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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline: new theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new design
philosophies,…, new challenges.Much of this development work resides in industrial
reports, feasibility study papers and the reports of advanced collaborative projects.
The series offers an opportunity for researchers to present an extended exposition of
such new work in all aspects of industrial control for wider and rapid dissemination.

The key networks that frame urban society include the utility networks of
electricity, gas, water and wastewater. Along with transport networks, these have
undergone and are still undergoing significant technological development of the
way they are monitored. These changes are creating new opportunities for network
organization and control. The technologies driving this change are those of smart
sensors and wireless communications. Smart sensors are providing real-time
information at many more physical locations, and wireless technology is making
access to this information both immediate and inexpensive since there is no need to
cable up the devices to central control rooms. This gives much more accurate
information about resource supply and consumer demand. The potential for the
reassessment and use of advanced control is widespread across these industries.

A look at the structure of the drinking water–wastewater cycle provides a
glimpse of the areas with the potential to exploit these technological innovations.

Drinking-Water Supply

• Resource Management: This is the management of sources of water: lakes,
rivers, aquifers and reservoirs. Monitoring levels, flows and rainfall are
important aspects of this task.

• Treatment Process Stage: This covers the filtering, chlorination and biotreatment
of the water resource to create a supply of drinking water quality.
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• Distribution Network: The drinking water network is a pressurized supply
network that covers a geographical region involving both rural and urban areas.
Smart metering can give immediate readings of consumer demand. The design
and construction of the physical network itself needs pumps, intermediate
supply tanks and a large network of supply pipes, all of which need monitoring
and control.

Wastewater Disposal

• Collection Network: This is the large network of sewage collection pipes,
channels and tunnels. Gravity plays a significant role in the transport processes
of wastewater but pumps, and adjustable weirs also feature in the network. The
monitoring of the physical network is an important input to maintaining good
wastewater flows.

• Treatment Process Stage: The treatment of wastewater is a multi-stage process
with activated sludge processes and clarifier sequences playing an important
role. Rainfall, which was an essential input to the drinking water resource, is a
disturbance in the wastewater treatment process that can cause treatment process
washout and may give rise to the need for holding ponds.

• Discharge to the Environment: Once the wastewater treatment is complete,
discharge to the receiving waters occurs. But the monitoring continues to ensure
no upset to the environment.

In the past, the Advances in Industrial Control monograph series has published
contributions to the treatment of wastewater:

• Control and Instrumentation for Wastewater Treatment Plants by M. Reza
Katebi, Michael A. Johnson and Jacqueline Wilkie (ISBN 978-1-85233-054-5,
1999); and

• Model Predictive Control of Wastewater Systems by Carlos Ocampo-Martinez
(ISBN 978-1-84996-352-7, 2010).

However, the series has not had a contribution on the drinking water supply part
of the water cycle before, so the editors are more than pleased to commend to
readers the monograph Real-Time Monitoring and Operational Control of
Drinking-Water Systems edited by Vicenҫ Puig, Carlos Ocampo-Martínez, Ramon
Pérez, Gabriela Cembrano, Joseba Quevedo and Teresa Escobet.

The contributors report research performed at the research centre “Supervision,
Safety, and Automatic Control” at the Technical University of Catalonia, and at
Consejo Superior de Investigaciones Cientificas at the Institut de Robòtica i
Informàtica Industrial in collaboration with various Spanish water companies. The
book focuses on the pressurized drinking water network within the complete
drinking water supply operation. The complexity of the network is readily grasped
by a look at Fig. 2.2 that shows the water transport network for Barcelona, Spain.
The editors present a comprehensive and detailed up-to-date account of the
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technical aspects to achieve the modelling, monitoring, and control of such a
complex network. Much of this work is based on the editors’ experience of working
with real-world drinking water systems. The monograph concludes with
chapter-length assessments of future trends, looking at such topics as the implica-
tions of “Big Data” for networks and coordination of regional and urban supply
networks. This is an exemplary and very welcome addition to the Advances in
Industrial Control monograph series.

Michael J. Grimble
Michael A. Johnson

Industrial Control Centre
University of Strathclyde
Glasgow, Scotland, UK
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Preface

Drinking water utilities in urban areas are facing new challenges in their real-time
operation because of limited water resources, intensive energy requirements, a
growing population, a costly and ageing infrastructure, increasingly stringent reg-
ulations and increased attention towards the environmental impact of water use.
Such challenges force water managers to monitor and control not only water supply
and distribution, but also consumer demand. This book presents a set of approaches
for the real-time monitoring and control of drinking water networks based on
advanced ICT technologies of automation and telecommunications for largely
improving their efficiency in terms of water use, energy consumption, water loss
minimization and water quality guarantees.

The proposed approaches and tools presented in this book cover:

• decision support for real-time optimal control of the water transport network,
operating the main flow and pressure actuators (pumping stations and pressure
regulation valves) and intermediate storage tanks to meet demand using the most
sustainable sources and minimizing electricity costs, thanks to the use of
stochastic model predictive control algorithms that explicitly take into account
the uncertainty associated with energy prices and actual demand;

• decision support for monitoring water balance and quality of the distribution
network in real time via fault detection and diagnosis techniques, using infor-
mation from hundreds of flow, pressure and water quality sensors, and hydraulic
and quality-parameter evolution models, to detect and locate leaks in the net-
work, possible breach in water quality, and sensor/actuator failures; consumer
demand prediction, based on smart metering techniques, producing a detailed
analysis and forecasting of consumption patterns and providing a service of
communication to consumers, together with economic measures to promote a
more efficient use of water at the household level.

All methods’ approaches presented in the book are applied and illustrated using a
real-life pilot demonstration based on the Barcelona drinking water network and
Catalonia regional network (Spain). The results presented in the book are the results
of the long collaboration of the Research Center “Supervision, Safety and Automatic
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Control” (CS2AC-UPC) at Technical University of Catalonia (UPC) and Consejo
Superior de Investigaciones Cientficas (CSIC) at the Institut de Robòtica i
Informàtica Industrial (IRI) with the Barcelona water company (AGBAR) and its
technical centre (CETAQUA) in several Spanish and European research projects
and private contracts as well as with ATLL Concessionària de la Generalitat de
Catalunya in several private contracts.

Barcelona, Spain Vicenç Puig
2016 Carlos Ocampo-Martínez

Ramon Pérez
Gabriela Cembrano

Joseba Quevedo
Teresa Escobet
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Chapter 1
Real-Time Monitoring and Control
in Water Systems

Jordi Meseguer and Joseba Quevedo

1.1 The Water Need

Water is a critical resource for supporting human activities and ecosystem conser-
vation. As reported by the Food, Energy, Water (FEW) organization, there are both
supply-side and demand-side threats to water. One supply-side threat arises from
withdrawing freshwater from water surface sources and groundwater aquifers at
rates that are faster than replenishment or recharge. Another supply-side problem
is that even if there is enough water, its quality is not good enough to meet human
needs; much of the freshwater around the world is being degraded. One of the most
frequently cited statistics in discussion of water availability, presented in Fig. 1.1,
shows that only about 2.5% of the Earth’s water is fresh.1 From that 2.5% freshwater
available for the support of human life, agriculture, andmost forms of non-ocean life,
30.1% corresponds to groundwater that is stored deep beneath and is non-renewable.

The demand-side concern arises from the following facts:

• An increasing number of people on the planet are geographically concentrated in
regions that cannot sustain demand levels.

• Technologies that waste more water than alternative technologies and demand
is often insufficiently discouraged because of inadequate price mechanisms and
outdated regulation that set few limits on excessive use.

• Negative impacts of climate change are likely to give rise to uncertainties in water
availability and water demands.
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Fig. 1.1 Distribution of Earth’s water

Water scarcity problems could happen in 2025, which means that, since then, in
nearly half of the world a large number of people may not have access to safe and
affordablewater for their basic needs [1]. The popular concept “Water is the new oil”
stresses the importance and criticality of water.

Limited water supplies, conservation and sustainability policies, as well as the
infrastructure complexity for meeting consumer demands with appropriate flow,
pressure and quality make water management a challenging problem. This situation
indicates the need for advanced monitoring and control in water supply, transport
and distribution networks. Decision-support systems provide useful guidance for
operators in complex networks, where actions for best resource management are not
intuitive [2, 3].

Management of water systems involves different operational objectives, such as

• minimizing operational costs of pumping (which represents a significant fraction
of the total expenditure as discussed in [4]),

• ensuring pressure regulation for providing suitable service, but avoiding overpres-
sures, which can cause leaks or bursts,

• minimizing risks of either water shortage or water quality issues [5].

Both optimization and optimal control techniques provide an important contri-
bution to strategy computation in water system management for efficient use of
resources. Similarly, the problems related to modelling and control of water supply
and distribution have been the subject of important research efforts during the last
years as discussed in [6, 7].

1.2 Water Cycle and Networks

The water cycle includes all the activities that, on the one hand, allow to supply
water to the end-user and, on the other hand, collect and treat the wastewater before
delivering it to the natural environment or reusing it. The drinking-water system
includes the catchment of water, its treatment, its transport and distribution. The
sewage system includes the urban draining collection, storage, treatment and release
or reuse.
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In a large number of cities, drinking-water networks are managed using telemetry
and telecontrol systems that provide, in real time, pressure, flow, quality and other
measurements at several key locations in the network. They are also used to operate
the main flow, pressure and storage control elements from a central dispatch in a
centralized or decentralized scheme.

In some cases, advanced urban drainage systems include water control infrastruc-
ture, such as detention tanks, pumps, valves and weirs, monitored and controlled
using telecontrol systems. These latter systems involve rain-gage networks, water-
level meters in the sewers and actuators at the valves, pumps and weirs, which may
be controlled from a central dispatch in order to control the water flow in the network
towards wastewater treatment plants and, afterwards, to the receiving environment.

Controlling water cycle systems requires the development of adequate dynamic
models to represent:

• open-channel elements, such as rivers, canals and aqueducts,
• pressurized water networks,
• combinations of both,

which have nonlinear responses to control actions, such as changing modes at dif-
ferent operating points. These systems also contain storage and control elements,
such as tanks and valves, with a predetermined operational range, which producing
hard constraints in the model. Additionally, some ON–OFF elements may exist. The
use of hybrid modelling [8] to represent the dynamics of water systems for control
objectives appears naturally as an appropriate option, and it constitutes a key issue.
In addition, water system dynamics have stochastic components; mainly, consumer
demand in the case of drinking-water systems and rain intensity in the case of urban
drainage systems. Stochastic components in the models must also be represented
using appropriate modelling and forecasting techniques (e.g., time series analysis).

Water system management must be carried out predictively. Control actions must
be computed ahead in time, with an appropriate time horizon, based on real mea-
surements and state estimation, as well as predictions of the stochastic variables.
For drinking-water distribution networks, this prediction horizon is usually of the
order of 24-h. Longer horizons are chosen for water supply and treatment man-
agement. For real-time control of urban drainage systems, the horizons depend on
the average water transport time between the discharge points and the final collec-
tion/treatment/discharge points. A common order of magnitude for this horizon is
30 minutes.

The use of telemetry and telecontrol in systems of the water cycle is increasing
constantly, due to the growing availability of reasonably priced sensors, telecommu-
nication systems and computers in a situation of increasing awareness of water cycle
management needs:

• to take maximum advantage of scarce water resources,
• to provide access to water to more regions, to control drinking-water quality,
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• to minimize the use of water and energy,
• to cope with extreme events such as draughts and flooding,
• to reduce the impact of used water on the receiving environment, among others.

The increasing availability of control hardware and information systems cannot,
on its own, contribute to coping with these challenges. The key issue is the use of
the information. Appropriate water system modelling and control strategies must be
developed at a similar fashion. Nevertheless, these two systems have specific charac-
teristics (open-channel networks and chemical reactions) that maintain them beyond
the scope of this book. This book is focused on the potable water in pressurized
networks.

1.3 Real-Time Monitoring and Control

The incorporation of recent advances in the information and communications tech-
nology (ICT), in sensor and actuator reliable and cheap components, and in advanced
metering of consumer demand, has a significant potential to improve efficiency in
monitoring and management of quantity and quality of water, to achieve best strate-
gies for water and energy use, to assess in real-time the efficiency of water networks,
to avoidwater losses because of leakage, tominimize risk of inadequatewater quality,
to understand consumer demands by taking into account the behaviours and attitudes
of the consumers and to improve the plans of asset predictive maintenance. ICT tech-
nologies currently used by water utilities enable the reduction of development and
deployment costs ofmonitoring andmanagement solutions, increase their integration
with other company processes, and improve the efficiency level required in urban
water supply. At present, the continuous advances of ICT technology make real-time
management of drinking-water a sector with quite high potentials for improvement.

The real-time operational control of a water network by means of a Supervisory
Control and Data Acquisition (SCADA) system involves planning strategic opera-
tions of pumping stations and flow or pressure regulation valves over a 24-h horizon,
in order to meet consumer demand at all times, with the appropriate levels of pres-
sure and quality. This is generally achieved using intermediate water tanks, booster
pumping and pressure reduction valves. Model predictive control (MPC) techniques
are the best candidate to perform operational control, as they compute, ahead of time,
the best admissible control strategies for valves, pumps or other control elements in
a network to achieve minimum energy consumption, production cost minimization,
environmental protection and other operational goals, that ensure current and future
satisfaction of water demand.

The control of the network is quite sensitive to faults affecting sensors (flow
meters, pressure meters, etc.), actuators (pumps, valves, etc.) and components (pipes
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and reservoirs). Thus, a diagnosis of faulty situations must be ensured by a monitor-
ing module, so that the control system does not result in anomalous performance of
the network, therefore compromising the success of its strategy and possibly caus-
ing the occurrence of serious consequences in terms of environmental impacts and
economical losses. One way of achieving fault tolerance is to employ an online fault
detection and isolation (FDI) scheme at the monitoring stage that is integrated with
the real-time control system. When a fault is detected and isolated, the FDI module
will trigger the controller to activate in response to some accommodation actions.
MPC algorithms have the nice feature of being easily and automatically reconfig-
urable, so as to immediately provide the best control action after a structural change
due to a fault.

Real-Time monitoring of water networks involves all the activities related to
observing the network via telemetry systems. This includes real-time water balance
analysis, for water loss reduction, leak detection and localization, and water qual-
ity surveillance for detection and localization of quality breach incidents. Detection
and isolation of such faulty situations require the use of real-time sensor readings
and hydraulic/quality mathematical models. Similarly, monitoring also involves the
validation of telemetry data, the detection and replacement of missing data, and
the validation of actuator status. Advanced automatic meter reading (AMR) at con-
sumption points allows utilities to have detailed information of consumer demand
with varying degrees of detail (daily and hourly). These data are quite useful for
understanding time patterns of different types of consumers and to develop more
accurate demand forecasting models. Smart meters allow identifying and resolving
inefficiencies and irregularities in water use, by analysing water flows in real-time
to improve customer service and to help conserve water. In fact, introducing a more
frequent and highly accurate measurement of water consumption enables and sup-
ports a more efficient use of such a precious resource. One of the most important
advantages to be expected from AMR is not only having information, but also send-
ing this information to customers in order to promote modifications in their water
consumption behaviour.

In drinking-water management, the key management levels of strategic opera-
tional control and real-time network monitoring are still routinely tackled separately.
Several different technologies, information systems and experts are usually involved
in these two levels of management. However, the combination of these two funda-
mental aspects of water management in an integrated environment allows to take
advantage of their interaction enhancing the overall performance from the opera-
tional, socioeconomic and environmental point of view (i.e., reduce water resources
and associated water supply cost while increasing the service level offered to the
customer). Such an integrated software solution is a key decision-support system for
water management, and it handles real-time interactions between SCADA, telemetry
andAMR systems, with real-time databases and the three specificwatermanagement
modules for operational control, monitoring and demand management, with appro-
priate graphical user interface layers and connections to geographical information
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systems (GIS). In addition, as these processes have an important influence on other
utilities’ processes, this integrated software solution has to be flexible enough to
accommodate links to other utility information systems (i.e., customer, maintenance
and investment planning information systems).

1.4 State of the Art

Nowadays, real-time monitoring and management systems of water supply and dis-
tribution networks are quite active areas of research, development and/or innovation
of a large number of companies (e.g., Schneider Electric-Telvent, ABB, and DHI
TaKaDu, among others). There is an increasingly high interest of water utilities
worldwide in bridging operational activities and enterprise processes to improve
real-time monitoring and management, e.g., of

• Water loss and operational costs
• Energy consumption and efficiency
• Compliance with specifications water supply
• Water quality and regulatory compliance of water distribution
• Data accuracy, reliability and availability
• Plans to locate and to incorporate new sensors to improve the knowledge about
the real-time state of the network

• Plans to improve the advance maintenance of the assets and
• Emergency response.

1.4.1 Real-Time Monitoring of Water Networks

Water network monitoring refers to continuously observing water quantity and qual-
ity. Real-Time quantity monitoring allows to detect and isolate water leaks and other
faults affecting the sensors (flow meters, pressure meters, etc.) and the actuators
(pumps, valves, etc.). Real-Time quality monitoring allows to trace several water
quality parameters along the networks for safety and water quality preservation and
to react promptly in case that abnormal values are detected. Water network monitor-
ing requires three elements to be implemented: sensors, communication devices and
mathematical models.

Regarding network quantitative monitoring, the main aim is related to the inter-
est of water utilities in avoiding water losses. The use of flow and pressure sensors
together with hydraulic models of the water network for leak detection and isolation
is a suitable approach for the online monitoring of water balance. A direct approach
based on simulation has been proposed by [9, 10]. An alternative approach based
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on an inverse approach that formulates the leak detection and isolation problem as a
parameter estimation approach was presented by [11] and further inverse approaches
were investigated by [12–14]. Hydraulic model experience is extended in all water
companies and the use of an approach based on a familiar tool is welcome by tech-
nicians. These models include flows and pressure variables. Pressure may usually be
more easily monitored due to the low cost of sensors. Therefore, the detection and
location of leakages based on differences between predicted and measured pressures
is being explored. The sensitivity of pressures to the leakages is evaluated in the sen-
sitivity matrix, which is the basis for leakage detection using pressure measurements
and hydraulic models. Recently, a leak detection and isolation approach that makes
explicit use of the sensitivity matrix has been proposed by [15].

Water quality monitoring is related to tracing a number of physical, biological and
chemical indicators that describe the adequacy for consumer use. Like the hydraulic
model of the water distribution network, the usefulness of water quality models not
only depends on the quality of its calibration, but also depends on the hydraulicmodel
calibration [16]. A water quality model cannot provide reliable results if real flows
are not accurately represented by a hydraulic model. Management of water qual-
ity requires regular measurements and monitoring. Mostly, measurements of water
quality are performed manually. The process can be slow and painstaking. Multiple
point measurements are needed to cover an area. The process needs to be automated
and extended to provide rapid and effective monitoring. In this line, the FP7-ICT
project MOBESENS [17] provided a modular and scalable integrated solution based
on communication technologies for water quality monitoring. Although this solution
is applied to a river basin scale, certain aspects are potentially applicable to quality
monitoring of drinking-water networks.

Several types of models to determine chlorine concentrations throughout a water
distribution system have been described by [18, 19]. The currently used approaches
for monitoring chlorine and detect changes of chlorine concentration in water net-
works can be classified into those that make use of a direct approach based on
simulation [18, 20, 21] of conceptual input/output models [22, 23], and those using
an inverse approach based on parameter estimation of the chlorine decay model by
[19, 24, 25]. As in the case of leak monitoring, a chlorine-monitoring approach that
makes use of a sensitivity analysis was proposed by [26, 27]. The water quality
sensor placement problem has also been investigated from the security perspective.

The Battle of the Water Sensor Networks (BWSN) research challenge in 2006
instigated significant research results and elevated the importance of considering
security issues in water distribution systems. Most of the research groups that par-
ticipated in BWSN formulated a multiobjective integer optimization programming
problem in [28]. Following this work, a mathematical formulation of the problem
from a system and control perspective was presented in [29]. In addition, a dynamic
manual sampling approach was proposed [30] for isolating an area in the network
where the contamination source could have originated, using manual expanded sam-
pling techniques.
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Another problem related to water quality monitoring is the detection of conta-
mination events. The underlying assumption behind contamination detection using
surrogatewater qualitymeasurements is that contaminants injected in drinking-water
will affect certain parameterswhich aremonitored [31]. For example, a bacterial toxin
may decrease the concentration of free chlorine, decrease the oxidation–reduction
potential (ORP) and increase the conductivity of water. However, contamination-
event detection in real water systems is challenging due to the large uncertainties in
the dynamics and different factors that influence water quality and may cause a large
number of false alarms (false positives).

Network monitoring requires the collection of data from the physical water net-
work. Due to the scale of most urban water systems, it is practically impossible to
install sensors or to take measurements at every candidate location. In order to obtain
useful information for network monitoring, data must be collected from a subset of
carefully chosen locations designed to maximize the performance with respect to
specific design criteria. Several authors have started investigating the impact of sen-
sor location on inferences regarding the system state such as [32–35] demonstrating
that it is significant. The general sensor placement problem is combinatorial with
a potentially enormous corresponding search space. Efficient algorithms that avoid
complete search were proposed by [36]. Regarding quantitative monitoring facing
leak detection and isolation, optimal sensor placement was addressed by [37]. In case
of qualitative monitoring, optimal sensor placement methods were mostly developed
for detecting contaminations events by [38–40].

In water networks, the telecontrol system must acquire, store and validate data
from many flow meters and other sensors every few minutes to achieve an accu-
rate monitoring of the whole network in real-time. Frequent operation problems
in the communication system between sensors and data logger, or in the telecon-
trol itself, generate missing data during certain periods of time. The stored data are
sometimes uncorrelated and of no use for historic records. Missing data must be
therefore replaced by a set of estimated data. A second common problem is the lack
of reliability of flow meters (offsets, drifts and breakdowns) producing incorrect
flow data readings. These false data must also be detected and replaced by estimated
data, since flow data is used for several network water management tasks, namely
planning, investment plans, operations, maintenance and billing/consumer services,
and operational control. The same type of problem can be found in gas or electricity
networks in [41].

According to the nature of available knowledge, different approaches for data val-
idation can be conceived, with varying degrees of sophistication. In general, one may
distinguish between elementary signal-based (low-level) methods and model-based
(higher level) methods in [42, 43]. Elementary signal-based methods use simple
heuristics and limited statistical information of a given sensor in [44–46]. Typically
these methods are based on validating either signal values or signal variations data
validation. In the signal-based approach, data are assessed as valid or invalid accord-
ing to two thresholds (a high one and a low one); outside these thresholds data are
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assumed invalid. On the other hand, methods based on signal variations look for
strong variations (peaks in the curve) as well as lacks of variation (flat curves).

Model-based methods rely on the use of models to check the consistency of
sensor data in [47] and more recently in [48]. The result of data validation may be
either a binary variable indicating whether the data are considered valid or not, or
a continuous validity index interpreted as a degree of confidence of the data. When
the degree of confidence is too low, data can be either discarded or replaced by an
estimate computed using a statistical or physical model [49]. Moreover, a subproduct
of model-based approaches for sensor data validation is that the prediction provided
by the model can be used to reconstruct the faulty state of a sensor. For example, a
general learning methodology for fault diagnosis of nonlinear systems was presented
by [50]. Results of fault detectability were later extended to the case of incipient
faults by [51]. Under certain conditions, an upper bound on the fault detection time
was derived for both abrupt and incipient faults, and a relationship was established
between the location of the estimator pole and the upper bound on the detection time.
More recently, some promising results on distributed fault diagnosis of a special class
of nonlinear dynamical systems by [52, 53] were also obtained.

Finally, since large-scale drinking-water networks include a huge number of sen-
sors and actuators, they are prone to some malfunctions (i.e., they are in a faulty
situation). This problem calls for the use of an online fault detection and isolation
system that is able to detect such faults and correct them (if possible) by activating
fault-tolerant mechanisms, as the use of soft sensors, or using the embedded toler-
ance of the optimal/predictive controller, that avoids that the global real-time control
should be stopped every time a fault appears. According to [54], this is one of the
main reasons why today there is a small number of global real-time controls operat-
ing in the world. Some examples of these methods applied to the water domain are
time series analysis techniques such as in [55–58], Kalman filters in [59–61], parity
equations in [62–65] and more recently by [66] pattern recognition methods in [67],
and principal component analysis in [68–70] and more recently in [71].

1.4.2 Real-Time Optimal Control of Water Networks

An efficient management of urban drinking-water networks requires a supervisory
control system that optimally decides about the current operational configuration of
the whole network. Such decisions are implemented automatically or offered as a
decision support to operators and managers at the control centre. The control system
must take into account operating constraints, consumer demands and operation costs
(in particular electricity costs). The decisions of the control systems are translated
into set points to individual, localized, lower-level control systems, that optimize
the pressure profile to minimize losses by leakage and provide sufficient pressure,
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e.g., for high-rise buildings. The whole control system responds to changes in net-
work topology (ruptures), typical daily/weekly profiles, as well as major changes in
demand.

The main issues associated with such an operational control are the complexity of
the network (tens or even hundreds of tanks, valves, pumping stations, points of water
consumption, water sources), and how to operate the network optimally, that is by
usingwater sources efficiently andminimizing operation costs,while satisfyingwater
demand and quality standards. In particular, electrical energy is the main source of
operation costs, both forwater production (e.g., obtaining drinking-water in treatment
plants may require an inverse osmosis process, which requires a fairly high amount
of electrical energy) and water elevation by pumping stations (the consumption due
to valves and tanks is usually considerably smaller). Currently, depending on the
pumping station, its own importance, and the area of demand it covers, different
bilateral contracts are established with energy supply companies, with a variety of
prices and different cost periods (from two periods up to six different price periods
per day, depending onworking days/weekends and on seasons). Accordingly, current
practice is to preallocate the pumping periods of each station when the energy prices
arranged by the contract are the lowest possible for that station, making sure that
expected demand is satisfied, with the help of intermediate water storage capacity.

Reducing operational costs by taking into account varying energy prices on the
power exchange market, possible deviations from expected water demand, and the
state of the physical network, in a combined and optimizedway can lead to significant
economic savings. In fact, even small percentage reductions can lead to large savings,
given the large volumes of electrical energy involved in the operations (e.g., in the
water network of the city of Barcelona in 2011, energy consumption was on average
245MWh/day for water production and 92.5 MWh/day for water transport, the latter
mainly due to pumping water from sea level up to more than 500m above).

To design a control system to operate a complex water network and match con-
sumer demand optimally with respect to energy costs requires simple, yet represen-
tative, mathematical models of the network dynamics (flows, storage, water sources
and pressure) and of related operating constraints (pumping, valves, water quality
and pressure), stochastic models of the uncertainty associated with water demand,
possibly perturbed by active demand management, and stochastic models of varying
electricity prices for the amount of energy purchased in the day-ahead energymarket.

Complex nonlinear models are quite useful for offline operations (calibration and
simulation, for instance). In fact, fine and detailed mathematical representations such
as pressure flowmodels for drinking-water networks allow to simulate those systems
with an enough high accuracy to observe different particular phenomena which are
useful for designing and/or task planning. However, for online optimization pur-
poses, simpler control-oriented models must be conveniently selected that capture
the main dynamic behaviour of the water network, only taking into account repre-
sentative hydrological/hydraulic variables and their response to actuation commands
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and to external disturbances. Such models must be simple, scalable, flexible, compu-
tationally simple and easily recalibrated online using data from the telemetry system,
so that they can be easily embedded in real-time optimization algorithms. Several
modelling techniques for drinking-water networks appeared in the scientific litera-
ture, including control-oriented flow-based models in [72, 73] and their extension to
include pressure-based models in [74, 75].

Such models are used to solve the management problem of water networks effi-
ciently, by means of optimization-based control, such as model predictive control
(MPC). MPC is the leading concept in advanced process control of highly complex
multivariable processes [76]. Its success is mainly due to its unique ability to handle
physical constraints on the system (e.g., bounds on selected process variables and/or
their rates of change) while optimizing a performance index (e.g., minimizing costs,
or maximizing profits). The rest of the MPC design is automatic: the given (or most
recently updated) model, constraints, and performance index define an optimal con-
trol problem over a finite time horizon in the future (for this reason, the approach
is said predictive). This is translated into an equivalent optimization problem and
solved online to obtain an optimal sequence of future control moves. Only the first of
these moves is applied to the process, as at the next time step a new optimal control
problem is solved, to exploit the information coming from fresh new measurements.
In this way, an open-loop design methodology (i.e., optimal control) is transformed
into a feedback one in [77, 78].

In the context of drinking-water network management, optimization-based
scheduling was considered by [2] as a two-level optimization approach: the upper
level solves an optimization problem based on flow-based models to get references
for the lower level, which is instead based on pressure-based models. Recent studies
have proven the effectiveness of MPC for control of water networks in [79, 80]. In
particular, the effectiveness of decentralized and distributed MPC tools was demon-
strated in the past FP7-ICT project WIDE [81] for the control of water distribution
networks, taking into account large-scale deterministic models of the entire network,
and decomposing the resulting optimal control formulation for efficiency of compu-
tations, scalability and maintenance.

On the other hand,management systems forwater networksmust necessarily cope
with uncertainty. The most important uncertain variable is water demand, so that
demand forecasting becomes a crucial component of the control system. Depending
on the time horizon, there are short-term, mid-term and long-term forecasts [82]. The
short-term forecasting is mainly used for operational control, considering a demand
prediction for either one or more days ahead in [48, 83, 84]. The second main source
of uncertainty is the price for electricity, in case (part of) the aforementioned fairly
large amount of electrical energy is purchased on the power exchange market to
exploit maximum convenience. Stochastic MPC formulations that explicitly exploit
models of uncertainty to optimize expected revenues and penalize risk have been
developed over the last decade in the academic community such as in [85–87]. As
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stochastic models of electricity prices dynamics can be derived from market data in
[88, 89], stochastic MPC techniques were recently investigated within the FP7-ICT
project EFFINET2 for the management of uncertainty in water systems and for smart
distribution grids in [90, 91] and for optimal bidding on energy markets in [92].

1.5 Outline of the Book

This book is made up of this introductory chapter presenting the scope, motivation
and the state of the art. The second chapter describes several case studies that have
motivated the development of themethodologies presented in the following chapters.
The remainder of the book is divided into four main parts.

Part I consists of four chapters that cover the water network modelling topic.
In particular, Chap. 3 presents the basis of water distribution network modelling by
introducing hydraulic equations in a matrix form and the hydraulic solver to sim-
ulate the network, computing heads and flows from a predefined set of demands
and boundary conditions. Only steady-state equations are considered in an extended
period of simulation. Transients are not considered due to their low importance in
pressurizedwater networks. Chapter 4 focuses on the different techniques to estimate
the unknown parameters of the model from the data available of the network. The
models presented in Chap.3 are used in several tasks such as simulation, operational
optimization and data validation, to compare the real state of the network provided
by the sensors with the estimated state obtained by using the models in order to
generate alarms in the case of faulty events. For all these tasks, the estimation of
the model parameters to represent adequately the behaviour of the network becomes
a fundamental task which determines the performance of rest. Chapter 4 analyses
the problem of parameter estimation, the measurements required for guaranteeing
the identifiability and the well-posedness of the problem. Then, both the parame-
terisation and the sampling design are presented, proposing a methodology that has
given promising results with real water distribution networks. Chapter 5 presents the
techniques to calibrate the nodal demands of water networks. Demands are unknown
inputs that must be defined to solve the network’s hydraulic equations. They are not
physical elements of the network, but the driving force behind the hydraulic dynam-
ics. A good calibration of demands is mandatory to obtain accurate results when
simulating the hydraulic model. Chapter 5 provides an overview of the existing cal-
ibration methods and a detailed description of an online calibration procedure. And
finally, Chap.6 presents a wide spectrum of short-term demand algorithms to predict
24-h ahead the water consumes of the nodes in a water network using the available
real data. This short-time forecasting demand is a key information for successful
results of in the real-time operational control of the water networks. The selected

2http://www.EFFINET-project.eu.

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_5
http://dx.doi.org/10.1007/978-3-319-50751-4_5
http://dx.doi.org/10.1007/978-3-319-50751-4_6
http://www.EFFINET-project.eu
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forecast method must be easy to use and should be automatically calibrated. More-
over, the proposed algorithms should be adaptable, because in the network there are
many demand time series to model and each floor of pressure has their own demand
characteristics.

Part II analyses different key aspects of the real-timemonitoring of water systems.
It is organized into five chapters, which allow to give responses to a set of important
questions, such as which are the minimum number of sensors to know the state
of the network at any time, where is the best location of these sensors, how the
reliability of the information provided by the sensors can be guaranteed, how is
possible to reconstruct missing or anomalous sensor data, and how is possible to
detect and isolate leaks, faults and quality events in a water network? The existence
of a reliable real-time monitoring tool of complex systems is a key question for the
management and operation of any modern water network. Chapter 7 focuses on the
state of the art of the leakmanagement including the real-timemonitoring that allows
the leak detection and localization techniques. Special attention will be devoted to
model-based approaches and their application to real case studies. Chapter 8 deals
with a problem that is of fundamental importance to health of water consumers, the
monitoring in real-time of the quality of the water in the network allowing to raise an
alarm whether a quality event is detected. Chapter 8 proposes a method to calibrate
a water quality model that characterizes the chlorine concentration in the network
using the real values of the chlorine sensors located in several nodes. This method has
been applied to a real water network. Using this calibrated model, a method for water
quality event detection and location-based chlorine sensitivity analysis of the nodes
is proposed. Chapter 9 focuses on the methodology for sensor placement in a water
network to assure the leak monitoring of the whole network. Two approaches have
been described and compared in this chapter in order to perform a leak location task.
These two approaches are applied to a district metered area (DMA) of a real water
network. Chapter 10 presents a methodology composed of several tests to validate
or not all the raw data acquired by the monitoring system. When a data pass all the
set of tests, it can be considered that data are validated and reliable to be used for all
the remaining tasks of the monitoring or control system. But, in case if the data are
not validated, a methodology is presented to estimate and to reconstruct these data.
Chapter 10 presents an application of this methodology to a water transport network
with interesting results. Finally, Chap.11 starts with a review of start of the art in
fault diagnosis applied to drinking-water networks, using physical and analytical
redundancies, and a model-based fault diagnosis methodology is formulated and
applied to a real case study of water network using analytical redundancy relations.

Part III contains six chapters treating different aspects for an advanced opera-
tional real-time control for drinking transport and distribution water networks. The
challenges of this part consist in developing an effective operational control system
taking into account the complexity and uncertainty of the networks, the complexity
of the network dimension with a number a large number of sensors, actuators and
reservoirs and the complexity of the nonlinear behaviour of some components. The
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uncertainty of the demands and the difficulty to manage every day the network with
a the probability of unpredictable fault events in one or several components of the
network is a serious problem. Chapter 12 describes a model-based predictive control
(MPC) for the supervisory flow management using a real-time monitoring system,
described in Part II.MPC is used to generate flow control set points of the active com-
ponents (valves and pumps) allowing to transport the water from the sources to the
consumer areas to meet the demands, minimizing the economic cost of the operation
and maintaining safety storage volumes in the tanks of the network. The model used
in this chapter is a linear model based on the mass balances of the flows in the nodes
with or without storage. Chapter 13 addresses the same problem in Chap.12 but
including pressure constraints and equations in the model of the controller. These
additional equations are static, nonlinear relationships between the flows and the
associated head loss. The optimal control technique presented in Chap.13 is also
based on MPC, but in this case because of the nonlinear restrictions the solution of
the associated optimization problem becomes more involved since it is a nonlinear
optimization problem.MPC approaches presented in both chapters have been applied
to real water networks and the results are analysed and compared with the current
operation based on the experience of the network managers. Chapter 14 deals with
the uncertainty associated with the short-term demand forecast and the behaviour of
the networks using stochastic MPC. In particular, in this chapter two approaches of
stochastic MPC are considered. The first approach assumes a probability distribu-
tions of the future demands and state constraints and the second solution relies on
tree-based scenarios to approximate the original uncertain problemwithout probabil-
ities. Chapter 15 studies the MPC problem associated with the real-time operational
control of water networks in the case of faulty situations. After a fault, the controller
is redesigned to cope with the fault effect. Chapter 15 also presents a degradation
analysis of the faulty system in terms of performances and reliability. The nature of
large-scale systems of the water networks of big cities, such as the case of Barcelona
city, leads to consider the partitioning of the network into subnetworks (subsystems)
as presented in Chap.16, where two different graph partitioning approaches are pre-
sented and applied in the Barcelona water distribution network. And finally, Chap. 17
focuses on the non-centralized model predictive control using distributed MPC tech-
niques, where a set of local MPC controllers are in charge of controlling each one
a subsystem of the entire system. This chapter is logically related to the previous
chapter where the network is partitioned into subsystems with the aim of reducing
the computational burden and to increase the scalability and modularity with respect
to the centralized MPC control problems presented in the previous chapters.

Finally, Part IV presents several future trends in real-time monitoring and opera-
tional control of water networks in the last three chapters. Chapter 18 proposes the
design of control strategy for water networks based on the interesting evolutionary-
game theory (EGT), which allows to model the evolution of a population composed
by a large and finite number of rational agents with capacity to make decisions.
Chapter19 proposes a multilayer MPC for the coordination of regional and urban
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networks. Chapter 19 aims not only to achieve the typical goals in the management
of water urban networks, which are the minimization of the energy consumption
while guaranteeing the quality of service (demand satisfaction), but also with the
sustainable usage of the water resources decided at regional level. Finally, Chap. 20
deals with the application of the promising area of Big Data and Data Analytics
to water networks. In particular, this chapter presents how these new technologies
can address the new challenges created by the need of manipulating and analysing
the huge number stored in the data centres collected of by automatic meter reading
(AMR) connected to households. AMR offers continuously information about the
water consumption of the users allowing to characterize their water usage, to detect
leaks and fraud and to estimate nodal demand, among other. These data should be
processed, validated and stored in ametadatamodel. Chapter 20 focuses on the appli-
cation of data analytics and knowledge discovery tools to AMR data combined with
other streams of information (e.g., billing system and call centre service). These last
chapters of Part IV close the book suggesting a certain number of quite promising
techniques to improve the real-time monitoring and operational control of drinking-
water systems that it is expected that will be developed in the next years altogether
with some other techniques that just currently being developed as, e.g., machine and
deep learning, cloud computing, circular economy or factory 4.0.
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Chapter 2
Case Studies

Ramon Ariño, Jordi Meseguer, Ramon Pérez and Joseba Quevedo

2.1 Introduction

As discussed in Chap. 1, this book presents a wide scope of research that combines
multiple disciplines (as hydraulic and water quality modelling, data science, control,
supervision, fault diagnosis) applied to the drinking-water systems. All the research
presented and the book itself is oriented to the application of these methodologies.
Thus, each chapter includes a section of simulation and results on real networkmodels
and data. These case studies are available because during the last two decades the
authors have maintained a close collaboration with practitioners. This collaboration
has helped in the design of the projects, the supervision of the decisions and finally
the validation of the results. The experience of working for and with those who
carry out the daily management of the system in study inspired this book as well.
Hopefully, those readers who are working with water systems will appreciate the
applicability of the approaches proposed. On the other hand, the examples help the
understanding of the often complex methodologies presented. The research has been
presented in international forums through conferences and journals, as shown in
the references. This international exposure has guaranteed novelty and improvement
beyond the state of the art. Nevertheless, due to the proximity, most of the techniques
have been developed using case studies provided by the Catalan water companies
and authorities. This regional focus in the applications provides homogeneity to the
book. Besides which methodology fits in each kind of network is highlighted.
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2.2 Case Studies

The water supply system in Catalonia takes most of the water from two main river
basins. Ebro river basin is managed by the Confederación Hidrográfica del Ebro
(CHE) [2] as this river flows through other regions of Spain. The authors joined
CHE in projects related to the river supervision [9]. This research on open channel
systems, as stated before, is beyond the scope of this book. The other river basins are
managed by the regional state holder Agència Catalana de l’Aigua (ACA) [1]. These
river basins are called internal basins and they provide water to the Barcelona area
(3.2 million people). Most of the water (around 80%) that supplies the Barcelona
metropolitan area (217000 m3 in 2015) is surface water coming from rivers Ter
and Llobregat. The rest comes from underground water, except for periods of water
shortage, when a desalination plant provides up to 5% of the water consumption.
The use of desalinated water shows how critical water supply becomes in a densely
populated (717 Habitants per km2) area in Mediterranean coast. The catchment,
treatment and transport of water in this area (Barcelona metropolitan) is managed by
the company ATLL Concessionària de la Generalitat de Catalonia. Once water has
been treated, it is distributed to 36 municipalities in the metropolitan area, through a
distribution network comprising 5500km of pipelines and 150 header tanks, which
can store up to 540000 m3 of drinking water. This distribution is carried out by nine
different companies (public and private). The public–private consortium Aigües de
Barcelona (AB) manages a part of the distribution networks in this region.

In next sections, different management levels in the supply (transport) and distri-
bution networks will be considered. The characteristics that define these levels are
the functionalities, the physical elements involved (e.g., tanks, pumps, valves), the
size of these elements, the meshing grade of the network and the area they cover.

First of all, there is the regional supply network that covers a wide area and it
links the water sources in the catchment with water treatment, usually containing
river reaches, free-surface channels, reservoirs, pumping stations, etc. It has a large
storage capacity and geographical extension, but it usually has a tree-like structure
(lowmeshing) (seeChaps. 10 and 19 formore details). The transport network (second
level) drawswater from the regional network. It ismanaged by thewater supply utility
and has a structure similar to the regional one but with a smaller dimension. More
importantly, this type of network is usually pressurized. It has storage capacity and
pumping stations. It is normally organized into pressure levels, according to service
needs and topographic elevation of the demand sectors. The output of this network is
monitored (both pressure and flow) and corresponds to the input of the distribution
network. The lowest level, the distribution network, is a meshed pressurized pipe
network,which deliverswater to individual consumerswithin the pressure levels. The
instantaneous individual demands are the most uncertain parameter of the network,
because in general they are not measured online.

http://dx.doi.org/10.1007/978-3-319-50751-4_10
http://dx.doi.org/10.1007/978-3-319-50751-4_19
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2.3 Water Transport Network

The Barcelona water transport network (WTN) supplies water to approximately 3
million consumers, distributed in 23 municipalities in a 424-km2 area. Water can
be taken from both surface and underground sources. The most important ones in
terms of capacity and use are Ter, which is a surface source, and Llobregat, where
water can be taken from one surface source and one underground source. Water
is supplied from these sources to 218 demand sectors through around 4645km of
pipes. The complete transport network has 63 storage tanks, 3 surface sources and 7
underground sources, 79 pumps, 50 valves, 18 nodes and 88 demands. The network
is controlled through a SCADA system (Fig. 2.1). As it will be discussed in Chap.12,
for the predictive control scheme, a prediction horizon of 24h is used. This record
is updated at each time interval with a sampling time of 1 hour.

In Fig. 2.2, the whole network representation using the conceptual model used
by the model predictive controller that corresponds to a simplification of the real
system:

• Each demand sector corresponds to a subnetwork serving a given pressure level.
• Each actuator can integrate several pumps or valves working in parallel.

A water network system will generally contain a number of flow or pressure
control elements, located at the supplies, at the water treatment plant inlets or within
the network, and controlled through the telecontrol system.

Fig. 2.1 Telecontrol of Barcelona water distribution system

http://dx.doi.org/10.1007/978-3-319-50751-4_12
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Fig. 2.2 Barcelona water transport network description
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A section of the Barcelona water transport network has been selected in Chap.13
to apply optimal control including pressure constraints (see Fig. 2.3). Specifically, 12
pressure zones that belong to the municipality of Barcelona (see Fig. 2.4), represent-
ing 18% of the total network length and 23% of the total annual water consumption.
Within these pressure zones, there are 5 water tanks, 6 pumping stations and 7 regu-
lation valves, with an annual energy consumption of 4.4 GWh. Energy consumption
is highly dependent on the specific exploitation strategy decided by the utility (see
Fig. 2.5).

This section of the network is representative of the complete network because it
contains all the different kinds of state and control elements. The following figure
shows a diagramof the study network, including the control elements, tanks, demands
and connecting pipes. This network has five tanks (blue colour) and other five tanks
that have the function of water sources (green colour) to substitute the rest of the
network. It also has seven pumping stations, one flow valve, ten pressure valves and
forty-seven demands.

Fig. 2.3 Simulation model of a portion of Barcelona WTN

http://dx.doi.org/10.1007/978-3-319-50751-4_13
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Fig. 2.4 Map of the portion of the Barcelona WTN

Fig. 2.5 Conceptual model of portion of Barcelona WTN
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2.4 Water Distribution Network

The water distribution network of Barcelona (WDN) is organized in different pres-
sure levels that supply water to the district metered areas (DMA). The elements of
pressure levels and DMA are slightly different, and thus, it is worth to analyse them
separately and highlight the chapters related to each of these systems. The organiza-
tion of water distribution networks in DMA started in UK in 1980s and demonstrated
to be a keystone for the performance improvement of networks. Both control and
supervision benefit from the information provided by these units. Current research
focus especially on the performance within these subsystems. In Barcelona, each
sector (DMA) has the following configuration (see Fig. 2.6):

• One or two control points. In each of them, there is a continuous flow and pressure
measurement (1 value/10min) and, optionally, a pressure reducing valve.

• Optionally, one water quality control point, with the measurement of free residual
chlorine, conductivity, pH and temperature (1 value/hour).

• Optionally, some internal pressure points (1 value/10min).
• Some boundary closed valves.
• A data logger with a modem to get the signals from the field equipment and daily
transmit data to the control centre.

Regarding customers consumption, there is a water meter for each customer.
Some of them have automatic meter reading (AMR) and there is one sector with

Fig. 2.6 Standard configuration for a DMA in Barcelona
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a 100% of AMR that can provide detailed information about all the customer’s
consumption (hourly value). The control applied to the DMA is rather simple and its
aim is to assure the supply with a guaranteed pressure. Nevertheless, the modelling
of both hydraulic and chemical, presented in Chaps. 3–6, provides a wide research
field in supervision. The efficiency of the DMA is assured in the simplest approach
by searching leaks on field using acoustic devices. This leak monitoring is slow
and costly and can be supported by more sophisticated methods. Chapter 8 presents
how leakage management can be improved in the distribution network. Also the
chlorine supervision based in models DMA includes some of the elements modelled
and calibrated in Chaps. 3–6. These models lead to better performance through the
supervision of the system. Two main issues in the water service that motivate this
supervision:

• The efficiency in terms of balance between water delivered and produced. Leakage
monitoring may be done on a routine basis or when major losses are suspected
between night and day water demands [5]. Methods for locating leaks range from
ground-penetrating radar to acoustic listening devices [4]. Some of these tech-
niques require isolating and shutting down part of the system. Techniques based
on locating leaks from pressure monitoring devices allow amore effective and less
costly search in situ [8].

Fig. 2.7 Level 55 of the
transport network

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_6
http://dx.doi.org/10.1007/978-3-319-50751-4_8
http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_6
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• The water quality in terms of assuring a good concentration of chlorine, the used
chemical for disinfection. A goodmodelling approach of the chlorine decay allows
to assure a correct concentration in all the service points in theDMAwhile reducing
the high concentrations at the input and the use of chemicals. These models are
used to detect abnormal situations related to this concentration [6].

Zone 55 is a part of the transport network presented in Sect. 2.4 and shown in
Fig. 2.7. Its two inflows (Cantabria and Drassanes) and four outflows (Llull, Alaba,
Joan de Borbó and Passeig Colon) have chlorine monitors. These chlorine measure-
ments and the little meshing of the network make it quite suitable for the calibration
of the chlorine decay model. This model is used within one of the DMAs that obtain

Fig. 2.8 Nova Icària DMA. In red, the two inflows, (flow and pressure sensors) and in green, the
inner pressure sensors
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the water from this zone, Nova Icària. This DMA has two inlets (Alaba and Llull),
1996 nodes and 3442 pipes. In Fig. 2.8, the water network of Nova Icària DMA can
be seen from the EPANET file which contains the hydraulic model of this network.
In this figure, the two DMA inlets have been highlighted using red star symbols.
Nova Icària DMA is instrumented by flow and pressure sensors at every inlet. The
sample time associated with all these sensors is set to 10min. The results of the chlo-
rine model calibration and its application for supervision are presented in Chap.8.
Six pressure sensors were installed for the leak detection and localization, they are
highlighted in Fig. 2.8 using green star symbols. The methodology applied and the
results in a pilot test with a real leak are described in Chap.7.

A smaller DMA is used for illustrating the modelling, sample design and cal-
ibration procedures in Chaps. 4 and 5. Canyars DMA is situated in Castelldefels
(Catalonia). The network model is composed of 721 pipes and 698 junctions. Water
is supplied from the transport network through a pressure reduction valve, depicted
in Fig. 2.9 with a blue triangle. Pressure and flow are monitored at the water inlet
with a sample time of 10min. The resolution is 0.3 l/s for the flow sensor, and 0.1
mwc for the pressure sensor. The minimum night flow is of about 3 l/s, and the peak
hour flow is 27 l/s. Pressure control is applied to this network, fixing the pressure
level at 38 metres during night-time and at 47 metres during daytime. The average
daily maximum head loss in the network is 13.4 m. Three pressure sensors were
installed, signalled in Fig. 2.9 with green stars.

Fig. 2.9 Canyars DMA. In
blue triangle, the inflow
(flow sensor and pressure
control), and in green stars,
the inner pressure sensors

http://dx.doi.org/10.1007/978-3-319-50751-4_8
http://dx.doi.org/10.1007/978-3-319-50751-4_7
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_5


2 Case Studies 31

2.5 Software

The simulator used for the state estimation in the network throughout this book is
EPANET.1 EPANET is a widely used software in the academia to model water distri-
bution piping systems. It is a public domain software that may be freely copied and
distributed. It was developed by the US Environmental Protection Agency (EPA).
EPANET performs extended period simulation of the water movement and quality
behaviour within the pressurized pipe network as the transport and distribution net-
works. It tracks the flow of water in each pipe, the pressure at each node and the
height of the water in each tank. The EPANET-MSX is the multi-species extension
that allows prediction of chemical concentration throughout the network during a
simulation period, water age, source and tracing. The use of the EPANET Program-
mer’s Toolkit is a dynamic link library (DLL) of functions that allow developers
to customize EPANET to their own needs. The functions can be incorporated into
Windows applications written in C/C++, Delphi, Pascal, Visual Basic or any other
language that can call functionswithin aWindowsDLL. In theCS2ACwebpage ([3]),
the adaptation forMATLAB (both 32 and 64-bit) is available. The combination of the
power of simulation of EPANET together with the analytics of MATLAB allowed
the application of the sophisticated algorithms described in following chapters.

Additionally, a simulator of the Barcelona water transport network has been built
using MATLAB/Simulink and validated using real data coming from real scenarios
(seeFig. 2.10). Thismodel has been acceptedby the companyas agood representation
of the actual water network behaviour and is used for its operational control [7] in
Chap.12, e.g., optimize water production and transport costs, guarantee a minimum
volume in the tanks for eventual emergencies and smooth operations of the actuators
to extend the life of the equipment. The network block is composed by different
elements (blocks), such as tanks, nodes, pumps, valves and demands. Each demand

Fig. 2.10 Main Simulink screen of the Barcelona network simulator

1https://www.epa.gov/water-research/epanet.

http://dx.doi.org/10.1007/978-3-319-50751-4_12
https://www.epa.gov/water-research/epanet
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Fig. 2.11 MATLAB/Simulink Barcelona supply network simulator graphical user interface with
a fault module

of this supply network is actually a district metered area of hundreds to thousands of
users. Also, each actuator may integrate several pumps or valves working in parallel.

This simulator is equippedwith a faultmodule (seeFig. 2.11) that allows to provide
synthetic scenarios of the network under study and to design and test new control
schemes and fault detection and identification (FDI) approaches as the one presented
in Chap.11 as well as the fault-tolerant control strategies presented in Chap.14.
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Chapter 3
Modelling and Simulation
of Drinking-Water Networks

Ramon Pérez and Gerard Sanz

3.1 Introduction

Models allow us to simulate the behaviour of WDN for many purposes: network
optimization, background leakage modelling and control, smart demand metering,
assessment, forecasting and management, asset management and performance mod-
elling, real-time monitoring, modelling and control, network vulnerability, reliabil-
ity, resilience and risk analysis, leakage and energy management, transient analysis,
water quality, contaminant intrusion andwater security, network operation andmain-
tenance, etc. The type of model adopted depends on its intended use.

Water distribution network models can be classified depending on the dynamics
involved: dynamic models and static models. Some WDN models characterize the
transients in pipes, valves and pumps [1]. The analysis of transients is used to know
the dynamic behaviour of the network. Dynamic models have been used for multiple
objectives. In [2], these models are used for calibration of roughness, whereas in [3]
the inverse transient models are used for leakage detection. The main drawbacks of
dynamic models are the need of huge amounts of data, and the high computational
power required.

Steady-state models are the most used in water companies for design, supervision
and control. Steady-state simulations allow to determine the operating behaviour of
a system under static conditions: fixed set of reservoir levels, tank levels and water
demands. Steady-state simulations can be concatenated during the time to generate
extended period simulations (EPS), where the only dynamics involved are the ones
coming from tanks filling or emptying.
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Generally, water network models are automatically generated from geographic
information system (GIS). This direct translation generates a model with a huge
number of elements which do not have any impact on the network behaviour. The
main aim of a reduced model is to preserve the nonlinear hydraulic behaviour of
the original network and approximate its operation accurately under different con-
ditions. There are different methods for reducing the complexity of the model, such
as skeletonization, decomposition, usage of artificial neural networks (ANNs) meta-
model or variables elimination.

Skeletonization is the process of selecting for inclusion in the model only the
parts of the hydraulic network that have a significant impact on the behaviour of the
system [4]. The level of skeletonization depends on the intended use of the model.
The reduced models have been called “surrogate networks” or “grey boxes” [5]. In
the first study of skeletonization [6], the authors systematically removed pipes from
amodel and the sensitivity of results. Brandon [7] suggested three heuristic rules that
can be used to carry out the skeletonization process: (1) relatively small demands
along any pipe were added to the node at the end of the pipe; (2) pipes with small
diameters are eliminated, and the area that is fed by them is represented by a single
node; and (3) a group of adjacent nodes with similar pressures is reduced to one
node. Hamberg and Shamir [8] proposed an approach for reducing the size of the
models for the preliminary design phase based in a step-wise combination of the
system elements. Salarriaga et al. [9] skeletonized the network using the resilience
concept. Walski et al. [4] proposed an automated skeletonization process.

Swamee and Sharma [10] proposed a simplification of the network by decompos-
ing it in subsystems with one input in order to reduce the computational cost of the
design of theWDN. The network reduction process can be treated as a decomposition
of the network graph according to its connectivity properties [11].

A parameter fitting approach is presented in [12]. They reduced the network by
calculating two parameters’ vectors representing the nodal demands and the links
conductances. An objective function was formulated for maximizing the accuracy
of the simplified network. ANNs can capture the domain knowledge of hydraulic
simulation model for predicting the consequences of different control settings on the
performance of the WDN [13]. A systematic methodology using metamodels and
ANNs is presented in [14].

Variable elimination is based on a mathematical formalism. Some of the system
variables can be eliminated from the system of nonlinear differential equations that
represent the mathematical model. An extended version of [15] is presented in [16],
proposing an algorithm involving linearization, Gaussian elimination and a recon-
struction of a reduced nonlinear model. The latter algorithm was implemented for
integration of the model reduction module with an online optimization strategy [17].

3.2 Problem Statement

The set ofmethodologies presented in this book require themodelling and simulation
of theWDNto achieve their objectives: parameter estimation, leakmonitoring, sensor
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placement, predictive control, etc. Transient models provide a good representation
of the dynamic behaviour of the network elements, but require a huge amount of data
and are computationally expensive. When the number of pipes, pumps and valves
increases, the network tends to become steadier and the transients lose importance.
Furthermore, the used sensors’ sampling times (>10min) tend to be much higher
than the network elements’ dynamics (≈1min), as WDN are pressurized systems.

This introduces the modelling of water distribution networks, focusing on the
approach adopted by most of the authors on this book. Computer-based supervision
and control applications in huge networks assume that the network behaviour is
described by steady-state models concatenated in an extended period simulation
(EPS) [4, 18]. This book considers this type of model for the benefits presented.

3.3 Proposed Approach

WDN models are composed of links connected to nodes. The behaviour of each of
the elements is described by flow in links, and head in nodes. Head in a node is
equivalent to the sum of the node pressure plus the node elevation, i.e., the height
to which water would rise in an open-ended vertical pipe installed at the considered
point.

Nodes represent junctions, tanks and reservoirs. Junctions are points where links
join together and where water enters or leaves the network. Tanks are nodes with
storage capacity, where the volume of stored water can vary along time during a
simulation. Finally, reservoirs represent infinite external source or sink of water
to the network. They are used to model lakes, rivers, transport networks, etc. As
reservoirs are boundary points, their head cannot be affected by what happens within
the network.

Links represent pipes, pump stations and control valves. Links are assumed to be
always full of water, as pressurized networks are here considered. Pipes are links
that convey water from one point in the network to another. Pumps provide energy
to water, thereby raising its hydraulic head. Finally, valves are links that limit the
pressure or flow at a specific point in the network. There are different types of valves:
pressure reducing valve, flow control valve, pressure sustaining valve, etc.

3.3.1 Hydraulic Equations

The governing laws for flow in WDN under steady conditions are conservation of
mass and energy. The law of mass conservation states that the rate of storage in
a system is equal to the difference between the system’s inflow and outflow. In
pressurized WDNs, no storage can occur within the pipe network, although tank
storage may vary over time. Therefore, in a pipe or a junction node, the inflow and
outflow must be balanced. For a junction node,
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∑

j∈Ji

q j = di , (3.1)

whereJi denotes a set of pipes connected to node i , q j is the flowof pipe j connecting
with node i , and di is the consumption of node i . Equation (3.1) can be represented
in matrix form as:

B · q = d, (3.2)

where B is the incidence matrix that defines the connections between nodes and
pipes. Coefficient bi j indicates if pipe j is connected to node i :

• 1 if flow of pipe j enters node i .
• 0 if pipe j and node i are not connected.
• −1 if flow of pipe j leaves node i .

The energy conservation law states that the difference in energy between two
nodes is equal to the energy added to the flow in the components between these
points minus the frictional and minor losses. The relationship between pipe flow and
energy loss caused by friction in individual pipes can be computed using one of three
formulas: Hazen–Williams, Darcy–Weisbach and Chezy–Manning [4]. The general
relationship is of the form:

�hi j = hi − h j = Ri j · qri j , (3.3)

where �hi j is the head loss in pipe connecting nodes i and j ; Ri j is the resistance
coefficient that depends on the pipe’s diameter, length and roughness; qi j is the pipe
flow rate; and r is the flow exponent. Expressions for the resistance coefficient and
values for the flow exponent for each of the mentioned formulas are listed in [19].
The matrix representation of Eq. (3.3) is:

− BT · h = Rqr , (3.4)

whereR is a diagonal matrix with the resistances Ri j and h is a vector with the nodes
head loss.

The energy balance for any path can be expressed as

∑
�hi j = δEp, (3.5)

where δEp denotes the energy difference between the starting and final nodes of the
path p. The summation is carried out over all links of the path. For loops, δEp = 0,
as the starting and ending node is the same.

The head-flow relationship (3.3), according to the Hazen–Williams formula

hi − h j = 10.7 · L
C1.852 · D4.87

· q1.852
i j , (3.6)
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where L and D are the length and diameter (inm) of the pipe connecting both nodes,
and C is the pipe roughness. The flow can be isolated, that is,

qi j = G0.54
i j (hi − h j )|hi − h j |−0.46, (3.7)

where Gi j is the pipe conductivity, calculated as

Gi j = 1

Ri j
= C1.852 · D4.87

10.7 · L . (3.8)

A diagonal matrix C containing the nonlinear parameter of each pipe can be
defined as

cpp = G0.54
i j |hi − h j |−0.46, (3.9)

where cpp is the nonlinear coefficient for pipe p, which connects node i with node j .
By means of this matrix, the head-flow equation can be transcribed in matrix form
as

q = −C · BT h. (3.10)

The negative sign comes from −BT , as water flows through pipes always from the
node with higher head to the node with lower head.

Finally, the matrix form of the equations governing the water distribution system
can be obtained by joining (3.2) and (3.10), yielding

− B · C · BT · h = d. (3.11)

The system (3.11) is nonlinear due to the nonlinear elements in matrix C. If
all heads or flows are known, the system can be directly solved and demands can
be computed. However, the inputs in the real system are demands (together with
information from fixed head nodes, valves set points, among others).

3.3.2 Water Consumptions

Once the WDN model is available, a demand model has to be defined. Nodes in
WDN models represent an aggregation of multiple users. Each of these users may
be of different types, e.g., domestic and commercial. Users of the same type are
usually assumed to consume water in the same way, following a predetermined
diurnal demand pattern. The consumption of each user is computed by multiplying
the pattern coefficients with the user’s base demand, i.e., the user’s average water
consumption, computed from billing information. Once this is done, demands that
are associated with a certain network node are aggregated, resulting in the total nodal
consumption at a given point in time. To simplify, the demand at a network node,
assuming a single user per node, is computed as
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di (k) =
∑ bdi∑nd

j=1 bd j
· pa→i (k) · qin(k), (3.12)

where bdi is the base demand of node i , nd is the number of nodes in the network,
pa→i is the value of diurnal pattern a associated with user i and qin(k) is the total
network consumption metered at sample k.

However, the information on different types of users associated with a given
network node and their diurnal patterns is not always available in practice. Quite
often, the only information available is the consumption aggregated during a period
of time (usually monthly or quarterly). This low temporal resolution information
regarding the demands can still be used to compute the base demand of each user.
The base demand of a node is computed from the sum of the base demands of
consumers aggregated in this node. The basic model presented in (3.13) uses the
nodal base demands, together with the total network consumption metered at the
network inputs, to calculate the instantaneous demand of each node at each sample,
that is,

di (k) = bdi∑nd
j=1 bd j

· qin(k). (3.13)

The approach presented in (3.13) considers that all demands have the same behav-
iour, which is determined by qin . Besides, the basic demandmodel cannot explain the
daily variation of the relative pressure behaviour between two areas in the network.
This book proposes a new approach to model nodal demands depending on their
geographic location by means of the calibration of demand components. A detailed
explanation is presented in Chap.5.

Ideally, if individual meter readings are taken for every customer, they should be
exactly equal to the amount of water that is measured leaving the treatment facility.
In practice, however, this is not the case. Although inflow does indeed equal outflow,
not all of the outflows are (or could be) metered. These “lost” flows are referred to
as unaccounted-for-water (UFW) and can be assigned to leakage, theft, unmetered
services or other causes. Leakage is frequently the largest component of UFW and
includes distribution losses from supply and distribution pipes, trunk mains, services
up to themeter and tanks. The amount of leakage varies depending on the system, but
there is a general correlation between the age of a system and the amount of UFW.
Newer systems may have as little as 5% leakage, while older systems may have
40% leakage or higher. Leakage tends to increase over time unless a leak detection
and repair programme is in place (see Chap. 7). There are some methodologies to
study the UFW by means of the minimal night flow [20] and the DMA performance.
If better information is not available, UFW is usually spread uniformly around the
system (in spatial and temporal terms). If UFW is reduced, then the utility will see
higher peaking factors because UFW tends to flatten out the diurnal demand curve.

Leaks in this book are assumed to be located at the nodes of the network. This
simplification implies a loss of accuracy of the order of the pipe length. Such simpli-
fication can be assumed if the maximum localization error required is greater than
this length [21]. In order to simulate a leak, an emitter coefficient Ce is set in a node

http://dx.doi.org/10.1007/978-3-319-50751-4_5
http://dx.doi.org/10.1007/978-3-319-50751-4_7
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so that the leak size generated depends on the pressure of that node [19] as follows:

fi = Ce · pγ

i , (3.14)

where fi is the leak water discharge at node i ; Ce is the emitter coefficient; pi is
the pressure at the node i ; and γ is an exponent of about 0.5 (Hazen–Williams,
Darcy–Weisbach, Chezy–Manning formulas [19]).

3.3.3 Network Equations Solver

Simulating thewater networkmodel consists of determining the instantaneous values
of nodes’ heads and pipes’ flows in the network under given boundary conditions
(demands, control variables, reservoir heads, tanks levels, etc.). A key property of
the nodal model is that it possesses a solution and the solution is unique [18]. Due
to the nonlinear equations of the water distribution network, the solution requires
the application of an iterative technique. These techniques estimate a solution and
then improve it iteratively until the difference between the solutions falls within a
specified tolerance. Examples of these techniques can be found in [22–26]. The most
popular solver is obtained as a result of the application of the Newton–Raphson
algorithm.

3.3.4 Chlorine Decay Modelling

Chlorine is the most popular water treatment disinfectant in municipal water distri-
bution system. Chlorine is an oxidizing agent and it decays with time. Therefore,
a minimum level of chlorine residual must be maintained in the distribution sys-
tem to preserve both chemical quality and microbial quality of treated water [27].
In water distribution systems, chlorine decays over time as it reacts with organic
materials in the water. A number of models have been developed to predict chlo-
rine decay in drinking-water networks [28–30]. Generally, they can be divided into
first-order and non-first-order reaction kinetic models. The first-order decay model
has been mostly used because of its simplicity and its reasonable accuracy to repre-
sent chlorine decay in water systems. The first-order chlorine decay model includes
expressions to describe reactions occurring in the bulk fluid and at the pipe wall. The
differential form of the decay model is given by

dC(t)

dt
= −kS · C(t), (3.15)

where kS is the decay rate and C(t) is the chlorine concentration at a certain time t .
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A second-order chlorine decay model based on the concept of competing reacting
substances is developed in [30], while in [31], a semi-empirical combined first-
order and second-order model is proposed, which provides a good description of the
chlorine decay as follows:

dC(t)

dt
= −kR · C(t)2 − kS · C(t), (3.16)

where the decay constants kR and kS are determined by deriving the best fitting of
(3.16) with the experimental data. In Chap. 8, both models are calibrated, the results
of calibration are compared with the real data and the resulting models are used for
the quality monitoring of the network.

3.3.5 Network Skeletonization

Network skeletonization consists in selecting for inclusion in the model only the
parts of the hydraulic network that have a significant impact on the behaviour of the
system [4]. The level of skeletonization depends on the intended use of the model.
Network skeletonization is proposed in this book for the following twomain reasons:

• Reduction of the computational time,
• Elimination of mathematical inaccuracies.

For the first item, it is mandatory for many methodologies to be executed in real
time. The number of elements in the WDNmodel is directly connected with the size
of the matrices involved in the calibration problem, leak detection, etc., as well as
the model inputs to be fixed before executing one simulation run. The reduction of
the network model elements directly impacts on the computational time required for
each of these processes.

On the other hand, network skeletonization helps to avoid mathematical problems
in the computation of matrix C, whose parameters are calculated as shown in (3.9).
When the flow through a pipe is null, the head loss on this pipe is zero, according to
(3.3)

hi − h j = Ri j · qi j · |qi j |0.852 = Ri j · 0 · |0|0.852 = 0. (3.17)

However, if (3.11) is used, matrix C is used to calculate the flow from the head loss,
turning the previous equation into (3.9), where if the head loss is null, that is,

cpp = G0.54
i j |hi − h j |−0.46 = G0.54

i j |0|−0.46 = ∞. (3.18)

Consequently, an infinite value appears in matrix C, making the calculation of C−1

not possible. An intuitive solution is to replace this infinite value for a quite high
one. However, the replacement of the infinite values may cause some inaccuracies
in the results. Going in depth into the problem, the topology of the network seems
to be the main cause, hence

http://dx.doi.org/10.1007/978-3-319-50751-4_8
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– nodes connected with extremely short pipes that have a quite low resistivity factor
may generate null head losses,

– series pipes which connect a null demand node.

The application of network skeletonization techniques eliminates these problems
while keeping the same (or quite similar) hydraulic behaviour of the network model.
As discussed in the introduction of this, there exist many network reduction tech-
niques. In this book, skeletonization based on the steps listed in [4] is used:

– Removing simple pipes: Pipes are removed from the system based on the size
or other criteria without any consideration of their effects on demand loading or
hydraulic capacity.

– Removing branch pipes: Dead-end branches not containing tanks are trimmed
back to a node that is part of a loop. This type of removal has no effect on the
carrying capacity of the remainder of the system.

– Removing pipes in series: Pipes connected in series are replaced by an equivalent
pipe which produces the same head loss. Removed nodes split their demands
between the twonodes at the ends of the resulting pipe.A cut-offmaybe considered
in order not to remove nodes with large demands.

– Removing parallel pipes: As in the previous case, an equivalent pipe replaces the
parallel ones. New pipe’s parameters have to be calculated. No effect on demands
is produced in this process.

– Removing pipes to break loops: Pipes with the lowest carrying capacity are
removed for breaking loops. This action produces a loss of the system capacity.

Non-pipe elements can also be removed but with some considerations [4]. Using
these basic steps, automated skeletonization reduces the network until a stopping
criterion defined by the user are achieved. This stopping criteria are chosen depending
on the use of the model.

First, a basic skeletonization processwhich does not affect the hydraulic behaviour
is performed:

1. Pairs of pipes connecting a null demand node are joined together.
2. Extrenal nodes connected by a unique pipe to the network are reduced.
3. Parallel pipes are replaced by a single equivalent pipe.

This reduction does not affect the hydraulic behaviour of the network.The second step
consists in the reduction of short pipes with low resistivity factor. This modification
may affect the hydraulic behaviour, depending on the intended use of the model.
In this process, pipes with a resistivity factor lower than a specified threshold are
reconstructed. The parameters of the pipe connected to the n − 1 deleted pipes are
recalculated, as follows:

Cr = (
Lr

D4.87
r

)0.54(

n∑

i=1

Li

D4.87
i C1.852

i

)−0.54, (3.19)
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where Cr is the roughness of the new pipe; Lr is the length of the new pipe, equal
to

∑n
i Li ; Dr is the diameter of the new pipe; and Li , Di and Ci are the length,

diameter and roughness of pipe i , respectively. The pipes i include the deleted and
the updated pipe.

The process is performed iteratively, calculating the resistivity of each pipe of
the network, assessing if the value is beyond a defined threshold and, if necessary,
eliminating the pipe and reconnecting and re-parametrizing the appropriate elements
of the network.

3.4 Simulation and Results

In this section, three examples are presented to illustrate themodelling and simulation
of WDN. First, a simple network is presented to exemplify the construction of the
matrix model containing the network equations. The DMA model of Nova Icària,
presented in Chap.2, is skeletonized and the hydraulic behaviour is analysed. Finally,
theDMAmodel ofCanyars, presented inChap.2, is simulated using the basic demand
model of (3.13).

3.4.1 Matrix Model

The academic network is depicted in Fig. 3.1. It is a small network with six junctions
and seven pipes. Water is supplied from a transport network through two pressure
reduction valves. The transport network is represented by two reservoirs.

Fig. 3.1 Academic network

http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_2


3 Modelling and Simulation of Drinking-Water Networks 47

The flow continuity law defined in (3.1) states that the sum of inflows and outflows
in every non-storage node is equal to zero. For the network in Fig. 3.1, the following
equations can be written:

−qPRV 1 = dr1 ,

−qPRV 2 = dr2 ,

qPRV 1 − q12 − q14 = d1,

q12 + q52 + q32 = d2,

qPRV 2 − q32 − q36 = d3,

q14 − q45 = d4,

q45 + q65 − q52 = d5,

q36 − q65 = d6,

where dr1 and dr2 are negative demands equal to the flows through PRV1 and PRV2.
These eight equations can be easily presented in matrix form as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

-1 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0
1 0 -1 -1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 1 0 0 -1 0 -1 0 0
0 0 0 1 0 0 0 -1 0
0 0 0 0 0 -1 0 1 1
0 0 0 0 0 0 1 0 -1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

qPRV1

qPRV2

q12
q14
q32
q52
q36
q45
q65

=

dr1
dr2
d1
d2
d3
d4
d5
d6

. (3.20)

The matrix representation of the flow equations automatically generates the afore-
mentioned incidence matrix B in (3.2).

The energy conservation equations for the seven pipes of the network in Fig. 3.1
can be written as

q12 = G0.54
12

|h1 − h2|−0.46(h1 − h2),

q14 = G0.54
14

|h1 − h4|−0.46(h1 − h4),

q32 = G0.54
32

|h3 − h2|−0.46(h3 − h2),

q52 = G0.54
52

|h5 − h2|−0.46(h5 − h2),

q36 = G0.54
36

|h3 − h6|−0.46(h3 − h6),

q45 = G0.54
45

|h4 − h5|−0.46(h4 − h5),

q65 = G0.54
65

|h6 − h5|−0.46(h6 − h5),
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where the nonlinear elements G0.54
i j |hi − h j |−0.46 will be referred as βi j . The same

equations can be written for the two pressure reduction valves, adding a control
parameter Vi j . In this case, βPRV 1 and βPRV 2 include the control parameter. Moreover,

qPRV 1 = VPRV 1 · βPRV 1(hr1 − h1),

qPRV 2 = VPRV 2 · βPRV 2(hr2 − h3).

The latter equations can be easily expressed in matrix form as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qPRV 1

qPRV 2

q12
q14
q32
q52
q36
q45
q65

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βPRV 1 0 0 0 0 0 0 0 0
0 βPRV2 0 0 0 0 0 0 0
0 0 β12 0 0 0 0 0 0
0 0 0 β14 0 0 0 0 0
0 0 0 0 β32 0 0 0 0
0 0 0 0 0 β52 0 0 0
0 0 0 0 0 0 β36 0 0
0 0 0 0 0 0 0 β45 0
0 0 0 0 0 0 0 0 β65

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 –1 0 0 0 0 0
0 1 0 0 -1 0 0 0
0 0 1 -1 0 0 0 0
0 0 1 0 0 -1 0 0
0 0 0 -1 1 0 0 0
0 0 0 -1 0 0 1 0
0 0 0 0 1 0 0 -1
0 0 0 0 0 1 -1 0
0 0 0 0 0 0 -1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hr1
hr2
h1
h2
h3
h4
h5
h6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.21)

3.4.2 Skeletonization

The high number of junctions and pipes in the network model increases considerably
the computational effort required when applying any methodology using it. In the
Nova Icària network case study, the skeletonization process presented in Sect. 3.3.5 is
applied, considering only those reductions that do not affect the hydraulic behaviour
of the network.

Figure3.2 depicts the original model and the reduced model. The number of
junctions has been reduced from 3377 to 1520 (45%), and the number of pipes
from 3455 to 1644 (47.5%) (Table3.1). The reduced model has been evaluated by
comparing the pressures in the 1520 remaining nodes with the same nodes in the
original networkmodel. The highest pressure error during 144 samples (one day,with
a sampling time of 10min) is 3 × 10−6 mWC (meter water column), significantly
lower than the sensors’ resolution (0.1 mWC).

Table 3.1 Nova Icària
network elements reduction
through skeletonization

Original Reduced Reduction (%)

Junctions 3377 1520 45

Links 3455 1644 47.5
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(a) (b)

Fig. 3.2 Nova Icària network original and reduced EPANET models

3.4.3 Simulation

As it has been explained in previous sections, the solution of the sets of equations of
the water distribution network allows to generate simulated predictions of the state
of the network. Although the network solver can be manually implemented, there
already exists many simulation-based software tools that ease this task. In this book,
as stated in Chap.2, EPANET is used.

As an illustrative example, the Canyars network, presented in Chap.2 is simu-
lated considering the basic demand model presented in (3.13). Figure3.3 shows the
pressure prediction error in the three available sensors (RE31, RE32 and RE33)
when using the basic demand model. The blue thin line corresponds to the raw error
using all data, and the red thick line represents the smoothed error, which has been
computed by means of a smoothing spline. The green dashed line corresponds to
the mean pressure prediction error. This error is treated as an offset that cannot be
associated to the demand model. As suggested in [21], the offset has to be corrected
to eliminate possible depths’ errors, model nodes’ elevations inaccuracies or badly
calibrated sensors’ offsets. Table3.2 contains the specific correction for each sensor.

Figure3.3 shows that the pressure prediction error when using the basic demand
model follows the profile of the daily total consumption, as this demand model is not
able to assign a different behaviour to each zone of the network. The prediction error

http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_2
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Fig. 3.3 Canyars network
pressure prediction error in
the three installed sensors
during the precalibration
week using the basic demand
model. The blue thin line
corresponds to the raw error,
the red thick line corresponds
to the smoothed error
computed by means of a
smoothing spline, and the
dashed green line
corresponds to the mean
error

(a)

(b)

(c)

Table 3.2 Canyars sensors’
sampling times (min), and
offset corrections (metres)

Sensor ID RE33 RE31 RE32 (%)

Sampling Time (min) 10 30 10

Offset correction (m) 0.19 0.05 0.4

can be improved by using of the demand components model (see Chaps. 4 and 5),
which allows havingmultiple demand behaviours depending on the location of nodes
in the network.

3.5 Conclusions

The equations presented in this chapter the steady-state model generally used by
companies for the monitoring of the WDNs. These equations are a simplification
since they do not take into account the transient. This approximation is justified both

http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_5
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by the time constant of these transients and the complexity of including them in the
computation. Even these steady-state models are often simplified following a skele-
tonization process that affects, when correctly applied, minimally to the hydraulic
accuracy. The matrix formulation presented in this chapter is much convenient for
the analysis of the network as it will be shown in Chap.4. One of the main issues
in all the networks is to calibrate the model if it has to be exploited. Demand cali-
bration procedures are research topics of high interest as explained and illustrated in
Chap.5. In the following, the WDN models are intensively used for the monitoring
and control of the networks with innovative methodologies.
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Chapter 4
Parameter Estimation: Definition
and Sampling Design

Gerard Sanz and Ramon Pérez

4.1 Introduction

According to [48], calibration “consists of determining the physical and operational
characteristics of an existing system and determining the data that when input to the
computer model will yield realistic results”. In [2], the authors used the word verified
in place of calibrated but described a process of calibration: “System simulation is
considered verified during preliminary analysis for design when calculated pressures
are satisfactorily close to observed field gauge readings for given field source send-
out and storage conditions. If simulation is not satisfactory, the possibility of local
aberrations, such as open boundary valves, is investigated. In the absence of other
expected causative factors, the assumed local arterial network loads are adjusted
until computed and observed field pressures are within reasonable agreement for
various levels and extremes of demand, pumping, and storage”.Walski [51] proposed
a more precise definition: “Calibration of a water distribution model is a two step
process consisting of: (1) Comparison of pressures and flows predictedwith observed
pressures and flows for known operating conditions (i.e., pump operation, tank levels,
pressure reducing valve settings); and (2) adjustment of the input data for the model
to improve agreement between observed and predicted valves. Amodel is considered
calibrated for a set of operating conditions and water uses if it can predict flows and
pressures with reasonable agreement”.

