Chapter 14

Stochastic Model Predictive Control
for Water Transport Networks

with Demand Forecast Uncertainty

Juan Manuel Grosso, Carlos Ocampo-Martinez and Vicen¢ Puig

14.1 Introduction

One of the challenges in water system management is the existence of different
sources of uncertainty. The availability of historical data allows to accurately predict
the behaviour of the system disturbances over large horizons, but still a meaningful
degree of uncertainty is present. In previous chapters, the use of MPC to tackle the
complex multi-variable interactions and large-scale nature of drinking-water network
control is proposed. There are several examples of MPC applied to water systems in
the literature, see, e.g., [2, 7, 10, 16, 29, 30] and references therein.

In a DWN, the main management purpose is the achievement of the highest level
of consumer satisfaction and service quality in line with the prevailing regulatory
framework, while making best use of available resources. Hence, networks must be
reliable and resilient while being subject to constraints and to continuously varying
conditions with both deterministic and probabilistic nature. Customer behaviour
determines the transport and storage operations within the network, and flow demands
can vary in both the long and the short term, often presenting time-based patterns
in some applications. Therefore, a better understanding and forecasting of demands
will improve both modelling and control of DWNs.

While Chaps. 12 and 13 deal with the uncertainty in the classical way of feed-
forward action, this chapter focuses on the way that uncertainty can be faced by using
stochastic-based approaches. The simplest way to do this is by ignoring the explicit
influence of disturbances or using their expected value as done in the previous chap-
ters. However, dealing with the demand uncertainty explicitly in the control model
is expected to produce more robust control strategies. In [12], a reliability-based
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MPC was proposed to handle demand uncertainty by means of a (heuristic) safety
stock allocation policy, which takes into account the short-term demand predictions
but without propagating uncertainty along the prediction horizon. As discussed in
[5], alternative approaches of MPC for stochastic systems are based on min-max
MPC, tube-based MPC and stochastic MPC. The first two consider disturbances to
be unmeasured but bounded in a predefined set. The control strategies are conserva-
tive, because they consider worst-case demand deviations from their expected value,
limiting the control performance. On the other hand, stochastic MPC considers a
more realistic description of uncertainty, which leads to less conservative control
approaches at the expense of a more complex modelling of the disturbances. The
stochastic approach is a mature theory in the field of optimization [3], but a renewed
attention has been given to the stochastic programming techniques as powerful tools
for control design (see, e.g., [4] and references therein).

From the wide range of stochastic MPC methods, this chapter specializes on
scenario tree-based MPC (TB-MPC) and chance-constrained MPC (CC-MPC).
Regarding TB-MPC, see, e.g., [17, 24], uncertainty is addressed by considering
simultaneously a set of possible disturbance scenarios modelled as a rooted tree,
which branches along the prediction horizon. On the other hand, CC-MPC [28] is a
stochastic control strategy that describes robustness in terms of probabilistic (chance)
constraints, which require that the probability of violation of any operational require-
ment or physical constraint is below a prescribed value, representing the notion of
reliability or risk of the system. By setting this value properly, the operator/user can
trade conservatism against performance. Relevant works that address the CC-MPC
approach in water systems can be found in [8, 22] and references therein. Therefore,
this chapter is focused on the design and assessment of CC-MPC and TB-MPC con-
trollers for the operational management of transport water networks, which may be
described using only flow equations, discussing their advantages and weaknesses in
the sense of applicability and performance. The particular case study is related to the
Barcelona DWN described in [19] and presented in Chap. 2.

14.2 Problem Formulation

Consider the MPC problem associated with the flow control problem in a DWN (see
[20]). In general, a DWN consists in a set of water storage (dynamic) nodes, pipe
junction (static) nodes, source nodes and sink nodes, which are interconnected in
such a way that the water can be transported from source nodes to sink nodes when
demanded. In order to derive a control-oriented model, define the state vectorx € R«
to represent the storage at dynamic nodes. Similarly, define the vector u € R™ of
controlled inputs as the collection of the flow rate through the actuators of the network,
and the vector d € R" of uncontrolled inputs (demands) as the collection of flow rate
required by the consumers at sink nodes. Following flow/mass balance principles, a
discrete-time model based on linear difference-algebraic equations can be formulated
for a given DWN as follows:
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x(k + 1) = Ax(k) + Bu(k) + Byd(k), (14.1a)
0 = E,u(k) + Eqd(k), (14.1b)

where k € Z, is the current time instant and A, B, B;, E, and E; are matrices

of compatible dimensions dictated by the network topology. Specifically, (14.1a)
represents the balance at dynamic nodes while (14.1b) represents the balance at
static nodes. The system is subject to state and input constraints considered here in
the form of convex polyhedra defined as follows:

x(k) e X :={x e R™ | Gx < g}, (14.2a)
uk) eld :={ueR"™ | Hu < h}, (14.2b)

for all k, where G € R™**" g € R, H € R™*" and h € R’ are matrices/vectors
collecting the system constraints, being r, € Z, and r, € Z, the number of state
and input constraints, respectively.

Regarding the operation of the generalized flow-based networks, the following
assumptions are considered in this chapter.

Assumption 14.1 The pair (A, B) is controllable and (14.1b) is reachable,' i.e.,
m < n, withrank(E,) = m.

Assumption 14.2 The states in x and the demands in d are measured at any time
instant k € Z . Future demands d(k + i) are unknown for all i € Z but forecasted
information of their first two moments (i.e., expected value and variance) is available
for a given prediction horizon H,, € Z;.

