from the precalibrationweek, including
boundary conditions (input valve’s pressure set point (SP) and total flow) and the
three pressure measurements. Black lines and red dots refer to real and predicted
data, respectively. Predicted data have been obtained from simulating the network
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modelwith the given boundary conditions using the basic demandmodel presented in
Chap.3. Figure4.17a shows the aforementioned pressure control at the DMA input.

Figure3.3 shows the pressure prediction error in the three available sensors when
using the basic demand model. The blue thin line corresponds to the raw error using
all data, and the red thick line represents the smoothed error, which has been com-
puted bymeans of a smoothing spline. The green dashed line corresponds to themean
pressure prediction error. This error is treated as an offset that cannot be associated
with the demand model. As suggested in [39], the offset is corrected to eliminate
possible depths errors, model nodes’ elevations inaccuracies or badly calibrated sen-
sors’ offsets. The same correction in each sensor is also considered when using data
from the calibration and validation weeks. Table3.2 contains the specific correction
for each sensor.

4.4.2.3 Parameterization

Data from the precalibration week are used to compute the sensitivity matrices to
perform the parameterization process. The memberships of each nodal demand to
three demand components are computed using Algorithm 4.1, considering the three
installed sensors. Figure4.18 depicts, in each of the network maps, the membership
of each node to a particular demand component: the darker the node, the higher the
membership to that component. Each map in Fig. 4.18 also includes the location of
the sensor with the highest sensitivity to the component drawn.

The average percentage of consumption dc j
of demand component j is computed

from the billing information (nodal base demands BDM) and the recently computed
memberships (M) as

dc j
= 100

∑
BDM M(:, j). (4.8)

(a) (b) (c)

Fig. 4.18 Memberships of nodes to each demand component in Canyars network considering
the three available sensors. Each representation of the network depicts a greyscale map with the
membership of each node to a particular demand component: the darker the node in the map, the
higher themembership of the node to the demand component. The sensorwith the highest sensitivity
to variations in each demand component is also depicted in each map

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_3
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Table 4.2 Average percentage of demand components’ water consumption in Canyars network
computed from billing

Demand component c1 c2 c3

Average percentage of
water consumption

40.2% 18.6% 41.2%

Table4.2 sums up the average percentage of consumption of each demand com-
ponent: demand component c2 has the lowest percentage of consumption (18.6%),
whereas c1 and c3 both have roughly a 40% of consumption. This information will be
used to analyse the calibration results: errors in the average percentage of consump-
tion of the calibrated demand components compared to the assumed consumption
in Table4.2 can be assigned to background leakage, burst, fraudulent consumptions,
unknown status valves, non-metered users or wrong billing information.

4.5 Conclusions

One of the main issues in a calibration process of a complex system is to assure
the identifiability. Here, a redefinition of the parameters to be calibrated in order to
reduce its number is used. This new set of parameters is defined by the measurements
that are available. If the sensor distribution is a part of the process, an optimal sen-
sor distribution is provided in a straightforward way using the information matrix.
Nonetheless, if the sensors are already installed, the parameter definition can adapt
optimally to the information available.

The calibration problem is formulated as an optimization. The solution of this
problem includes nonlinear equality constraints, and thus, it is not a convex one.
Much research in this area is going on and results get seldom to the real applications
because of the difficult trade-off between computational effort and reliability of the
resulting models. Chapter 5 presents the state of the art and an original approach to
this problem.
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