A high degree of interest in this topic has been shown by researchers [47], but it
has been considerably less covered by practitioners. A number of questions have to
be answered, such as: (1) What parameters can be calibrated with confidence? (2)
What is the acceptable level of discretization of calibration parameters and what is
the acceptable level of agreement between measurements and model outputs? (3)
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How to parameterize the model when insufficient data are available? and (4) What
objective function type to use?

Orsmbee [33] suggested a seven-step general calibration procedure as follows: (1)
identification of the intended use of the model; (2) determination of initial estimates
of the model parameters; (3) collection of calibration data; (4) evaluation of the
model results; (5) macro-level calibration; (6) sensitivity analysis; and (7) micro-
level calibration.

One of the most important issues in model calibration is the determination of
the purpose of the model [53]. Seven possible purposes of a network model were
identified as follows: pipe sizing for master planning, extended period simulations
for planning studies, subdivision layout, rehabilitation studies, energy usage studies,
water quality models and flushing programmes. In [50], a real system is modelled
for daily pump scheduling and system expansion design to examine the impact of
model purpose on the calibration process.

Battle of the water calibration networks is summarized in [34], the goal of this
competition was to objectively compare the solutions of different approaches to the
calibration ofwater distribution systems through application to realwater distribution
system. Interesting references have been extracted from this work and future work
is well pointed:

• Due to the inherently ill-posed or under-constrained calibration problem inWDN,
the solutions that provide a goodmatch betweenmeasured andmodelled data have
to be validated with extra data.

• Uncertainty has to be included in the model parameters to explore the influence
on the calibrated model outputs.

• Calibration size problem reduction is an important factor to be considered to avoid
model overfitting, avoid unnecessary simulations or reducing the search space.

• Leakage data may be included in hydraulic calibration efforts because leakage
directly affects nodal demand allocation and pump curve characterizations.

• The effect of different field data on model calibration should be investigated (use
of flow and/or pressure measurements).

In [52], the author described the importance of good data collection. In [54], the
same author classified data into three different degrees of usefulness:

• Good data are collectedwhen there is sufficient head loss to draw valid conclusions
about model calibration. It is necessary to have head loss in the system that is
significantly greater than the error in measurement to avoid random adjustments
[55].

• Bad data contain errors because of misread pressure gauge, incorrectly determined
elevation of the pressure gauge or lack of information about which pumps were
running when calibration data were collected. This type of data should be dis-
carded.

• Useless data are collected when the head loss in the system is so low that head loss
and velocity are of a similar order of magnitude as the errors in measurements.
Such data can produce misleading models.
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Ahmed et al. [1] developed a heuristic three-step procedure to assist in identifying
the conditions under which useful data (good data) should be collected. The issue of
data quality and quantity is closely related to that of sampling design, which will be
addressed later in this chapter.

Formulas may assist the user in deciding whether to adjust roughness or water use
and by how much [51]. They are based on fire flow test. To correct for inaccuracies
in input data, it is necessary to first understand the sources of these inaccuracies.
These can be grouped into several categories: (1) incorrect estimate of water use;
(2) incorrect pipe carrying capacity; (3) incorrect head at constant head points (i.e.,
pumps, tanks, pressure reducing valves); or (4) poor representation of system in
model (e.g., too many pipes removed in skeletonizing the system). The major source
of error in simulation of contemporary performance will be in the assumed loadings
distributions and their variations. On the other hand, [15] states: “theweakest piece of
input information is not the assumed loadings condition, but the pipe friction factor”.
The certainties of a previous model must be stated so that the effort in calibration is
in the good direction.

The most important uncertainty sources are demands and model simplifications
[18], but uncertainty also originates from measurement errors, incorrect boundary
conditions, inherent model structural errors or unknown status of valves [20, 55].
The calibration in this and next chapters focuses on demands due to their daily vari-
ability and continuous evolution depending generally on social and climate factors
comparing to the more stable evolution of roughness.

The sensitivity matrix plays an important role in the solution of the direct/inverse
problem [58], as well as in many of the methodologies developed in this book. Some
of the existing general methods for the calculation of the sensitivity matrix are as
follows [22]: (a) influence coefficient method (or perturbation method), (b) sensi-
tivity equation method, (c) variational method (or adjoin method) and (d) automatic
differentiation method.

The influence coefficient method uses the concept of parameter perturbation.
At each simulation, one of the model parameters is perturbed [4], and the outputs
measured. This method can be easily implemented, though computationally slow
and relatively inaccurate when compared to other methods. N + 1 simulations are
required, where N is the number of parameters in the model.

In the sensitivity equation method, a set of sensitivity equations are obtained
by taking the partial derivatives with respect to each parameter in the governing
equation and initial and boundary conditions. The same number of simulation runs
as in the influence coefficient method is required. The method requires a solution
of the forward problem (heads and flows) prior to the determination of unknown
sensitivities. The calculated sensitivities are quite accurate [22].

The adjoin method computes relevant sensitivities once Lagrange multipliers are
determined from a set of adjoin equations, which are derived from the basic WDN
hydraulic model equations. This method also has a high accuracy and only requires
Ns simulation runs, where Ns is the number of selected model’s predicted variables.

The automatic differentiation method [19] is based on the differentiation of algo-
rithms. Despite the good accuracy and computational performance, it produces a
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lengthy and complex computer code and requires a large number of changes to the
source code of the appropriate hydraulic model [10].

Finally, amatrix analysis of theWDN linearizedmodel where only one simulation
is required at each iteration is proposed in [11].

The calculation of sensitivitymatrices can be computationally demanding, as each
element in the network generates an extra row or column in the matrix.

4.1.1 Identifiability

The calibration problem is often ill-posed. The ill-posedness is generally character-
ized by the non-uniqueness of the identified parameters. The uniqueness problem in
parameter estimation is intimately related to identifiability [58].

Observability and identifiability terms are sometimes confused. System observ-
ability determines if the state of a system, i.e., the system variables (head, flow), can
be estimated. On the other hand, system identifiability resolves if the parameters of
the system (consumptions, roughness coefficients) can be calibrated. In conclusion,
observability refers to system state (dynamic variables) while identifiability refers to
system parameters (assumed constant in a certain time horizon).

An important contribution to the solution of the observability problem was made
by [25], who formulated necessary and sufficient conditions for observability in
power system state estimation in terms of meter location and network topology.
According to their analysis, a network is observable if and only if it contains a
spanning tree of full rank. The same problem for water systems is formulated in [5].
The identifiability can be classified as static and dynamic [36]. In [9], the study of
identifiability is performed for the static problem using graph analysis based on [35].
The idea is that some operations in graphs are equivalent to operation on equations.

Conditions of identifiability for nonlinear dynamic systems can be found in the
literature. The state-space formulation by means of the dynamic information of the
system can be used [56]. For the linear case, the invertibility of the matrix of the
equations set was studied by [49].

The complexity of the transient equations in dynamic identifiability makes their
use difficult for real networks. The extended period identifiability is based on quasi-
static equations, which allows to use simpler equations related from one time step
to the next one by tank equations. The extended period identifiability is based on
the sensitivity matrix rank in both linear and nonlinear cases [36]. The author stated
that if many measurements are taken in the same conditions they will not add any
information (without increasing the rank of the sensitivitymatrix) but could be useful
for filtering the noise in the measurements.

In [46], identifiability of the calibration problem is assured by defining a set of
demand components to be calibrated that, considering the available measurements,
generates a full-rank sensitivity matrix. This new parameterization is suitable for
any element that abounds in a complex system. Both nodal demands and roughness
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of pipes are grouped [12, 26], and the hydraulic effects of roughness grouping are
thoroughly studied in [30].

4.1.2 Sampling Design

Calibration accuracy should be judged both by the model’s ability to reproduce data
and by a quantitative measure of the uncertainty in calibrated parameter values.
This uncertainty depends on the sampling design, including the measurement type,
number, location, frequency and conditions existing at the time of sampling [8].

In the literature, the sampling design is defined as the procedure to determine the
following [22]: (a) what WDN model predicted variables (pressures, flows, both,
etc.) to observe; (b) where in the WDN to observe them; (c) when to observe (in
terms of duration and frequency); and (d) under what conditions to observe.

In general, a sampling design may have one of the several purposes [29]: ambi-
ent monitoring, detection, compliance or research. Model calibration is considered
research sampling, where the objective is to identify accurately the physical parame-
ters of the system. A sampling design (SD) is a set of specified measurements, y, at
particular locations and times, along with the experimental conditions under which
measurements are made [8].

One of the first sampling designs [51] suggested: (a) monitor pressure near the
high demand locations; (b) conduct fire flow tests on the perimeter of the skeletal
distribution system, away from water sources; (c) use as large as possible test flows
at the fire hydrant; and (d) collect both head and flow measurements.

The importance of sensitivity in inverse problems comes from twoprimary reasons
[28]. First, the need for the measurements to be made at a location where they are
sensitive to the desired calibration parameters. Second, the degree of confidence that
one has in the result depends on the sensitivity. Different approaches for solving the
optimization problem have been developed. Usually, the main objective of finding
the best locations for sensors is combined with other objectives (i.e., devices’ cost).
Genetic algorithms (GA), sensitivity matrix analysis or heuristic methods are some
of the methodologies used.

The meter placement problem becomes a multi-objective optimization by seeking
the best solution in terms of estimation accuracy and metering cost [59]. In this
last reference, the authors developed a method employing dynamic analysis of the
covariance matrix of state variables and the decision trees technique.

The potential location of the sensors may be ranked according to their overall
relative sensitivity of nodal heads with respect to roughness coefficients [16]. Three
general sensitivity-based methods are proposed in [8], and they are derived from the
D-optimality criterion to rank the locations and types ofmeasurements for estimating
the roughness coefficients of a WDN model using pressure measurements, tracer
concentration measurements and a combination of both. The authors outlined that
the proposed methods, although suboptimal, may have some advantages over purely
statistical methods that lack a physical basis. These three sensitivity-based methods
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are compared for selecting the worthwhile pressure and flow sensors’ location in
WDNs for calibrating roughness coefficients [14].

Pinzinger et al. [42] proposed three algorithms based on integer linear program-
ming and greedy paradigm. The SD in [40] is formulated as an optimization problem
which minimizes the influence of measurement errors in the state vector estimation
subject to the constraint that the Jacobian matrix is of maximum rank. A greedy
algorithm was used, which selected at each iteration the optimal location of the sen-
sors. Some of the mentioned approaches used an iterative selection of the sensors,
adding one sensor at each iteration to the set of already located ones. However, [22]
demonstrated that the optimal set of locations for n monitoring points is not always
a superset of the optimal set for n − 1 monitoring points.

Sensitivity-based heuristic sampling design procedure forWDSmodel calibration
to identify preferable conditions for data collection is developed in [27] accounting
for uncertainty in measurements and its impact on both model parameters and pre-
dictions.

Three sampling design approaches are proposed in [13]. The first two were based
on the shortest path algorithm, and set sensors’ locations depending on the distance
between the source and the set of potential sensors nodes. The third approach solved
the optimization problem based on maximization of Shannon’s entropy, locating
sensors in the nodes with highest pressure sensitivity on roughness changes. The
sampling design cost was also taken into account.

GA can find the combination of fire flow test locations that, when analysed col-
lectively, stresses the greatest percentage of the hydraulic network, so the roughness
parameters of grouped pipes can be calibrated [31].Multi-objective sensitivity-based
methods for sampling design minimize both uncertainty and SD cost objectives [22,
24]. Model accuracy was maximized and formulated as the D-optimal criterion,
the A-optimal criterion and the V-optimal criterion. SOGA/MOGA (single/multi-
objective GA)were used and compared, leading to the conclusion that the advantages
inMOGAoutweigh its disadvantages. The Jacobianmatrix usedwas calculated prior
to the optimization model run by assuming the model parameter values. Opposed to
this deterministic approach, this latter assumption is handled by introducing para-
meter uncertainty using some predefined probability density function [6]. Results
in studied cases [23, 24] assessed that the calibration accuracy based on prediction
uncertainty (V-optimality) is preferred over parameter uncertainty (D-optimal and
A-optimal criteria). Similarly, D-optimality is preferred over A-optimality.

The sampling design is posed in [21] as a multi-objective optimization problem,
where the objective functions represented demand estimation uncertainty, pressure
prediction uncertainty and demand estimation accuracy. The optimization problem
was solved using MOGA based on Pareto-optimal solutions.

Not all sampling design approaches are addressed to parameter calibration. The
sampling design is often based on the model application, for example a leakage
detection methodology [37]. One sensor was located at each iteration of the pro-
cedure with the objective of minimizing the maximum number of nodes with the
same binary signature (which cannot be isolated separately). The pressure sensi-
tivity matrix analysis and an exhaustive search strategy produce an optimal sensor
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placement strategy [32]. Different sensor placement methodologies for demand cal-
ibration and leak detection are compared in [38]. Which performance criteria should
be considered to place water quality and quantity sensors for both early detection
and model calibration are investigated in [41].

4.2 Problem Statement

As explained above, the limited number of sensors together with the huge number
of parameters requires a grouping of the parameters to make the calibration viable.
In [44], the authors grouped demands depending on the type of user. Although good
results were obtained with synthetic data, the analysis presented in [45] encourages
the use of the demand components model.

The information extracted from the network depends on the type and location
of the sensors. Each new sensor represents an additional equation in the system of
equations to be solved. In order to have a determined system of equations, the number
of measurements (sensors) has to be at least equal to the number of parameters,
guaranteeing the system identifiability in the linear approximation.

In this chapter, a methodology both for the parameterization and the sampling
design is pursuit. The questions to be answered are as follows:

• How can a huge number of parameters be grouped so that the system becomes
identifiable with a reasonable number of field measurements?

• Where should these measurements be located so that a maximum of information
is extracted for the calibration?

• Both questions use the information available in the sensitivity matrix.

4.3 Proposed Approach

The singular value decomposition (SVD) is amatrix decompositionmethodwhereby
a general ny × nx system matrix A, relating model x and data y:

A · x = y, (4.1)

is factored into
A = U · � · VT , (4.2)

where U is a set of ny orthonormal singular vectors that form a basis of the measured
data vectorial space, V is a set of nx orthonormal vectors that form a basis of the
parameter vectorial space and � is an ny × nx diagonal matrix of singular values
of A, where the additional rows (more measurements than parameters) or columns
(more parameters than measurements) are filled with zeros [3].
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Fig. 4.1 λ singular values
from the SVD of a 10 × 10
example sensitivity matrix
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The SVD has many applications that can be useful for the parameter estimation.
The key step to ensure the success of the calibration is the grouping of nodal demands
into fewer parameters that, in the end, keep the network behaviour as close to the
original behaviour as possible. This grouping ensures the identifiability of the system.

When calibrating parameters in nonlinear systems, the system matrix A in (4.1)
is replaced by the system sensitivity matrix S, which relates changes in data with
changes in parameters. Explanations from now on focus on the sensitivity matrix S.

The SVD allows to compute a reconstructed sensitivity matrix Sr from a subset of
columns of U and V, ignoring the information from these matrices that correspond to
low relevant singular values.The singular values inmatrix� froma10 × 10 example
sensitivity matrix are depicted in Fig. 4.1. We can observe quite low singular values
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from the fifth position, indicating that the corresponding columns in matrices U and
V have low importance in the reconstruction of matrix S. Figure4.2 presents the
mean square error (MSE) in the reconstruction of the sensitivity matrix depending
on the number of columns used from matrices U and V, corresponding to the same
number of singular values in �. It can be seen that when considering only the four
first columns, the MSE falls to a quite low value.

The reduction ofmatricesU andV is used in themethodology presented to choose
which parameters will be calibrated and which sensors will be used in the calibration
process.

4.3.1 Parameter Definition

The grouping of parameters can be obtained from the analysis of the SVD of the
system sensitivity matrix. “We can think of the eigenvectors vi , where i = 1, . . . , n,
as a new parameterization of the model. These vectors represent a set of n linear
combinations of the old parameters that are fixed by the observations” [57]. Similarly,
it is possible to reduce matrix V into Vr, which is formed by the first nc vectors vi ,
where nc is the number of nonzero singular values of the sensitivity matrix. The new
parameterization is obtained by defining a new parameter correction as follows:

x∗ = Vr
T x. (4.3)

In WDNs, very low singular values appear (as seen in (4.1)); thus, nc is defined in a
way that all values below the nc highest singular values are neglected. Furthermore,
the consideration of quite low singular values leads to an increase of uncertainty
[3]. The main drawback of this approach is the loss of the physical meaning of
the calibrated parameters as they will be generated by a linear combination of the
old parameters at each iteration. The sensors’ data will be fitted, but the calibrated
parameters will not have a direct relation with the WDN.

Consequently, the objective is to define the new parameterization as a static com-
bination of the old parameters. The resolution matrix R, defined as

R = VrVr
T , (4.4)

describes how the generalized inverse solution smears out the original model x into a
recoveredmodel x̂. A perfect resolution is represented by the identity matrix, indicat-
ing that each parameter is perfectly resolved. When only nc parameters correspond-
ing to the highest nc singular values are considered, the resolution matrix computed
with Vr is not the identity matrix. Compact resolution appears, and parameters with
similar sensitivities can be identified.

In the WDN particular case, compact resolution may appear but not being easily
observable in the resolution matrix, as the parameter order in the sensitivity matrix S
columns has no geographic order (inmeshed networks, it is impossible to establish an
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order). The identification can be performed bymeans of the “delta vector generation”
process by [57], which is adapted to define the matrix M with the membership of
each individual demand to each demand component. The resulting parameterization
is used to calibrate groups of demands.

Algorithm 4.1 presents the whole process to generate the matrix M from the
reduced matrix Vr. In lines 1–7, the delta vector generation process is performed,
where the nc vectors with the highest resolving power in the resolution matrix are
obtained and normalized iteratively to generate the delta vectors.

Algorithm 4.1 Computation of nodal demands memberships to demand
components

Require: Vr, nc, nd
1: Compute R = VrVr

T

2: for z = 1 : nc do
3: Find j = max(diag(R))

4: Compute v∗
z = R(:, j)/

√
R( j, j)

5: Compute R = R − v∗
z v∗T

z
6: end for
7: Define V∗ = [v∗

1 | v∗
2 | · · · | v∗

nc ]
8: for i = 1 : nd do
9: Compute M(i,:)=|V∗

(i,:)|/∑ |V∗
(i,:)|

10: end for
11: return : M

In lines 8–11, matrix V∗, which is formed by the v∗ delta vectors, is used to gener-
ate the matrix M, associating each initial parameter to a new parameter (component)
that produces the best resolution if nc components are considered. The normalization
of the rows in V∗ is done so that the weights can be interpreted as memberships of
each element parameter to each parameter component.

Three approaches were studied in [46] before reaching the final procedure: binary
parameterization, positive hybrid parameterization and free hybrid parameterization

• The first approach assigns a single parameter component to each element parame-
ter. After executing lines 1–7 in Algorithm 4.1, each demand is associated with
the parameter component that has the highest value in the corresponding columns
of the matrix V∗.

• The second approach assigns a combination of demand components to each nodal
demand with positive weights, exactly as presented in Algorithm 4.1.

• The free hybrid parameterization considers a combination of demand components
that can include negative weights. For this approach, the absolute value in the
numerator of line 9 of Algorithm 4.1 is ignored.

In all the proposed approaches, the solution tends to generate geographical pat-
terns, as the topological information (incidence matrix B) is included in the sensi-
tivity matrix. Results obtained in [46] concluded that the use of positive weights to
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perform the calibration of parameter components gave the best results in terms of
error minimization.

4.3.2 Sampling Design

The sampling design is performed after the distribution of components, selecting
the nc best sensors. The process for locating the sensors uses matrix U in the same
way as the parameterization process uses matrix V. Initially, the sensitivity matrix S∗
relating head and/or flow variations with demand components variations is computed
and decomposed using the SVD.MatrixUr is constructedwith the first nc columns of
U, as the information from the subsequent columns is negligible (they are multiplied
by null rows of the � matrix). Then, the information density matrix Id is computed
as explained in [3], i.e.,

Id = UrUr
T , (4.5)

describes how the generalized inverse solution smears out the original data y into a
predicted data ŷ. Since Id has been constructed from nc orthonormal vectors in Ur, a
set of nc orthonormal vectors can be extracted from Id in a way that they enhance the
delta-like behaviour of the Id matrix [57]. This “delta-like” vector generation process
is presented in Algorithm 4.2 (lines 1–6). This process results in a set of delta-like
vectors u∗ that form matrix U∗. Subsequently, the rows of matrix U∗ are normalized
(line 7), so that sensors with high sensitivity to multiple parameters are not selected.
Finally, the sensor with the highest value in each of the nc columns is selected as
the sensor with highest information density to calibrate a particular parameter (lines
9–11). In the end, ns = nc sensors are selected.

Algorithm 4.2 Sensor selection process
Require: Ur, ns
1: Compute Id = UrUr

T

2: for z = 1 : ns do
3: Find j = max(diag(Id))

4: Compute u∗
z = Id(:, j)/

√
Id( j, j)

5: Compute Id = Id − u∗
z u∗T

z
6: end for
7: Define U∗ = [u∗

1 | u∗
2 | · · · | u∗

ns ]
8: Normalize rows of U∗
9: for z = 1 : ns do
10: Find s(z) = max(U∗

(:,z))
11: end for
12: return : s
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4.4 Simulations and Results

Following the idea of Chap.3, first an academic example is used for illustrating the
methodology, and afterwards, it is applied to a real network. Both examples will be
used in the next chapter where the calibration problem is solved utilizing the results
presented here.

4.4.1 Exemplification

The methodology presented above will be illustrated with the dummy networks
presented in Figs. 4.3 and 4.4, which represent a meshed network and a tree-like
network, respectively, where demands have to be calibrated. The simplicity of the
networks will be useful to exemplify the methodology at each step.

Figures4.5 and 4.6 show the output of the delta vector, v∗, generation process
(subfigure a)), and the memberships obtained after the normalization performed in
lines 8–11 of Algorithm 4.1 (subfigure b)). Three sensors are considered, and there-
fore, three components are generated. The memberships represent the modulation
of each nodal demand by each component and are produced from the delta vectors’
directions.

Figures4.7 and 4.8 depict in each of their subfigures, the memberships of each
demand node to a particular demand component. The darker the colour in the map,
the higher the membership to the depicted demand component.

Fig. 4.3 Dummy meshed
network
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Fig. 4.4 Dummy tree network
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Fig. 4.5 Parameterization process applied to ameshed network: aDelta vectors and bmemberships
of each nodal demand to each demand component

Algorithm 4.1 uses the sensitivity matrix computed at a particular working point.
The procedure can be applied considering multiple boundary conditions to make
the membership definition process more robust. However, the static topology of the
network is not expected to produce significant changes in the sensitivity matrix. The
application of the same process using other working points for the dummy networks
generates the same memberships with only ±1% variations in the memberships.
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Fig. 4.6 Parameterization process applied to a tree-like network:aDelta vectors and bmemberships
of each nodal demand to each demand component
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Fig. 4.7 Graphical representation of the nodal memberships to demand components in a meshed
network

(a) (b) (c)

Fig. 4.8 Graphical representation of the nodal memberships to demand components in a tree-like
network
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(a) (b) (c)

Fig. 4.9 Graphical representation of the nodal memberships to demand components in a meshed
network considering three installed sensors

(a) (b) (c)

Fig. 4.10 Graphical representation of the nodal memberships to demand components in a tree-like
network considering three installed sensors

The calibrationmethodology requires some inner sensors to be distributed through
the samplingdesign. In case the network alreadyhas the sensors installed, theSmatrix
introduced in Algorithm 4.1 would be a reduced sensitivity matrix Sr where only the
rows related to the available sensors would be considered. Figures4.9 and 4.10 depict
the parameterization of the two dummy networks considering that three sensors were
already installed in the networks. These sensors are marked with a black square.

Figures4.11 and 4.12 depict the final results of the parameterization and sampling
design process. The sensor selection has been performed after the definition of the
demand components (results from the previous section).

4.4.2 Demand Components’ Model for a Real Network

In Chap.3, it has been seen that the most widely used demand models are the
basic demand model and the demand patterns’ model. The basic demand model

http://dx.doi.org/10.1007/978-3-319-50751-4_3
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(a) (b) (c)

Fig. 4.11 Sensor selection results applied to a meshed network with three demand components

(a) (b) (c)

Fig. 4.12 Sensor selection results applied to a tree-like network with three demand components

cannot explain the daily variation of the relative pressure behaviour between two
areas in the network, as it fixes the same behaviour to all demands. On the other
hand, the demand patterns’ model requires a lot of information that is not usually
available (users associated with a given node, type of users) or does not fulfils the
assumptions (incorrect predetermined diurnal demand patterns’ values, users of the
same type behaving differently). An example of the latter is presented in Fig. 4.13:
automaticmetre readings from two different segments (i.e., types of users) from a real
network (Nova Icària) presented inChap.2 have been analysed. Each reading consists
of the daily water consumption of a specific user, metered hourly. The correlation
between every pair of readings within the same segment has been computed to assess
the distance between their profiles, i.e., the similarity or dissimilarity of the users’
behaviours. In each subfigure, the x-axis presents the users’ telemetries, and each
dot in the y-axis indicates the correlation between the user and all the other users in
the same segment: the higher the correlation, the higher the similarity with its own
segment’s profiles.

Figure4.13a presents a type of user with no similarity between its members,
whereas Fig. 4.13b shows a type of user with more similarity between its members,
but not enough to assume that all of them behave in the same way. In conclusion, the

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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Fig. 4.13 Cross-correlations of Nova Icària DMA telemetries in users of segments a 1 and b 2

assumption of considering that all users of the same type behave in the same way
can lead to incorrect results or high uncertainty in the calibrated parameters.

A new approach to model demands depending on their geographical location is
presented, and their sensitivity to hydraulic variables. Initially, nodes in a specific
zone of the network were assigned to a specific behaviour, which from now on will
be called demand component. This produces a new model

di (t) = bdi∑nd
k=1 bdk

c j→i (t) q
in(t), (4.6)

where c j→i (t) is the value of the demand component j associatedwith node i depend-
ing on the node location. Demand components are calibrated demandmultipliers that
represent the behaviour of nodes in a determined geographical zone, avoiding the
dependency on information of the user type and diurnal pattern behaviour. All nodes
in the same area of node i have the same associated demand component. Conse-
quently, all nodes in the same zone will have the same demand behaviour, weighted
depending on their base demand. This demand model is capable of generating pres-
sure variations in different zones of the network, as it happens in a real situation.
Figure4.14 presents a network where three demand components have been defined.
Each subplot presents the set of nodes that are modulated by the same demand com-
ponent according to (4.6).

However, the assumption that all nodes in the same area behave exactly in the
same way is not realistic. For example, a node in the limit of the effect zone of two
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Component 1 Component 2 Component 3(a) (b) (c)

Fig. 4.14 Example of demand components with binary memberships

demand components should probably have a combination of the behaviour of the
two demand components, instead of only one. To solve that, it is possible to redefine
the demand model in (4.6), so that the degree to which each demand component is
associated with each node is given as a membership, which depends on the nodes’
geographical location. Thus, (4.7) represents the new demand model which can be
written as follows:

di (t) = bdi∑nd
k=1 bdk

qin(t) (αi,1 c1(t) + αi,2 c2(t) + · · · + αi,nc cnc(t)), (4.7)

with
αi,1 + αi,2 + · · · + αi,nc = 1, ∀i,

where αi, j is the association of demand component j with node i , and nc is the
number of demand components. The membership αi, j of each node to each demand
component depends on the geographical location of the node and is computed by
means of the sensitivity analysis presented in Sect. 4.3.1. The model in 4.7 can gen-
erate different behaviours in every demand, while only having to calibrate few (nc)
demand components.

This way of calibrating demands incorporates the usually ignored fact that
demands depend in some ways of head status of the network [17]. For example,
if the pressure in a specific zone of the DMA decreases, the calibration process will
estimate demand component values that decrease the consumption of nodes in that
zone. Demand components presented in this chapter should not be confused with
the ones defined in [17], where demand components were generated with a pre-
vious knowledge of the use of water (human-based, volume-based, non-controlled
orifice-based, leakage-based).
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The calibrated demand components generate individual demands that may not be
exactly as the real ones, but the aggregated demand in a zone at a specific sample and
the cumulative demand of each individual node during a period of time (similar to
the billing) should coincide with the real ones if other parameters (roughness, valve
status, etc.) are well calibrated.

Figure4.15 presents the nodes’memberships to three demand components defined
in the network in Fig. 4.14. The first component is located on the north-west side of
the DMA; the second component is located on the south-west of the DMA; and the
third component is located on the east side of the network. The nodes’ memberships
are depicted in greyscale: the darker the colour of a node, the higher the membership
of that node to the demand component. Table4.1 contains the memberships of the
two nodes highlighted in Fig. 4.15. Demand of node A is modulated (60%) by the
value of demand component 1, while component 3 has a lower (35%) effect on it.
On the other hand, demand of node B is completely (98%) modulated by demand
component 3. Demand component 2 does not have any effect on both demands,
as it is far (geographically and hydraulically) from the two example nodes. Note
the similarity between binary demand components (Fig. 4.14) and hybrid demand
components (Fig. 4.15).

A comparison of the calibration results between type of user-based demand pat-
terns and pressure sensitivity-based demand components is presented in [43], with
better results for the latter: the uncertainty in the calibrated parameters is reduced,
while the geographical distribution is useful for applications requiring parameters to
be related with zones of the network.

(a) (b) 
1

0.5

0

(c) 

Fig. 4.15 Example of demand components and memberships in a network

Table 4.1 Memberships of nodes A and B of the example network

Node A B

Membership to c1 0.6 0.01

Membership to c2 0.05 0.01

Membership to c3 0.35 0.98
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4.4.2.1 Sampling Design

The parameterization and sampling design processes were performed to propose the
location of three pressure sensors and the parameter definition for demand calibration,
as explained in Sects. 4.3.1 and 4.3.2. However, the proposed sensors’ locations differ
from the final ones, which have been obtained from the methodology in [7] (based
on leak detection), developed by Cetaqua (Water Technology Centre of Aguas de
Barcelona and the Suez group). The installed sensors can still be used to calibrate
demands by defining the demand components depending on the available sensors’
locations, thanks to the versatility of the proposed method (Sect. 4.3.1). Figure4.16
depicts the proposed sensors’ locations with circles and the final locations with stars.

The resolution of the sensors is 0.1 mwc (meters of water column), and the sam-
pling times are defined in Table3.2.

4.4.2.2 Data Analysis

Data from 9 March 2015 to 13 March 2015 (Monday–Friday) are used for the cal-
ibration process. Data from the following week, 16 March 2015 to 20 March 2015
(Monday–Friday), are used to validate and analyse the calibrated demand compo-
nents. Previously, weekdays from 3 March 2015 to 6 March 2015 (Tuesday–Friday)
are used to analyse and correct the data coming from the network, and to perform
the parameterization process before the calibration starts. 2 March 2015 (Monday) is
not used due to missing data. These three weeks will be referred, in current and next
chapters, as precalibration week, calibration week and validation week. Weekends

Fig. 4.16 EPANET network
model of Canyars sector with
highlighted sensor locations.
The network water input is
signalled with a triangle, the
installed pressure sensors are
signalled with stars and the
proposed pressure sensors
are signalled with circles.
The flow sensor is installed
at the input pressure
reduction valve, so that the
total flow consumed in the
network is known
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Fig. 4.17 Canyars network real and predicted data from 3 March 2015 to 6 March 2015 (precali-
bration week). Black lines and red dots refer to real and predicted data, respectively

are not considered in this case study but would follow the same calibration procedure
as weekdays.

Figure4.17 shows the complete set of data from the precalibrationweek, including
boundary conditions (input valve’s pressure set point (SP) and total flow) and the
three pressure measurements. Black lines and red dots refer to real and predicted
data, respectively. Predicted data have been obtained from simulating the network
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modelwith the given boundary conditions using the basic demandmodel presented in
Chap.3. Figure4.17a shows the aforementioned pressure control at the DMA input.

Figure3.3 shows the pressure prediction error in the three available sensors when
using the basic demand model. The blue thin line corresponds to the raw error using
all data, and the red thick line represents the smoothed error, which has been com-
puted bymeans of a smoothing spline. The green dashed line corresponds to themean
pressure prediction error. This error is treated as an offset that cannot be associated
with the demand model. As suggested in [39], the offset is corrected to eliminate
possible depths errors, model nodes’ elevations inaccuracies or badly calibrated sen-
sors’ offsets. The same correction in each sensor is also considered when using data
from the calibration and validation weeks. Table3.2 contains the specific correction
for each sensor.

4.4.2.3 Parameterization

Data from the precalibration week are used to compute the sensitivity matrices to
perform the parameterization process. The memberships of each nodal demand to
three demand components are computed using Algorithm 4.1, considering the three
installed sensors. Figure4.18 depicts, in each of the network maps, the membership
of each node to a particular demand component: the darker the node, the higher the
membership to that component. Each map in Fig. 4.18 also includes the location of
the sensor with the highest sensitivity to the component drawn.

The average percentage of consumption dc j
of demand component j is computed

from the billing information (nodal base demands BDM) and the recently computed
memberships (M) as

dc j
= 100

∑
BDM M(:, j). (4.8)

(a) (b) (c)

Fig. 4.18 Memberships of nodes to each demand component in Canyars network considering
the three available sensors. Each representation of the network depicts a greyscale map with the
membership of each node to a particular demand component: the darker the node in the map, the
higher themembership of the node to the demand component. The sensorwith the highest sensitivity
to variations in each demand component is also depicted in each map

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_3
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Table 4.2 Average percentage of demand components’ water consumption in Canyars network
computed from billing

Demand component c1 c2 c3

Average percentage of
water consumption

40.2% 18.6% 41.2%

Table4.2 sums up the average percentage of consumption of each demand com-
ponent: demand component c2 has the lowest percentage of consumption (18.6%),
whereas c1 and c3 both have roughly a 40% of consumption. This information will be
used to analyse the calibration results: errors in the average percentage of consump-
tion of the calibrated demand components compared to the assumed consumption
in Table4.2 can be assigned to background leakage, burst, fraudulent consumptions,
unknown status valves, non-metered users or wrong billing information.

4.5 Conclusions

One of the main issues in a calibration process of a complex system is to assure
the identifiability. Here, a redefinition of the parameters to be calibrated in order to
reduce its number is used. This new set of parameters is defined by the measurements
that are available. If the sensor distribution is a part of the process, an optimal sen-
sor distribution is provided in a straightforward way using the information matrix.
Nonetheless, if the sensors are already installed, the parameter definition can adapt
optimally to the information available.

The calibration problem is formulated as an optimization. The solution of this
problem includes nonlinear equality constraints, and thus, it is not a convex one.
Much research in this area is going on and results get seldom to the real applications
because of the difficult trade-off between computational effort and reliability of the
resulting models. Chapter 5 presents the state of the art and an original approach to
this problem.
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Chapter 5
Parameter Estimation: Online Calibration

Gerard Sanz and Ramon Pérez

5.1 Introduction

In Chap.4, the calibration problem was defined and posed in order to assure
identifiability. The parameters to be estimated have been adapted to the measure-
ments available. Furthermore, in case thatmore sensors could be installed, an optimal
sensor placement algorithm has been presented based on the information provided by
the sensitivity matrix. Nevertheless, even with a well-posed calibration problem, the
optimization required in order to minimize the prediction error of the model requires
a proper selection of the optimization algorithm. There are plenty of approaches in
the literature that are presented in the following review. The SVD, used in previous
chapter for the analysis of the system, is used in the proposed approach. This decom-
position is useful for the uncertainty propagation evaluation needed in any parameter
estimation process.

5.1.1 Calibration Methods

Global calibration problem is quite well presented by Savic et al. [38]. Methods
are classified depending on their dynamics (static/transient) and depending on the
optimization methods (prove/explicit/implicit).

Iterative calibration models [6, 35, 47, 48] are based on trial-and-error procedure.
Unknown parameters are updated at each iteration using heads and/or flows obtained
by solving the set of steady-state mass balance and energy equations. Iterative
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calibration models have been the base in the establishment of some fundamental
principles and guidelines regarding WDN model calibration and have been utilized
in the development of more sophisticated explicit and implicit methods.

Explicit calibration models [7, 12, 32] are based on solving an extended set of
steady-statemass balance and energy equations. This extended set is solved explicitly,
usually by the Newton–Raphson method. The main disadvantages and limitations
are as follows: (1) The number of parameters to be calibrated must be equal to the
number of measurements, (2) measurements errors are not taken into account, and
(3) there is noway to quantify uncertainty in the estimated parameters. In conclusion,
explicit methods only have historical significance and no apparent influence on the
current practice of model calibration [38].

Implicit methods are formulated and solved using an optimization technique cou-
pled with a hydraulic solver. The optimization tool sets/updates parameters and pro-
vides them onto the simulation model, which in turn returns the obtained predicted
variables. The optimization tool employs an objective function to minimize the dif-
ferences between measured and model-predicted variables. The type of optimization
methods used vary from local search methods, through mathematical optimization
to global search methods.

5.1.1.1 Non-evolutionary Optimization Methods

Multiple types of non-evolutionary methods exist, but gradient-based optimization
seems to be dominant. General Reduced Gradient (GRG) is used in [23, 40]. The
Gauss–Newton method and the improved version of Levenberg–Marquardt are the
most used gradient type methods. These methods are used to solve the linear/non-
linear least squares formulation of the inverse problem [9–11, 18, 19, 24, 25, 33, 34,
36]. The influence of different choice of weights in the WLS case is investigated and
a systematic procedure is given for the selection of suitable weights in [10, 36]. The
nonlinear least squares problem is a non-convex problemwithmultiple optima for the
objective function, and it is generally solved as an iterative procedure. To guarantee
that the minimum found is the global minimum, the process should be started with
widely differing initial values of the parameters. When the same minimum is found
regardless of the starting point, it is likely to be the global minimum. Other non-
evolutionary techniques used for calibration of hydraulic distribution models include
the extended complex method of Box [31], linear and nonlinear programming [15],
Kalman filtering [43] and simulated annealing [44].

5.1.1.2 Evolutionary Optimization Methods

Evolutionary optimization methods [13] were introduced in the area of calibration
of WDN models by Savic and Walters [39]. Genetic Algorithms (GA), in particular,
have been used later on in hydraulic models calibration works [20, 26, 42, 46, 49].
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The main advantages of the evolutionary methods over non-evolutionary methods
are the lack of complex mathematical apparatus to evaluate sensitivities or invert
matrices, the ability to handle with large calibration problems, easy inclusion of
additional calibration parameter types and constraints and the opportunity of being
implemented in multiple computational machines due to their parallel nature [38].
However, [49] noted some disadvantages: not guaranteeing the achievement of the
global optimum in large and complex systems, required for a careful setting up
and parameter tuning to obtain a correct operation, not being suitable for small
optimization problems, and the less computational efficiency when compared to the
gradient-based methods.

The current status and future research directions of evolutionary algorithms and
other meta-heuristics for better solving key water resources problems are presented
in [27].

5.1.2 Uncertainty

In calibration, inaccuracy of the input data causes the results to be inaccurate too.
Therefore, it is important to obtain not only the estimated values of the calibration,
but also an indication of how reliable these estimations are.

A framework is presented in [16] where each stage of model development is
considered, and the most promising methods available to quantify and reduce uncer-
tainty at each of these stages are reviewed(calibration, data assimilation and model
forecasting). A discussion linking the impact of calibration uncertainties to model
decisions allows examining the implications of the uncertainties on future data col-
lection efforts [41].

Three methods for confidence limit analysis are compared in [4]:

• Monte Carlo simulation: uncertainty in model predictions is calculated by a series
of simulations where the input parameter’s vector has random variations.

• Optimization-based approach: the confidence limits of the estimated values are cal-
culated bymeans of an optimization problemwith the linearized network equations
as constraints.

• Sensitivity-based method: analysis of the sensitivity matrix generated from the
linearized network equations.

The authors selected the latter approach as the better one due to the improvement
on the computational requirements keeping similar results as the other methods.
Furthermore, most of the reviewed bibliographies [1, 5, 8, 10, 18, 21, 22, 24, 28,
33, 36, 52] perform the quantification of the parameter and prediction uncertainties
based on linear regression theory, using a method known in the literature as the
FOSM model (First-Order Second-Moment) [3].

The FOSMmodel consists in the definition of the first-order approximation of the
parameter covariance matrix Cov(x̂) as
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Cov(x̂) = Sσ2 ST , (5.1)

where σ2 is the variance in measured parameters, and S is the matrix of the sen-
sitivities of the measures relative to the estimated parameters x̂. Uncertainty in the
parameter values is obtained from parameter variances in the i th diagonal element
of the covariance matrix.

The prediction covariance matrix Cov(ŷ) can be also estimated to obtain the
variance of the model prediction:

Cov(ŷ) = SPT Cov(x̂)Sp, (5.2)

where SP is the matrix of the sensitivities of the predicted values relative to the
estimated parameters x̂.

We can compute 95% confidence intervals for the individual model parameters
considering that each model parameter xi has a normal distribution with mean x̂i and
variance Cov(x̂)i,i . The 95% confidence intervals are given by

x̂i ± 1.96
√
Cov(x̂(i, i)), (5.3)

where the 1.96 factor is obtained from

1

σ
√
2π

∫ 1.96σ

−1.96σ
e− x2

2σ2 dx ≈ 0.95. (5.4)

This information allows to represent the probability density function (PDF) of the
calibrated parameters.

5.2 Problem Statement

The objective of the calibration problem, presented inChap. 4, is to find the parameter
vectorx thatminimizes the errorsε = ym − yp(x),whereym andyp(x) are the vectors
of measured and predicted values, respectively. Assuming the following linearized
relationship between the parameters and the measurements:

A · x = y, (5.5)

the corrections in parameters �x that make ε → 0 are obtained from:

S · �x = ym − yp(x), (5.6)

where S is the sensitivity matrix that relates errors in predictions to corrections in
the models’ parameters. In nonlinear problems, �x is calculated iteratively and used
to correct the parameter vector x as follows:

http://dx.doi.org/10.1007/978-3-319-50751-4_4
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Fig. 5.1 Scheme of the
implicit calibration
procedure

SimulationOptimization

Calibration
parameters

Predicted
variables

x(k + 1) = x(k) + ρ�x(k), (5.7)

where k is the iteration number and ρ is a parameter to control the step size.
The iterative scheme is continued until a termination criterion is achieved [3].
Figure5.1 illustrates the calibration process where the optimization tool sets/updates
parameters, passes them onto the simulation model, which returns back the model-
predicted variables. The optimization tool computes the parameters that minimize a
predefined objective function.

5.3 Proposed Approach

The inverse problem may be approached by operating on both sides of the original
system of (5.5) with an (nx × ny) “inverse” matrix H such that the “solution” of
model is obtained as follows:

x̂ ≡ HAx = Hy. (5.8)

The operator H will be a good inverse if it satisfies the following criteria [17]:

(a) AH ≈ Iny . This is a measure of how well the model fits the data, since Ax = y
if AH = Iny . The information density matrix Id presented in Chap.4 is obtained
from this reasoning.

(b) HA ≈ Inx . This is a measure of the uniqueness of the solution, since there may
exist only one solution ifHA = Iny . The resolutionmatrixR presented inChap.4
is obtained from this reasoning.

(c) The uncertainties in x are not too large, i.e., var(x) is small. For statistically
independent data,

var(xi ) =
ny∑

j=1

h2i jvar(y j ). (5.9)

http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_4
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The system in (5.8) can be solved using methods such as Gaussian elimination
(even-determined), least squares method (over-determined) or Penrose inverse solu-
tion (under-determined).However, none of these solution techniques can be usedwith
rank-deficient or ill-conditioned matrices [2]. The SVD is capable of solving under-,
over-, even- ormixed-determined problemswith no rank conditions inS, as explained
by Menke [29]. Equation (5.6) can be solved by using the SVD (S = U�VT ) as:

�x = V
1

�
UTε. (5.10)

The SVD determines the optimization direction �x for a problem that minimizes
||�x||2 and ||ε||2. The SVD was used to solve the inverse problem by Wiggins [51]
andUhrhammer [45] for seismographic networks, byWasantha Lal [50] for unsteady
river flow networks and by [9] forWDN. The SVDprovides a deep comprehension of
the calibration problem, encouraging its adaptation in the current chapter to estimate
demands in WDN.

The SVD matrices can also be used for the estimation of the parameter space
covariance matrix to quantify the uncertainty of the calibrated model [45, 51]. The
First-Order Second-Moment (FOSM) analysis for uncertainty quantification in (5.1)
can be expressed in SVD terms as

Cov(x) = V
σ2

�2V
T , (5.11)

which can be computed for a single parameter as

var(x j ) =
nc∑

i=1

{
nc∑

l=1

v jlλ
−1
l vil}2var(yi ), (5.12)

where 1/λl is the lth diagonal element of 1/�, and λl is the lth diagonal element of
� (for λl = 0, the corresponding element of 1/� is set to 0). A cut-off level for small
λl is set to avoid 1/λl becoming too large. In this work, the cut-off level is defined
at a value of λ = 10−3 as suggested by Wiggins [51] and Wasantha Lal [50]. If λl is
quite small, var(x j ) will be quite large. Small λl values also have a direct effect on
the resolution of the inverse problem. The generalized inverse solution of (5.10) can
be written as

�x =
nc∑

i=1

UT
(:,l)ε
λl

V(:,l). (5.13)

In the presence of random noise, y will generally have a nonzero projection onto
each of the directions specified by the columns of U (the rows of UT ). The presence
of a quite small λl in the denominator of (5.13) can thus give a quite large coefficient
for the corresponding model space basis vector V(:,l), and these basis vectors can
thus dominate the solution. In the worst case, the generalized inverse solution is
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just a noise amplifier, and the answer is nonphysical and practically useless. The
parametrization presented in Chap.4 that reduces the parameters to be calibrated
prevents the appearance of small λ values.

Online Application

The online calibration of the demand components process can be explained through
the scheme in Fig. 5.2. Sensors in the network acquire periodic measurements that
are stored in the database through the SCADA system. All data are analyzed to
detect missing data, spurious measurements, trends, etc. At a particular day, d, and
hour, h, the calibration process extracts from the database a set of measurements and
boundary conditions, corresponding d and h. The number of measurements collected
by each sensor within that hour depends on the sensor sampling time: the lower the
sampling time, the higher the number ofmeasurements taken in an hour. Themultiple
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Fig. 5.2 Scheme of thewhole calibration process that estimates a set of demand components values.
Applications can make use of the calibrated components to improve the hydraulic model and the
network performance

http://dx.doi.org/10.1007/978-3-319-50751-4_4
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samples from the same hour at each sensor are filtered to reduce the sensors’ noise
and demand uncertainty effect.

Inside the calibration process, a simulation is run for each set of boundary condi-
tions available. The predicted measurements obtained from the simulations are fil-
tered, so that they can be compared with the real filteredmeasurements. The resulting
prediction error is minimized by the correction of the demand components values.

Extra data from previous days at the same h can be used in the calibration process.
The calibration horizon, cH , defines the number of days used to calibrate a single
set of demand components values. The method assumes that the boundary condi-
tions and demand behaviours from the cH days used are similar. When the calibra-
tion process finishes, the resulting demand components values can be used in any
model-based application needing a calibrated hydraulic model such as leakage local-
ization [14], quality modelling [30] or leak detection based on demand components
analysis [37].

5.4 Simulations and Results

The examples presented next, as in previous chapters, are for both exemplification
in a simple network and assessment in a real case studies. First the same academic
example used in Chap. 4 is used to illustrate the procedure and then real DMA’s
demands are calibrated.

5.4.1 Academic Example

The methodology presented in this chapter is applied to the dummy meshed network
in Chap.4. The memberships of nodes to demand components and the selected sen-
sors have already been defined in Chap.4. The calibration process will calibrate three
demand components that minimize the error in the predicted pressures at the three
selected sensors. The total consumption of the network is assumed to be known, but
not the distribution of this consumption among the inputs. The calibration process
is performed during 24h, considering a calibration horizon cH = 1 (only data from
the current day is used to calibrate the components), and one sample per hour (there
will be no filtering inside each hour).

Figure5.3 presents the evolution of the pressure prediction RMSE and how this
error makes the demand components vary at each iteration. It can be seen that the
lower the RMSE, the lower the variation of the demand components values.

Once the termination criterion is achieved (maximum number of iterations, or
number of iterations with no significant reduction in the RMSE), the calibration
for that specific hour is finished. The calibrated demand components values are
used as the starting point (seed) for the next hour. Figure5.4 depicts the calibrated

http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_4
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Fig. 5.3 Pressure prediction RMSE and demand components evolution during the iterative cali-
bration applied to the dummy meshed network for h = 15

demand components during 24 h, and the 95% confidence intervals (CI) computed
as explained in Sect. 5.1.2 and (5.11).

Table5.1 collects the pressure prediction root mean squared error (RMSE) (first
row), and the flow prediction RMSE (second row), for each demand model used
(the basic demand model and the demand components model). The percentage of
improvementwith respect to the basic demandmodel is also presented. This improve-
ment has been also computed for each type of measurement, which represents the
error improvement when using the demand components model instead of the basic
demand model.

The calibration process can be repeated, but this time adding the information from
the flow distribution at the network inputs. Table5.2 collects the same information
as before, for the calibration that includes the flow measurements. It can be seen that
the pressure RMSE improvement is lower compared to the previous results, but the
flow RMSE improvement is much better.

Finally, if it is considered data of 5days (cH = 5) with similar expected demand
behaviours to calibrate simultaneously the demand components, the resulting uncer-
tainty will be reduced. Figure5.5 depicts the calibrated demand components during
24h thatminimize simultaneously the hourly pressure prediction error over five days.
It can be seen that the confidence intervals when considering cH = 5 are narrower
than the ones obtained when using cH = 1.
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Fig. 5.4 Dummy meshed
network calibrated demand
components with 95%
confidence intervals (green
boundaries) using cH = 1
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Table 5.1 Dummy meshed network pressure and flow prediction RMSE

Basic model Demand components model

RMSE RMSE Improvement

Pressure (m) 1.56 0.28 82%

Flow (l/s) 0.5 0.43 14%

Table 5.2 Dummy meshed network pressure and flow prediction RMSE obtained with the cali-
bration that includes the flows measured at the network inputs

Basic model Demand components model

RMSE RMSE Improvement

Pressure (m) 1.56 0.55 64.7%

Flow (l/s) 0.5 0.11 78%
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Fig. 5.5 Dummy meshed
network calibrated demand
components with 95%
confidence intervals for
cH = 5 and cH = 1
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5.4.2 Real DMA

In the Canyars DMA, presented in Chap.2, water is supplied from the transport
network through a pressure reduction valve. Pressure and flow are monitored at the
water inlet with a sample time of 10min. The resolution is 0.3 l/s for the flow sensor,
and 0.1 mwc for the pressure sensor. The minimum night flow is of about 3 l/s, and
the peak-hour flow is 27 l/s. Pressure control is applied to this network, fixing the
pressure level at 38 m during night-time and at 47 m during daytime. The average
daily maximum head loss in the network is 13.4 m.

The organization of results in this section is as follows: initially, the sampling
design process is performed to choose the sensors to be installed, comparing the
solution with the water utility final decision. Second, available data are analyzed and
classified for the multiple calibration stages. Then, the parametrization process is
performed considering the existence of the installed sensors. Finally, gross errors in
sensors are corrected and the online calibration process applied. Results using mul-
tiple calibration horizons are compared to analyze the advantages and disadvantages
of their use.

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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Data used were presented in Fig. 4.17. Predicted data have been obtained from
simulating the network model with the given boundary conditions using the basic
demand model presented in Chaps. 3 and 4. Figure4.17a shows the aforementioned
pressure control at the DMA input. Figure4.17a shows the aforementioned pressure
control at the DMA input. Figure3.3 shows the pressure prediction error in the three
available sensors when using the basic demand model.

5.4.2.1 Calibration Results

Once the parameters to be calibrated are defined, and the information from the net-
work sensors has been thoroughly analyzed and corrected, the online calibration
starts. In the current study, the online part is not actually online, though the process
and the execution are exactly the same.

Three different tests are considered. In each test, demand components values are
calibrated with data from the calibration week and validated with data from the
validation week. Furthermore, a new set of demand components values is calibrated
using data from the validation week to compare the difference between updating
the demand components values or keeping the same values once they are calibrated.
Each test considers a different value of the calibration horizon parameter cH , which
defines, for each sensor, the number of days from which data for a specific hour are
going to be used to calibrate the demand components values for that particular hour:

1. Test 1: cH = 5 days. The online calibration starts on 13 March at 00:00 am
(Friday).At each hour, data from the current day and four previous days (Monday–
Thursday) are used to calibrate a unique value for each demand component. The
online calibration continues until 13 March at 23:00 pm (same day), when a total
of 24 valueswill have been calibrated for each demand component. The calibrated
demand components values at a specific hour minimize the mean prediction error
from that hour of the five days used to calibrate them.

2. Test 2: cH = 1 day. The online calibration starts on 9 March at 00:00 am (Mon-
day). At each hour, only data from the current day are used to calibrate the demand
components values. The online calibration continues until 13 March at 23:00 pm,
when a total of 120 values will have been calibrated for each demand component.
The calibrated demand components values at a specific hourminimize exclusively
the prediction error for the hour of the day used to calibrate them.

3. Test 3: cH = 3 days. The online calibration starts on 11 March at 00:00 am
(Wednesday). At each hour, data from the current day and two previous days
are used to calibrate a single value for each demand component. The calibration
continues until 13March at 23:00 pm,when a total of 76 valueswill have been cal-
ibrated for each demand component. The calibrated demand components values
at a specific hour minimize the mean prediction error from that hour of the three
days used to calibrate them. The first 24 demand components values minimize
the error in data from Monday to Wednesday, demand components values from
25h to 48h minimize the error in data from Tuesday to Thursday, and demand

http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_3
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Fig. 5.6 Canyars calibrated
demand component c2 with
95% confidence intervals: a
cH = 5, b cH = 1 during 24
h, and c cH = 3 during 24 h

(a)

(b)

(c)

components values from 49h to 72h minimize the error in data fromWednesday
to Friday.

Figure5.6 presents an example of the calibrated daily values corresponding to the
demand component c2 during the calibration week: (a) demand component values
calibrated with cH = 5, that minimize the whole week pressure prediction error;
(b) demand component values calibrated with cH = 1, that minimize the pressure
prediction error during Friday; and (c) demand component values calibrated with
cH = 3, that minimize the pressure prediction error for three consecutive days.
Demand component values are presented as white circles surrounded by the 95%
confidence intervals (green boundaries).

Table5.3 collects the pressure prediction root mean squared error (RMSE) for
each test. Each row corresponds to a different test. The three main columns represent
the data used, and the use itself: column 1 contains the calibration results for the
calibration week, column 2 contains the validation of these results using data from
the validation week and column 3 contains the results considering a new calibration
during the validation week. Each main column is composed of three subcolumns:
the first subcolumn contains the pressure prediction RMSE when using the basic
demand model, the second subcolumn contains the pressure prediction RMSE when
using the calibrated demand components model and the third subcolumn contains the
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Table 5.3 Canyars pressure prediction RMSE and percentage of improvement in the three calibra-
tion tests performed

Test Calibration RMSE (m) Validation RMSE (m) Calibration RMSE (m)

March 9th–13th March 16th–20th March 16th–20th

Basic Comp. Imprv. Basic Comp. Imprv. Basic Comp. Imprv.

cH = 5 0.298 0.267 11% 0.304 0.282 7% 0.304 0.277 9%

cH = 1 0.298 0.250 16% 0.304 0.296 2% 0.304 0.252 17%

cH = 3 0.294 0.254 13% 0.296 0.294 1% 0.296 0.267 10%

error improvement when using the demand components model instead of the basic
model, expressed as a relative percentage.

Figure5.7 presents a comparison between the pressure prediction error in the cal-
ibration week using the basic demand model and the calibrated demand components
model, both from Test 2 (cH = 1). The depths corrections have been used to cor-
rect the sensors’ offsets. The columns of subfigures correspond to the basic demand
model and demand components model, respectively. Each row of subfigures corre-
sponds to each of the three sensors. The blue lines correspond to the raw errors using
all data, and the red lines represent the smoothed errors, which have been computed
by means of a smoothing spline. The green dashed lines correspond to the mean
pressure prediction errors.

Finally, Fig. 5.8 presents the average percentage of consumption computed for
each demand component. The black line corresponds to the assumed percentage
previously shown Chap.4, and the red lines correspond to the demand components’
average percentage of consumption in the nine scenarios presented in Table5.3.

5.4.2.2 Discussion

The basic demand model has been used to simulate the network during the precal-
ibration week. Figure3.3 shows that the pressure prediction error when using the
basic demand model follows the profile of the daily total consumption in Fig. 4.17.b,
as this demand model is not able to assign a different behaviour to each zone of the
network. The prediction error can be improved by using the demand components
model, which allows having multiple demand behaviours depending on the location
of nodes in the network.

Results in Table5.3 show that the use of calibrated demand components to model
nodal demands minimizes the RMSE in the predicted pressures in the three tests
performed, compared to the basic demandmodel. This is verified through the positive
prediction error improvement in all tests. The comparison of the pressure prediction
error between the basic demand model and the demand components model is shown
in Fig. 5.7. The pressure prediction error is reduced in the three sensors. However,
the prediction improvement in each sensor is different. The proximity of sensor

http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_4
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.7 Canyars network pressure prediction error during the calibration week using the basic
demand model (column 1) and the demand components model (column 2) using cH = 1. The blue
thin line corresponds to the raw error, the red thick line corresponds to the smoothed error computed
by means of a smoothing spline and the dashed green line corresponds to the mean error. The depth
correction has been applied to all sensors
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Fig. 5.8 Demand
components’ average
percentage of consumption
assumed from billing (black
line with circles), and
obtained with the calibrated
demand components in the
nine scenarios presented (red
lines with dots)
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“RE33” to the input, where the PRV sets the pressure level, can explain the little
improvement. On the other hand, the pressure prediction error in sensors “RE31”
and “RE32” is minimized considerably. Peaks in the smoothed prediction error in
Fig. 5.7d are due to the single large errors in pressure predictions due to the PRV set
point abrupt changes from night to day and vice versa. Summing up, the calibrated
demand components model smooths the total water consumption-like profile of the
pressure prediction error, as each area of the network has now a distinct behaviour.

The minimization of the prediction error depends on the calibration horizon used:
the lower cH is, the higher the improvement on the predicted pressures. In both first
and third main columns, Test 2 (cH = 1) has the greater improvement. Using data
exclusively from one day allows the demand components to focus on minimizing
a single error. If demand behaviours change in the real network, Test 2, that uses
cH = 1, captures instantaneously these changes. On the other hand, Tests 1 and 3
accommodate the demand components values more slowly, since at each sample
there are multiple prediction errors to be minimized at the same time. This is also
observed in Fig. 5.6, where the profile from Test 2 (cH = 1) captures the daytime
demand variations with more detail, opposite from Test 1 and 3, where the daytime
profile is flatter.

Nevertheless, the validity of the demand components calibrated with higher cH
values is longer, allowing the demand components to be applied in future data and still
minimize the prediction error. That is because the use of multiple measurements to
calibrate a unique set of demand components values leads to demand components that
represent the usual behaviour in the network, ignoring special events in particular
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days that are not repetitive from one week to another. This fact is checked in the
second main column in Table5.3, where Test 1, that uses cH = 5, is the one with
less error when using the demand components calibrated with data from the previous
week.

The comparison between the second and third main columns in Table5.3 shows
that continuously updating the demand model with new online calibrated demand
components is better than calibrating a set of demand components and using them
with newdata, in terms of pressure predictionRMSE. For example, in Test 2, the pres-
sure prediction RMSE during the validation week (second main column) improved
2% compared to the basic model. On the other hand, if the online calibration is per-
formed, the improvement on the pressure prediction RMSE is 17% (Test 2 in third
main column). Hence, the continuous online calibration is required to capture the
daily changes in the network demand behaviours, such as changes in users habits or
new users coming online. Besides, the capture of changes in the network demand
behaviours causedby leaks, unnoticed changes in valves status or other special events,
can be analyzed and used to detect and locate them.

The uncertainty of the calibrated demand components can be analyzed through
Fig. 5.6. During night-time, due to the nonlinear head loss/flow relation, pressure is
less sensitive to demand variations. Consequently, the singular values of the sensi-
tivity matrix are smaller, increasing the calibrated parameters variance as seen in
(5.12). Using extra data to calibrate demand components (Fig. 5.6a, c) reduces the
uncertainty in the calibrated demand components values compared to using data only
from the current day (Fig. 5.6b).

Finally, Fig. 5.8 shows that the average percentage of consumption of each demand
component in the nine scenarios tested is maintained. The variations observed
(5–6%) respecting to the assumed percentage of consumption can be associated
with the missing information from weekend demand components, which have not
been calibrated in this work, small background leakage or fraudulent consumptions.

5.5 Conclusions

The basic demand model has been used to simulate the network during the pre-
calibration week. The prediction error can be improved by using the demand com-
ponents model, which allows to have multiple demand behaviours depending on the
location of nodes in the network.

The minimization of the prediction error depends on the calibration horizon used:
the lower cH is, the higher the improvement on the predicted pressures. Nevertheless,
the validity of the demand components calibrated with higher cH values is longer,
allowing the demand components to be applied in future data and still minimize the
prediction error. In conclusion, the selection of a good calibration horizon depends
on the final use of the model.

The demand modelling and calibration methodology has to be further tested,
including weekends’ datasets and multiple network conditions. Furthermore, alter-
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native optimization methods, such as genetic algorithms, have to be tested and com-
pared to the least squares process used.
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Chapter 6
Demand Forecasting for Real-Time
Operational Control

Jordi Saludes, Joseba Quevedo and Vicenç Puig

6.1 Introduction

In the literature, the problem of water demand forecasting has been widely studied
taking into account different timescales: long, medium and short terms (autoregres-
sive integralmoving average). The long-term forecasts allow building new infrastruc-
ture and foresee the possible future problems. Both short-term and medium-term
forecasting are basically useful for the operational control [1] of the network. In
large-scale infrastructures, such as the complexwater transport network of Barcelona
presented in Chap.2, a telecontrol system acquires, stores and processes thousands
of flowmeter and other sensor data every hour to achieve an accurate monitoring of
the whole network in real-time. Additionally, the real-time network control needs an
accurate prediction of the future consumption. These future values help the opera-
tional control system to decide the new actions in the future. The problem of short-
term demand forecast coupledwith the optimal operational control working at hourly
timescale with a 24-h-ahead forecasting horizon has already addressed in the liter-
ature. In [2], a forecasting method based on patterns is proposed that combines the
daily average estimation with an hourly demand pattern to provide hourly forecasts
over the following 24 h. This approach is quite similar to the one proposed in [3]
where the daily average estimation is provided by anARIMAmodel, while the hourly
estimation is also obtained using hourly patterns. Recently, the use of a bank of arti-
ficial neural networks (ANNs) has been proposed as an alternative to the approaches
combining time series models and patterns [4].

The considered forecast methods are univariate. Although it is known that the
water demands are strongly influenced by the meteorological variables, these are
sometimes hard to predict. However, these variables tend to change in a smooth
way, so that ARIMA models can capture their effect on the demand, taking pre-
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vious demand observations into account. So, the prediction has the meteorological
effects included. Besides, online forecasting does not work well with multi-variate
models. The selected forecast method should be easy to use and should be automati-
cally calibrated. Moreover, this method should be adaptable, because in the network
there are many demand time series to model and each sector has their own demand
characteristics.

The main objective of this chapter is to study and compare several methods to pre-
dict the next 24-h-ahead demand in order to be integrated in the real-time operational
control. In particular, the ARIMA and basic structural and exponential smoothing
models are considered. However, in these three approaches, there are lot degrees of
freedom to tune, in order to build a short-term demand prediction, that will be dis-
cussed along the chapter. Finally, two ARIMA, one structural, and one exponential
smoothing models are implemented and compared with two naïve models in order
to select the model that provides best results in Barcelona network case study.

6.2 Problem Statement

The main goal of the operational control of water networks is to meet the demands at
consumer sites, but at the same time with minimum costs of operation and guarantee-
ing pre-established volumes in tanks (to preserve the satisfaction of future demands)
and smooth operation of actuators (valves and pumps) and production plants. Model
predictive control (MPC) [5] provides suitable techniques to implement the opera-
tional control of water systems to improve their performance as it will be presented
later in this book, since it allows to compute optimal control strategies ahead of
time for all the flow and pressure control elements. Moreover, MPC allows taking
into account physical and operational constraints, the multi-variable input and output
nature, the demand forecasting requirement and complexmulti-objective operational
goals of water networks. The optimal strategies are computed by optimizing a math-
ematical function describing the operational goals in a given time horizon and using
a representative model of the network dynamics, as well as demand forecasts.

Water consumption forecasting for operational control of water networks in urban
areas is usually managed on a daily basis, because common transport delay times
between the supplies and the consumer sites allow operators to follow daily water
request patterns. Therefore, this horizon is appropriate for evaluating the effects of
different control strategies on the water network, with respect to operational goals.

6.3 Proposed Approach

In this section, several 24-h-ahead short-term demand forecasting methods will be
presented and later compared when applied to the Barcelona water network case
study.
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6.3.1 Double-Seasonality ARIMA Models

ARIMAmodels (also knownas integratedARMAmodels) are quite suitable formod-
elling time series composed of a non-stationary trend component and a zero-mean
component. This type of models is a broader class of ARIMA models that addi-
tionally to the autoregressive part (AR) and the moving average part (MA) includes
differencing. These models will be denoted as ARIMA (p,d,q) where p, d and q
are degrees of the models.

In the case of short-term demand forecasting, the time series presents addition-
ally a daily and weekly seasonality when characterized at the hourly timescale.
For this reason, to forecast the short-term water demand time series, a double-
seasonal ARIMA model should be used [6]. This method was used over the years,
but in recent years, this method has lost its popularity. The ARIMA prediction
can be written as a polynomial of the past values and the past prediction errors.
The characteristic of the seasonal ARIMA is that it needs one polynomial for the
regular component and other for the seasonal one. Moreover, the double-seasonal
ARIMA separates the seasonal polynomial in two polynomials. Each seasonal
polynomial works only with one periodicity. This model is expressed as ARIMA
(p,d,q)× (P1,D1,Q1)s1× (P2,D2,Q2)s2 , where p, d, q, P1, D1, Q1, P2, D2

and Q2 are the degrees of the model and s1 and s2 are the number of periods in each
seasonality.

The main problem of this method is that the difference operator orders and the
distinct polynomials are not easy to determine. Another problem is the identifi-
cation of the model. This process cannot be done in real-time. The large number
of the seasons in the second seasonality, s2 = 168 that corresponds to seven days,
makes hard to obtain a good identification. So, an extension of this model ARIMA
(0,1,1)× (0,1,1)24× (0,1,1)168 is proposed, and the three parameters are
determined with the maximum-likelihood method.

6.3.2 Daily Seasonality ARIMA Model with Hourly Pattern

The second method relies on the works of [7]. The basic idea is to work in two
timescales: daily and hourly. In each scale, a specific model is constructed. In the
daily scale, the method works with the total day’s consumption and the forecast is
based on a seasonal ARIMA model. In the hourly scale, the method works with the
hourly consumption and the forecast is based on the daily patterns.

The seasonal ARIMA models work with data that present a repeated stochastic
pattern. This model only needs two polynomials and can be expressed as ARIMA
(p,d,q)× (P,D,Q)s . The numbers p, d, q, P , D and Q are the degree of the
distinct polynomials. The best model is selected with Bayesian information criterion
[8] considering the set of models generated by 0 ≤ p ≤ 3, 0 ≤ P ≤ 1, 0 ≤ q ≤ 3
and 0 ≤ Q ≤ 1. Alternatively, the structure of the model can be derived using three
main components:
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• One-day-period oscillating signal with zero average value to cater for cyclic deter-
ministic behaviour, implemented using a second-order (two parameters) model
with two oscillating modes, in s-plane s1−2 = +/ − 2π/24 j , or equivalently, in
z-plane z1−2 = cos(2π/24) + / − sin(2π/24) j . The oscillating polynomial is

y(k) = 2cos(2π/24)y(k − 1) − y(k − 2). (6.1)

• An integrator that takes into account possible trends and nonzero mean values of
the flow data described by

y(k) = y(k − 1). (6.2)

• An autoregressive component of order 21 to consider the influence of previous
values within the series

y(k) = −a1y(k − 1) − a2y(k − 2) − a3y(k − 3) − ... − a21y(k − 21). (6.3)

The three components considered lead to a final order of 24 (i.e., the number of
samples within a day for sampling period of 1 h). The time series model has the
following structure:

yp(k) = −b1y(k − 1) − b2y(k − 2) − b3y(k − 3) − ... − b24y(k − 24), (6.4)

which is consistent with the typical daily demand pattern of 24 h.
Once a daily prediction for specific day is obtained, it is distributed along the

day hours using a demand pattern. The demand pattern is generated such that
the sum of hourly consumptions at the end of the day is one, because the sum
of the hourly predictions is the daily forecast. Previous works [7] show that several
types of demand patterns should be used: one for weekdays, one for Saturdays and
one for Sundays/holidays. Then, the hourly prediction is obtained by distributing the
daily prediction using the demand pattern. The hourly prediction based on the pattern
demand has a big problem: it does not use the new available information since the
hourly prediction is computed for the whole day without re-estimating it taking into
account the registered demand of the hours of the day already elapsed. To solve this
problem, a new procedure for hourly demand forecast based on the consumption of
the previous hours and the daily consumption has been developed.

6.3.3 Basic Structural Model

Basic structural models (BSMs) can be used taking into account that the time series
can be divided in additive independent components. These models gained popularity
in the mid-1980s, because the modelization is simple and the Kalman filter helps
to optimize few parameters [9]. In this approach, it is assumed that the time series
can be divided into three additive independent parts: level, seasonal and irregular
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components. Thus, the model can be written as follows:

d(k) = L(k) + S(k) + e(k), (6.5)

where L is the level component, S is the seasonal component and e is the irregular
component. Two regular components are random walks, and their best prediction
is the recent past value. This model can also be written as state-space model. This
allows using the Kalman filter and the maximum-likelihood procedure to obtain
the variances. In the case that the double seasonality is considered, the two seasonal
components can be included. In this case, a huge number of dummy variables appear.
To alleviate this problem, one seasonal can be alternatively considered using periodic
splines to characterize the intraday demands. Harvey and Koopman [10] studied this
method to forecast the hourly electrical demand.

6.3.4 Exponential Smoothing Method

The exponential smoothingmethods were proposed byBrown [11] in the 1950s. Holt
and Winters improved the method to work with tendency and seasonal components.
After the Winters paper, their method is known as Holt–Winters (HW) method,
although it is a kind of exponential smoothing method. Its main characteristic is
their simplicity. So, this method does not need offline identification phase and only
an optimization with least squares or other method is required. For this reason, it is
used as an automatic forecasting method. Nowadays, it is a standard method in the
electricity and water demand forecast.

The prominent problem of the HW method is that it works with just one peri-
odicity (additive or multiplicative). Taylor [12] proposed a new extension with a
multiplicative double seasonality. The �-step-ahead Holt–Winters prediction with
multiplicative one seasonal periodicity is

d(k + �|k) = (L(k) + �T (k)) S

(
k + � −

[
�

s
+ 1

]
s

)
, (6.6)

where L is the level component, T is the trend component, S is the seasonal compo-
nent, s is the period and [·] is the integer part of the dot content. These components
can be modelled as follows:

L(k) = α
d(k)

S(k − s)
+ (1 − α)(L(k − 1) + T (k − 1)), (6.7a)

T (k) = γ(L(k) − L(k − 1)) + (1 − γ)T (k − 1), (6.7b)

S(k) = δ
d(k)

L(k)
+ (1 − δ)S(k − s), (6.7c)
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where α, γ and δ are the parameters. The least square parameter estimation method
provides these parameters. Often, the residuals of the model are correlated. In this
case, a simple AR (1) is added to improve the prediction residuals. As a basic
structural model, the classical HW method only has one seasonal component. As
already discussed, to handle both seasonal periodicities present in the hourly water
demand, the double-seasonal HW method introduced by Taylor [12] will be used.
This extended model has the following form:

d(k + �|k) = (L(k) + �T (k))S1

(
k + � −

[
�

s1

]
s1

)
S2

(
k + � −

[
�

s1

]
s1

)
,

(6.8)
where S1(k) is the first seasonal component, S2(k) is the second seasonal component
and s1 and s2 are the number of seasons of each period. These components can be
modelled as

L(k) = α
d(k)

S1(k − s1)S2(k − s2)
+ (1 − α)(L(k − 1) + T (k − 1)), (6.9a)

T (k) = γ(L(k) − L(k − 1)) + (1 − γ)T (k − 1), (6.9b)

S1(k) = δ1
d(k)

L(k)S2(k − s2)
+ (1 − δ)S1(k − s1), (6.9c)

S2(k) = δ2
d(k)

L(k)S1(k − s1)
+ (1 − δ)S2(k − s2), (6.9d)

where α, γ, δ1 and δ2 are the parameters that should be estimated with least square
method. As mentioned above, an error model is included to address the struc-
ture still present in the residuals. In this case, the residuals are modelled with
ARs1 (1) × ARs2 (1). The new forecasting method performs better than the former
without the correction residuals.

6.3.5 Naïve Methods

All the proposed forecasting methods will be compared against two naïve methods.
These methods are used as benchmarking methods. If the considered method per-
forms worse than these reference approaches, it cannot able to capture the variability
of the data. The first naïve method is the random walk. The random walk is widely
used as benchmark method. The random walk prediction is a constant forecast with
the last real value. The second method is a seasonal version of the random walk.
This method is used when the time series contains seasonality. Their prediction is
the t − s value where t is the predicted time and s is the number of periods: for the
weekly period, s = 7 or s = 168, depending on the considered timescale (daily or
hourly).
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6.4 Simulations and Results

As described in Chap.2, the Barcelona water transport network is composed of about
100 demand sectors associated with different pressure levels. Currently, the informa-
tion system receives, in real time, data from 100 control points, mainly flowmeters
and a few pressure sensors. It should be noticed that only few pressure levels concen-
trate almost 75% of the water consumption. So, the demand forecasting approaches
will be tested on in these sectors, since improving prediction on them could lead
to major economic benefits. Here, the results will be presented for those pressure
sectors of the highest demand. The other major sectors have a similar behaviour than
those that are presented in this chapter.

To compare the distinct forecasting methods, a set of comparative indicators are
used. These indicators help to decidewhich forecastmodel is performing better. Since
the best model will presumably depend on the timescale considered, it is expected
that the best model for the daily prediction will not give the best hourly forecast. The
repeatability of historical data also influences the prediction quality of each model.
The set of indicators are as follows:

• Explained variance (EV) measures the not-modelled variance

EV = 1 − Var(e�(i))

Var(x�)
, (6.10)

where e�(i) is the �-step prediction error from time i and x� is the time series. If
the EV = 1, the model captures the whole process variance.

• Mean absolute error (MAE) is evaluated as follows

MAE = 1

N

N∑
i=1

|e�(i)|. (6.11)

• Mean square error (MSE) can be expressed as

MSE = 1

N

N∑
i=1

(e�(i))
2. (6.12)

• Mean absolute percentage error (MAPE) that rescales the errors respect the
process mean

MAPE = 100

N

N∑
i=1

|e�(i)|
μ

, (6.13)

where μ is the mean of the time series.

A good prediction should satisfy EV≈1, MAPE≈0% and present small MAE
(or MSE). The MAPE is widely used in many comparisons, and their interpretations
are similar to MAE and MSE. The advantage of MAPE is that it is adimensional.

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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The results presented for the considered pressure levels are representative of the
results obtained in most of the pressure levels. The considered pressure levels are
selected, because it represents the 25% of the total consumption in the city. The other
major pressure levels have similar characteristics as the considered one. Figure6.1
presents the daily consumption and the one-step forecast errors of the considered
methods.

The first graph presents the real data. The daily forecast for the hourly model is
the sum of the forecast from one to twenty-four steps. The second graph presents the
double ARIMA forecast error for the daily consumption. The third graph presents
the daily ARIMA error. In this example, the selected model structure is ARIMA
(0,1,1)× (0,1,1)7. The fourth graph presents the HW forecast error. The fifth
graph presents the basic structural model. From these graphs, it can be observed
that the double ARIMA has the biggest error. The basic structural model presents
a heteroscedasticity error that corresponds to an error with a not-constant variance.
The daily ARIMA and double HW errors are similar, and the error peaks are related
to the special events. In the future works, the selected procedure should be improved
to take into account the influence of these events.

In Fig. 6.2, a piece of the hourly time series with their one-step forecast errors
is presented. The first graph is the hourly data. The second graph corresponds to
double ARIMA errors. The third graph is the error forecast using the adaptable
demand patterns. The fourth graph presents the double HW forecast errors. The last
graph presents the basic structural model errors. It can be observed that the basic
structural model errors have the biggest variance. The pattern distribution of the
daily consumption and double HW is similar. The double ARIMA has important
error peaks that suggest that the model is not correct.

Fig. 6.1 Daily consumption of the 70BBE pressure level with their forecast errors
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Fig. 6.2 A piece of hourly consumption of the 70BBE pressure level with forecasting errors

Fig. 6.3 TheEVandMAPE indicators for eachmethod in the daily scale for the considered pressure
level

It can also be noticed that the double ARIMA and the basic structural models
are worse than the other two. The daily ARIMA and the double HW are similar and
visually cannot be decided which is the best. In Figs. 6.3 and 6.5, the EV and MAPE
indicators for each model are presented in the daily and hourly scales. In Tables6.1
and 6.2, there are MAPE indicators for the calibration phase corresponding to both
scales.