Assumption 14.3 The realization of demands at any time instant k € Z, can be
decomposed as B
d(k) = d(k) 4 e(k), (14.3)

where d € R™ is the vector of expected disturbances, and e € R"™ is the vector of
forecasting errors with non-stationary uncertainty and a known (or approximated)
quasi-concave probability distribution D(0, X (e(;y (k)). The stochastic nature of each
Jjthrow of d, is described by dj (k) ~ D; ((_1( k), X(egy(k)), where (_1( j) denotes
its mean, and X (e(;) (k) its variance.

Notice in (14.1b) that a subset of controlled flows are directly related with a subset
of uncontrolled flows. Hence, it is clear that u does not take values in R"* but in a
linear variety. This latter observation, in addition to Assumptions 14.1 and 14.2,

'If m < n,, then multiple solutions exist, so u should be selected by means of an optimization
problem. Equation (14.1b) implies the possible existence of uncontrollable flows d at the junction
nodes. Therefore, a subset of the control inputs will be restricted by the domain of some flow
demands.
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can be exploited to develop an affine parametrization of control variables in terms
of a minimum set of disturbances as shown in [12, Appendix A], mapping control
problems to an input space with a smaller decision vector and with less computational
burden due to the elimination of the equality constraints. Thus, the system (14.1) can
be rewritten as follows:

x(k + 1) = Ax(k) + Bu(k) + Byd(k), (14.4)

and the input constraint (14.2b) replaced with a time-varying restricted set defined
as follows: ~ o o
Uk) ;= {a e R™™™ |HPM i < h — HPM,d(k)}. (14.5)

Being B = BI31\;11 s Ed = B};Mz + B;, where 15, Ml and Mz a control parametritza-
tion matrices ([12], Appendix A). The control goal is considered here as to minimize
a convex (possibly multi-objective) stage cost J(k, x,0) : Z; x X X u k) > Ry,
which might bear any functional relationship to the economics of the system opera-
tion. Let x(k) € X be the current state, and let d(k) be the disturbances. The sequence
of disturbances should be known over the considered prediction horizon H,. The first
element of this sequence is measured, while the rest of the elements are estimates of
future disturbances computed by an exogenous forecasting system and available at
each time instant k € Z. . Hence, the MPC controller design is based on the solution
of the following finite horizon optimization problem (FHOP):

H,—1
~ min D Jk+ i x(k+ilk), @ik +ik)), (14.6a)
BO=(ak+0) ez, 1y
subject to:

X/ (k +i + 11k) = Ax/ (k + i|k) + B/ (k + i|k) + Byd(k +0).¥i € Zo -1y
(14.6b)
x(k+ilk) e X, Vi € Z1,1,)
(14.6¢)
ik +ilk) e Uk + i), Vi € Zyo.u, 1)
(14.6d)
x(klk) = x(k), (14.6¢)

Assuming that (14.6) is feasible, i.e., there exists a non-empty solution given by the
optimal sequence of control inputs 0 = {i*(k 4 i Ik)},'ezmpr_”, then the receding
horizon philosophy commands to apply the control action

u(k) :=a*(k|k), 14.7)

and disregards the rest of the sequence of the predicted manipulated variables. At the
next time instant k, the FHOP (14.6) is solved again using the current measurements
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of states and disturbances and the most recent forecast of these latter over the next
future horizon.

Due to the stochastic nature of future disturbances, the prediction model (14.6b)
involves exogenous additive uncertainty, which might cause that the compliance of
state constraints for a given control input cannot be ensured. Therefore, uncertainty
has to be represented in such a way that their effect on present decision-making
can properly be taken into account. To do so, stochastic modelling based on data
analysis, probability distributions, disturbance scenarios, among others, and the use
of stochastic programming may allow to establish a trade-off between robustness
and performance. In the sequel, two stochastic MPC strategies are proposed for their
application to network flow control.

14.3 Chance-Constrained MPC

Since the optimal solution to (14.6) does not always imply feasibility of the real
system, it is appropriate to relax the original constraints in (14.6c) with probabilistic
statements in the form of the so-called chance constraints. In this way, the state
constraints are required to be satisfied with a predefined probability to manage the
reliability of the system. Considering the form of the state constraint set X, there are
two types of chance constraints according to the definitions below.

Definition 14.1 (Joint chance constraint) A (linear) state joint chance constraint is
of the form
P[GjX < 8(j), VJ € Zppg] = 1 — 6, (14.8)

where P denotes the probability operator, dx € (0, 1) is the risk acceptability level
of constraint violation for the states, and G;) and g;, denote the jth row of G and
g, respectively. This requires that all rows j have to be jointly fulfilled with the
probability 1 — .

Definition 14.2 (Individual chance constraint) A (linear) state individual chance
constraint is of the form

PIGi)x <gpl=1—6x;, Vj€Zpu,, (14.9)

which requires that each jth row of the inequality has to be fulfilled individually
with the respective probability 1 — §x ;, where 8 ; € (0, 1).

Both forms of constraints are useful to measure risks; hence, their selection depends
on the application. All chance-constrained models require prior knowledge of the
acceptable risk 8y associated with the constraints. A lower risk acceptability implies
a harder constraint. This chapter is concerned with the use of joint chance con-
straints since they can express better the management of the overall reliability in a
DWN. In general, joint chance constraints lack from analytic expressions due to the
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involved multivariate probability distribution. Nevertheless, sampling-based meth-
ods, numeric integration and convex analytic approximations exists (see, e.g., [3]
and references therein). Here, (14.8) is approximated following the results in [18,
23] by upper bounding the joint constraint and assuming a uniform distribution of
the joint risk among a set of individual chance constraints that are later transformed
into equivalent deterministic constraints under Assumption 14.4.

Assumption 14.4 Each demand in d € R" follows a log-concave univariate distri-
bution, which stochastic description is known.