108 J. Saludes et al.

Table 6.1 MAPE indicator for each method for the daily time series for the considered pressure
level

Horizon Double
ARIMA

Daily
ARIMA

HW BSM Naïve 1 Naïve 7

1 10.5612 2.6005 2.4900 3.3478 3.9869 4.2656

2 10.9078 3.2740 3.2855 100.0000 5.6993 5.6183

3 10.8099 3.5517 3.6025 100.0000 6.2783 6.6960

4 10.8586 3.8584 3.9056 100.0000 6.5002 7.1116

5 10.7913 4.2101 4.2880 100.0000 6.5699 7.3217

6 10.8718 4.3275 4.3482 100.0000 5.4119 7.2524

7 10.7100 4.4230 4.4744 100.0000 4.2656 6.1098

Table 6.2 MAPE indicator for each method for the daily time series of the 70BBE

Horizon Double
ARIMA

Pattern HW BSM Naïve 1 Naïve 7

1 5.6846 5.7577 4.8709 8.8440 10.8495 8.2799

2 14.5969 5.8433 5.1908 12.0605 18.2944 12.3703

3 12.9981 5.9047 5.3459 12.7374 24.6421 18.7919

4 13.1956 5.9508 5.4046 12.6250 30.0094 24.9268

5 13.1033 5.9863 5.4201 12.4775 34.3851 30.2886

6 13.2732 6.0045 5.3957 12.3761 37.5536 34.6361

12 13.0239 6.0373 5.4401 12.0890 42.9569 43.8022

24 11.1971 6.4395 5.4437 12.0379 8.2938 13.9054

It can only be noticed that in the calibration phase, the daily ARIMA and the
double HW have a good performance according to the EV indication. But, in
the validation phase, the EV indicator shows that any model is unable to capture
the variance. In the calibration phase, the daily ARIMA and the daily forecast
of the double HW are able to explain the 70% of the variance with one-step forecast,
but they only explain the 20% with the seven-step forecasts. This is a typical result
because the seven-step forecast uses intermediate predictions, while the single-step
one does not. Considering the MAPE indicator, the behaviour in the two phases is
similar. The daily ARIMA and the daily forecast of the double HW have the best
MAPE indicators. It can also be observed that the MAPE of the daily ARIMA and
the daily prediction of the HW are smaller than 5%. For the other methods, their
MAPE is larger than 5%. So, in the daily scale, the daily ARIMA and the HW have
a similar behaviour.

Focusing on the hourly scale, the most surprising fact is the change in behaviour
between the calibration and validation phases when using the daily ARIMA with
demand pattern distribution (see Fig. 6.4). In the calibration phase, the indicators for
this method are close to the double HW indicators. But, in the validation phase, the
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Fig. 6.4 The EV andMAPE indicators for each method in the hourly scale for the 70BBE pressure
level

Fig. 6.5 ACF and PACF for the distinct methods

ARIMAwith pattern distribution indicators is significantly worse. In the other cases,
the double HW is similar in both phases. The worsening in the daily ARIMA forecast
may be due to the change in the patterns. So, the behaviour is different during the
two phases, and the pattern model is unable to forecast these changes. The rest of
the methods have worse indicators than HW.
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Finally, the last assessment involves verifying whether the daily errors were cor-
related or not. In case the residuals were correlated, the method will not capture all
the time series information. The daily error is considered, because it provides infor-
mation about future events. Figure6.5 presents the autocorrelation (ACF) and partial
autocorrelation (PACF) for each method. It can be noticed that the daily ARIMA and
the basic structural model are not correlated. The double HW presents a correlation
for few lags. Finally, the double ARIMA presents the lags autocorrelated because
the residuals are not white noise.

Thus, it can be concluded that the double HW provides the best daily and hourly
forecast. These methods are better than the naïve methods in every timescale and
phase.

6.5 Conclusions

In this chapter, four methods to predict a future demand values in two timescales
(hourly and daily) are studied and compared. These methods are tested in Barcelona
water transport network in a representative pressure level. The first conclusion is that
the basic structural method is the slowest, because the model contains a matrix with
large dimension. This fact leads to slow the prediction. The second is that the double
ARIMA produces bad predictions, because it can be easily influenced by particular
events. The third method is based on the combination of daily ARIMA with pattern
distribution. This method presents distinct behaviour depending on the timescale and
phase. In the daily scale, the forecasting is good. In the hourly scale, the prediction
goodness depends on the phase. In the calibration phase, forecasting is good, but in
the validation phase, it is not. Finally, the double HW method seems to be the most
robust forecasting method and it is easy to implement too. The main daily ARIMA
problem is in the calibration phase since while computation time is high, the selected
method has better prediction. Another problem is the sensitivity to outliers. To reduce
the outlier effect, an outlier detection algorithm could be implemented for the daily
scale. This method is only good for daily forecasting because the pattern does not
provide an accurate forecast in the larger timescale.

The double HW is a deterministic method. So, in typical pressure floors, where
seasonal periodicity changes smoothly, it provides good forecasting. If it is assumed
that the residuals follow an ARIMA model, the forecast improves. The best resid-
ual ARIMA model is AR(1)×AR24(1). The parameters are estimated using the
least square method. Since the majority of pressure levels change their periodici-
ties smoothly, it can be concluded that the best method is the double HW in both
timescales.
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Chapter 7
Leak Monitoring

Ramon Pérez, Josep Cugueró, Gerard Sanz, Miquel A. Cugueró
and Joaquim Blesa

7.1 Introduction

Waste and loss of water have been sometimes disregarded due to the low water price
and ease of exploitation in developed countries. However, both users and utilities are
increasing their concern to avoid present and future water scarcity. Individual users
can optimize their daily routines to reduce water waste, but burst and background
leakage will be present independently of it [1].

Leakage inwater distribution systems has attracted a lot of attention by both practi-
tioners and researchers over the past years. Leak identification is divided into leakage
awareness and leak localization, as suggested in the review of leakage management-
related methods in distribution pipe systems from detection and assessment to effi-
cient control [2]. Leakage awareness focuses on leak detection in the network, but
does not give any information about its precise location [3–7]. On the other hand,
leakage localization is an activity that identifies and prioritizes the areas of leakage to
make pinpointing of leaks easier [8]. Leak localization techniques can be divided into
two categories: external and internal [9]. The use of externalmethods such as acoustic
logging [10], penetrating radar [11] or liquid detection methods [12] has some draw-
backs like needing a large number of sensors, not being suitable for application in
large urban areas, or being invasive. Internal methods use continuously monitored
data to infer the position of leaks using models. Many techniques in the literature
are based on transient analysis, which is mainly used on single, grounded pipelines
due to the high effect of the system uncertainty on results [13–16]. Non-transient
model-based leakage localization techniques have been also developed during the
last years [17–20]. These techniques analyse the difference between measurements
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and estimated values from leaky scenarios to signal the probability of a zone to
contain leakage.

The use of models for monitoring and supervising DWNs is a common practice in
water companies. A proper calibration of these models is required to obtain reliable
results when using them [21], as it has been analysed in Chaps. 3, 4 and 5. Once the
model is calibrated, the model-based leak detection and localization methodologies
reviewed can make use of it. However, these methodologies do not consider the
evolution of demands in the real system. This evolution should be taken into account
because demands are parameters that change continuously and leakages may be
masked with their evolution [22, 23].

7.2 Problem Statement

Given a model for the non-transient behaviour of a network and a sequence of mea-
surements from it, the problem is to locate a node in the network where there may
be a leak. Two kind of measurements can be distinguished: boundary conditions,
which are pressure hS and total inflow qin at the nh inputs of the network, and addi-
tional ny head measurements y = (y1 . . . yny ) from selected nodes in the network.
Measurements are acquired at sampling time Ts , but as the effect of a leak over
the measurements is usually small and has fluctuations due to sensor resolution, the
localization methodology is applied at a larger time TL . Thus, NL = TL/Ts measure-
ments are available between two consecutive iterations. Assuming that the boundary
conditions have not changed significantly during TL , the mean of the measurement
yi at instant kTL (ȳi (kTL)) is computed as

ȳi (kTL) =
∑NL−1

j=0 yi (kTL − jTs)

NL
. (7.1)

For simplicity and clearness, the time dependence of the variables is only made
explicit when necessary.

7.2.1 Model of the Network

In the absence of leakage, the total inflow qin is distributed among the network nodes
according to a given demand pattern. The demands of the nodes are represented by
a vector d = (d1, . . . , dnd ) with nd equal to the number of nodes in the network. In
a non-leakage scenario, the total inflow is equal to the sum of demands, i.e.,

qin =
nd∑

i=1

d j , (7.2)

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_4
http://dx.doi.org/10.1007/978-3-319-50751-4_5
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where each demand di can be related to qin by a weight, i.e.,

di (q
in) = αi q

in . (7.3)

Given the boundary conditions, the computation of a prediction ŷnf for a non-
leakage scenario is denoted by

ŷnf = gn f (qin,hS,d(qin)), (7.4)

where ŷnf ∈ R
ny , gn f : R × R

nh × R
nd → R

ny , hS ∈ R
nh and d ∈ R

nd . Subscript n f
indicates non-faulty, i.e., non-leakage scenario. The difference

r = y − ŷnf , (7.5)

which quantifies the consistency of the measurement with the model prediction, is
called a residual. There will be two concepts to be defined afterwards: observed
residual and predicted residual. If there is no uncertainty in model (7.4), the absence
of leakage implies r = 0.

In a leakage scenario, only the possibility of one leak of nominal value f 0 in an
unknown node of the network is considered. The nominal value of the leak affects
(7.2) and (7.3), yielding

qin =
nd∑

i=1

d j + f 0,

di (q
in − f 0) = αi (q

in − f 0).

(7.6)

Consider the nd predictions ŷfi , each one corresponding to a leak of nominal value
f 0 in node i

ŷfi = g fi (q
in,hS,d(qin − f 0), f 0), i = 1 . . . nd , (7.7)

where ŷfi ∈ R
ny , g fi : R × R

nh × R
nd × R → R

ny . Subscript fi indicates a faulty
scenario consisting of a leak in node i . The differences r̂fi = ŷfi − ŷnf are the pre-
dicted residuals for the nominal leak f 0.

7.3 Proposed Approach

Given a set of measurements and models that represent different leakage scenarios,
the proposed methodology aims to select the model that is most consistent with these
measurements. Each scenario considers only one leak in a different location (node)
of the network. Therefore, selecting the most consistent scenario is equivalent to
selecting the most consistent location for the leak. Different authors have studied
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the problem of leak localization from different perspectives. In [24], a complete
mathematical view of the consistency problem as an inverse problem is given. In
[19, 25], the point of view of model-based fault diagnosis is followed [26] In all
mentioned works, the idea is to solve the consistency problem with algorithms that
can use existing efficient network solvers for the forward problem. This work takes
the approach described in [27], and it differs from the one in [25, 28] only in the
correlation measure. In this approach, a leak in a node will be considered to be a fault
that is to be localized. The algorithm gives the most consistent location for a leak
given a set of measurements from the network. First, the leak localization problem
will be tackled for one time step and the time argument will be omitted. Later, the
use of information from more than one time steps will be described.

For clarity, it is firstly explained how the sensor location would be performed if
only measurements from one time step were available. If there is no uncertainty in
model (7.7) and the value of the unknown leak to be located is small enough, then
the dependency of the observed residual r can be assumed to behave approximately
linear with respect to the leak f , i.e.,

r = r̂fi ·
f

f 0
, i = 1 . . . nd . (7.8)

Then, the residual leak sensitivities collected in the sensitivity matrix denoted by
� is computed as follows:

� =

⎡

⎢
⎢
⎣

∂r1
∂ f1

· · · ∂r1
∂ fnd

...
. . .

...
∂rny
∂ f1

· · · ∂rny
∂ fnd

⎤

⎥
⎥
⎦ . (7.9)

Following the ideas reported in [24], this matrix can be approximated by

� � 1

f 0
[r̂f1 , . . . , r̂fnd ]. (7.10)

Because of the linearity of r with respect to f , if vectors r̂fi are linearly indepen-
dent, then each r̂fi characterizes a different leak. Therefore, a correlation measure to
test the linear dependency between r and r̂fi can be used to select the most consistent
leak with r with the measurements and the model. Thus, the selected leak is the one
maximizing the correlation measure

ρ(r, r̂fi) = rT r̂fi
‖ r ‖ ‖ r̂fi ‖ , (7.11)

where ‖ . ‖ denotes the norm associated with the vector dot product. In this work,
the 2-norm is used.
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Algorithm 7.1: Leak localization using a single time step

Require: qin , hS, y ,
(
α1, . . . ,αnd

)T , f 0

d = qin
(
α1, . . . ,αnd

)T

ŷnf = gn f (qin,hS,d)

r = y − ŷnf to discard a leakage scenario
if r = 0 then
return ’No leakage scenario’

else
d = (qin − f 0)

(
α1, . . . ,αnd

)T

ŷfi = gfi (q
in,hS,d, f 0), i = 1 . . . nd

r̂fi = ŷfi − ŷnf , i = 1 . . . nd
Select the node index i∗ that maximizes ρ(r, r̂fi )

end if
return i∗

Algorithm 7.1 summarizes the leak localization procedure for one time step.

7.3.1 Including Temporal Information

As described in Sect. 7.2, measurements are acquired at sampling time Ts , but the
location methodology is applied at a larger time TL considering the average of the
last NL measurements. Then, every time TL , an average residual r̄(kTL) is computed
as the difference of the average measurements ȳ(kTL) and estimations ¯̂yn f (kTL). In
the same way, average predicted residuals ¯̂rfi(kTL) i = 1, . . . , nd can be computed.

To improve the characterization of a persistent leak, instead of only r̄(kTL) and¯̂rfi(kTL), the concatenation of these two vectors over the last M samples r̄((k − M +
1)TL : kTL) and ¯̂rfi((k − M + 1)TL : kTL) is considered, where

r̄((k − M + 1)TL : kTL) = (r̄T ((k − M + 1)TL), . . . , r̄T (kTL))
T ,

¯̂rfi((k − M + 1)TL : kTL) = (¯̂rfi
T
((k − M + 1)TL), . . . , ¯̂rfi

T
(kTL))

T .

Therefore, the correlation to be maximized to select the most consistent leak at
time kTL considering a past time horizon HM = M · TL is

ρ(r̄((k − M + 1)TL : kTL), ¯̂rfi((k − M + 1)TL : kTL)). (7.12)

Algorithm 7.2 summarizes the leak localization procedure in steady state, i.e.,
after a time M · TL .
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Algorithm 7.2: Leak localization in steady state

Require:
(
α1, . . . ,αnd

)T , f 0

At each jTs :
Obtain the sensor values and save in y( jTs), qin( jTs),hS( jTs)
Compute d( jTs), ŷnf ( jTs), ŷfi ( jTs), i = 1 . . . nd
Compute r( jTs) = y( jTs) − ŷnf ( jTs)
Compute r̂fi ( jTs) = ŷfi ( jTs) − ŷnf ( jTs), i = 1 . . . nd

At each kTL :
Compute the means r̄(kTL ) and ¯̂rfi (kTL )

Construct vectors r̄((k − M + 1)TL : kTL ) and ¯̂rfi ((k − M + 1)TL : kTL )

Select the leak f I (kTL ) that maximizes
ρ(r̄((k − M + 1)TL : kTL ), ¯̂rfi ((k − M + 1)TL : kTL )), i = 1 . . . nd
Output f I (kTL ) to the user

7.4 Simulations and Results

The leak localization methodology presented here has been tested in a DMA of
Barcelona, called Nova Icària, and described in Chap.2, under a real leak scenario.
The Nova Icària DMA has flow and pressure sensors at every inlet and six inner
pressure sensors, whose placement is also marked in Fig.7.2.

Generally, flow and pressure sensors existing in the DMA networks are integrated
with a SCADA system used to supervise the DWN. The SCADA system monitors
the pressure and flow at the inlets of every DMA. This monitoring process is carried
out by multichannel data loggers linked to every inlet. On the one hand, these data
loggers register these measurements with a sampling time Ts of 10min, and on the
other hand, they are integrated with the SCADA through a GSM (Global System
for Mobile Communication) network. Thereby, every day at 7:00 a.m., the SCADA
system retrieves the inlet measurements of all DMAs from 00:00 h to 23:50 h of the
previous day. After these data are retrieved, a data validation process fills database
with validated data. The inner pressure sensor measurements are required to carry
out the leak localization process. These measurements are recorded in a similar way
as DMA inlets. Pressure measurement resolution is 0.1 mWC. The oversampling
described in Sect. 7.3 is done through the leak localization period TL of 1 h.

To ease the access to the DMA measurements stored in the SCADA-validated
database, once the DMA measurements of the day before are available, these data
are packed in a Excel file in .xls format and are sent by e-mail to those workstations
where the leak localization models are available. Figure7.1 shows the conceptual
integration between the Nova Icària instrumentation data and the model-based leak
localization methodology.

To assess the leak localization methodology, a leak was forced in the Nova Icària
DMA using a discharge component. The experiment took place on 20 December
2012 at 00:30 and lasted around 30 h. The exact location of the leak is indicated in
Fig. 7.2. The leak effect can be observed in Fig. 7.3a, where the time evolution of
the DMA total inflow on 20 December 2012, affected by the leakage event, and on

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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Fig. 7.1 A conceptual scheme of the decision support system for leak localization highlighting the
main processes: online measurements gathered by the district metered area (DMA) instrumentation,
data transmission from sensors’ data loggers to the water company supervisory control and data
acquisition system (SCADA), data validation process and validated database population and leak
location analysis carried out in the leakage location tool using the DMA EPANET hydraulic model
(parameter database)

19 December 2012, unaffected by the leakage event, has been plotted, showing the
significant flow increase caused by the leakage.

The first stage in the leak localization process is to detect the occurrence of a new
leakage scenario in the DMA. In general, a detection procedure followed by water
utilities is based on the analysis of the difference between night flows. Although
leakage is pressure dependent, night-time pressure is lower. The fact that at night the
demand uncertainty is smaller makes the analysis of night flows more reliable than
that of day flows. As shown in Fig. 7.3a, the total DMA inflow significantly increased
onDecember 20when the leak occurred compared to the previous day. The difference
between these two flows (Fig. 7.3b) and the average difference is an estimate of the
leak. In this case, the estimated size of the leak is about 5.6 l/s. The model-based
leak location methodology requires the estimation of the emitter coefficient Ce,
which according to Chap.3 can be obtained using the estimated average size of
the leakage (5.6 l/s, Fig. 7.3b) and an estimate of the average pressure at the leak
location. This pressure value has been estimated to be about 50 mWC by averaging
the measurements of the DMA inner pressure sensors (Fig. 7.4) corresponding to
December 20.As a result, and usingγ =0.5 (theDarcy–Weisbach formula inChap.3),
the estimated emitter coefficient is 0.8. The peaks in the leakage observed in Fig. 7.3
are modulated by the network pressure.

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_3
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Fig. 7.2 The water network of Nova Icària district metered area (DMA) (EPANET model) high-
lighting inner pressure sensors (green stars), DMA inlets (red stars) and the exact location of the
leak (red arrow) that was intentionally introduced to test the method

After the detection and size estimation of the leak, the calibration of the DMA
hydraulic model and the inner pressure sensors is compared for verification, since
existing model errors or poor calibrations may lead to low confidence in the per-
formance of the leak localization methodology. To carry out the model verification,
the data of December 19 were used since no major leaks were present that day. The
general procedure to calibrate the DMA hydraulic model is derived from [25] where
the pressure in the DMA inlets at time instant k is fixed, while the flow value in the
inlets at this time instant is distributed among all the DMA inner nodes according
to the values of their base demand and related demand patterns. The water demand
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Fig. 7.3 Leak size estimation:a time evolution of theNova IcàriaDMAtotal inflowon20December
2012 affected by the leak event and on 19December 2012 unaffected by the leak and b time evolution
of the difference between these two previous flows and its average value (leak size estimation)

model described in Chap.3 is one of the main sources of uncertainty that may lead to
inaccurate performance, and consequently, special attention should be paid to their
calibration. In the application considered in this chapter, the base demand of the net-
work nodes has been obtained from the billing information of this DMA by Aigües
de Barcelona (see Chap.5). Each base demand corresponds to the aggregation of
consumers attached to a single node, assuring stability in demands.

As an output of the whole model calibration process, a calibrated model of the
DMA hydraulic network at every time instant k is obtained, which can be used
to predict flow values in the DMA inlets and the pressure in the monitored DMA
inner nodes. In Fig. 7.5, the time evolution of the measured and predicted inflows
at (a) Alaba and (b) Llull inlets for December 19 is observed, showing the degree
of accuracy achieved after the calibration of the hydraulic model. According to the
obtained results (Fig. 7.5), certain bounded modelling errors still exist, which may be
due to the existing uncertainty in the hydraulic network parameters and the considered
demand model [29]. Nonetheless, these inflows are acceptable to obtain a reliable
performance of the leak localization methodology.

Regarding the DMA inner pressure sensors, divergence between real measure-
ments and model-simulated values arises, as shown in Fig. 7.5, due to an inaccurate
estimation of the depth of the measurement points. Indeed, before carrying out the
leakage scenario considered here, the inner pressure sensor RE00008615 presented
an abnormal behaviour and consequently was considered unreliable and excluded
from the analysis. Thereby, assuming that no major leaks were present on December
19 and that the rest of the pressure sensors were reliable, the differences between
measured and model-simulated pressures have been adjusted to correct topographic
errors in the model. In Fig. 7.4, DMA inner pressure sensor measurements’ time
series, their resulting values after model correction and the corresponding model

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_5
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Fig. 7.4 The time evolution of the measurements of the inner pressure sensors (black), their model-
simulated values (red) and the corrected measurement values (green). Only sensor RE00008615
shows a different trend and shape when simulated, in comparison with the measurement. Sensor
RE00008615 is considered faulty because its mismatch cannot be attributed to bad topographic
data, which was confirmed by the operators of the network. Thus, sensor RE00008615 should not
be used in further leak localization analyses

predictions have been plotted for December 19. This figure shows that there is a
mismatch between the sensor measurements and the predictions given by the model.
After estimating the average value of this mismatch for every sensor and correct-
ing the sensor measurements accordingly, the corrected measurements describe the
model predictions. The correcting factor used to adjust the sensor measurements
and the model predictions have been used to update the known, but inaccurate sen-
sor depths when the leak localization methodology is applied on December 20 to
perform leak localization.

Applying the data analysis described above, the occurrence of leakage on Decem-
ber 20 was detected and the quality of the calibrated DMA hydraulic model was eval-
uated using sensor measurements from December 19. The leak localization method-
ology was applied to analyse the sensor data of December 20 to obtain the most
probable locations of the detected leak. This methodology has been packaged in
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Fig. 7.5 The time evolution of the measured (green) and predicted (blue) inflows in a Alaba and
b Llull inlets for December 19 showing the degree of accuracy achieved once the hydraulic model
has been calibrated

a model-driven tool to make it easy to apply to different scenarios [30]. The tool
provided an hourly result in the Nova Icària leakage scenario on December 20.

When applying this procedure to obtain the result for a certain hour, it must be
taken into account that the used inner pressure sensors have a finite resolution, as
discussed previously. This fixed resolution, together with the existing noise in the
measurements, may be a source of inaccuracy in the computed results. To overcome
the undesired effects derived from the sensor resolution, two main strategies have
been considered. First, the sensor measurement considered at a certain hour is the
result of applying an average filter to the measured values during the last TL = 1 h
(sixmeasurements with a Ts = 10-min in (7.1)). Second, pressuremeasurements and
model predictions from consecutive hours can be accumulated along a cumulative
time window of a given length to obtain an accumulated observed residual and an
accumulated sensitivity matrix. In the present case, a HM = 10-h-length cumulative
window has been used, so the observed residuals (r in (7.5)) and the sensitivity
matrix (� in (7.9)) from the last 10 h are used to generate the resulting correlation
vector (7.11) at each step, so that those nodes with the highest leak probability can be
determined. To analyse the leakage scenario, data from December 20 to December
21 have been used, obtaining a leak correlation vector at each time instant (i.e., one
per hour).

The value of the j th component determines the correlation between the observed
residual and the theoretical fault signature ( j th column of the �) predicted by the
model for a leak placed in the j th node of the network (7.10). The correlation vector
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Fig. 7.6 Correlation vector obtained with the leak isolation methodology for December 20 at a
TL = 14 h, b TL = 15 h and c TL = 22 h and December 21 at d TL = 20 h

can be represented graphically on the top of the DMA using a grey map where the
highest correlations are darker than lower correlations. The level of grey depends
on the degree of correlation obtained at every time instant, which means that the
graphical representation associated with a certain time instant cannot be directly
comparedwith the one of another time instant since the associated highest correlation
value may be different. In this graphical representation, those nodes with the highest
correlation value (cmax ) are depicted with a black star. Additionally, a cross point
to the centre of gravity of the set of nodes with high correlation (in this case, those
whose correlation value c is greater than 0.99cmax ).

Figure7.6 shows four graphical representations of the correlation vector obtained
with the leak isolation methodology for December 20 at TL = 14 h (Fig. 7.6a), TL =
15h (Fig. 7.6b) and TL = 22 h (Fig. 7.6c),when the leak is still present, andDecember
21 at TL = 20 h (Fig. 7.6d),when the leak is alreadyfixed. Thus, Figs. 7.6a–c signals a
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Fig. 7.7 A graphical representation (black stars) of the most probable localizations of the leak
according to the accumulation of the resulting correlation vectors related to every node through a
48-h time window (December 20 and 21): the bigger the star size, the bigger are the corresponding
accumulated correlations. Additionally, the real localization of the leak (red star) and the area
containing those nodes with the highest correlation values (red outline ellipsoid) are also shown

potential leakmoving around a small zone of the networkwith correlations oscillating
between 0.6 and 0.75 (maximum correlation value is one). Figure7.6d depicts the
correlation vector after the leak is fixed, pointing out the meaningful decrease of
the resulting highest correlation value regarding the cases when the leakage is still
present.

In Fig. 7.7, the resulting correlation vectors obtained at every time instant during
December 20 and 21 have been accumulated to determine the nodes with the highest
correlation. Consequently, the most probable leak locations according to this 48-h
time window are determined (only those correlation values higher than 0.5 are con-
sidered). The star size depends on the resulting value of the accumulated correlation.
The bigger the star is, the bigger the corresponding accumulated correlations. Addi-
tionally, in Fig. 7.7, the real location of the leak has also been signalled using a red star
and that area containing the nodes with the higher accumulated correlation values has
been marked using an ellipsoid with a red outline. Comparing the leak localization
indications given by the method to the real location of the leak, the resulting error is
considered acceptable in the sense that the predicted area of the leak has an acceptable
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size containing the real location of the leak. It must be considered that the resulting
error is mainly due to the inconsistency between the hydraulic and demand models
and the sensor measurements. Note that a nodal leak localization using a small set of
sensors determines potential network areas where the leak is located, rather than the
exact node where the leak is. This situation occurs because, when using few sensors,
there could be certain leaks causing the same pressure disturbance from the point
of view of the used sensor network, and consequently, isolation among the potential
leaks cannot be carried out.

7.5 Conclusions

This chapter presents a model-based methodology for leak localization in DWNs
using pressure measurements. The method presented uses residuals obtained from
the pressure measurements and their estimates from the network hydraulic model
that characterizes the behaviour of the DMA without leakage. The residuals are
compared with the leak sensitivity matrix that contains the predicted pressure dis-
turbance caused by each potential leak in all of the monitored network’s inner nodes
(theoretical fault sensitivity). Leak isolation relies on correlating the observed resid-
uals with the theoretical fault sensitivity contained in the leak sensitivity matrix.
The leak localization methodology has been implemented in a software tool that
interfaces with a geographic information system and allows the easy use by water
network managers. Simulation results obtained by applying the method to a DMA
of the Barcelona DWN highlight the effectiveness of the approach. Finally, a real
application of this method on the Nova Icària DMA pilot test has been presented
showing satisfactory results in a real fault scenario.

Regarding the future research related to this subject, several issues remain open.
One research issue is to quantify the effect of uncertainty in demands, sensors and
leak magnitude estimation on the methodology and accuracy of the leak localization
procedure. Another related issue is to reduce the impact of uncertainty on the whole
process. It is also of interest to extend the methodology to the detection and isolation
of multiple leaks and to complement the methodology with a sensor’s fault detection
process, to guarantee that only valid sensor data are used for leak localization.
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Chapter 8
Quality Monitoring

Fatiha Nejjari, Ramon Pérez and Vicenç Puig

8.1 Introduction

Model-basedwater qualitymonitoring is a reliable tool only if thewater qualitymodel
is able to predict the real DWN behaviour [18]. Water quality modelling is not an
easy task because of the complexity of the processes involved. Moreover, a hydraulic
model analysis has to be performed previously in order to provide the resulting flow
distribution to thewater qualitymodule to transport the chlorine through the network.
The chlorine concentrations within a DWN are governed by bulk and wall reaction
parameters. Bulk decay coefficients for chlorine depend on the nature of the water
source and the treatment it has received, while wall decay coefficients depend on the
pipe material and its condition. It is generally assumed that chlorine evolution in a
DWN can be described by a first-order kinetic model. But, the bulk decay parameter
can also be not first order, and some more reliable alternatives have been presented
in some recent works as [5] or [3].

In the water quality model calibration, some of the parameters can be determined
by laboratory tests and others have to be estimated by means of field measurements.
Since manual trial-and-error method [6] is time-consuming, automated calibration
procedure for those parameters is expected to provide better results. Zeirolf et al.
[19] illustrated the use of input–output models for chlorine transport to estimate the
first-order (global and zoned) wall reaction parameter. The model is applicable only
for first-order reaction kinetics and does not incorporate storage tanks and multiple
water quality sources. Al-Omari and Chaudhry [1] used finite difference procedures
for the determination of the overall first-order chlorine decay coefficient. Munavalli
and Kumar [12] developed an inverse model, which estimates the various reaction
parameters in a multi-source steady-state distribution system.
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The changes in water quality that take place throughout the DWN are still quite
difficult to reproduce by using mathematical models due to the complexities aris-
ing from varying hydraulic conditions and non-applicability of universal chlorine
reaction kinetics. Several models that determine chlorine concentrations throughout
a DWN have been described in the literature (see, e.g., [15] or [8] among others).
Nowadays, three types of numerical models are used to calculate the changes of
chlorine concentration in DWNs: the forward simulation model [6, 15], the inverse
model [1, 8, 12] and the input–output model [17, 19].

The forward simulation of awater qualitymodel, which tracks changes in chlorine
concentration depending on time and localization, consists of the hydraulic model
and elements describing chlorine transport along the pipe system. Chlorine propa-
gation is described by a simplified transport equation and calculated numerically by
Lagrangian time-driven method [10]. The predicted chlorine concentrations depend
both on chlorine and on bulk and wall reaction parameters. All necessary input para-
meters needed for this model are either an overall first-order reaction parameter or
bulk reaction parameter along with the wall reaction parameters depending upon the
type of reaction rate expressions. The decay parameters are determined experimen-
tally by the bottle test, and wall and overall reaction parameters are obtained by the
calibration of data gathered in the field. The forward simulation model provides a
great tool to calibrate the water quality model since it can estimate efficiently the
parameters involved in overall first-order, first and zero-order wall reaction kinetics
[14]. This model shows suitable correspondence of results and measured values in
fixed hydraulic conditions and for turbulent flows (Re > 10000). The quality of cor-
respondence increases with the distance between nodes and the water source. The
source chlorine concentration is calculated by a trial-and-error procedure. But, the
same trial-and-error procedure used for model calibration appears to be complicated
and time-consuming.

Inverse modelling also denoted as automatic calibration consists in estimating the
parameter values. An optimal parameter set is calculated automatically by minimiz-
ing an objective function, often defined as the summed squared deviation between
the calibration targets (field data) and their simulated counterparts. Most inverse
model techniques in addition to estimating optimal parameter values also produce
calibration statistics in terms of parameter and observation sensitivities, parameter
correlation and parameter uncertainties. The inverse chlorine decaymodelwas devel-
oped by [8]. In this model, chlorine decay coefficients for each pipe in the network
were known, chlorine concentrations at some of the nodes are known by specifica-
tion, while chlorine concentration at the source was unknown. The objective was
to determine the unknown source concentration, so that the specified and the calcu-
lated concentrations match. Islam et al. [8] presented an inverse model for directly
calculating the chlorine concentrations needed at the system sources in unsteady
flow conditions for meeting a specified concentration value at a particular node in
the network. The model used a one-dimensional chlorine transport equation, which
was discretized by using a four-point implicit finite difference scheme, and solved
further simultaneously with mass balance equations and appropriate boundary con-
ditions. The main drawback of [8] is that it is suitable only for an even-determined
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case in which the number of unknowns (nodal and source concentrations) equals
the number of equations. Al-Omari and Chaudhry [1] extended Islam’s model to
the under-determined case where the number of unknowns is greater than the num-
ber of available equations and where there is more than one solution for which the
prediction error is zero. Additional a priori information is added to the problem, and
by minimizing the Euclidean length of the solution vector subject to the equations
that describe chlorine transport in the network, a unique solution is generated. Laird
et al. [9] presented an origin-tracking algorithm for solving the inverse problem of
contamination source identification based on a nonlinear programming framework.
Themodel considered the time delays of each pipe individually and scaled efficiently
to large networks.

On the other hand, the input–output model developed by [19] is used to track
chlorine propagation in a DWN and to calibrate the wall demand coefficient in a net-
work without water storage tanks. This numerical model identifies all pipes covering
flow paths between upstream and downstream sampling points and determines the
wall reaction parameters for these pipes. Shang et al. [17] enhanced the basic input–
output model with particle backtracking algorithm which made including water stor-
age tanks and multiple water sources possible. In the input–output model using a
particle backtracking algorithm, the output concentrations are modelled as a variable
depending on input concentrations, network hydraulics and physical characteristics
of the pipe network. The algorithm was mainly developed for feedback control pro-
viding information on all paths between pairs of nodes and less toward contamination
source identification using monitoring stations’ information.

Another important issue in water quality monitoring is the chlorine event that
can be manifested by added variability and lower chlorine concentrations at sensor
locations in the network. A DWN can be perceived as a complex chemical reactor in
which various processes occur simultaneously. Some of these processes take place
in the bulk phase and others at the pipe wall and can degrade water quality. Water
quality events can be caused directly or indirectly by an internal corrosion due to an
oxidation/reduction reaction, by detachment and leaching of pipe material or biofilm
formation, by regrowth of micro-organisms on the internal surface and/or by a loss of
disinfectant and formation of by-products (DBPs), or an intrusion of contaminants.

This chapter presents a methodology that enables to efficiently calibrate a water
quality model such that the field-observed water quality values match with the model
simulated ones. The calibration of the chlorine model consists in estimating the
unknown parameters by comparing the measured and simulated chlorine concentra-
tions at the monitoring nodes within the distribution system in a least square sense
with a normalized quadratic cost function. The method is applied to a real DWN in
Barcelona network and demonstrated that a water quality model can be optimized
for managing adequate water supply to consumers and to perform further monitoring
tasks (e.g., abnormal chlorine levels) in a more reliable way. The strategy consists
in dividing the area of study in different zones and then estimating the chlorine bulk
coefficients taking into account one-source or two-source DWN. The methodology
represents accurately the process in the network improving the water quality predic-
tion in the area of study and allowing the establishment of zones where the chlorine
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decay was significant. The simulations have been performed using the EPANET-
MSX software package, MATLAB and the EPANET toolkit (see Chap.2). Another
important issue that is considered in this chapter is the water quality event detection
and location. The proposed methodology is based on chlorine measurements and
chlorine sensitivity analysis of the nodes of the network. Simulations of the water
quality of the network done with realistic bulk decay and with an abnormal one pro-
vide an approximation of this sensitivity. An event location algorithm that correlates
online the residuals, generated by comparing the available chlorine concentration
measurements with their estimation values using a model with the sensitivity matrix
is used. The correlation between the observed residual event signature and each col-
umn of the sensitivity matrix is a measure of the similarity of the residual effect
concerning pipe bulk decay event due to pipe material detachment.

8.2 Problem Statement

To ensure the safe supply of drinking-water, the quality needs to bemonitored online.
The consequence of inadequate monitoring can result in substantial health and eco-
nomic risks. Model-based monitoring requires modelling water quality in order to
ensure the delivery of high-quality drinking-water. To design a model-based moni-
toring system, the first step consists in developing a water quality model that is able
to reproduce the behaviour of the water quality when transported in the DWN. After
selecting the type of model to be used from the set of existing models described in
the introduction of this chapter, the next step is to calibrate the quality model. The
calibration of the quality model for monitoring (e.g., chlorine) consists in estimating
the unknown parameters by comparing the measured and estimated concentrations
at the monitoring nodes within the DWN in a least square sense with a normalized
quadratic cost function.

Another important issue is the detection and location of water quality events that
can be manifested by added variability and lower chlorine concentrations at sensor
locations in the network. Chemical reactions that take place both in the bulk phase
and at the pipe walls can degrade water quality. Water quality events can be caused
directly or indirectly by an internal corrosion due to an oxidation/ reduction reaction,
by detachment and leaching of pipe material or biofilm formation, by regrowth of
micro-organisms on the internal surface and/or by a loss of disinfectant and formation
of by-products (DBPs), or an intrusion of contaminants.

8.3 Proposed Approach

This chapter presents a model-based approach for monitoring the chlorine concen-
tration. As discussed in the previous section, the first step of this methodology is to
calibrate a water quality model such that the field water quality measurements match

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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with the estimations provided by the model. The calibration of the quality (chlorine)
model consists in estimating the unknown parameters by comparing the measured
and estimated chlorine concentrations at the monitoring nodes within the DWN in
a least square sense with a normalized quadratic cost function. Since this function
involves a non-explicit expression of the model, a GA is applied to optimize the
model parameters by minimizing the difference between the model-predicted values
and the field-observed ones.

The second phase of the proposed methodology is a water quality event detection
and location approach based on sensor measurements and sensitivity analysis. Sim-
ulations of the water quality of the network carried out with normal and abnormal
bulk decays provide an approximate way to perform such sensitivity analysis. An
event location algorithm that correlates online the residuals, generated by comparing
the available chlorine concentrationmeasurements with their estimation values using
the quality model, with the sensitivity matrix is used. The correlation between the
observed residual quality event signature and each column of the sensitivity matrix
is a measure of the similarity of the residual effect concerning pipe bulk decay event
due to pipe material detachment. The validation and application of this methodology
are illustrated with a district metering area (DMA) in the Barcelona network.

8.3.1 Chlorine Decay Model Calibration

The chlorine decay model has been calibrated by means of solving a least square
problem that leads to an optimization problem. The least square problem with a
normalized quadratic cost function given by

J(θ) = 1

Nns

N∑

k=1

ns∑

s=1

(
Cs(k) − Ĉs(k, θ)

)2
, (8.1)

where θ are the quality parameters (bulk decay coefficients) to be tuned, N is the
number of measurements, ns is the number of sensors, Cs(k) is the chlorine mea-
surement for a sensor s at a certain instant k and Ĉs(k, θ) is its estimation using
a particular chlorine decay model. To solve the previous least square problem, the
following optimization problem in (8.1) is solved:

min
θ

J(θ)

s.t.
Ĉs(k, θ) = EPANET_MSX_simulation(k, θ).

(8.2)

Notice that since the estimation of the sensormeasurement Ĉs(k, θ) using a partic-
ular chlorine decay model requires a simulation using EPANET-MSX, the previous
optimization problem does not have an analytical expression. Thus, it must be solved
using a heuristic approach such as GAs [11].
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The percentage error is obtained using the validation period of data as follows:

ev = 100

[
1 −

(
max

(
Csv (k)

) − √
Jv

max
(
Csv (k)

)
)]

, (8.3)

where max
(
Csv (k)

)
is the maximum measured value in the validation period among

all the sensors used for calibration and Jv is the cost index in (8.1) obtained using
validation data. The performance index (8.3) is useful in order to compare between
differentmodels and to evaluate the fit obtained between a particular calibratedmodel
and the measured data.

8.3.2 Quality Event Detection and Location

This section proposes a detection and location method of abnormal water quality
concentrations based on chlorine measurements and chlorine sensitivity analysis.
Simulations of the water quality of the network done with realistic bulk decay and
by introducing an abnormal one at a time at each pipe segment (link) provide an
approximation of this sensitivity. An event isolation algorithm that correlates the
residuals, generated by comparing the available chlorine concentration measure-
ments with their estimation values using a model, with the event sensitivity matrix is
used. The correlation between the observed residual event signature and each column
of the sensitivity matrix is a measure of the similarity of the residual effect concern-
ing pipe bulk decay event due to pipe material detachment. The same methodology
has been applied to detect and isolate leakages in nodes of the network (see Chap.6).

8.3.2.1 Event Detection Procedure

Model-based event detection and location rely on the use of analytical redundancy
techniques to monitor the changes in the network water quality [7]. These techniques
use the consistency check based on residuals r(k) computation, obtained from mea-
sured input u(k) and output y(k) signals and the analytical relationships which are
obtained by system modelling that provides an estimated output

r(k) = y(k) − ŷ(k). (8.4)

At each time step k, the residual is compared with a threshold value (zero in the
ideal case and almost zero in a real case). The threshold value is typically determined
using statistical or set-based methods that take into account the effect of noise and
model uncertainty [2]. When a residual is bigger than the threshold, it is determined
that there is an event in the system; otherwise, it is considered that the system is
working properly. In practice, because of the input–output noise, nuisance inputs and
modelling errors affecting the model considered, robust residual generators must be
used. Robustness can be achieved at the residual generation phase (active) or at the

http://dx.doi.org/10.1007/978-3-319-50751-4_6
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evaluation phase (passive) [7]. Robust residual evaluation allows obtaining a set of
observed event signatures

�(k) = [
φ1(k), φ2(k), . . . φnφ(k)

]
, (8.5)

where each event indicator is obtained as follows:

φi(k) =
{
0 if |ri(k)| ≤ τi(k),
1 if |ri(k)| > τi(k),

(8.6)

and where τi(k) is the detection threshold associated with the residual ri(k).

8.3.2.2 Event Location Using the Correlation Method

Event location is carried out on the basis of observed event signatures, φi(k), gen-
erated by the detection module and its relation with all the considered events,
f(k) = [

f1(k), f2(k), . . . , fnf (k)
]
, which are compared with the theoretical event

signaturematrix. The use of the information associated with the relationship between
the residuals and events, by means of the residual event sensitivity, allows improving
the isolation results. The sensitivity matrix contains the sensitivity of the chlorine
sensor residuals for the different possible events fj affecting the system, which is
written as

f1 f2 · · · fm

� =
r1
r2
...

rn

⎡

⎢⎢⎢⎣

ω11 ω12 · · · ω1m

ω21 ω22 · · · ω2m
...

...
. . .

...

ωn1 ωn2 · · · ωnm

⎤

⎥⎥⎥⎦ ,
(8.7)

where ωij = Cf
ij−Cnf

ij

fj
with Cf

ij and Cnf
ij being the mean values of the chlorine concen-

tration measured by sensor i in normal situation and when an event occurs in node
j at a certain time, when the bulk decay is abnormal or normal, respectively. The
main idea of correlation-based event isolation consists in comparing the columns
(events) of the sensitivity matrix (8.7) with the corresponding residual vector at time
k by using the correlation function. The correlation coefficient ρr,�(:,j) (k) between
r(k) and each column j of � (i.e., �(:,j)(k)) is computed by means of the Pearson’s
correlation coefficient, which is defined as

ρr,�(:,j) = cov(r,�(:,j))√
cov(r, r)cov(�(:,j),�(:,j))

, (8.8)

where cov(r,�) = E
[
(r − r̄)

(
�(:,j) − �̄(:,j)

)]
is the covariance function between

r and �(:,j) being r̄ = E (r) and �̄:,j(:, j) = E(�(:,j)), respectively. The columns
of � having higher correlation values with the residual vector r at time k are the
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most probable elements to have an event. The correlation between the observed
residual fault signature (i.e., r(k)) and each column of the matrix � is a measure
of the similarity between the real event residual effect (with unknown magnitude)
and the events considered in matrix � in (8.7) (with known magnitude) that allows
discovering which is the column of this matrix (event) having the same behaviour.
For events with similar size to those used to obtain the sensitivity matrix �, the
correlation function obtains the maximum similarity (shape and form), i.e., ρ = 1
in the element having the event, for any magnitude of the real event. Because of
the nonlinearity of the water network system, if the real magnitude of the event is
far from the event size used to compute matrix �, the similarity of the correlation
function decreases, but a high correlation between the residuals corresponding to a
particular event and the corresponding column of the sensitivity matrix still exists.
The vector obtained is the decision vector that will be used to figure out which is the
event occurring in the system. More concretely, the maximum correlation value in
this vector will point out the corresponding � column (event) as the most probable
node presenting the event, i.e.,

max
j

(
ρr,�(:,j) (k)

)
. (8.9)

8.4 Simulation and Results

The calibration is applied to a part of the Barcelona DWN in order to estimate a water
quality model that can be used for managing adequate water supply to consumers
and to perform further monitoring tasks (e.g., abnormal chlorine levels) in a more
reliable way [13]. The strategy consists in dividing the area under study into different
zones and then estimating the chlorine bulk coefficients taking into account one-
or two-source network and a first-order chlorine decay model (see Chap. 3). The
methodology represents accurately the process in the network, improving the water
quality prediction in the area of study and allowing the establishment of zones where
the chlorine decay was significant. The simulations have been performed using the
EPANET-MSX software package [16].

8.4.1 Calibration Case Study

8.4.1.1 Network Description

In order to estimate the chlorine decay coefficient, the origin of water and its path
has to be known. Thus, the transport network is more suitable for determining the
parameters of the quality model as it is less meshed than the distribution network
(see Chap.2). Nevertheless, the coefficients can be generalized to the whole network

http://dx.doi.org/10.1007/978-3-319-50751-4_3
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assuming the same water origin and pipe materials. The case study in this chapter is
a part of the Barcelona DWN, a vast network of 4480 km of pipes which is divided
into 113 different pressure levels. It corresponds to the pressure level 55th and has
438 nodes and 453 pipes (see Fig. 8.1). There are two inflows (i.e., Cantàbria and
Drassanes) where flow, pressure and chlorine concentration are measured and four
outputs (Llull, Àlaba, Passeig Colom and Joan de Borbó) where these variables are
monitored as well. The flow and pressure data of these control points together with
the data provided for some relevant demands allow the hydraulic adjustment of the
model. Once the hydraulic model is available, the chlorine information is used for
the chlorine model calibration.

8.4.1.2 Hydraulic Model Validation

To achieve a suitable water quality calibration, a properly calibrated hydraulic model
is essential before starting water quality calibration. The accuracy of water quality
simulation relies on the hydraulic simulation results.

From the hydraulic point of view, the network selected has two inputs, called
Cantàbria and Drassanes, and 21measured points. In order to simulate it isolated, the

Fig. 8.1 Pressure level 55th
of Barcelona DWN
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(a) Drassanes reservoir flow (b) Cantàbria reservoir pressure

Fig. 8.2 Comparison between the measured and simulated flows and pressures in Drassanes and
Cantàbria reservoirs

boundary conditions have to be fixed. Boundary conditions are pressures and flows
that aremeasured every hour at the network inputs. Pressures are fixed in the reservoir
ofDrassanes andflow in the reservoir ofCantàbria.After the hydraulic simulation, the
resulting flows and pressures at Drassanes and Cantàbria are obtained and compared
with the measured values, sampled every hour. In Fig. 8.2, a comparison between
flows and pressures corresponding to the time range from 07/09/2010 (at 00:00 h)
to 09/09/2010 (at 23:00 h) in Drassanes and Cantàbria reservoirs is depicted. The
results obtainedwith the EPANET simulator show a proper validation and calibration
of the hydraulic model when comparing with the measured data.

8.4.1.3 Chlorine Decay Calibration

The chlorine concentration data used are hourly sampled, measured from 03/09/2010
(at 00:00 h) to 14/09/2010 (at 23:00 h) in the sensors installed in the actual network
(see Fig. 8.1). In order to perform the chlorine model calibration, the first 24 h of data
are used to let the chlorine getting stabilized in the network. Hence, the data within
this period are not used to calibrate the chlorine decay model (from 03/09/2010
(00:00) to 03/09/2010 (23:00)). The measurements comprised between 04/09/2010
(00:00) and 10/09/2010 (23:00) (7 days) have been used to calibrate the chlorine
model, and the data comprised between 11/09/2010 (00:00) and 14/09/2010 (23:00)
(4 days) have been used to validate themodel. In this calibration process, real chlorine
measurements in Cantàbria and Drassanes have been considered in the simulations
as the injected chlorine in the network. These simulations have been used, in the
model error function of the calibration procedure, to obtain the chlorine decay model
parameters. The GA and Direct Search Toolbox included in the MATLAB R2009a
release have been used in this work. Measurements in the four currently available
sensors inFig. 8.1 have been considered to compute the cost index (8.1). Thefigures in
this section show the results obtained using the whole period of data (i.e., calibration
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and validation) by testing the model obtained in the calibration period (i.e., from
04/09/2010 (00:00) to 10/09/2010 (23:00)). In all these figures, the boundary between
calibration and validation periods is depicted with a dashed line.

8.4.1.4 Case 1: Single Zone

Measurements in the four currently available sensors in Fig. 8.1 have been considered
to minimize the cost index in (8.1). After the optimization process, the estimated
chlorine decay constant isKb1 = 1.8024 d−1. The results obtained in thewhole period
of data (i.e., calibration and validation) are shown in Fig. 8.3. The cost value obtained
for the calibrated single-zone first-order chlorine decay model is J = 0.030669. The
corresponding average percentage error is ev = 19.41%. As it may be observed from
Fig. 8.3, a reasonable proper fit is obtained for the measurement points in Joan de
Borbó and Passeig Colom, but the fit is not as suitable as for measurement points in
Àlaba and Llull.

(a) (b)

(c) (d)

Fig. 8.3 Validation of a one-zone chlorine decay model in pressure level 55th of Barcelona DWN
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8.4.1.5 Case 2: Two Zones

The results presented for the Case 1 show how, while in Joan de Borbó and Passeig
Colonmeasurement points a reasonable proper fit between real data and the computed
values is achieved, in Alaba and Llull measurement points the model fit is not that
suitable. This could be explained because Joan de Borbó and Passeig Colon always
receive chlorinated water from a single water source, while Alaba and Llull may
receive chlorinated water from two different sources (e.g., Drassanes and Cantàbria)
depending on the network demands in a particular time. A possible andmore accurate
approach to model this behaviour is to divide the network into two different zones,
southern (Zone I) and northern (Zone II), and assign a different chlorine decaymodel
to each one. The two selected zones are depicted in Fig. 8.4.

As in the previous calibrations, real chlorine measurements in Cantàbria and
Drassanes have been considered as the injected chlorine points in the network. The
obtained estimated chlorine decay constants after the calibration process for the two
different zones are as follows: Kb1 = 1.5469 d−1 and Kb2 = 1.9213 d−1. Results
obtained in the whole period of data (i.e., calibration and validation) are shown in
Fig. 8.5. The cost value obtained for the calibrated two zones using the first-order
chlorine decay model is J = 0.02913. The corresponding average percentage error
is ev = 18.64%.

(a) (b)

Fig. 8.4 Two zones selected in pressure level 55th of Barcelona DWN, with a different chlorine
decay model each
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(a) (b)

(c) (d)

Fig. 8.5 Validation of a two-zone first-order chlorine decay model in pressure level 55th network

8.4.1.6 Case 3: Three Zones

In this case, an extra zone is added to obtain a better model of the chlorine decay
through the network in Fig. 8.1. The new zone distribution considered is shown in
Fig. 8.6.

As in the previous calibrations corresponding to the previous cases, real chlo-
rine measurements in Cantàbria and Drassanes have been considered as the injected
chlorine in the network. Measurements in the four installed sensors have been con-
sidered to minimize the cost index in (8.3). The estimated chlorine decay constants
after the calibration process for the three different zones are Kb1 = 2.3544 d−1 and
Kb2 = 0.56331 d−1 andKb3 = 0.8686 d−1. The cost value obtained for the calibrated
three zones using the first-order chlorine decay model is J = 0.019871, and the
corresponding average percentage error is ev = 13.90% (Fig. 8.7).

Good results have been obtained with the suggested alternative models improving
the original model error from 19.41% to 13.90% when using the three-zone model.
This leads to consider this better approach instead of the original one, in order to
achieve more accurate monitoring of the chlorine evolution through the network.
The calibration methodology and the different models proposed should help water
companies to obtain a better estimation of the chlorine evolution through a particular
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(a) (b)

(c)

Fig. 8.6 Three zones selected in pressure level 55th network, with a different chlorine decay model

network by simulation and to use this information to perform further monitoring
tasks as chlorine event detection in a more reliable way. There are other chlorine
decay model approximations which could be taken into account in order to improve
the achieved calibration results. This may include different values for the order of
the chlorine decay as suggested in [4] or different distributions of the decay zones,
e.g., variable zones through time.

8.4.2 Abnormal Quality Detection and Isolation

ADMAof a real water distribution network (Fig. 8.8) was used to verify the proposed
method for abnormal water quality detection and location. This DMA, located in
Nova Icària area of Barcelona, is included in the 55th pressure level within the city
network and has 1996 nodes and 3442 pipes (see Chap.2). The DMA has two inputs,
called Alaba and Llull, and three chlorine sensors, which are also shown in Fig. 8.8.

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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(a) (b)

(c) (d)

Fig. 8.7 Validation of a three-zone first-order chlorine decay model in pressure level 55th network

Scenarios have been generated using the EPANET simulation software, consid-
ering these three sensors already installed in the network (see Fig. 8.8). The events
have been generated setting the initial quality and source quality parameters of the
injectors Alaba (RE) and Llull (PC3) in Fig. 8.9. The scenarios have been generated
changing the Kb parameter at the corresponding links of the network at 08:00 of day
2 (32nd h of the episode). The values of normal/abnormal behaviours on these links
are Kb = −2.306415 d−1 for the normal mode and Kb = −50 d−1 for the abnormal
mode. The scenario has been run for 48 h, and datasets have been created according
to the considered scenarios.

Figure8.10 shows the number of bulk chlorine decay events that may be detected
using the sensors located in Fig. 8.8 after 96 h of simulation. It may be seen how, with
the sensors already installed, the number of events that may be detected is about 500.
The improvement of detection is due to the dynamic of the chlorine concentration
within the system. These links are distributed geographically as shown in Fig. 8.11.
The constraints in the detectability of events are due to the geographic distribution
of the sensors.
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Fig. 8.8 The layout of Nova
Icària network with the 3
installed chlorine sensors

Three different links of the network, included in the set of detectable events
in Fig. 8.10, are considered to generate the event scenarios. These links labelled

Fig. 8.9 Location of
chlorine injectors (red) and
links with chlorine decay
event (blue)
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Fig. 8.10 Number of bulk
chlorine decay events using 3
preinstalled sensors

Fig. 8.11 Geographic
distribution of events using 3
preinstalled sensors

“TR00353608D”, “TR00029992A” and “TR00029794D”, respectively, are shown
in Fig. 8.9.

The simulated data are obtained using the methodology presented in Sect. 8.3.2.
Figures8.12, 8.13 and 8.14 show the event detection results obtained at hour 48 for
every chlorine bulk decay event. In these figures, the link with the actual event is
represented with a diamond, and the starred nodes are the potential abnormal nodes
suggested by the correlation method. The rest of the nodes are divided in grey-scaled
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Fig. 8.12 Chlorine bulk
decay event detection in link
TR00353608D at hour 48

Fig. 8.13 Chlorine bulk
decay event detection in link
TR00029992A at hour 48

areas, depending on the correlation value they have: the most correlated with the
event signature, the darkest the area they are located.

The evolution of the error distance through the period of results’ generation (15–
24 h) and a detail of the detection for each event are depicted in Figs. 8.15, 8.16 and



8 Quality Monitoring 149

Fig. 8.14 Chlorine bulk
decay event detection in link
TR00029794D at hour 48

(a)

(b)

Fig. 8.15 Error distance and geographic detail of chlorine bulk decay event detection for the link
TR00353608D at hour 48

8.17. In the latter, the distance between the potential abnormal links (starred) and the
actual abnormal link (diamonds) is represented. If more than one potential abnor-
mal link is obtained at a particular time, minimum, maximum and mean distances
among potential abnormal links’ set and actual abnormal link are represented. For all
cases, a proper match between the actual and the identified event has been achieved
(Figs. 8.12, 8.13 and 8.14).



150 F. Nejjari et al.

(a)

(b)

Fig. 8.16 Error distance and geographic detail of chlorine bulk decay event detection for the link
TR00029992A at hour 48

(a)

(b)

Fig. 8.17 Error distance and geographic detail of chlorine bulk decay event detection for the link
TR00029794D at hour 48

8.5 Conclusions

In this chapter, the problem of detection and location of chlorine concentration events
has been addressed using a model-based approach. This method is based on the
chlorinemeasurements and chlorine sensitivity analysis of nodes in aDWN.An event
location algorithm that correlates online the residuals (generated by comparing the
available chlorine measurement with their estimation using a model) with the event
sensitivity matrix is used. The proposed algorithm has been applied in simulation
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to a DMA (Nova Icària) in the Barcelona network using EPANET software. The
effectiveness of the method ensures the ability for a rapid response to an abnormal
quality event and, consequently, minimizes exposure risks to water consumers. The
solution should help water companies to estimate the presence and the location of a
bad chlorine concentration through a simple field data analysis.

Themodel-basedwater quality event detection and locationmethodology requires
a reliable model that is obtained through the chlorine decay calibration procedure.
The decay parameters appear to be highly sensitive to the water origin. Thus, the
model calibration process should be previously carried out in any supply system
before using it for supervision and monitoring.
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Chapter 9
Sensor Placement for Monitoring

Ramon Sarrate, Fatiha Nejjari and Joaquim Blesa

9.1 Introduction

As discussed in Chaps. 7 and 8, locating leaks and quality events is of great impor-
tance in water networks. Leaks can lead to economic losses while quality events
can compromise the safety of the water supply. The location capability for system
monitoring highly depends on the set of real-time measurements that are available.
Thus, for a water management company, deciding which sensors to install is the key
to the success of a monitoring system.

Water loss due to leak in pipelines is one of the main challenges in efficient
DWNs. Leaks in DWNs can occur because of damages and defects in pipes, lack
of maintenance or uncontrolled increases in pressure. Leaks can cause significant
economic losses and must be detected and located as soon as possible to minimize
their effects. Continuous improvements in water loss management are being applied,
and new technologies are developed to achieve higher levels of efficiency [16].

Methods for locating leaks range from ground-penetrating radar to acoustic lis-
tening devices [9]. However, techniques based on locating leaks from pressure/flow
monitoring devices allow a more effective and less costly search in situ. The need
to identify the location of leaks has promoted the development of several techniques
based on the inverse problem and solving it using pressure or flowmeasurements (see
Chap.7). In the last years, different works that deal with the topic of leak location in
DWNs using pressure sensors have been published. Some of these last works tackle
with the problem of leak location using the sensitivity matrix [4, 15], which contains

R. Sarrate (B) · F. Nejjari · J. Blesa
Research Center “Supervision, Safety and Automatic Control” (CS2AC-UPC), Terrassa, Spain
e-mail: ramon.sarrate@upc.edu

J. Blesa
Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

© Springer International Publishing AG 2017
V. Puig et al. (eds.), Real-Time Monitoring and Operational Control
of Drinking-Water Systems, Advances in Industrial Control,
DOI 10.1007/978-3-319-50751-4_9

153

http://dx.doi.org/10.1007/978-3-319-50751-4_7
http://dx.doi.org/10.1007/978-3-319-50751-4_8
http://dx.doi.org/10.1007/978-3-319-50751-4_7


154 R. Sarrate et al.

the information about how leaks affect the different node pressures (see Chap. 7 for
a more detailed state of the art in this topic).

These techniques are based on the sensors installed in the network. Ideally, sensor
placement should facilitate leak detection and location maximizing the monitoring
performance under a given sensor cost budget. In DWNs, only a limited number of
sensors can be installed due to these budget constraints. Since improper selections
may seriously hampermonitoring performance, the development of sensor placement
strategy has become an important research issue in recent years.

The sensor placement problem can be roughly stated as choosing a subset of
sensors, from a given candidate sensor location set, such that some monitoring per-
formance is guaranteed or at least maximized. Since installing sensors will involve a
cost for the water management company, economic constraints must be additionally
taken into account in the choice. Sensor placement entails formulating a combina-
torial optimization problem. In such problems, an exhaustive search of the solution
is usually not feasible, since its complexity grows exponentially with the number of
candidate sensor locations. A DWN may easily involve several thousands of candi-
date sensor locations, which poses a severe optimization challenge. Thus, the sensor
placement methodology should be able to cope with such complexity issues.

Some results devoted to sensor placement for leak monitoring can be found in
[10, 14, 20, 21]. All these works use a structural model-based approach and define
different leak monitoring specifications to solve the sensor placement problem. A
structural model is a coarse model description, based on a bipartite graph, which
can be obtained early in the development process, without major engineering efforts.
This kind of model is suitable to handle large-scale systems since efficient graph-
based tools can be used and does not have numerical problems. Structural analysis is
a powerful tool for early determination of fault diagnosis performances [1]. In [20],
an algorithm is developed to determine where to install a specific number of pressure
sensors in a DMA in order to maximize the capability of detecting and locating
leaks. The number of sensors to install is limited in order to satisfy a budgetary
constraint requirement. However, in this case, despite using an efficient branch-and-
bound search strategy based on a structural model, the approach applicability is still
limited to medium-sized networks. To overcome this drawback, the methodology is
combined with clustering techniques [19].

On the other hand, optimal pressure sensor placement algorithms based on sen-
sitivity matrix analysis have been developed to determine which pressure sensors
have to be installed among hundreds of possible locations in the DWN to carry out
an optimal leak location as in [5, 6, 18]. The sensitivity matrix can be obtained by
convenient manipulation of model equations as long as leak effects are included in
them [3]. Alternatively, it can be obtained by sensitivity analysis through simulation
[15]. The elements of this matrix depend on the operating point defined by the heads
in reservoirs, the inflow, demand distribution, which is not constant, and the leak
magnitudes, which are unknown. In [2], a robustness analysis of the sensor place-
ment problem in DWNs has been addressed. The study has been achieved by optimal
sensor placement strategies for different leak magnitudes and DMA operating points
and evaluated through a robustness percentage index.

http://dx.doi.org/10.1007/978-3-319-50751-4_7
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9.2 Problem Statement

9.2.1 Model-Based Fault Diagnosis

As discussed in Chap. 7, model-based leak monitoring relies on the general theory of
model-based fault diagnosis [1]. The basic idea behind this approach is the compar-
ison between the observed process behaviour and its estimation using a model. This
is performed by means of consistency relations, which can be roughly described as
a function of the form

h(y(t),u(t)) = 0, (9.1)

where y(t) and u(t) are vectors of known variables, denoting, respectively, process
measurements and process control inputs. Function h is obtained from the model and
is the basis to generate a residual

r(t) = h(y(t),u(t)). (9.2)

A residual is a temporal signal indicating how close is behaving the process
compared with its expected behaviour predicted by the model. In the absence of
faults, a residual equals zero. In fact, a threshold-based test is usually implemented
in order to cope with noise and model uncertainty effects. Otherwise, when a fault
is present, the model is no longer consistent with the observations (known process
variables) and the residual exceeds the prefixed threshold.

Detecting faults is possible with only one residual sensitive to all faults. However,
fault isolation is usually required rather than just detecting the presence of a fault.
The fault isolation task is performed by designing a set of residuals based on sev-
eral consistency relations. Each residual is sensitive to different faults such that the
residual fault signature is unique for each fault. Therefore, distinguishing the actual
fault from other faults is possible by looking at the residual fault signature. In case
that the faults are leaks, the fault signatures are collected in the sensitivity matrix
denoted by � as explained in Chap.7 and written as

� =

⎛
⎜⎜⎝

∂r1
∂f1

· · · ∂r1
∂fnd

...
. . .

...
∂rny
∂f1

· · · ∂rny
∂fnd

⎞
⎟⎟⎠ , (9.3)

where ny is the number of the available residuals and nd the number of nodes where
a leak might occur. When an element ωij of � is close to zero, then residual ri is
weakly sensitive to the leak fj ∈ F , beingF the set of leaks that must be monitored,
whereas when it diverges from zero then the residual is strongly sensitive to the leak
fj ∈ F .

In Chap.7, � is roughly estimated as follows:

http://dx.doi.org/10.1007/978-3-319-50751-4_7
http://dx.doi.org/10.1007/978-3-319-50751-4_7
http://dx.doi.org/10.1007/978-3-319-50751-4_7
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� � 1

f 0
(r̂f1 , . . . , r̂fnd ), (9.4)

where r̂fi is the predicted residual considering a leak in node i with magnitude f 0.
Sometimes a binary version of the sensitivitymatrix is used. Then, the correspond-

ing binary residuals are usually called structured residuals, whereas in the non-binary
matrix they are referred to as directional residuals.

In model-based diagnosis, fault detectability and fault isolability are the main
properties that the set of residuals should satisfy [1]. Assuming structured residuals,
a fault is detectable if its occurrence can be monitored, whereas a fault fi ∈ F is
isolable from a fault fj ∈ F if the occurrence of fi can be detected independently of
the occurrence of fj.

9.2.2 Optimal Sensor Placement

Sensorsmeasurewater physicalmagnitudes such as pressure, flow, tank level or chlo-
rine concentration. The aim of the sensor placement for monitoring can be roughly
stated as the choice of a sensor configuration such that the monitoring performance
specification is maximized. Nevertheless, this may lead to a solution involving a
large instrumentation cost. A baseline budget is usually assigned to instrumentation
bywater network companieswhich should constraint themaximumcost of the sought
sensor configuration and consequently will bound the achievable monitoring perfor-
mance. Thus, water companies rather seek the best monitoring performance that can
be achieved by installing the cheapest sensor configuration that satisfies a budget
constraint. This chapter focuses on pressure sensor placement for leak monitoring
although the methodology could be adapted to quality event monitoring (Chap.8) or
general fault monitoring (Chap.10).

Let S be the set of candidate pressure sensors and mp the maximum number of
pressure sensors that can be installed in the water network according to the budget
constraint. Just sensor configurations S ⊆ S satisfying |S| ≤ mp will be considered,
where |S| denotes the cardinality of the set S.

The monitoring specification T will be stated based on two fault diagnosis prop-
erties: fault detectability and fault isolability. Single fault assumption will hold (i.e.,
multiple faults will not be considered).

A water network description M is also required to solve the sensor placement
problem. Such description will allow the evaluation of leakmonitoring specifications
for a given pressure sensor configuration. Hence, the sensor placement for fault
diagnosis can be formally stated as follows:

GIVEN a candidate pressure sensor set S, a water network description M, a leak
set F , a leak monitoring specification T , and a maximum number of
pressure sensors mp.

http://dx.doi.org/10.1007/978-3-319-50751-4_8
http://dx.doi.org/10.1007/978-3-319-50751-4_10
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FIND a pressure sensor configuration S ⊆ S such that:

1. |S| ≤ mp

2. T is maximized, and
3. |S| is minimal.

9.3 Proposed Approach

To solve the sensor placement optimization problem, two alternative methodologies
based on two different water network descriptionsM and involving a different formu-
lation of the leak monitoring specification T will be investigated. The first approach
is based on structural analysis and the second one on sensitivity analysis.

The considered optimization problem is of combinatorial nature, and its com-
plexity critically depends on the cardinality of S. In order to reduce the size and the
complexity of this optimization problem, the following two-step hybridmethodology
is proposed:

Step 1 Clustering techniques are applied to reduce the initial candidate sensor set
S, such that the next step is tractable. At this step, a tentative size nt for
the reduced candidate sensor set is proposed to the clustering analysis. The
complexity issues concerning Step 2 should be accommodated through this
specification.

Step 2 Given the new candidate sensor set, the optimization problem is solved
following either the approach based on structural analysis or the one based
on sensitivity analysis.

9.3.1 Clustering Analysis

Given a set of objects O = {
o1, o2, · · · , ono

}
clustering consists in partitioning the

no objects into � sets C = {C1, C2, · · · , C�} (� ≤ no) in such a way that objects in the
same group (called cluster) are more similar (in some sense) to each other than those
in other groups (clusters).

In this case, the criterion used for determining the similitude between elements
(sensors) is the sensitivity pattern of their primary residuals to leaks, i.e., no = ny.
This information is provided by every row i of the leak sensitivity matrix � defined
in (9.4). In this case, a complete sensitivity matrix will be computed. This matrix
considers all possible sensors installed in the system, i.e.,ny = nd = |S|.As proposed
in [18], normalized leak sensitivities are considered, i.e., oi = ω(i,:)

‖ω(i,:)‖ , i = 1, ..., ny,
where ω(i,:) is the ith row vector of matrix � and ‖ω(i,:)‖ the Euclidean norm of this
vector. Next, applying the ECM (evidential c-means) algorithm defined in [12], a set
of � clusters defined by their centroids μi (i = 1, . . . , �) and the plausibility matrix
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� (ny × �) that contains the membership degree of every element to every cluster
are obtained. Component πij of � contains the plausibility (or the possibility) that
object oi belongs to cluster Cj. A hard partition can be easily obtained by assigning
each object to the cluster with the highest plausibility. The hard cluster membership
of the ny elements can be stored in a vector g whose components are computed as

gi = argmax
j

πij i = 1, · · · , ny. (9.5)

Once the set of sensors has been divided into clusters C1, . . . , C�,N representative
sensors should be selected of each cluster, setting up the new candidate sensor set
of N × � elements (N × � ≤ ny). The number of groups � will be set to the maxi-
mum number of installed sensors mp as long as the validity index provided by the
ECM algorithm confirms that this is a suitable number of clusters. Thus, N will be
determined by

N =
⌈
nt
mp

⌉
, (9.6)

where nt is the expected cardinality of the reduced candidate sensor set and � �
denotes the nearest integer in the direction of positive infinity.

Let pli be the plausibility values of the elements of the cluster set Ci, rowi the
row numbers of the sensitivity matrix defined in (9.4) related to the elements of
this cluster (sensor numbers) and modwi the Euclidean norm of these rows of the
sensitivity matrix. Algorithm 9.1 provides the vector row0

i with N representative
elements (sensors) of the clusterCi: row0

i (1), . . . , row
0
i (N). The higherN is, themore

representative the elements row0
i of the set Ci are. In this algorithm, in addition to the

plausibility values, the Euclidean norm of the sensor sensitivity matrix is taken into
account in order to obtain sensor candidates that maximize the leak sensitivity. Once
Algorithm 9.1 has been applied to the � clusters, the reduced sensor set is composed
by the N × � sensors associated with the obtained variables row0

i i = 1, . . . , �.

9.3.2 Structural Analysis Approach

9.3.2.1 Structural Analysis Framework

The analysis of the model structure has been widely used in the area of model-based
fault diagnosis [1]. Therefore, consistent tools exist in order to performdiagnosability
analysis and consequently compute the set of detectable and isolable faults.

The structural model is often defined as a bipartite graph G = (M,X ,A), where
M is a set ofmodel equations,X a set of unknownvariables andA a set of edges, such
that (ei, xj) ∈ A as long as ei ∈ M depends on variable xj ∈ X . A structural model
is a graph representation of the analytical model structure since only the relation
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Algorithm 9.1 row0
i = N-most-representative(pli, rowi,modwi)

tempwi ← modwi
plmini ← min(pli)
plmaxi ← max(pli)
ni ← length(pli)
for j = 1, . . . ,N do
for k = 1, . . . , ni do

if (pli(k) < plmini + (j−1)(plmaxi −plmini )

N ) then
tempwi(k) ← 0
end if
end for
loc = argmaxk tempwi(k)
row0

i (j) = rowi(loc)
tempwi(loc) ← 0
end for
return row0

i

between variables and equations is taken into account, neglecting the mathematical
expression of this relation.

Structural modelling is suitable for an early stage of the system design, when the
precise model parameters are not known yet, but it is possible to determine which
variables are related to each equation. Furthermore, the diagnosis analysis based
on structural models is performed by means of graph-based methods which have
no numerical problems and are more efficient, in general, than analytical methods.
However, due to its simple description, it cannot be ensured that the diagnosis per-
formance obtained from structural models will hold for the real system. Thus, only
best case results can be computed.

It iswell known that the overdetermined part of themodel is the only useful part for
system monitoring [1]. The Dulmage–Mendelsohn canonical decomposition [8] is a
bipartite graph decomposition that defines a partition on the set of model equations
M. It turns out that one of these parts is the overdetermined part of the model and is
represented as M+ (see Chap.11).

The system fault diagnosis analysis is performed based on the structural model
properties. Specifically, fault detectability and isolability are defined as properties
of the overdetermined part of the model [11]. First, it is assumed that a single fault
f ∈ F can only violate one equation (known as fault equation), denoted by ef ∈ M.

Definition 9.1 A fault f ∈ F is (structurally) detectable in a model described by the
set of equations M if

ef ∈ M+. (9.7)

Definition 9.2 A fault fi is (structurally) isolable from fj in a model described by the
set of equations M if

efi ∈ (M\{efj}
)+

. (9.8)

http://dx.doi.org/10.1007/978-3-319-50751-4_11
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Without loss of generality, it is assumed that a sensor si ∈ S can only measure
one single unknown variable xi ∈ X . In the structural framework, such sensor will
be represented by one single equation denoted as es (known as sensor equation).
Given a set of sensors S, the set of sensor equations is denoted asMS . Thus, given
a candidate sensor configuration S and a model M, the complete system model
corresponds toM ∪ MS .

LetFD(S) ⊆ F denote the detectable fault setwhen a sensor configurationS ⊆ S
is installed in the system. Fault isolability can be characterized in a similar way by
means of fault pairs. Let F : F × F be all fault pair permutations from F , then
FI(S) ⊆ F denotes the set of isolable fault pairs when the sensor configuration
S ⊆ S is chosen for installation (i.e., (fi, fj) ∈ FI(S) means that fault fi is isolable
from fj when the sensor set S is installed in the system).

From Definition9.1, FD(S) can be computed as

FD(S) = {f ∈ F | ef ∈ (MS ∪ M)+}, (9.9)

and, from Definition9.2, FI(S) can be computed as

FI(S) = {(fi, fj) ∈ F | efi ∈ (MS ∪ (M\{efj }))+}. (9.10)

It is worth noting that testing different sensor configurations involves different sensor
equation sets,MS , in (9.9) and (9.10) while the other sets remain unchanged.

Definition 9.3 (Isolability index) Given a sensor configuration S ⊆ S, the isolabil-
ity index is defined as the number of isolable fault pairs, provided the sensors s ∈ S
are installed, i.e.,

I(S) = |FI(S)|. (9.11)

9.3.2.2 Optimal Sensor Placement Algorithm

The optimal sensor placement problem stated in Sect. 9.2.2 will be solved under
the structural analysis approach. This involves providing a structural model G as a
DWN description M and stating the leak monitoring specification T as follows:

1. All leaks are detectable, i.e., FD(S) = F , according to (9.9).
2. The number of isolable leak pairs is maximized, i.e., the isolability index I(S) is

maximized.

Algorithm 9.2 solves the optimal sensor placement problem, by applying a depth-
first branch-and-bound search strategy. The search involves building a node tree by
recursively calling function searchOpC , beginning at the root node down to the leaf
nodes. Each node corresponds to a sensor configuration (node.S), and child nodes
are built by removing sensors from their corresponding parent node. Set node.R
specifies those sensors that are allowed to be removed.
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Algorithm 9.2 S∗ = searchOpC(node,S∗)
childNode.R := node.R
for all s ∈ node.R ordered in decreasing cost do
childNode.S := node.S\{s}
childNode.R := childNode.R\{s}
if |childNode.S\childNode.R| > mp then
return S∗
end if
if I(childNode.S) = I(S∗) then
if |childNode.S\childNode.R| < |S∗| then
if FD(childNode.S) = F then
if |childNode.S| < |S∗| then
S∗ := childNode.S {update best solution}
end if
S∗ := searchOpC(childNode,S∗)
end if
else
if I(childNode.S) = I(Node.S) then
return S∗
end if
end if
else
if I(childNode.S) > I(S∗) and
FD(childNode.S) = F then
if |childNode.S| ≤ mp then
S∗ := childNode.S {update best solution}
end if
S∗ := searchOpC(childNode,S∗)
end if
end if
end for
return S∗

Throughout the search, the best solution is updated in S∗ whenever a sensor
configuration with a higher fault isolability index than the current best one is found,
as long as all faults are detectable and the number of sensors does not exceed mp.
The best solution is also updated whenever a smaller sensor configuration is found
that has the same isolability index as the current best one.

The search is initialized as follows: node.S = node.R = S and S∗ = ∅. During
the search, only those branches that can be further expanded to a sensor configura-
tion that improves the current solution are explored. Branch exploration is aborted
whenever the fault isolability index cannot be improved, a fault is not detectable or
the number of sensors cannot satisfy the budget constraint.



162 R. Sarrate et al.

9.3.3 Sensitivity Analysis Approach

9.3.3.1 Sensitivity Analysis Framework

Alternatively to the structural method proposed in the previous section, a method that
aims at optimizing the performance of the leak location method presented in Chap.7
is proposed in this section. Considering r = [r1 · · · rny ]T be the actual residual vector
corresponding to all pressure measurement points ny = |S|, and r̂fj be the column of
� corresponding to leak j, the leak location was achieved by solving the problem

argmax
j∈{1,... nd }

rT r̂fj
‖r‖‖r̂fj‖

. (9.12)

Thus, the biggest normalized projection of the actual residual vector on the fault
sensitivity space is sought.

The detectable leak set FD was defined in terms of structural analysis in (9.9).
Next, it will be defined in terms of sensitivity analysis as proposed in [18]. Given
a set of sensors S, a set of leaks F and the corresponding �, the set of detectable
leaks FD(S) is defined as

FD(S) = {fj ∈ F : ∃ri ∈ R : |ωij| ≥ ε}, (9.13)

where ε is a threshold to account for noise and model uncertainty.
Regarding the leak locatability performance, assuming that the leak location is

implemented bymeans of (9.12), a uniform projection angle ᾱ, defined as the average
between the residual fault sensitivity vectors for all leak pairs, was proposed in [18].
The resulting sensor locations led to a maximal uniform projection angle ᾱ. In an
ideal case, all pairs of leak sensitivity vectors (columns) in � should satisfy this
uniform projection angle. This uniform angular separation between leak pairs would
allow for a successful leak location method applying (9.12), even when residuals are
affected by modelling errors, sensor noise and other uncertainties.

Nevertheless, in a real case, the angle between leak pairs is not uniformly distrib-
uted. Some leaks can have similar leak sensitivity vectors, which introduces uncer-
tainty in the leak location results when applying (9.12). This fact can become a
critical issue for water network utilities, especially when this uncertainty involves
distant leak locations, i.e., two distant leaks that have similar fault sensitivity vectors.
So, distances between nodes with a similar fault sensitivity vector should be consid-
ered in the optimal sensor placement methodologies. In order to take into account
these distances, the following properties are defined.

Definition 9.4 (Leak expansion set) Given a leak fj ∈ F and a projection angle
threshold αth, the leak expansion set Fαth

j is defined as

Fαth
j = {fi ∈ F : r̂Tfj r̂fi

‖r̂fj‖‖r̂fi‖
> cos(αth)}. (9.14)

http://dx.doi.org/10.1007/978-3-319-50751-4_7
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Thus, Fαth
j contains the set of leaks whose correlation with leak fj is bigger than

cos(αth). If fi ∈ Fαth
j , it follows that fj ∈ Fαth

i .

Definition 9.5 (Correlated leak pairs ratio) Given the leak expansion setsFαth
j with

j = 1, ..., |F |, the correlated leak pairs ratio ηαth is defined as

ηαth = 100

∑|F |
j=1 |Fαth

j | − |F |
2
(|F |

2

) . (9.15)

Thus, ηαth provides the percentage of leak pairs fromF whose mutual correlation is
bigger than cos(αth).

Definition 9.6 (Leak node distance matrix) Given the geographical coordinates of
every leak node, the leak node distance matrix D ∈ R

|F |×|F | is defined as the matrix
whose coefficients dij are the geographical distance between nodes i and j.

Matrix D is a symmetric matrix (dij = dji), with diagonal coefficients equal to
zero (dii = 0). This matrix will be used to compute distances in leak expansion sets.

Definition 9.7 (Worst leak expansion distance) Given a leak expansion setFαth
j and

the leak node distance matrix D, the worst leak expansion distance Rαth
j is defined as

Rαth
j = max

fi∈Fαth
j

dij. (9.16)

Thus, Rαth
j provides the maximum Euclidian distance between the node of leak fj

and the nodes of leaks whose correlation with leak fj is bigger than cos(αth). This
metric is next used to compute the following overall leak location uncertainty index
in terms of leak node distances.

Definition 9.8 (Average worst leak expansion distance) Given a set of leaksF and
a threshold projection angle αth, leak expansion setsFαth

j with j = 1, ..., |F | can be
computed applying (9.14). Then, the average worst leak expansion distance can be
computed as

R̄αth = 1

|F |
|F |∑
j=1

Rαth
j . (9.17)

Thus, R̄αth provides the average of the worst leak expansion distances considering
all the possible leaks in F .

As discussed in [13], the greater the threshold αth is, the greater the uncertainty is
in terms of leak expansion distance and number of correlated leak pairs. The choice
of this threshold should take into account the implementation requirements of the
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leak location software module, as well as practical issues concerning the water utility
maintenance procedures. On the one hand, the leak location software module will
have to deal with sensor measurement noise and network modelling uncertainty.
Therefore, the bigger the threshold, the better the performance of the leak location
procedure. On the other hand, the smaller the leak location result uncertainty, the
better for the water utility maintenance department. Indeed, upon the occurrence of
a leak, the leak location software module will provide a set of leak node candidates
to the maintenance department, which then will undergo leak field testing. Thus, the
smaller the leak expansion distance the better, which involves specifying a smaller
projection angle threshold. Therefore, a trade-off exists between both criteria.

In order to find a suitable balanced solution, it is expected to find a sensor place-
ment solution suitable for a range of projection angle thresholds as proposed in [13].

Definition 9.9 (Mean average worst leak expansion distance) Given a set Ath =
{α1

th, . . . ,α
nα

th } that covers a suitable range of projection angle thresholds. Then, the
mean average worst leak expansion distance over this set can be computed as

R̄αth = 1

|Ath|
∑

αth∈Ath

R̄αth , (9.18)

where the average worst leak expansion distance R̄αth is computed applying (9.17)
to every projection angle threshold in Ath.

9.3.3.2 Optimal Sensor Placement Algorithm

The optimal sensor placement problem stated in Sect. 9.2.2 will be solved under the
sensitivity analysis approach. This involves providing a node distance matrix D, the
fault sensitivity matrix � and a set of projection angle thresholds Ath. Additionaly,
the following leak monitoring specification T will be considered:

1. All leaks are detectable, i.e., FD(S) = F according to (9.13).
2. The mean average worst leak expansion distance R̄αth is minimized, i.e., 1

R̄αth
is

maximized.

This optimization problem cannot be solved by efficient branch-and-bound search
strategies. It is necessary to implement an exhaustive search, i.e., to compute themean
average worst leak expansion distance R̄αth by means of (9.18) for all the possible

nd !
(nd−ns)!ns! sensor configurationswithns = 1, ...,mp and choosing theone that provides

the best performance (smallest R̄αth ). Alternatively, a genetic algorithm search could
be implemented to solve it more efficiently in case that the exhaustive search is not
possible because of the size of the network. See [5] for further details.
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9.4 Simulations and Results

9.4.1 DMA Case Study

The sensor placement methodology is applied to a DMA located in the Barcelona
area (see Fig. 9.1) with 883 nodes and 927 pipes. The network consists of 311 nodes
with demand (RM type), 60 terminal nodes with no demand (EC type), 48 nodes
hydrants without demand (HI type) and 448 dummy nodes without demand (XX
type). Additionally, the network has two inflow inputs modelled as reservoir nodes.
The total inflow is distributed using a constant coefficient in each consumption node
according to the total demand which is estimated using demand patterns.

Leaks might appear anywhere in the water network. However, due to simulation
limitations, leaks are represented in the nodes where the flow balances take place as
already discussed in Chap. 7. It is assumed that leaks might only occur at dummy
nodes, leading to 448 potential leaks to be detected and located. A similar practical
reason is applied when defining the possible location of the network monitoring
points. Pressure sensors at RM-type nodeswill be used as networkmonitoring points,
leading to 311 candidate sensors that could be chosen for installation. Additionally,

Fig. 9.1 Case study network
map

http://dx.doi.org/10.1007/978-3-319-50751-4_7
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it is also assumed that there is no pressure sensor already installed in the network
before solving the sensor placement problem.

The water distribution company has established a maximum budget for invest-
ment on instrumentation that makes it possible to install up to five pressure sensors.
Hence, up to mp = 5 pressure sensors should be chosen out of 311 such that the
leak monitoring specifications are maximized. Despite measuring flow rate could
also be useful for leak detection, collecting pressure data is cheaper and easier, and
pressure transducers give instantaneous readings, whereas most flow metres do not
react instantaneously to flow changes [7].

9.4.2 DMA Network Modelling

The DMA network is represented by a directed graph GN = (V,J ) where pipe
junctions are nodes, v ∈ V , and pipes are edges, j ∈ J . Each node represents, at the
same time, a pressure variable and a flow balance equation. Similarly, each edge
represents a flow variable and a pipe equation. Therefore, given a node v ∈ V , the
following flow balance equation can be derived (see Chap.3):

∑
j∈Jv

qj = dv, (9.19)

where Jv represents the set of edges incident to node v, and dv is the known flow
demand associatedwith node v. Furthermore, given an edge j ∈ J , the corresponding
pipe equation can be deduced (see Chap.3) as

qj = sgn(hj,1 − hj,2) c(|hj,1 − hj,2|)γ, (9.20)

where qj is the flow of edge j, hj,1 and hj,2 are the heads (pj,1 and pj,2 pressures
plus elevation offsets) at the nodes adjacent to edge j = (vj,1, vj,2), and c and γ are
parameters modelling physical properties of the pipe, such as length, inside diameter,
minor losses and roughness.

Therefore, the DMA model comprises 883 flow balance equations and 927 pipe
flowequations that depend on 927 unknownflowvariables and 883 unknownpressure
variables. The resulting structural model is depicted in Fig. 9.2 in matrix form, where
the equation set corresponds to rows and the variable set corresponds to columns. A
dot in the (i, j) element indicates that there exists an edge incident to the expression
of ei and variable xj. Note that the structural model of the DMA network is a just-
determined model where all unknown variables can be computed, i.e., the model can
be used for system simulation.

Since leaks are assumed to occur in the nodes where a flow balance takes place,
flow balance equations corresponding to XX type nodes will be considered as fault
equations when applying (9.9)–(9.10).

http://dx.doi.org/10.1007/978-3-319-50751-4_3
http://dx.doi.org/10.1007/978-3-319-50751-4_3


9 Sensor Placement for Monitoring 167

Fig. 9.2 Structural model of
the DMA network

A fault sensitivity matrix has also been obtained using the EPANET hydraulic
simulator [17]. Leaks are simulated in EPANET through the corresponding emitter
coefficient, designed to model fire hydrants/sprinklers, and which can be adapted to
provide the desired leak magnitude in the network, according to

qf = Ce P
Pexp , (9.21)

where Ce is the emitter coefficient, qf is the flow rate, P is the available pressure at
the considered node and Pexp is the pressure exponent. EPANET permits the value
of the emitter coefficient to be specified for individual leak sites, but the pressure
exponent can only be specified for the entire network.

Given a set of boundary conditions (such as water demands), EPANET software
has been firstly used to estimate the steady-state pressure at the 311 RM-type nodes.
Next, 448 leaks have been simulated, and the steady-state pressure has been estimated
again in the 311 RM-type nodes. Finally, a 311 × 448 fault sensitivity matrix has
been obtained as the pressure difference between the fault-free case and each faulty
situation, according to the procedure described in Sect. 9.2.1. Although the fault sen-
sitivity matrix depends on the leak size, diagnosability properties are robust against
this uncertainty. In this chapter, an average leak size of 1.5 l/s has been considered
in the simulations.
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9.4.3 Clustering Analysis

Recall fromSect. 9.3 that clustering techniques should be applied beforehand in order
to accommodate the time complexity of the optimization problem. The methodology
described in Sect. 9.3.1 has been applied to the dataset (311 normalized rows of �)
in order to set up a reduced set of 25 candidate pressure sensors. As it will later be
shown in Sect. 9.4.6, nt = 25 is a convenient cardinality for the reduced candidate
sensor set. The most time-demanding methodology to solve the sensor placement
optimization problem will be the sensitivity analysis approach, requiring a solving
time of 27 h. The structural analysis approach will only require 103min; thus, a
bigger candidate sensor set could be accepted. However, since a comparison of both
approaches is targeted, the size of the candidate sensor set is decided based on the
most time-demanding one.

Firstly, ECM clustering algorithm has been used to classify the dataset into � = 5
clusters (the same number of clusters as the maximum number of sensors to be
installed). Provided the plausibility matrix obtained from the clustering algorithm,
a hard partition has been done that assigns each element to its highest plausibility
cluster, according to (9.5). Figure9.3 depicts the 5 network node clusters in different
colours,where the closest nodes to the centroid have been highlighted in every cluster.

Next, Algorithm 9.1 has been applied to obtain the N most representative sensors
of every cluster, with N = 5 given by (9.6). The resulting reduced setS ′ with |S ′| =
N × � = 25 candidate pressure sensor places suggested by the clustering approach
is displayed in Fig. 9.4 as blue circles.

Fig. 9.3 Clustering results
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9.4.4 Structural Analysis Approach

The structural analysis approach aims at maximizing the isolability index. To fully
isolate all 448 possible leaks, the required isolability index should be

(448
2

) = 100128.
However, according to structural analysis, installing all 311 candidate sensors, the
isolability indexwould just be 100099.Achieving a better performancewould require
installing more sensors than those provided in the candidate sensor set. So, there is
a trade-off between the diagnosis performance and the number of installed sensors.
Since the maximum number of sensors to install is 5, the maximum achievable
isolability index is expected to be less than 100099.

Algorithm 9.2 is applied to solve the sensor placement problem withmp = 5. The
algorithm returns the optimal sensor configuration provided in Fig. 9.4, highlighted
as red starred nodes.

With these 5 sensors, all leaks can be detected and the isolability index amounts to
100073, whichmeans that 99.9%of leak pairs are isolable. This is the highest diagno-
sis performance that can be achieved by a sensor configuration, satisfying the stated
budgetary constraint. In this case study, no cheaper sensor configuration can achieve
better diagnosis performance. Figure9.5 provides an evidence to back this assertion
up. It displays the highest isolability performance that can be achieved by a sensor
configuration of a given size. Remark that, under the structural analysis approach,
the isolability performance decreases with the size of the sensor configuration, till

Fig. 9.4 DMA network sensor placement results under structural analysis approach
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Fig. 9.5 Branch-and-bound
search results for several
sensor configuration sizes
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null when installing just one pressure sensor into the water network. Note however
that with one sensor less, the performance just slightly decreases. Thus, savings in
the initial budget could be considered by the water distribution company.

9.4.5 Sensitivity Analysis Approach

The sensitivity analysis approach aims at minimizing the mean average worst leak
expansion distance,which requires a set of projection angle thresholds to be specified.
Recall from Sect. 9.3.3.2 that, in addition to �, a leak node distance matrix and a set
of projection angle thresholds should be specified. Matrix D has been obtained from
geographical data contained in the EPANET model, and the following projection
angle threshold set has been considered: Ath = {10, 20, 30, 40, 50, 60}.

As stated in Sect. 9.3.3.2, an exhaustive search is applied to solve the sensor
placement problem with mp = 5. The optimal sensor configuration is displayed as
red starred nodes in Fig. 9.6.

Installing these 5 pressure sensors, all 448 leaks are detectable, and the mean
average worst leak expansion distance is 698.23 m. As in the structural analysis
approach, the best diagnosis performance is achieved by a 5-sensor configuration.
Figure9.7 displays the smallest mean average worst leak expansion distance that
can be achieved by a sensor configuration of a given size. Remark that, in this case
study, the performance index shows a monotonically decreasing trend over values
of |S|. Thus, the best leak location performance is achieved with the five pressure
sensors displayed in Fig. 9.6. Note again that with fewer sensors, the performance
just slightly deteriorates. Thus, savings in the initial budget could be considered by
the water distribution company.
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Fig. 9.6 DMA network sensor placement results under sensitivity analysis approach

Fig. 9.7 Exhaustive search
results for several sensor
configuration sizes
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9.4.6 Discussion

Regarding the search strategy performance issues, with 25 candidate sensors there
are

(25
5

) + (25
4

) + · · · + (25
1

) = 68405 possible sensor configurations to check. How-
ever, under the structural analysis approach, Algorithm 9.2 withmp = 5 just needs to
inspect 4874 sensor configurations. Algorithm 9.2 provides the optimal sensor con-
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Table 9.1 Sensor placement results comparison

Approach S I(S) R̄αth (m) Computation time

Structural analysis {3, 9, 124, 199, 305} 100073 793.4 103 s

Sensitivity analysis {8, 67, 207, 249, 271} 100023 698.23 27 h

figuration in 103min. Tests have been run in an Intel Core i7-4702MQ @ 2.20GHz
HP notebook with 16 GB RAM and 64-bit Windows 10.

Alternatively, as an exhaustive search is applied under the sensitivity analysis
approach, the leak monitoring performance index must be evaluated for every sensor
configuration and every projection angle threshold. Since there are 68405 sensor
configurations to check and six projection angle thresholds, the average worst leak
expansion distance must be evaluated 68405 × 6 = 410430 times. Solving the sen-
sor placement problem under the sensitivity analysis approach takes over 27 h.

Table9.1 provides a summary of the solution found under both approaches.
As expected, the sensitivity analysis approach provides smaller leak location

uncertainty in terms of leak expansion distance at the expense of slightly decreasing
the isolability index.

Both approaches provide a different methodology to solve the sensor placement
problem stated in Sect. 9.2.2. On the one hand, the structural analysis approach is
more efficient since the formulation allows for a branch-and-bound search strategy.
However, structuralmodels are a simple description of the network, and only best case
results can be computed. This methodology is better suited for an early stage of the
network design. On the other hand, the sensitivity analysis approach requires a larger
computation time since a highly inefficient exhaustive search is applied. However,
the monitoring performance index has a more practical meaning: a leak location
uncertainty measure in terms of distance. The search efficiency of the sensitivity
analysis approach could be improved by applying other search strategies such as
genetic algorithms or simulated annealing at the expense of global optimality.

9.5 Conclusions

This chapter presents two optimal sensor placement strategies for leak location that
maximize somemonitoring specifications for a DWN. The goal is to characterize and
determine a sensor set that guarantees a maximum degree of diagnosability while a
budgetary constraint is satisfied. The first methodology is based on a structural model
of the water network and a branch-and-bound search, while the second strategy is
based on pressure sensitivity matrix analysis and an exhaustive search strategy. To
reduce the size and complexity of the optimization problem, the strategies are com-
bined with clustering techniques. The developed strategies are successfully applied
to a DMA in the Barcelona water network to decide the best location of pressure sen-
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sors for leak monitoring. However, in both approaches, only a suboptimal solution is
attained. Thus, the sensor search could be improved using other types of optimization
methods that provide some guarantee regarding the solution optimality.
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Chapter 10
Sensor Data Validation and Reconstruction

Joseba Quevedo, Diego Garcia, Vicenç Puig, Jordi Saludes, Miquel Angel
Cugueró, Santiago Espin, Jaume Roquet and Fernando Valero

10.1 Introduction

Critical infrastructure systems (CIS), including water, gas or electricity networks,
are complex large-scale systems geographically distributed and decentralized with
a hierarchical structure. These systems require highly sophisticated supervisory and
real-time control schemes to ensure high-performance achievement andmaintenance
when conditions are non-favourable due to faults (e.g., sensor and/or actuator mal-
functions) [29, 47].

In CIS, a telecontrol system is acquiring, storing and validating data gathered
from different kind of sensors every given sampling time (e.g., every fewminutes) to
accurately real-time monitor the whole system. Several problems can occur during
the data acquisition process, like those related to the communication system, e.g.,
communication failure between sensors and data loggers or in the telecontrol system
itself. These problems produce lost or corrupted data which may be of great concern
in order to have valid historic records. When this is occurring, lost data should
be replaced by a set of estimated data, which should be representative of the data
lost, since missing data may severely jeopardize further processes needing complete
datasets in order to get meaningful conclusions or analysis.

Another common problem in CIS is caused by the unreliability of sensors, which
may be affected by faults (e.g., offset, drift or freezing in the measurements) [23, 24,
51]. Unreliable data should be also detected and replaced by forecasted data, since it
may be used for system management tasks (e.g., maintenance, planning, investment
plans, billing, security and operational control) [45] and/or system fault detection
and isolation [36, 37, 44].
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In addition to the possible measurement deviations related to the sensor perfor-
mance itself, the errors can also occur due to heterogeneous reasons such as sensor
installation, calibration or electrical problems. Consequently, it is important to pro-
vide the data system with procedures that can detect these problems and assist the
user in the monitoring and the processing of the incoming data.

Data validation is an essential step to improve data reliability. Traditionally, data
validation processes have been developed by manual data analysis, performed by
experienced users with the only assistance of basic data analysis and visualization
tools [22], which significantly limits the amount of data to be validated [31], and
the abnormal situations which may be correctly detected [55]. Furthermore, the
volume of real data acquired in CIS is dramatically increasing due to the increment
of automated measurement systems allowing their monitoring [7]. Also, real-time
operation, paramount in many real applications, makes human data validation even
harder to pursuit. In order to cope with this situation and increase the reliability of
the data diagnosis system, automatic data validation tools have arisen [26].

The approach presented in this chapter aims to assess the validity of each single
sensormeasurement bymeans of a set of tests exploiting not only themodel equations
(spatial redundancy) but also temporal redundancy, using time series models and a
bank of low-level tests (non-model based) aiming to label the data with a certain
quality index. The methodology may be applied to alternative systems involving a
telemeasured sensor network, such as gas or electrical networks, smart buildings or
environmental systems (see, e.g., [12, 13]).

10.2 Problem Statement

The measurements in water systems commonly focus on hydraulic and quality vari-
ables, including flow rate in links, pressure in nodes, water level in tanks, water pH,
conductivity and turbidity, as well as disinfectant and pollutant concentrations. Each
sensor measures a physical quantity and converts it into a signal that can be read by
the appropriate instrumentation. Then, the measuring system converts the sensors’
signals into values aiming to represent certain real physical quantities. These values,
known as raw data, need to be validated before further use in order to assure the
reliability of the results derived from their usage.

In this chapter, a methodology is developed for validation and reconstruction
of sensors data in a water network, taking into account spatial models (SM) and
time series models (TSM) for each flow meter and level meter. Internal models of
every component in the local equipment units (e.g., pumps, valves, flows, levels) are
also considered. SM take advantage of the relation between different variables in
the system (e.g., demand, pump flows and tank levels), while TSM take advantage
of the temporal redundancy of the measured variables, by means of Holt–Winters
(HW) TSM [28].Moreover, after the corrupted sensor data are detected, theymust be
replaced by adequate estimated data using the available temporal/spatial redundancy.
The methodology is mainly applied to flow and level meters, since it exploits the
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temporal redundancy of flow and level data in a water network. An operative soft-
ware tool implementing the presented methodology which is able to properly handle
raw sensor data (including storage, querying and visualization) is also presented.
The proposed approach and tool are applied to several subsystems in the Catalonia
regional water network using raw data collected from ATLL Concessionària de la
Generalitat de Catalunya, SA (ATLL), the company managing this water network.

The whole process is considered as two separated stages: data validation and
data reconstruction. According to the nature of the available knowledge, different
kinds of data validation approaches may be considered, with varying degrees of
sophistication. In general, one may distinguish between elementary signal-based
(“low-level”) methods, and model-based (“high-level”) methods (see, e.g., [14, 31,
45]).

Elementary signal-based methods use simple heuristics and limited statistical
information of a given sensor [9, 22, 30]. Typically, these methods are based on
validating either signal values or signal variations. On the one hand, in the signal
value-based approach, data are assessed as valid or invalid according to two different
thresholds (high and low), so data are assumed to be invalid when lying outside these
threshold values. On the other hand, methods based on signal variations look for high
variations (peaks in the curve) and low variations (flat curve) in the signals.

Model-basedmethods rely on the use ofmodels to check the consistency of sensor
data [50]. This consistency check is based on computing the difference between the
predicted value from themodel and the real valuemeasured by the sensors. Then, this
difference (known as residual) is compared with a threshold value (zero in the ideal
case).When the residual is bigger than the corresponding threshold, a fault is assumed
in the sensor; otherwise, the sensor is assumed to work properly. Moreover, the
information of all the available residuals andmodels allows performing fault isolation
in order to discover the faulty sensor. Models are usually derived using either multi-
variate procedures exploiting the correlation, or analytical relations between several
variables, which are sometimes measured at different times (temporal redundancy)
and/or locations (spatial redundancy).

Data validation research applied to water networks can be classified depending on
the method use: (a) Time series analysis techniques [3, 4, 6, 11, 27, 40]; (b) Kalman
filter-based methods [10, 33, 39]; (c) parity equation methods [5, 20, 42, 46]; (d)
pattern recognition methods [54]; and (e) principal component analysis [1, 21, 32].

The output from the data validation process is generally a binary variable indicat-
ingwhether data are valid or not, or a continuous validity index that can be interpreted
as a data confidence index: if the confidence index is too low, data have to be discarded
or replaced by forecasted data from a physical or statistical model [38].

High-level data validation methods (model-based) are used not only to validate
but also to replace the erroneous data from the faulty sensor by a model prediction.
The commonly used data reconstructionmethods are: (a) interpolationmethods [34];
(b) smoothing methods [31]; (c) data mining technology [16, 25, 53]; and (d) data
reconciliation [57].
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10.3 Proposed Methodology

This section details the developed procedure, which is divided in two stages
(Fig. 10.1): data validation and invalid/missing data reconstruction. The input to this
procedure is the raw data vector yraw gathered from the sensors. At the first stage if
the data yraw(k) at a certain sample time k is validated, flag v is set to 1 and data
yval(k) = yraw(k) is stored in an operational data base (DB) as validated data. Con-
versely, if data yraw(k) is invalidated, flag v is set to 0 and the data reconstruction
process (second stage) is performed to provide a reconstructed estimation yrec(k) of
the invalid/missing data yraw(k) to be stored in theDB. Thewhole procedure is further
detailed in the following describing in detail the data validation and reconstruction
stages.

10.3.1 Data Validation

The data detection process presented is inspired by the Spanish AENOR-UNE norm
500540 developed for data validation in meteorological stations [52]. The method-
ology presented here applies a set of consecutive detection tests to a given dataset to
finally assign a certain quality level q depending on the number of tests passed. Also,
the corresponding tests passed are characterized by a validation vector l. Figure10.2
presents a schematic view of the whole validation stage. The validation tests include
a set of “low-level” tests (Levels 0–3) which check elementary signal properties, and
a set of ’high-level’ tests (Level 4 and Level 5), which rely on the use of models
to check the consistency of the sensor data. The latter models are also used in the
reconstruction stage of the potentially invalidated data, as explained in Sect. 10.3.2.
If data yraw(k) at a certain sample time k is voided at any validation level, flag v is
set to 0 and the data reconstruction process (second stage) is started. Conversely, if
data yraw(k) pass all the validation levels, flag v is set to 1 and the data are validated
(i.e., yval(k) = yraw(k)). In the latter situation, i.e., validated data yraw(k): q(k) = 6
and l(k) = [111111]T The validation procedure is also detailed in Algorithm 10.1.

Fig. 10.1 Raw data detection/reconstruction procedure
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Fig. 10.2 Validation tests diagram

Algorithm 10.1 Data validation
Require: yraw(k)
1: v(k) = 1
2: q(k) = 0
3: for all Validation levels n = 0, . . . , 5 do
4: Check validation level test n
5: if Validation test n passed then
6: ln(k) = 1
7: q(k) = q(k) + 1
8: else
9: ln(k) = 0
10: v(k) = 0
11: end if
12: end for
13: if v(k) = 1 then
14: yval(k) = yraw(k)
15: else
16: yval(k) = []
17: end if
18: return : v(k), l(k), q(k), yval(k)

An explanation of the low-level tests (elementary signal based) is presented next:

• Level 0 (communications level) checks whether data are properly recorded at
a regular sample rate by the acquisition system. If this is not fulfilled, there is
some communication problem involving, e.g., the data transmission from the field
sensors to the operational database. Hence, this level allows detecting problems in
the data acquisition or communication system, which is one of the most common
faults in telemeasurement systems in general, as the one considered here.

• Level 1 (physical range limits level) checks whether data are within the physical
range of the sensor acquiring the corresponding measurement. The expected range
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of the measurements may be obtained from sensor specifications or historical
records of the data.

• Level 2 (trend level) checks whether the data derivative, i.e., the magnitude change
of the data among consecutive sample times, is within their expected rate. This
allows detecting unexpected and possibly undesired sudden changes in the data,
e.g., in a water network, tank water level sensors measurements cannot change
more than several centimetres per minute.

• Level 3 (equipment state level) allows to check the consistency of the variables in
a given equipment unit, i.e., sensor or actuator. For example, in a water network
system, in a pipe with a valve and a flowmeter installed, there is a relation between
the valve state and the flow meter reading.

Level 4: Spatial Model
Level 4 checks the consistency of the data collected by a certain sensor with its
spatial model [43], i.e., the correlation between data coming from spatially related
sensors. This spatialmodel is obtained from the physical relations among the network
variables. Inwater networks, this relation is generally obtained from themass balance
model of the element relating the different measured variables involved.

Themass balance expressions for thenth tank is stated as a discrete-timedifference
equation

yn(k + 1) = yn(k) + �t

Ai

⎛
⎝∑

j

qinjn(k) −
∑
h

qoutnh (k)

⎞
⎠ , (10.1)

where yn(k) is the tank level, Ai is the tank section, qinjn(k) denotes the manipulated
inflows from the jth element to the nth tank, and qoutnh (k) denotes the manipulated
outflows from the nth tank to the hth element (which includes the demand flows as
outflows).

Moreover, in a water network system nodes are represented as intersections of
mains, which mass balance may be expressed as the static equation (see Chap.3):

∑
i

qini (k) =
∑
i

qouti (k), (10.2)

where similarly to (10.1), qini (k) and qouti (k) correspond to the inflow and outflow of
the ith subnet node.

Level 5: Time Series Model
Level 5 checks for temporal consistency of a given sensor measurement, by means of
a time series model obtained from sensor historical records under faultless assump-
tion [45]. In contrast to SM level, TSM level only uses information of the considered
sensor without needing additional information (e.g., network topology, or extra mea-
surements from the system) to perform the validation, which makes it convenient
when there is no such additional information available or the sensors needed by
the corresponding SM level are unreliable. At this level, the analysis of the historic

http://dx.doi.org/10.1007/978-3-319-50751-4_3


10 Sensor Data Validation and Reconstruction 181

measurement records of a certain sensor is used to obtain the corresponding TSM
sensor model and to validate the current data acquired by this element.

Usually, the flow in the pipes has a daily repetitive behaviour that can be modelled
using a TSM. TSM take advantage of the temporal redundancy of the measured
variables. Thus, for each sensor with periodic behaviour, a TS model can be derived:

ŷts(k) = g(ym(k − 1), . . . , ym(k − L)), (10.3)

where g is the TS model, for data exhibiting a periodicity of L samples.
The aggregate hourly flow model may be built on the basis of a time series mod-

elling approach using ARIMA modelling [6] (see Chap.6 for more details). A TS
analysis is carried out on several daily aggregate series, which consistently showed a
daily seasonality, as well as the presence of deterministic periodic components. Once
a daily prediction for specific day is obtained, it is distributed along the day hours
using a demand pattern. The demand pattern is generated such that the sum of hourly
consumes at the end of the day is one, because the sum of the hourly predictions is
the daily forecast. Previous works [45] show that several types of demand patterns
should be used: one for weekdays, one for Saturdays and one for Sundays/holidays.
Then, the hourly prediction is obtained by distributing the daily prediction using the
demand pattern.

An alternative widely used method for time series modelling because of its sim-
plicity, low computational and storage requirements and ease of automation, is the
HW approach [28, 56] (see Chap. 6 for more details). This method, which was orig-
inally created for sales demand forecasting, has been used in a broad range of appli-
cations since its appearance. Exponential methods are first introduced in [8], where
decreasing series of exponential weights are used. In [56], the former method is
extended to include trend and seasonality terms. In [48, 49], multiple (i.e., double
and triple) seasonality is explored, expanding the initial single seasonality expression
of the former HW method, designed to cope with the sales demands monthly varia-
tions across a year period. Further alternative approaches to exponential smoothing
forecasting may be found in [18, 35]. Some issues of interest regarding its perfor-
mance include the effect of the outliers in the forecasting, the consideration of the
aforementioned different seasonal periodswhichmay characterize the corresponding
time series data sequence to be modelled (e.g., sales demands, water demands) or the
consideration of prediction intervals which may provide reliability to the forecast.
Regarding outliers, which may be produced by unexpected component behaviours
(e.g., sensor malfunctions) these may degrade the performance of the HW method
if not accommodated. In [19], this problem is considered and a robust version of the
HW method against the outliers is presented, by recursively filtering their effect in
the data main stream and applying the standard HW approach to the obtained filtered
data. The latter approach is also considered here to provide robustness against the
outliers. Moreover, there are different versions of the HW method, e.g., additive or
damped trend, additive or multiplicative seasonality, single or multiple seasonality
[28]. Here, suitable performance has been attained with the additive single season-
ality version, which estimated value is obtained for a forecasting horizon �

http://dx.doi.org/10.1007/978-3-319-50751-4_6
http://dx.doi.org/10.1007/978-3-319-50751-4_6
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x̂TSM(k) = R(k − �) + �G(k − �) + S(k − L), (10.4)

where R is the level estimation removing seasonality

R(k − �) = α(x(k − �) − S(k − � − L)) + (1 − α)(R(k − � − 1) + G(k − � − 1)),
(10.5)

where G is the trend estimation

G(k − �) = β(R(k − �) − R(k − � − 1)) + (1 − γ)S(k − � − L). (10.6)

Moreover, S is the seasonal component estimation expressed as

S(k − �) = γ(x(k − �) − R(k − �)) + (1 − γ)S(k − � − L) (10.7)

and L is the season (daily) periodicity,α, β and γ are the HWparameters (level, trend
and season smoothing factors, respectively), x is the measured value and x̂TSM is the
TSM estimated value. The parameters α, β and γ are in the interval [0,1] and can be
estimated from historical data using the least square approach. Hence, analysing the
historic records of a certain sensor, a HW TSM model can be obtained and used to
estimate missing data of this element when a fault is affecting its readings.

Consistency Tests
The consistency check for the so-called low-level tests is straightforward, since they
are based on basic signal-based heuristics. On the other hand, the “high-level” tests
are based on the use of models checking for consistency by means of the residu-
als ri(k) obtained from the difference between the system measurements and the
corresponding SM or TSM expressed in input–output regressor form

ri(k) = xi(k) − x̂i(k) = xi(k) − φT
i (k)θi, (10.8)

where θi are the nominal parameters obtained using a training dataset, xi is the
sensor measurement, x̂i is the model prediction, and φi(k) is the regressor vector
of dimensions nθi × xi including inputs (ui(k), ui(k − 1), ui(k − 2), ...) and outputs
(yi(k), yi(k − 1), yi(k − 2), ...). Considering the uncertainty (e.g., modelling errors,
noise), the detection test involves checking the condition

|ri(k)| < τi, (10.9)

where τi is the detection threshold, which can be determined using statistical methods
[2] or set-membership approaches [41]. In the case of statistical methods, the noise
is assumed to follow a normal distribution with known mean value μi and standard
deviation σi [15]. Then, the threshold of the ith residual can be determined as τi =
μi + 3σi, including the 99.7% of the values of a normal distribution according to
the 3-σ rule. On the other hand, when using a set-membership approach the noise is
assumed to be unknown but bounded, with a priori known bound. Then, the threshold
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can be obtained by propagating the uncertainty to the residual computation [41].
Using either one or the other approach, the threshold in (10.9) is determined to
include the values of the whole residual distribution in the faultless situation, and
hence, it may be used for fault detection purposes. This threshold is also useful to
provide prediction interval bounds for the data forecasting process, so test condition
(10.9) can be equivalently expressed as follows:

xi(k) ∈ [x̂mini (k), x̂maxi (k)], (10.10)

where x̂maxi (k) = x̂i(k) + τi and x̂mini (k) = x̂i(k) − τi. Condition (10.10) applies both
to SM and TSM. These interval bounds (10.10) consider the corresponding model
behaviour under faultless conditions including the uncertainty effect, as introduced
in the residual bound condition (10.9). Hence, these bounds could alternatively be
used in the data validation process, in order to decidewhether a data sample at current
time instant k is reliable.

10.3.2 Data Reconstruction

As introduced before, when a fault is detected at the validation stage and the cor-
responding data are voided, a reconstruction process is started until the sensor data
are validated again. The output of the data validation process (Fig. 10.1) is used to
identify the invalidated data that should be reconstructed. SM, related with Level 4
in Fig. 10.2, and TSM, related with Level 5 in Fig. 10.2, are used for this purpose,
depending on the performance of each model. This data reconstruction process is
detailed in Algorithm 10.2.

Algorithm 10.2 Data reconstruction
Require: yraw(k), v(k)
1: if v(k) = 0 then
2: Compute MSESM (k) and MSETSM(k)
3: if MSESM (k) < MSETSM(k) then
4: yrec(k) = x̂SM (k)
5: else
6: yrec(k) = x̂TSM(k)
7: end if
8: else
9: yrec(k) = []
10: end if
11: return : yrec(k)

The models accuracy is measured by the mean square error (MSE) of each model,
evaluated in a moving horizon window
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MSE(k) = 1

m

k∑
j=k−m

e(j)2, (10.11)

where m is the number of data samples considered in the window, e(j) = x(j) − x̂(j)
is the error at instant j, x(j) is the measured value at instant j, x̂(j) is the estimated
value by the model (SM or TSM, respectively) at instant j and k is the actual time
instant. The model having best MSE index before the invalidated data is used to
produce the reconstructed sensor signal.

10.3.3 Software for Data Validation and Reconstruction

The architecture of the software framework implemented is depicted in Fig. 10.3.
There are two main components: the data management web application and the
validation and reconstruction tool [17].

On the one hand, the data management component is a web application focused
on collecting and serving time series data, i.e., observations coming from any kind of
sensor. It allows authorized users to upload new data, download historical data and
visualize data from anywhere using a device with a browser and Internet connection.
Thus, this web-based data repository is highly available and provides a solution to
the data-driven users to keep centralized data from different projects and sources.
It also avoids typical datasets-usage-related drawbacks, e.g., data loss, sparse and

Fig. 10.3 Software
architecture diagram
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duplicated data locations and e-mails with large datasets between project members.
On the other hand, the validation and reconstruction component allows users to apply
the methodologies described in Sects. 10.3.1 and 10.3.2 on data provided by the data
management web application.

Data Management Web Application
This module provides a user-friendly tool allowing to import and export data so that
stored data are available to registered users with read permissions on the dataset.
This point is important in order to respect existing confidential agreements: a user
must have explicit permission on a dataset to be able to access or visualize it. Only
the dataset owner and the administrator can grant read permissions.

People working with data usually need to collect and prepare the raw data (e.g.,
remove outliers and fill missing data) before being able to apply further analysis
(e.g., statistical, exploratory), or even to focus on the real objective of working with
the corresponding data. These sort of tasks are time-consuming: there are a many
situationswhen thefirst two steps introduced take the80%of thewhole data treatment
process time. Thus, this tool provides three services in order to focus the efforts on the
data themselves and not on how to collect, obtain and prepare them. These services
are the following: the data import service, the data export service and the visualization
service.

The data import service handles the data ingestion from different file formats
(e.g., CSV, Excel, Access). An import wizard allows the user to specify the input
data format, allowing the data to be loaded into the database after being specified.
The data export service handles the data extraction. The user can specify the time
period to export and the output file format. The current version of the tool allows to
download data in CSV, Excel and SAC format.1 Finally, the data visualization service
provides a tool to visually explore the collected data. Hence, the user can plotmultiple
signals (e.g., time series) to do some exploratory analysis before downloading and
to select only the relevant data. The visualization tool allows zooming and panning
the time series.

This web application is implemented in two layers, a back end (server layer)
that handles the data storage and access with an underlying data model, and a front
end (visual layer) to provide a friendly web-based user interface to interact with
the three services described before. The back end is developed with the Django2

web framework connected to a database based on PostgreSQL. The front end is
implemented inHTMLand JavaScript (see Fig. 10.4). The import and exportmodules
handle the operations of saving and querying data against the PostgreSQL database
server.

Validation and Reconstruction MATLAB Tool
The validation and reconstruction methodologies, detailed in this section, have been
implemented in a software tool developed in MATLAB. MATLAB is a widely used

1SAC format is a binary .mat file containing a defined data structure.
2Django is a free open source web framework. Its primary goal is to facilitate the creation of
complex, database-driven websites.
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Fig. 10.4 Data management web application

numerical computing and programming platform in many research institutions and
industrial enterprises, which makes it a convenient prototyping and development
framework. This tool includes a graphical user interface (GUI) to configure different
modules and to run the validation and reconstruction processes with the configured
settings (see Fig. 10.5).
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Fig. 10.5 Validation and
reconstruction MATLAB
tool

Figure10.5 shows the GUI, composed by six panels. Following the numeration
in the figure, each panel has the following purpose:

1. Data input: The user can select the .mat file path in SAC format and load the data
into the tool.

2. Signals list: This panel shows the listing of the signals loaded in the previous
panel.

3. Fault generator: This module provides a fault generator framework in order to
simulate different types of faults; thus, the user can apply a fault to the selected
signals. The faults available are freezing, offset, drift, noise and communications.

4. Data ranges: This panel allows the user to indicate the cycle duration of the TSM.
For instance, if a signal shows a daily pattern, the cycle duration is 24h (86400s).
The user can define the number of identification and validation cycles, the rest of
the data will be used as testing dataset.

5. Tests and models: This panel lists the tests and the models available. Here, the
user can select the tests to apply and configure the required parameters depending
on the models and tests selected.

6. Output and reporting: In this panel, the user can enter the path where the results
will be recorded and select the reporting options.

As mentioned previously in this section, the input to this tool should be a dataset
arranged in the SAC format layout. This input dataset is partitioned in three different
subsets (calibration, validation and testing) in order to apply cross-validation to the
measurements and validate the generalization of the models. The different subset



188 J. Quevedo et al.

ranges are defined by the user according to the parameters entered in the panel 4
(Fig. 10.5).

Once all the required parameters are set by the user the process may be executed,
which will sequentially apply the presented methodology to the data. This process is
divided in three different stages, namely calibration, validation and reconstruction.
First, the calibration stage is executed using the calibration and validation datasets
in order to learn and estimate the parameters required by the tests and the models
to be applied. Once the models and the tests are calibrated, the validation stage
runs the sequence of tests in order to validate the testing dataset. Each test applied
labels each data yraw(k) with a flag (l in Fig. 10.2 and Algorithm 10.1) to indicate
whether the test has been fulfilled. Finally, in the reconstruction stage, themodel with
best performance (i.e., lowest MSE) is selected in order to replace the invalidated
data at the validation stage (data with v = 0 in Fig. 10.2 and Algorithm 10.1) by its
corresponding reconstructed estimation.

10.4 Simulation and Results

This section presents some results obtained with the methodology presented in
Sect. 10.3. Realistic situations occurring in the Catalonia regional network have been
used.

The Catalonia regional water network managed by ATLL company (Fig. 10.6)
supplies water to the Barcelona metropolitan area. Most of the population of the

Fig. 10.6 ATLLs Catalonia regional water network
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region (approximately 4.5 million people) is concentrated in this area. This network
transports the drinking water from the main water treatment plants (ETAPs), which
take the water from two different rivers (Llobregat and Ter), towards the main storing
and buffer tanks of 116municipalities in theBarcelonametropolitan area, using about
1045km of pipes of up to 3m diameter. The network is composed by 170 storage
tanks, 67 pumps and 212 demand sectors, and is monitored using more than 200 flow
meters and 115 tank level sensors by means of a SCADA system with 10min sample
time.

The dataset used to obtain these results is the network’s raw data collected by
ATLL company, including flow meter measurements, level meter measurements,
valve positions and communication system alarms. The time series models consid-
ered here are HW TSM.

Figure10.7 presents a scenario involving the flow meter E6FT00502 CI. In this
case, a general communication fault affects all the sensors, a common situation occur-
ring in actual water monitoring systems happening when, e.g., the concentrator (a
device collecting data from sensors installed in a particular zone) drops. A SMmodel
is available using the corresponding spatially related sensors data. However, in this
particular case the rest of the sensors involved in the SMmodel are all affected by the
same communication fault. Hence, the correspondingmeasurements are not available
for data reconstruction after the communication fault occurs and, consequently, the
SMmodel output cannot be obtained with the available sensor measurements. Alter-
natively, SM model output might be obtained using TSM estimations of the affected
sensors, but this is not considered here. If the use of raw sensor data is required in
order to provide the SM estimations, the only available model for reconstruction is

Fig. 10.7 Results of the validation and reconstruction methodology, flow meter E6FT00502 CI
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Fig. 10.8 Results of the validation and reconstruction methodology on the flow meter E6FT00502
CI

the TSM, which is finally used for the missing data reconstruction in the scenario
considered in Fig. 10.7, based on the limited available information in this particular
case.

Figure10.8 presents a different scenario from the same flow meter, where a com-
munication fault affects the flow meter, which does not transmit data in one-day
period (from t = 1024h to t = 1048h). In this particular case, the communication
fault only affects the latter sensor; hence, the corresponding SM is available because
the spatially related sensors (e.g., D6FT00201 CI) are not affected by this fault. In
this scenario, the SM model is used for missing data reconstruction, since it per-
forms better than the corresponding HW TSM model (bottom subplot in Fig. 10.8).
It may be noted that the use of the SM assumes that the model input sensor measure-
ment is faultless when the SM is used for data reconstruction. This may be assured
since the input model integrity is checked by the methodology presented here at its
corresponding stage and, if not verified, the validation test at this stage is not fulfilled.

10.5 Conclusions

In this chapter, a data validation and reconstruction methodology is introduced to
overcome the sensor problems arising in CIS, such as water networks. The validation
strategy is based on a set of data quality tests that allow to detect potentially erro-
neous data. Then, a reconstruction scheme is defined using SM and TSM to provide
an estimation based on the model having the best fit, also providing prediction inter-
vals for the forecasted reconstructed data. In addition, a software tool is described
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to provide a homogeneous and accessible database by a user-friendly interface and
to apply the methodology presented here. Finally, some results obtained using data
from a real network located in the Catalonia area are presented using the software
described, showing the ability of the methodology to detect and reconstruct anom-
alous data. In future steps of this work, the proposed methodology and tool are going
to be applied to the water quality sensors.
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Chapter 11
Fault Diagnosis

Teresa Escobet, Ramon Sarrate and Ramon Comasolivas

11.1 Introduction

A water transport network (WTN) is a complex large-scale system (LSS) which is
composed of a large number of elements with time-varying behaviour, exhibiting
numerous operating modes and subject to changes due to external conditions (e.g.,
weather) and operational constraints. Nowadays, these systems are controlled online
and monitored by means of complex computer-based systems [1, 2]. But, in order to
take advantage of these expensive infrastructures, it is also necessary to have a highly
sophisticated online fault diagnosis (FD) schemes which allow to detect as soon as
possible accidental or intentional contamination, sensor and actuator malfunctions
(faults) or incorrect operations in order to prevent system malfunctions avoiding
catastrophic consequences and ensuring safety and reliable operations. As will see
in Chap.15, online FD is the primary stage of active fault-tolerant control (FTC), but
it is also important in the design of health management systems.

The diagnostic process aims at carefully identifying which fault (including hard-
ware faults, software faults and malicious attacks) can be guessed to be the cause of
monitored events. In general, when addressing the FD problem, two strategies can
be found in the literature: hardware redundancy based on the use of redundancies
(adding extra sensors) and software (or analytical) redundancy based on the use of
software/intelligent sensors (or model) combining information provided by sensor
measurements. In critical infrastructure systems (CIS), hardware redundancy is pre-
ferred. However, for large-scale systems, the use of hardware redundancy is quite
expensive and increases the number of maintenance and calibration operations. This
is the reason why, in CIS applications, systems that allow combining both hardware
and analytical redundancy [3] must be developed.
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The problem of FD system based on analytical redundancy has been addressed
using quite different techniques, and by many researchers, applying different
approaches and assumptions. An overview of techniques in this area is provided
by several review papers [4–7]. In this chapter, model-based diagnosis (MBD) is
applied, which involves designing residual generators based on structural redundan-
cies in the system.

As remarked in Chap.9, instrumentation plays a crucial roll in MBD. The perfor-
mance of MBD depends on the set of measurements that are available in the system.
Most of them are provided by sensors installed in the system. Therefore, for a given
set of sensors already installed in the system, the maximumMBD performances that
can be achieved are bounded. Thus, designing a MBD module ultimately aims at
reaching those performance bounds.

In addition to sensors, a WTN consists of three major components: pumps, dis-
tribution storage and distribution piping network. Most systems require pumps to
supply lift to overcome differences in elevation, and energy losses caused by fric-
tion. Pipes may contain flow control devices, such as regulating or pressure-reducing
valves. Techniques based on locating leaks in a distribution network is an important
issue for the water companies, and this problem has been studied extensively in the
literature (see Chap.7). However, there are less studies that focus on the problem of
FD in general. The aim of this chapter is to propose a methodology for detecting
component failures in WTNs.

A fault must be understood as an unexpected change in a component or system.
Although it may not represent a physical failure or breakdown, it may be due to
an erroneous state of hardware or software resulting from failures of components,
physical interference from the environment, operator errors or even an incorrect
design.An error is theway inwhich a faultmanifests itself,whichmeans the deviation
of the system behaviour from the required operation. And, a failure is defined as the
inability of a component or system to operate according to its specifications.

A WTN is an inherently continuous system. However, since it is normally con-
trolled by a supervisory system that imposes discrete switching behaviour between
several operational modes, the whole system truly behaves as a hybrid dynamical
system. Most of the widely used methods for FD for large-scale and hybrid systems
rely on the use of hybrid models that integrate continuous and discrete dynamics
[8]. Due to its hybrid dynamical nature, a component fault does not always show
up as an error. For example, in the case of a WTN with many redundant valves, if a
hardware fault causes a valve to stick in a closed position, this fault may not show up
until the valve is eventually commanded to open. But, due to physical redundancy the
system can operate to perform its required function. And, even in a hybrid dynamical
system, an actual error may not be the consequence of a faulty component but that
of an operating mode switching.

Traditional FDmethods have been mostly developed on a centralized scheme that
assumes to have the full system information and its global dynamic model. When
dealing with LSS, the centrality assumption usually fails to hold, either because
gathering all measurements in one location is not feasible, or because a central-
ized high-performance computing unit is not available. These difficulties have led

http://dx.doi.org/10.1007/978-3-319-50751-4_9
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to research in fault diagnosis algorithms that operate in either a decentralized or
distributed way. Both diagnosis categories are based on the partition of the overall
system into subsystems in order to building the local diagnoser [9]. In the decentral-
ized diagnosis, both a central coordination module and a local diagnoser for each
subsystem that forms the whole supervision system are running in parallel. On the
other hand, in the distributed approach, a set of local diagnosers share information by
means of some communication protocol instead of requiring a global coordination
process such as in a decentralized approach.

In the literature, most of the works concern fault diagnosis schemes for abrupt
faults, which are modelled as instantaneous changes in system behaviour at a given
time. However, degradation in system components are often modelled as incipient
faults, which are slowdrifts in systemparameter values over time. In fact, the problem
of diagnosing incipient faults is related to the problem of condition-based mainte-
nance which aims at performing actions in the hope of preventing the occurrence of
a fault in the future operation of the system. In LSS and, in particular, inWTNwhere
there are many sensors and actuators, the early detection of component degradation
should allow to plan maintenance actions reducing maintenance costs and increas-
ing the safety of the system. For instance, the online water quality sensors for field
deployment require careful maintenance routines. The incipient fault detection in
this components could help in these tasks [10].

In general, a MBD system involves the following tasks [11]. The first task is fault
detection, implemented with a set of fault detection tests based on checking errors,
which allows deciding whether a fault has occurred, and its occurrence time instant.
The second task is fault isolation or localization, which is typically achieved through
algorithms that compute a set of possible faulty components. And the third one is
fault identification and estimation, which aims at determining the kind of fault and its
severity. In general, FD approaches are implemented using a hierarchical structure in
which the lowest level consists of amodule designed to detect an abnormal behaviour
and triggering alarms, and the highest level tries to isolate and localize the problem.
A reduced number of approaches include the third one, unless it is necessary for
achieving a fault-tolerant control system.

The ability to detect and isolate faults is an important task in order to safeguard
the integrity of WTN. To exemplify the FD methodologies in WTN, the Barcelona
water transport network is used as the case study.

11.2 Problem Statement

MBD involves using a system model to build a set of consistency tests. In the case of
WTN, it is assumed that the process can be described by the following continuous-
time nonlinear model:
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ẋ = g(x,u,θ) + w,

0 = f(x,u,θ) + η, (11.1)

y = h(x,u,θ) + ν,

where x is the vector of system states, u is the vector of control actions and y is
the vector of system outputs; θ is a vector of uncertain parameters; w and η are
unmodelled dynamics and disturbances; ν are measurement noises; g and h are the
state update andmeasurement nonlinear functions, respectively; and f is the nonlinear
static relation function.

It should be noted that the controller could generate control actions at discrete-
time points than can change the operational models of the plant (e.g., by turning
components on and off, changing component parameter values and the set point
of regulators [12]). These operating mode changes produce discrete changes in the
dynamic models of the system behaviour. Thus, multiple systemmodels are required
to analyse their behaviour. Current techniques propose modelling this complex sys-
tem using a hybrid system model [8, 13, 14] which combines piece-wise linear
modelling approaches with a discrete-event model given by an automaton represent-
ing the transitions between operation modes, nonlinearities and faulty situations.
Each mode could be modelled by (11.1).

The design of a MBD involves building a set of consistency relations that only
involves observed variables [15], known as analytical redundancy relations (ARRs).
To obtain ARRs for state-space representation such as (11.1), it is necessary to
manipulate the model to eliminate the unobserved variables (i.e., the state x).

Given the model defined in (11.1) corresponding to a known operating mode with
observed variables y and u, an ARR is defined as follows:

�i(y,u) = 0, (11.2)

where �i is called the residual generator or computational form of residual ri. The
set of residuals,W , can be represented as

W = {ri|ri = �i(y,u), i = 1, . . . , nr}, (11.3)

where nr is the number of residuals.
Then, fault diagnosis is based on monitoring the set of residuals in order to assess

the consistency of their corresponding ARRs. The set of inconsistent ARRs is rep-
resented by the set of residuals

W∗ = {ri|ri = �i(y,u) �= 0, i = 1, . . . , nr}. (11.4)

Fault isolation task starts by obtaining the observed fault signature, where each single
fault signal indicator φi is defined as follows:

φi =
{
0 if ri /∈ W∗,
1 if ri ∈ W∗.

(11.5)
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Typically the interface between fault detection and fault isolation is through a
binary codification of the evaluation of every residual; this binary interface could lead
to a wrong diagnosis when the residuals present different sensitivities and order/time
of activation after the fault appearance [16], and also produce undesirable decision
instability (chattering) due to the effect of the noise and uncertainties. In the literature,
there are different approaches to deal with this problem. For example, [17] proposed
an improved fault diagnosis approach based on the fuzzy evaluation of the residuals
that consider not only binary information but also signs/sensitivities as well as the
persistence of residual activation. Finally, in [18], the use of the Kramer function [19]
is proposed for evaluating the residuals gradient and to compute a fault diagnosis
signal.

Fault isolation is based on comparing the history of the fault diagnosis signals
with some stored fault patterns based on an extension of the fault signature matrix
(with includes other signal properties such as signs, occurrence order and time) and
to use a decision logic algorithm for proposing the most probable fault candidate.

11.3 Proposed Approach

11.3.1 Fault Diagnosis Architecture

The proposed approach for online FD consists of two modules, fault detection and
fault isolation, as shown in Fig. 11.1. Fault detection module checks the consistency
between theobserved and thenormal systembehaviour using a set of analytical redun-
dancy relations (ARRs), which relate the values for measured variables according
to a normal operation (fault-free) model of the monitored system. ARRs are derived
by performing a structural analysis of the qualitative behaviour of WTN system.
Fault detection provides a set of residual indicators and when some inconsistency is
detected, the fault isolation mechanism is activated in order to identify the possible
fault.

Fig. 11.1 Fault detection and isolation block diagram
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Fault isolation module is based on the idea of pattern matching, which consists in
comparing the theoretical fault signatures (FS) corresponding to all possible com-
ponent degradations with the computed observed fault signature obtained from the
residuals. In general, FS contain the expected evolution of the residual immediately
after that a fault occurs (known also as symptom), which are derived offline from
the structural properties of the ARRs. In the proposed approach, FS include both
analytic and heuristic information generated to produce distinctive pattern for each
particular fault. FS are stored as matrices in the fault diagnosis database and used to
match to the trends of online residuals using pattern matching methods. Finally, a
decision logic algorithm proposes the most probable fault candidate.

11.3.2 ARR Generation

The first step into the design of a FD system consists of generating a set of ARRs
based on a model of the system and the available sensors. When analysing the model
of a large-scale system for FD design, the designer is invariably confronted with a
dilemma: to use a more accurate model which is harder to manage, or to work with
a simpler model which is easier to manipulate but with less confidence. A hierarchy
of models with increasing complexity and fidelity is often used for different pur-
poses (control/supervision design, simulation). However, as the number of variables
increases, it is worth to start analyzing the system with simple structural models that
offer relatively easy ways to identify unsuitable system configurations, causes for
lack of desired properties and straightforward remedies.

The structural model of a system is an abstraction of its behavioural model in the
sense that only the constraints (i.e., the link between variables and parameters) are
considered but not the constraints themselves. Structural analysis aims at the study of
system properties using a structural graph [20, 21]. Structural properties of interest
in control that can be derived from structural analysis are input/output reachability
and observability/controllability.

With regard to fault diagnosis, a structural property that can be derived from struc-
tural analysis is diagnosability (i.e., capability to detect and isolate one fault from
the others [22]). It also allows determining critical components (i.e., set of system
components that are indispensable to satisfy a determined property) or redundant
components (i.e., system components which are not critical for the correct func-
tionality of the system, so that they could be subtracted from the system and the
satisfaction of the objective would still be achieved) [23]. Structural analysis also
allows decomposing a system into subsystems [24] and, as shown in Chap. 9, it can
be used to place sensors and actuators for control and supervision [25].

In the structural approach, the behavioural model of a system M introduced in
(11.1) can be seen as a set of n equations, which depend on a set of m variables
Z = X ∪ O, where X is the set of unknown variables and O is the set of observed
variables,O = {ui} ∪ {yi}. A structural model can be formalized as a bipartite graph

http://dx.doi.org/10.1007/978-3-319-50751-4_9
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Fig. 11.2 Dulmage–
Mendelsohn decomposition
of a model

G = (M,Z,A), whereM ∪ Z is the set of vertices and A is the set of edges, such
that (ei, zj) ∈ A as long as the expression of ei ∈ M depends on variable zi ∈ Z .

A structural model is usually represented by a biadjacency matrix that relates
equations as rows and variables as columns. An element bij of the biadjacency matrix
is 1 as long as (ei, zj) ∈ A.

The Dulmage–Mendelsohn (DM) decomposition [26] is a well-known theoretical
tool in the structuralmodel-based fault diagnosis community. TheDMdecomposition
is usually applied to the structural modelGX = (M,X ,A) that relates equations and
unknown variables. It defines a partition on the structural model. The biadjacency
matrix in Fig. 11.2 shows theDulmage–Mendelsohn decomposition ofGX . The grey-
shaded areas contain ones and zeros, while the white areas only contain zeros. Three
main parts of M can be identified in the partition, namely the under-determined
part M−, the just-determined part M0 and the overdetermined part M+. In the
overdetermined part, there aremore equations than unknownvariables,which implies
that there exists some degree of redundancy, and this is the part of the model that is
useful for process monitoring.

The set of residual generators, W , can be derived following the structural
approach, using the algorithms proposed in [20, 27, 28]. In particular, given a set of
model equations M, residuals can be obtained from the overdetermined part of the
model M+.

Each residual is obtained from a subset of redundant equations inM+. The min-
imal subset of redundant equations that are related to a residual ri is called minimal
structural overdetermined (MSO) set [27] and is represented by ωi ⊆ M+. An ARR
can be generated from an MSO by defining a computation sequence. A compu-
tation sequence determines how to compute internal unknown variables through a
convenient manipulation of MSO equations, and how to check consistency through
a redundant equation. A computation sequence can be represented by a directed
bipartite graph, where alternate nodes represent variables and equations.

Given a set of model equations M, the set of all possible MSO sets is � =
{ω1,ω2, . . . ,ωr}. An efficient algorithm to compute � exists [27]. However, it is not
always possible to define a computation sequence for an MSO. For instance, solving
a certain unknown variable in a nonlinear equation could be a hard task, or even
impossible. Specifically, ARRs that depend on a computation sequence that implies
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the inverse computation of non-invertible functions should be excluded. Another
issue concerns differential equations where either integral or mixed causality should
be considered [29]. A causal framework was proposed in [30] that allows taking into
account these computation issues in the FD system design. In particular, Algorithm
7 in [30] determines the subset �c ⊆ � of all causally computable MSO sets. These
MSOsets are guaranteed to provide a residual using easy back substitution techniques
according to their computation sequence. The causal framework requires a causal
structural model to be defined through a biadjacency matrix, where

bij =

⎧⎪⎨
⎪⎩

< empty > if (ei, zj) /∈ A,

× if (ei, zj) ∈ A and zj can be computed from ei,

� if (ei, zj) ∈ A and zj cannot be computed from ei.

For illustration proposes, the following Example 1 model is used,

e1 : x1 + y1 = 0,

e2 : g1(ẋ1) − x3 = 0,

e3 : g2(ẋ2) − x3 = 0,

e4 : x2 − y2 = 0,

e5 : x3 − y3 = 0,

where x1 and x2 are the system state variables, x3 is an unknown variable, and y1,
y2 and y3 are systems measurements. For each state-space variables, new constraints
capturing the dynamics should be added. In this study case, two more equations
should be considered:

e6 : ẋ1 − dx1
dt

= 0,

e7 : ẋ2 − dx2
dt

= 0.

Table 11.1 Biadjacency matrix for the causal structural model of Example 1

x1 ẋ1 x2 ẋ2 x3 y1 y2 y3

e1 × ×
e2 × ×
e3 × ×
e4 × ×
e5 × ×
e6 × �

e7 × �
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Fig. 11.3 Computation sequence for MSO set ω1

Fig. 11.4 Computation sequence for MSO set ω3

The causal structuralmodel of Example 1 is represented by the biadjacencymatrix
shown in Table11.1.

In this example, the overdetermined part is M+ = M. It is assumed integral
causality in the differential equations e6 and e7 and that functions g1 and g2 are fully
invertible. Applying the algorithm proposed in [30], two causally computable MSO
sets are found, � = {ω1,ω2}, where ω1 = {e1, e2, e5, e6} and ω2 = {e3, e4, e5, e7}.
Figure11.3 displays the computation sequence of MSO set ω1. According to this
computation sequence, the computation form of its corresponding residual would be
r1 = ∫

g−1
1 (y3) dt + y1. Note that if function g1 was not invertible, this MSO would

not be causally computable. Similarly, the residual corresponding to MSO set ω2

would be r2 = ∫
g−1
2 (y3) dt − y2. Thus, the set of residuals for this example would

beW = {r1, r2}.
An additional MSO set could be obtained when applying the algorithm in [27],

ω3 = {e1, e2, e3, e4, e6, e7}, but it would not be causally computable. Figure11.4
displays the computation sequence of this new MSO set ω3. According to this com-
putation sequence, the computation form of its corresponding residual would be
r3 = ∫

g−1
2 (g1(

dy1
dt )) dt − y2. Since a differentiation operation is involved, the inte-

gral causality assumption would be violated.

11.3.3 Fault Detectability and Isolability

LetF be the set of faults that must be monitored. For example, in a water distribution
network, typical faults are pump malfunctioning or valve blocking.

Definition 11.1 (Detectable fault) A fault f ∈ F is detectable if its occurrence can
be observed, i.e., at least one of the residuals ri ∈ W satisfies ri �= 0.
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A detectable fault can also be characterized in the structural analysis frame-
work [31]. Without loss of generality, it is assumed that a single fault f ∈ F can
only violate one equation, denoted by ef ∈ M. Then, a fault f ∈ F is structurally
detectable if there exists at least one MSO ωi ⊆ �c such that

ef ∈ ωi. (11.6)

Following Example 1, assume that a fault is defined for the measurement of
variable y1, i.e., its corresponding fault equation would be e1. Then, residual r1
would be sensitive to this fault, since e1 ∈ ω1, whereas r2 not, since e1 /∈ ω2. Thus,
since there exists a residual that is sensitive to it, this fault would be detectable.

Using the set of residual generators (11.3), the fault detection module must check
at each time instant whether or not they are consistent with the observations. Under
ideal conditions, residuals are zero in the absence of faults and nonzero when a fault
is present.

Fault isolation aims at identifying the fault acting on the system in a set of possible
faults (or fault hypothesis set) F = {

f1, f2, . . . , fnf
}
. It is assumed that just one fault

may be acting on the system at a given time instant. Fault isolation is based on
identifying at time instant k those residuals that are consistent and those that are
not and implementing a diagnostic reasoning that leads to the isolation of the fault
present in the system, assuming that different faults affect different residuals. Thus,
unlike for fault detection, where consistency has to be independently evaluated for
each residual, a set of residuals is required for fault isolation [11].

Standard fault isolation reasoning exploits the knowledge about the binary relation
between the sets F and W that is stored in the so called fault signature matrix
(FSM). This matrix has as many rows as residuals and as many columns as faults are
considered. An element ij of the FSM is equal to 1 if the ri residual is sensitive to the
fj fault; otherwise, it is equal to 0. A column of the FSM is known as the theoretical
fault signature and indicates which residuals are affected by a given fault. A set of
faults are isolable if all the columns in the FSM are different.

Definition 11.2 (Isolable fault) A fault fi ∈ F is isolable if its occurrence can be
uniquely observed through its fault signature.

Following Example 1, assume that a fault is considered for every sensor, i.e., f1
corresponds to a violation of the expression of e1, f2 to e4 and f3 to e5. Then, the
FSM corresponding to Example 1 is provided in Table11.2. Since, all columns are
different, all faults are isolable.

Table 11.2 Fault signature matrix corresponding to Example 1

f1 f2 f3

r1 1 0 1

r2 0 1 1
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11.3.4 Fault Detection Implementation

However, when building amodel of a dynamic process tomonitor its behaviour, there
is always a mismatch between the modelled and the real behaviour. This is because
some effects are neglected in themodel, some nonlinearities are linearized in order to
simplify themodel, someparameters have tolerancewhen they are compared between
several units of the same component, some errors in parameters or in the structure
of the model are introduced in the model estimation process, etc. These modelling
errors introduce uncertainty in the model and interfere with the fault detection. To
properly manage this uncertainty, several authors in the FD [32, 33] and automatic
control [34, 35] communities have suggested the use of interval models. Thus, a
nominalmodel plus uncertainty intervals are provided, guaranteeing that all available
data from the system in non-faulty scenarios will be included in the interval for the
model prediction. Interval methods are quite suitable when additionally to additive
uncertainty (noise), modelling uncertainty is present. In particular, no assumption
about the noise statistical distribution should be introduced.An alternative to interval-
based methods are stochastic models and methods [36].

In the literature, there are different approaches to solve this problem. For example,
statistical decision methods [36] can be used when unknown dynamics and measure-
ment noise are stochastically modelled. In many practical situations, this assumption
is not realistic, being more natural to assume that disturbances/model errors and
measurement noise are bounded and their effect is propagated to the residuals using,
for example, interval methods [33].

In the case of models with bounded uncertainties, the ARR defined in (11.2) can
be written in discrete time as

Ri(k) = {�i(y(k),u(k), δ(k))|δ(k) ∈ D}, (11.7)

whereD is the interval boxD = {δ ∈ R
nδ |δmin ≤ δ ≤ δmax} that includes all bounded

uncertainties and Ri being Ri ∈ [
rmini , rmaxi

]
Then, fault detection is formulated as an ARR consistency checking using a set-

membership approach [37].

Definition 11.3 (ARR consistency checking) Given an ARR described by residual
sets as in (11.7) and a sequence of measured inputs u(k) and outputs y(k) from the
real system, an ARR is consistent with the measurements and the known bounds
of uncertain parameters and noise if there exist a set of sequences δ(k) ∈ D which
satisfies the ARR mathematical expression.

According to Definition 11.3, a residualRi is consistent when zero belongs to the
interval bounding it, i.e., 0 ∈ Ri(k).

Definition 11.4 (Fault detection) Given a sequence of observed inputs u(k) and
outputs y(k) of the real system, a fault is said to be detected at time k if there does
not exist a set of sequences δ(k) ∈ D for which some ARR is consistent with.
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According to Definition 11.4, a fault is detected when 0 /∈ Ri(k). The information
provided by the consistency checking procedure is binarized and stored as a fault
signal φi(k)

φi(k) =
{
0 if 0 ∈ Ri(k),

1 if 0 /∈ Ri(k).
(11.8)

In the literature,many algorithms for consistency checking have beenproposed, all
them with the main objective of trying to eliminate false alarm and providing robust
fault indicators. For example, in [38], the fault detection test (11.8) is formulated
using the mathematical framework of interval constraint satisfaction problems.

In this implemented approach, the consistency check is performed using the
methodology described in [39]. In this case the set Ri(k) is represented by the
bounded interval

Ri(k) ⊆
[
r0,mini , r0,maxi

]
, (11.9)

where r0,mini = min(Ri(k)) − r0i and r
0,max
i = max(Ri(k)) − r0i , being r

0
i the nominal

residual. The nominal residual roi is computed according to (11.7) considering the
centre of the uncertainty interval δo. The fault diagnostic signal is computed using
the Kramer function

φK
i (k) =

⎧⎨
⎩

(r0i (k)/r
0,max
i (k))4

1+(r0i (k)/r
0,max
i (k))4

if r0i (k) ≥ 0,

− (r0i (k)/r
0,min
i (k))4

1+(r0i (k)/r
0,min
i (k))4

if r0i (k) < 0.
(11.10)

When using (11.10), the residuals are normalized to a metric between −1 and 1,
φK
i (k) ∈ [−1, 1], which indicates the degree of satisfaction of (11.8) for every nom-

inal residual, 0 means than ri is consistent, whereas 1 or −1 means than ri is incon-
sistent. Then, the binary fault signal defined in (11.8) is computed by

φi(k) =
{
0 if

∣∣φK
i (k)

∣∣ ≤ 0.5,

1 if
∣∣φK

i (k)
∣∣ > 0.5.

(11.11)

11.3.5 Fault Isolation Implementation

The standard procedure followed by the FDI community involves finding a matching
between the observed fault signature, and one of the theoretical fault signatures. In
practice, due to the dynamic nature of a fault signal φi caused by a given fault fi and
its magnitude, or due to the absence of input signals during system operation, when
a fault occurs, an undefined number of residuals affected by the fault can be found
inconsistent. For this reason, the fault isolation module proposed in this chapter is
an adaptation of the one used in [18] (see Fig. 11.5), and described in more detail
in [39].
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Fig. 11.5 Fault detection
and isolation logic scheme

The first component is a memory that stores information about the fault signal
occurrence history. It is cyclically updated by the fault detection module. The pattern
comparison component compares the memory content with the stored fault patterns.
The classical Boolean fault signature matrix concept [11] is generalized since the
binary interface is extended to take into account more fault signal properties. The last
component represents the decision logic part of the method whose aim is to provide
the most probable fault candidate.
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11.3.5.1 Memory Component

The memory component consists of a table in which events in the residual history
are stored. As soon as the fault detection module detects a new fault signal, i.e.,
φi = 1, the memory is updated by filling out three fields: the occurrence time k0, the
maximum nominal residual r0,maxi and the sign of the residual.

The problem of different time instants of fault signal appearance is solved post-
poning the isolation decision until a prefixed waiting time Tw has elapsed, from the
first fault signal appearance.

This Tw could be computed based on the largest transient response [11] from a
non-faulty to any faulty situation. However, in the case of a water transport network,
which is subject to periodic flow demands, Tw can be also related to the periodic
operation time. After this time has elapsed, a diagnosis is provided and the memory
component is reset, enabling the diagnosis of future faults. Following [16], inside
this diagnosis window, the maximum nominal residual in the memory table roi,max is
only updated at time k0 if the current nominal residual is greater than the previous
ones.

r0,maxi = max
k∈[k0,k0+Tw/�t]

|roi (k)|, (11.12)

where �t is the sampling time.
Due to themax-operator, residual values can only increase. Using this strategy, the

effect of noise and non-persistent fault indicators are filtered out since just residual
peaks are stored.

The memory table makes the residual history accessible for later computation by
explicitly storing that data. Using this approach, time aspects of fault isolation can
be treated in a straightforward way.

11.3.5.2 Pattern Comparison Component

The pattern comparison component compares the memory content with the stored
fault patterns. Fault patterns are organized according to a theoretical FSM. This inter-
pretation assumes that the occurrence of fj always affect a system and is observable
at least in one residual ri, hypothesis known as fault exoneration and that fj is the
only fault affecting the monitored system. Three different fault signature matrices
are considered in the evaluation task: Boolean fault signal activation (FSM01), fault
signal signs (FSMsign) and fault residual sensitivity (FSMsensit). Moreover, FSM01
coincides with the FSM introduced in Sect. 11.3.3 and can be obtained from struc-
tural analysis. The other matrices can be obtained from the analysis of the residual
fault sensitivity [39].

In model-based FDI, the fault effects on a residual can be expressed in terms of
the residual fault sensitivity that leads to the residual internal form [11]. For example,
in the case of two additive faults f1 and f2, the internal form of a residual r1 can be
expressed as follows:
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r1(k) = Sf1(q
−1)f1(k) + Sf2(q

−1)f2(k), (11.13)

where Sf1(q
−1) and Sf2(q

−1) are the residual fault sensitivity transfer functions that
characterize the fault effect on the residual, expressed in terms of the shift operator
q−1.

Each element of the FSMsensit is computed with the following equation:

FSMsensitij(k) =

⎧⎪⎪⎨
⎪⎪⎩

Sri ,fj (q
−1)

max(Ri(k))−r0i
ua(k − k0), if r0i ≥ 0 and k ≥ k0,

Sri ,fj (q
−1)

min(Ri(k))−r0i
ua(k − k0), if r0i < 0 and k ≥ k0,

0, if Sri,fj = 0 or k < k0,

(11.14)

where ua is a unitary abrupt step input, Sri,fj is the sensitivity associated with the
nominal residual r0i regarding the fault hypothesis fj, and k0 is the fault occurrence
time instant. As a consequence of the fault residual sensitivity time dependence,
FSMsensitij dynamically evolves since the fault occurrence time instant.

Besides, FSMsignmatrix can be easily derived from FSMsensit (11.14) by apply-
ing the following conversion

FSMsignij(k) =

⎧⎪⎨
⎪⎩
1 if FSMsensitij(k) > 0,

−1 if FSMsensitij(k) < 0,

0 if FSMsensitij(k) = 0.

(11.15)

In any case, the consistency between the observed sequence of fault signatureφi(k)
and the theoretical information stored in the FSM matrices for jth-fault hypothesis
can be evaluated by computing in real time the factor values as follows:

factor01j(k) =
∑nr

i=1φi(k)FSM01ij(k)∑nr
i=1FSM01ij(k)

, (11.16)

factorsensitj(k) =
∣∣∑nr

i=1φ
K
i (k)FSMsensitij(k)

∣∣∑nr
i=1

∣∣FSMsensitij(k)
∣∣ , (11.17)

factorsignj(k) =
∣∣∑nr

i=1sign(φ
K
i (k))FSMsignij(k)

∣∣∑nr
i=1

∣∣FSMsignij(k)
∣∣ , (11.18)

where nr is the number of residuals and kφi is the occurrence time of the fault signalφi.
While factor01j(k) and factorsignj(k) compute the mapping between residuals

and the corresponding FSM matrices, factorsensitj(k) weighs this mapping consid-
ering the sensitivity. Further details on the general rules to obtain these matrices from
(11.13) as well as additional fault signature matrix definitions concerning expected
fault signal activation time and order can be found in [39].
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11.3.5.3 Decision Logic Component

The decision logic algorithm starts when the first residual is activated (i.e., φi = 1)
and lasts Tw time instants or till all fault hypotheses except one are rejected. Fault
hypotheses are rejected when an unexpected activation signal has been observed
according to those fault hypotheses. Rejection is based on using the results of
factor01j(k) and factorsignj(k). If any of these factors is null for a given fault hypoth-
esis, it will be rejected. Every factor represents some kind of a filter, suggesting a set
of possible fault hypotheses. At the end of the time window Tw, for each non-rejected
fault hypothesis fj, a fault isolation indicator ρj could be determined for instance as
follows, although other logic formula could be considered:

ρj(k) = max
p∈[k−Tw/�t,k]

(factor01j(p) × |factorsignj(p)|, |factorsensitj(p)|). (11.19)

A set of fault candidates with their corresponding fault isolation indicator is pro-
vided as the final diagnosis result, so that the greatest fault isolation indicator will
determine the diagnosed fault. In the case of non-isolable faults, they will all have a
high fault isolation indicator.

11.4 Simulations and Results

11.4.1 Barcelona Water Transport Network

The case study used to illustrate the FD methodology proposed in this chapter is
tested using a simulator of the Barcelona WTN (described in Sect. 2.4 of Chap. 2).

Without loss of generality, the results presented here are focused on two subsys-
tems, known as Orioles and Cervello (Fig. 11.6). This part of the network includes
the following components:

• Tanks: d150SBO, d175LOR, d147SCC, d205CES, d263CES
• Actuators with flow sensors: iStBoi, iOrioles, iStaClmCervello, iCesalpina1, iCe-
salpina2

• Demands with flow sensors: c150SBO, c175LOR, c147SCC, c205CES, c263CES
• Level sensors: xd150SBO, xd175LOR, xd147SCC, xd205CES, xd263CES

TheBarcelonaWTNsimulator allows activating different kinds of faults in distinct
components of the water network. Faults of different nature can be chosen (e.g.,
freezing, offset, drift, abrupt or incipient) and their magnitude and slope can be
adjusted. These generic faults well represent the common hydraulic faults occurring
in water networks, e.g., leaks (which may be represented by an abrupt/incipient
offset/drift fault), bursts (which may be represented by an abrupt offset fault) or
sensor communication faults (which may be represented by an abrupt freezing fault).

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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Fig. 11.6 Case study subsystems

The following faults that concern several Barcelona WTN components (see
Fig. 11.6) will be considered:

• actuator faults, fPi for i = 1 . . . 5, corresponding to iStBoi, iOrioles, iStaClm-
Cervello, iCesalpina1 and iCesalpina2, respectively.

• flow sensor faults, fFi, corresponding to each actuator.
• level sensor faults, fLi, corresponding to xd150SBO, xd175LOR, xd147SCC,
xd205CES and xd263CES, respectively.

• demand sensor faults, fDi, corresponding to c150SBO, c175LOR, c147SCC,
c205CES and c263CES, respectively.
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11.4.2 WTN Modelling

A WTN can be represented by a directed graph H = (NT ∪ NJ , E) where tanks
and pipe junctions are nodes, NT ∪ NJ , and pipes are edges, E . A dynamic model
of a water network can be defined as in (11.1). This general model can be obtained
from elementary physical relationships related to nodes and edges in graph H.

Tank node i ∈ NT can be described by a mass balance equation, through function
g in (11.1) as follows:

ẋi = 1

Ai

⎛
⎝ ∑

qk∈Qi

qk − di

⎞
⎠ , (11.20)

xmini ≤ xi ≤ xmaxi , (11.21)

where xi is the water tank level, Qi is the set of flows qk corresponding to incident
edges k ∈ E on node i, di is the flow demand, Ai is the tank section, and xmini and xmaxi
denote the minimum and the maximum tank level, respectively.