Given the dynamic model in (14.4), the stochastic nature of the demand vec-
tor d makes the state vector X € R"* to be also a stochastic variable. Then, let the
cumulative distribution function of the constraint be denoted as follows:

Fox(g) =P[{Guix < gu)..-.. G )X < g }]- (14.10)

Defining the events C; := {G;)x < g(;,} forall j € Z; ), and denoting their com-
plements as C$ := {G ;X > g;}, then it follows that

Fox(® =P[CiN---NC,] (14.11a)
=P[(C{U---UCE)] (14.11b)
=1-P[(C{U---UC{)] =15 (14.11c)

Taking advantage of the union bound, the Boole’s inequality allows to bound the
probability of the second term in the left-hand side of (14.11c), stating that for a
countable set of events, the probability that at least one event happens is not higher
than the sum of the individual probabilities [23]. This yields

PlJcs| =D P[cs]. (14.12)
j=1 j=1
Applying (14.12) to the inequality in (14.11c), it follows that
S Plc] =8 o > (1-P[C)]) <6, (14.13)
j=1 j=1

At this point, a set of constraints arise from the previous result as sufficient conditions
to enforce the joint chance constraint (14.8), by allocating the joint risk 8, in separate
individual risks denoted by 6y ;, j € Z1,,,1. These constraints are as follows:
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P[Cl] >1- (quf’ V] € Z[l,rx]’ (14.14)
D b <6 (14.15)
j=1

0<d,;=<1, (14.16)

where (14.14) forms the set of r, resultant individual chance constraints, which
bounds the probability that each inequality of the receding horizon problem may
fail; and (14.15) and (14.16) are conditions imposed to bound the new single risks
in such a way that the joint risk bound is not violated. Any solution that satisfies
the above constraints is guaranteed to satisfy (14.8). As done in [18], assigning, for
example, a fixed and equal value of risk to each individual constraint, i.e., §y ; =
8x/ry forall j € Zy; ,,p, then (14.15) and (14.16) are satisfied.

Remark 14.1 The single risks éy ;, j € Zy1 ], might be considered as new decision
variables to be optimized, see, e.g., [21]. This should improve the performance but
at the cost of more computational burden due to the greater complexity and dimen-
sionality of the optimization task. Therefore, as generalized flow-based networks
are often large-scale systems, the uniform risk allocation policy is adopted to avoid
overloading of the optimization problem. O

After decomposing the joint constraints into a set of individual constraints, the
deterministic equivalent of each separate constraint may be used given that the
probabilistic statements are not suitable for algebraic solution. Such deterministic
equivalents might be obtained following the results in [6]. Assuming a known (or
approximated) quasi-concave probabilistic distribution function for the effect of the
stochastic disturbance in the dynamic model (14.4), it follows that

P[Gxtk+1) s8] 2 1 = bxj & Fg, 5,a00 &) — Gy AX(K) +Bid(k) = 1 - 8y

(1 —6x,)),
14.17)

. D -l
& G(j)(Ax(k) +Bu(k) < g(;) FG(j)de(k)

. ~ . -1
forall j € Zyy ), where Fg g qq) () and FG(j)f}dd(k)

and the left-quantile function of G, j)ﬁdd(k), respectively. Hence, the original state
constraint set X is contracted by the effect of the r, deterministic equivalents in
(14.17) and replaced by the stochastic feasibility set given by

(+) are the cumulative distribution

X = {x(k) € R"™ |Jii(k) € U(k), such that

. Bii gl s ;
Gjy(Ax(k) +Bu(k) < g FG(j)fadd(k)(l 8x.j)s Vi € Zp1r}
for all k € Z,.. From convexity of G(jx(k + 1) < g(;) and Assumption 14.4, it fol-
lows that the set & ; is convex when non-empty for all éx ; € (0, 1) in most distri-
bution functions [14]. For some particular distributions, e.g., Gaussian, convexity is
retain for 8y ; € (0,0.5].
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In this way, the reformulated predictive controller solves the following determin-
istic equivalent optimization problem for the expectation E[-] of the cost function in
(14.6a):

Hp—1
{-ﬂ}}} ,Z; E[J (k + i, x(k 4 i|k), 6k + i|k))], (14.18a)
subject to:

Xk +i + 11k) = Ax(k + ik) + Bii(k + i k) + Bgd(k +i), Vi € Zjo,n,—11, (14.18b)
Gj)(Ax(k + i[k) + Bk + k) < g(j) — 2k.; (8x) Vi € Zio.u,-11, Yj € Zpr, (14.18¢)
Gk +ilk) € Utk +1), Vi € Zjo., 1), (14.18d)
x(k|k) = x(k), (14.18e)

where u; = {u(k + i|k)}iezu,- is the sequence of controlled flows, d(k + i) is
the expected future demands computed at time instant k € Z, for i-steps ahead,
i € Zio,H,~1]> Nc € Z> is the number of total individual state constraints along the

prediction horizon, i.e., n. = r, H), and z; ;(8x) = F(;(:-)fsdd(kﬂ) (1 — 3—’;) Since n,
depends not only on the number of state constraints 7, but also on the value of H,,
the decomposition of the original joint chance constraint within the MPC algorithm
could lead to a large number of constraints. This fact reinforces the use of a fixed risk
distribution policy for generalized flow-based network control problems, in order to

avoid the addition of a large number of new decision variables to be optimized.