Pipe junction node j ∈ NJ can be described by a mass balance equation as well,
through function f in (11.1) as follows:

∑
qk∈Qj

qk = 0, (11.22)

where Qj is the set of flows qk corresponding to incident edges k ∈ E on node j.
Pipe flows in a transport network are controlled using actuators (pumps and

valves). Let EP ⊆ E denotes the set of pipes that are provided with a pump, and
P denotes the set of pumps. Then, pipe edge k ∈ EP can be described by a pipe
equation, through function f in (11.1) as well, as follows:

qk − Klul = 0, (11.23)

where ul is the control input and Kl is the gain parameter of pump l ∈ P .
Additionally, measurements are described through function h in (11.1) as follows:

yLi = xi, (11.24)

yDi = di, (11.25)

yFk = qk, (11.26)

where yLi corresponds to the ith-tank level, yDi to the ith-demand and yFk to the
kth-pipe flow.

The network subsystem represented in Fig. 11.6 comprises 5 tank nodes, no pipe
junction nodes and 5 pipe edges, all provided with a pump. Thus, 5 tank levels,
5 demands and 5 flows are defined. Since all of them are measured, model (11.1)
involves up to 25 equations.
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11.4.3 ARR Generation

According to Sect. 11.3.2, designing a model-based FD system firstly requires deter-
mining the set of ARRs. These will be obtained through structural analysis.

The case study structural model involves 30 equationsM = {e1, . . . , e30} distrib-
uted into

e1, . . . , e5 : tank node i equations, according to (11.20),

e6, . . . , e10 : pipe edge k equations, according to (11.23),

e11, . . . , e15 : ith-tank level measurement, according to (11.24),

e16, . . . , e20 : kth-flow measurement, according to (11.26),

e21, . . . , e25 : ith-demand measurement, according to (11.25),

e26, . . . , e30 : ẋi − dxi
dt

= 0.

The set of unknown variables isX = {ẋi, xi, qk, di} and the set of known variables
isO = {ul, yLi, yFk, yDi} for i = 1, . . . , 5, l = 1, . . . , 5 and k = 1, . . . , 5. Table11.3
provides the biadjacencymatrix that represents the structural model of the study case.
Notice that, as in the case of Example 1, integral causality is assumed in equations
e26, . . . , e30.

Applying the algorithm proposed in [30], 21 causally computable MSO sets are
found. For instance, the forth MSO is ω4 = {e1, e7, e11, e16, e21, e26}, whose com-
putation sequence is provided in Fig. 11.7. According to this computation sequence,
the computation form of its corresponding residual is:

r4 = yL1 − 1

S1

∫
(yF1 − K2u2 − yD1) dt. (11.27)

Table 11.3 Biadjacency matrix of the case study
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Fig. 11.7 Computation sequence corresponding to ω4

Note that this residual can be easily computed since integral causality is satisfied.
Up to fifteen, other residuals have a similar dynamic nature since their correspond-
ing MSO set also includes an equation in {e26, . . . , e30}. The other remaining five
residuals have a static nature. For instance, the first MSO is ω1 = {e6, e16} and the
computation form of its corresponding residual is r1 = K1u1 − yF1.

11.4.4 Structural Fault Detectability and Isolability Analysis

According to the set of MSO determined in the previous section, residual fault
sensitivities can be determined. For instance, residual r4 is sensitive to the set of
faults {fP2, fF1, fL1, fD1} since their corresponding fault equations satisfy {e7, e16, e11,
e21} ⊆ ω4. Table11.4 provides the Boolean FSM, which specifies all residual fault
sensitivities.

According to Definition 11.1, all faults are detectable since there exists at least
one residual that is sensitive to each fault. Regarding fault isolability, according to
Definition 11.2 faults fPi and fFi are isolable since their corresponding fault signatures
are unique. However, fault pairs {fLi, fdi} cannot be isolated since they have the same
fault signature.

11.4.5 FD Implementation

The first step into the implementation of the FD system involves designing a resid-
ual generator module that checks system consistency in real time. The residual
generator corresponding to the study case includes all 21 residuals determined in
Sect. 11.4.4. This module could be implemented by a set of nonlinear difference
equations obtained from the discretization of those residuals. One of the residuals
that has been implemented is (11.27). Notice that this equation has two terms: mea-
surement of the tank 1 level yL1 and an integral term that determines tank 1 level xL1
based on some other measurements. The integral term could be discretized using a
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forward-difference approximation with a sampling time�t, leading to the following
implementation of residual r4:

z4(k + 1) = z4(k) + �t

A1
(yF1(k) − K2u2(k) − yD1(k)), (11.28)

ŷL1(k) = min(z4(k), y
max
F1 ), (11.29)

r4(k) = yL1(k) − ŷL1(k), (11.30)

where z and ŷL1 are the estimated value of yL1 without and with saturation, respec-
tively, and ymaxF1 is the maximum level of tank 1. The main problem when trying to
directly solve (11.28) lies in themodelling uncertainty accounted for in (11.1), which
originates in unmodelled dynamics, sensor noise, parameter variations and nonlin-
earities. In order to implement a robust fault residual generator, instead of computing
dynamic residuals as in (11.28), the following nonlinear Luenberger observer struc-
ture will be used:

z4(k + 1) = (1 − λ4)z4(k) + �t

A1
(yF1(k) − K2u2(k) − yD1(k)) + λ4yL1(k),

(11.31)

where λ4 is the observer gain.
Thus, the complete set of discretized residuals have been implemented in the state-

observer residual form. Recall that the detection test is based on analysing nominal
residuals and their corresponding bounds defined in (11.9). Therefore, residuals are
computed through the Luenberger observer form using the nominal value of the
parameters and the residual bounds are determined experimentally. For example,
Fig. 11.8 shows the real-time evolution of r04 under normal operation, which can be
bounded by the interval R4(k) ⊆ [−1, 65,+1, 65].

The FD system evaluates in real time the fault diagnosis signals (11.10) and
the binary fault signals (11.11) based on the nominal residuals computed at each
sampling time using the observer-based implementation of the residuals and their
bounds.

The second step involves determining the waiting time Tw in the memory compo-
nent. To decide this time value, the system behaviour must be analysed. Figure 11.9
shows the time evolution of variables yL1, yF1 and yD1 under normal operation. As in
most water transport networks, the flow demand presents a repetitive daily pattern.
Thus, Tw = 13 h has been chosen, which is greater than half the period.

Next step involves performing consistency analysis by computing factors (11.16)–
(11.18) in real time, which requires the fault signature matrices to be determined.
Matrix FSM01 coincides with the FSM determined from structural analysis in
Sect. 11.4.4, and matrices FSMsensit and FSMsign are computed using the resid-
ual internal form (11.13). The fault sensitivity of a residual can be derived from the
state-observer residual form.
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Fig. 11.8 Real-time evolution of r04 under normal operation (solid blue colour) and its bounded
interval (dashed red colour)

Fig. 11.9 Time evolution of yL1, yP1 and yD1 under normal operation

For instance, neglecting nonlinearities (i.e., the saturation term), residual r4 can
be rewritten in the input–output form as
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r4 = 1 − λ4q−1

1 − (1 − λ4)q−1
yL1(k) + −(�t/A1)q−1

1 − (1 − λ4)q−1
yF1(k) (11.32)

+ (�tA1)K2q−1

1 − (1 − λ4)q−1
u2(k) + (�t/A1)q−1

1 − (1 − λ4)q−1
yD1(k),

where q−1 is the delay operator. Therefore, its sensitivity to an additive fault in the
sensor measuring the level of tank 1, fL1, and in pump 2, fP2, is

Sr4,fL1 = 1 − λ4q−1

1 − (1 − λ4)q−1
, (11.33)

Sr4,fP2 = (�t/A1)K2q−1

1 − (1 − λ4)q−1
. (11.34)

Once, the factors are determined, the final diagnosis results are provided by apply-
ing (11.19).

11.4.6 Results

The fault detection and isolation procedure described in Sect. 11.3 has been applied
to two simulated scenarios. In both scenarios, a drift fault of distinct magnitude
is simulated at 100 h. The first scenario concerns a fault in the iOrioles pump, fP2,
whereas a fault in the xd175LOR level sensor, fL2, is simulated in the second scenario.

Regarding the first scenario, Fig. 11.10 shows the time evolution of the nom-
inal residuals r0i and their corresponding binary fault signals φi for i = 1, . . . , 8
(i.e., the residuals associated with the subsystem on the left in Fig. 11.6, where the
fault occurs). An observer gain λi = 0.1 has been chosen for dynamical residuals
r3, . . . , r8. In order to better appreciate the benefit of considering a waiting time, a
Tw = 1 h has been firstly chosen. The diagnosis procedure starts when the first fault
indicator is activated, which occurs at 113 h (i.e., k0 = 113). Note that φ2, φ3 and
φ4 exhibit persistent dynamics (φ2 from 125h on) whereas φ7 has an intermittent
evolution. This intermittent indicator dynamics arises from the periodic nature of the
on–off pump commands (see Fig. 11.9).

The periodic dynamics in some residuals may lead to false diagnosis results. In
order to overcome these undesired dynamics, a Tw = 13 h has been next applied.
Figure11.11 provides the time evolution of the maximum nominal value of the
residuals r0,maxi and their corresponding binary fault signals, φi. Note that in this
case non-persistent signals are avoided.

Figure11.12 shows the time evolution of the subset of factor values that differ from
zero. The factor subindex, j = 1, . . . , 8, corresponds to the following set of faults
{fP1, fP2, fF1, fF2, fL1, fL2, fD1, fD2}.Note that in this scenario factor01j and factorsignj
provide the same results.
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Fig. 11.10 Nominal residuals r0i with their bounded interval (red-dashed line) and binary fault
signals φi under a drift fault in iOrioles pump

Fig. 11.11 Maximum nominal residuals r0,maxi with their bounded interval (red-dashed line) and
binary fault signals φi under a drift fault in iOrioles pump

Finally, the decision logic component provides the diagnosed fault as the one
whose fault isolation indicator ρj is the highest among all possible fault hypotheses.
Figure11.13 displays the time evolution of the subset of fault isolation indicators ρj
that differ from zero. The fault isolation subindex, j = 1, . . . , 8, corresponds to the
following set of faults {fP1, fP2, fF1, fF2, fL1, fL2, fD1, fD2}. The fault diagnosis proce-
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Fig. 11.12 Factorsignj (blue line), factorsensitj (red line) and factor01j (green-dashed line) signals
under a drift fault in iOrioles pump

duremanages to provide the right fault hypothesis: the highest fault isolation indicator
corresponds to fault fP2 and occurs at 118 h.

Regarding the second scenario, Fig. 11.14 shows the time evolution of the maxi-
mum nominal residuals, r0,maxi , and their corresponding binary fault signals, φi, for

Fig. 11.13 Fault isolation indicators ρj under a drift fault in iOrioles pump
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Fig. 11.14 Maximum nominal residuals r0,maxi with their bounded interval (red-dashed line) and
binary fault signals φi under a drift fault in the xd175LOR level sensor

Fig. 11.15 Fault isolation indicators ρj under a drift fault in the xd175LOR level sensor

i = 1, . . . , 8 (i.e., the residuals associated with the subsystem on the left in Fig. 11.6,
where the fault occurs). Note that in this case binary fault signals are persistent since
a waiting time Tw = 13 h has been applied, providing fault detection at 129 h.

Figure11.15 displays the time evolution of the subset of fault isolation indicators
ρj that differ from zero. In this case, the highest fault isolation indicator corresponds
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to faults fL2 or fD2 and occurs at 156 h. As already anticipated in Sect. 11.4.4, the FD
system is not able to isolate both faults.

11.5 Conclusions

In WTN, high performance and maintenance are critical factors for enhancing pro-
ductivity and water quality. To achieve these goals, highly sophisticated and online
FD systems able to detect and isolate sensor and actuator malfunctions are required.
In this chapter, a methodology has been proposed for developing model-based fault
diagnosis for WTN taking into account both theoretical and practical issues. The
proposed approach is based on exploiting the analytical redundancy available in the
model of the WTN. To exemplify the FD methodologies, a part of the Barcelona
WTN was used as a case study.
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Chapter 12
Model Predictive Control of Water Networks
Considering Flow

Gabriela Cembrano, Vicenç Puig, Carlos Ocampo-Martínez, Meritxell
Minoves and Ramon Creus

12.1 Introduction

Decision support systemsprovide useful guidance for operators in complex networks,
where resource management best actions are not intuitive. Optimization and optimal
control techniques provide an important contribution to a smart management strategy
computation for drinking-water networks (DWNs) (see [1–3]). Similarly, problems
related to modelling and control of water supply, transport and distribution systems
have been an object of important research efforts during the last few years (see, e.g.,
[4–7].

In general, DWNs contain multiple tanks, pumping stations, valves, water sources
(superficial and underground) and sectors of consumer demand. Operational control
of DWNs using optimal control techniques has been largely investigated (see [5]).
This chapter proposes the use ofmodel predictive control (MPC) techniques to gener-
ate flow control strategies in a transport network, delivering water from the drinking-
water treatment plants to the consumer areas to meet future demands. Set points
for pumps and valves are computed by optimizing a performance index expressing
operational goals such as economic cost, safety water storage and smoothness in flow
control actions. The main point is to highlight the advantages of using optimization-
based control techniques, such as MPC, to improve the performance of a water
transport network, taking into account their large-scale nature (in terms of number of
dynamic elements and decision variables), the nature of the desired control objectives
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and the type and behaviour of the system disturbances (drinking-water demands).
The developed control strategies have been tested on the drinking-water transport
network of Barcelona.

12.2 Problem Statement

12.2.1 Operational Control of Water Networks

Complex nonlinear models are very useful for offline operations (for instance, cali-
bration and simulation). Detailed mathematical representations such as the pressure-
flow models for DWNs allow the simulation of those systems with enough accuracy
to observe specific phenomena, useful for design and investment planning. How-
ever, for online computation purposes such as those related to global management,
a simpler and control-oriented model structure must be conveniently selected. This
simplified model includes the following features:

(i) Representativeness of themain network dynamics: Itmust provide an evaluation
of the main representative hydrological/hydraulic variables of the network and
their response to control actions at the actuators.

(ii) Simplicity, expandability, flexibility and speed: Itmust use the simplest approach
capable of achieving the given purposes, allowing very easily to expand and/or
modify the modelled portion of the network.

(iii) Amenability to online calibration and optimization: This modelling approach
must be easily calibrated online using data from the telemetry system and
embedded in an optimization problem to achieve the network management
objectives.

Figure12.1, adapted from [8, 9], shows a hierarchical structure for a real-time
control (RTC) water system. There, the MPC, as the global control law, determines
the references (set points) for the local controllers placed at different elements of the
networked system. These references are computed according to the measurements
taken from sensors distributed around the network. The management level provides
the MPC with its operational objectives, which are reflected in the controller design
as the performance indices to be enhanced, which can be either minimized or max-
imized, depending on the case. Finally, water system control requires the use of a
supervisory system to monitor the performance of the different control elements in
the network (sensors and actuators) and to take appropriate correcting actions in the
case where a malfunction is detected, to achieve a proper fault-tolerant control [10].

In most water networks, the operational control is managed by the operators from
the telecontrol centre using a SCADA (supervisory control and data acquisition)
system. Operators are in charge of supervising the network status using the telemetry
system and providing the set points for the local controllers, which are typically based
on PID algorithms. The main goal of the operational control of water networks is
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Fig. 12.1 Hierarchical structure for RTC system

to meet the demands at consumer sites, but at the same time with minimum costs
of operation and guaranteeing pre-established volumes in tanks (to preserve the
satisfaction of future demands) and smooth operation of actuators (valves and pumps)
and production plants.

Water consumption in urban areas is usually managed on a daily basis, because
water demand generally presents daily patterns and reasonably good hourly 24-h-
ahead demand predictions may, in general, be available. Therefore, this horizon is
appropriate for evaluating the effects of different control strategies on the water
network, with respect to operational goals. However, other horizons may be more
appropriate in specific utilities. The approach proposed here is based on demand sat-
isfaction at the transport level, taking into account the supply conditions. For illustra-
tion, it uses—but is not restricted to—a 24-h horizon, with hourly sampling. When
applied in real-time conditions, the computation of optimal strategies is updated,
with new data from the water network, every hour with a sliding 24-h horizon.

At the supply water basin level, strategic planning deals with sustainable use of
the water resources, seasonal variations in reservoirs and water levels, etc., so that
planning horizon, sampling times and control time steps are usually much longer. In
this work, the long-term planning objectives for the supplies are taken into account
as bands of admissible requests from the supplies to the transport, production and
distribution areas. These admissible bands define bounds on flow from reservoir,
aquifer and river sources. Production plant limitations are also used, and these may
vary according to weather-related factors, operational schedules and/or breakdowns.
The computation of optimal strategies must take into account the dynamics of the
complete water system and 24-h-ahead demand forecasts, availability predictions
in supply reservoirs and aquifers, defined by long-term planning for sustainable use
and predictions of production plant capacity and availability.Moreover, the telemetry
system and operational database will provide the current state of the water system.
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12.2.2 Operational Control of Water Network Using MPC

Water networks are very complex multi-variable systems. MPC provides suitable
techniques to implement the operational control of water systems to improve their
performance, since it allows to compute optimal control strategies ahead in time for
all the control elements [11, 12].Moreover,MPC allows taking into account physical
and operational constraints, the multi-variable input and output nature, the demand
forecasting requirement and complex multi-objective operational goals of water net-
works. The optimal strategies are computed by optimizing a mathematical function
describing the operational goals in a given time horizon and using a representative
model of the network dynamics, as well as demand forecasts.

12.3 Proposed Approach

The aim of using MPC techniques for controlling DWNs is to compute, ahead in
time, the input actions to achieve the optimal performance of the network according
to a given set of control goals. MPC strategies have some important features to deal
with complex systems such as DWNs, namely the amenability to include disturbance
forecasts, physical constraints and multi-variable system dynamics and objectives in
a relatively simple way.

12.3.1 Modelling

Several modelling techniques dealing with DWNs have been presented in the litera-
ture (see, e.g., [5, 13]). Here, a control-oriented modelling approach that considers a
flow model is outlined, which follows the principles presented by the authors in [6,
14, 15]. The extension to include the pressure model can be found in Chap.13. A
DWN generally contains a set of pressurized pipes, water tanks at different elevation
and a number of pumping stations and valves to manage water flows, pressure and
elevation in order to supply water to consumers.

The DWNmodel can be considered as composed of a set of constitutive elements,
which are presented and discussed below. Figure12.2 shows, in a small example, the
interconnection of typical constitutive elements.

12.3.1.1 Tanks

Water tanks provide the entire DWN with the storage capacity of drinking water at
appropriate elevation levels to ensure adequate water pressure service to consumers.
The mass balance expression relating to the stored volume v in the nth tank can be

http://dx.doi.org/10.1007/978-3-319-50751-4_13
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Fig. 12.2 Example of a basic topology of a generic drinking-water transport network. Note that
the interaction of the main constitutive elements is shown here: sources’ supply water to the system
by means of pumps or valves, depending of the nature of the particular source (superficial or
underground). Water is moved by using manipulated actuators in order to fill detention tanks and/or
supply water to demand sectors

written as the discrete-time difference equation

vn(k + 1) = vn(k) + �t

⎛
⎝∑

j

q jn
in (k) −

∑
h

qnh
out(k)

⎞
⎠ , (12.1)

where q jn
in (k) denotes the manipulated inflows from the j th element to the nth tank,

and qnh
out(k) denotes the manipulated outflows from the nth tank to the hth element

(which includes the demand flows as outflows). Moreover, �t corresponds with the
sampling time and k the discrete-time instant. The physical constraint related to the
range of admissible storage volume in the nth tank is expressed as

vmin
n ≤ vn(k) ≤ vmax

n , for all k, (12.2)
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where vmin
n and vmax

n denote the minimum and the maximum admissible storage
capacities, respectively. Notice that vn might correspond with an empty tank; in
practice, this value can be set as nonzero in order to maintain an emergency stored
volume.

For simplicity, the dynamic behaviour of these elements is described as a function
of volume. However, in most cases, the measured variable is the tank water level (by
using level sensors), which implies the computation of volume taking into account
the tank geometry.

12.3.1.2 Actuators

Two types of control actuators are considered: valves and pumps, or more precisely,
complex pumping stations. A pumping station generally contains a number of indi-
vidual pumps with fixed or variable speed. In practice, it is assumed that the flow
through a pumping station is a continuous variable in a range of feasible values. The
manipulated flows through the actuators represent themanipulated variables, denoted
as qu . Both pumping stations and valves have lower and upper physical limits, which
are taken into account as system constraints. As in (12.2), they are expressed as

qmin
um ≤ qum (k) ≤ qmax

um , for all k, (12.3)

where qmin
um and qmax

um denote the minimum and the maximum flow capacity of the
mth actuator, respectively. Since this modelling is stated within a supervisory control
framework, it is assumed that a local controller is available, which ensures that the
required flow through the actuator is obtained.

12.3.1.3 Nodes

These elements correspond to the network points where water flows are merged or
split. Thus, nodes represent mass balance relations, modelled as equality constraints
related to inflows—from other tanks through valves or pumps—and outflows, the
latter being not only manipulated flows but also demand flows. The expression of
the mass balance in these elements can be written as

∑
j

q in
jr (k) =

∑
h

qout
rh (k), (12.4)

where q in
jr (k) denotes inflows from the j th element to the r th node, and qout

rh (k)
denotes outflows from the r th node to the hth element. From now on, node inflows
and outflows will be denoted by q in and qout, even if they are manipulated variables
(denoted by qu).
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12.3.1.4 Demand Sectors

A demand sector represents the water demand of the network users of a certain phys-
ical area. It is considered as a measured disturbance of the system at a given time
instant. The demand can be anticipated by forecasting algorithms, which are inte-
grated within the MPC closed-loop architecture. For the case studies in this chapter,
the algorithm proposed in [16], among others discussed in Chap.6, is considered.
This algorithm typically uses a two-level scheme composed of

(i) a time series model to represent the daily aggregate flow values and
(ii) a set of different daily flow demand patterns according to the day type to cater for

different consumption during the weekend and holiday periods. Every pattern
consists of 24 hourly values for each daily pattern.

The algorithm runs in parallel with the MPC algorithm. The daily series of hourly
flow predictions are computed as a product of the daily aggregate flow value and
the appropriate hourly demand pattern. Regarding the daily demand forecast, its
corresponding flow model is built on the basis of an ARIMA time series modelling
approach described in [17]. Then, the structure of the daily flow model for each
demand sensor may be written as

yp(k) = −b1y(k − 1) − b2y(k − 2) − b3y(k − 3) − b4y(k − 4)

− b5y(k − 5) − b6y(k − 6) − b7y(k − 7), (12.5)

where the parameters b1, . . . , b7 are estimated based on historical data. The 1-h flow
model is based on distributing the daily flow prediction provided by the time series
model in (12.5) using an hourly flow pattern that takes into account the daily/monthly
variation as follows:

yph(k + i) = ypat (k, i)
24∑
j=1

ypat (k, j)

yp(k), i = 1, . . . , 24, (12.6)

where yp(k) is the predicted flow for the current day k using (12.5), and ypat (k) is the
prediction provided considering the flow pattern class corresponding to the current
day. Demand patterns are obtained from statistical analysis.

12.3.2 Control-Oriented Model

Considering the set of compositional elements described above, the control-oriented
model can be obtained by joining those elements and their corresponding dynamic
descriptions. In a general form, the expression which collects all these dynamics can
be written as the mapping

http://dx.doi.org/10.1007/978-3-319-50751-4_6
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x(k + 1) = g(x(k), u(k), d(k)), (12.7)

where x ∈ X ⊆ R
nx corresponds to the system states, u ∈ U ⊆ R

nu denotes the sys-
tem inputs (manipulated variables) and d ∈ D ⊆ R

nd denotes the system distur-
bances.g : Rnx × R

nu × R
nd → R

nx is an arbitrary systemstate function and k ∈ Z+.
In the case of DWN, (12.7) is associated with the set of tank expressions in (12.1).

Hence, a control-oriented discrete-time state-space model can be written as [15]

x(k + 1) = A x(k) + B u(k) + Bp d(k), (12.8)

where, in particular, x corresponds to the water volumes v of the nx tanks, u rep-
resents the manipulated flows qu through the nu actuators (pumps and valves) and
d corresponds with the vector of nd water demands (measured disturbances affect-
ing the system). A, B and Bp are the system matrices of suitable dimensions. Note
that since the system control-oriented model of a DWN does not collect the static
dynamics described by DWN nodes in (12.4), then (12.8) can be further rewritten as

x(k + 1) = A x(k) + � μ(k), (12.9a)[
Eu Ed

]
μ(k) = 0, (12.9b)

where � = [B Bp], μ(k) = [u(k)T d(k)T ]T and Eu , Ed are matrices of suitable
dimensions. It can be seen that (12.9a) comes from the mass balance in tanks, while
(12.9b) comes from the network nodes. Also notice that when all the network flows
are manipulated, then A is an identity matrix of suitable dimensions.

12.3.3 Control Criteria

It is possible to use different control objectives depending on the operational goals
consideredby thenetworkmanagers. This sectiondescribes themost commoncontrol
objectives and the resultant multi-objective cost function. Therefore, this chapter
considers and discussed the following control objectives [15, 18].

12.3.3.1 Minimization of Water Production and Transport Costs

The main economic costs associated with drinking-water production are due to treat-
ment processes, water acquisition or use costs and, most importantly, to electricity
costs associatedwith pumping. Delivering this drinkingwater to appropriate pressure
levels through the network involves important electricity costs in booster pumping
as well as elevation from underground devices. In a specific case, this objective can
be mathematically formulated as the minimization of



12 Model Predictive Control of Water Networks Considering Flow 235

J1(k) � (α1 + α2(k))
T u(k), (12.10)

whereα1 corresponds to a known vector related towater production costs, depending
on the selected water source, and α2(k) is a vector of suitable dimensions associated
with the energy pumping costs. Note the k-dependence ofα2 since the pumping cost
has different values according to the variable electric tariffs along a day.

12.3.3.2 Appropriate Management of Safety Water Storage

The satisfaction of water demands must be fulfilled at all times. However, some
risk prevention mechanisms need to be introduced in the tank management so that,
additionally, the stored volume is preferably maintained above certain safety value
for eventual emergency needs and to guarantee future water availability. Therefore,
this objective may be achieved by minimizing the following expression:

J2(k) =
{

(x(k) − xsafe)T (x(k) − xsafe) if x(k) ≤ xsafe,

0 otherwise,
(12.11)

where xsafe is a term which determines the safety volume to be considered for the
control law computation. This termmight appear as unnecessary given the guarantees
of the MPC design but since a trade-off between the other costs and the volumes is
present, the controller would tend to keep the lowest possible the tankwater volumes.
This fact would reduce the safety of the system to handle unexpected extra demands,
such as fire extinction, among others.

12.3.3.3 Smoothing of Control Actions

Valves must also operate smoothly in order to avoid big transients in the pressurized
pipes. This fact could lead to poor pipe condition. The use of a smooth reference
changes also helps the lower-level regulator performance. Similarly, water flows
requested from treatment plants must have a smooth profile due to plants opera-
tional constraints. To obtain such smoothing effect, control signal variation between
consecutive time intervals is therefore penalized. The penalty term to be minimized
is

J3(k) = �u(k)T �u(k), (12.12)

where �u(k) � u(k) − u(k − 1).

12.3.3.4 Multi-objective Performance Function

The multi-objective performance function J (k) that gathers the aforementioned
control objectives, either in the case of DWN or SN, can be written as
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J (k) =
ϕ∑
j=1

γ j J j (k), (12.13)

where a set of ϕ control objectives are considered, and, in turn, a multi-objective
open-loop optimization problem (OOP) is stated. The prioritization of the control
objectives is performed by using the order of the mathematical cost function associ-
ated with each objective and also a set of appropriate weights γ j . These weights are
selected offline by means of trial-and-error procedures, taking into account the prior-
ity of each objective within the cost function. More sophisticated tuning methodolo-
gies for tuning multi-objective control problems based on lexicographic minimizers
[19], goal programming [20] or Pareto-front computations [21] may be also consid-
ered.

12.3.4 MPC Problem Formulation

Collecting the parts described in previous subsections, the MPC design follows the
traditional procedures presented in [11, 12, 22], which involve solving an optimiza-
tion problemover a prediction horizon Hp , where a cost function isminimized subject
to a set of physical and operational constraints. Once the minimization is performed,
a vector of Hu control actions over Hp is obtained. Only the first component of that
vector is considered and applied to the plant. The procedure is repeated for the next
time instant taking into account the feedbackmeasurements coming from the system,
following the classic receding horizon strategy.

In general terms, the MPC controller design is based on the solution of a OOP

V(k, Hp) = min
Hp∑
i=0

ϕ∑
j=1

γ j J j (k + i |k), (12.14)

subject to the system model and the physical and operational constraints, where Hp

corresponds to the prediction horizon, and index k represents the current time instant,
while index i represents the time instant along Hp. Hence, notation k + i |k denotes
the time instant k + i given k. Note that (12.14) corresponds with (12.13) over the
prediction horizon.

According to the case, the minimum of V(k, Hp) is achieved by finding a set of
optimal variables which generally correspond with the manipulated variables of the
system model but that could include further variables of diverse nature. Hence, for a
predictionwindow of length Hp and considering z ∈ R

sHp as the set of s optimization
variables for each time instant over Hp, themulti-objective optimization problem can
be formulated as
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min
{z∈RsHp }

f (z) (12.15a)

subject to

H1(z) ≤ 0, (12.15b)

H2(z) = 0, (12.15c)

where f (z) comes from the manipulation of (12.14). Moreover, H1(z) and H2(z) are
vectors of dimensions ri Hp × 1 and reHp × 1, respectively, containing the constraint
functions. Here, ri is the number of inequality constraints, and re is the number of the
problem equality constraints. It can be observed that (12.15b) and (12.15c) gather all
problem constraints including those from the systemmodel, the physical restrictions
of its variables and the operational and management constraints.

Assuming that the OOP (12.15) is feasible for z ∈ R
sHp , there exists an optimal

solution given by the sequence

z∗ �
(
z∗(0|k), z∗(1|k), . . . , z∗(Hp|k)

)
(12.16)

and then the receding horizon philosophy sets [12]

zMPC(x(k)) � z∗(0|k) (12.17)

and disregards the computed inputs from k = 1 to k = Hp, repeating the whole
process at the following time step. Equation (12.17) is known as the MPC law.

Therefore, the MPC problem formulation in DWNs gives the expressions for
each of the problem parts described above. Thus, mapping (12.7) must be replaced
by the system modelling in (12.9) when treating a DWN. Finally, constraints in
(12.15b) and (12.15c) are conveniently expressed taking into account the type of
network and its constitutive components; for example, constraints in (12.9b) must
be included when a DWN is considered. Constraints (12.2) and (12.3) are always
included. In order to manage the uncertainty of the system disturbances over the
prediction horizon, a suitable approach is the stochastic paradigm, which includes
explicit models of uncertainty/disturbances in the design of control laws and by
transforming hard constraints into probabilistic constraints. As reviewed in [23],
the stochastic approach is a classic one in the field of optimization, and a renewed
attention has been given to the stochastic programming [24], as a powerful tool for
robust control design, leading to the stochastic MPC and specially to the chance-
constrained MPC (CC-MPC) [25] (see Chap. 13).

12.4 Simulations and Results

As an application case study to show the performance of the proposed modelling and
control approach, some results of its application offline (in simulation) in several
real scenarios in the Barcelona WTN are presented. A simulator of this network has

http://dx.doi.org/10.1007/978-3-319-50751-4_13
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been built using MATLAB/Simulink and validated using real data coming from real
scenarios (see Figs. 12.10 and 12.11 and the corresponding explanations in Chap.2).
This allows testing the controller against a virtual reality introducing, for example,
real demand in the simulator different from the predicted demand used by the con-
troller. The MPC controller was implemented with the PLIO tool presented in [26]
that usesGAMS/CONPOPT solver to solve the corresponding optimization problem.
This general-purpose decision support tool has been developed to allow the user to
implement optimal/predictive control techniques in large-scale drinking-water sys-
tems (see Fig. 12.3).

The modelling and predictive control problem solution algorithms are designed
for real-time decision support, in connection with a SCADA system. The hydraulic
modelling relies on simple, but representative enough, dynamic equations whose
parameters are recalibrated online using recursive parameter estimation and real
data obtained from sensors in the network. Demand forecast models, based on time
series analysis, are also dynamically updated. The real-time calibration using recur-
sive parameter estimation methods contributes to deal with hydraulic uncertainty.
This modelling choice, as well as the optimization method selection, allows to deal
with very large-scale systems. Another distinguishing feature is its capability to
accommodate complex operational goals.

In Fig. 12.4, the evolution of volume at a number of tanks is shown. The simulator
output is shown in blue, while red is used for the real data. In some cases, small
discrepancies between both volume curves are not associated with modelling errors
but with errors in real data due to a faulty sensor. Themost important conclusion after

Fig. 12.3 PLIO interface corresponding to the model manager module allows creating/updating
the model of the water network in a user friendly way

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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Fig. 12.4 Model validation based on the comparison between real volumes and the simulated ones

this process is that this simulator allows making the model validation process easier.
The model has been validated and accepted by Aguas de Barcelona as representative
of the network real behaviour.

The BarcelonaWTN is organized in different pressure levels. Figure12.5 presents
the several pressure levels in different colours. Each sector will be supplied through a

Fig. 12.5 Barcelona water network demand sectors
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Fig. 12.6 Validation of the aggregate daily demand forecast corresponding to the sector
c176BARsud

storage tank. The distribution network that connects each storage tankwith individual
consumers will not be modelled in detail but will be summarized as an aggregated
demand. Each demand will be modelled using a time series pattern. Figures12.6
and 12.7 show the validation of the daily and hourly demand forecast in the sector
c176BARsud using the demand forecast algorithm presented in Sect. 12.3.1.4.

12.4.1 Test Scenarios

To test and adjust the MPC controller, different scenarios have been chosen. The
main difference between the selected scenarios is related to source operation. So, the
objectives of this study are as follows:

• to compare the effects of the MPC strategies with those of the currently applied
control strategies and

• to show the effects of source management in the total operation cost, including
electrical and water costs.

With reference to source management, two different scenarios are shown:

• Scenario 1: Scheduled flow. In this case, the flow of all sources is fixed to real
values obtained from real historical data.
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Fig. 12.7 Validation of the hourly demand forecast corresponding to the sector c176BARsud

• Scenario 2: Flow optimization. The optimizer calculates the flow to be abducted
from each source at each time step, taking into account its operational limits,
according to long-term planning.

• Scenario 3: Fixing main source. The main source of water is fixed, while the
others are optimized.

The parameters taken into account for the calibration of the model are the initial
volumes and safety storage volumes in tanks, aswell as the objective functionweights
for each of the operational goals (the economical, safety and smoothness factors).
Objective function weights are calibrated by experimentally analysing their effects
on the compromise between the operational goals, with historic data. In [21], the
authors have explored multi-objective optimization techniques to tune them in a
more sophisticated way. Tank initial and safety storage volumes are taken from real
historic data of each scenario, in order to make optimization results comparable with
current control strategy.

The period in both scenarios is 96 h (4 days), and all of them correspond to the
same period, between July 23 and July 26 of 2007. It means that the demand is the
same in both scenarios, so they are comparable. To estimate the demand of each
sector, the demand forecast method presented in Sect. 12.3.1.4 is used. The total
demanded volume for each day is obtained from the total contribution from each
source. In Table12.1, values of volume per day are shown.
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Table 12.1 Total input volume for studied days

Date Total input volume (m3) Mean flow (m3/s)

23/07/2007 633694 7.334

24/07/2007 668136 7.733

25/07/2007 617744 7.150

26/07/2007 627406 7.262

Mean 7.370

12.4.2 Results and Discussion

In all the test scenarios, the MPC controller computed solutions to meet demands
and operational constraints at all times, while optimizing the operational goals. Some
illustrative results of the MPC application on the complete Barcelona WTN are
presented in this section. For these tests, the same model is used.

12.4.2.1 Scenario 1: Scheduled Flow

In this first scenario, source flows are imposed using real data obtained from Aguas
de Barcelona historical database. The interesting point of this scenario is the com-
parison between MPC control strategy and current control strategy: water sources
management is the same in both cases. This scenario is used to show the potential of
MPC for minimizing the electrical (pumping) cost. The evolution of source flows is
shown in Fig. 12.8.

In Table12.2, electrical andwater cost in percentage of the total cost for the current
control strategy are shown. In Table12.3, costs for the MPC control as an increase
or decrease percentage with regard to current control are presented.

Water production cost (acquisition and treatment) represents a value near 70% of
the total cost, and there is no variation of this cost in the MPC control because of
the fixed sources. With regard to electrical cost, the improvement is between 10 and
25%, which represents a decrease of the total cost between 3 and 8%. To show the
differences between the current control and the MPC control, some tank volume and

Table 12.2 Current control strategy costs in percentage

Date Electricity cost Water cost Total cost

23/07/2007 33.13 66.87 100.00

24/07/2007 34.66 65.34 100.00

25/07/2007 32.00 68.00 100.00

26/07/2007 31.29 68.71 100.00
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Fig. 12.8 Sources’ flow evolution for Scenario 1: scheduled flow

Table 12.3 MPC improvement in percentage for Scenario 1 (scheduled flow) regarding Table12.2
values

Date Electricity cost Water cost Total cost

23/07/2007 –23.27 +0.00 –7.71

24/07/2007 –10.56 +0.00 –3.66

25/07/2007 –20.61 +0.00 –6.59

26/07/2007 –18.58 +0.00 –5.81

actuator flow plots are shown. In Fig. 12.9, some tank volume evolution can be seen,
as well as maximum and security volumes.

The smoothness term is not the only factor with effects on pumps’ operation. The
electric tariff for each pump is another factor that affects pump operation in order to
minimize electrical cost. In Fig. 12.10, the effects of the electricity cost are shown.
It can be seen that if it is possible, pumps only run during the cheapest period (e.g.,
iPalleja1). In cases where with a maximum flow during off-peak hours the necessary
volume is not reached, pumpsmust work during other periods. Pump iFnestrelles200
is an example of this case. Since it is not enough to pump during the cheapest period,
this pump is pumping during the medium-cost period too, but with a maximum flow
lower than in the cheapest one.
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Fig. 12.9 Some tanks’ volume evolution: current control and MPC control comparison

12.4.2.2 Scenario 2: Flow Optimization

In this second scenario, the source flows are optimized. It means that the only limita-
tion is the minimum and the maximum flow of actuators in the output of each source.
In this case, both electrical and water cost are optimized, so it is expected to obtain a
higher improvement in the total cost referring to the Scenario 1, where sources’ flow
was fixed. This scenario represents a theoretical solution of the water management in
the Barcelona WTN. Indeed, the optimization carried out gives total freedom to the
different sources, while on a real situation, sources are not unlimited or unrestricted:
its availability as well as its future guarantee compromises the total amount of water
entering the system from each source. Therefore, the hereby shown results give us
an idea of how far flow optimization could go if there were no sources’ restrictions.
In Fig. 12.11, sources’ flow evolution is shown. As it can be seen, Llobregat’s mean
flow is about 5 m3/s (which is the maximum possible contribution of this source),
while the lack of water necessary to satisfy the total demand is taken from Ter and
Abrera. Underground sources’ water cost is penalized to avoid its overexploitation.

Electrical and water cost obtained in this scenario is compared with both the
current control case and the MPC case of Scenario 1 (scheduled flow). In Tables12.4
and 12.5, this comparison is shown.

The first point to emphasize is the high water improvement, between 30 and
50%. As shown, it seems that maximizing water taken from Llobregat, water cost is
clearly decreased. On the other hand, electrical cost is increased, but the decrease of
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Fig. 12.10 Electrical fee effects on pumps operation

Table 12.4 Scenario 2 improvement with regard to current control case (Table12.2)

Date Electricity cost Water cost Total cost

23/07/2007 18.92 –50.70 –27.63

24/07/2007 14.04 –32.56 –16.41

25/07/2007 26.29 –43.91 –21.45

26/07/2007 26.09 –44.43 –22.36

Table 12.5 Scenario 2 improvement with regard to Scenario 1 case (scheduled flow)

Date Electricity cost Water cost Total cost

23/07/2007 54.99 –50.70 –21.59

24/07/2007 27.51 –32.56 –13.23

25/07/2007 59.08 –43.91 –15.91

26/07/2007 54.86 –44.43 –17.57



246 G. Cembrano et al.

0 20 40 60 80 100

0

1

2

3

4

5
Underground sources flow

time (h)

F
lo

w
 (

m
3 /s

)

Source AportLL1

Other sources

0 20 40 60 80 100

0

1

2

3

4

5
Surface sources flow

time (h)

F
lo

w
 (

m
3 /s

)

Source AportLL2

Source AportA
Source AportT

0 10 20 30 40 50 60 70 80 90 100
5

6

7

8

9

10

11
Total input flow

time (h)

F
lo

w
 (

m
3 /s

)

Fig. 12.11 Sources’ flow evolution for Scenario 2: flow optimization

the total cost in this second scenario regarding current control case and Scenario 1
is important.

12.4.2.3 Scenario 3: Fixing Main Source

The two main sources of the Barcelona water network are the Llobregat and Ter
rivers. Barcelona’s average demand is about 7.5 m3/s. For ecological reasons, Aguas
de Barcelona company uses Llobregat source at its maximum capacity in which
value depends on the river flow. The rest of flow is supplied by Ter source. From
Fig. 12.12, it can be noticed that both sources affect the economic cost in an inverse
way. Increasing the amount of water extracted from Llobregat source reduces the
water cost while increasing the electrical cost. On the other hand, the Ter source
behaves on the opposite sense: increasing the amount of water extracted from this
river reduces the electrical cost while augmenting the water cost. The reason for
this behaviour is due to a smaller water price in the case of Llobregat. But, since
Llobregat source is located close to the sea level, while Ter source is in the upper
part of the city, electrical costs will be higher in case of the Llobregat source since
more pumping will be required to supply water from this source. In the case when
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Fig. 12.12 Electrical and water cost when fixing Llobregat source

sources are not fixed, the optimal combination leads to take most of the water from
Llobregat source and the remaining from the Ter source.

12.4.3 Complementary Comments

In Table12.6, a brief summary of results presented is shown, as a mean value of four
days of study. The costs of Scenarios 1 and 2 are referred to current control values.

From this table, conclusions that can be emphasized are as follows:

• Maximizing the flow from the source Llobregat to optimize total cost.
• Flow optimization allows higher improvement with regard to fixed real flows
because the optimizer can maximize Llobregat’s flow contribution if it is possi-
ble. Sometimes, it is not possible because of the reasons not related to network
characteristics (operational limits of actuators and tanks).

• Ter total cost (onlywater cost because there is no pump) is higher than theLlobregat
one (water and electrical cost associated). This fact, sources’ behaviour and results
of both test scenarios indicate that:

Table 12.6 Summary of results for scenarios presented

Cost Current control (%) Scenario 1 (%) Scenario 2 (%)

Electrical 32.77 –18.26 +21.34

Water 67.23 0 –42.90

Total 100 –5.94 –21.96
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– Reduction of electrical cost involves reduction of the contribution from Llobre-
gat.

– Reduction of water cost involves reduction of Ter source contribution.
– Total cost is minimized by maximizing Llobregat source contribution.

12.5 Conclusions

MPC techniques provide useful tools for generating water management strategies in
large and complex water networks, which may be used for decision support, as well
as for fully automated control of a water network. This work describes the use of
MPC for flow management in a large water system, involving supplies, production
plants and water transport into the distribution areas. The chapter presents the appli-
cation of a unified approach to the water system management including supplies,
production, transport and distribution areas. The modelling and predictive control
solutions are designed for real-time decision support. The hydraulic modelling relies
on simple, but representative, dynamic equations and recursive real-time parameter
calibration using updated data from telemetry. Demand predictions are also dynami-
cally updated. The potential of these techniques for real-time control of water supply
and distribution has been shown with two representative examples of complex oper-
ational situations. The test scenarios are based on real situations which are known to
have caused difficulties to operators and, in some cases, severe effects on the service
to consumers. The application described in the chapter deals with these scenarios
successfully, by producing control strategies that rearrange flows, production plant
levels, pumping from underground sources, etc., in a way that demands are met at
all times with improved results with respect to management goals. This type of deci-
sion support is extremely useful for water system operators in large-scale systems,
especially those involving several different water management levels (supply, pro-
duction, transport and distribution), where the control solutions may not obvious are
successfully implemented.
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Chapter 13
Model Predictive Control of Water Networks
Considering Flow and Pressure

Ye Wang, Gabriela Cembrano, Vicenç Puig, Maite Urrea, Juli Romera,
David Saporta and José Gabriel Valero

13.1 Introduction

As discussed in Chap. 12, WDNs are very complex multi-variable systems since
they can contain many tanks, pumping stations, valves, water sources (superficial
and underground) and sectors of consumer demand [1]. The main issues associated
with such an operational control are the complexity of the network and how to oper-
ate the network optimally (that is by using water sources efficiently and minimizing
operation costs) while satisfyingwater demand and quality of service (e.g., minimum
pressure) standards. In particular, electrical energy is the main source of operation
costs, both for water production and water elevation to adequate pressure levels for
consumption, using pumping stations. Currently, depending on the pumping station,
different bilateral contracts are established with energy supply companies with a
variety of prices and different cost periods (from two periods up to six different price
periods per day, depending on working days/weekends, and on seasons). Accord-
ingly, current practice is to pre-allocate the pumping periods of each station when
the energy prices arranged by the contract are the lowest possible for that station,
guaranteeing that expected demand is satisfied, with the help of intermediate water
storage capacity. As in Chap.12, optimization and optimal control techniques includ-
ing predictive capabilities provide a suitable framework for the efficient management
strategyofWDNswhen also pressure constraints are considered, see [1]. In particular,
according to [8], MPC is also an appropriate strategy to find optimal flow set-points
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for all the actuators while taking into account hydraulic heads in some specific points
(e.g., the entrance of demand sectors) [3, 4]. The optimal strategies are computed by
optimizing a cost function describing all the operational objectives in a given predic-
tion horizon subject to a representative model of the network dynamics (including
flow and pressure equations), as well as the required constraints on system variables.
As discussed in Chap. 12, MPC is very suitable to be used in the global control of
networks related to the urban water cycle within a hierarchical control structure [5–
8, 12, 13]. In Chap.12, MPC strategy was successfully applied to a WDN using a
control-oriented model that considers only flows, i.e., the pressure/head model of
each element in the WDN (including water storage tanks/reservoirs, water demand
sectors, pressurized pipes, booster pumps and pressure/flow-controlled valves) is not
considered explicitly. But, for certain WDN, in addition to satisfy water demands, it
is also necessary to meet the required pressure/head at each water demand sector and
particular control points. One possible approach to consider the pressure/head model
in the flow-based MPC is presented in [11]. In this work, the nonlinear constraints
coming from the flow–head equations are used to update the operational constraints
of tanks and actuators by solving a constraint satisfaction problem (CSP) (see [11]),
to replace pressure constraints by bounds on flows, before the flow-based linearMPC
problem is solved.

This chapter presents a two-layer control scheme, including a nonlinear MPC
(NMPC) strategy and a pumping scheduling approach. The NMPC strategy is imple-
mented by solving a nonlinear optimization problem in order to generate flow and
pressure set points for the regulatory controllers to transport water from the sources to
the consumer areas to meet future demands, optimizing performance indexes associ-
atedwith operational goals such as economic costs, network safety volumes/pressures
and flow/pressure smooth control operations among others. The proposed NMPC
strategy is applied to a high-fidelity simulator model of a portion of BarcelonaWDN
and compared with the current experience-based operational strategies.

13.2 Problem Statement

13.2.1 Control-Oriented Model Including Pressure

The flow equations of WDNs are identical to those described in Chap.12. However,
in some particular configurations (e.g., networks with loops or bidirectional flows
depending of the difference of head), these equations are not enough to represent the
hydraulics of WDNs, so that additional flow–head equations are required.

As in the case of the flow model presented in previous Chap.12, the flow–head
model can be obtained by the composition of the set of constitutive element models,
which are, respectively, presented and discussed below.

Water Storage Tanks
The so-called head at a node in the WDNs is the height to which water would rise
in an open-ended vertical pipe installed at the considered point [1]. The head related

http://dx.doi.org/10.1007/978-3-319-50751-4_12
http://dx.doi.org/10.1007/978-3-319-50751-4_12
http://dx.doi.org/10.1007/978-3-319-50751-4_12
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to the m-th tank with respect to the volume of water stored in the tank, vm, can be
presented as [11]:

hm(k) = vm(k)

Sm
+ Em, (13.1)

where vm is the volume of the m-th tank Sm is the cross-sectional area of the m-th
tank and Em corresponds the m-th tank elevation.
Pipes
Pipes convey water from one place in the network to another. In a pipe, water flow
passes directly from one side with a higher head to the other with a lower head.
Therefore, the head–flow relationship for a pipe can be described as

qi,j = �i,j(hi − hj), (13.2)

where �i,j is one of the formulas. Typically, the Hazen-Williams formula is chosen
(see Chap.3). Hence, the headdrop through a pipe can be calculated as

hi − hj = Ri,jqi,j
∣
∣qi,j

∣
∣
0.852

, (13.3)

where

Ri,j = 10.67Li,j
C1.852
i,j D4.87

i,j

, (13.4)

where Li,j, Di,j and Ci,j denote the pipe length, diameter and roughness coefficient,
respectively.

Actuators
For the nonlinear optimal control problem, the flows across pumps and valves are
the control variables. These flows are considered as continuous variables in a range
of admissible values, but certain constraints apply to the related head values.

For pumping stations, the following constraints for heads are set as follows:

�hp = hd − hs ≥ 0, (13.5a)

hd ∈ [

hmind , hmaxd

]

, (13.5b)

hs ∈ [

hmins , hmaxs

]

, (13.5c)

where hd and hs represent the suction head and the delivery head of pumping stations,
respectively. hmind and hmins denote the minima of the suction and delivery heads. hmaxd
and hmaxs denote the maxima of the suction and delivery heads.

For valves, the following constraints for heads are set as follows:

�hv = hus − hds ≥ 0, (13.6a)

hus ∈ [

hminus , hmaxus

]

, (13.6b)

hds ∈ [

hminds , hmaxds

]

, (13.6c)

http://dx.doi.org/10.1007/978-3-319-50751-4_3
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where hus and hds denote heads of valves in the upstream and downstream, respec-
tively. hminus and hminds denote the minima of the upstream and downstream heads. hmaxus
and hmaxds denote the maxima of the upstream and downstream heads.

13.2.2 Nonlinear MPC Strategy

WDN Mathematical Model
Considering the modelling methodology of each component in the WDN presented
above, the control-oriented model of WDNs can be formulated by means of a set of
differential algebraic equations (DAEs). The generalized discrete-time DAE model
can be written as follows [14]:

x(k + 1) = f
(

x(k), z(k),u(k),w(k),d(k)
)

, (13.7a)

0 = g
(

x(k), z(k),u(k),w(k),d(k)
)

, (13.7b)

where x ∈ X ⊆ R
m represents the vector of system states, z ∈ Z ⊆ R

z represents the
vector of algebraic states, u ∈ U ⊆ R

n denotes the vector of manipulated variables,
w ∈ W ⊆ R

w denotes the vector of non-manipulated variables and d ∈ D ⊆ R
d

corresponds to the vector of system disturbances. k ∈ N denotes the time instant.
f(·) and g(·) are vectors of mapping functions. Moreover, (13.7a) is the discrete-time
differential equation describing the system dynamics, while (13.7b) is the discrete-
time algebraic equation presenting the static relations of components in the WDN.
All the considered variables of the WDN in Sect. 13.2.1 are assigned to control-
oriented variables as summarized in Table13.1. Considering that the tanks are the
only elements with dynamics in the WDN, (13.7a) can be explicitly expressed as

x(k + 1) = Ax(k) + Buu(k) + Bww(k) + Bdd(k), (13.8)

where x(k) represents the vector of hydraulic heads at storage tanks as system states
at time instant k, u(k) corresponds to the vector of the manipulated flows through

Table 13.1 Variable assignments in the control-oriented model of the WDN

Type of variable Related symbols Description

System states: x hm Heads at the storage nodes (i.e., storage
tanks)

Pseudostates: z hd , hs, hi, hj Heads at the non-storage nodes

Control inputs: u qun Manipulated flows through actuators
(pumps and valves)

Non-control inputs: w qi,j Non-manipulated flows through pipes

System disturbances: d dr Water demands
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actuators (pumps and valves) as control inputs at time instant k, while w(k) denotes
the vector of non-manipulated flows through pipes at time instant k. d(k) corresponds
to the vector of water demands as system disturbances at time instant k. Moreover,
A,Bu,Bw and Bd are system matrices of appropriate dimensions.

Furthermore, considering the static relations related to flow and head variables in
nodes and pipes, the static equation (13.7b) can be explicitly reformulated as follows:

0 = Euu(k) + Eww(k) + Edd(k), (13.9a)

0 = Pxx(k) + Pzz(k) + ψ
(

u(k),w(k)
)

, (13.9b)

where (13.9a) describes themass balance equations at nodes in theWDN, and (13.9b)
expresses the static relations associated with a particular component (e.g., pipe) of
the WDN. Eu,Ew, Ed , Px and Pz are system matrices of appropriate dimensions
determined by the network topology. Moreover, ψ denotes the vector of nonlinear
Hazen-Williams mapping functions (13.3).

In general, the control-oriented model of the WDN can be written as

x(k + 1) = Ax(k) + �μ(k) + Bdd(k), (13.10a)

0 = �μ(k) + Edd(k), (13.10b)

0 = �τ (k) + ψ
(

μ(k)
)

, (13.10c)

where

� �
[

Bu Bw

]

,

� �
[

Eu Ew

]

,

� �
[

Pz Px

]

,

μ(k) �
[

u(k)T w(k)T
]T

,

τ (k) �
[

x(k)T z(k)T
]T

.

Cost Function Settings
As in Chap.12, the control objectives for the management of WDNs are considered
as follows:

1. Economic: To provide a reliable water supply with the required pressure mini-
mizing both water production and transport costs.

2. Safety: To guarantee the availability of enoughwater in each storage tank to satisfy
its underlying stochastic water demands.

3. Smoothness: To operate the WDN under smooth control actions.

http://dx.doi.org/10.1007/978-3-319-50751-4_12
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The reader is referred to Chap.12 for the mathematical expressions of these objec-
tives.

System Constraint Settings
Some of the constraints in MPC of water distribution networks correspond to flow
balance equations. These are the same as in Chap.12 and must also hold here. In
addition, some additional constraints related to the heads in the network are required.
The heads at some certain non-storage nodes are required to be up to some minimum
levels as in the case of the water demand sectors. Hence, the following inequality
constraint is necessary to be considered:

zi(k) ≥ zmin
i , for all k and i ∈ [1, . . . , nh], (13.11)

where zmin
i are the required heads at the water demand sectors. Moreover, nh is the

total number of the water demand sectors.

13.2.3 NMPC Formulation

Taking into account the WDN model including the flow and pressure part, a NMPC
strategy can be implemented by solving a finite-horizon optimization problem over
a prediction horizon Hp. The multi-objective cost function, including the objectives
described in Sect. 13.2.2, is minimized subject to the prediction model (13.10), and a
set of system constraints is presented above. Thus, the optimization problem behind
the NMPC strategy can be formulated as follows:

Problem 13.1 (NMPC for WDN)

min
u∗(k|k),...,u∗(k+Hp−1|k)

J =
Hp−1
∑

i=0

Γ
∑

j=1

λjJj
(

u(k + i | k), ξ(k + i)
)

, (13.12a)

subject to

x(k + i + 1 | k) = Ax(k + i | k) + �μ(k + i | k) + Bdd(k + i | k),
(13.12b)

0 = �μ(k + i | k) + Edd(k + i | k), (13.12c)

0 = �τ (k + i | k) + ψ
(

μ(k + i | k)
)

, (13.12d)

xmin ≤ x(k + i + 1 | k) ≤ xmax, (13.12e)

umin ≤ u(k + i | k) ≤ umax, (13.12f)

z(k + i | k) ≥ zmin (13.12g)

x(k + i + 1 | k) ≥ xs − ξ(k + i), (13.12h)
(

x(k|k),d(k|k)
)

=
(

x(k),d(k)
)

. (13.12i)

http://dx.doi.org/10.1007/978-3-319-50751-4_12
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Since the control-oriented model of the WDN includes the nonlinear relations
because of the flow–head equations, the above optimization problem naturally
becomes nonlinear. Thus, Problem 13.1 should be solved using nonlinear program-
ming techniques. Assuming that Problem 13.1 is feasible, the sequence of control
actions can be expressed as

u∗(k) = [

u∗(k | k), u∗(k + 1 | k), . . . , u∗(k + Hp − 1 | k)] . (13.13)

And, then by applying the receding-horizon strategy, the optimal control action
at time instant k is the first component of the sequence of control actions denoted by

uopt(k) � u∗(k | k). (13.14)

13.3 Proposed Solution

In practice, most of the pumps in WDN are operated in ON–OFF discrete way.
Thus, the flows in (13.13) become discrete values and subsequently Problem 13.1
becomes a nonlinear mixed-integer problem. In this section, this nonlinear mixed-
integer optimization problem is firstly introduced. Then, in order to avoid solving this
complicated optimization problem, a two-layer control strategy is proposed including
the NMPC strategy presented above, and the pump scheduling approach is described
in the following of this section.

13.3.1 Mixed-Integer NMPC Including Discrete ON/OFF
Pump Scheduling

Considering that pumps are operated in an ON/OFF discrete manner, Problem 13.1
should be reformulated. By introducing new discrete decision variables that corre-
spond to the ON/OFF operation of the pumps, the mixed-integer NMPC strategy
can be implemented by reformulating Problem 13.1 into the following optimization
problem:

Problem 13.2 (Mixed-integer NMPC for WDN including ON/OFF pumps)

min
ζ∗(k|k),...,ζ∗(k+Hp−1|k)

J =
Hp−1
∑

i=0

Γ
∑

j=1

λjJj
(

ζ(k + i | k), ξ(k + i)
)

, (13.15a)

subject to

x(k + i + 1 | k) = Ax(k + i | k) + �μ̄(k + i | k) + Bdd(k + i | k),
(13.15b)
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0 = �μ̄(k + i | k) + Edd(k + i | k), (13.15c)

0 = �τ (k + i | k) + ψ
(

μ̄(k + i | k)
)

, (13.15d)

xmin ≤ x(k + i + 1 | k) ≤ xmax, (13.15e)

umin ≤ ζ(k + i | k)ũ ≤ umax, (13.15f)

z(k + i | k) ≥ zmin (13.15g)

x(k + i + 1 | k) ≥ xs − ξ(k + i), (13.15h)

ζ(k + i) ∈ [0, 1], (13.15i)
(

x(k|k),d(k|k)
)

=
(

x(k),d(k)
)

, (13.15j)

where ζ(k + i) ∈ {0, 1} represents the vector of binary decision variables that cor-
respond to the ON/OFF pump status at time instant k, where 1 means the ON status
of the pump and 0 means the OFF status of the pumps. The ON status pumping
flow ũ should be estimated based on the pressure conditions that the pumps should
establish. Problem 13.1 is considered to operate at hourly basis, which means that
optimal hourly flows for actuators are determined. In Problem 13.2, the sampling
time should be shorter (at theminutely scale) in order to approximate the optimal con-
tinuous flow that would be obtained by solving Problem 13.1 assuming that actuator
flows are manipulated in a continuous manner.

Solving a large-scale nonlinear mixed-integer optimization problem with a larger
horizon leads Problem 13.1 to be prohibitive from the computational point of view.
For this reason, Problem 13.2 is proposed to be replaced by a two-layer optimal
control strategy.

13.3.2 Two-Layer Optimal Control Strategy

The two-layer optimal control strategy is presented in Fig. 13.1. In the following, the
description of such strategy is provided.

The Upper Layer: NMPC Strategy
In the upper layer, Problem 13.1 is adopted. Note that the NMPC of the WDN is
operated on the hourly basis (�tu = 3600 s) over the MPC prediction horizon Hp

to find the optimal flow set points. In the lower layer, the sampling time is usually
selected as one minute (�tl = 60 s), which means the optimal flow set points at one
MPC step decides 60 values using the pump scheduling approach.

Pump Scheduling Approach
In fact, the pumpingflowof the i-th pump in the j-th pumping station has been affected
by the factors of the suction and delivery heads. Hence, if the heads are given, the
real-time pumping flow is located within an interval, which can be formulated as

qreali,j ∈ [

qnomi,j − σi,j, qnomi,j + σi,j
]

, (13.16)
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Fig. 13.1 Two-layer optimal
control strategy of WDNs

Upper layer:
Nonlinear EMPC

Lower layer:
Pump Scheduling

Network System

Two-Layer Optimal Control Strategy

where qnomi,j denotes nominal pumping flows produced through the pumps, and σi,j

represents the variance of the pumping flows depending on the uncertainty of the
heads in terms of the pumps.

If the actual pumping flow qreali,j is approximated by the nominal pumping flow
qnomi,j , then the total ON status time can be calculated by

TON
i,j = Qopt

j �tu

qnomi,j �tl
, (13.17)

whereQopt
j denotes the optimal hourly flow as the set point of the j-th pumping station

and TON
i,j denotes the total ON status time of the pump. In some cases, only one pump

cannot provide enough flow to maintain the optimal flow set point. Hence, parallel
pumps are set in each pumping station. Therefore, (13.17) can be rewritten as

Qopt
j �tu =

χj
∑

i=1

TON
i,j qnomi,j �tl, (13.18)

where χj ∈ [0, γj] ⊂ Z
+ denotes the number of the opened parallel pumps and γj is

the total number of the parallel pumps located in the j-th pumping station. Note that
parallel pumps are assumed to be opened following a prioritization.

The pump scheduling approach is able to find a sequence value of the number of
the ON-status parallel pumps in each pumping station at each sampling time. Hence,
the variable χj is naturally considered as an admissible time series vector, which can
be written as

χj = [

χj(0),χj(1), . . . ,χj(t)
]T

, (13.19)
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where χj(t) denotes the number of ON-status parallel pumps at time instant t.
Since qreal is unknown prior to run the simulator,χj(0) can be computed in order to

identify whether the total nominal pumping flow in j-th pumping station is enough to
fulfil the optimal flow found by the upper layer, which can be formulated as follows:

χj(0)−1
∑

i=1

qnomi,j < Qopt
j , (13.20a)

χj(0)
∑

i=1

qnomi,j ≥ Qopt
j . (13.20b)

Considering (13.20), the value of χj(0) at initial time can be determined for the
j-th pumping station. Then, the horizon of the pump schedule is within 1 h on the
minutely basis. The measured error of the pumping water volume δj for the j-th
pumping station can be formulated as

δj � V p
j − V opt

j , (13.21)

where V p
j and V opt

j denote the pumping water volume and optimal water volume for
the j-th pumping station, respectively, which are defined as follows:

V p
j �

∫ �tu

0
Qreal

j dt =
χj(0)
∑

i=1

qreali,j �tl +
Hl−1
∑

z=1

χj(t)
∑

i=1

qreali,j �tl, (13.22a)

V opt
j �

∫ �tu

0
Qopt

j dt = Qopt
j �tu, (13.22b)

where Qreal
j denotes the total flow of the j-th pumping station, Hl denotes the cal-

culation horizon for χj, which is equation to 60s in this layer. As discussed before,
the vector of χj along the horizon of Hl can be obtained by solving an optimization
problem as follows.

Problem 13.3 (Pump scheduling approach of the WDN)

min
χ∗
1(t),...,χ

∗
�(t)

J =
�

∑

j=1

‖δj‖22, (13.23a)

subject to

δj = V p
j − V opt

j , (13.23b)

V p
j =

χj(0)
∑

i=1

qreali,j �tl +
Hl−1
∑

t=1

χj(t)
∑

i=1

qreali,j �tl, (13.23c)
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V opt
j = Qopt

j �tu, (13.23d)

0 ≤ χj(t) ≤ γj, (13.23e)
χj(0)−1
∑

i=1

qnomi,j < Qopt
j , (13.23f)

χj(0)
∑

i=1

qnomi,j ≥ Qopt
j , (13.23g)

t ∈ [1,Hl − 1] ⊂ Z
+ (13.23h)

where�denotes the total number of the pumping stations.Assuming that theProblem
13.3 is also feasible, the optimal sequence of decision variables can be written as

χ∗ = [

χ∗
1
T , χ∗

2
T , . . . , χ∗

�
T
]T

, (13.24)

where
χ∗
j = [

χj(0), χ∗
j (1), . . . , χ∗

j (Hl − 1)
]T

, for all j ∈ [1,�].

13.4 Simulation Results

13.4.1 Case Study Description

In order to assess the validity of the proposed approach, a part of the Barcelona
transport network (presented in Figs. 2.2, 2.3 and 2.4 of Chap.2) is used. A “virtual
reality” setup has been developed because of the complexity of directly testing on the
real network. The selected hydraulic simulation software is PICCOLO (developed
by Suez company) instead of EPANET, because it is the tool in use in the complete
Barcelona WDN and because it has specific advanced functionalities that apply to
this case, e.g., in pump and valve modelling.

The simulation online environment used for illustrating the approach proposed in
this chapter consists of the GAMS model (see [2, 3]) with the third-party software
CONOPT3 as a nonlinear solver, the PICCOLO and MATLAB, that is used for the
communication between GAMS and PICCOLO models. The topological graph of
the communication is presented in Fig. 13.2. The database (DB) includes the water
demands data and electrical tariff data. At each time instant along the simulation
scenarios, the data will be selected bymeans ofMATLAB, and then these data will be
transferred intoGAMS andPICCOLOmodels through theMATLABcommunication
interface.

http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_2
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SimulatorOptimiser

MATLABGAMS PICCOLO

DB

Fig. 13.2 On-line simulation pilot

13.4.2 Results

The obtained control strategies produced by the NMPC meet demands and opera-
tional constraints at all times, while optimizing the operational goals when applied
to the high-fidelity simulator. Some illustrative results are presented in the following
compared with the current heuristic operation obtained from Aguas de Barcelona
company that is not optimized. In this chapter, the simulations results are shown by
applying the proposed control strategy with the high-fidelity simulator as the virtual
real network. To test the NMPC controller implemented, real data corresponding to
the period between November 11 and December 2nd, 2013 is used. To show the
differences between the current heuristic control and the NMPC control, some tank
volume and actuator flow evolutions are shown. In all the graphs, the curves present
the current operation (real data) and the result of application of the NMPC strategy in
the high-fidelity network simulator (simulation data). In Fig. 13.3, some tank volume
evolutions can be seen, as well as maximum and safety volumes. From this figure, it
can be observed that the NMPC presents a more regular 24-h cycle than the current
control. The tanks are filled at the night when the electricity is cheaper and emp-
tied during the day when the electricity is expensive. In this way, pumps are mainly
used when the electricity is cheaper optimizing the performance of the network. The
optimal solutions of a selected number of representative pumps and the valves are
presented in Figs. 13.4 and 13.5.

Three tests scenarios were chosen based on real data. Each scenario lasts for 120
h (5days), and the three scenarios span the period from December 12 to December
27, 2013. The obtained control strategies produced by the NMPC and simulated with
PICCOLO meet demands and operational constraints at all times. When compared
with the actual strategies applied on the period, the NMPC strategy shows significant
reductions in energy use, as well as in energy cost, as shown in Table13.2. Further-
more, in two of the three scenarios, it was also possible to reduce the total amount
of water use to meet the same demands.

In Table13.2, costs achieved with the proposed NMPC when applied to the high-
fidelity simulator are comparedwith those obtained from the current heuristic control
strategy. The electrical energy and an associated cost are presented as well as the total



13 Model Predictive Control of Water Networks Considering Flow and Pressure 263

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

V
ol

um
e 

(m
3 )

Time (hours)

Real scenario
Optimization scenario

(a) Tank: Finest200
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(b) Tank: TrinitatTer200

Fig. 13.3 Results of selected tanks in Barcelona WDN

accumulated energy and electrical cost in the considered days. The cost is given in
economical units (e.u.) because of confidential reasons. The electrical cost obtained
with the NMPC represents an improvement of almost 19%with respect to the current
control in the time period considered. Taking into account the unitary cost of thewater
in e.u./m3, the improvement with respect the current heuristic control is between 9
and 15%.
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(a) Pump: EspluguesG1234
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(b) Pump: AlturesG23

Fig. 13.4 Results of selected pumps in Barcelona WDN

13.5 Conclusions

In this chapter, a two-layer NMPC control strategy for WDNs considering both flow
and pressure models is proposed. The optimal set points for actuators have been
calculated by means of solving a nonlinear optimization problem and subsequently
used for deploying the pump scheduling approach considering theON/OFFoperation
of the pumps.Throughout a case studybasedon apart of theBarcelonawater transport
network, the online simulation results show the feasibility of the proposed control
strategy and its economic cost improvement. Comparedwith current heuristic control
strategies, the NMPC strategy of the WDN is able to meet all the demands in the
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(a) Valve: Bonanova
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Fig. 13.5 Results of selected valves in Barcelona WDN

considered sectors with their required pressure at the same time at a reduced cost.
Hence, the proposedNMPCstrategy is considered an adequate control strategy for the
operational management of the WDN including both flow and pressure constraints.
Furthermore, the lower layer determines a sequence of ON-OFF operations for the
pumping stations. For pumps, a logic controller should be used for implementing the
strategy determined by the pump scheduler.
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Table 13.2 Comparison costs with considered scenarios
Simulation period: 12/12/2013 to 27/12/2013

Scenario 1
12/12/2013–
17/12/2013

Scenario 2
17/12/2013–
22/12/2013

Scenario 3
22/12/2013–
27/12/2013

Total Improvement
(%)

Total energy
consumption
(K · Wh)

Real 486 495 440 1422 7.37

NMPC 473 437 408 1318

Electrical cost
(e.u.)

Real 4659 4699 4280 13640 18.97

NMPC 3985 3642 3425 11052

Unitary
improvement
(e.u./m3)

9.62% 15.27% 13.74% 12.83%
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Chapter 14
Stochastic Model Predictive Control
for Water Transport Networks
with Demand Forecast Uncertainty

Juan Manuel Grosso, Carlos Ocampo-Martínez and Vicenç Puig

14.1 Introduction

One of the challenges in water system management is the existence of different
sources of uncertainty. The availability of historical data allows to accurately predict
the behaviour of the system disturbances over large horizons, but still a meaningful
degree of uncertainty is present. In previous chapters, the use of MPC to tackle the
complexmulti-variable interactions and large-scale nature of drinking-water network
control is proposed. There are several examples of MPC applied to water systems in
the literature, see, e.g., [2, 7, 10, 16, 29, 30] and references therein.

In a DWN, the main management purpose is the achievement of the highest level
of consumer satisfaction and service quality in line with the prevailing regulatory
framework, while making best use of available resources. Hence, networks must be
reliable and resilient while being subject to constraints and to continuously varying
conditions with both deterministic and probabilistic nature. Customer behaviour
determines the transport and storage operationswithin the network, andflowdemands
can vary in both the long and the short term, often presenting time-based patterns
in some applications. Therefore, a better understanding and forecasting of demands
will improve both modelling and control of DWNs.

While Chaps. 12 and 13 deal with the uncertainty in the classical way of feed-
forward action, this chapter focuses on the way that uncertainty can be faced by using
stochastic-based approaches. The simplest way to do this is by ignoring the explicit
influence of disturbances or using their expected value as done in the previous chap-
ters. However, dealing with the demand uncertainty explicitly in the control model
is expected to produce more robust control strategies. In [12], a reliability-based
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MPC was proposed to handle demand uncertainty by means of a (heuristic) safety
stock allocation policy, which takes into account the short-term demand predictions
but without propagating uncertainty along the prediction horizon. As discussed in
[5], alternative approaches of MPC for stochastic systems are based on min-max
MPC, tube-based MPC and stochastic MPC. The first two consider disturbances to
be unmeasured but bounded in a predefined set. The control strategies are conserva-
tive, because they consider worst-case demand deviations from their expected value,
limiting the control performance. On the other hand, stochastic MPC considers a
more realistic description of uncertainty, which leads to less conservative control
approaches at the expense of a more complex modelling of the disturbances. The
stochastic approach is a mature theory in the field of optimization [3], but a renewed
attention has been given to the stochastic programming techniques as powerful tools
for control design (see, e.g., [4] and references therein).

From the wide range of stochastic MPC methods, this chapter specializes on
scenario tree-based MPC (TB-MPC) and chance-constrained MPC (CC-MPC).
Regarding TB-MPC, see, e.g., [17, 24], uncertainty is addressed by considering
simultaneously a set of possible disturbance scenarios modelled as a rooted tree,
which branches along the prediction horizon. On the other hand, CC-MPC [28] is a
stochastic control strategy that describes robustness in terms of probabilistic (chance)
constraints, which require that the probability of violation of any operational require-
ment or physical constraint is below a prescribed value, representing the notion of
reliability or risk of the system. By setting this value properly, the operator/user can
trade conservatism against performance. Relevant works that address the CC-MPC
approach in water systems can be found in [8, 22] and references therein. Therefore,
this chapter is focused on the design and assessment of CC-MPC and TB-MPC con-
trollers for the operational management of transport water networks, which may be
described using only flow equations, discussing their advantages and weaknesses in
the sense of applicability and performance. The particular case study is related to the
Barcelona DWN described in [19] and presented in Chap.2.

14.2 Problem Formulation

Consider the MPC problem associated with the flow control problem in a DWN (see
[20]). In general, a DWN consists in a set of water storage (dynamic) nodes, pipe
junction (static) nodes, source nodes and sink nodes, which are interconnected in
such a way that the water can be transported from source nodes to sink nodes when
demanded. In order to derive a control-orientedmodel, define the state vector x ∈ R

nx

to represent the storage at dynamic nodes. Similarly, define the vector u ∈ R
nu of

controlled inputs as the collectionof theflowrate through the actuators of the network,
and the vector d ∈ R

nd of uncontrolled inputs (demands) as the collection of flow rate
required by the consumers at sink nodes. Following flow/mass balance principles, a
discrete-timemodel based on linear difference-algebraic equations can be formulated
for a given DWN as follows:

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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{
x(k + 1) = A x(k) + Bu(k) + Bdd(k), (14.1a)

0 = Euu(k) + Edd(k), (14.1b)

where k ∈ Z+ is the current time instant and A, B, Bd , Eu and Ed are matrices
of compatible dimensions dictated by the network topology. Specifically, (14.1a)
represents the balance at dynamic nodes while (14.1b) represents the balance at
static nodes. The system is subject to state and input constraints considered here in
the form of convex polyhedra defined as follows:

x(k) ∈ X := {x ∈ R
nx | Gx ≤ g}, (14.2a)

u(k) ∈ U := {u ∈ R
nu | Hu ≤ h}, (14.2b)

for all k, where G ∈ R
rx×nx , g ∈ R

rx , H ∈ R
ru×nu and h ∈ R

ru are matrices/vectors
collecting the system constraints, being rx ∈ Z+ and ru ∈ Z+ the number of state
and input constraints, respectively.

Regarding the operation of the generalized flow-based networks, the following
assumptions are considered in this chapter.

Assumption 14.1 The pair (A, B) is controllable and (14.1b) is reachable,1 i.e.,
m ≤ nu with rank(Eu) = m.

Assumption 14.2 The states in x and the demands in d are measured at any time
instant k ∈ Z+. Future demands d(k + i) are unknown for all i ∈ Z+ but forecasted
information of their first two moments (i.e., expected value and variance) is available
for a given prediction horizon Hp ∈ Z≥1.

Assumption 14.3 The realization of demands at any time instant k ∈ Z+ can be
decomposed as

d(k) = d̄(k) + e(k), (14.3)

where d̄ ∈ R
nd is the vector of expected disturbances, and e ∈ R

nd is the vector of
forecasting errors with non-stationary uncertainty and a known (or approximated)
quasi-concave probability distributionD(0, �(e( j)(k)). The stochastic nature of each
j th row of d(k) is described by d( j)(k) ∼ Di (d̄( j)(k),�(e( j)(k)), where d̄( j) denotes
its mean, and �(e( j)(k) its variance.

Notice in (14.1b) that a subset of controlled flows are directly related with a subset
of uncontrolled flows. Hence, it is clear that u does not take values in R

nu but in a
linear variety. This latter observation, in addition to Assumptions 14.1 and 14.2,

1If m < nu , then multiple solutions exist, so u should be selected by means of an optimization
problem. Equation (14.1b) implies the possible existence of uncontrollable flows d at the junction
nodes. Therefore, a subset of the control inputs will be restricted by the domain of some flow
demands.
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can be exploited to develop an affine parametrization of control variables in terms
of a minimum set of disturbances as shown in [12, Appendix A], mapping control
problems to an input spacewith a smaller decision vector andwith less computational
burden due to the elimination of the equality constraints. Thus, the system (14.1) can
be rewritten as follows:

x(k + 1) = Ax(k) + B̃ũ(k) + B̃dd(k), (14.4)

and the input constraint (14.2b) replaced with a time-varying restricted set defined
as follows:

Ũ(k) := {ũ ∈ R
nu−m | HP̃M̃1ũ ≤ h − HP̃M̃2d(k)}. (14.5)

Being B̃ = B P̃ M̃1, B̃d = B P̃ M̃2 + Bd , where P̃ , M̃1 and M̃2 a control parametritza-
tion matrices ([12], Appendix A). The control goal is considered here as to minimize
a convex (possibly multi-objective) stage cost J (k, x, ũ) : Z+ × X × Ũ(k) → R+,
which might bear any functional relationship to the economics of the system opera-
tion. Let x(k) ∈ X be the current state, and let d(k) be the disturbances. The sequence
of disturbances should be known over the considered prediction horizon Hp. The first
element of this sequence is measured, while the rest of the elements are estimates of
future disturbances computed by an exogenous forecasting system and available at
each time instant k ∈ Z+. Hence, the MPC controller design is based on the solution
of the following finite horizon optimization problem (FHOP):

min
ũ(k)={ũ(k+i |k)}i∈Z[0,Hp−1]

Hp−1∑
i=0

J (k + i, x(k + i |k), ũ(k + i |k)), (14.6a)

subject to:

x j (k + i + 1|k) = Ax j (k + i |k) + B̃ũ j (k + i |k) + B̃dd(k + i),∀i ∈ Z[0,Hp−1]
(14.6b)

x(k + i |k) ∈ X , ∀i ∈ Z[1,Hp]
(14.6c)

ũ(k + i |k) ∈ Ũ(k + i), ∀i ∈ Z[0,Hp−1]
(14.6d)

x(k|k) = x(k), (14.6e)

Assuming that (14.6) is feasible, i.e., there exists a non-empty solution given by the
optimal sequence of control inputs ũ�

k = {ũ�(k + i |k)}i∈Z[0,Hp−1] , then the receding
horizon philosophy commands to apply the control action

u(k) := ũ∗(k|k), (14.7)

and disregards the rest of the sequence of the predicted manipulated variables. At the
next time instant k, the FHOP (14.6) is solved again using the current measurements
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of states and disturbances and the most recent forecast of these latter over the next
future horizon.

Due to the stochastic nature of future disturbances, the prediction model (14.6b)
involves exogenous additive uncertainty, which might cause that the compliance of
state constraints for a given control input cannot be ensured. Therefore, uncertainty
has to be represented in such a way that their effect on present decision-making
can properly be taken into account. To do so, stochastic modelling based on data
analysis, probability distributions, disturbance scenarios, among others, and the use
of stochastic programming may allow to establish a trade-off between robustness
and performance. In the sequel, two stochastic MPC strategies are proposed for their
application to network flow control.

14.3 Chance-Constrained MPC

Since the optimal solution to (14.6) does not always imply feasibility of the real
system, it is appropriate to relax the original constraints in (14.6c) with probabilistic
statements in the form of the so-called chance constraints. In this way, the state
constraints are required to be satisfied with a predefined probability to manage the
reliability of the system. Considering the form of the state constraint set X , there are
two types of chance constraints according to the definitions below.

Definition 14.1 (Joint chance constraint) A (linear) state joint chance constraint is
of the form

P[G( j)x ≤ g( j) , ∀ j ∈ Z[1,rx ]] ≥ 1 − δx, (14.8)

where P denotes the probability operator, δx ∈ (0, 1) is the risk acceptability level
of constraint violation for the states, and G( j) and g( j) denote the j th row of G and
g, respectively. This requires that all rows j have to be jointly fulfilled with the
probability 1 − δx.

Definition 14.2 (Individual chance constraint) A (linear) state individual chance
constraint is of the form

P[G( j)x ≤ g( j)] ≥ 1 − δx, j , ∀ j ∈ Z[1,rx ], (14.9)

which requires that each j th row of the inequality has to be fulfilled individually
with the respective probability 1 − δx, j , where δx, j ∈ (0, 1).

Both forms of constraints are useful to measure risks; hence, their selection depends
on the application. All chance-constrained models require prior knowledge of the
acceptable risk δx associated with the constraints. A lower risk acceptability implies
a harder constraint. This chapter is concerned with the use of joint chance con-
straints since they can express better the management of the overall reliability in a
DWN. In general, joint chance constraints lack from analytic expressions due to the
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involved multivariate probability distribution. Nevertheless, sampling-based meth-
ods, numeric integration and convex analytic approximations exists (see, e.g., [3]
and references therein). Here, (14.8) is approximated following the results in [18,
23] by upper bounding the joint constraint and assuming a uniform distribution of
the joint risk among a set of individual chance constraints that are later transformed
into equivalent deterministic constraints under Assumption 14.4.

Assumption 14.4 Each demand in d ∈ R
nd follows a log-concave univariate distri-

bution, which stochastic description is known.

Given the dynamic model in (14.4), the stochastic nature of the demand vec-
tor d makes the state vector x ∈ R

nx to be also a stochastic variable. Then, let the
cumulative distribution function of the constraint be denoted as follows:

FGx(g) := P
[{

G(1)x ≤ g(1), . . . , G(rx )x ≤ g(rx )
}]

. (14.10)

Defining the events C j := {
G( j)x ≤ g( j)

}
for all j ∈ Z[1,rx ], and denoting their com-

plements as Cc
j := {

G( j)x > g( j)
}
, then it follows that

FGx(g) = P
[
C1 ∩ · · · ∩ Crx

]
(14.11a)

= P
[
(Cc

1 ∪ · · · ∪ Cc
rx )

c
]

(14.11b)

= 1 − P
[
(Cc

1 ∪ · · · ∪ Cc
rx )

] ≥ 1 − δx. (14.11c)

Taking advantage of the union bound, the Boole’s inequality allows to bound the
probability of the second term in the left-hand side of (14.11c), stating that for a
countable set of events, the probability that at least one event happens is not higher
than the sum of the individual probabilities [23]. This yields

P

⎡
⎣ rx⋃

j=1

Cc
j

⎤
⎦ ≤

rx∑
j=1

P
[
Cc

j

]
. (14.12)

Applying (14.12) to the inequality in (14.11c), it follows that

rx∑
j=1

P
[
Cc

j

] ≤ δx ⇔
rx∑
j=1

(
1 − P

[
C j

]) ≤ δx. (14.13)

At this point, a set of constraints arise from the previous result as sufficient conditions
to enforce the joint chance constraint (14.8), by allocating the joint risk δx in separate
individual risks denoted by δx, j , j ∈ Z[1,rx ]. These constraints are as follows:
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P
[
C j

] ≥ 1 − δx, j , ∀ j ∈ Z[1,rx ], (14.14)
rx∑
j=1

δx, j ≤ δx, (14.15)

0 ≤ δx, j ≤ 1, (14.16)

where (14.14) forms the set of rx resultant individual chance constraints, which
bounds the probability that each inequality of the receding horizon problem may
fail; and (14.15) and (14.16) are conditions imposed to bound the new single risks
in such a way that the joint risk bound is not violated. Any solution that satisfies
the above constraints is guaranteed to satisfy (14.8). As done in [18], assigning, for
example, a fixed and equal value of risk to each individual constraint, i.e., δx, j =
δx/rx for all j ∈ Z[1,rx ], then (14.15) and (14.16) are satisfied.

Remark 14.1 The single risks δx, j , j ∈ Z[1,rx ], might be considered as new decision
variables to be optimized, see, e.g., [21]. This should improve the performance but
at the cost of more computational burden due to the greater complexity and dimen-
sionality of the optimization task. Therefore, as generalized flow-based networks
are often large-scale systems, the uniform risk allocation policy is adopted to avoid
overloading of the optimization problem. ♦

After decomposing the joint constraints into a set of individual constraints, the
deterministic equivalent of each separate constraint may be used given that the
probabilistic statements are not suitable for algebraic solution. Such deterministic
equivalents might be obtained following the results in [6]. Assuming a known (or
approximated) quasi-concave probabilistic distribution function for the effect of the
stochastic disturbance in the dynamic model (14.4), it follows that

P
[
G( j)x(k + 1) ≤ g( j)

] ≥ 1 − δx, j ⇔ FG( j)B̃dd(k)(g( j) − G( j)(Ax(k) + B̃ũ(k)) ≥ 1 − δx, j

⇔ G( j)(Ax(k) + B̃ũ(k) ≤ g( j) − F−1
G( j)B̃dd(k)

(1 − δx, j ),

(14.17)

for all j ∈ Z[1,rx ],where FG( j)B̃dd(k)(·) and F−1
G( j)B̃dd(k)

(·) are the cumulative distribution

and the left-quantile function of G( j)B̃dd(k), respectively. Hence, the original state
constraint set X is contracted by the effect of the rx deterministic equivalents in
(14.17) and replaced by the stochastic feasibility set given by

Xs,k := {x(k) ∈ R
nx |∃ũ(k) ∈ Ū(k), such that

G( j)(Ax(k) + B̃ũ(k) ≤ g( j) − F−1
G( j)B̃dd(k)

(1 − δx, j ), ∀ j ∈ Z[1,rx ]},

for all k ∈ Z+. From convexity of G( j)x(k + 1) ≤ g( j) and Assumption 14.4, it fol-
lows that the set Xs,k is convex when non-empty for all δx, j ∈ (0, 1) in most distri-
bution functions [14]. For some particular distributions, e.g., Gaussian, convexity is
retain for δx, j ∈ (0, 0.5].
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In this way, the reformulated predictive controller solves the following determin-
istic equivalent optimization problem for the expectation E[·] of the cost function in
(14.6a):

min
ũ(k)

Hp−1∑
i=0

E[J (k + i, x(k + i |k), ũ(k + i |k))], (14.18a)

subject to:

x(k + i + 1|k) = Ax(k + i |k) + B̃ũ(k + i |k) + B̃d d̄(k + i), ∀i ∈ Z[0,Hp−1], (14.18b)

G( j)(Ax(k + i |k) + B̃ũ(k + i |k)) ≤ g( j) − zk, j (δx), ∀i ∈ Z[0,Hp−1], ∀ j ∈ Z[1,rx ], (14.18c)

ũ(k + i |k) ∈ Ũ(k + i), ∀i ∈ Z[0,Hp−1], (14.18d)
x(k|k) = x(k), (14.18e)

where ũk = {ũ(k + i |k)}i∈Z[0,Hp−1] is the sequence of controlled flows, d̄(k + i) is
the expected future demands computed at time instant k ∈ Z+ for i-steps ahead,
i ∈ Z[0,Hp−1], nc ∈ Z≥1 is the number of total individual state constraints along the

prediction horizon, i.e., nc = rx Hp and zk, j (δx) := F−1
G( j)B̃dd(k+i)

(
1 − δx

nc

)
. Since nc

depends not only on the number of state constraints rx but also on the value of Hp,
the decomposition of the original joint chance constraint within the MPC algorithm
could lead to a large number of constraints. This fact reinforces the use of a fixed risk
distribution policy for generalized flow-based network control problems, in order to
avoid the addition of a large number of new decision variables to be optimized.

Remark 14.2 It turns out that most (not all) probability distribution functions used in
different applications, e.g., uniform, Gaussian, logistic, Chi-squared, Gamma, Beta,
log-normal, Weibull, Dirichlet, and Wishart, among others, share the property of
being log-concave. Then, their corresponding quantile function can be computed
offline for a given risk acceptability level and used within the MPC convex optimiza-
tion problem. ♦

14.4 Tree-Based MPC

The deterministic equivalent CC-MPC proposed before might be still conservative
if the probabilistic distributions of the stochastic variables are not well characterized
or do not lie in a log-concave form. Therefore, this section presents the TB-MPC
strategy that relies on scenario trees to approximate the original problem, dropping
Assumption 14.4. The approach followed by the TB-MPC is based on modelling
the possible scenarios of the disturbances as a rooted tree (see Fig. 14.1 right). This
means that all the scenarios start from the same measured disturbance value. From
that point, the scenarios must remain equal until the point in which they diverge from
each other, which is called a bifurcation point. Each node of the tree has a unique
parent and can have many children. The total number of children at the last stage
corresponds to the total number of scenarios. The probability of a scenario is the
product of probabilities of each node in that scenario.
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Fig. 14.1 Reduction of a disturbance fan (left) of equally probable scenarios into a rooted scenario
tree (right)

Notice that before a bifurcation point, the evolution followed by the disturbance
cannot be anticipated because different evolutions are possible. For this reason, the
controller has to calculate control actions that are valid for all the scenarios in the
branch. Once the bifurcation point has been reached, the uncertainty is solved and the
controller can calculate specific control actions for the scenarios in each of the new
branches. Hence, the outcome of TB-MPC is not a single sequence of control actions,
but a tree with the same structure of that of the disturbances. As in standard MPC,
only the first element of this tree is applied (the root) and the problem is repeated in
a receding horizon fashion.

In generalized flow-based networks, the uncertainty is generally introduced by
the unpredictable behaviour of consumers. Therefore, a proper demand modelling is
required to achieve an acceptable supply service level. For the case study considered
in this chapter, the reader is referred to [26], where the authors presented a detailed
comparison of different forecasting models. Once a model is selected, it has to be
calibrated and then used to generate a large number of possible demand scenarios by
Monte Carlo sampling for a given prediction horizon Hp ∈ Z≥1. For the CC-MPC
approach, the mean demand path is used, while for the TB-MPC approach, a set
of scenarios is selected. The size of this set is here computed following the bound
proposed in [27], which takes into account the desired risk acceptability level. A large
number of scenariosmight improve the robustness of theTB-MPCapproach but at the
cost of additional computational burden and economic performance losses. Hence,
a trade-off must be achieved between performance and computational burden. To
this end, a representative subset of scenarios may be chosen using scenario reduction
algorithms. In this chapter, the backward reduction algorithm proposed in [13] is
used to reduce a specified initial fan of Ns ∈ Z≥1 equally probable scenarios into a
rooted tree of Nr << Ns scenarios, where Nr is the number of considered scenarios
while Ns is the total number of scenarios (see Fig. 14.1).

The easiest way to understand the optimization problem that has to be solved in
TB-MPC is to solve as many instances of Problem (14.6) as the number Nr of con-
sidered scenarios, but formally it is a multi-stage stochastic programme and solved
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as a big optimization for all the scenarios. Due to the increasing uncertainty, it is
necessary to include non-anticipativity constraints [25] in the MPC formulation so
that the calculated input sequence is always ready to face any possible future bifurca-
tion in the tree. More specifically, if da

k = {da(k|k), da(k + 1|k), . . . , da(k + N |k)}
and db

k = {db(k|k), db(k + 1|k), . . . , db(k + N |k)} are two disturbance sequences
corresponding respectively to certain forecast scenarios a, b ∈ Z[1,Nr ], then the
non-anticipativity constraint ũa(k + i |k) = ũb(k + i |k) has to be satisfied for any
i ∈ Z[0,Hp] whenever da(k + i |k) = db(k + i |k) in order to guarantee that for all
j ∈ Z[1,Nr ] the input sequences ũ j = {ũ j (k + i |k)}i∈Z[0,Hp−1] form a tree with the
same structure of that of the disturbances.

In this way, the TB-MPC controller has to solve the following optimization prob-
lem at each time instant k ∈ Z+, accounting for the Nr demand scenarios, each with
probability p j ∈ (0, 1] satisfying ∑Nr

j=1 p j = 1:

min
ũ j
k

Nr∑
j=1

p j

⎛
⎝

Hp−1∑
i=0

J (k + i, x(k + i |k), ũ(k + i |k))
⎞
⎠ , (14.19a)

subject to:

x j (k + i + 1|k) = Ax j (k + i |k) + B̃ũ j (k + i |k) + B̃dd j (k + i), ∀i ∈ Z[0,Hp−1],∀ j ∈ Z[1,Nr ],
(14.19b)

x j (k + i + 1|k) ∈ X , ∀i ∈ Z[0,Hp−1],∀ j ∈ Z[1,Nr ],
(14.19c)

ũ j (k + i |k) ∈ Ũ j (k + i), ∀i ∈ Z[0,Hp−1],∀ j ∈ Z[1,Nr ],
(14.19d)

xJ (k|k) = x(k), d j (k|k) = d(k), ∀ j ∈ Z[1,Nr ], (14.19e)

ũa(k + i |k) = ũb(k + i |k) if da(k + i |k) = db(k + i |k), ∀i ∈ Z[0,Hp−1],∀a, b ∈ Z[1,Nr ],
(14.19f)

where Ũ j (k + i) := {ũ j ∈ R
nu−m | HP̃M̃1ũ j ≤ h − HP̃M̃2d j (k + i)}.

Remark 14.3 The number of scenarios used to build the rooted tree should be deter-
mined regarding the computational capacity and the probability of risk that the man-
ager is willing to accept. ♦

14.5 Numerical Results

In this section, the performance of the proposed stochastic MPC approaches is
assessed with a case study consisting in a large-scale real system reported in [19],
specifically the Barcelona WTN already described in Sect. 2.3 in Chap. 2. The gen-
eral role of this system is the spatial and temporal reallocation of water resources
from both superficial (i.e., rivers) and underground water sources (i.e., wells) to dis-
tribution nodes located all over the city. The directed graph of this network can be
obtained from the layout shown in Fig. 2.2 of Chap.2, and its model in the form

http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_2
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of (14.1) can be derived by setting the state x(k) ∈ R
63 as the volume (in m3) of

water stored in tanks at time instant k, the control input u(k) ∈ R
114 as the flow

rate through all network actuators (expressed in m3/s) and the measured disturbance
d(k) ∈ R

88 as the flow rate of customer demands (expressed in m3/s). This net-
work is currently managed by Aguas de Barcelona that manages the drinking-water
transport and distribution in Barcelona (Spain), and it supplies potable water to the
Metropolitan Area of Barcelona (Catalunya, Spain). The main control task for the
managers is to economically optimize the network flows while satisfying customer
demands. These demands are characterized by patterns of water usage and can be
forecasted by different methods (see, e.g., [1, 26]).

The operational goals in the management of the Barcelona DWN are of three
kinds, economic, safety and smoothness, and are respectively stated as follows (see
Chap.12. for the mathematical formulation):

1. To provide a reliable water supply in the most economic way, minimizing water
production and transport costs.

2. To guarantee the availability of enough water in each reservoir to satisfy its
underlying demand, keeping a safety stock to face uncertainties and avoid stock-
outs.

3. To operate the DWN under smooth control actions.

u1

u2

u3

u4

u5

u6

x1

x2

x3 d4

d3

d2

d1

Fig. 14.2 Barcelona DWN small subsystem layout

http://dx.doi.org/10.1007/978-3-319-50751-4_12
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14.5.1 Performance Comparison on a Small-Scale System

To analyse via simulation the computational burden of each proposed controller,
a small portion/subsystem of the complete network is used (see Fig. 14.2 and [9]
for details). The DWN is considered as a stochastic constrained system subject to
deterministic hard constraints on the control inputs and linear joint chance constraints
on the states. The source of uncertainty in the system is assumed to be the forecasting
error of the water demands. The stochastic control problem of the DWN is stated as
follows:

min
ũk

Hp−1∑
i=0

E
[
λ1 JE (k + i, x(k + i |k), ũ(k + i |k)) + λ2 J�(�ũ(k + i |k))] , (14.20a)

subject to:

x(k + i + 1|k) = Ax(k + i |k) + B̃ũ(k + i |k) + B̃dd(k + i |k), (14.20b)

P
[
x(k + i + 1|k) ≥ xmin] ≥ 1 − δx

2
, (14.20c)

P
[
x(k + i + 1|k) ≤ xmax] ≥ 1 − δx

2
, (14.20d)

P [x(k + i + 1|k) ≥ dnet(k + i + 1|k)] ≥ 1 − δs, (14.20e)

ũ(k + i |k) ∈ Ũ(k + i), (14.20f)

dnet(k + i + 1|k) = −(B̃out(P̃M̃1ũ(k + i |k) + P̃M̃2d(k + i |k)) + B̃dd(k + i + 1|k)),
(14.20g)

�ũ(k + i |k) = ũ(k + i |k) − ũ(k + i − 1|k), (14.20h)

(x(k|k), ũ(k − 1|k)) = (x(k), ũ(k − 1)), (14.20i)

for all i ∈ Z[0,Hp−1], where JE (k + i, x(k + i |k), ũ(k + i |k)) := c
u,k+iWe ũ(k)�t

captures the economic costs with cu,k+i ∈ R
nu being a known periodically time-

varying price of electric tariff, and J�(�ũ(k + i |k)) := ‖P̃M̃1�ũ(k + i |k) + P̃M̃2

�d(k + i |k)‖2W�ũ
is a control move suppression term aiming to enforce a smooth

operation. Moreover, δx, δs ∈ (0, 1), are the accepted maximum risk levels for the
state constraints and the safety constraint (14.20e), respectively. The objectives are
traded-off with the scalar weights λ1, λ2 ∈ R+, while the elements of the deci-
sion vector are prioritized by the weighting matrices We,W�ũ ∈ S

m++. The service
reliability goal (i.e., demand satisfaction) is enforced by the constraints (14.20e)
and (14.20g). In this latter constraint, dnet(k + i + 1|k) ∈ R

nd is a vector of net
demands above which is desired to keep the reservoirs to avoid stock-outs. The
B̃out(P̃M̃1ũ(k + i |k) + P̃M̃2d(k + i |k)) component represents the current prediction
step endogenous demand, i.e., the outflow of the tanks caused by water requirements
from neighbouring tanks or nodes, and the B̃dd(k + i + 1|k) component denotes the
exogenous (customer) demands of tanks for the next prediction step. In the dynamic
model (14.4) of the DWN, randomness is directly described by the uncertainty of
customer demands, which can be estimated from historical data. In order to solve
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the above DWN control problem, a tractable safe approximation is derived follow-
ing Sect. 14.3. The joint chance constraints (14.20c)–(14.20e) are transformed into
deterministic equivalent constraints as shown in [11, Appendix B] for the particular
case of Gaussian distributions.

The optimization problem associated with the deterministic equivalent CC-MPC
for the selected application is stated as follows for a given sequence of forecasted
demands denoted by d̄k = {d(k + i |k)}i∈Z[0,Hp−1] :

min
ũk ,ξk

Hp−1∑
i=0

E
[
λ1 JE (k + i, x̄(k + i |k), ũ(k + i |k)) + λ2 J�(�ũ(k + i |k)) + λ3 JS(ξ(k + i |k))] ,

(14.21a)

subject to:

x̄(k + i + 1|k) = Ax̄(k + i |k) + B̃ũ(k + i |k) + B̃d d̄(k + i |k), (14.21b)

x̄( j)(k + i + 1|k) ≥ xmin
( j) + �−1

(
1 − δx

2nx Hp

)
�x( j) (k + i + 1|k)1/2, (14.21c)

x̄( j)(k + i + 1|k) ≤ xmax
( j) − �−1

(
1 − δx

2nx Hp

)
�x( j) (k + i + 1|k)1/2, (14.21d)

x̄( j)(k + i + 1|k) ≥ d̄net( j)(k + i + 1|k) + �−1
(
1 − δs

nx Hp

)
�dnet( j) (k + i + 1|k)1/2

− ξ ( j)(k + i |k), (14.21e)

ξ(k + i |k) ≥ 0, (14.21f)

ũ(k + i |k) ∈ Ũ(k + i), (14.21g)

d̄net(k + i + 1|k) = −(B̃out

(
P̃M̃1ũ(k + i |k) + P̃M̃2d̄(k + i |k)

)
+ B̃d d̄(k + i + 1|k)), (14.21h)

�ũ(k + i |k) = ũ(k + i |k) − ũ(k + i − 1|k), (14.21i)
(x̄(k|k), ũ(k − 1|k)) = (x(k), ũ(k − 1)), (14.21j)

for all i ∈ Z[0,N−1] and all j ∈ Z[1,n], where ũk = {ũ(k + i |k)} and ξ k = {ξ(k + i |k)}
are the decision variables. The vectors x̄ and d̄ denote the mean of the random state
and demand variables, respectively. Moreover, �−1 is the left-quantile function of
the Gaussian distribution, and x̄( j) and �x( j) denote, respectively, the mean and vari-
ance of the j th row of the state vector. Notice that Problem (14.21) includes the
additional objective JS(ξ(k + i |k)) := ‖ξ(k + i |k)‖2Ws

with Ws � 0, and the addi-
tional constraint (14.21f), which are related to the safety operational goal. These
elements appear due to the safety deterministic equivalent soft constraint (14.21e)
introduced with the slack decision variable ξ ∈ R

nx to allow the trade-off between
safety, economic, and smoothness objectives. Constraints (14.21c) and (14.21d) can
be softened in the same way to guarantee recursive feasibility of the optimization
problem if uncertainty is too large. For a strongly feasible stochastic MPC approach
using closed-loop predictions by means of an affine disturbance parametrization of
the control inputs, the reader is referred to [15]. The enforcement of the chance
constraints enhances the robustness of the MPC controller by causing an optimal
back-off from the nominal deterministic constraints as a risk averse mechanism to
face the non-stationary uncertainty involved in the predictionmodel of theMPC. The
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states are forced to move away from their limits before the disturbances have chance
to cause constraint violation. The �−1(·) terms represent safety factors for each
constraint, and specially in (14.21e), it denotes the optimal safety stock of storage
tanks. Problem 14.18 may be casted as a second-order cone programming problem.
However, state uncertainty is a function of the disturbances only and is not a func-
tion of the decision variables of the optimization problem. Therefore, the variance
terms in each deterministic equivalent can be forecasted prior to the solution of the
optimization problem to include them as known parameters in theMPC formulation.
This simplification results in a set of linear constraints, and the optimization remains
as a quadratic programming (QP) problem, which can be efficiently solved.

The optimization problem associated with the scenario tree-basedMPC approach
is stated as follows for all i ∈ Z[0,Hp−1] and all j ∈ Z[1,Nr ]:

min
ũ j
k ,ξ

j
k

Nr∑
j=1

p j

Hp−1∑
i=0

λ1 JE (k + i, x j (k + i |k), ũ j (k + i |k)) + λ2 J�(�ũ j (k + i |k))

+ λ3 JS(ξ
j (k + i |k)), (14.22a)

subject to:

x j (k + i + 1|k) = Ax j (k + i |k) + B̃ũ j (k + i |k) + B̃dd j (k + i |k), (14.22b)

(x j (k + i + 1|k), ũ j (k + i |k), ξ j (k + i |k)) ∈ X × Ũ j (k + i) × Rnu+ , (14.22c)

x j (k + i + 1|k) ≥ d j
net(k + i + 1|k) − ξ j (k + i |k), (14.22d)

dnet(k + i + 1|k) j = −(B̃out

(
P̃M̃1ũ j (k + i |k) + P̃M̃2d j (k + i |k)

)
+ B̃dd j

net(k + i + 1|k),
(14.22e)

�ũ j (k + i |k) = ũ j (k + i |k) − ũ j (k + i − 1|k), (14.22f)

(x j (k|k)X, ũ j (k − 1|k), d j (k|k)) = (x(k), ũ(k − 1), d(k), (14.22g)

ũa(k + i |k) = ũb(k + i |k) if da(k + i |k) = db(k + i |k) ∀a, b ∈ Z[1,Nr ]. (14.22h)

Table14.1 summarizes the results of applying the deterministic equivalent CC-MPC
and the TB-MPC to the aforementioned small example. Simulations have been car-
ried out over a time period of eight days, i.e., ns = 192hours, with a sampling time of
1hour. Applied demand scenarios were taken from historical data of the Barcelona
DWN. The weights of the multi-objective cost function are λ1 = 100, λ2 = 1 and
λ3 = 10. The prediction horizon is selected as Hp = 24 h due to the periodicity of
demands. The key performance indicators used to assess the aforementioned con-
trollers are defined as follows:
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Table 14.1 Assessment of the CC-MPC and TB-MPC applied to the sector model of the DWN
case study

CC-MPC TB-MPC

δx KPI1 KPI2 KPI3 KPI4 KPI1 KPI2 KPI3 KPI4 Nr Ns

58397.14 0 0 0.94 5

0.3 58535.80 0 0 1.25 58280.69 1 0.51 1.61 10 19

58279.95 1 4.16 2.37 14

58482.14 3 0.18 1.18 7

0.2 58541.19 0 0 1.21 58903.63 0 0 2.33 14 29

58452.41 0 0 4.05 21

58610.32 0 0 2.57 14

0.1 58558.29 0 0 1.25 58630.20 0 0 6.65 29 59

58656.56 1 0.18 13.47 44

– – – – 149

0.01 58612.28 0 0 1.25 – – – – 299 599

– – – – 449

– – – – 1499

0.001 58667.85 0 0 1.25 – – – – 2999 5999

– – – – 4499

KPI1 � 24

ns + 1

ns∑
k=0

γ1 JE (k, x(k), ũ(k) + λ2 J�(�ũ(k)) + λ3 JS(ξ(k)), (14.23a)

KPI2 � | {k ∈ Z
ns
1 | x(k) < −Bdd(k)

} |, (14.23b)

KPI3 �
ns∑
k=1

nx∑
i=1

max{0,−Bd(i)d(k) − x(k(i))}, (14.23c)

KPI4 � 1

ns

ns∑
k=1

t (k), (14.23d)

where KPI1 is the average daily multi-objective cost, KPI2 is the number of time
instants where the stored water goes below the demanded volume (for this, | · |
denotes the cardinal of a set of elements), KPI3 is the accumulated volume of
water demand that was not satisfied over the simulation horizon, and KPI4 is the
average time in seconds required to solve the MPC problem at each time instant
k ∈ Z[0,ns ]. For the CC-MPC approach, the effect of considering different levels
of joint risk acceptability was analysed using δx = {0.3, 0.2, 0.1, 0.01, 0.001} and
δs = δx. Regarding the TB-MPC approach, different sizes for the initial set of sce-
narios were considered, i.e., Ns = {19, 28, 59, 599, 5999}. The size of this initial set
was computed following the bound proposed in [27] taking into account the risk
levels involved in the chance constraints. This initial set was reduced later by a factor
of 0.25, 0.50 and 0.75 to obtain different rooted trees with Nr scenarios.
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As shown in Table14.1, the different CC-MPC scenarios highlight that relia-
bility and control performance are conflicting objectives; that is, the inclusion of
safety mechanisms in the controller increases the reliability of the DWN in terms of
demand satisfaction, but also the cost of its operation. The main advantage of the
CC-MPC is its formal methodology, which leads to obtain optimal safety constraints
that tackle uncertainties and allow to achieve a specified global service level in the
DWN. Moreover, the deterministic equivalent CC-MPC robustness is achieved with
a low computational burden given that the only extra load (compared with a nominal
formulation) is the computation of the stochastic characteristics of disturbances prop-
agated in the prediction horizon. In this way, the deterministic equivalent CC-MPC
approach is suitable for real-time control (RTC) of large-scale DWNs. Regarding the
TB-MPC approach, numeric results show that considering higher Ns increments the
stage cost while reducing the volume of unsatisfied water demand. Nevertheless, this
latter observation is not applicable for the different Nr cases within a same Ns . This
might be influenced by the quality of the information that remains after the scenario
generation and reduction algorithms that affect the robustness of the approach and
will be subject of further research. The main drawback of the TB-MPC approach is
the solution of the average time and the computational burden. In this case study,
the implementation for all cases taking Ns = {599, 5999} was not possible due to
memory issues. Hence, some simplification assumptions as those used in [17] or
parallel computing techniques might be useful.

14.5.2 Performance Assessment of CC-MPC on a
Large-Scale System

The previous results showed that both CC-MPC and TB-MPC have similar perfor-
mance under high levels of risk acceptability. Nevertheless, when requiring small
risk levels (δx < 0.1), CC-MPC retains tractability of the FHOP with low com-
plexity, while the TB-MPC suffers the curse of dimensionality. Therefore, in the
following, only the performance of the CC-MPC approach is assessed on the full
model of the Barcelona DWN. The tuning of the controller parameters is the same
as in the previous simulations. In order to further evaluate the proposed CC-MPC
scheme, results are compared with the certainty-equivalent MPC approach proposed
in [19], which assumes predictions of demands as certain. In these simulations, the
CE-MPC strategy has been set up to allow the volume of water in tanks to decrease
until the predicted volume of future net demands, which is set as a hard constraint
but ignoring the influence of uncertainty. Contrary, the CC-MPC strategy considers
and propagates the uncertainty of forecasted demands explicitly in the MPC design
and, as a consequence, involves a robust handling of constraints. Again, to analyse
the effect of the risk level (δx) in this CC-MPC strategy when considering large-scale
systems, different scenarios have been simulated for acceptable joint risks of 50, 40,
30, 20, 10, 5 and 1%.
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Table14.2 presents the numeric assessment of the aforementioned controllers
through different key performance indicators (KPIs), which are defined as follows:

KPIE := 1

ns + 1

ns∑
k=0

c
u,k ũ(k)�t, (14.24a)

KPI�U := 1

ns + 1

nu∑
i=1

ns∑
k=0

(
�ũ(i)(k)

)2
, (14.24b)

KPIS :=
nx∑
i=1

ns∑
k=0

max
{
0, s(i)(k) − x(i)(k)

}
, (14.24c)

KPID :=
nx∑
i=1

ns∑
k=0

max
{
0, dnet(i)(k) − x(i)(k)

}
, (14.24d)

KPIR :=
∑nx

i=1

∑ns
k=1 s(i)(k)∑nx

i=1

∑ns
k=1 x(i)(k)

× 100%, (14.24e)

KPIO := topt(k), (14.24f)

where KPIE is the average economic performance of the DWN operation, KPI�U

measures the smoothness of the control actions, KPIS is the amount of water used
from safety stocks, KPID is the volume of water demand that is not satisfied over the
simulation period, KPIR is the average percentage of safety volume that is contained
in the real water volume, andKPIO determines the difficulty to solve the optimization
tasks involved in each strategy accounting topt(k) as the average time that takes to
solve the corresponding MPC optimization problem. The CE-MPC has been tuned
with a safety stock for each tank equal to its net exogenous demand, i.e., s(k) =
dnet(k). Therefore, the KPIS results equal to the KPID as should be expected given
their definitions. In the case of the CC-MPC, s(k) is equal to the right hand of
(14.21e). Regarding the comparison of the KPIS between the CE-MPC and the CC-
MPC, the results present greater values for the CC-MPC cases. This trend is also an
expected behaviour given that reducing the risk probability generates a larger back-

Table 14.2 Comparison of the MPC strategies applied to the Barcelona DWN

Controller KPIE KPI�U KPIS KPID KPIR KPIO

CE-MPC 2297.02 2.3586 3.8886 3.8886 19.41 4.82

CC-MPC@50% 2486.40 1.0747 695.54 0 27.79 4.72

CC-MPC@40% 2487.77 1.0767 750.06 0 27.86 4.83

CC-MPC@30% 2489.31 1.0795 819.82 0 27.95 4.79

CC-MPC@20% 2491.61 1.0835 920.36 0 28.07 4.71

CC-MPC@10% 2496.23 1.0964 1101.7 0 28.18 4.70

CC-MPC@5% 2500.52 1.1012 1298.9 0 28.18 4.89

CC-MPC@1% 2509.89 1.1131 1759.4 0 28.43 4.86



286 J.M. Grosso et al.

off of the demand satisfaction constraint; that is, more safety stock is stored to address
demand uncertainty. This latter fact, in addition with the tuning of themulti-objective
cost function, leads to higher KPIS (but lower or null KPID) if this is required by the
real demand scenario in order to guarantee a service level. It can be observed that
the CE-MPC is the cheapest control strategy (lower KPIE ) but the less reliable one
given that the certainty equivalence assumption leads to unsatisfyingdemands (higher
KPID), especially when the water volume in the tank is close to the expected demand.
Thus, theCE-MPCperformance represents a strategy for the supply of drinkingwater
with a higher risk of failure. The different CC-MPC scenarios (those of varying the
risk acceptability level) have shown that reliability and economic performance are
conflicting objectives that have to reach a trade-off; that is, the inclusion of safety
mechanisms in the controller increases the reliability of the DWN in terms of demand
satisfaction (see Fig. 14.3), but also the economic cost of its operation. The main
advantage of the CC-MPC is its formal methodology that leads to obtain optimal
dynamic constraints that tackle uncertainties with a minimum cost to achieve also
a global service level of the DWN. Table14.2 shows a smooth degradation of the
economic performance under the CC-MPCwhen varying the riskwithin awide range
of acceptability levels. Therefore, the CC-MPC approach addressed in this chapter is
a suitablemean to compute the proper amount of safety and the proper control actions
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Fig. 14.3 Comparison of the robustness in the management of water storage in a sample of tanks
of the Barcelona DWN. (Blue circle) CC-MPC1%, (black diamond) CC-MPC20%, (red square)
CC-MPC50%, (solid green) CE-MPC, (dashed red) net demand
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to assure a desired service level. Notice that the computational burden (KPIO ) of the
CC-MPC is similar to the CE-MPC given that the complexity of the optimization
problem is not altered; that is, the number of constraints and decision variables remain
the same. The only extra load that might be added is the computation of the variance
of the disturbances propagated in the prediction horizon. Consequently, the CC-MPC
approach is suitable for RTC of the Barcelona DWN.

Table14.3 discloses details of the average production and operational costs related
to each strategy. Comparing the CE-MPC controller with the CC-MPC@5% controller
(requiring a reliability of 95%), it can be noticed that the dynamic safety stocks
resulting within the stochastic approach might lead to an increase in the operational
cost, especially in the electric cost, mainly due to the extra amount of water that is
needed to be moved through the network and allocated in tanks to guarantee that
the water supply will be feasible with a certain probability for future disturbance
realizations.

The conservatism of reformulating the stochastic CC-MPC problem into the
tractable deterministic equivalent in (14.21) has been studied in [12]. Table 14.4
shows the conservatism related to approximate constraints (14.20c), (14.20d) and
(14.20e), considering different levels of maximum joint risk. It can be observed that
conservatism increases when the risk level increases but remains almost constant
despite the variation in the number of individual constraints. Hence, the goodness of
the approximation using Boole’s inequality is not affected, neither by the number of
decision variables nor by the prediction horizon. Therefore, the addressed approach
is advantageous to be applied to any other DWNs or general flow networks.

Table 14.3 Comparison of daily average economic costs of MPC strategies

Controller Water cost (e.u./day) Electric cost (e.u./day) Daily average cost (e.u./day)

CE-MPC 23015.42 27195.31 50210.73

CC-MPC@5% 22980.34 28514.71 51495.05

e.u.: economic units

Table 14.4 Conservatism of the deterministic equivalent CC-MPC

Joint chance constraint Number of individual
constraints

Joint risk Conservatism of
approximation

0.001 4.9967 × 10−7

0.01 4.9817 × 10−5

State hard bounds 3024 0.03 4.4539 × 10−4

0.05 1.2290 × 10−3

0.1 4.8359 × 10−3

0.001 4.9950 × 10−7

0.01 4.9801 × 10−5

Safety constraint 1512 0.03 4.4524 × 10−4

0.05 1.2286 × 10−3

0.1 4.8344 × 10−3
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14.6 Conclusions

In this chapter, two stochastic control approaches have been assessed to deal with
the management of generalized flow-based networks. Both the CC-MPC and the
TB-MPC approaches focused on robust economic performance under additive dis-
turbances (unbounded and stationary or non-stationary) and avoid relyingonheuristic
fixed safety volumes such as those used in the CE-MPC or the RB-MPC schemes
proposed in Chaps. 12 and 13, what is traduced in better economic performance.
According to the results obtained with the considered case study, both techniques
showed a relatively similar performance. However, it seems clear that CC-MPC is
more appropriate when requiring a low probability of constraint violation, since the
use of TB-MPC demands the inclusion of a higher number of scenarios, which may
be an issue for the application of the latter to large-scale networks. The analytical
approximation of joint chance constraints based on their decomposition into individ-
ual chance constraints, these latter bounded by means of the Boole’s inequality, has
shown to be suitable for large networks regarding that the conservatism involved is
not affected neither by the number of the inequalities nor by the prediction horizon of
the MPC. The level of resultant back-off is variable and depends on the volatility of
the forecasted demand at each prediction step and the suitability of the probabilistic
distribution used to model uncertainty. The fact of unbounded disturbances in the
system precludes the guarantee of robust feasibility with these schemes. Hence, the
approaches proposed in this chapter are based on a service-level guarantee and a
probabilistic feasibility. The case study shows that the CC-MPC is suitable for the
operational guidance of large-scale networks due to its robustness, flexibility, modest
computational requirements, and ability to include risk considerations directly in the
decision-making process. Even when the CC-MPC increased the operational costs
by around 2.5%, it allowed to improve the service reliability by more than 90%when
compared with a CE-MPC setting.

Future research will be directed to incorporate parametric uncertainty and unmea-
sured disturbances in the model. In addition, future work should include a more
detailed study regarding the number of scenarios contained in the tree. Likewise,
distributed computation could be used in order to relieve the scaling problems of
TB-MPC when the number of scenarios is too high. Moreover, it is of interest to
extend the results and develop decentralized/distributed stochastic MPC controllers
for large-scale complex flow networks.
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Chapter 15
Fault-Tolerant Model Predictive Control
of Water Transport Networks

Vicenç Puig, Carlos Ocampo-Martínez, Deneb Robles and Luis Eduardo
Garza-Castañón

15.1 Introduction

WTNs require sophisticated supervisory control strategies to ensure and maintain
optimal performance even in faulty conditions. In order to take advantage of these
expensive infrastructures, a highly sophisticated real-time control (RTC) scheme is
necessary to ensure optimal performance [3, 13]. The RTC scheme in a WTN might
be local or global. When control is local, regulation devices only use measurements
taken at specific locations. While this control structure is applicable in many simple
cases, it may not be the most efficient option for large systems with a highly inter-
connected and complex sensor and actuator infrastructure. A global control strategy,
in contrast, which computes control actions taking into account real-time measure-
ments all through the network, is likely the best way to use infrastructure capacity
and all available sensor information. Global RTC deals with the problem of gener-
ating control strategies (ahead of time), based on a predictive dynamic model and
telemetry readings of the network to optimize operation [13]. The multivariable and
large-scale nature of WTNs have led to the use of some variants of MPC as a global
control strategy [15], as discussed in previous chapters.

Global RTC of WTNs needs to be operative even in faulty conditions. This prob-
lem calls for the use of fault-tolerant control (FTC) mechanisms after a fault is
diagnosed so as to avoid the global RTC stopping every time a fault appears. FTC
was developed in order to address the growing demand for plant availability [1]. The
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aim of FTC is to keep a plant fully operative by designing its control system such
that system performance can be kept close to desirable levels and stability conditions
can be maintained, not only when the system is in nominal conditions, but also in the
presence of system component faults; FTC should, at the very least, ensure accept-
able degraded performance [11]. Tolerance against faults can be embedded in MPC
relatively easily in several different ways, as discussed in [9]:

• Changing the constraints in order to represent the fault effect with the algorithms
for actuator faults being especially easy to adapt.

• Modifying the internal plant model used by the MPC in order to reflect fault
influence on the plant.

• Relaxing the nominal control objectives in order to reflect system limitations under
faulty conditions.

Reviewing the literature, the inclusion of fault tolerance in MPC has already been
considered by several authors, including [30], who provides a detailed review of the
state of the art in FTC. Camacho et al. [4] provides a general overview on how fault
tolerance can be embedded in MPC. The inclusion of fault tolerance in MPC has
mainly been addressedby consideringpractical strategies according to the application
domain. For example, [16] described a method for including fault tolerance in MPC
for smart grids in order to ensure the proper amount of energy in storage devices and
reliable coverage of essential consumer demand. Ocampo-Martinez and Puig [12]
applied fault tolerance in MPC to sewage networks considering a hybrid systems
framework. Yang and Maciejowski [28] designed a group of predictive controllers
to compensate for the fault effects for each component in a wind turbine. More
theoretical aspects have also begun to be studied, such as coupling with active fault
diagnosis [17] and the use of set-invariance theory [29]. More recent additional
objectives for MPC controllers, proposed in [20, 21], have been to preserve system
health and reliability, respectively.

The research presented in this chapter is based on three concepts:

• How fault accommodation/reconfiguration strategies were applied in a linear
quadratic regulator (LQR) [23].

• The idea that fault configurations should be evaluated before applying FTC strate-
gies [24].

• The idea of using reliability with the FTC design [7].

Starting from these key ideas, it is proposed a new reliable fault-tolerant MPC
scheme for application to WTNs. After a fault has occurred, the MPC controller
should be redesigned to cope with the fault by considering either a reconfigura-
tion or an accommodation strategy, depending on knowledge available on the fault.
Before starting to apply the FTC strategy, whether the MPC controller will be able
to continue operating after the fault appears should be evaluated. This is done in two
ways: first, a structural analysis is done to determine the level of loss in post-fault
controllability; second, a feasibility analysis is done by the optimization problem
related to the MPC design so as to consider the fault effect on actuator constraints.
By evaluating the admissibility of different actuator-fault configurations (AFCs),
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critical actuators regarding fault tolerance can be identified considering structural,
feasibility, performance and reliability analyses. This has been studied in [19], where
only some of the analyses proposed here were considered.

The proposed approach allows a degradation analysis of the system to be per-
formed in terms of performance and reliability. As a result of this analysis, the MPC
controller design can be modified, adapting the constraints so as to achieve the best
achievable performance with some pre-established level of reliability. The proposed
approach was tested in the Barcelona WTN, in an application that also shows that
relevant information about critical actuators can be extracted by considering the
different analyses proposed.

Themain contribution of this chapter is the design of methodologies for the analy-
sis of the influence of faults taking into account reliability features. As discussed,
some of the proposed methodologies have been previously documented but not their
application in the considered fault tolerance framework, to the best of the knowledge
of the authors, after a thorough literature review (a secondary contribution of the
chapter).

15.2 Problem Statement

15.2.1 Flow-Based Control-Oriented Model

This chapter considers a general WTN as represented by a digraph G(V, E) (see
[22] for more details), where a set of elements, i.e., ns sources, nx storage elements,
nq intersection nodes, and nd sinks, are represented by v ∈ V vertices connected by
a ∈ E links. Due to the network function, water is transported along the links by
nu flow actuators (i.e., pipes and valves), passing through reservoirs or tanks, from
specific origin locations to specific destination locations. The network is subject to
several capacity and operational constraints, and to measured stochastic flows to
customer sinks as driven by water demand.

Selecting the volume in storage elements as the state variable x ∈ R
nx , the flow

through the actuators as the manipulated inputs u ∈ R
nu and the demanded flow as

additivemeasured disturbancesd ∈ R
nd , the control-orientedmodel of theWTNmay

be described by the following set of linear (or linearized) discrete-time difference-
algebraic equations (DAE) for all time instants k ∈ Z+:

x(k + 1) = Ax(k) + Bu(k) + Bdd(k), (15.1a)

0 = Euu(k) + Edd(k), (15.1b)

where the difference equation in (15.1a) describes the dynamics of the storage tanks,
and the algebraic equation in (15.1b) describes static relations in the network (i.e.,
mass balance at junction nodes). Moreover, A, B, Bd , Eu and Ed are time-invariant
matrices of suitable dimensions as dictated by the network topology.
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System (5.1) is subject to hard state and input polytopic constraints given by:

U �
{
u ∈ R

nu |umin ≤ u ≤ umax
}
, (15.2a)

X �
{
x ∈ R

nx | xmin ≤ x ≤ xmax
}
, (15.2b)

where umin, umax, xmin and xmax are the actuator and tank operational limits.

15.2.2 Statement of the Control Problem

TheWTN (5.1) is controlled using anMPC law that aims tominimize the operational
costs of the WTN as proposed in economic model predictive control (EMPC) [5, 8,
18]. According to [1], the solution of a control problem consists of finding a control
law from a given set of control laws U, such that the controlled system achieves the
control objectives O while its behaviour satisfies a set of constraints C. Thus, the
solution to the problem is completely defined by the triplet 〈O,C,U〉. In the case of
an MPC, the triplet 〈O,C,U〉 is defined by

O : min
x̃,ũ

J (x̃, ũ), (15.3a)

subject to:

C : (15.3b)

x(k + i + 1|k) = Ax(k + i |k) + Bu(k + i |k) + Bdd(k + i |k),
∀i ∈ Z[0,Hp−1] (15.3c)

0 = Euu(k + i |k) + Edd(k + i |k), ∀i ∈ Z[0,Hp−1], (15.3d)

u(k + i |k) ∈ U , ∀i ∈ Z[0,Hp−1], (15.3e)

x(k + i |k) ∈ X , ∀i ∈ Z[1,Hp], (15.3f)

where

x̃ = (
x(1|k), . . . , x(Hp|k)

)
, (15.4a)

ũ = (
u(0|k),u(1|k), . . . ,u(Hp − 1|k)) , (15.4b)

d̃ = (
d(0|k),d(1|k), . . . ,d(Hp − 1|k)) (15.4c)

are the state, input and disturbance sequences over Hp, respectively. Hp denotes
the prediction horizon used by the MPC controller. The sequence d̃ comes from a
forecasting module based on existing time series techniques (see [15, 26] for more
details).

The MPC law belongs to the set U and is obtained using the receding horizon
philosophy [9, 18]. This technique consists of solving the optimization problem
(15.3a) from the current time instant k to k + Hp using x(0|k) as the initial condition

http://dx.doi.org/10.1007/978-3-319-50751-4_5
http://dx.doi.org/10.1007/978-3-319-50751-4_5
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obtained from measurements (or state estimation) at time k. Only the first value
u∗(0|k) from the optimal input sequence ũ∗ (which arises from the solution of the
optimization problem (15.3a)) is applied to the system. At time k + 1, in order to
compute u∗(0|k + 1) the optimization problem, (15.3a) is solved again from k + 1 to
k + 1 + Hp (i.e., the time window is shifted), updating initial states x(0|k + 1) from
measurements (or state estimation) at time k + 1. The same procedure is repeated
for the following time instants.

The objective function J in (15.3a) collects all the control objectives of the closed-
loop system, taking the name multiobjective cost function. In general form, (15.3a)
can be written as:

J (x̃, ũ) =
nJ∑

i=0

Hp∑

k=0

Ji (k), (15.5)

where nJ is the number of objectives and Ji,k corresponds to the evaluation of each
particular objective i at time k. In the case of WTNs, (15.5) typically includes the
objectives presented in Chap.12.

15.2.3 Inclusion of Fault-Tolerant Capabilities

The control problem 〈O,C,U〉 described in Sect. 15.2.2 will now be reformulated
to consider faults. If an active FTC strategy is considered, there are two main ways
to adapt the MPC law to introduce fault tolerance [1]:

1. System reconfiguration. This consists of finding a new set of constraintsC f (� f ),
where � f is the set of parameters changed by the faults such that the control
problem 〈O,C f (� f ),U f 〉 can be solved. This strategy can be applied when the
fault detection and isolation (FDI) module does not provide a fault estimation.
The faulty components are therefore unplugged by the supervisory system and
the control objectives are achieved using non-faulty components. In the case of
the actuators, this implies that the model (5.1) used by the MPC controller is
modified as follows:

x(k + 1) = Ax(k) +
∑

i∈IN
Biu(k, i) + Bdd(k), (15.6)

0 =
∑

i∈IN
Eu,iu(k, i) + Edd(k), (15.7)

where IN is the subset of non-faulty actuators.
2. Fault accommodation. This approach consists of solving the control problem

〈O,Ĉ f (�̂ f ), Û f 〉, where Ĉ f (�̂ f ) is an estimate of current system constraints
and parameters provided by the FDI module. This strategy can be applied when a
change occurs in either system structure or parameters. In this strategy, the control
law is modified while the remaining elements within the control loop are kept

http://dx.doi.org/10.1007/978-3-319-50751-4_12
http://dx.doi.org/10.1007/978-3-319-50751-4_5
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unchanged. In the case of the actuators, this requires that the system model 5.1
used by the MPC controller should be modified as follows:

x(k + 1) = Ax(k) +
∑

i∈IN
Biu(k, i) +

∑

i∈IF
βi (u(k, i), θi ) + Bdd(k), (15.8)

0 =
∑

i∈IN
Eu,iu(k, i) +

∑

i∈IF
εi (u(k, i), θi ) + Edd(k), (15.9)

where the functions βi and εi and the parameters θi should be estimated by the
FDI module for actuators belonging to the faulty actuator subset IF .

Note that, in changing the model (5.1) of the MPC controller using either of the
two previous strategies, the controller will consider the effect of the fault in the
system model when computing the control action u∗(0|k). According to [9], this is
different from other control laws (e.g., LQR and pole placement), where the control
law should be designed offline for the considered set of faults, so as to produce a bank
of controllers that should be gain-scheduled online according to the fault features.
However, depending on how critical the fault is, the MPC controller will not be
able to compute a control input or else the computed control input will not lead to
acceptable performance. For this reason, when using an MPC controller, the effect
of the fault and the admissibility of the obtained control input needs to be evaluated.

15.3 Proposed Approach

This section describes a series of analyses to assess the fault-tolerant capabilities
of the system after a fault has occurred and before applying a reconfiguration or
accommodation strategy to achieve fault tolerance.

In case if a fault occurs, then:

• The systemmight have lost some of the properties required to proceed with system
control, or

• That system performance is degraded to an unacceptable level and it is not worth
continuing with system control by activating fault-tolerant strategies.

15.3.1 Admissibility Analysis Algorithms

Before starting to apply the FTC strategies described above, it should be evaluated
whether the MPC controller will be able to continue operating after fault occurrence.
This is done bymeans of a set of admissibility analysis algorithms,which are based on
a structural analysis to determine the loss of post-fault controllability, complemented
by a feasibility analysis of the optimization problem related to the MPC design so as

http://dx.doi.org/10.1007/978-3-319-50751-4_5
http://dx.doi.org/10.1007/978-3-319-50751-4_5
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Fig. 15.1 Critical and redundant actuators of the system

to consider the effect of the fault on actuator constraints. Moreover, by evaluating the
admissibility of the different AFCs, critical actuators regarding fault tolerance can
be identified considering structural, feasibility, performance and reliability analyses.

Let I be the set of systemactuators. The different admissibility analysis algorithms
consider that the set of all subsets of system actuators is denoted by 2I . For each
subset K ⊆ I , corresponding to a given AFC, and using the reconfiguration (or
accommodation) approach described in Sect. 15.2.3, the algorithms evaluate whether
or not a given system property, denoted by P(K ), is satisfied [1]. Thus,

PK =
{
1 if the property is satisfied,
0 if the property is not satisfied.

(15.10)

This evaluation induces the set of all subsets of I , 2I , to be partitioned into two
classes as follows:

2I+ = {K ⊆ I ; PK = 1}, (15.11)

2I− = {K ⊂ I ; PK = 0}. (15.12)

The class 2I+ contains all the subsets of the actuators for which PK is satisfied.
Thus, the admissibility analysis mainly aims to identify the following (see Fig. 15.1):

• Critical actuators, i.e., the set of actuators that are required to satisfy PK . For
every analysis in Fig. 15.2, a set of critical actuators will be identified.

• Redundant actuators, i.e., the actuators that are not critical for correct functioning
of the system. These may be excluded as PK will continue to be satisfied.

• Redundancy degree, consisting of the number of extra non-critical actuators
through which PK could hold. There are two types of redundancy: weak (cor-
responding to the largest number of sequential faults that can be tolerated in the
best case scenario, i.e., while continuing to satisfy PK ) and strong (corresponding
to the smallest number of sequential faults that can be tolerated in the worst-case
scenario).
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Fig. 15.2 Flow diagram of
the proposed actuator
fault-tolerant evaluation
approach

System
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The approach proposed here consists of a set of analyses based on both the graph
and the mathematical model of the system (see Fig. 15.2):

• From the system graph, the structural analysis allows to determine whether or not
the system with a given AFC is structurally controllable. It does this by checking
the existence of at least one path linking demands with sources. At this stage,
all possible paths linking demands and sources are also determined. Using this
information, the reliability of the AFC can also be evaluated.

• From the system mathematical model, a constraint satisfaction problem (CSP)
can be formulated that allows a feasibility analysis to be performed. This analysis
allows the physical capacity of the system to be checked considering constraints
in actuators and states (see (15.3a)). Moreover, as a complementary analysis, the
closed-loop performance based on a given global objective for the AFC can be
evaluated.

These two sets of analyses are complementary. When a reconfiguration strategy
is used, connectivity between demands and sources may be lost when the faulty
actuator is removed (see Sect. 15.2.3). This will affect both controllability and reli-
ability. However, those properties do not take into account the physical limitations
of the system actuators. Hence, although connectivity is preserved, the MPC-related
optimization problem might lead to an unfeasible solution, due either to the lack of
capacity of the remaining actuators or the poor performance of the control loop. This
happens when an accommodation strategy is used, since although the connectivity
among elements is preserved (the faulty actuator is not removed), the resultingMPC-
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related optimization problem may be unfeasible or the closed-loop control scheme
may perform poorly.

As a result of the application of the methodology presented in Fig. 15.2, it is
possible to determine critical actuators as follows (type of analysis in brackets):

• Actuators that are essential to preserving demand–source connectivity (by means
of structural controllability analysis).

• Actuators that are indispensable to preserving the capacity to move the desired
water volume from sources to meet demands taking into account actuator physical
constraints (by means of structural controllability analysis).

• Actuators whose malfunction generates high suboptimality of the considered con-
trol objective if the system is maintained in operation after fault detection (by
means of performance analysis).

• Actuators whose malfunction does not guarantee reliable operation of the system
(by means of reliability analysis).

Figure15.1 depicts the different types of critical actuators that can be identified
applying the sequence of analyses presented in Fig. 15.2. Results for each analysis are
considered in subsequent analyses, in such a way that actuators that are considered
critical at a given stage of the methodology might not be further considered in the
later analyses.

15.3.2 Analyses Based on the System Graph

15.3.2.1 Structural Analysis Algorithm

The structural analysis algorithm copes with connectivity properties of the system
without considering the actual value of the model parameters or the limitations of
the actuators.1 This test is used to evaluate the admissibility of a given AFC when
the reconfiguration FTC strategy is used, i.e., when an actuator is removed after fault
occurrence and the system is controlled by the remaining actuators.

The algorithm starts by determining the digraph2 G(V, E) of the model used for
the MPC controller. Using the digraph, the structural controllability of the system
for a given AFC will be evaluated. If this property is preserved after the actuator
fails, the AFC is admissible; i.e., it is able to tolerate the fault; otherwise, the AFC
is not admissible. To evaluate structural controllability from the system graph, some
basic graph theory concepts will be used (see [2] for more details). Using Theorems
15.1 and 15.2, Algorithm 15.9 will perform the structural controllability analysis for
a given AFC.

1See [1] for important definitions related to the topic.
2See [22] for details on how to obtain a digraph from the system model.



300 V. Puig et al.

Algorithm 15.1 Controllability analysis using the structural approach
1: Obtain the digraph G = (V, E) of the system model used for designing the MPC (related to

the optimization problem in (15.3a)) given a particular AFC
2: From the system digraph G = (V, E), find the reachability matrix �

3: for each xi ∈ R
nx , i = 1, ..., nx do

4: if �u j ∈ R
nu , j = 1, ..., nu | �i j = 1 then

5: AFC is non-input-reachable
6: else
7: if s-rank([A B]) 
= n then
8: is non-structurally controllable
9: else
10: is structurally controllable
11: end if
12: end if
13: end for

15.3.3 Analyses Based on the System Mathematical Model

15.3.3.1 Feasibility Analysis Algorithm

To evaluate the admissibility of the control of a given AFC when system constraints
(15.2) are considered, it is not possible to use the structural analysis algorithm3

presented in Sect. 15.3.2.1.
Feasibility in an MPC controller design is a key property to be satisfied before

the control action can be computed by solving the optimization problem (15.3a) [9].
In this case, the admissibility evaluation problem for a given AFC can be naturally
handled as a CSP. Consequently, the feasibility evaluation of the MPC-related opti-
mization problem (here for a given AFC using the reconfiguration strategy)4 can be
checked using Algorithm 15.10.

15.3.3.2 Performance Analysis Algorithm

The degradation of the control objective in a faulty situation can be quantified by
means of maximal loss of efficiency ρ with respect to the objective function in a
non-faulty situation J0. This fact establishes whether or not the control objective
degradation after an actuator fault J f is admissible. Thus, an AFC is admissible
regarding performance if the following condition is satisfied: J f ≤ (1 + ρ) J0. This
condition will enable a performance analysis of the AFC considering the faulty
actuator, with either an accommodation or a reconfiguration strategy.

3This would also be the case when an accommodation FTC strategy is used, since the actuator
would not be removed after the fault but would be operated under the remaining operating range
estimated by the FDI module.
4If an accommodation strategy is used, then the faulty model used in Algorithm 15.10 should be
replaced by the one used in (15.8).
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Algorithm 15.2 Feasibility Analysis
1: for k = 1 to Hp do
2: U(k − 1) ⇐ U
3: X (k) ⇐ X
4: end for

5: W ⇐ {
x̃

︷ ︸︸ ︷
x1, x2, . . . , xHp ,

ũ
︷ ︸︸ ︷
u1,u2, . . . ,uHp−1}

6: D ⇐ {X1,X2, . . . ,XHp ,U1,U2, . . . ,UHp−1
}

7: Z ⇐
⎧
⎨

⎩

(

x(k + 1) = Ax(k) + ∑

i∈IN
Biu(k, i) + Bdd(k), 0 = Euu(k) + Edd(k)

)Hp−1

k=0

⎫
⎬

⎭

8: HA = (W,D,Z)

9: if the CSP HA has solution then
10: AFC is admissible
11: else
12: AFC is non-admissible
13: end if

The procedure for evaluating the performance admissibility of the controller with
respect to the fault situation is summarized by Algorithm 15.10, modifying the con-
straints defined in Step 7 to add a new constraint:

φxHp
+

Hp−1∑

i=0

�i (xi ,ui ) ≤ (1 + ρ) J0. (15.13)

Notice that, as in the case of the feasibility analysis, the existence of a solution
to the CSP associated with MPC performance evaluation for a given AFC using
the reconfiguration strategy5 can be proved by Algorithm 15.10 but including the
new constraint (15.13), which considers the admissibility condition with respect to
control performance over the prediction horizon Hp stated in the MPC controller.

15.3.4 Reliability Analysis Algorithm

Reliability is defined as the probability that a given component (or system) will
accomplish its intended function during a given period of time and in specific oper-
ating conditions and environments [6]. In other words, it is the probability of success
in accomplishing a task or achieving a desired property in a process, based on proper
operation of components. The main advantages of including a reliability analysis are
as follows:

5If an accommodation strategy is used, the fault model used in Algorithm 15.10 should be replaced
by the one used in (15.8).



302 V. Puig et al.

• Information on component health is integrated into controller design and improves
the life of the system components

• Reliability information on the system can be considered as design criteria to be
used in MPC implementation including FTC capabilities

• Essential actuators whose malfunction causes abrupt system reliability decay are
identified.

In the case of WTNs, reliability is understood as the ability of the network to
provide an efficient water supply to consumers under both normal and abnormal
operating conditions. For this reason, reliability is a measure of WTN performance.
Reliability in WTNs has already been considered in the literature [14, 25].

When a reconfiguration FTC strategy is used, the reliability of DTWNs can be
affected due to the probabilities of success of each of the components in the new
configuration. For this case, the admissibility evaluation problem of a given AFC can
be handled as composite reliability of the subsystems in the system. In particular,
since reliability in DTWNs is related to guaranteed supply to consumers, it can be
determined based on all the possible paths linking demands and sources from the
network graph already obtained in the structural analysis.

The global reliability of a system, denoted by Rg , generally consists of the decom-
position of its subsystems into elementary combinations of serial and parallel sub-
systems that can be extracted from the matrix containing all paths linking demands
and sources [7]:

• Reliability of np parallel subsystems is defined as:

Rp(k) = 1 −
np∏

i=1

(1 − Ri (k)). (15.14)

• Reliability of ns serial subsystems is defined as:

Rs(k) =
ns∏

i=1

Ri (k), (15.15)

where Ri (k) represents the reliability of the i-th actuator (or subsystem) at time k
and where γi (k) is the failure rate modelled as an exponential distribution

Ri (k) = e−kγi (k). (15.16)

Thus, overall system reliability is given by

Rg(k) =
ns∏

i=1

(1 −
np∏

i=1

(1 − Ri (k))). (15.17)
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Algorithm 15.11 shows the reliability evaluation of a given AFC based on com-
puting system reliability. Since the calculation of reliability for each and every AFC
could impose a great computational burden, to save time, the path matrix that con-
tains all the possible paths in the system graph is used. This matrix has the following
structure:

p1 p2 p3 . . . pnph

u1 1 0 1 . . . 0
u2 0 1 1 . . . 1
u3 1 0 0 . . . 1
...

...
...

...
...

...

unu 0 1 1 . . . 1

(15.18)

where nph is the number of path, and 1 and 0 indicate the presence and absence,
respectively, of an actuator in the path. Each time a component malfunctions, the
row assigned to that actuator is withdrawn along with all the paths that make use of
it. To evaluate fault tolerance for the rest of the system, the reliability index Rg(k)
should be greater than a specific admissibility threshold Rth at a given time horizon
kend , both defined by the user.

Algorithm 15.3 Reliability analysis
1: Decompose the system in n p parallel subsystems and ns subsystems using the system graph.
2: for i = 1 to nu do
3: Evaluate actuator reliability Ri (k) using (15.16).
4: end for
5: for g = 1 to n p do
6: Evaluate reliability of parallel subsystems Rp(k) using (15.14) and (15.16).
7: end for
8: for g = 1 to ns do
9: Evaluate reliability of system Rg(k) using (15.17) and the result obtained from the evaluation

in (15.14).
10: end for

15.3.5 MPC Redesign to Preserve Reliability

When a fault occurs, the MPC law is modified to cope with the fault, as discussed in
Sect. 15.2.3. As explained in [7], the value of the actuator failure rate changes because
the control action should be increased in order to compensate for the fault effect. In
this case, energy consumption increases and the value of the failure rate also increases
due to the actuator load increment. Thus, there is an interplay between maintaining
closed-loop performance and reliability. To maintain the desired performance, the
relationship between the actuator load increment and reliability can be established.
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One of the most commonly used relationships is based on assuming that the actuator
failure rate changes with the load through the following exponential law:

γi (k) = γo
i e

βiui (k), (15.19)

where γo
i represents the baseline failure rate (nominal failure rate) and ui is the

control action for the i-th actuator. Parameter βi is a fixed factor that depends on
the actuator characteristics. Thus, the reliability of the actuator can be expressed in
terms of its load as follows:

Ri (k) = ekγi (k) = eγo
i e

kβi ui (k)
. (15.20)

Consider that a predefined reliability threshold Rth should be maintained until the
end of the systemmission at time kend . This threshold defines the minimal acceptable
reliability value in the degraded fault mode. The aim is to translate this threshold to
a load threshold that can be applied to the actuator. This actuator load threshold can
be derived from (15.20) as follows:

|ui,th | = 1

βi
ln

(
ln Ri,th

γo
i kend

)
. (15.21)

Hence, the MPC controller (15.3a) can be redesigned by including the following
constraint in the i-th actuator control:

ui ∈ [−ui,th, ui,th
]
. (15.22)

However, as discussed in [27], this will only preserve the reliability of the i-th
actuator. In order to preserve the reliability of the whole WTN, the new actuator
constraints (15.22) should be derived taking into account the reliability expression
(15.15) and the reliability threshold Rth at the end of the MPC prediction horizon
Hp. This can be achieved by formulating a CSP problem, such as that reflected in
Algorithm 15.12, which considers, as constraints, the reliability of the WTN in
(15.15) derived by means of Algorithm 15.11 in terms of the reliability of each
actuator, the impact of actuator load (see (15.20)) and the actuator operational con-
straints defined in (15.3a).

After solving the CSP problem in Algorithm 15.12, to solve the optimization
problem associated with the MPC design, the resulting updated actuator constraints
are used instead of the actuator operational constraints defined in (15.3a). In this
way, it can be guaranteed that the MPC controller computes a control sequence
that preserves reliability. There is, of course, a trade-off between reliability and
performance. Increasing the reliability threshold Rth will imply a reduction in the
WTN performance but will extend the life of the remaining actuators.
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Algorithm 15.4 MPC redesign to preserve reliability
1: for k = 1 to Hp do
2: U(k − 1) ⇐ U
3: end for

4: W ⇐ {
ũ

︷ ︸︸ ︷
u1, u2, . . . ,uHp−1}

5: D ⇐ {U1,U2, . . . ,UHp−1
}

6: Z ⇐
{(

Rg(k) = f (Ri (k)), Ri (k) = eγoi e
kβi |ui |

, i = 1, . . . , nu
)Hp−1

k=0
, Rg(Hp − 1) > Rth

}

7: HA = (W,D,Z)

8:
{U1,U2, . . . ,UHp−1

} ⇐ solve(HA)

15.4 Simulations and Results

15.4.1 Case Study Description

The Barcelona WTN, presented in Figs. 2.2, 2.3 and 2.4 of Chap. 2, is used as the
case study of this chapter. Figure15.3 shows the graph derived from this network; the
nodes correspond to reservoirs or pipe merging/splitting nodes and the arcs corre-
spond to actuators (valves and pumps). Five of the pumps are used to drawwater from
underground sources and the remaining pumps satisfy water demand at appropriate
pressure levels. The network has 88 main water consumption sectors (for further
information regarding the Barcelona WTN, see [15]). Both the demand episode and
the calibration set-up of the network are as established by Aguas de Barcelona. The
control centre has a telecontrol system for network management. The Barcelona
WTN also has some 98 remote stations, which manage about 450 elements in real
time, including flow metres, pumps, valves and chlorine-dosing instruments.

Fig. 15.3 Graph of the Barcelona WTN

http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_2


306 V. Puig et al.

The system control objective set for theMPC controller is tominimize operational
costs (water transport and production for the entire network) while satisfying water
demand for each consumption sector [15]. Thus, recapping onChap.12, the economic
objective function can be written as follows:

J (k) =
Hp−1∑

i=0

[α1 + α2(k)]u(k), (15.23)

which takes into account thewater costα1 (price ofwater at source) and the electricity
cost α2(k) (operation of pumps and valves). Note that the time variance of α2 is due
to the fact that pumping costs vary according to the time of day. The prediction
horizon Hp is 24 h. No terminal cost is considered in this application.

Demands are imposed as equality constraints in the model (5.1) used by the
MPC controller, which, in the case of the WTN, can be expressed in discrete-time
state-space form (5.1) using a sampling time �t = 1 hour. Moreover, x ∈ X ⊆ R

nx

is the state vector corresponding to the water volumes of the nx = 63 tanks, u ∈
U ⊆ R

nu represents the vector of manipulated flows through the nu = 130 actuators
(pumps and valves), and d ∈ D ⊆ R

nd corresponds to the vector of the nd = 88water
demands (consumption sectors).

There are 16 nodes in the Barcelona WTN and since demand can be forecasted,
these are assumed to be known. Thus, d is a known vector of non-negative elements
that contains the measured disturbances (demands) affecting the system.

15.4.2 Results

Several tests and analyses were performed for the Barcelona WTN case study to
illustrate the proposedmethodology. Figure15.2 shows the sequence of tests applied.
In this section, all the capabilities of each analysis are explored, while Sect. 15.4.3
describes only the ones necessary for this study. The results were obtained using a
1.5 GHz and 2:00 Gb RAM Intel(R) Core(TM)2 Duo PC. Matlab© and Tomlab were
used to perform the simulations.

The structural analysiswas carried out using the computed reachabilitymatrix and
path computation, which, as expected, produced equivalent results. However, each
technique yielded several additional results that provided important information con-
cerning the operation and behaviour of the WTN. From the reachability analysis, it
is possible to determine which states were structurally controllable, while the path
computation analysis obtained all possible paths from a source to a destination node
as well as, for each path, an approximate operational cost (according to the electricity
cost of each element) and amaximal water flow (according to the physical constraints
of the actuators). In this stage, critical actuatorswere located and different approaches
were used according to the applied strategy. Although a fault scenario with a
faulty actuator at each time instant was considered in both cases, the representation

http://dx.doi.org/10.1007/978-3-319-50751-4_12
http://dx.doi.org/10.1007/978-3-319-50751-4_5
http://dx.doi.org/10.1007/978-3-319-50751-4_5
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of the malfunction was denoted in different ways. In the reachability analysis, the
malfunction was determined from the state-space matrices (a zero value was forced
in the position where a connection value previously existed between the state and
the actuator failure). In path computation, all paths with the faulty component were
extracted from the path matrix (15.18). From this study, the critical actuators for each
state and for the whole network could be identified. Note that although the results
obtained by both techniques in the structural analysis were similar, the computation
time required for the reachability-matrix-based strategy was much higher, at almost
200 times the time consumed by the path computation technique (579s vs. 3 s).

The feasibility analysis can only be implemented if the previous analysis is first
made, since its implementation is based on the path matrix calculation. The result of
this analysis was a set of paths that guaranteed that demand was satisfied, taking into
account the physical constraints of the network actuators. The cost of maintaining
correct network operations was also obtained in this stage. The time consumed by
this analysis was 1.57 s.

Performance was computed using the objective function (15.23) and the actuator
constraints. The analyses were performed taking into account faulty components and
comparing the corresponding performance with the fully operative case (non-faulty
system). The computation time needed for this analysis was 8 s. Finally, the reliability
analysis showed the level of reliability of each component and path and of the whole
network. AFCs were analysed by extracting all paths using the faulty actuator and
recomputing the reliability of the WTN. Two rankings were computed: the first one
according to demand satisfaction, showing which demands were more likely to be
unsatisfied; and the second one according to the most critical actuators, showing how
the reliability of the entire network decreased if those actuators were damaged. The
computation time in this case was 5 s.

15.4.3 Discussion

Although each of the previous analyses can individually provide a great deal of
information about the fault tolerance of a network, linking them up reduces the
computational burden. In order to clearly present and easily discuss the proposed
methodologies, a smaller portion of the Barcelona WTN (see Fig. 15.4) was used for
illustrative purposes.

The first test consisted of locating the critical network actuators by means of a
structural analysis. These critical actuators are those without which (outage) path
connectivity is lost. The results of this analysis, summarized in Tables15.1 and 15.2,
point to an important number of critical actuators within the network, due to the
topology and the way of connecting network elements, as most actuators (valves
or pumps) are the only link between tanks and demands. Therefore, if an actuator
fails, then the corresponding demand will not be satisfied. Note that the information
shown in Tables15.1 and 15.2 is particularly significant for Aguas de Barcelona
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Fig. 15.4 Portion of the
WTN related to Demand 56

(the manager of the water infrastructure), since it identifies the critical elements in
the network for surveillance/correction policies to be implemented in the event of
element damage (fault).

Applying the first test to the network, as depicted in Fig. 15.4, four possible paths
were detected. These were:

Path 1: AportT → u58 → u50 → u52 → u54 → u43 → d56
Path 2: AportT → u58 → u51 → u52 → u54 → u43 → d56
Path 3: AportT → u58 → u55 → u54 → u43 → d56
Path 4: aPousB → u53 → u52 → u54 → u43 → d56

Analysing the structure of the network, as depicted in Fig. 15.4, it can be observed
that it contains two critical actuators: 54 and 43. If either of these actuators fails, then
Demand 56 will not be satisfied. All the remaining actuators can be considered as
redundant actuators.

The second analysis done to the Barcelona WTN was to identify the actuators
whose physical constraints limit water transport capacity through a certain path.
Note that this analysis did not consider any fault in those actuators. The analysis,
performed using Algorithm 15.10, also pinpointed several alternative paths through
which water transport is possible (or even mandatory) given the constraints of the
paths for supplying demands.

Results for this last analysis considering the whole WTN identified other critical
actuators: 26, 52 and 91 (namely iPalleja4, vBesosMontCerd and vGava100a80).
Note that the increase in the number of critical actuators, taking into account their
physical constraints, is not significant. For the network in Fig. 15.4, actuator 52 is not
a critical element according to the structural controllability property, meaning that
connectivity is not lost when this component fails. However, the feasibility analysis
determined that this actuatorwas in fact criticalwhen the actuator physical constraints
were considered. Actuator 52 cooperates with a flow of water to satisfy the demand
that cannot be satisfied with a flow through a single path.

The third analysis identified the optimal paths to reach a selected destination node
without considering the system constraints, i.e., the structural optimal paths. This
analysis was performed using the structural algorithm, as explained in Sect. 15.3.2.1.
For the smaller network, the cost of each path was computed, corresponding to the
electricity cost of the actuators for both paths and the cost of water treatment in a
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determined source. For paths 1, 2 and 3, the cost was 0.54 e.u.,6 while for path 4 the
cost was 0.77 e.u. This small example would indicate that any of the first three paths
is optimal for satisfying Demand 56.

A criterion to decide which of the three paths is optimal for this demand is to
calculate the maximum flow of water for each path, which can also be computed in
this analysis and is given by the smallest value of the maximum flow of water of the
actuators in a given path. In this case, since all paths were restricted to 0.3m3/s, due
to the physical capacities of actuator 43, any of the first three paths is recommended.
However, if actuator 43 was not considered, path 1 would be the optimal path as it
has a maximum flow of 2.2m3/s, while in the other paths, actuator 55 is restricted to
0.35m3/s, and actuators 51 and 52 to 0.8m3/s.

The fourth analysis consisted of identifying the set of optimal paths including the
objective function (15.23) and the system constraints (15.2a)–(15.2b). Path details
are not provided here, but the total cost of maintaining the whole DTWN in proper
workingorder and satisfying all its demandswas 502.25 e.u. In the case of the network
depicted in Fig. 15.4, the optimal path obtained from the fourth analysis was path
4. Although it may appear that, when only Demand 56 is considered without the
interconnection of the entire network, the other paths are less costly when the entire
network is considered—this is not true. The actuators used in path 4 are also used to
satisfy other demands, so sharing components results in an optimal solution.

The fifth test was performance analysis, taking into account the critical actuators
already identified in the previous tests, with the difference in costs showing the
impact that a single faulty actuator could have on an entire network. Results from this
analysis are summarized in Table15.3. Note that all comparisons took into account
an optimal functioning cost (under non-faulty conditions) of 502.25e.u. Moreover,
fault cost denotes the functioning cost under faulty conditions.

Table 15.3 Entire WTN performance analysis

Actuator no. Faulty cost [e.u.] Cost overrun (%)

41 514.44 2.43

47 515.94 2.73

74 528.05 5.14

78 557.62 11.03

86 515.08 2.55

89 556.22 10.74

97 510.49 1.64

102 539.87 7.49

103 552.21 9.95

6Note that costs are given in economic units (e.u.) rather than real units (e) for confidentiality
reasons.
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According to the analysis of the entire WTN, some actuators did not have a sig-
nificant impact on the total performing cost (e.g., actuators 28, 29, 33, 64, 71, 80, 81,
85, 87, 94, 107, 108 and 113). However, other actuators such as 78 or 89 significantly
increased cost, taking into account daily estimates. These latter actuators are shown
in Table15.3. Degradation in costs obtained with this analysis can be the founda-
tion for the introduction of redundant actuators in the network or an alternative fault
tolerance strategy. For the network depicted in Fig. 15.4, the performance analysis
shows that the cost of maintaining operations for the network with a fault in any of
these actuators does not increase the cost.

The accommodation and reconfiguration strategies presented in Sect. 15.2.3 are
now illustrated for the case of a fault in actuator 108 (named vTerMontcada), which,
according to the previous analysis, is redundant. First the reconfiguration strategy is
illustrated. Figure15.5 presents the volume behaviour of tank 33, which is supplied
by two actuators: 73 (iCornella130) and 108 (vTerMontcada). It can be seen that in a
non-faulty situation, the volume of this tank presents a repetitive pattern (fillingwhen
pumping is cheaper and emptying otherwise) to satisfy the water demand. However,
when a fault occurs (at k = 50h), if theMPCcontroller is not reconfigured (labelled as
fault occurrence in the plots), tank 73 volume drops to zero at k = 58h and demand
is not satisfied anymore (unfeasible solution). However, if the MPC controller is
reconfigured by removing the faulty actuator 108 from the control model, the tank
level is still able to supply the required demand. However, the tank volume decreases
with time, indicating that the faulty actuator should be repaired. Figures15.6 and
15.7, which depict the behaviour of actuators 108 and 73, show that actuator 73

Fig. 15.5 Volume evolution of tank 33 with MPC using reconfiguration
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Fig. 15.6 Water flow in actuator 108 with MPC using reconfiguration

Fig. 15.7 Water flow in actuator 73 with MPC using reconfiguration

starts to deliver more flow in an effort to compensate for the faulty actuator 108 that
is removed.