Remark 14.2 Tt turns out that most (not all) probability distribution functions used in
different applications, e.g., uniform, Gaussian, logistic, Chi-squared, Gamma, Beta,
log-normal, Weibull, Dirichlet, and Wishart, among others, share the property of
being log-concave. Then, their corresponding quantile function can be computed
offline for a given risk acceptability level and used within the MPC convex optimiza-
tion problem. O

14.4 Tree-Based MPC

The deterministic equivalent CC-MPC proposed before might be still conservative
if the probabilistic distributions of the stochastic variables are not well characterized
or do not lie in a log-concave form. Therefore, this section presents the TB-MPC
strategy that relies on scenario trees to approximate the original problem, dropping
Assumption 14.4. The approach followed by the TB-MPC is based on modelling
the possible scenarios of the disturbances as a rooted tree (see Fig. 14.1 right). This
means that all the scenarios start from the same measured disturbance value. From
that point, the scenarios must remain equal until the point in which they diverge from
each other, which is called a bifurcation point. Each node of the tree has a unique
parent and can have many children. The total number of children at the last stage
corresponds to the total number of scenarios. The probability of a scenario is the
product of probabilities of each node in that scenario.
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Fig. 14.1 Reduction of a disturbance fan (left) of equally probable scenarios into a rooted scenario
tree (right)

Notice that before a bifurcation point, the evolution followed by the disturbance
cannot be anticipated because different evolutions are possible. For this reason, the
controller has to calculate control actions that are valid for all the scenarios in the
branch. Once the bifurcation point has been reached, the uncertainty is solved and the
controller can calculate specific control actions for the scenarios in each of the new
branches. Hence, the outcome of TB-MPC is not a single sequence of control actions,
but a tree with the same structure of that of the disturbances. As in standard MPC,
only the first element of this tree is applied (the root) and the problem is repeated in
a receding horizon fashion.

In generalized flow-based networks, the uncertainty is generally introduced by
the unpredictable behaviour of consumers. Therefore, a proper demand modelling is
required to achieve an acceptable supply service level. For the case study considered
in this chapter, the reader is referred to [26], where the authors presented a detailed
comparison of different forecasting models. Once a model is selected, it has to be
calibrated and then used to generate a large number of possible demand scenarios by
Monte Carlo sampling for a given prediction horizon H, € Z,. For the CC-MPC
approach, the mean demand path is used, while for the TB-MPC approach, a set
of scenarios is selected. The size of this set is here computed following the bound
proposed in [27], which takes into account the desired risk acceptability level. A large
number of scenarios might improve the robustness of the TB-MPC approach but at the
cost of additional computational burden and economic performance losses. Hence,
a trade-off must be achieved between performance and computational burden. To
this end, a representative subset of scenarios may be chosen using scenario reduction
algorithms. In this chapter, the backward reduction algorithm proposed in [13] is
used to reduce a specified initial fan of N; € Z>, equally probable scenarios into a
rooted tree of N, << N, scenarios, where N, is the number of considered scenarios
while N; is the total number of scenarios (see Fig. 14.1).

The easiest way to understand the optimization problem that has to be solved in
TB-MPC is to solve as many instances of Problem (14.6) as the number N, of con-
sidered scenarios, but formally it is a multi-stage stochastic programme and solved
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as a big optimization for all the scenarios. Due to the increasing uncertainty, it is
necessary to include non-anticipativity constraints [25] in the MPC formulation so
that the calculated input sequence is always ready to face any possible future bifurca-
tion in the tree. More specifically, if df = {d“(k|k), d(k + 1]k), ..., d*(k + Nk)}
and d? = {d®(k|k), d®(k + 1]k), ..., d"(k + N|k)} are two disturbance sequences
corresponding respectively to certain forecast scenarios a, b € Zj y,), then the
non-anticipativity constraint a“(k 4 i|k) = i’ (k + i|k) has to be satisfied for any
i € Zjo,n,) whenever d“(k +ilk) = d’(k +i|k) in order to guarantee that for all
J € Zp, N,y the input sequences W/ = {u/ (k + i|k)}l‘EZ[()AHP—1] form a tree with the
same structure of that of the disturbances.

In this way, the TB-MPC controller has to solve the following optimization prob-
lem at each time instant k € Z.., accounting for the N, demand scenarios, each with

probability p; € (0, 1] satisfying >V p; = 1:

N, Hp—1

min > pj | D Jk+ix(k+ilk), wk+ilk) |, (14.192)

a =1 i=0

subject to:

x/(k+i+1k) = Ax) (k +ilk) + B/ (k +ilk) + Bgd/ (k +i), Vie Zyo. 1,11, Vi € Zpi Ny
(14.19b)

x(k+i+ 1k e X, Vi € Zi0,H,~11,VJ € Zp1,N, ]
(14.19¢)

W (k +ilk) € U (k + i), Vi € Zj0,Hy-11, Vi € Zi1n, )
(14.19d)

X/ (klk) = x(k), @/ (klk) =dk), V) eZyn, (14.19¢)

Wk +ilk) =l & +ilk) if %k +ilk) =d’(k+ilk), Vi € Zjo, 1,11 Va. b € Zj1 y, ).
(14.19f)

where U/ (k + i) := {ii/ € R |HPM,ii/ < h — HPMLd/ (k + i)}.
Remark 14.3 The number of scenarios used to build the rooted tree should be deter-
mined regarding the computational capacity and the probability of risk that the man-
ager is willing to accept. O

14.5 Numerical Results

In this section, the performance of the proposed stochastic MPC approaches is
assessed with a case study consisting in a large-scale real system reported in [19],
specifically the Barcelona WTN already described in Sect.2.3 in Chap. 2. The gen-
eral role of this system is the spatial and temporal reallocation of water resources
from both superficial (i.e., rivers) and underground water sources (i.e., wells) to dis-
tribution nodes located all over the city. The directed graph of this network can be
obtained from the layout shown in Fig.2.2 of Chap.2, and its model in the form
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of (14.1) can be derived by setting the state x(k) € R® as the volume (in m?) of
water stored in tanks at time instant k, the control input u(k) € R'* as the flow
rate through all network actuators (expressed in m?/s) and the measured disturbance
d(k) € R®® as the flow rate of customer demands (expressed in m?/s). This net-
work is currently managed by Aguas de Barcelona that manages the drinking-water
transport and distribution in Barcelona (Spain), and it supplies potable water to the
Metropolitan Area of Barcelona (Catalunya, Spain). The main control task for the
managers is to economically optimize the network flows while satisfying customer
demands. These demands are characterized by patterns of water usage and can be
forecasted by different methods (see, e.g., [1, 26]).