Figures15.8, 15.9 and 15.10 depict tank 33 volume and actuators 108 and 73
flows when the fault is accommodated by the MPC controller. The fault affecting



314 V. Puig et al.

Fig. 15.8 Evolution of volume in tank 33 with MPC using accommodation

Fig. 15.9 Water flow in actuator 108 with MPC using accommodation

actuator 108 reduces the operating range by 50%. In this case, the faulty actuator
is not removed from the control model of the MPC controller; rather, the operating
limits of actuator 108 are updated according to the new operating range. Figure15.8
shows how the volume behaviour of tank 33 in a non-fault situation and when using
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Fig. 15.10 Water flow in actuator 73 with MPC using accommodation

Fig. 15.11 MPC redesign to preserve reliability
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accommodation looks exactly the same; in contrast, when the controller is not accom-
modated, the volume tends to zero and demand is not satisfied.

From Figs. 15.9 and 15.10, it can be seen that the MPC controller compensates
for the reduction in the faulty actuator’s operating range by increasing use of the
non-faulty actuator, thereby compensating for the impact of the fault.

Although the proposed algorithm improves handling of the behaviour of the tank
volume and actuator flows, it has computational and financial costs, as implementa-
tion of this feature increments computation time by 30s (12%) and the cost overrun
by around 9%.

The reliability analysis also takes into account the results of the previous analy-
sis. The reliability of the entire network considering proper operation is 90.74%
successful in satisfying the desired property when the reliability of each component
is calculated using (15.16) with γ = 0.0034 (data obtained [10]). The association
between demand satisfaction and reduced reliability when a faulty component exists
is shown in Table15.4.

As shown in Table15.4, although most faults in actuators do not significantly
affect reliability in satisfying demand, some completely override the satisfaction
of the desired property. These actuators are critical actuators regarding reliability.
The risk of having a malfunction in the system can be better understood when the
reliability of the entire network is computed. Examples of critical actuators obtained
from this study were actuators 102 and 103 since their malfunction led to a drop of
31.13% in the reliability of the entire network.

The reliability analysis was applied to the network depicted in Fig. 15.4. The reli-
ability of satisfying Demand 56 decreased to 1.33% if actuators 52 and 58 had a
fault, highlighting the importance of both these actuators for the operation of this
smaller network, and decreased to 0% when actuators 43 and 54 were faulty, reaf-
firming the fact that these two actuators are critical. Otherwise, reliability remained
the same. Regarding the entire WTN, actuator 52 decreased reliability of satisfying
the demands in the network by 21.71%, denoting again that it is an important element
in system interconnectivity.

Table 15.4 Association between demand satisfaction and reliability

Demand No Percentage of total
demand (%)

Faulty components Rg in Faulty
conditions (%)

69 9.1 128 0

83 4.0069 82, 88, 90, 104 0

70 3.2537 125 0

70 3.2537 58 99.33

70 3.2537 53, 50, 51 99.99

33 1.964 108 99.98

58 1.9407 52, 58 99.33

56 1.6777 52, 58 98.67

64 1.4941 58, 59 0
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Critical actuators 43 and 54, when they malfunction, reduced the reliability of the
entire system towards zero; in contrast, the fact that other actuators did not affect
reliability denotes them to be redundant actuators.

Finally, the MPC redesign approach to preserve the network reliability has been
applied to the entire WTN using Algorithm 15.12. Figure15.11 shows how the relia-
bility of the network evolves in time when this algorithm is used. It can be observed
that with the use of Algorithm 15.12, the reliability of the network degrades slowly
compared to the case that the reliability is not considered in the MPC design.

15.5 Conclusions

This chapter proposed a reliable fault-tolerant model predictive control strategy for
drinking-water transport networks. The proposed approach combines structural, fea-
sibility, performance and reliability analyses. After a fault, the predictive controller is
redesigned to copewith the fault by considering either a reconfiguration or an accom-
modation strategy depending on available knowledge regarding the fault. Before
starting to apply the fault-tolerant control strategy, whether the predictive controller
will be able to continue operating after the fault appearance needs to be evaluated.
This evaluation is performed bymeans of a structural analysis to determine post-fault
loss of controllability, complemented with a feasibility analysis of the optimization
problem related to the predictive control design, so as to consider the fault impact on
actuator constraints. By evaluating the admissibility of different actuator-fault config-
urations, critical actuators regarding fault tolerance can be identified. The proposed
approach also allows for a degradation analysis of the system in terms of perfor-
mance and reliability. As a result of this analysis, the predictive controller design
can be modified by adapting constraints such that the best achievable performance
with some pre-established level of reliability is achieved. The proposed approach,
successfully tested on the Barcelona water network, shows that relevant information
can be extracted about critical actuators considered in the different analyses. Future
research will investigate the impact of uncertainty on the analyses and on the design
of the predictive controller including fault-tolerant capabilities.
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Chapter 16
Partitioning Approaches for Large-Scale
Water Transport Networks

Carlos Ocampo-Martínez and Vicenç Puig

16.1 Introduction

Large-scale systems (LSS) present control theory with new challenges due to the
large size of the plant and of its model [13, 22]. The goal to be achieved with control
methods for this kind of systems is to obtain a reasonable solution with a reasonable
effort in modelling, designing and implementing the controller.

As discussed in previous chapters,MPC has been proved to be suitably applied for
the control of LSS as drinking-water networks [3], sewer networks [14], open-flow
channel networks [18] or electrical networks [15]. Nevertheless, the main hurdle for
MPC control (as any other control technique), when applied to LSS in a centralized
way, is the non-scalability. The reason is that a huge control model is needed, being
difficult to maintain/update and which needs to be rebuilt on every change of the
system configuration, e.g., when some part of the system should be stopped because
ofmaintenance actions ormalfunctions. Subsequently, amodel changewould require
re-tuning the centralized controller. It is obvious that the cost of setting up and
maintaining the monolithic solution of the control problem is prohibitive. A way of
circumventing these issues might be by looking into decentralized MPC (DMPC) or
distributed MPC techniques, where networked local MPC controllers are in charge
of controlling part of the entire system. The main difference between distributed
and decentralized MPC is that the former uses negotiations and re-computations of
local control actions within the sampling period to increase the level of cooperation,
whereas the latter does not (at the benefit of computation time, but at the cost of
optimality).

The industrial success of the traditional centralized MPC (CMPC) drives now a
new interest in this old area of distributed control, and distributed MPC has become
one of the hottest topics in process control in the early twenty-first century, world-
wide. Thus, two research projects (HDMPC [10] andWIDE [24]) are currently being
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carried out in Europe, both focused on the development of decentralized and distrib-
utedMPC techniques. Few works have been recently published in this area; see, e.g.,
[6, 11, 16, 19, 20, 23], among others.

However, in order to apply decentralized or distributed MPC approaches to LSS,
there is a prior problem to be solved: the system decomposition into subsystems. The
importance of this issue has already been noticed in classic control books addressing
the decentralized control of LSS as [13, 22]. The decomposition of the system into
subsystems could be carried out during the modelling of the process by identifying
subsystems as parts of the system on the basis of physical insight, intuition or expe-
rience. But, when a large-scale complex system with many states, inputs and outputs
is considered, it may be difficult, even impossible, to obtain partitions by physical
reasoning. A more appealing alternative is to develop systematic methods, which
can be used to decompose a given system by extracting information from its struc-
ture and representing it as a graph. Then, this structural information can be analysed
by using methods coming from graph theory. Consequently, the problem of system
decomposition into subsystems leads to the problem of graph partitioning, i.e., the
decomposition of graph into subgraphs.

Graph partitioning is an important problem with extensive application in scien-
tific computing [12], optimization, very large-scale integration (VLSI) design [8],
task partitioning for parallel processing, control of cascading failures, among others.
However, the development of graph partitioning algorithms that allow the decom-
position of LSS into subsystems for being used in decentralized or distributed MPC
is still very incipient and available methods are quite limited. In [22], a hierarchical
LBT decomposition that leads to a input-reachable hierarchy for some particular
systems is presented. A more general approach is based on the ε-decomposition
method, which is based on decomposing the system in weakly coupled subsystems
(see also [22]). The algorithm proceeds sequentially disconnecting the edges of the
system graph that are smaller than a prescribed threshold ε and identifying the dis-
connected subgraph of the resulting graph. The obtained subsystems correspond to
the subsystems with mutual coupling smaller or equal than ε. However, the tuning
of this parameter is not a trivial issue and only a trial and error approach is currently
available.

16.2 Problem Statement

A graph can be defined as an abstract representation of a set of objects from a
certain collection, where some pairs of objects are connected by links. The intercon-
nected elements are typically called vertices while the connection links are called
edges. These latter elementsmaybedirected (asymmetric) orundirected (symmetric)
according to their connection features, what makes that the whole graph is directed
or undirected as well. It is also possible to distinguish graphs whether or not their
vertices and edges are weighted (weighted/unweighted graphs).
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Consider a dynamical system represented in general form by the state-space equa-
tions

x(k + 1) = g(x(k), u(k), d(k)), (16.1a)

y = h(x(k), u(k), d(k)), (16.1b)

wherex(k) ∈ R
nx andx(k + 1) ∈ R

nx are, respectively, the current and successor sys-
tem states in discrete time, u ∈ R

nu is the system input, y ∈ R
ny is the system output

and dıRnd is a bounded process disturbance. Moreover, g : Rnx × R
nu × R

nd → R
nx

is the states mapping function and h : Rnx × R
nu × R

nd → R
ny corresponds with the

output mapping function. Suppose now that it is desired to decompose (16.1) into
subsystems. With this aim, the graph representation of the system model (16.1) is
determined (by using the system topology) and incidence matrix Bi j is then stated,
which describes the connections (edges) between the graph vertices (system inputs,
outputs and states). Without loss of generality, Bi j and the directionality of the edges
are derived from the relation between system equations (rows of Bi j ) and system
variables (columns of IM ), as proposed by [22, 25, 26]. There are alternative matrix
representations for a (directed) graph such as the adjacency matrix and the Laplacian
matrix (see [2]), which are related to the matrix representation used in this paper.
Once Bi j has been obtained from the system directed graph (digraph), the problem
of the decomposition into subsystems can be formulated in terms of partitioning
the corresponding graph into subgraphs. Since such partitioning is oriented to the
application of a decentralized control strategy (in particular, DMPC), the resultant
subgraphs should have the following features (see [13, 22]):

• nearly the same number of vertices;
• few connections between the subgraphs.

These features guarantee that the obtained subgraphs have a similar size which
balances computations between subsystem controllers and allows minimizing com-
munications between them. Hence, the problem of graph partitioning can be more
formally established as follows:

Problem 16.1 (Standard Graph Partitioning) Given a graph G(V, E), where V
denotes the set of vertices, E is the set of edges and M ∈ Z≥1, find M subsets V1,
V2, . . . ,VM of V such that

1.
M⋃

i=1
Vi = V ,

2. Vi ∩ V j = ∅, for i ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , M}, i �= j ,
3. |V1| ≈ |V2| ≈ · · · ≈ |VM |,
4. the cut size, i.e., the number of edges with endpoints in different subsets Vi , is

minimized.

Remark 16.1 Defining the vertex-based weight of a subset Vi as
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�i �
|Vi |∑

j=1

ω
j
i , (16.2)

where ω
j
i corresponds to the weight of the j-th vertex of the subset Vi , the following

condition should be added to Problem16.1 in the case ofweighted graph partitioning:

• �i ≈ �/M , with i ∈ {1, 2, . . . , M}, where

� �
M∑

i=1

�i . (16.3)

Remark 16.2 Conditions 3 and 4 of Problem 16.1 are of high interest from the decen-
tralized control point of view since they are related to the degree of interconnection
between resultant subsystems and their size balance, respectively.

Graph partitioning is considered as a NP-complete problem [22]. However, it
can be solved in polynomial time for |Vi | = 2 (Kernighan-Lin algorithm) [4, 7].
Since this condition is quite restrictive for large-scale graphs, alternatives for graph
partitioning based on fundamental heuristics are properly accepted. Twomain classes
of successful heuristics have evolved over the years, trying to achieve the proper
trade-off between partitioning speed and quality. They are theminimumdegree-based
ordering algorithms (MDB) and the graph partitioning-based ordering algorithms
(GPB) [9].

16.3 Proposed Approaches

16.3.1 Using Graph Theory

This approach consists in proposing a partitioning algorithm, as much automatized
as possible, through which a partition of a dynamical system can be found, which
allows its decomposition in subsystems. This algorithm requires to represent the
dynamical system as a graph, which can be obtained from the system structure [22].

Main Algorithm
The partitioning algorithm proposed in this chapter follows some ideas developed in
[9] for graph partitioning purposes. However, some refining steps have been added
as well as some of the original procedures have been drastically changed in order to
find partitions oriented to split dynamical networked systems. Hence, the different
parts/routines of themain proposed algorithm are presented and explained in sections
below. The current version of the algorithm is thought to be used offline, i.e., the
partitioning of the system is not carried out online. A further improvement could be
to adapt the proposed algorithm such that the partitioning could be done online when
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some structural change of the network occurs. In this way, the potential benefit of
using a DMPC approach described in the Introduction could be fully exploited.

Start-up: This procedure requires the definition of the graph, i.e., the incidence
matrix1 Bi j , which describes the connections between the graph vertices, their
directionality and, in some cases, the weight of each edge.

Preliminary partitioning: This procedure performs a preliminary automatic par-
titioning of the graph as follows. The vertex v j ∈ V , for j ∈ {1, 2, . . . , |V|}, with
maximum weight ω is found and defined as the centre of the first subgraph G1.
Then, all vertices connected to this vertex of maximum weight are assigned to
G1. At this point, the set of non-selected vertices is defined as

Vr � {v j ∈ V : v j /∈ V1}.

This procedure is now repeated for all vertices v j ∈ Vr (now for j = {1, 2, . . . ,
|Vr |}) until Vr is empty, after the corresponding updating. This routine highlights
the subgraphs of higher connectivity. The resultant subgraphs with just one vertex
are merged to the closest subgraph. Once a set of subgraphs Gi (Vi ,Vi ), for i =
1, 2, . . . , M , is obtained, it is possible to determine some useful indexes for the
entire graph and each one of the resultant subgraphs. These indexes are as follows:

• ϕi � |Vi | (from now on called subgraph internal weight of Gi );
• εi , denoted as the cut size2 of the subgraph Gi (from now on called subgraph
external weight of Gi );

• ϕmax � max
i

ϕi , for i = 1, 2, . . . , M ;

• ϕ̄ � 1
M

M∑

i=1
ϕi (arithmetic mean).

Notice that at this stage, the number M of subgraphs is obtained in an automatic way
so it is not imposed.

Remark 16.3 Notice that introducing the set Ẽa ⊂ E , defined as the set of edges with
endpoints in other subgraphs different toGa , the representation of subgraphsGi such
that

1The incidence matrix of a directed graph G(V, E), denoted as Bi j , is defined such that

Bi j =

⎧
⎪⎨

⎪⎩

−1 if the edge z j leaves vertex vi ,

1 if the edge z j enters vertex vi ,

0 otherwise.

This matrix has dimensions ϕ × ηe, where ϕ corresponds with the total number of vertices and ηe
denotes de total number of edges [2]. Additionally, the weight of the j-th vertex, denoted as ω j ,
for j = 1, 2, . . . ,ϕ, where ϕ � |V|, is computed. The weight ω j represents the number of edges
connected to this vertex. Moreover, ω j is also known as the vertex degree [5].
2See Problem 16.1.



326 C. Ocampo-Martínez and V. Puig

M⋃

i=1

Gi = G,

can be slightly modified to Gi (Vi , Ei , Ẽi ) for completeness purposes. Also notice
that εi � |Ẽi |.
Uncoarsening—Internal balance: This procedure aims at the reduction of the

number of subgraphs, trying to achieve similar internal weights for all of them.
This process starts determining the set

L = {Gi , i = 1, 2, . . . ,m : ϕi ≤ ϕ̄}, (16.4)

with m ∈ Z+ and m < M . For each Gi ∈ L, the set of neighbour3 subgraphs,
denoted as Ni , is determined and expressed as

Ni = {G j , j = 1, 2, . . . , hi : G j is neighbour of Gi }, (16.5)

with hi = |Li |. If the condition

ϕi + ϕ j ≤ ϕ̄, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , hi } (16.6)

holds for Gi ∈ L and G j ∈ Ni , then these two subgraphs are merged. If there are
two or more subgraphs G j ∈ Ni such that (16.6) holds, the subgraph G j ∈ Ni

with minimum internal weight is selected. Once two subgraphs are merged, ϕ̄ is
updated.
This procedure is iterated until no additionalmergingwas possible. It is considered
that the internal balance has been achieved when either

• ϕ̄ ≤ ϕi ≤ ϕmax, for i = 1, 2, . . . , M , or
• Gi withϕi ≤ ϕ̄ cannot bemergedwith any of its neighbours since theϕ associated
with the resultant subgraph might be greater than ϕmax.

Refining—External balance: This procedure aims at the reduction of the cut size
of the resultant subgraphs. To achieve this goal, define ω

j
i as the degree of the

j-th vertex of the i-th subgraph, with j ∈ {1, 2, . . . ,ϕi } and i ∈ {1, 2, . . . , M}.
From this definition, two indexes can be stated as follows:

• the vertex internal degree, denoted as ω̂
j
i , which represents the number of connec-

tions of the vertex v j ∈ Vi , for j ∈ {1, 2, . . . ,ϕi }, i ∈ {1, 2, . . . , M}, with other
vertices vp ∈ Vi , p ∈ {1, 2, . . . ,ϕi }, p �= j ;

• the vertex external degree, denoted as ω̆
j
i , which represents the number of connec-

tions of the vertex v j ∈ Vi , for j ∈ {1, 2, . . . ,ϕi }, i ∈ {1, 2, . . . , M}, with other
vertices vp ∈ Vq , p ∈ {1, 2, . . . ,ϕq}, q ∈ {1, 2, . . . , M}, q �= i .

3Two subgraphs are called neighbours if they are contiguous and share edges (see, e.g., [1] among
many others).
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Algorithm 16.1 Graph partitioning algorithm
1: Bi j ← System topology
2: G(V,E) ← Bi j

3: for j = 1 to ϕ do
4: Compute ω j

5: end for
6: Vr ← V , i = 1
7: repeat
8: Find v ∈ Vr with maximum ω

9: Vi ← v and all its neighbour vertices

10: Vr � V −
{

i⋃

h=1
Vh

}

11: i = i + 1
12: until Vr = ∅
13: for i = 1 to M do {Compute some indexes}
14: ϕi � |Vi | {internal weight}
15: εi � |Ẽi | {external weight}
16: end for
17: ϕmax � max

i
ϕi

18: ϕ̄ � 1
M

M∑

i=1
ϕi {arithmetic mean}

19: Compute L {see (16.4)}
20: bint = false {Internal balance}
21: while bint = false do
22: for i = 1 to m do
23: ComputeNi {see (16.5)}
24: for j = 1 to h do
25: if ϕi + ϕ j ≤ ϕ̄ then {see (16.6)}
26: G∗ = Gi ∪ G j

27: Gnew ← G∗ with minimum ϕ∗
28: Update ϕ̄

29: end if
30: end for
31: end for
32: Update ϕi

33: bext = false {External balance}
34: while bext = false do
35: for i = 1 to M do
36: for j = 1 to ϕi do
37: Compute ω̂

j
i and ω̆

j
i

38: if ω̂
j
i < ω̆

j
i then

39: Move v j from Gi to its neighbour
40: end if
41: Update ϕi , ϕ̄, ϕmax

42: end for
43: end for
44: Update all indexes
45: Check external balance (nodes)
46: end while
47: Check internal balance (subgraphs)
48: end while
49: return P {see (16.7)}
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Hence, for a given vertex v j ∈ Vi , if ω̂
j
i < ω̆

j
i , then vertex v j ismoved from subgraph

Gi (Vi , Ei , Ẽi ) to the subgraph in which most of its edges have their endpoint (like
in the AVL tree algorithm [5]). All indexes should be updated for the M subgraphs
and the next vertex is analysed. This procedure will last until each subgraph vertex
fulfills ω̂

j
i ≥ ω̆

j
i .

The Complete Algorithm: Algorithm 16.1 collects all the procedures/routines
mentioned and explained before. Hence, applying this algorithm to the graph
associated wit a given dynamical system, the expected result consists of a set of
subgraphs which determines a particular system decomposition. This setP is then
defined as

P =
{

Gi , i = 1, 2, . . . , M :
M⋃

i=1

Gi = G

}

. (16.7)

Auxiliary Routines
Despite Algorithm 16.1 yields an automatic partitioning of a given graph, it does
not imply that the resultant set P follows the pre-established requirements stated in
Problem 16.1. In this sense, complementary routines can be useful for improving the
partitioning process according to the considered application. Additional auxiliary
routines could be added such that the generated partitioning takes into account the
control performance thatwould be achievedwhen used in decentralized or distributed
MPC control.

Prefiltering: In general, the resultant solution given by the Algorithm 16.1 is
nearly appropriate in terms of ω̂ and ω̆, but it highly depends on the topology
and complexity of the graph. For this reason, in order to obtain a better graph
partitioning, sometimes it can be useful to make a Prefiltering routine, where all
the vertexes with ω = 1 are virtually merged to this vertex that shares its unique
edge. This procedure creates supranodes, which should be properly recognized
at the moment of determining the partitioning of the dynamical system from the
decomposition of its associated graph. Moreover, doing the manual merging of
those vertices reduces the work done by subsequent routines.

Post-filtering: On the other hand, suppose that after partitioning a given graph
G(V, E) by using Algorithm 16.1, all the M resultant subgraphs fulfil

ϕ̄ ≤ ϕi ≤ ϕmax, for i ∈ {1, 2, . . . , M}. (16.8)

However, the following situation could occur. Suppose a subgraph Ga with
ϕa � ϕ̄, which is placed next to a subgraph Gb and fulfills (16.8). The merg-
ing of subgraphs Ga and Gb, expressed as Gc � Ga ∪ Gb, is not allowed
since ϕc ≥ ϕmax. The post-filtering routine implements an approximation and a
parameterization, i.e., by adding a small tolerance δ, the existence of the resultant
subgraph Gc is now allowed since ϕc ≤ ϕmax + δ. This relaxation allows to
have less subgraphs but with higher complexity and internal weight.
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Anti-oscillation: This procedure leads to solve a possible issue when the refining
(external balance) routine is run. When a vertex is moved from one subgraph to
another according to its internal and external degrees, there exists the possibility
of doing this movement during an infinite time if there is no specification of
routine ending. Therefore, the refining routine is then run within a for loop and
the parameter ρ is set as the maximum number of iterations that this procedure
is executed. Afterwards, since the resulting set of subgraphs is stored at each
iteration t ′ ∈ Z+, t ′ = {1, 2, . . . , ρ}, the configuration of M subgraphs with
minor εi , for i = 1, 2, . . . , M , can be chosen.

Some Practical Issues
Given that the partitioning algorithm proposed in this chapter is mainly thought for
performing decentralized control of LSS, several features could be taken into account
to achieve a convenient system partitioning and less complex controller designs. For
instance, an additional routine that would restrict the connection of subgraphs with
unidirectional edges would be very useful since a pure hierarchical control scheme
can be straightforwardly implemented, decreasing the inherent loss of performance
of a decentralized control scheme.

16.3.2 Using Masks

The application of DMPC to WTN depends crucially on how the network is decom-
posed into subsystems. Identifying subsystems is not an easy task in a large-scale
network as it involves to find automatically sufficiently small sections of the net-
worked plant that are not too coupled among them. The partitioning algorithm,
proposed in this chapter, aims to obtain this decomposition automatically by iden-
tifying clusters of elements that are strongly connected with each other but weakly
interconnected with the other clusters, in order to represent the whole network as
a set of loosely coupled subsystems [21]. The current version of the algorithm is
thought to be used offline, that is the partitioning of the system is static and is not
carried out online. A further improvement could be to adapt the proposed algorithm
such that the partitioning could be done online when, for instance, some structural
change of the network appears.

As a starting point, the partitioning algorithm requires the following information
of the WTN:

1. The interconnection structure characterized by the matrix

Ic = [
Asp Bsp

]
, (16.9a)

where

Asp =
[

A 0
0 0

]

, Bsp =
[

B
E

]

, (16.9b)



330 C. Ocampo-Martínez and V. Puig

where A and B are the system matrices in (12.8), the subscript sp identifies the
matrices used for system decomposition and E � [Eu Ed ] is the matrix related
to the equality constraints (12.9b). In order to take into account input bounds,
new normalized inputs are introduced ū � u/umax so that ū ∈ [0, 1]. Thus, new
matrices B̄ and Ē are introduced in (16.9b) to take into account the rescaling.
From matrix Ic, the adjacency matrix � of the network graph can be obtained by
replacing the nonzero elements by ones, leaving the null elements unchanged.

2. A threshold value ε is used for determining whether a term, which takes into
account the actuator capacity (maximum allowable flow) and its usage frequency,
has a negligible effect on the entire plant. In this way, the less important actuators
are filtered out, in order to reduce the coupling degree of the system and identify
independent subnetworks.

The partitioning algorithm proceeds by decomposing the matrix Ic into a set
of submatrices, named as partitions and denoted by Pε = {Ic1, . . . , IcM}. Then,
Pε correspond to a set of subgraphs (subsystems) obtaining by deleting the edges
corresponding to elements of Ic with magnitude no larger than ε. That is, the idea
behind the partitioning approach is to neglect less important elements (i.e., links)
in matrix Ic such that the resulting Ĩc is less coupled. Ideally, Ĩc should lead to a
permutation matrix P such that P′M̃P is block diagonal. This procedure is repeated
iteratively by reducing ε until an enough number of partitions is obtained. Algorithm
16.2 summarizes the steps of the proposed partitioning algorithm.

Partitions can be tuned by means of parameter ε of the proposed approach, which
makes the user able to attempt matching the desired number and size of subsystems.

Typically, in the first iteration, Algorithm 16.2 neglects a high number of elements
of Ic, highly reducing the matrix connectivity degree and obtaining a subsystem
decomposition. Then, once the sets of states/inputs relative to each partition are
computed, the task of finding a suitable P that block-diagonalizes the matrix P′M̃P
is a matter of linear algebra implementation. Every subsystem is composed by sets
of state and input variables that are linked, meaning that are in the same block in the
P′M̃P diagonal. Let X i and U i be, respectively, the sets of state and input variables
assigned to subsystem i , while |X i | and |U i | determine the number of variables for
each set. A subsystem is created if both numbers are different than zero. All state
and input variables that are not assigned to any of the currently created subsystems,
i.e., that do not belong to X i or U i , respectively, are available for the next iteration.
Otherwise, variables already assigned to a subsystem in the current or in a previous
iteration are masked4 to prevent their reassignment to other subsystem.

Then, a new iteration of the algorithm starts by decreasing ε (e.g., halving ε).
Algorithm 16.2 iterates until all state variables are assigned to a subsystem. Note that
the algorithm may terminate even if some inputs are not assigned to any subsystem,
which is due to automatic threshold-based neglecting process. Such issue can be
managed by manually including unassigned inputs to proper subsystem following
engineering insight.

4Consider a variable to be masked when it does not belong to any set since it has already been
classified in a previous iteration.

http://dx.doi.org/10.1007/978-3-319-50751-4_12
http://dx.doi.org/10.1007/978-3-319-50751-4_12
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The importance of the mask arises from the structure of the algorithm. In fact,
if not excluded, all previously assigned states and inputs would be part of the next
iteration partition, introducing couplings andhence increasing the size of the resulting
submodels. The aforementioned inclusion easily follows from the decreasing of ε
among sequential iterations.

Algorithm 16.2 Automatic partitioning algorithm
1: Initialise masks to a neutral value
2: Initialise the sets of unassigned variables X and U with all state and input variables,

respectively
3: Determine the number of unassigned states: Nx = |X |;
4: Init ε
5: while Nx > 1 do
6: Apply masks to Asp and Bsp
7: Ic = [Asp Bspū]
8: For all elements of Ic
9: if Ic i, j < ε then
10: Ĩci, j = 0;
11: else
12: Ĩci, j = 1;
13: end if
14: Find P such that P′M̃P is block diagonal
15: Identify parts satisfying Nxi = |X i | > 0 and Nui = L(U i ) > 0 and add to previous ones
16: Update Nx
17: Update masks with updated states and inputs
18: Update ε
19: end while

Few remarks on the above algorithm:

1. At any iteration of Algorithm 16.2, the numerical value of ε is a crucial tuning
knob of the approach. A guideline is that the larger is the decreasing step, the
larger is the size of the obtained subsystems. Ways for automatically determining
the step size are a subject of current research.

2. Matrix E in (16.9b) defines a constraint among actuators that can be easily taken
into account if all the actuators belong to the same subsystem. Otherwise, since
each controller manipulates every partition independently from the others, nego-
tiations between controllers would be required to guarantee the fulfilment of node
constraints.

3. The use of masks to prevent state reassignment avoids that submodels have over-
lapping states and inputs: if a state variable is used in a model by a controller,
no other controller can use it. The main benefit of this choice is the very low
level of coupling between partitions, but the price to pay is a potential decrease
of closed-loop performance.

4. The current structure of the algorithm is unsuitable to handle state overlaps
because it relies on links between elements that present different degree of cou-
pling. Hence, once the stronger couplings are eliminated (using masking), the
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weaker ones gain relative importance. State overlaps may be introduced a poste-
riori based on engineering insight, in order to increase the adherence with respect
to the original centralized model. Handling overlapping in an automatic way is
also a current research topic.

5. In some cases, even relatively small connections, i.e., capable of carrying a minor
amount of water, are very important for demand satisfaction. Away of accounting
for such an issue is to perform a simulation using, for instance, a CMPC con-
troller and compute the average percentage of use for each actuator. Thus, this
information could be used to weight ū component-wise. The main drawback of
this approach is the need of (and dependence on) simulation.

6. Note that the proposed algorithm can be customized by setting different impor-
tance levels of states vs. inputs, by weighting the related components in Ic from
its statement at (16.9a).

7. The structure of the proposed algorithm suggests that termination is achieved
if the ε value is decreased at each iteration. However, at the current status of
the development, the algorithm cannot guarantee any property for the resulting
partitioning but the assignment of all system state variables to a subsystem.

Thedecompositionprocess ofmatrix Ic reportedhere is similar to the oneproposed
by the ε-decomposition method in [21]. The underlying idea in both cases is to
disconnect those actuators corresponding to interconnections with strength smaller
than the prescribed ε, identifying the disconnected subsystems. According to [21],
there are s different ε-decompositions Pε that can be obtained for different values of
ε satisfying

max
i �= j

∣
∣mi j

∣
∣ = ε1 < ε2 < · · · < εK = 0,

with K ≤ dim(Ic). Moreover, such decompositions are nested, that is the partitions
obtained satisfy: Pε1 ⊂ Pε2 · · ·PεK with Pε1 being the finest and Pεk the coarsest.
The main novelty of the algorithm presented in this chapter is the matrix normaliza-
tion taking into account actuator physical/operative limits and the iterative threshold
updating that allows one to take into account weaker coupling without being influ-
enced by the stronger ones.

16.4 Simulations and Results

16.4.1 Results Using Masks-Based Approach

Using the partitioning algorithm presented in this section, the aggregate model of
the Barcelona WTN is decomposed in three subsystems, as depicted in Fig. 16.1 in
different colours. The resultant decomposition follows the scheme shown inFig. 16.2,
where μi denotes the i-th vector of shared variables among the subsystems Sj , for
j = 1, . . . , M . The subsystems are defined by the following elements:
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Fig. 16.1 Partition of the Barcelona WTN, aggregate model

• Subsystem 1: Composed by tanks xi , i ∈ {1, 2}, inputs u j , j ∈ {1 : 5}, demands
dl , l ∈ {1, 2, 3} and nodes nq , q ∈ {1, 2}. It is represented in Fig. 16.1 with red
colour and corresponds to Subsystem S1 in Fig. 16.2.
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Fig. 16.2 Conceptual
scheme of the partitioned
Barcelona WTN

Table 16.1 Dimension comparison between the subsystems and the whole network

Elements Subsystem 1 Subsystem 2 Subsystem 3 Whole model

Tanks 2 5 10 17

Actuators 5 22 34 61

Demands 3 7 15 25

Nodes 2 3 6 11

• Subsystem 2: Composed by tanks xi , i ∈ {3, 4, 5, 12, 17}, inputs u j , j ∈ {7 :
16, 18, 19, 25, 26, 32, 34, 40, 41, 47, 48, 56, 60}, demands dl , l ∈ {4 : 7, 15, 18,
22} and nodes nq , q ∈ {3, 4, 7}. It is represented in Fig. 16.1 with green colour and
corresponds to Subsystem S2 in Fig. 16.2.

• Subsystem 3: Composed by tanks xi , i ∈ {6 : 11, 13 : 16}, the inputs u j , j ∈
{6, 17, 20 : 24, 27 : 31, 33, 35 : 39, 42 : 46, 49 : 55, 57, 58, 59, 61}, demands dl ,
l ∈ {8 : 14, 16, 17, 19, 20, 21, 23, 24, 25} and nodes nq , q ∈ {5, 6, 8 : 11}. It is
represented in Fig. 16.1 with blue colour and corresponds to Subsystem S3 in
Fig. 16.2.

Table16.1 collects the resultant dimensions for each subsystem and the corre-
sponding comparison with the dimensions of the vectors of variables for the entire
aggregate network.

16.4.2 Results using Graph-Theory-Based Approach

This section presents the results of the application of Algorithm 14 for the parti-
tioning of the Barcelona WTN into compositional subsystems [17]. Algorithm 16.1
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and auxiliary routines presented in Sect. 16.3.1 have been designed for any system.
However, some particular features should be introduced depending on the consid-
ered case study and control law in order to obtain a suitable decomposition. More
precisely, the graph of the Barcelona WTN has been derived from its mathematical
model expressed in the way introduced in Chap.12, i.e.,

x(k + 1) = A x(k) + Bu u(k) + Bd d(k), (16.10a)

0 = Eu u(k) + Ed d(k), (16.10b)

under the following considerations:

• every tank, sector of consume, water source and node is considered as a vertex of
the graph;

• every pump, valve and link with a sector of consume is considered as a graph edge.

In order to evaluate the partitioning results obtained from the application of
Algorithm 16.1 and auxiliary routines to the Barcelona WTN, the following indexes
are taken into account additionally to those previously introduced:

• ε �
M∑

i=1
εi ,

• ε̄ � ε
M (arithmetic mean),

• σ2
ϕ � 1

M

M∑

i=1
(ϕi − ϕ̄)2,

• σ2
ε � 1

M

M∑

i=1
(εi − ε̄)2.

Remark 16.4 Notice that although ε is not directly related to the number of shared
edges between subgraphs obtained by using Algorithm 16.2, this index gives an
indirect idea about their level of interconnection. Recall that the objective of the par-
titioning algorithm is the minimization of indexes σ2

ϕ, ε and εi (for i = 1, 2, . . . , M)
to obtain a graph decomposition as less interconnected as possible and with similar
number of vertices for each subgraph (internal weight).

Table16.2 summarizes the partitioning results obtained applying Algorithm 16.1
(A1) combined with the auxiliary routine/filters presented in Sect. 16.3.1 performing
the following combinations:

Table 16.2 Results for different partitioning approaches

Routine combination M ϕ̄ ε̄ σ2
ϕ σ2

ε ε

1 17 10.59 3.76 53.88 25.32 64

2 13 6.30 4.15 21.39 27.80 54

3 10 8.20 5.10 31.73 32.76 52

4 6 13.67 6.33 14.88 25.22 38

http://dx.doi.org/10.1007/978-3-319-50751-4_12
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1. No auxiliary routines are considered.
2. A1 and prefiltering (pre-F) routine only.
3. A1 in addition to pre-F and post-filtering (post-F) routines.
4. A1 in addition to pre-F, post-F and anti-oscillation (AO) routines.

This distinction has been done in order to understand how the proposed routines
affect the partitioning results.

Using only the Algorithm 16.1, the resultant partitioning P is comprised by 17
subgraphs. Many of them are small and cannot be merged since their neighbour sub-
graphs have internal weights with values quite close to ϕ̄ (see Sect. 16.3.1). More-
over, there are several vertices with ω = 1, which correspond to network water
sources and demands, leading to unnecessarily difficult algorithm computations due
to sizes of the resultant subgraphs (in terms of internal weight). By employing the
pre-F routine, the previous problems are fixed and Algorithm 16.1 produces 13 sub-
graphs (see Table16.2). Additionally, if the refining routine embedded within Algo-
rithm 16.1 is complemented with the post-F routine, setting δ = 2, a partitioning
with ten subgraphs is reached.5 Finally, if the AO routine is also considered, setting
the refining limit to ρ = 250, a partitioning with six subgraphs is now reached.
According to Table16.2, this last partitioning (Combination 4) satisfies the mini-
mization of the average of the internal weights for all resultant subgraphs as well
as the interconnection degree between subgraph measured through ε. It is impor-
tant to highlight that the proposed partitioning approach automatically determines
the final number of partitions M (six for this case) when the conditions 3 and 4 of
Problem 16.1 are fulfilled (see Remark 16.2). The tuning parameters δ and ρ also
influence on the obtained value of M .

Notice that each subgraph of the final decomposition corresponds to a subsys-
tem of the Barcelona WTN with the number of elements presented in Table16.3.
Figure16.3 shows, in different colours, the obtained subsystems of BarcelonaWTN.

Moreover, Fig. 16.4 schematically shows the disposition of the resultant subsys-
tems Si , for i ∈ {1, . . . , 6}, and the sets μi j of shared links between the network
subsystems corresponding to the control inputs u (manipulated flows), whose direc-
tionality is defined from Si to Sj for j ∈ {1, . . . , 6}, i �= j . Table16.4 collects the
number of control inputs of each set μi j .

Table 16.3 Dimension comparison of the WTN subsystems

Subsystem Tanks Actuators Demands Nodes

1 13 36 20 5

2 11 11 11 0

3 13 22 20 3

4 9 16 12 2

5 6 10 8 2

6 15 26 17 3

Total 67 121 88 15

5Notice that increasing the parameter δ implies that σ2
εi
becomes bigger.
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Fig. 16.3 Definitive partition of the Barcelona WTN. The key elements are properly featured
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Fig. 16.4 Network
subsystems Si and their sets
of shared connections μi j

Table 16.4 Dimensions of shared links μi j

Set μ12 μ13 μ14 μ16 μ31 μ34 μ51 μ61

Number
of u’s

2 2 2 2 4 3 1 3

16.5 Conclusions

This chapter has proposed two approaches for the automatic partitioning of a WTN
into subsystems intended to be applied alongwith a non-centralizedmodel predictive
control strategy. The algorithm transforms the dynamical model of the given system
into a graph representation.Once the equivalent graph has been obtained, the problem
of graph partitioning is then solved. The resultant partitions are composed of a set of
non-overlapping subgraphs such that their sizes, in terms of number of vertices, are
similar and the number of edges connecting them is minimal. To achieve this goal,
the algorithm applied a set of procedures based on identifying the highly connected
subgraphs with balanced number of internal and external connections. Some addi-
tional prefiltering and post-filtering routines are also needed to be included to reduce
the number of obtained subsystems. The performance of the proposed decomposition
approach has been assessed in a real case study based on the Barcelona WTN. A
study of the effect of auxiliary routines on the basic partitioning algorithm has also
been included showing the benefits of their use.
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Chapter 17
Non-centralized Predictive Control
for Drinking-Water Supply Systems

Juan Manuel Grosso, Carlos Ocampo-Martínez and Vicenç Puig

17.1 Introduction

The control schemes proposed in the previous chapters have shown the potential
applicability of centralized MPC for the economic scheduling control of network
flows. Nevertheless, as illustrated with the case study of Barcelona, flow-based net-
works are generally systems comprised of multiple subsystems and/or large-scale
systems. Thus, the centralization of decisions in a single MPC-based agent could be
disadvantageous for the reliability of the network operation and the maintenance of
the monolithic prediction model. These issues have received a lot of attention from
the control research community during the last years. Several non-centralized con-
trol strategies have been already proposed in the literature, where either large-scale
systems are partitioned into subsystems with individual control agents or a plant-
wide optimization problem is distributed in a set of smaller optimization problems
that are usually coordinated by a master problem. The importance of system parti-
tioning and/or distributed optimization has already been noticed in classic references
addressing the decentralized control of large-scale systems [9, 17] and the decompo-
sition of mathematical programming problems [3]. For distributing the centralized
MPC optimization problem, several analytic methods exist, e.g., Dantzig–Wolfe
decomposition, Bender’s decomposition, and optimality condition decomposition,
among other dual or primal decomposition techniques. These analytic decomposi-
tions rely strongly on the form of both the constraints and the objective function
and are specialized to particular problem structures that might not cover many real
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large-scale flow-based networks. Therefore, as discussed in Chap. 16, graph theory is
also used to cope with large-scale networks. Basically, the partitioning of a flow-based
network consists in choosing subsets of the global variables to be assigned to differ-
ent local agents that are in charge of controlling individual partitions/subsystems, as
described in [5, 6, 11, 14]. This chapter addresses a large-scale network as a system-
of-systems instead of analytically decomposing the global optimization problem; the
corresponding partitions will be assumed given from now on.

It has been demonstrated in [16] that exchanging only interaction information
(even iteratively) among the local controllers is not enough to guarantee closed-loop
stability and/or optimal plant-wide performance due to their competitive behaviour.
Hence, for economically optimal operation (or to reduce suboptimality) of the net-
work, cooperation between local controllers must be induced. This can be achieved,
e.g., by means of cooperative, coordinated or hierarchical MPC schemes, which
incorporate negotiation/coordination mechanisms to approach the centralized solu-
tion. A crucial issue in all these non-centralized control schemes is that of guaran-
teeing recursive feasibility of the optimization problem, especially when addressing
dynamically coupled subsystems. Among the non-centralized MPC schemes that
have been proposed in the literature (see, e.g., [12] and references therein), one
important classification criterion is the information exchange between local agents
(e.g., predicted trajectories, prices or dual variables), which in general can be either
local or global. On the one hand, there are schemes that use local information and
iterative communication to improve performance but guaranteeing feasibility mostly
only upon convergence to the global optimal solution. To cope with feasibility losses
(e.g., due to early termination of the iterative algorithm), other non-iterative distrib-
uted MPC schemes consider the shared variables as local disturbances and rely on
the design of (possibly over-conservative) robust local controllers, guaranteeing fea-
sibility of the network at the expense of a worse economic performance. On the other
hand, there exist several cooperative approaches inspired in [18], which exchange
global information and ensure recursive feasibility of the optimization problem (even
with non-iterative communication) by using centralized prediction models. Gener-
ally, these cooperative schemes converge asymptotically to the central optimum under
certain structural assumptions, e.g., sparse couplings.

Most of the available non-centralized MPC algorithms were proposed to control
systems operating under a standard (tracking) cost functions, and only few coopera-
tive (iterative) distributed economic MPC schemes have been recently published (see,
e.g., [4, 8]). Differently, this chapter proposes a non-iterative multi-layer distributed
economic MPC (ML-DMPC) approach for its application to flow-based networks.
This approach is based on a temporal and functional decomposition of the centralized
economic scheduling-control problem. The architecture of the proposed ML-DMPC
controller lies in the class of hierarchical systems [10]. Specifically, the controller
comprises two layers that operate at different timescales and interact to fulfil a setO of
desired control objectives. In a top-down hierarchy, the control structure has a central-
ized coordinator in the upper layer and a set of local distributed MPC controllers in the
lower layer. Contrary to the standard coordinated distributed control structures [10],
where the local controllers use local information and communicate iteratively only

http://dx.doi.org/10.1007/978-3-319-50751-4_16
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with the coordinator to reconstruct the centralized performance, the proposed ML-
DMPC scheme considers non-iterative and hierarchical-like neighbour-to-neighbour
communication between the local controllers. The coordinator is used to influence
(also non-iteratively) the overall performance through economic intervention para-
meters. The ML-DMPC controller aims to improve the performance of a decentral-
ized MPC strategy (but still being globally suboptimal) and to guarantee the recursive
feasibility of the involved tractable distributed algorithm.

17.2 Problem Statement

In Chap. 11, a method to obtain the monolithic state-space model of a given flow-
based network graph was described. Once the control-oriented model is stated, it is
important to determine the objective of performing the partitioning of the physical
network no matter what control strategy is followed. For large-scale network flow
problems, the partitioning of the system gains sense from the point of view of mod-
ularity of the control architecture and the reduction of computational burden. In any
case, the way the network elements are interconnected is a key factor for performing
the partitioning and control of the overall network since it determines the type of
couplings between subsystems and consequently the complexity and rationality of
the control strategy.

In the following sections, the overall system is assumed to be decomposed in
a set of M ∈ Z≥1 dynamically coupled non-overlapped subsystems denoted by Si ,
i ∈ Z[1,M]. The number M of subsystems is generally a tuning parameter. In this
chapter, a two-stage decomposition is performed. In the first stage, a reachability
analysis is used to define a set of subsystems that can be supplied only by one
source each. These resultant subsystems are here called anchored subsystems and are
denoted as Si , i ∈ Z[1,r ], where r ≤ M is the number of flow sources in the network.
The remaining elements of the network are grouped in a subsystem denoted as S̃,
which is supplied by the cross-border outflows of the anchored subsystems. Such
flows are considered as pseudosources of S̃ . In the second stage of the decomposition,
subsystem S̃ is later subdivided into M − r subsystems by means of the graph-based
partitioning algorithm proposed in Chap. 16. This algorithm aims at decomposing S̃
and its corresponding directed graph into subgraphs, in such a way that all resultant
partitions have nearly the same number of vertices and a hierarchical/sequential
solution order can be stated. Note that another set of pseudosources may appear
after the decomposition of S̃ and, contrary to the first stage of decomposition, each
subsystem may have both entering and leaving cross-border flows depending on the
interconnections of the resultant Si subsystems, i ∈ Z[r+1,M]. A sketch of the overall
decomposition process is depicted in Fig. 17.1.

Particularly, this chapter considers only input-coupled dynamics and input-
coupled constraints. Then, each subsystem can be described by the following discrete-
time linear model:

http://dx.doi.org/10.1007/978-3-319-50751-4_11
http://dx.doi.org/10.1007/978-3-319-50751-4_16
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Fig. 17.1 Decomposition of a network with r sources into M subsystems
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x[i](k + 1) = Ai ix
[i](k) + Bi iu

[i](k) + Bd,i id
[i](k) +

M∑

j=1
j �=i

Bi ju
[ j](k), (17.1a)

0 = Eu,i iu
[i](k) + Ed,i id

[i](k) +
M∑

j=1
j �=i

Eu,i ju
[ j](k), (17.1b)

for all k ∈ Z+ and i, j ∈ Z[1,M], where x[i] ∈ R
nxi , u[i] ∈ R

nui and d[i] ∈ R
ndi are,

respectively, the local state, input and demand vectors of subsystem Si , i ∈ Z[1,M].
Local matrices are given by the topology of each subsystem, with Ai i = Inxi ,
Bi i ∈ R

nxi ×nui , Bd,i i ∈ R
nxi ×ndi , Bi j ∈ R

nxi ×nu j , Eu,i i ∈ R
qi×nui , Ed,i i ∈ R

qi×ndi and
Eu,i j ∈ R

qi×nui for all i, j ∈ Z[1,M]. The decomposition assures that
∑M

i=1 nxi = nx ,
∑M

i=1 nui = nu ,
∑M

i=1 ndi = nd and
∑M

i=1 qi = q for all nxi , nui , ndi , qi ∈ Z≥1. Sim-
ilarly, the global constraint sets X , U and D are decomposed to give place to a set of
local constraints defined by:

x[ j](k) ∈ Xi := {x[i] ∈ R
nxi | 0 ≤ x[i] ≤ x[i],max}, (17.2a)

u[ j](k) ∈ Ui := {u[i] ∈ R
nui | 0 ≤ u[i] ≤ u[i],max}, (17.2b)

d[ j](k) ∈ Di := {d[i] ∈ R
pi | 0 ≤ d[i] ≤ d[i],max}. (17.2c)

Definition 17.1 (Neighbour and neighbourhood) A subsystem S j is defined as a
neighbour of subsystem Si if and only if Bi j �= 0 or Eu,i j �= 0, j ∈ Z[1,M], j �= i .
Hence, the neighbourhood ofSi is defined asNi := { j ∈ Z[1,M] | Bi j �= 0 or Eu,i j �=
0, j �= i}.
Remark 17.1 Note that the overall system model can be obtained by the composition
of the above M subsystems, as follows:

{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k),

0 = Euu(k) + Edd(k),
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where the vectors and matrices are now a permutation of the original ones, with

x(k) =
⎡

⎢
⎣

x(k)[1]
.
.
.

x(k)[M]

⎤

⎥
⎦ , u(k) =

⎡

⎢
⎣

u(k)[1]
.
.
.

u(k)[M]

⎤

⎥
⎦ , d(k) =

⎡

⎢
⎣

d(k)[1]
.
.
.

d(k)[M]

⎤

⎥
⎦ , (17.3)

and

A =
⎡

⎢
⎣

Inx1
. . . 0

...
. . .

...

0 . . . InxM

⎤

⎥
⎦ , B =

⎡

⎢
⎣

B11 . . . B1M
...

. . .
...

BM1 . . . BMM

⎤

⎥
⎦ ,

Bd =
⎡

⎢
⎣

Bd,i i . . . 0
...

. . .
...

0 . . . Bd,MM

⎤

⎥
⎦ , Eu =

⎡

⎢
⎣

Eu,11 . . . Eu,1M
...

. . .
...

Eu,M1 . . . Eu,MM

⎤

⎥
⎦ ,

Ed =
⎡

⎢
⎣

Ed,i i . . . 0
...

. . .
...

0 . . . Ed,MM

⎤

⎥
⎦ .

Moreover, since the dynamic and static nodes of the network were decomposed into
M disjoint subsets, it follows that the global constraint sets can be recovered as
Cartesian products, i.e.,

X =
M∏

i=1

Xi , U =
M∏

i=1

Ui , D =
M∏

i=1

Di . (17.4)

♦

Before getting through the design of the ML-DMPC strategy, the following pre-
liminary assumptions related to the overall system are stated.

Assumption 17.1 All demands have a periodic flow request (with period T ∈ Z≥1)
that can be supplied by at least one flow source through at least one flow path.1

Assumption 17.2 The required control objectives can be grouped in a set O =
Ol ∪ Og , which is a composition of a set Ol of local control objectives and a set Og

of global control objectives. Moreover,ml � |Ol |,mg � |Og|, and henceml + mg =
|O|.

Assumption 17.2 allows to rewrite a centralized general economic stage cost
function J : Z+ × R

nx × R
nu → R+ in the following form:

1A flow path is an ordered sequence of arcs, which may connect sources, intermediate nodes and
demands.
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J (k, x(k), u(k) =
mg∑

g=1

λg�g(k, x(k), u(k)) +
ml∑

l=1

λl Jl(k, x(k), u(k), (17.5)

where λg,λl ∈ R+ are scalar weights that prioritise, within the overall cost function,
each global and local control objective, particularly represented by convex functions
Jg : Z+ × R

nx × R
nu → R+ and Jl : Z+ × R

nx × R
nu → R+, respectively. Hence,

from (17.1), (17.2) and Remark 17.1, the centralized MPC optimization problem
with stage cost (17.5) and prediction horizon N can be rewritten as follows:

min
uk

Hp−1∑

t=0

⎛

⎝

mg∑

g=1

λg Jg(k, x(k + t |k), u(k + t |k))

+
ml∑

l=1

λl Jl(k, x(k + t |k), u(k + t |k)
)

, (17.6a)

subject to:

x[i](k + t + 1|k) =Ai ix
[i](k + t |k) + Bi iu

[i](k + t |k)

+ Bd,i id
[i](k + t |k) +

M∑

j=1
j �=i

Bi ju
[ j](k + t |k), (17.6b)

0 = Eu,i iu
[i](k + t |k) + Ed,i id

[i](k + t |k) +
M∑

j=1
j �=i

Eu,i ju
[ j](k + t |k), (17.6c)

(x[i](k + t + 1|k), u[i](k + t |k)) ∈ Xi × Ui , (17.6d)

x[i](k|k) = x[i](k), (17.6e)

for all i ∈ Z[1,M] and all t ∈ Z[0,Hp−1]. The aggregate state and input vectors in

the cost function are given by x(k + t |k) = (x[1]T (k + t |k), . . . , x[M]T (k + t |k))T ,
mathb f u(k + t |k) = (u[1]T (k + t |k), . . . , u[M]T (k + t |k))T , respectively. The deci-
sion variable is the input sequence uk = {u(k + t |k)}t∈Z0,Hp−1 .

Thus, the goal of the ML-DMPC approach proposed in this chapter is that of
solving (17.6) in a distributed fashion in order to cope with the aforementioned dis-
advantages of a centralized controller. To do so, a set C := {C1, . . . ,CM } of local con-
trollers, their communication network and a coordination mechanism are designed
in the following to properly address the effect of couplings between subsystems and
to take into account Assumption 17.2.
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17.3 Proposed Approach

The whole ML-DMPC set-up consists of the following:

(i) an upper layer in charge of achieving the global objectives by solving a central-
ized optimization problem with a sampling time �t1 and

(ii) a lower layer comprising a set of distributed MPC agents that compute the
references for the system actuators in order to satisfy the local objectives.

This layer operates with a sampling time �t2 (�t2 ≤ �t1). The local controllers
solve their associated optimization problem in a hierarchical/sequential fashion and
exchange (non-iteratively) in a neighbour-to-neighbour communication strategy the
predicted sequence of the inputs affecting the neighbouring subsystems. The upper
layer influences the operation of the lower layer by projecting global economic
information into the local agents, specifically by modifying the prices/weights of the
flow arcs that are shared among the subsystems arising in the lower layer. Figure 17.2
shows the proposed control structure. The ML-DMPC scheme leads to a suboptimal
plant-wide performance but with the advantage of a tractable implementation due
to a hierarchical-like communication approach that avoids negotiations among local
controllers. A formal description of the two optimization layers involved in the ML-
DMPC approach and their interaction is given below.

Fig. 17.2 ML-DMPC control architecture
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17.3.1 Lower Optimization Layer

Once the network partitioning is performed and the M local models are obtained, it
only remains to distribute the original centralized economic MPC problem among
the local controllers Ci , considering the given management policies and constraints.

In order to simplify the notation, let rewrite the interaction-oriented local models
as rewritten in the following more compact form:

{
x[i](k + 1) = Ai ix[i](k) + Bi iu[i](k) + Bd,i id[i](k) + B̃iw[i](k), (17.7a)

0 = Eu,i iu[i](k) + Ed,i id[i](k) + Ẽiw[i](k), (17.7b)

for all i ∈ Z[1,M], where w[i](k) := (wT
i1
(k), . . . , wT

i|Ni |
(k))T ∈ Wi is a vector stack-

ing the flows decided by the controllers of neighbours of subsystem Si , {i1, . . . , i|Ni |}
is an ordered sequence of the indices contained in the set Ni (i.e., i1 < . . . < i|Ni |)
and w j (k) := TT

wj
w[ j](k) for all j ∈ Ni . In the definition of each w j (k), the matrix

Twj ∈ R
nu j ×nui j (TT

wj
Twj = Inui j ) is such that it collects the mi j (mi j < m j ) columns

of the identity matrix of order nu j , corresponding to the indices of the rows of
ũ[ j](k) ∈ R

nu j related to the controlled flows decided by the controller C j and affect-
ing subsystem Si . Moreover, matrices B̄i and Ēi are suitably defined to represent the
effect of w[i](k) on the local state vector x[i](k), and the set Wi is obtained appropri-
ately from Ui . In the sequel, every subsystem S j that imposes an outflow w j (k) to a
subsystem Si will be considered as a virtual demand of Si .

Interpretation 1 At any time instant k ∈ Z+ when the controlled flow u[i](k) is
computed, the controllerCi has knowledge of the state x[i](k) and the demandsd[i](k)
and w[i](k) imposed by the local and virtual demands, respectively. Future demands
d[i](k + t) and w[i](k + t) might be unknown for all t ∈ Z≥1 and can take arbitrary
values inDi andWi , respectively. Nevertheless, the controller Ci has also knowledge
of the Hp-step sequences of both the local and virtual demand expectations.

Each controller Ci will be in charge of deciding only the network flows corre-
sponding to subsystem Si by using local and neighbouring information under Inter-
pretation 1. In this chapter, the local problems are defined in such a way that each of
them considers a local stage cost function but with a structure similar to the one in
(17.5). Specifically, the stage cost function related to each Ci is written as follows:

Ji (k, x[i](k), u[i](k)) =
mg∑

g=1

λ̂g,i Ĵg,i (k, x[i](k), u[i](k))

+
ml∑

l=1

λl,i Jl,i (k, x[i](k), u[i](k)), (17.8)
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where each Ĵg,i , g ∈ Z[1,mg], corresponds to the gth global control objective properly

expressed and weighted with a suitable λ̂g,i ∈ R+ in order to influence controllers
Ci to improve plant-wide performance. Moreover, each Jl,i is assumed to be the
corresponding part of the separable local objectives Jl , l ∈ Z[1,ml ], related to the
subsystem Si .

For each subsystem Si , a portion of control importance is removed by its neigh-
bours and added to its local uncertainty in a max-min sense due to the local knowl-
edge considered in Interpretation 1. Hence, before fully devising the distributed
MPC controllers operating in the lower layer, the following definition (adjusted from
[1, Definition 4.1]) is introduced.

Definition 17.2 Denote a given network decomposition with P = {Si }i∈Z1,M and let
CSi∞ be the maximal max-min robust control invariant set for subsystem Si . Then, the
decentralized max-min robust control invariant set for the overall system

x(k + 1) = Ax(k) + Bu(k) + Bdd(k), ∀k ∈ Z+ (17.9a)

0 = Euu(k) + Edd(k), ∀k ∈ Z+ (17.9b)

subject to constraints

x(k) ∈ X = {x ∈ R
nx |0 ≤ x ≤ xmax}, ∀k ∈ Z+ (17.10a)

u(k) ∈ U = {x ∈ R
nu |0 ≤ u ≤ umax}, ∀k ∈ Z+ (17.10b)

and decomposed into � is given by C�∞ = ∏M
i=1 CSi∞ .

For a given network decompositionP and local setsXi ,Ui ,Di andWi , i ∈ Z[1,M],
each maximal max-min robust control invariant set CSi∞ can be explicitly computed
for the overall network.

Note that such sets CSi∞ may result to be empty for a given P (consequently
CP∞ = ∅), which implies that there is no guarantee that a decentralized control strategy
will be feasibility for all times. In such a case, the setsUi (accordinglyWi ), i ∈ Z[1,M],
should be properly modified to make possible the decentralized design of CP∞, see
e.g., [1].

Assumption 17.3 The local constraint sets arising for a given network decomposi-
tion P = {Si }i∈Z1,M are such that

Bd,i iDi ⊕ B̄iWi ⊆ −Bi iUi and Ed,i iDi ⊕ ĒiWi ⊆ −Eu,i iUi ,

for all Si ∈ P . Hence, CSi∞ := (
(Xi ⊕ (−Bi iUi ))  (

Bd,i iDi ⊕ ĒiWi
)) ∩ Xi �= ∅.

Even when Assumption 17.3 holds and CP∞ exists, the algebraic equation (17.7b)
for each local model acts as a coupling constraint that forbids the design of non-
iterative distributed controllers with parallel solution of the local optimization prob-
lems. Thus, the distributed MPC algorithm considered in the lower layer of the
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proposed ML-DMPC approach involves a non-iterative communication-based MPC
design that builds on the hierarchical decentralized MPC approach reported in [13].
The strategy proposed here also follows a hierarchical sequence of solution but con-
sidering conditions to deal with the existence of bidirectional complicating flows
between neighbour subsystems. The optimization problem to be solved in the lower
layer of the ML-DMPC by each local controller Ci , i ∈ Z[1,M], with sampling time
�t2, is defined as follows:

min
uk

Hp−1∑

t=0

⎛

⎝

mg∑

g=1

λ̂g,i Ĵg,i (k, x[i](k + t |k), u[i](k + t |k))

+
ml∑

l=1

λl,i Jl,i (k, x[i](k + t |k), u[i](k + t |k))
)

, (17.11a)

subject to:

x[i](k + t + 1|k) = Ai ix[i](k + t |k) + Bi iu[i](k + t |k) + Bd,i id[i](k + t |k)
+ B̄iw[i](k + t |k), ∀t ∈ Z[0,Hp−1] (17.11b)

0 = Eu,i iu[i](k + t |k) + Ed,i id[i](k + t |k) + Ēiw[i](k + t |k), ∀t ∈ Z[0,Hp−1]
(17.11c)

x[i](k + 1|k) ∈ CSi∞ , (17.11d)

x[i](k + t |k) ∈ Xi , ∀t ∈ Z[2,Hp] (17.11e)

u[i](k + t |k) ∈ Ui , ∀t ∈ Z[0,Hp−1] (17.11f)

u[i]
(r)(k|k) = u[i]�

(r) (k + 1|k − 1), ∀r ∈ Iu (17.11g)

x[i](k|k) = x[i](k), (17.11h)

where Iu ⊂ Z+ is a set containing the indices of all the rows of vector u[i](k) related
to the inputs decided locally by Ci but affecting neighbours whose controllers C j

are located in higher levels of the predefined hierarchy of solution.
Comparing with the algorithms in [13, 15], problem (17.11) has two subtle but

important differences:

1. The incorporation of (17.11d) as a robustness constraint that enforces the pre-
dicted state to lie within the maximal max-min robust control invariant set at the
first prediction step.

2. The incorporation of (17.11f), restricting those components of the first control
action that are decided locally but affect neighbouring subsystems whose con-
trollers are located at higher levels of the solution hierarchy.

As demonstrated in [7, Chap. 6] for a min-max interpretation in a standard centralized
MPC controller, the robustness constraint (17.11d) leads to a robust strongly feasible
MPC algorithm. Nonetheless, this constraint on its own cannot guarantee recursive
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feasibility of the overall distributed MPC solution sequence, because CSi∞ is computed
under Interpretation 1, which requires that each controller Ci knows at least the first
demand value of its local and virtual demands (i.e., d[i](k) and w[i](k) when solving
at k). This requirement is not fulfilled if controllers Ci are allowed to freely optimize
their full input vector without considering their effect in the hierarchical sequence
of solution of the non-iterative ML-DMPC approach.

To illustrate this observation, assume that a controller C j optimizes the flow of
a complicating arc affecting a subsystem Si whose controller Ci has already solved
the i th problem in the solution sequence. Then, the trajectory obtained by C j could
be infeasible (specially due to the equality coupling constraint (17.11c)) for Si since
w[i](k) might be changed and Ci does not have the chance to recompute its solution.
Hence, constraint (17.11f) is an extra necessary condition to satisfy Interpretation 1
and to maintain feasibility of the overall sequence of local problems.

17.3.2 Upper Optimization Layer

The fulfilment of a global objective from a local point of view often implies infor-
mation from the entire network, but this is lost when the system partitioning is
performed. Therefore, it is necessary to figure out how to induce cooperation among
the set of distributed controllers, considering all the control objectives belonging to
O in a suitable way.

One common way to improve overall closed-loop performance of a decentral-
ized/distributed control scheme is to incorporate a supervisor controller or coor-
dinator on top of the local controllers. Two frequently used coordination methods
are the goal coordination and the interaction prediction coordination (cf., [10]).
The fundamental idea behind these approaches is to have independent subproblems
containing certain coordinating parameters (e.g., Lagrange multipliers, co-state vari-
ables and pseudovariables) in addition to the local decision variables. In both coor-
dination methods, duality theory is used as a standard to construct an equivalent
two-level problem to the primal (centralized) optimization problem. Within such
framework, the coordinating parameters are updated iteratively by the coordinator
based on the local solutions until an optimal solution to the overall system is achieved
(cf. [3, 10]). Feasibility of these coordinated control strategies is guarantee only upon
convergence.

Contrary to the common methods, the upper optimization layer of the ML-DMPC
approach proposed in this chapter is not focused on reconstructing the centralized
optimal solution in an iterative manner but to improve the economic performance of
the local MPC controllers by intervening in their decision process with a low fre-
quency of intervention. Specifically, this upper layer influences the local solutions
by computing, in a non-iterative way, the weight ω ∈ R

nω (where nω is the number of
arcs interconnecting the subsystems) related to the shared links between partitions
that appear after the selected network decomposition method (see Fig. 17.1). The
weights in ω will affect the first term in the local cost function (17.11a) of each
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controller Ci , i ∈ Z[1,M]. Therefore, to compute ω, a centralized optimization prob-
lem based on a temporal and functional decomposition of the network is stated in
the upper layer of the ML-DMPC by considering

(i) a static model of the whole network and
(ii) a cost function that only takes into account the global control objectives associ-

ated to the system.

The proposed upper optimization layer works with a sampling time �t1 = T ,
where T ∈ Z≥1 corresponds to the period of the periodic flow requested by local
demands (see Assumption 17.1). Thus, when looking at the volume evolution of
storage elements, they show a similar behaviour as the flow to the demands; i.e.,
volumes might also show a periodic behaviour with period T . For this reason, when
modelling the network with sampling time �t1, it can be assumed that volumes do not
change along the time. From now on, subindex c is used to differentiate the temporal
scale of the model in the upper layer to that of the lower layer (e.g., xc(k) denotes
the state at the coordinator level at time instant k with sampling time �t1). Hence,
storage nodes behave as static nodes in this layer, and the network dynamic model
(17.9a) becomes a stationary model, i.e., xc(k) = Acxc(k) + Bcuc(k) + Bd,cdc(k).

The stationary model considered by the coordinator is

Jup(k, xc(k), uc(k) :=
mg∑

g=1

λg,c Jg,c(xc(k), uc(k), (17.12)

and the upper layer optimization problem is here proposed to be formulated for
a flow-based network as the search of the economically optimal path flows from
sources nodes to demand nodes.

Definition 17.3 (Directed path) Given a directed graph G = (V,A) of a network,
a directed path is an ordered sequence of nodes v1, v2, . . . , vn in which there is an
arc (i, j) pointing from each node i in the sequence to its successor node j in the
sequence, that is, {(v1, v2)(v2, v3), . . . , (vn−1, vn)}.

To mathematically and systematically find all flow paths in a given network, this
chapter follows the methodology in [2, Appendix A], which exploits the information
contained in the node-arc incidence matrix of the network directed graph to construct
the path-arc matrix for the given sources and demands. The description of such
algorithm is omitted here, and the reader is referred to the aforementioned reference.
Once the path-arc matrix is obtained, a constrained optimization problem can be
stated to minimize (17.12) in terms of path flows, which are denoted here as u p ∈ R

np

with np the number of possible paths.
Hence, the coordinator solves in the upper layer of the ML-DMPC, an optimization

problem with the following structure:

min
u p

Ĵup(xc(k), up(k)), (17.13a)
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subject to:

Apup(k) ≤ bp(k), (17.13b)

Aequp(k) = beq(k), (17.13c)

where function Ĵup is equivalent to (17.12) but properly expressed in terms of the
path flows up(k) by using the graph path-arc matrix. Moreover, constraint (17.13b)
is used to consider the physical bounds of each actuator involved in each path, while
constraint (17.13c) is used to enforce satisfaction of demands dc(k). Matrices Ap

and Aeq and vectors bp and beq are defined accordingly to the considered bounds
and balance constraints.

Throughout this chapter, it has been assumed that the flow at each arc of the
network is driven by an actuator. Therefore, by using the optimal solution of problem
(17.13) and the information contained in the path-arc matrix of the overall network,
it is possible to compute the accumulated cost incurred in traversing all the paths that
reach the intermediate nodes from which the arcs interconnecting the M subsystems
depart. This accumulated cost information, in addition to Assumption 17.1, allows
to define the weight ω as a coordinating economic parameter. This weight is used
by the coordinator to project, into the cost function of each local controller Ci , the
economic impact (from a global point of view) that each subsystem Si will suffer
when requesting flow from its neighbour subsystems.

In network flow problems, the global objectives are often given as a composition
of economic linear cost functions. In this case, the value of ω can be obtained by
following Algorithm 17.1.

Note that Assumption 17.1 and the temporal scale selected for the upper layer
make (17.13) independent of the state. Furthermore, the weight ω is more an inter-
vention parameter than a coordination variable since the upper layer does not use
any feedback information from the local controllers allocated at the lower layer.

17.3.3 ML-DMPC Algorithm

The sharing of information between the two layers of the proposed ML-DMPC
depends on the nature and features of each application. For the case considered in
this chapter (i.e., periodic demands), the interaction is unidirectional from the upper
optimization layer to the lower optimization layer. Once the optimization problem
related to the upper layer is solved, the resultant parameters are properly updated for
each optimization problem behind each Ci , i ∈ Z[1,M]. This updating is performed
with a periodicity�t1 to consider possible changes in the periodic pattern of demands.
In fact, if a given application involves an agreement of predefined demands to be
satisfied, the optimization problem of the upper layer needs to be executed only once
at the beginning of the operation. In general, the computational time that the upper
layer spends is quite low with respect to the computational time of the lower layer.
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Algorithm 17.1 Computation of the economic intervention parameter ω

1: Compute the path-arc matrix of the network graph, denoted here by Rp ∈ R
n p×m .

2: Define a matrix Cp ∈ R
n p×m with the same structure of matrix Rp but containing in each

matrix element the unitary flow cost of each actuator in each possible path.
3: Identify all the arcs interconnecting subsystems Si , i ∈ Z[1,M], and denote with nus ∈ Z+

the number of such arcs, called from now on as complicating arcs.
4: Solve problem 17.13 and identify from the optimal solution all the paths in which each

complicating arc participates, and denote by n p j ∈ Z+, j ∈ Z[1,nus ], the numbers of such
paths.

5: Define a set of matrices Ts j ∈ R
n p×n p j , j ∈ Z[1,nus ], each of them collecting the n p j

columns of the identity matrix of order n p .
6: Define a set of matrices Rp j := TT

s j Rp and Cp j := TT
s j Cp for all j ∈ Z[1,nus ].

7: From the sequential order of the directed paths involved in each matrix Rp j , define a set of

matrices R̃p j whose elements will be the same as the ones in matrices Rp j for all the
positions related to the sequential arcs that reach the complicating arcs (these latter
included) in each path, and zero in those matrix elements related to the successor arcs.

8: Define the vector ω := (ω1, . . . ,ωnus )
T , with each of its components computed as

ω j =
1Tnus

((
Cp j ◦ Rp j

) ◦ R̃p j

)T
TT
s j u

�
p(k)

[
RT

p j
TT
s j up(k)�

]

(r j )

, ∀ j ∈ Z[1,nus ]

where 1nus denotes an all-ones column vector of length nus , the operator (◦) indicates the
Hadamard product of matrices, and [·](r j ) is the r j row of the vector in the brackets with r j
being the position of the associated j th complicating arc in the input vector uc(k). Then,
ω j represents a unitary cost per flow unit.

This fact is due to the difference in the nature of the models handled by each layer
and the interactions given by the distributed MPC controllers as well as their amount
and disposition within the defined hierarchy. Algorithm 17.2 collects the main steps
of the proposed ML-DMPC approach. The computational time spend by the scheme
corresponds with the sum of maximum times of each hierarchical level of controllers.

One important property desired in the design of any MPC strategy is recursive fea-
sibility. In the following, it is shown that the proposed ML-DMPC algorithm remains
feasible for all times if initial feasibility is assumed. The guarantee of feasibility of
the approach is unrelated to optimality of the distributed solution.

Theorem 17.1 Let Assumptions 17.1–17.3 hold and suppose that an initial feasible
solution in Step 1 of Algorithm 17.2 exists. Then, each local MPC problem (17.11)
solved in Step 3 of Algorithm 17.2 is robust strongly feasible for each subsystem
Si ∈ P .

Proof The proof is by induction, showing that feasibility at time k implies feasibility
at time k + 1. Let x[i](k) be a feasible initial condition for each local problem (17.11)
and assume that there exists a pair of feasible (not necessarily optimal) state-input
trajectories given by (x[i]

k , u[i]
k ) for each subsystem Si ∈ P .
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Algorithm 17.2 Non-iterative Multi-layer Distributed Economic MPC
1: Initialisation: Set k = 0, establish an arbitrary weight ω in the upper layer and send that

information to every local controller Ci , i ∈ Z[1,M]. For each current local state x[i](k) and
local demand sequence d[i]

k = {d[i](k), d̄[i](k + 1|k), . . . , d̄[i](k + Hp − 1|k)}, find for all
subsystems Si a feasible (not necessarily optimal) pair of state and input sequences
(x[i]

k = {x(k + t |k)}t∈Z[0,Hp ] , u[i]
k = {u(k + t |k)}t∈Z[0,Hp−1] ). Apply u[i](k|k) in every

subsystem and transmit each u[i]
k to the controllers of the corresponding neighbours of

each Si .
2: Collecting of information: After receiving all the neighbour trajectories u[ j]

k , j ∈ Ni , each

controller Ci builds the trajectory w[i]
k = {w[i](k + t |k)}∈Z[0,Hp−1] , differencing between

shared inputs to be imposed by controllers arranged in higher levels of hierarchy and
shared inputs planned by controllers arranged in the same or lower levels of hierarchy.
These imposed and planned input trajectories are formed locally as
w[i]
a,k = {w[i]�

a (k|k), . . . ,w[i]�
a (k + Hp − 1|k)} and

w[i]
a,k = {w[i]�

b (k + 1|k − 1), . . . , w[i]�
b (k + Hp − 1|k), w[i]�

b (k + 1|k − 1)},
respectively, and it is assumed that w[i](k + t |k) = (w[i] T

a (k), w[i] T
b (k)T . At each sampling

time, obtain x[i](k) and d[i]
k for each subsystem Si .

3: Solution of local problems: Solve each optimization problem 17.11 following a
predefined hierarchical sequence.

4: Implementation of control action: Each local controller Ci applies
κi (x[i](k), u[i]

k , d[i]
k , w[i]

k ) = u[i]�(k|k) to the associated subsystem Si . Transmit each u[i]
k

to the controllers of the corresponding neighbours of each Si .
5: Updating of the economic intervention parameter: If �k�P1 ∈ Z+, then solve problem

17.13 for the current dk and update ω following Algorithm 17.1. Send the new weight to
each local controller Ci . Otherwise, go to step 5.

6: Increment k and go to step 2.

Consider now the hierarchical flow of the solution at the next time instant k + 1.
Since each subsystem applied previously the first control action of the initial feasible
trajectory u[i]

k , it follows then that x [i]
k+1 = x[i](k + 1|k), and from constraint (17.11d),

it holds that x[i](k + 1) ∈ CSi∞ for all i ∈ Z[1,M]. Since CSi∞ �= ∅ by Assumption 17.3,
it follows from the invariance property of CSi∞ that for all (x[i](k + 1), d[i]

k+1, w[i]
k+1) ∈

CSi∞ × DHp

i × WHp

i , there exists a control sequence u[i]
k+1 ∈ U Hp

i such that the con-
straints in problem (17.11) are satisfied at time instant k + 1 for all i ∈ Z[1,M].

This claim holds only under Interpretation 1, that is, if and only if each con-
troller Ci knows at least the first demand value of its local and virtual demands
(d[i](k + 1) and w[i](k + 1) when solving at k + 1). Such requirement is guar-
anteed by means of constraint (17.11f), which is feasible by the assumption of
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existence of any initial feasible trajectory uk . Therefore, all the local problems solved
sequentially by controllers Ci are feasible at k + 1. Feasibility for all times follows
then by induction over k and the assumption of initial feasibility. Consequently, the
ML-DMPC approach is strongly feasible, and the claim is proved. �

17.4 Simulations and Results

In order to evaluate the effectiveness of the proposed ML-DMPC approach, the case
study related to the model of the Barcelona DWTN is used. In this network, the set
Og of global control objectives is formed only by the cost function

JE (x(k), u(k; cu(k), cx (k) := cTu (k)We u(k)�t + cTx (k)Whx(k), (17.14a)

while the set Ol of local control objectives is formed by the cost functions

JS(x(k); s(k) :=
{

(x(k) − s(k)T Ws(x(k) − s(k) if x(k) ≤ s(k)
0 otherwise,

(17.14b)

J�(�u(k)) := �uT (k)W�u �u(k). (17.14c)

The overall network is assumed to be decomposed in six subsystems (P =
{S1, . . . ,S6}), which are non-overlapped, output-decentralized and input-coupled
(see Fig. 16.3). The model and constraints of each subsystem Si are obtained follow-
ing Sect. 17.2.

The controller Ci of each subsystem Si uses the following local multi-objective
stage cost in its optimization problem:

Ji (k, x[i](k), u[i](k) = λ̂1,i ĴE,i (x[i](k), u[i](k; c[i]
u (k)) + λ2,i J�,i (�u[i](k))

+λ3,i JS,i (¸[i](k); x[i](k), s[i](k)),

where functions ĴE,i , J�,i and JS,i are the local economic, safety and smoothness
objectives for subsystems Si (see Sect. 17.3.1 for the derivation of the local costs).
Moreover, λ̂1,i , λ2,i and λ3,i are positive scalar weights to prioritise each objective
in the aggregate local cost function.

Each local MPC controller operates with a sampling time �t2 = 1 h and a pre-
diction horizon Hp = 24 h. The weight λ̂1,i and the internal economic parameters of
each function �̂E,i , i ∈ Z[1,6], are modified by the upper optimization layer, placing
properly each element of the intervention parameter ω (see Algorithm 17.1) in the
local cost of the corresponding complicated arcs. The cost function used in the upper
optimization layer is given by

Jup(k, xc(k), uc(k)) = JE,c(xc(k), uc(k)), (17.15)

http://dx.doi.org/10.1007/978-3-319-50751-4_16
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Fig. 17.3 Network
subsystems Si and their
shared connections wi j w34

w31

w13

w12

w14

w16

w61

w51

S1

S2

S3

S4

S5

S6

which is derived from (17.14a) but expressed in a temporal scale of days (i.e., �t1 =
24 h).