The operational goals in the management of the Barcelona DWN are of three
kinds, economic, safety and smoothness, and are respectively stated as follows (see
Chap. 12. for the mathematical formulation):

1. To provide a reliable water supply in the most economic way, minimizing water
production and transport costs.

2. To guarantee the availability of enough water in each reservoir to satisfy its
underlying demand, keeping a safety stock to face uncertainties and avoid stock-
outs.

3. To operate the DWN under smooth control actions.
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Fig. 14.2 Barcelona DWN small subsystem layout
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14.5.1 Performance Comparison on a Small-Scale System

To analyse via simulation the computational burden of each proposed controller,
a small portion/subsystem of the complete network is used (see Fig.14.2 and [9]
for details). The DWN is considered as a stochastic constrained system subject to
deterministic hard constraints on the control inputs and linear joint chance constraints
on the states. The source of uncertainty in the system is assumed to be the forecasting
error of the water demands. The stochastic control problem of the DWN is stated as
follows:

Hp—1
min Z E[AJetk + i, x(k + i[k), 0k + ik)) + Ao Ja(AUk +i[k))], (14.20a)
W izo

subject to:
x(k 4+ i+ 1]k) = Ax(k + i k) + Bii(k + i|k) + Bgd(k + i|k), (14.20b)
P[x(k +i+ 1k) = x™"] > 1 — %" (14.20¢)
P[x(k+i+1k) <x™]>1- %" (14.20d)
PIx(k 4 i 4 11k) > dpet(k +i + 1]k)] > 1 — &, (14.20e)
ak +ilk) e Uk +1i), (14.20f)
dnet (k + i + 1]k) = —(Bou (PMyii(k + i|k) + PMod(k + i[k)) + Byd(k +i + 1]k)),
(14.20g)
Ak +ilk) = ik +ilk) —atk +i — 1]k), (14.20h)
x(k|k),ak — 1|k)) = (x(k), u(k — 1)), (14.201)

for all i € Zjo.u,—1), where Jg(k +i,x(k + ilk), u(k + ilk)) := C,Ik+i W, u(k)At
captures the economic costs with ¢, x4+; € R™ being a known periodically time-
varying price of electric tariff, and Ja (At(k + i|k)) := ||PM; Aa(k + i|k) + PM,
Adk +i |k)||%VM is a control move suppression term aiming to enforce a smooth
operation. Moreover, d, 6 € (0, 1), are the accepted maximum risk levels for the
state constraints and the safety constraint (14.20e), respectively. The objectives are
traded-off with the scalar weights A, A, € R, while the elements of the deci-
sion vector are prioritized by the weighting matrices W,, Wag € S/, . The service
reliability goal (i.e., demand satisfaction) is enforced by the constraints (14.20e)
and (14.20g). In this latter constraint, dye (k + i + 1]k) € R"™ is a vector of net
demands above which is desired to keep the reservoirs to avoid stock-outs. The
Bou (f’Mlﬁ(k +ilk) + f’Mzd(k + i]k)) component represents the current prediction
step endogenous demand, i.e., the outflow of the tanks caused by water requirements
from neighbouring tanks or nodes, and the ﬁdd(k + i + 1|k) component denotes the
exogenous (customer) demands of tanks for the next prediction step. In the dynamic
model (14.4) of the DWN, randomness is directly described by the uncertainty of
customer demands, which can be estimated from historical data. In order to solve
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the above DWN control problem, a tractable safe approximation is derived follow-
ing Sect. 14.3. The joint chance constraints (14.20c)—(14.20e) are transformed into
deterministic equivalent constraints as shown in [11, Appendix B] for the particular

case of Gaussian distributions.
The optimization problem associated with the deterministic equivalent CC-MPC
for the selected application is stated as follows for a given sequence of forecasted

demands denoted by di = {d(k + i[k)}iez 5, -
Hp—1

Amiél‘l Z E[2J gk +i, Xk +ilk), Gk + i[k)) + A2 Ja (AGk +i[k)) + A3 s (E(k + ilk))],
WSk =g

(14.21a)
subject to:
Xk + i+ 1]k) = AR(k + i|k) + Ba(k + i|k) + Bgd(k +i[k), (14.21b)
< . min —1 dx . 1/2
Xk +i+ 1K) = x5y + @ (1 - m) Ty k+i+ 1]k) 2, (14.21c)
< . max —1 Ox . 1/2
Xk +i+1k) = x(5)" — @ (1 - m) Ty (ki +11k) 2, (14.21d)
K(jy(k+ i+ 11k) > dyey(jy k + i+ 11k) + @7 (1 - ) Sy k+ 1 + 1)/
xi1p '

=&k +ilk), (14.21e)
§(k+ilk) =0, (14.211)
Wk +ilk) e Uk + 1), (14.21g)
dnet (k +i + 1]k) = —(Bout (PM1ﬁ<k +ilk) + PMpd(k + i|k>) +Bgd(k +i+1[k)), (14.21h)
Atk +ilk) =@k +ilk) —ak +i — 1]k), (14.211)
(x(klk), utk — 1]k)) = (x(k), ak — 1)), (14.21j)

foralli € Zjp y_1jandall j € Zy; ), where tiy = {ti(k +i|k)}and &, = {E(k + i|k)}
are the decision variables. The vectors X and d denote the mean of the random state
and demand variables, respectively. Moreover, ®! s the left-quantile function of
the Gaussian distribution, and X;) and X, denote, respectively, the mean and vari-
ance of the jth row of the state vector. Notice that Problem (14.21) includes the
additional objective Jg(&(k +ilk)) := ||E(k + k) ”%/v\. with Wy > 0, and the addi-
tional constraint (14.21f), which are related to the safety operational goal. These
elements appear due to the safety deterministic equivalent soft constraint (14.21e)
introduced with the slack decision variable & € R"+ to allow the trade-off between
safety, economic, and smoothness objectives. Constraints (14.21c) and (14.21d) can
be softened in the same way to guarantee recursive feasibility of the optimization
problem if uncertainty is too large. For a strongly feasible stochastic MPC approach
using closed-loop predictions by means of an affine disturbance parametrization of
the control inputs, the reader is referred to [15]. The enforcement of the chance
constraints enhances the robustness of the MPC controller by causing an optimal
back-off from the nominal deterministic constraints as a risk averse mechanism to
face the non-stationary uncertainty involved in the prediction model of the MPC. The
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states are forced to move away from their limits before the disturbances have chance
to cause constraint violation. The ®~'(-) terms represent safety factors for each
constraint, and specially in (14.21e), it denotes the optimal safety stock of storage
tanks. Problem 14.18 may be casted as a second-order cone programming problem.
However, state uncertainty is a function of the disturbances only and is not a func-
tion of the decision variables of the optimization problem. Therefore, the variance
terms in each deterministic equivalent can be forecasted prior to the solution of the
optimization problem to include them as known parameters in the MPC formulation.
This simplification results in a set of linear constraints, and the optimization remains

as a quadratic programming (QP) problem, which can be efficiently solved.
The optimization problem associated with the scenario tree-based MPC approach
is stated as follows for all i € Zo u,-1jand all j € Zyy n,y:

N, Hp-l
min > p; > ATk +i,x) (k4 ilk), & & + ilk) + raJa (AW (k + i[K))

ol g/
Wdp j=1 i=0

+ x5 (& (k +ilk)), (14.22a)
subject to:
x/(k+i+ 1]k) = Ax/ (k + ik) + B/ (k + i|k) + Bgd’ (k + i|k), (14.22b)
O (k+i + k), &/ (k +ilk), & (k +ilk) € X x U (k +i) x R, (14.22¢)
Xk +i410k) = d (k+i + 11k) — & (k + i[k), (14.224d)
duca(k + i + 1K) = —Bow (PMI/ (& + i[K) + PMad/ (k +i16)) + Bude (k +i + 1K),
(14.22¢)
AW (k +ilk) =0/ (k +ilk) — @/ (k +i — 1]k), (14.22f)
! (k|)X, &/ (k — 11k), d/ (k|k)) = (x(k), ak — 1), d(k), (14.22¢)
@k +ilk) = 0P (k +ilk) if d*(k+ilk) =d’(k+ilk) Va,b e Zj . (14.22h)

Table 14.1 summarizes the results of applying the deterministic equivalent CC-MPC
and the TB-MPC to the aforementioned small example. Simulations have been car-
ried out over a time period of eight days, i.e., ny; = 192 hours, with a sampling time of
1 hour. Applied demand scenarios were taken from historical data of the Barcelona
DWN. The weights of the multi-objective cost function are A; = 100, A, = 1 and
A3 = 10. The prediction horizon is selected as H, = 24 h due to the periodicity of
demands. The key performance indicators used to assess the aforementioned con-
trollers are defined as follows:
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Table 14.1 Assessment of the CC-MPC and TB-MPC applied to the sector model of the DWN
case study

CC-MPC TB-MPC

& | KPI 'KPL, |KPI; |KPL | KPI KPL, |KPI; |KPL |N, [N,
58397.14 [0 |0 0.94 |5

03 |5853580 (0 [0 125 | 58280.69 |1 051 | 1.61[10 |19
5827995 |1 |4.16 | 237 |14
5848214 (3 018 | 118 |7

02 | 5854119 [0 |0  |[121 | 5890363 0 |0 23314 |29
5845241 [0 |0 405 |21
5861032 [0 |0 2.57 |14

0.1 |5855829 [0 |0  [125 | 5863020 0 |0 6.65 29 |59
58656.56 | 1 0.18 |1347 |44
- - - -

001 | 5861228 [0 |0  |125 |- - = = 299 599
- - - - A
- - - - |14

0.001 | 58667.85 [0 [0 |125 |- - == ]2999 [5999
- - - - |49

L2 . 5
KPI;, = p—— Z nJe(k, x(k), a(k) + Ay Ja(AU(k)) + A3 Js(E(k)), (14.23a)
$ k=0
KPI, £ | {k € Z'{S | x(k) < —de(k)} [, (14.23b)
KPI; £ z imax{o, —Byid(k) —x(k(i))}, (14.23c)
k=1 i=1
KPl, £ i 2t(k), (14.23d)
s 3

where KPI; is the average daily multi-objective cost, KPI, is the number of time
instants where the stored water goes below the demanded volume (for this, |- |
denotes the cardinal of a set of elements), KPI; is the accumulated volume of
water demand that was not satisfied over the simulation horizon, and KPl, is the
average time in seconds required to solve the MPC problem at each time instant
k € Zo,n,). For the CC-MPC approach, the effect of considering different levels
of joint risk acceptability was analysed using éx = {0.3,0.2,0.1, 0.01, 0.001} and
8 = 8. Regarding the TB-MPC approach, different sizes for the initial set of sce-
narios were considered, i.e., Ny = {19, 28, 59, 599, 5999}. The size of this initial set
was computed following the bound proposed in [27] taking into account the risk
levels involved in the chance constraints. This initial set was reduced later by a factor
of 0.25, 0.50 and 0.75 to obtain different rooted trees with N, scenarios.
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As shown in Table 14.1, the different CC-MPC scenarios highlight that relia-
bility and control performance are conflicting objectives; that is, the inclusion of
safety mechanisms in the controller increases the reliability of the DWN in terms of
demand satisfaction, but also the cost of its operation. The main advantage of the
CC-MPC is its formal methodology, which leads to obtain optimal safety constraints
that tackle uncertainties and allow to achieve a specified global service level in the
DWN. Moreover, the deterministic equivalent CC-MPC robustness is achieved with
a low computational burden given that the only extra load (compared with a nominal
formulation) is the computation of the stochastic characteristics of disturbances prop-
agated in the prediction horizon. In this way, the deterministic equivalent CC-MPC
approach is suitable for real-time control (RTC) of large-scale DWNs. Regarding the
TB-MPC approach, numeric results show that considering higher N; increments the
stage cost while reducing the volume of unsatisfied water demand. Nevertheless, this
latter observation is not applicable for the different N, cases within a same N;. This
might be influenced by the quality of the information that remains after the scenario
generation and reduction algorithms that affect the robustness of the approach and
will be subject of further research. The main drawback of the TB-MPC approach is
the solution of the average time and the computational burden. In this case study,
the implementation for all cases taking N; = {599, 5999} was not possible due to
memory issues. Hence, some simplification assumptions as those used in [17] or
parallel computing techniques might be useful.

14.5.2 Performance Assessment of CC-MPC on a
Large-Scale System

The previous results showed that both CC-MPC and TB-MPC have similar perfor-
mance under high levels of risk acceptability. Nevertheless, when requiring small
risk levels (6x < 0.1), CC-MPC retains tractability of the FHOP with low com-
plexity, while the TB-MPC suffers the curse of dimensionality. Therefore, in the
following, only the performance of the CC-MPC approach is assessed on the full
model of the Barcelona DWN. The tuning of the controller parameters is the same
as in the previous simulations. In order to further evaluate the proposed CC-MPC
scheme, results are compared with the certainty-equivalent MPC approach proposed
in [19], which assumes predictions of demands as certain. In these simulations, the
CE-MPC strategy has been set up to allow the volume of water in tanks to decrease
until the predicted volume of future net demands, which is set as a hard constraint
but ignoring the influence of uncertainty. Contrary, the CC-MPC strategy considers
and propagates the uncertainty of forecasted demands explicitly in the MPC design
and, as a consequence, involves a robust handling of constraints. Again, to analyse
the effect of the risk level (84) in this CC-MPC strategy when considering large-scale
systems, different scenarios have been simulated for acceptable joint risks of 50, 40,
30, 20, 10, 5 and 1%.
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Table 14.2 presents the numeric assessment of the aforementioned controllers
through different key performance indicators (KPIs), which are defined as follows:

- .
KPI := 7 > ardiAL, (14.24a)
k=0
1 ny ng ~ )
KPLy = -~ — ZZ (Al (0)~, (14.24b)
$ i=1 k=0
KPIg := Z Z max {0, s¢) (k) — x) (K)} (14.24¢)
i=1 k=0
KPIp := > > max {0, duei (k) — x5 ()} . (14.24d)
i=1 k=0
’:lx ns S (k
KPlg := Z;;l Z,’;f‘ SO® 1 009%, (14.24¢)
Dt 2l Xay (k)
KPly := top (), (14.24f)

where KPIg is the average economic performance of the DWN operation, KPIAy
measures the smoothness of the control actions, KPI is the amount of water used
from safety stocks, KPIp is the volume of water demand that is not satisfied over the
simulation period, KPI is the average percentage of safety volume that is contained
in the real water volume, and KPI, determines the difficulty to solve the optimization
tasks involved in each strategy accounting fop (k) as the average time that takes to
solve the corresponding MPC optimization problem. The CE-MPC has been tuned
with a safety stock for each tank equal to its net exogenous demand, i.e., s(k) =
dpet (k). Therefore, the KPIg results equal to the KPIp as should be expected given
their definitions. In the case of the CC-MPC, s(k) is equal to the right hand of
(14.21e). Regarding the comparison of the KPIg between the CE-MPC and the CC-
MPC, the results present greater values for the CC-MPC cases. This trend is also an
expected behaviour given that reducing the risk probability generates a larger back-

Table 14.2 Comparison of the MPC strategies applied to the Barcelona DWN

Controller KPIg KPIay KPIg KPIp KPIg KPIp
CE-MPC 2297.02 2.3586 3.8886 3.8886 19.41 4.82
CC-MPCes50% 2486.40 1.0747 695.54 0 27.79 4.72
CC-MPCe40% 2487.77 1.0767 750.06 0 27.86 4.83
CC-MPCe@30% 2489.31 1.0795 819.82 0 27.95 4.79
CC-MPCe@20% 2491.61 1.0835 920.36 0 28.07 4.71
CC-MPCe10% 2496.23 1.0964 1101.7 0 28.18 4.70
CC-MPCe59% 2500.52 1.1012 1298.9 0 28.18 4.89
CC-MPCe1% 2509.89 1.1131 1759.4 0 28.43 4.86
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off of the demand satisfaction constraint; that is, more safety stock is stored to address
demand uncertainty. This latter fact, in addition with the tuning of the multi-objective
cost function, leads to higher KPI (but lower or null KPIp) if this is required by the
real demand scenario in order to guarantee a service level. It can be observed that
the CE-MPC is the cheapest control strategy (lower KPIg) but the less reliable one
given that the certainty equivalence assumption leads to unsatisfying demands (higher
KPIp), especially when the water volume in the tank is close to the expected demand.
Thus, the CE-MPC performance represents a strategy for the supply of drinking water
with a higher risk of failure. The different CC-MPC scenarios (those of varying the
risk acceptability level) have shown that reliability and economic performance are
conflicting objectives that have to reach a trade-off; that is, the inclusion of safety
mechanisms in the controller increases the reliability of the DWN in terms of demand
satisfaction (see Fig. 14.3), but also the economic cost of its operation. The main
advantage of the CC-MPC is its formal methodology that leads to obtain optimal
dynamic constraints that tackle uncertainties with a minimum cost to achieve also
a global service level of the DWN. Table 14.2 shows a smooth degradation of the
economic performance under the CC-MPC when varying the risk within a wide range
of acceptability levels. Therefore, the CC-MPC approach addressed in this chapter is
a suitable mean to compute the proper amount of safety and the proper control actions

x 10 Tank #55

1.5

Volume [m3]

05}

0 1 1 1 1
0 5 10 15 20 25

Time [h]

Fig. 14.3 Comparison of the robustness in the management of water storage in a sample of tanks
of the Barcelona DWN. (Blue circle) CC-MPCq,, (black diamond) CC-MPCsqq,, (red square)
CC-MPCsq,, (solid green) CE-MPC, (dashed red) net demand
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to assure a desired service level. Notice that the computational burden (KPI) of the
CC-MPC is similar to the CE-MPC given that the complexity of the optimization
problem is not altered; that is, the number of constraints and decision variables remain
the same. The only extra load that might be added is the computation of the variance
of the disturbances propagated in the prediction horizon. Consequently, the CC-MPC
approach is suitable for RTC of the Barcelona DWN.

Table 14.3 discloses details of the average production and operational costs related
to each strategy. Comparing the CE-MPC controller with the CC-MPC @54, controller
(requiring a reliability of 95%), it can be noticed that the dynamic safety stocks
resulting within the stochastic approach might lead to an increase in the operational
cost, especially in the electric cost, mainly due to the extra amount of water that is
needed to be moved through the network and allocated in tanks to guarantee that
the water supply will be feasible with a certain probability for future disturbance
realizations.

The conservatism of reformulating the stochastic CC-MPC problem into the
tractable deterministic equivalent in (14.21) has been studied in [12]. Table 14.4
shows the conservatism related to approximate constraints (14.20c), (14.20d) and
(14.20e), considering different levels of maximum joint risk. It can be observed that
conservatism increases when the risk level increases but remains almost constant
despite the variation in the number of individual constraints. Hence, the goodness of
the approximation using Boole’s inequality is not affected, neither by the number of
decision variables nor by the prediction horizon. Therefore, the addressed approach
is advantageous to be applied to any other DWNs or general flow networks.

Table 14.3 Comparison of daily average economic costs of MPC strategies

Controller Water cost (e.u./day) | Electric cost (e.u./day) | Daily average cost (e.u./day)
CE-MPC 23015.42 27195.31 50210.73
CC-MPCes59% | 22980.34 28514.71 51495.05

€.u.: economic units

Table 14.4 Conservatism of the deterministic equivalent CC-MPC

Joint chance constraint | Number of individual | Joint risk Conservatism of
constraints approximation
0.001 4.9967 x 1077
0.01 4.9817 x 107>
State hard bounds 3024 0.03 44539 x 1074
0.05 1.2290 x 1073
0.1 4.8359 x 1073
0.001 4.9950 x 1077
0.01 4.9801 x 107
Safety constraint 1512 0.03 4.4524 x 10~*
0.05 1.2286 x 1073
0.1 4.8344 x 1073
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14.6 Conclusions

In this chapter, two stochastic control approaches have been assessed to deal with
the management of generalized flow-based networks. Both the CC-MPC and the
TB-MPC approaches focused on robust economic performance under additive dis-
turbances (unbounded and stationary or non-stationary) and avoid relying on heuristic
fixed safety volumes such as those used in the CE-MPC or the RB-MPC schemes
proposed in Chaps. 12 and 13, what is traduced in better economic performance.
According to the results obtained with the considered case study, both techniques
showed a relatively similar performance. However, it seems clear that CC-MPC is
more appropriate when requiring a low probability of constraint violation, since the
use of TB-MPC demands the inclusion of a higher number of scenarios, which may
be an issue for the application of the latter to large-scale networks. The analytical
approximation of joint chance constraints based on their decomposition into individ-
ual chance constraints, these latter bounded by means of the Boole’s inequality, has
shown to be suitable for large networks regarding that the conservatism involved is
not affected neither by the number of the inequalities nor by the prediction horizon of
the MPC. The level of resultant back-off is variable and depends on the volatility of
the forecasted demand at each prediction step and the suitability of the probabilistic
distribution used to model uncertainty. The fact of unbounded disturbances in the
system precludes the guarantee of robust feasibility with these schemes. Hence, the
approaches proposed in this chapter are based on a service-level guarantee and a
probabilistic feasibility. The case study shows that the CC-MPC is suitable for the
operational guidance of large-scale networks due to its robustness, flexibility, modest
computational requirements, and ability to include risk considerations directly in the
decision-making process. Even when the CC-MPC increased the operational costs
by around 2.5%, it allowed to improve the service reliability by more than 90% when
compared with a CE-MPC setting.

Future research will be directed to incorporate parametric uncertainty and unmea-
sured disturbances in the model. In addition, future work should include a more
detailed study regarding the number of scenarios contained in the tree. Likewise,
distributed computation could be used in order to relieve the scaling problems of
TB-MPC when the number of scenarios is too high. Moreover, it is of interest to
extend the results and develop decentralized/distributed stochastic MPC controllers
for large-scale complex flow networks.
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