The constraints and the rest of the parameters involved in the optimization prob-
lems (i.e., water demands, economic prices of water end electricity, safety thresholds)
are set up according to Chap. 2.

Figure 17.3 shows, in a more compact way, the resulting subsystems and the
important couplings between them including their direction. Instead of neglecting
the effect of this shared links as classic pure decentralized control schemes do,
the ML-DMPC approach applied to the aforementioned case study has the control
architecture shown in Fig. 17.2.

The results obtained by applying the ML-DMPC (Algorithm 17.2) are compared
with those of applying a centralized MPC (CMPC) approach and a decentralized
MPC (DMPC) strategy proposed in [14]. All of the results were obtained for a simu-
lation horizon of 72 h with real data of the network and are summarized in Table 16.2
(Chap. 16) in terms of computational burden and of economic cost as a global man-
agement performance indicator. For each MPC approach, the computational time (in
seconds) and the water, electric and total cost in economic units (e.u.) are detailed. It
can be noticed that an increment of nearly 30% of the total costs of operation occurs
when using the one-level hierarchical DMPC strategy reported in [14] with respect
to the CMPC baseline. Despite the lower electric costs, the loss of performance in
the overall cost is due to the specialized behaviour of local MPC controllers to solve
their own optimization problems without knowing the real water supply cost of using
shared resources with the neighbours. In contrast, the ML-DMPC outperforms the
DMPC results by including the bilevel optimization, which allows to propagate the
water cost of sources related with neighbour subsystems to the shared links thanks to
the daily centralized control level. With this ML-DMPC approach, the level of sub-
optimality is acceptable comparing with the CMPC strategy; i.e., total costs are quite
similar, but the computational burden is reduced. For this particular application, the
computational time of the three approaches is able to satisfy the real-time constraint

http://dx.doi.org/10.1007/978-3-319-50751-4_2
http://dx.doi.org/10.1007/978-3-319-50751-4_16
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Table 17.1 Performance comparisons

Index CMPC DMPC ML-DMPC

Water cost 93.01 205.55 97.11

Electric cost 90.31 34.58 87.53

Total cost 183.33 240.13 184.65

CPU time 1143 537 540

since the control sampling time is 1 h. Thus, the main motivation for using ML-DMPC
is the scalability and easy adaptability of the submodels if network changes, as well
as the modularity of the control policy that leads to face some malfunction/fault
without stopping the overall supervisory MPC strategy (Table 17.1).
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Fig. 17.5 Total flow per water source in the Barcelona DWTN
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Due to the difference of price between water sources and the impact of electric
costs on the overall economic performance, the CMPC and ML-DMPC strategies
decide to use more water from the Llobregat source despite the consequent pump-
ing of more water through the network (see Fig. 17.5), but achieving a lower total
cost, while the hierarchical DMPC decides to exploit in each subsystem their own
water source (which could be expensive) and minimize the pumping operation cost.
Figure 17.4 shows in detail the evolution of water cost and electric cost, respectively.
These results confirm the improvement obtained by including an upper optimization
layer to coordinate the local MPCs and face the lack of communication when solving
their problems in a tractable way.

17.5 Conclusions

This chapter proposed a non-iterative multi-layer distributed economic MPC
approach for large-scale flow-based networks. The control architecture consists in
two optimization layers. The upper layer, working with a larger timescale, is in charge
of improving the global performance (in general related to an optimal economic cost)
by influencing a set of distributed MPC controllers by means of an intervention eco-
nomic parameter. These distributed controllers are hierarchically arranged in a lower
optimization layer and are in charge of determining the set point of the flow actua-
tors to satisfy the local management/control objectives. The system decomposition is
based on graph partitioning theory. Results obtained on selected simulation scenarios
have shown the effectiveness of the control strategy in terms of system modularity,
reduced computational burden and, at the same time, reduced loss of performance in
contrast to a CMPC strategy and a hierarchical-like DMPC strategy. Additionally, it
has been proved that the proposed approach results in a strongly feasible distributed
MPC algorithm. For clarity of presentation, in Algorithm 17.2 it was required that
each subsystem calculates its input trajectory at each time step in a hierarchical and
sequential order. However, the algorithm works in the same way if non-neighbouring
systems located in the same level of hierarchy solve their problems in parallel. Future
work will be focused on finding stability conditions under the framework of economic
MPC and also on improving the mechanism of coordination to avoid the requirement
of plant-wide information in the upper layer of the ML-DMPC approach.
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Chapter 18
Data-Driven Evolutionary-Game-Based
Control for Drinking-Water Networks

Julián Barreiro-Gomez, Gerardo Riaño-Briceño, Carlos Ocampo-Martínez
and Nicanor Quijano

18.1 Introduction

Around 663 million people had no access to safe drinking water in 2015, and around
2.4 billion people live without adequate sanitation according to [25]. This situation
has impacts on the economy of the society according to the Millennium Summit
of 2000, on which the United Nations agreed the Millennium Development Goals
(MDG). One of the biggest concerns of the MDG, due to the rapid population growth
and industrialization, is to guarantee the access to drinking water, achieving a proper
management of the available water resources. Hence, it becomes essential to over-
come the lack of drinking water for achieving sustainable development including in
both social and economic aspects, poverty reduction and equity, and also sustainable
environmental services [13].

Over the last decade, several optimization-based control strategies have been pro-
posed to manage efficiently drinking water and to solve resource allocation problems
in water applications. For instance, in [10] a nonlinear multi-objective optimiza-
tion procedure has been proposed to manage water flows and reserves in drinking
water transport networks (DWTNs), considering the uncertainty of climate and global
change development, using an integrated approach, i.e., modelling the drinking-water
system, the climate, and the society as a whole. However, this solution implies to
consider a lot of variables and constraints which increase the complexity of the opti-
mization problem. Likewise, optimization-based strategies such as model predictive
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control (MPC) have been designed for this kind of systems, considering the uncer-
tainty of demand patterns as in [26] and minimizing operational costs and shortage
events [9].

Another approach to address the DWTN control design is the use of population
dynamics taking advantage of their stability properties and the close relationship
between the solution in a population game (Nash equilibrium) and the unique maxi-
mizer of a constrained convex optimization problem [23]. Recently, game theory has
been used in the solution of engineering problems [1, 14, 17, 24] and for the solution
of optimization problems [15, 16]. Furthermore, in this chapter, the population game
approach is presented as a powerful tool for the design of data-driven controllers.
More precisely, two different directions in the design of data-driven population-
games-based controllers are treated in this work. First, the DWTN is controlled by
making a partitioning into subsystems that satisfy specific conditions, and a resource
allocation problem is solved at each partition. This approach generates a decentral-
ized control scheme since the local controllers neither communicate to each other nor
exchange information among them. Secondly, it is proposed the design of data-driven
controllers by minimizing a cost function and considering flow-balance constraints.
Under this approach, the network is divided into subsystems according to the estab-
lished constraints over the control inputs, which constitutes a distributed scheme due
to the existing intersection among the different subsystems.

The presented contents in this chapter are a compilation of the theory proposed in
previous works [3–6, 21]. However, some new case studies are incorporated as well
as new simulation results.

Notation
Although this book follows an unified notation and in order to facilitate the reading
of this chapter, some additional notation is introduced. The subindex is associated
to a node of a graph or to a strategy in a game. On the other hand, the superindex
refers to a population. For instance, the subindex i in ui, Pi, u

p
i or fi refers either to a

node in a graph or to a strategy, and the superindex p in mp, up, upi or np indicates a
population. Also it should be clear that the superindex is not an operational number,
i.e., n3 refers to population three but n3 �= nnn. We use bold font for column vectors
and matrices, e.g., u, and H; and non-bold style is used for scalar numbers, e.g., np.
Calligraphy style is used for sets, e.g., S. The column vector with n unitary entries
is denoted by 1n, and the column vector with null entries and suitable dimension
is denoted by 0. The identity matrix with dimension n × n is denoted by In. The
cardinality of a set S is denoted by |S|. The continuous time is denoted by t, and it is
mostly omitted throughout the manuscript in order to simplify the notation. Finally,
R≥0 represents the set of all non-negative real numbers, and Z>0 represents the set
of positive integer numbers.
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18.2 Problem Statement

18.2.1 First Data-Driven Perspective

In the proposed DWTN model for the design of the population dynamics-based con-
trollers, which is composed by several storage tanks, the flow direction is unique since
it is assumed that the pressure head at upstream tanks of the network is always higher
than the pressure head at downstream tanks. This consideration is common in DWTNs
that have been designed for places where the topography is steep and the slope is
descending. Due to this assumption, it is possible to distinguish between source and
receptor tanks, taking into account that the former ones are always upstream and
directly linked to the latter ones.

Consider then a simple DWTN composed by n receptor tanks, and only one source
tank as shown in Fig. 18.1. This topology is known as branched [19], which means
that there are no loops in the network due to the fact that several outflows might go
out from a single source tank, but no several inflows come into a single receptor.
Let S = {1, ..., n} be the set of receptor tanks in the branched subsystem. The
volume of the tank i ∈ S is denoted by xi ∈ R≥0, its maximum volume is denoted
by xmax

i ∈ R≥0 and its inflows and outflows are given by qini ∈ R≥0 and qouti ∈ R≥0,
respectively. Hence, the vector of all the tank volumes is denoted x ∈ R

n
≥0, and the

vector of maximum volumes is xmax ∈ R
n
≥0. The parameter ui ∈ [0, 1] determines

the setting of the input valve in the ith tank, Ki > 0 scales the outflow, and it can
be considered as a volume-flow conversion factor or the discharge coefficient of
the tank. Moreover, the system is affected by perturbations that are related to daily
demand patterns.

The control objective consists in avoiding shortages throughout the system, i.e.,
to avoid that the current volume of the tank xi runs out, not supplying the demand, for
all i ∈ S. To achieve this objective, it is proposed to do an allocation of the available
resource stored in the n tanks, i.e., to distribute the current available volume given by
xmax
i − xi in an optimal way by controlling the inflows qini , for all i ∈ S. For instance,

considering the hypothetical situation in which one tank is completely filled and
another tank is empty, more priority should be assigned to the inflow of the empty
tank rather than the inflow assigned to the filled one, in order to prevent shortages.

Fig. 18.1 Branched
topology with n receptor
tanks, and one source tank
whose volume is denoted by
vs. The source tank is
upstream of the receptor
tanks
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For each subsystem, the topology of interest is given by different receptor tanks
and one source. The entire control system for the DWTN is composed by π local
controllers that do not communicate with each other and which operate independently
in parallel, i.e., all local controllers may operate their corresponding control inputs
at once.

18.2.2 Second Data-Driven Perspective

This section presents the design of a controller without considering the model of the
system, but just by considering the fact that the error within a tank (i.e., the difference
between the safety value and the current volume) can be reduced as the control
action is increased. In order to design a data-driven controller based on the proposed
methodology, it is defined a cost function corresponding to the desired behaviour of
the system. In this particular case, a volume error at each tank is considered.

The controller is designed through an optimization problem minimizing econom-
ical costs, the volume error with respect to the safety storage term and variations in
the control actions. The economical costs are given by (α

p
1 + α

p
2(k))

�up(k), where
α

p
1 is a constant vector defining the energy costs, and α

p
2 is a time varying vector

determining the water costs. The volume error is given by xp
s − xp, where xp

s is the
safety storage imposed by the company in charge of the system management. Finally,
the �up(k)��up(k) corresponds to the smooth operation cost.

These objectives are minimized subject to constraints of mass balance and physical
constraints of actuators. To this end, new variables x̃s ∈ R

nu of safety values, and
x̃ ∈ R

nu composed of tank volumes, are introduced. Notice that the dimension of the
new vectors of volumes corresponds to the dimension of the vector of control actions,
i.e., x̃s, x̃, u ∈ R

nu . The scalar x̃i denotes the volume corresponding to the tank whose
inflow is given by ui, and null in case that ui is not an inflow for any tank. The safety
volume x̃s,i corresponds to the safety volume of the tank whose inflow is given by ui,
and null otherwise. Briefly, x̃i = xj, and x̃s,i = xs,j if ui is the inflow of the jth tank,
and null if ui is not an inflow for any tank. Notice that the constraints over the system
states (i.e., tanks volumes) may not be considered since this approach does not use a
Control-Oriented Model (COM). The following optimization problem only depends
on measured state values (volumes) and decision variables (control inputs):

maximize
up

V (up(k)) = −γ1(α
p
1 + α

p
2(k))

�up(k)

−γ2(x̃p
s − x̃p(k))�diag(up(k)) (x̃p

s − x̃p(k)) − γ3�up(k)� �up(k),

subject to Ep
uup(k) = −Ep

ddp(k),[
Inu

−Inu

]
up(k) ≤

[
up,max

−up,min

]
. (18.1)
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18.3 Proposed Approach

18.3.1 Population-Games Approach: First Data-Driven
Perspective

In this section, a detailed description of the population dynamics-based controller is
done, taking into consideration that it is presented for the case of a single partition or
subsystem. As it was stated before, the control approach is conceived from an analogy
between the population dynamics framework and the DWTN model (see Table 18.1).
In order to make clearer the analogy, it is worth to understand the process of transport
between a source tank and the final user.

First of all, storage tanks receive water from treatment plants and/or natural water
bodies (e.g., aquifers and reservoirs). Then, this water is redistributed among several
storage tanks, which are located close to the final user. For instance, these can be
placed in houses to prevent shortage when there is a lack of the resource. Consumers
use the water that is available for them into the closest tank. In order to match supply
and demand, the utility has the possibility to manipulate the amount of water that is
deposited into receptor tanks through valves.

Considering this process, one can notice that the control problem is reduced to a
resource allocation problem, in which the system can be seen as the population of
a game. The population is composed by water or flow units, which summed all up
form a mass (outflow). When the population mass reaches a point in which the flow
diverges, it has the possibility to select one of the n paths (strategies) that lead to one
of the receptor tanks in S. The mass is going to select certain strategy based on the
maximization of its wealth, which is defined by a fitness function.

Now that the analogy has been exposed, consider the branched DWTN with n ∈
Z>0 receptor tanks (strategies). The total flow through the system (population mass)
is denoted by Q ∈ R≥0, which corresponds to the outflow of the source tank. Each
flow unit is assigned to an inflow of one of the receptor tanks.

The scalar ui ∈ R≥0 is the proportion of flow units assigned to each flow associated
to the tank i ∈ S as a percentage, i.e., the inflow for the ith tank is given by uiQ. The

Table 18.1 Equivalence between population dynamics and DWTN

Population dynamics DWTN

P Population System

i Strategy Receptor tanks

m Population mass Total outflow source tank

q Agents Flow units

ui Proportion of agents Proportion of flow

u Strategic distribution Flow distribution in receptor tanks

fi Fitness of a strategy Available volume capacity
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vector u ∈ R
n
≥0 is the flow proportion distribution involving the n tanks according to

the topology. The set of the possible distributions of flow is given by a simplex

� =
{

u ∈ R
n
≥0 :

∑
i∈S

ui = 1

}
,

and the tangent space of the set of possible distributions of flow is defined as

T� =
{

z ∈ R
n :

∑
i∈S

zi = 0

}
.

Each flow unit is assigned to each tank i ∈ S depending on the current volume
capacity, which is described by a function fi(u). Therefore, less inflow is assigned to
those tanks close to be filled up.

The design of the population dynamics-based controllers are given by the proper
selection of the fitness functions that define the incentives for the proportion of
agents to choose a particular strategy. The proper selection of the fitness functions is
further discussed below, and it depends on how the water is distributed in a DWTN
with branched topology. Furthermore, it is necessary that the fitness functions satisfy
conditions to obtain a class of population game known as stable game [11].

Definition 18.1 The game F(u) is stable if the Jacobian matrix J = DF(u) is neg-
ative semi-definite with respect to the tangent space T� [11], i.e.,

z�J z ≤ 0, for all z ∈ T�, u ∈ �.

Then, it implies that a game is stable if the fitness functions are decreasing with
respect to the proportion of agents.

Notice that for the branched topology, the fitness functions can be selected decreas-
ing with respect to the current volume, e.g., the error with respect to the maximum
capacity volume as in [20] (see Fig. 18.2a). When a proportion of agents is increased,
it is expected that the corresponding volume increases (see Fig. 18.2b). Consequently,
due to the fact that fitness functions are increasing with respect to the volume, the fit-
ness function decreases with respect to the proportion of agents (necessary condition
for a stable game).

The Distributed Replicator Dynamics
The results presented on this chapter are obtained using the replicator dynamics [23]
in order to find a solution to the resource allocation problem. The solution, in which
no agent has incentives to switch from one strategy to another one [23], is determined
in terms of a Nash equilibrium,1 which can be found when the dynamics converge,

1u∗ ∈ � is a Nash equilibrium if each used strategy entails the maximum benefit for the proportion of
agents selecting it, i.e., the set of Nash equilibria is given by {u∗ ∈ � : u∗

i > 0 ⇒ fi(u∗) ≥ fj(u∗)},
for all i, j ∈ S [23].



18 Data-Driven Evolutionary-Game-Based Control for Drinking-Water Networks 369

Fig. 18.2 Proper selection
of fitness functions for
divergence topology (a) and
(b). Correspondence is as
follows: a decreasing fitness
function with respect to
volume. b increasing relation
existing between proportion
of agents and volume for
divergence topology

fi

xia b

xi

ui

a

b

(a) (b)

and is denoted by u∗ ∈ �. The replicator dynamics are of interest in this work since
they share gradient properties studied in [22], and because of their passivity properties
studied in [3]. However, the replicator dynamics require full information (i.e., all the
tanks (strategies) need information about the states of the others in order to evolve).

Since the problem is handled using a distributed control approach, it is necessary
to use the distributed replicator dynamics, which were deduced in [2] from a local
revision protocol that only needs partial information. Due to the fact that only local
information is needed, then there is an undirected non-complete connected graph
describing the interactions among agents. It is denoted by G = (V, E), where V is
the set of nodes, which represents the tanks, and E ⊂ {(i, j) : i, j ∈ V} is the set of
links representing the information sharing within the system. Furthermore, the set
of neighbours of the node i ∈ V is given by Ni = {j : (i, j) ∈ E}. Notice that i /∈ Ni,
and that Ni �= ∅, for all i ∈ V since G is connected.

The distributed replicator dynamics are given by

u̇i = ui

⎛
⎝fi(u)

∑
j∈Ni

uj −
∑
j∈Ni

ujfj(u)

⎞
⎠ , for all i ∈ S.

Now that the distributed replicator dynamics have been defined, consider a pop-
ulation composed by a large and finite number of agents. Agents in the population
have incentives to select the tank outflows (e.g., in a general control system, the error
is an incentive for the controller to apply more energy to the system and then correct
the states to achieve the desired values). The incentives, associated to rewarding that
the proportion of agents ui receives, for selecting the tank i ∈ S, are given by a fitness
function fi(u) whose mapping is fi : � �→ R. Moreover, the vector of all the fitness
functions is denoted by F = [f1 · · · fn]� with mapping F : � �→ R

n.
The solution of the population game is given by the condition fi = fj, for all

i, j ∈ S. In order to control the case of flow divergence topology, it is proposed the
following fitness function

fi = −
(

1

ei + ε

)
, for all i ∈ S, (18.2)
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with
ei = 1 − xi + si + γ

xmax
i + γ

, for all i ∈ S,

where si ∈ R≥0 is the shortage volume, i.e., the volume that is demanded but cannot
be supplied by the ith tank, γ ∈ R>0 is a constant that ensures 0 ≤ ei ≤ 1 and ε ∈ R>0

is a small factor that prevents the indetermination of fi when ei = 0. Moreover, the
proposed fitness function for the strategy i ∈ S, only depends on the volume vi and
the proportion of agents ui, making it suitable to apply in this case where only local
information is available.

All the valves, defining the inflow of the receptor tanks in a partition, are estab-
lished by the vector u ∈ R

n
≥0. These settings in the output gates affect the behaviour

of the tank volumes, i.e., x ∈ R
n
≥0. Then, the variation of the tank volumes modi-

fies the fitness function (18.2), affecting the control actions over the output valves
u ∈ R

n
≥0.

18.3.2 Population-Games Approach: Second Data-Driven
Perspective

Consider a society whose topology is represented by an undirected non-complete
connected graph denoted by G = (V, E), where V denotes the set of nodes of the
graph G. These nodes represent the set of n available strategies in a social game
denoted by S = {1, . . . , n}. Besides, the set E ⊂ {(i, j) : i, j ∈ V} denotes the edges
of the graph G that determines the possible interactions among social strategies.

The graph G is divided into π ∈ Z>0 subcomplete graphs known as cliques [7].
Additionally, each clique represents a population within the society. The set P =
{1, . . . ,π} denotes the collection of the π populations, and the set of cliques is
denoted by C = {Cp : p ∈ P}. The clique corresponding to the population p ∈ P is a
graph given by Cp = (Vp, Ep), where the set Vp represents the np available strategies
in a population game, which are denoted by Sp = {i : i ∈ Vp}. On the other hand,
Ep = {(i, j) : i, j ∈ Vp} is the set of all the possible links in Cp determining full
interaction among the population strategies.

In this work, it is assumed that the set of cliques is already known, i.e., the number
of cliques π, the set of vertices Vp and the set of edges Ep for all p ∈ P are known.
Although if it is desired to obtain the optimal set of cliques,2 there are several methods
to find them, e.g., the Bron Kerbosh algorithm [12], or the maximum clique problem
using replicator dynamics as shown in [7]. Once the optimal set of cliques C has
been identified, it is possible to find redundant links. A link (i, j) ∈ E is redundant if
(i, j) /∈ Ẽ , i.e., (i, j) /∈ Ep, for all p ∈ P .

2The minimum amount of cliques π such that
⋃

p∈P Vp = V , and the minimum amount of links

|Ẽ|, where Ẽ = ⋃
p∈P Ep ⊆ E such that the graph G̃ = (V, Ẽ) is connected.
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Then, the number of cliques that contain a node i ∈ V , denoted by G(i), is defined
as follows:

G(i) =
∑
p∈P

g(i, p),

and

g(i, p) =
{

1 if i ∈ Vp

0 otherwise.

Due to the fact that the graph G is a non-complete and connected, then all cliques
share at least one node with another clique, which is known as an intersection node.
The set Ip = {i ∈ Vp : G(i) > 1} collects all the intersection nodes in a popula-
tion p ∈ P . Moreover, the set of intersection nodes in the graph G is given by
I = ⋃

p∈P Ip.
Furthermore, all the populations p ∈ P such that a node i ∈ V belongs to the set

of nodes Vp are collected in a set denoted by Pi. The set of all the populations that
includes a node i ∈ V is given by Pi = {p : i ∈ Vp}, where Pi ⊆ P .

The scalar ui ∈ R≥0 is the proportion of agents in the society selecting the strategy
i ∈ S. Similarly, the scalar upi ∈ R≥0 is the proportion of agents selecting the strategy
i ∈ Sp in the population p ∈ P . Moreover, the distribution of agents throughout the
available strategies in the society and populations is known as the social strategic
distribution and the population strategic distribution denoted by u ∈ R

n
≥0 and up ∈

R
np
≥0, respectively.
The set of possible social strategic distributions is given by a simplex denoted

by �, which is a constant set, i.e., � = {
u ∈ R

n
≥0 : ∑

i∈S ui = m
}
, where m ∈ R>0

is the constant mass of agents in the society. Similarly, the set of possible strategic
distributions of the population p ∈ P is given by a non-constant simplex defined
as �p = {

up ∈ R
np
≥0 : ∑

i∈Sp ui = mp
}
, where mp ∈ R>0 corresponds to the mass

of agents in the population p ∈ P . Furthermore, there is a relationship between the
social proportions and the population proportions given by

ui = 1

G(i)

∑
p∈Pi

upi . (18.3)

Notice that if it is considered that upi = 0 for all i /∈ Vp, then (18.3) can be written
as

ui = 1

G(i)

∑
p∈P

upi . (18.4)

The fitness functions take a social or population strategic distribution and return the
payoff that a proportion of agents playing a certain strategy receives. Let fi : � �→ R

be the mapping of the fitness function for the proportion of agents playing the strategy
i ∈ S, and f pi : �p �→ R be the mapping of the fitness function for the proportion of
agents playing the strategy i ∈ Sp in the population p ∈ P . The fitness corresponding
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to a strategy i ∈ S is the same as the fitness for a strategy j ∈ Sp for all p ∈ P if i = j.
Consequently, for all i ∈ Sp and for all p ∈ Pi,

fi(u) = f pi (up), if ui = upi . (18.5)

The vector of the fitness functions for a society is given by F = [f1 . . . fn]� ∈
R

n. The social average fitness is denoted by f̄ , where f̄ = (u�F)/m. Similarly, the
vector of fitness functions for a population p ∈ P is given by Fp ∈ R

np , whose fitness
functions are associated to the strategies Sp. The average fitness for a population
p ∈ P is denoted by f̄ p = (up�Fp)/mp. There is a relationship between the population
masses and the social mass given by

m =
∑
p∈P

mp −
∑
i∈S

(G(i) − 1)ui. (18.6)

The framework of this paper is given by the assumptions stated next.

Assumption 18.1 The game F is a full potential game [23], i.e., there is a continu-
ously differentiable function V (u), known as the potential function, satisfying

∂V (u)

∂ui
= fi(u), for all i ∈ S, and u ∈ �.

Assumption 18.2 Fitness functions depend only on strategies on which there is
connection, i.e., each node requires only available information given by the graph
topology.

Assumption 18.3 The proportion of agents playing the strategies corresponding to
intersection nodes are strictly positive for all the time, i.e., upi > 0 for all i ∈ I, and
for all p ∈ P (i.e., there is not extinction of the intersection population). This also
implies that population masses are strictly positive, i.e., mp > 0, for all p ∈ P , since
the population masses are composed of proportion of agents within populations.

Assumption 18.4 The game DDF is a stable game [11], i.e., the Jacobian matrix
DF(u) is negative semi-definite with respect to the tangent space T� (see Definition
18.1).

The features of the potential function V (u) determine whether the full potential game
F is stable, as shown in Lemma 18.1.

Lemma 18.1 If V (u) is twice continuously differentiable and concave, then the full
potential game F is a stable game.

The objective for the society is to converge to a Nash equilibrium3 of the game
F denoted by u∗ ∈ �. In order to achieve this objective, there is a game at each

3u∗ ∈ � is a Nash equilibrium if each used strategy entails the maximum benefit for the proportion of
agents selecting it, i.e., the set of Nash equilibria is given by {u∗ ∈ � : u∗

i > 0 ⇒ fi(u∗) ≥ fj(u∗)},
for all i, j ∈ S [23].
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population p ∈ P converging to a Nash equilibrium of the game Fp denoted by
up∗ ∈ �p, and the intersection nodes i ∈ I allow a mass interchange among the
different populations.

Population Dynamics and Mass Dynamics
A game is solved for each population with constraints given by the population masses
mp, which vary dynamically. Dynamics associated to each population are shown in
(18.7a). There are π different dynamics of this form, one for each clique Cp for all
p ∈ P , i.e.,

u̇pi = upi
(
f pi − f̄ p − φp

)
, for all i ∈ Sp, (18.7a)

φp = β

⎛
⎝ 1

mp

∑
j∈Sp

upj − 1

⎞
⎠ , (18.7b)

where β is the convergence factor for the whole system that takes a positive and finite
value. Notice that, when φp = 0 (i.e., up ∈ �p), then (18.7a) becomes the classical
replicator dynamics equation [27].

On the other hand, there are as many mass dynamics as intersection nodes in the
graph, i.e., one for each i ∈ I. The dynamics for population masses mp are given by

ṁp
i = mp

i

(
ui − upi

)
, for all p ∈ Pi, (18.8)

Equation (18.8) describes the movements of agents among populations through
intersection nodes for the case in which there is no social mass constraint [6]. There
might be alternative possibilities in the selection of the mass dynamics (18.8). How-
ever, the requirements that should be satisfied are as follows: (i) the dynamics satisfy
the communication constraints established by the graph G, and (ii) dynamics con-
verge to the equilibrium point given by ui = upi , for all p ∈ Pi.

There is a relationship between mp
i , for all i ∈ Ip, and the population masses mp

given by

mp = 1

|Ip|
∑
i∈Ip

mp
i , for all p ∈ P. (18.9)

For the mass dynamics at intersection nodes in (18.8), the vector of masses and the
vector of states associated to an intersection node i ∈ I are defined next. The masses
vector is denoted by mi = [mp1

i . . . m
pG(i)

i ]� ∈ R
G(i), where p1, . . . , pG(i) ∈ Pi;

and the vector of population states is ui = [up1
i . . . u

pG(i)

i ]� ∈ R
G(i), where

p1, . . . , pG(i) ∈ Pi; both vectors mi, and ui for all i ∈ I. Notice that, mi �= mi and
ui �= ui.

Finally, the dynamical system can be forced to converge to a Nash equilibrium
u∗ such that F(u∗) = ∇V (u∗) converges to a desired value fi(r) for an i ∈ I, where
r is a known value (e.g., a reference). Modifying the relationship between the states
in (18.4) by adding the reference r, the following new relationship is obtained:
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ui = 1

G(i) + 1

⎛
⎝∑

p∈P
upi + r

⎞
⎠ ,

where upi = 0, if i /∈ Vp. Using this modification, by (18.8), ui tends to r. This makes
f̄ to converge to the desired value fi(r), for only one i ∈ I.

Optimization Problems
The presented population dynamics with time-variant mass may be implemented
to solve different constrained optimization problem forms. First, it is presented a
population game without social mass constraint but with the positiveness over the
proportion of agents. Afterwards, the population-games approach is presented to
solve a constrained optimization problem with several constraints over the proportion
of agents.

First, consider optimization problems without social mass constraint. This prob-
lem only demands the positiveness of optimization variables. From a mass dynamics
perspective, it implies a variation of the social mass arbitrarily. The problem is stated
as follows:

maximize
u

V (u)

subject to u ∈ R
n
≥0,

where V : Rn
≥0 �→ R, and V is continuously differentiable and concave. Also, it is

supposed that the solution point of this problem is an interior point. The solution
for the optimization problem with one constraint is found by F(u) = ∇V (u) = 0,
since V (u) is concave and by the fact that it is known that the maximum point is an
interior point. Therefore, the desired value for the average fitness is fi(r) = 0, and it
is enough to find the correct value for reference r and any intersection i ∈ I.

Secondly, consider optimization problems with multiple constraints over agents
proportions. Suppose that there is a strategic interaction with more than one con-
straint, e.g., different constraints over the proportion of agents. It is desired that the
total amount of certain groups of proportions of agents are constant. This problem
is stated as

maximize
u

V (u)

subject to Hu = h, and u ∈ R
n
≥0, (18.10)

where u ∈ R
n
≥0, V : Rn

≥0 �→ R, and V is concave and continuously differentiable.
Moreover, H ∈ R

L×n since there are L constraints and n decision variables, and
h ∈ R

L. For this optimization problem, μ is the Lagrange multiplier vector. The
Lagrange function l : Rn × R

L �→ R is

l(u,μ) = V (u) + μ�(Hu − h). (18.11)
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Moreover,∇ul(u,μ) = ∇f (u) + H�μ, and−∇μl(u,μ) = −Hu + h.The Lagrange
condition is used to find possible extreme points in the objective function, in which
∇ul(u,μ) = 0, ∇μl(u,μ) = 0 [8].

Consequently, fitness functions for each node are chosen to be defined as F(u) =
∇ul(u,μ), and F(μ) = ∇μl(u,μ). This problem is solved by using a reference r as
it was explained in Sect. 18.3.2 in order to force a convergence value for the fitness
functions associated to the social states and the Lagrange multipliers. In order to
use the population and the mass dynamics, it is necessary that the games are stable
according to Assumption 18.3.

Lemma 18.2 If V (u) is twice continuously differentiable and concave, and the
constraints have the form Hu = h, then the games F(u) = ∇ul(u,μ) and F(μ) =
∇μl(u,μ) are stable.

18.4 Simulations and Results

18.4.1 Case Study: First Data-Driven Perspective

In the design of the proposed decentralized controller, it is necessary to make a par-
titioning of the DWTN into different subsystems. Each subsystem must correspond
to a case of flow divergence (i.e., each subsystem must be of the form shown in
Fig. 18.1). In order to clarify the partitioning process in a typical branched DWTN,
an arbitrary DWTN is presented in Fig. 18.3. At this general example, it is possible
to identify that the whole system is composed of three partitions or subsystems.

When performing the partitioning, it is possible to find some tanks that are a source
and also a receptor for different subsystems in the DWTN (this is typical when the
topology is branched). For instance, in the partitioning presented in Fig. 18.3, the
grey tanks are receptors for the partition 1, and source tanks for the partitions 2,
and 3.

Fig. 18.3 Partitions over a
branched topology. Some
tanks are source and receptor
in different partitions (gray
tanks)

Partition 1

Partition 2 Partition 3
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Fig. 18.4 Case study with eight tanks in a branched DWTN

Table 18.2 Maximum
volumes and scale factors of
the tanks in the DWTN

Tank i xmax
i

(
m3

)
Ki (1/ms)

1 2.0 0.123

2 1.1 0.160

3 2.0 0.326

4 0.5 0.599

5 2.6 0.660

6 0.2 0.632

7 2.0 0.255

8 3.5 0.427

A DWTN composed by eight tanks is controlled (see Fig. 18.4), for an scenario in
which shortages are produced due to the fact that the network is only operating with
water stored in the main upstream tank. The system is a branched DWTN whose
topology is mainly divergent, so it can be partitioned in three main subsystems;
all independently controlled by a distributed replicator-dynamics-based controller.
The maximum storage capacity and the scale factors of each tank are presented in
Table 18.2. Since the system is branched and the divergence topology prevails, it is
possible to divide the system into three partitions, as it was described before. The
first one is composed by tanks 2 and 3, the second by tanks 4 and 5 and the third
by tanks 6, 7 and 8. Each partition receives the flow from a source tank, which is
distributed in different proportions, depending on the setting of the input valves of
each tank of the partition.

Each tank attends a different demand pattern along the day denoted by di. The
tanks with volumes x5 and x8 supply a constant demand pattern of 4.5 × 10−3 l/s,
while the others, denominated as inactive tanks (i.e., tanks 2, 3, 4, 6 and 7) are
just operating to store water, not attending any demand pattern. When there is not
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(a) (b) (c)

(d) (e) (f)

Fig. 18.5 Evolution of the used capacity in storage tanks; a, b, c capacity of tanks when no control
strategy is applied; and d, e, f capacity of tanks when the evolutionary-game-based strategy with
the replicator dynamics is applied

a control strategy, the flow is divided equally, and shortage of 26 m3 is produced
because the distribution of flows is inefficient, as shown in Figs. 18.5a, 18.5b and
18.5c.

When the control strategy is applied, then the priority is given to the tanks that
supply the demand, and inactive tanks become less filled up since they are not attend-
ing any demand pattern. Thereby, no shortages are produced, the demand is fully
supplied and the distribution of flows is more efficient, in comparison to the case
with no control. This is because all the tanks keep some volume stored on them at
the end of the day, while in the other case, tanks 5 and 8 are completely empty.

It has been shown that the proposed decentralized population dynamics-based
control is efficient in terms of a better distribution of drinking water throughout
the DWTN, avoiding shortages. The partitioning proposed methodology allows to
design the decentralized controller by using different local controllers with a lower
computational burden with respect to a centralized controller.

18.4.2 Case Study: Second Data-Driven Perspective

Consider the case study presented in Fig. 18.6, which corresponds with the aggre-
gate model of the Barcelona drinking water network presented in Fig. 2.2. For
this system, consider x̃ = [x̃1 x̃2 . . . x̃61]�, x̃s = [x̃s,1 x̃s,2 . . . x̃s,61]� and
u = [u1 u2 . . . u61]� according to the explanation presented in Sect. 18.2.2.

http://dx.doi.org/10.1007/978-3-319-50751-4_2
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In the control design, the first step is the determination of cliques within the system,
i.e., to make a partitioning of the system. The aforementioned partition process of the
BDWTN is a problem already studied in [18]. For the BDWTN control problem, the
proposed partitioning is determined based on the system mass balance constraints.
Lagrange-multiplier vertices are connected to decision variables vertices from which
information is needed in order to compute the fitness functions F(μ). As a criterion
for performing the partitioning, it is desired that all the Lagrange multipliers, and
the nodes connected with them, belong to the same clique. In order to formalize this
partitioning criterion, let Hj be the set of all the nodes that are involved in the jth
equality constraint of the form (18.10), where j = 1, . . . ,L, e.g., for the BDWTN
system, H1 = {1, 2, 5, 6}, and H2 = {2, 3}. Furthermore, we consider two sets of
nodes for mass balance constraints Hi, and Hj. If Hi ∩ Hj �= ∅, then all the nodes
Hi ∪ Hj should belong to the same clique.

Based on this idea, it is possible to determine the vertices (strategies) that
should belong to the same clique (population). As an example, consider the set
of nodes associated to the constraint given by mass balance node 9, i.e., H9 =
{28, 35, 43, 49}, and the set of nodes corresponding to the mass balance constraint
10, i.e., H10 = {43, 44, 52}. There is a common vertex given by H9 ∩ H10 = {43}.
Now, considering the constraint corresponding to the mass balance node 11, i.e.,
H11 = {50, 51, 52, 56, 57, 58, 59, 60, 61}, then it is obtained thatH10 ∩ H11 = {52}.
Consequently, all the nodes H9 ∪ H10 ∪ H11 should belong to the same clique.

On the other hand, there are some vertices that are not associated to any
constraint, e.g., the node 4 associated to the decision variable x4, then 4 /∈ Hj

for all j = 1, . . . , 11. In these cases, vertices are assigned to the closest clique.
Cliques are presented in Fig. 18.7, and the nodes of each clique are shown in
Table 18.3. Notice that {H1 ∪ H2 ∪ H3 ∪ H5} ∈ V1, {H4 ∪ H6 ∪ H7 ∪ H8} ∈ V2,
and {H9 ∪ H10 ∪ H11} ∈ V3.

Once the partitioning is performed, the optimization problem (18.1) is stated of the
form (18.10) by adding slack variables, which may be solved by using the population
and mass dynamics. In this case, the society is composed of three population (cliques).
In order to analyze the performance of the data-driven controller, the obtained results
are compared to a centralized MPC controller. Figure 18.8 presents the evolution of
three volume tanks (i.e., x1, x12, and x14), and three control inputs (i.e., u18, u32,
and u40) for both centralized MPC controller and data-driven controller based on
population dynamics. In Figs. 18.8a, 18.8b and 18.8c show that, with the centralized
MPC controller, the tanks are maintained with more volumes with respect to the
data-driven controller based on population dynamics. This better performance of the
centralized MPC controller is obtained due to the fact it disposes of the system model
in comparison to the data-driven control approach. Moreover, Figs. 18.8d, 18.8e and
18.8f show the similar performance of the control inputs for both controller. This
close behaviour is obtained because of the constraints, which are taken into account
for both control approaches.

Table 18.4 shows the comparison of the economical costs obtained with the cen-
tralized MPC strategy and the data-driven population-games-based control approach.
The results exhibit lower energy costs associated to the control inputs with the
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Fig. 18.7 Partitioning of the BDWTN into three cliques (see Table 18.3)

data-driven approach. However, since the MPC controller disposes of the model
system to generate a prediction, the centralized MPC approach minimizes more the
overall costs. In contrast, even though the minimization of costs, the data-driven
control scheme is non-centralized, reducing the amount of required communication
links in order to compute the final control inputs.

Table 18.3 Partitioning of the network into the three resultant cliques

Clique Vertices u Involved states x

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13,

17, 18, 22, 29, 30, 36, 37, 38
1, 2, 3, 4, 6, 7, 9, 10, 11

2 12, 14, 15, 16, 19, 20, 21, 23, 24, 25, 26,

27, 31, 32, 33, 34, 39, 40, 41, 45, 46, 47
4, 5, 6, 7, 8, 9, 10, 12, 14

3 28, 35, 42, 43, 44, 48, 49, 50, 51, 52,

53, 54, 55, 56, 57, 58, 59, 60, 61
9, 10, 11, 12, 13, 14, 15, 16, 17
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(a) (b) (c)

(d) (e) (f)

Fig. 18.8 Evolution of volumes a 1, b 12, and c 14. Evolution of control inputs d 18, e 32, and
f 40

Table 18.4 Discrimination of economical costs for different control strategies

Day Total cost in economical units (e.u.)

Population dynamics approach Model predictive control

Data-driven controller Model-based controller

Water Energy Water Energy

1 45484.48 18409.34 37915.28 22096.12

2 41384.76 18131.81 28352.38 22235.15

3 40022.43 18791.73 28400.39 22288.11

4 40389.76 18387.35 28330.14 22219.59

Sum 167281.43 73720.23 122998.21 88838.97

Overall costs 241001.66 211837.17

18.5 Conclusions

Two data-driven non-centralized control strategies to manage water flows among
drinking-water networks have been presented. The proposed controllers are based
on population games and have been designed using the distributed replicator dynam-
ics and a modification of the population dynamics incorporating mass dynamics.
Additionally, two partitioning approaches have been introduced in order to divide
the typical centralized control problem into several subsystems. The partitioning of
the system allows to reduce the computational burden required to manage the flows
among the system. In the first population-games approach, the partitioning implies a
decentralized control scheme since the local controllers do not communicate to each
other. On the other hand, the partitioning in the second population-games implies a
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distributed control scheme since there is overlapping among the resulting subsystems.
Both techniques have been tested using two different case studies.
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Chapter 19
Coordinating Regional and Urban Water
Networks

Congcong Sun, Gabriela Cembrano and Vicenç Puig

19.1 Introduction

Regional and urban networks normally operate to deliver water from natural sources
to municipal, industrial and irrigation needs. Management of these systems from
planning to operation is challenging since the problem deals with many complex
modelling issues related to inflows, river delays, storage, urban, irrigation and indus-
trial water demands as described in [1].

Regional supply and urban delivery networks are often operated separately by
different authorities and/or utilities. Moreover, planning and management of these
subsystems have different goals and timescales. Additionally, hydraulics involved
differ considerably from one to another, in particular, between large and spatially
distributed open canals and pressurized water sections for distribution to consumers.
In many water systems, network operation is carried out based on the heuristic
approaches and operator judgement, among other approaches, which may be quite
complex for large-scale interconnected systems.

An effective management of complex water network requires a supervisory control
system that takes optimal decisions regarding the operation of the whole network.
Such decisions are either implemented automatically or offered as a decision support
to operators and managers. Decisions of the control systems are translated into set
points to individual, localized, lower distribution water systems that optimize the
pressure profile to minimize losses by leakage and provide sufficient pressure [2].
The whole control system responds to changes in network topology (ruptures or
changes of configuration), typical daily/weekly profiles, as well as major changes in
demand.
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Considering different dynamics and control objectives, complex water network
can be divided into two functional networks: Regional supply network and Urban
delivery network:

• Regional supply network, composed of rivers, natural aquifers, and large reser-
voirs, which mainly conveys water from natural sources to the cities.

• Urban delivery network, which links water treatment and desalinization plants and
transports water using pipes and tanks distributed along a city.

This chapter presents separately the modelling and design of MPC controllers for
regional supply and urban delivery networks. Both of the regional supply and urban
delivery networks must be modelled separately because of their different timescales,
compositional elements and specified objectives. In order to generate coordinated
control strategies including both functional networks, a temporal multi-level coordi-
nation for regional supply and urban delivery networks is presented. The Catalonia
Regional Water Network is used to validate the proposed modelling and control
schemes.

19.2 Problem Formulation

19.2.1 Control-Oriented Model for Regional Supply Networks

The control-oriented model for a regional supply network model can be considered
as composed of a set of constitutive elements, which are shown below. Some of these
elements are also relevant in Chap. 12.

Tanks and Reservoirs

Water dams/reservoirs provide the entire water system with the storage capacity of
water. The mass balance expression relating the stored volume v and the manipulated
inflows q in

j and outflows qout
h (including the demand flows as outflows) for the i th

tank can be written as the discrete-time difference equation

vi (k + 1) = vi (k) + �t

⎛
⎝∑

j

q in
j (k) −

∑
h

qout
h (k)

⎞
⎠ , (19.1)

where �t denotes the sampling time and k denotes the discrete-time instant. The
physical constraint related to the range of admissible water in the i th dam/tank is
expressed as follows:

vmin
i ≤ vi (k) ≤ vmax

i , ∀ k, (19.2)

where vmin
i and vmax

i denote the minimum and the maximum admissible storage
capacities, respectively. As this constraint is physical, it is impossible to send more

http://dx.doi.org/10.1007/978-3-319-50751-4_12
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water to a tank than it can store, or drawing more water than the stored amount.
Although vmin

i might correspond with an empty dam/tank, in practice this value can
be set as nonzero in order to maintain an emergency stored volume enough to supply
for facing extreme circumstances. Moreover, there will be restrictions in the amount
of flow that can be extracted from the dam/tank depending on the volume stored
according to the discharge curves.

For simplicity purposes, the dynamic behaviour of these elements is described as
a function of the volume. However, in most of the cases, the measured variable is
the water level (by using level sensors), which implies the computation of the water
volume taking into account the element geometry.

Actuators

Several types of control actuators are considered: valves, gates and pumps (more
precisely, pumping stations). It is assumed that the MPC controller provides the
flow set point to a local controller that is responsible to establish the required flow
through the actuator by using a closed-loop control system with a PID or a PLC.
The manipulated flows through the actuators represent the manipulated variables,
denoted as qu . All considered actuators have lower and upper physical limits, which
are taken into account as system constraints. As in (19.2), they are expressed as
follows:

qu
min
i ≤ qui (k) ≤ qu

max
i , ∀ k, (19.3)

where qumin
i and qumax

i denote the minimum and the maximum flow capacities,
respectively.

Nodes

These elements correspond to the network points where water flows are merged or
split. Thus, the nodes represent mass balance relations, being modelled as equality
constraints related to inflows (from other dams/tanks through gates/valves or pumps)
and outflows, and these latter being represented not only by manipulated flows but
also by demand flows. The expression of the mass conservation in these elements
can be written as follows:

∑
j

q in
j (k) =

∑
h

qout
h (k). (19.4)

From now on and with some abuse of notation, node inflows and outflows are denoted
by q in and qout, respectively, despite they can be manipulated flows and hence denoted
by qu , if correspond.

River/Canal Reaches

In order to model a river/canal into a regional supply network, a single reach can be
approximated by using the modelling approach proposed by [3], which leads to the
following relation between the upstream (qups) and downstream (qdns) flows:
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qdns(k + 1) = a1q
dns(k) + b0q

ups(k − τd), (19.5)

where τd = �τ/Ts�, τ is the downstream transport delay, Ts is the sampling time,
b0 = 1 − a1, and a1 = e− Ts

T with T the time constant of the reach canal.

Urban and Irrigation Demands

Urban and irrigation demands are considered as measured disturbance of the system
at a given time instant. The demand in urban areas can be anticipated by a forecasting
algorithm such as those presented in Chap. 6. On the other hand, irrigation demand
is typically planned in advance with farmers. Pre-established flows for irrigation are
established in the irrigation areas for determined periods of the year.

State-Space MPC Model

Given the existence of transportation delays in rivers/canals, the state-space model
of a regional supply network has two kinds of states and control variables. The first
kind of state variables represents reservoir/dam volumes, and the control variables
correspond to actuator flows in gates/valves:

x(k + 1) = Ax(k) + Bu(k) + Bp [d(k) − ε(k)], k ∈ Z (19.6)

where x(k) ∈ R
nx are the state variables, u(k) ∈ R

nu are the control variables, d(k) ∈
R

nd are the disturbances corresponding to the demands, and ε(k) ∈ R
nd are slack

variables for unsatisfied demands.
The demands of a regional supply network are expected to be satisfied by the MPC

strategy with exceptional situations (e.g., drought) when some demands (especially
irrigation demands) may be satisfied only partially. In (19.6), ε(k) is introduced to
control the amount of demand that is not satisfied.

The second kind of states and control variables represents river flows in a river
reach model with delays. For simplicity and brevity of the explanation, the river reach
model (19.5) is considered as a transport delay [4]:

qdns
i (k) = qups

i (k − τd), (19.7)

For time delays associated with flows within the network, the following auxiliary
state equations z are introduced:

z1,i (k + 1) = qups
i (k), (19.8a)

z j+1,i (k + 1) = z j , i(k), j = 1, . . . , τd , (19.8b)

where z j ,i (k) ∈ R
n′
x are state variables representing delay flows and qups

i (k) ∈ R
n′
u

flows, part of control variables.
More details on how this approach can be extended to the case that the river reach

model (19.5) is not just considered as a delay can be found in [4].
After combining (19.8a) and (19.8b) with (19.6), a new augmented state-space

representation is presented as follows:

http://dx.doi.org/10.1007/978-3-319-50751-4_6
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x̃(k + 1) = Ã x̃(k) + B̃ ũ(k) + B̃p [d(k) − ε(k)], k ∈ Z (19.9)

where

x̃(k) =
[
x(k)
zi (k)

]
, ũ(k) =

[
u(k)

qups
i (k)

]
.

All variables are subject to the following inequality constraints:

x̃min ≤ x̃(k) ≤ x̃max , (19.10)

ũmin ≤ ũ(k) ≤ ũmax , (19.11)

εmin ≤ ε(k) ≤ εmax , (19.12)

where x̃min and x̃max are physical limitations of the reservoirs, while ũmin and ũmax

are volume limitations of the river flows. The range of εmin lies between zero and
the related demand.

As described in Chap. 12, the balance at every node should be satisfied, where
E, Ed and Ex̃ are matrices which parameters can be obtained from topology of the
water network:

E ũ(k) + Ed d(k) − Ed(k) ε + Ex̃ (k) x̃(k) = 0. (19.13)

During the consumption process, water storage of reservoir should be kept above
a given volume (named as water safety volume) that is used as emergency supply for
drought period or emergency situations. Any situation below the emergency volume
should be penalized using the soft constraint

x̃ ≥ x̃s − ε̃x, with ε̃x ≥ 0. (19.14)

where x̃s is the water safety volume and ε̃x is the slack variable associated with x̃r .

19.2.2 Operational Goals for Regional Supply Networks

Considering the dynamic characteristics of river water, a regional supply network
operates with a 30-day horizon and a daily time interval. The main operational goals
to be achieved are as follows:

• Operational safety (Jsa f ety): To maintain appropriate water storage volumes in
dams or reservoirs for emergency-handling, i.e.,

http://dx.doi.org/10.1007/978-3-319-50751-4_12
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Jsa f ety(k) = ε̃x(k)
	Wx̃ ε̃x(k), (19.15)

where ε̃x(k) = x̃(k) − x̃s, being x̃s the safety volume for the reservoirs and eco-
logical flow for the river (canal) reaches, and Wx̃ is the associated prioritization
weight.

• Demandmanagement (Jdemand ): To satisfy as much as possible irrigation demands
with allowable slackness during drought seasons, i.e.,

Jdemand(k) = ε(k)	Wdε(k), (19.16)

where εx(k) is the slack variable associated with the relaxation of the demand
satisfaction according to (19.9), and Wd is the associated prioritization weight.

• Minimizing waste (Jwaste): To avoid unnecessary water release from reservoirs
that is wasted in the receiving environment, i.e.,

Jwaste(k) = (̃u(k) − ũs(k))	Ww̃ (̃u(k) − ũs(k)), (19.17)

where ũs is desired flow to be released to the receiving environment and Ww̃ is
the associated prioritization weight.

• Balance management (Jbalance): To keep rivers and reservoirs exploited in a bal-
anced way in order to overusing some of them, i.e.,

Jbalance(k) = x̃	(k)Wbx̃(k), (19.18)

where Wb̃ is the associated prioritization and balancing weight.
• Environment conservation (Jecological ): To maintain water volume and ecological

flows. Since the river flow is modelled as a part of the state vector, this control
objective is included in Jsa f ety .

The above-mentioned goals lead to the following cost multi-objective function
for the optimal management of a regional network

Jregional =
Hp−1∑
k=0

(Jsa f ety(k) + Jdemand(k) + Jwaste(k) + Jbalance(k)). (19.19)

The weightsWx̃ ,W f ,Ww̃,Wx̃ andWm̃ are used to prioritize management policies
(typically, established by the water network authorities) appearing as objectives in
(19.19). The weight tuning method proposed in [5], based on computing the Pareto
front of the multi-objective optimization problem presented in (19.20), can be used.
The initial step of this tuning approach is to find what are known as the anchor points
corresponding to the best possible value for each objective obtained by optimizing a
single criterion at a time. Then, a normalization procedure is applied, a management
point (MP) defined by establishing objective priorities is defined, and the optimal
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weights are determined by computing those that minimize the distance from the
solutions of the Pareto front and the MP.

19.3 Coordination Scheme for Regional and Urban
Networks

19.3.1 Centralized MPC

In order to generate optimal strategies for the complete system including both regional
and urban networks, centralized MPC is an option. The state-space model of the com-
plete water system includes the state-space model of the regional network modelling
volumes of dams and tanks, actuator flows and also river flows in a river reach model
with delays as in (19.6) and the state-space model of the urban network presented in
Chap. 12.

The operational goals to be achieved in the complex water network are presented
after combining control objectives using appropriate weights in both regional and
urban networks as presented, respectively, Jregional in (19.19) and Jurban in Chap. 12
(see (12.13)). Here, it writes

J = Jregional + Jurban . (19.20)

However, considering the different dynamics and timescales of both networks, the
MPC prediction horizon should be the one of the slowest system that corresponds to
the regional supply network and as previously discussed is equal to 30 days. On the
other hand, the sampling time should be selected as the one of the fastest systems
(the urban network), which is 1 h. This implies that the MPC prediction horizon is
equal to 720 h with a sampling time of 1 h. Because of this long prediction horizon,
the use of a single centralized MPC could be quite difficult to apply in real time for
a large-scale network. This is the main motivation for introducing the multi-layer
MPC scheme presented in the next section.

19.3.2 Multi-layer MPC

A temporal multi-level MPC scheme is the alternative to optimize regional and urban
networks by coordinating the separated MPC controllers controlling them. The gen-
eral policy for coordinating these MPC controllers is to transfer the long-term control
decisions of regional network to the urban network by target constraints. Besides,
the short-term urban delivery network will update its daily demand information to
the regional network by providing measured disturbances, where

http://dx.doi.org/10.1007/978-3-319-50751-4_12
http://dx.doi.org/10.1007/978-3-319-50751-4_12
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• Measured disturbance (Ms) handles the daily related aggregated demands at the
urban network as communication information to the regional network.

• Target constraint (Td ) expresses management policies at regional network to urban
network in the form of constraints to be satisfied by its MPC controller.

Measured Disturbance

In the topology of the regional network, the whole urban network is simplified as
one aggregated demand. Measured disturbance in every optimization process for a
regional network should be the sum of the related demand at every prediction horizon
(here is 24 h), i.e.,

Ms(k) =
24∑

m=1

dt (k,m), (19.21)

where dt (k,m) is demand vector at the urban delivery network corresponding to the
k-th day.

Thus, Ms(k) is considered as the demand for the regional network ds(k):

ds(k) = Ms(k). (19.22)

Target Constraints

The goal for the temporal coordination algorithm is transferring management policies
from the regional network to the urban network. In order to achieve this coordination,
the following constraint is added to the MPC in urban network:

24∑
m=1

us(k,m) ≤ Td(k), (19.23)

where us is the shared control vector between regional and urban networks.
This constraint is introduced in order to enforce that the amount of water decided

to be transferred from the regional to the urban networks by the regional MPC is
respected by the urban MPC. Without such a constraint, the urban MPC would decide
the amount of water ignoring the regional MPC policy. This coordination policy is
shown in Fig. 19.1.

Algorithm 19.1 shows how the constraint in (19.23) that establishes a daily limita-
tion is generated and adapted at every time iteration of the urban MPC that operates at
a hourly scale. Algorithm 19.1 takes into account the following facts when generating
the constraint (19.23):

• After the application of n hourly control actions us corresponding to the kth day,

the total remaining water for this day will be Td(k) −
n∑

m=1
us(m).
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Fig. 19.1 Optimizations of multi-layer MPC

• When limiting the control actions in the prediction horizon L , there is a part of
control actions u(m) that corresponds to hours of the current day k that should be
limited by Td(k), while the control actions correspond to hours of the next day

k + 1 that should be limited by Td(k) −
n∑

m=1
u(m).

• The generated constraints are added as additional constraints of the optimization
problem associated with the urban MPC.

19.4 Results

19.4.1 Case Study: The Catalonia Regional Water Network

The Catalonia Regional Water Network, including the Catalonia Inland Basisns,
is shown in Fig. 19.2. This network supplies the metropolitan area of Barcelona
where most of the population of the region is concentrated. It is composed by river
Llobregat, Ter and the related components. According to the functional definitions of
regional and urban networks, the two rivers Llobregat and Ter, and all the connected
elements compose the regional network while the urban network lies inside the centre
part representing in an aggregate manner the topology of the water network of the
metropolitan area.

Results are produced after applying the proposed centralized MPC and the coor-
dination scheme to the Catalonia Regional Water Network for validation and com-
parison.
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Fig. 19.2 Aggregate diagram of Catalonia Regional Water Network
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Algorithm 19.1 Temporal multi-level coordinator
1: L := 24 h
2: I := 24N h
3: Ts := 1 h

{start creating new constraints for urban delivery BOP }
4: for i := 1 to I do
5: d := f loor(i/24)

6: t := rem(i, 24)

7: if t == 0 then
8: Update BOP by adding the following constraints:

9: u(1|k) ≤ Td (d) −
i−1∑

j=i−L+1
us( j |k);

10:
L∑
j=2

u( j |k) ≤ Td (d + 1);

11: end if
12: if t == 1 then
13: Update BOP by adding the following constraints:

14:
L∑
j=1

u( j |k) ≤ Td (d + 1);

15: end if
16: if t == 2 then
17: Update BOP by adding the following constraints:

18:
L−1∑
j=1

u( j |k) ≤ Td (d + 1);

19: u(L|k) ≤ Td (d + 2);
20: end if
21: if t ≥ 3 then
22: Update BOP by adding the following constraints:

23:
L−t+1∑
j=1

u( j |k) ≤ Td (d + 1) −
i−1∑

j=i−L+1
us( j |k);

24:
L∑

j=L−t+2
u( j |k) ≤ Td (d + 2);

25: end if
26: Solve BOP to obtain u( j |k), u( j + 1|k), …with the new constraints added
27: us(i |k) := u(1|k);
28: end for

{end of ′i ′ loop}

19.4.2 MPC Results for Regional Supply Network

According to the environment conservation management for the regional supply
network, ecological water volumes should be maintained in both rivers.

Figure 19.3 is one example of river reach. This plot shows that after being opti-
mized by MPC, water flow at this reach could meet the ecological objective during
the whole optimization process.
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(a) before (b) after

Fig. 19.3 River flow comparing with ecological volume before and after ecological control in river
Llobregat

19.4.3 MPC Results for Urban Delivery Network

In the urban delivery network, water transportation implies electricity costs when
pumping water from lower elevation to a higher elevation. Figure 19.4 shows in the
same plot the pump flow and the electricity tariff. It can be noticed that pump sends
more water to the reservoir at the lower price period and less or no water at the higher
price period.

Fig. 19.4 Pump flow with electricity price
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(a) before (b) after

Fig. 19.5 Water volume of tank Dep-Masquefa before and after safety control starts from the date
of 01/08/2011

For the safety control objective in urban delivery network, Fig. 19.5 shows water
volume of one tank Dep_Trini tat compared with its safety volume before and after
the safety control, which fits the safety objective of MPC in urban delivery network.

19.4.4 Results of Centralized MPC

The centralized MPC optimizes the complex water network as a whole, which can
obtain optimal strategies to fit objectives in both supply and delivery parts.

Table 19.1 provides detailed results and also the improvement of water usages in
the two rivers achieved by balance management in the proposed centralized MPC
scheme. In this table, S. means outside sources flow into rivers and F. Demand means
fixed demands which cannot choose water source, while V. Demand is the demand
which can receive water from more than one river. B. Demand is water volume that
has been consumed from each of the reservoirs, andB. Proportion is the proportion of

Table 19.1 Balancing comparison of Catalonia Regional Water Network

Sc. After centralized MPC control

Es. S. F. demand V. demand B. demand B. proportion
(%)

R. proportion
(%)

Supply
ability
(days)

L. 3008 2981 724 697 58.93 53.48 242

T. 3532 3518 1196 1182

Sc. Before centralized MPC control

L. 3008 2981 7.6 −19.4 −1.02 53.48 177

T. 3532 3518 1914 1900
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B.Demand for the two reservoirs.R.Proportion is the proportion of storage capacities
of the two reservoirs. The similar values forB. Proportion andR. Proportion are what
the centralized MPC scheme wants to reach. And Supply Ability is a measure in days
of how long the network might supply the demand needs, considering the case of
no additional rainwater or other input. The comparisons show that after using this
centralized MPC scheme, the proportion of water usage from two rivers (58.93%,
which is ratio of Llobregat/Ter) is much closer to the proportion of storage capacities
(53.48%). In this case, the Catalonia Regional Water Network can supply water
65 days longer than in the case without balance management, which represents an
important benefit regarding the sustainable usage of water resource in the long-term
perspective.

19.4.5 Results of Temporal Multi-level Coordination Scheme

Without coordination, MPC controllers in the regional supply and urban delivery
networks are working separately in different timescales and control objectives. In
order to manage the two controllers, the coordination scheme is applied.

In order to balance the regional supply network, water consumption in both rivers
will be proportional to their supplying capacity. When coordination is used, this
balance management goal will also be included in the urban delivery management
problem.

Fig. 19.6 Water consumed from two rivers by urban delivery network without coordination



19 Coordinating Regional and Urban Water Networks 399

Fig. 19.7 Water consumed from two rivers by urban delivery network with coordination

Figures 19.6 and 19.7 show the amount of water consumed by the urban delivery
network from different rivers with and without coordination, respectively. While both
solutions meet the goals of the urban delivery network, the strategy using coordination
achieves a subjective balance in the use of water of both rivers.

19.4.6 Comparisons Between Centralized MPC
and Coordination Scheme

In order to operate the regional supply and urban delivery networks, which have dif-
ferent timescales and control objectives, centralized MPC and coordination scheme
have been presented. The centralized MPC can optimize complex water network
using one controller. However, this implies using the shortest time interval and the
longest horizon for both problems.

The coordination scheme, in contrast, allows each system to be optimized sepa-
rately with its appropriate time interval and horizon, but sharing more information.

The advantage of using coordination with MPC in these networks is apparent when
considering that for a small optimality in the urban delivery management problem,
a more convenient long-term strategy may be achieved.
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19.5 Conclusions

In this chapter, two functional networks have been defined in a complex water net-
work, and MPC has been presented to operate each of them. The need of partitioning
definition of water network derives from the fact that different functional parts in the
water network are modelled and designed separately according to different compo-
sitional dynamics and operational goals. In order to optimize water network com-
pletely, a centralized MPC scheme and a temporal multi-layer coordination scheme
have been proposed to the complex water network that includes regional supply and
urban delivery networks. The use of the centralized MPC techniques and coordina-
tion scheme makes possible to manage the complete water network in order to let
individual operational goals affect to each other and, finally, obtain control strategies
that can effectively consider objectives in both functional parts as well. Results of
different operational goals show the advance of MPC for managing water network in
the requirement of reality. Comparisons between centralized MPC and coordination
scheme provide their usage in different situations. Improvements and limitations of
MPC application have been discussed after comparing with the current control based
on operators’ experience.
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Chapter 20
Big Data Analytics and Knowledge
Discovery Applied to Automatic Meter
Readers

Diego Garcia, Vicenç Puig, Joseba Quevedo and Miquel Angel Cugueró

20.1 Introduction

The ageingofwater networks combinedwith an increase of the demand, causedby the
growth of the population and the corresponding rise of cities urbanization, challenges
the control of water distribution infrastructures. One of the main challenges is the
inability to detect anomalies caused by bursts, leaks, water loss, and unaccounted
activity, among other factors; additional challenge is presentedwhen aiming to detect
these anomalies in real time [15]. Water network monitoring helps not only to ensure
the adequate water distribution to the final user, but also to ensure sustainability by
reducing water loss at different stages in the production and pumping. Given this
need, supervisory control and data acquisition (SCADA) systems have become the
foundation for water utilities (WU), allowing constant data collection from crucial
points in the network.

The volume of data collected by a WU is constantly growing. In this new era,
data are important because guarantees the success of decisions based on the relevant
values and underlying information extracted from raw data [4]. Hence, WU are
adopting Big Data technologies and have started building a data strategy [8]. Even
more important than obtaining precision from the data analysed is to strive for data
relevance.

This data growth is motivated by different causes, e.g., the continuous evolution
of the technology, with the appearance of cheaper monitoring devices, allowing the
WU to monitor and observe new and more detailed information about the processes
done by the company. Thus, the spread of monitoring devices along water networks
or cities, such as the automatic meter reading (AMR) sensors, allows to automat-
ically collect consumption data from water/energy metering devices (e.g., gas and
electric) into a database for further analysis, billing and troubleshooting detection.
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Fig. 20.1 General
methodology proposed for
Big Data analytics problems Raw data collecting

Data validation

Data analytics

Knowledge discovery

Traditional tools for data collecting and processing are overwhelmed by the
increasing data volume, data variety and the corresponding processing speed required
by theWU systems to obtain results and a better insight. Indeed, these are the typical
three degrees of freedom handled by the Big Data approach, which emerged after
the new requirements of the industry. Figure20.1 shows a general approach for the
Big Data analytics problem.

This approach is divided in four stages. First, the raw data collecting stage handles
the data gathering from multiple sources with multiple formats. Traditionally, this
task is achieved by a centralized database (e.g., MySQL or Oracle), but the datasets’
size and required processing speed are bottlenecks when millions of sensors are
sending high-frequency data. Moreover, these databases are strong structured: data
types are defined during the data model building process. In contrast, new database
paradigms such a NoSQL (not only relational databases) and distributed file systems
(DFS) allow to handle these limitations. For instance, NoSQL schema-free databases
are capable of managing multiple formats and adapt existing data models to new
types in run-time. This approach is based on a distributed architecture; hence, it is
horizontally scalable and therefore capable to adapt to any growth of the dataset by
adding more resources.

The second stage in the Big Data analytics problem is the data validation stage,
which guarantees a certain grade of data reliability. Results or conclusions obtained
from noisy or inconsistent data may be invalid and lead to take wrong actions. Hence,
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a data validation strategy is crucial to validate the data collected in order to improve
next-stage performance. A monitoring system can be affected by certain problems,
which may have impact in the communication system or in the sensors. On the one
hand, if a problem affects the communication system module, data gaps will appear
in the database. In this case, reconstruction and imputation methods are required
to fill the missing data. On the other hand, there exist a wide variety of problems
that impact the sensors’ data accuracy and reliability. Noise and outliers are quite
common problems affecting these elements. Depending on the sensor complexity,
the way to face these problems may differ, e.g., an outlier can be easily detected in a
temperature sensor by means of trend analysis, but a complex uncalibrated chemical
water quality sensor may require different attention. Also, wrong sensor electrical
connections can generate accurate but totally unreliable data.

The third stage in the BigData analytics problem is the data analytics, which is the
process that turns data into real values. After raw data are validated in the previous
stage, here different tools allow their analysis and feature extraction. The exploratory
analysis is the first step to have a deeper understanding of the data under study. At
this point, it is important to have some domain expertise or a domain expert in order
to understand and validate some given hypothesis, which must be chosen carefully
in order to make the data analysis reliable. After the data are understood, there
is a model building process in order to make the conversion from historical data
to understanding. The performance of the obtained model must be evaluated and
compared between suitable models in order to obtain the best model. At this point,
predictive modelling will use the model provided in order to forecast future data
points. An example of application of this technique is the water demand forecast in
water distribution network (WDN): it is crucial for theWU to anticipate and adequate
the WDN to satisfy any demand or even an eventual emergency demand which may
occur, in order to achieve correct operation of the WDN.

The final stage in the Big Data analytics problem is the knowledge discovery
[16], where knowledge is discovered or derived from existing information. We try to
interpret the patterns and models obtained from the previous stage to describe and
discover known or hidden relations between variables. The translated useful patterns
must be understandable by the stakeholder in order to provide information to take
better decisions.

A WU usually collects a wide variety of data types. Data collected from the
exploitation of the WDN is required for the operation to supply water to the citizens,
councils and industries. These data come from different sensors, such as level meters
installed in tanks, flowand pressuremeters installed in pipes or flowdata frompumps,
and valve status data. These operational data is usually handled by a SCADA system.

Also, quality data are collected to supply potable water to the citizens and accom-
plish the regulations, established by the government and additional regulators. These
data are collected from analysers and multi-parameter sensors to measure a variety
of parameters, such as chlorine, conductivity, pH, turbidity and total organic carbon
(TOC). The WU also takes observations directly from the WDS and analyse them in
laboratories.
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The supplied water is charged to the customers based on the water used, i.e.,
water metering. This process to measure the use by the residential and commercial
building is done using water meters. These readings are taken from the water meters
installed in the supply point, usually by operators every two or three months (or even
less, depending on the country). The data collected are important to bill but also to
understand water demand patterns or to analyse different billing systems. Nowadays,
new systems such as AMR allow to register these readings remotely and with higher
frequency (e.g., hourly for residential and 15 min for industries).

Data associated with the customer and the water supply installation are impor-
tant cross-sectional data to the WU. Some of the data fields collected are personal
information, tariff associated, water meter model and water meter age.

Other systems generating data are the sewerage infrastructures. These systems
convey the sewage to a sewage treatment plant (or a discharge point). These systems
must also accomplish the regulations established by the regulators. There are sensors
installed in these systems to monitor the sewage loads and avoid flooding episodes.
The sensors usually used in these systems are limnimeters, rain gauges (to detect
rain and flooding episodes), and actuators’ state (pumps and valves).

Data collected are not only important for the WU, but also important for the
customer. Giving a feedback to the customer improves the quality of the service.
For instance, AMR data offer households and businesses the chance to understand
and reduce their energy and water consumption much than ever before, when meter
readings were taken every two months, quarterly, or even annually.

Moreover, AMR could help utility firms to improve the accuracy of billing and
cut visits to properties to read meters. However, with AMR, there is an exponential
growth of data: a singleAMRproduces 17500 readings per year, with a single reading
every half hour. These data should be first processed in real-time streaming, in order
to be validated before being stored and translated into a metadata model which may
be usable in multiple further applications. Thus, utilities have found scaling smart
meter management systems difficult to handle. This motivates the use of Big Data
technologies in this application domain. On the other hand, applying data analytics
and knowledge discovery tools to AMR data combined with other streams of infor-
mation (data coming from the billing system, call centre service and meteorological
information) could help with fraud detection, maintenance requirements prediction,
water/energy user consumption patterns determination and response generation to
variations in the demand.

This chapter presents novel algorithms and methodologies to carry out real-time
streaming data processing, data analytics, data quality assessment and improvement,
as well as prediction and visualization tasks, at extremely large scale andwith diverse
structured and unstructured data frommultiple sources such aswater, power, telecom-
munication and other utilities, as well as from social media. The algorithms and
methodologies will be illustrated using real data coming from several WU.
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20.2 Problem Statement

The AMR meters deployed by the utilities in households, industries, councils, etc.,
measure water consumption at regular time intervals. The sampling interval is deter-
mined by the customer’s category and constrained by the AMR battery life. But not
all the customers have the same needs. For instance, a household does not consume
water in the same way as a paper company does, which needs intensive water use
in the industrial processes involved. Hence, big consumers require more granularity
and control to manage its own water consumption than households. One observation
every 15min is a common sampling interval for big consumers, while hourly is suf-
ficient for households. It must be noted that the quantity of households handled by
a utility is far higher than big consumers, and therefore, the costs, maintenance and
replacement of the corresponding AMR batteries must be considered carefully.

First of all, the data from the AMR meters from a single or multiple deployments
(i.e., sectors and subsectors) are collected. A concentrator gathers the data from a
group of nearby AMR meters. Then, the data are sent from the concentrators to
the data centre via some telecommunication system (e.g., GPRS). However, the
AMR meters installed for industrial customers are different from the ones used in
households: an AMR meter for an industrial customer sends the data directly to the
data centre.

The data gathered can be stored in traditional relational database management
system (RDMS) or files (unformatted, formatted or binary) and then fetched by
Extract, Transform and Load (ETL) processes to support business applications.

Traditionally, the different business units of a company had their own custom sys-
tems storing different data formats. In fact, this is done inmany companies nowadays.
ETLprocesses follow thenext procedure to allowcross-data fromheterogeneous stor-
age systems: extract the data from these systems and then transform these data in a
consolidated format to load them into the end target system, usually a datawarehouse.

For instance, descriptive indicators can be obtained from water meter data to
summarize and analyse these data, such as the average daily consumption or the
minimum night flow, or advanced data analytics such as water demand forecast or
customer segmentation by their behaviour from the historical consumption records.
But at this point, the first problem might be faced: the data volume.

A two-year dataset from 50 thousand households has a size around 14 gigabytes.
A city such as Alicante has more than 300,000 households and Barcelona more than
1.6 millions of households; the datasets with full AMR coverage of both cities will
imply volumes around 80 and 450 gigabytes, respectively. Processing a data volume
over themainmemory capacity is not affordable by traditional data analytic tools in a
common computer. A naive solution could be increasing themain amount ofmemory,
but this is bounded by the computermaximum capacity. Hence, this approach, known
as vertical scaling, is not a general solution for arbitrarily high volumes of data.

Suppose that unlimited memory to the used computer can be added. Then, it
would be possible to fit and process any dataset in the main memory. However, the
processing time of a large volume of data would totally rely on the number of cores
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available in the computer considered. Thus, the current bottleneck is the computation
resources. Here, the second problem should be faced: the velocity.

In contrast, Big Data,1 supports horizontal scaling and provides different mecha-
nisms to process large volumes of data in a reasonable time [17]. This allows to add
computational and storage resources as the volume and time restrictions of the prob-
lem to be solved evolve along the project life. Besides, vertical scaling is more expen-
sive than horizontal scaling, due to the cost of the high-end technology required by the
first one, in contrast to the cheaper commodity hardware used by horizontal scaling.

Moreover, the raw data collected do not give valuable insights by themselves. In
addition, raw data can be affected by different problems such as noise and unreliable
events that may result to wrong conclusions. AMR data are affected by gaps, missing
data due to the problems in the communication system, the AMR meter or a battery
fault, and they can also contain outliers generated by the sensor or at any point
during the transfer. Raw data can also include irregular sampling intervals that must
be taken into account when applying analytical processes. These irregular sampling
intervals may be caused by the noise introduced deliberately to avoid a collapse of
the communication system.

After the rawdata are cleaned and validated [6], the database is ready for indicators
and knowledge extraction, and the conclusions obtained will drive to decisions based
on reliable data. Understanding how the customers are consuming thewater is crucial
to the WU for WDN efficient operation, as well as to understand and foresee the
evolution of the different water demand patterns to fit the assets and guarantee the
service [1, 13] while reducing operational costs.

Summing up, the key challenges handled by Big Data are volume, variety and
velocity, also known as the 3Vs key challenges. These are highlighted in [10] where
the data management weaknesses identified in the industry, research centres and
governments are collected. As commented in this section, managing the 3Vs key
challenges requires two main components: a data storage system, to handle large
data volumes and data variety, and a data processing framework, to query and apply
operations over the large datasets within an acceptable response time. Further details
of these components are discussed next.

20.2.1 Data Storage

Data storage allows to handle data volume and data variety, but also data access
velocity is important when large volumes of data have to be processed.

Firstly, the different storage devices from a hardware point of view are going to be
introduced, and finally, software systems such as databases and distributed storage
systems are going to be also introduced.

The storage system of a computer is hierarchical. Figure20.2 shows a top-down
classification from the velocity point of view, with the fastest memory on the top and

1The definition of Big Data by the Oxford English Dictionary (OED) is “Computing data of a quite
large size, typically to the extent that its manipulation andmanagement present significant logistical
challenges; (also) the branch of computing involving such data”.
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Fig. 20.2 Memory hierarchy (image source: Wikipedia at https://en.wikipedia.org/wiki/Memory_
hierarchy)

the slowest in the bottom. The most popular memory type is the secondary memory.
This memory is used for large size and midterm saving, since if the system power
vanishes, no data are lost. The most commonly used memory devices of this kind are
the hard disk drives (HDD), which are based onmechanicalmoving parts. These have
been removed in the newer solid state disk (SDD), which have not any moving part.

Due to the mechanical components, HDD are slower than SDD. The data reading
rate of theHDD is in the range of 50 to 150MB/s, depending on the device quality and
the interface. Alternatively, the SDD is able to achieve a reading data rate between
200 MB/s and 550 MB/s.

Alternatively, main memory, also called random-access memory (RAM), has
higher data access speeds, with reading data rates between 2 GB/s to 30 GB/s. This
type of memory has an important role in data analytics and fast data storage sys-
tems such as in-memory databases. Its main important drawback is that it is volatile;
hence, data are lost when device power vanishes. RAM size limit in 32-bit systems
is of 4 GB, whether is of 8 TB in 64-bit systems.

Finally, cache and registers, with shorter sizes, are closer to the central process
unit (CPU). These memory types are also volatile, and their data reading rates are
some orders of magnitude higher than their previous counterparts.

Conversely, Relational Database Management Systems (RDBMS) have been the
main systems used to store data and, nowadays, are supporting a quite large number
of applications, but when it comes to handle the exponential increase of data volume
and variety, these kinds of systems are insufficient. RDBMS are centralized systems
based on structured data constraints. Thus, unstructured data are not handled by

https://en.wikipedia.org/wiki/Memory_hierarchy
https://en.wikipedia.org/wiki/Memory_hierarchy
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these kinds of systems. Also, the data volume capacity is handled vertically, and
thus, adding resources are limited and expensive.

The traditional and general approach in many companies to extract knowledge
from data gathered in multiple operational systems is to establish a data warehouse,
by means of ETL. ETL process is required to obtain a big picture of the company
and to take data-driven decisions based on real information (fundamental principles
of the Business Intelligence).

The extraction stage collects the relevant data subset (since putting all the data
together is often unaffordable) from homogeneous or heterogeneous data sources,
such as:

• Customer relationship management database (CRM).
• Sensors’ raw data handled by SCADA systems.
• Financial and billing data.
• Operational incidence database.

Usually, each operational database has a different data model, type and notation.
Hence, a transformation stage converts each format in a proper format or structure
for query and analysis purposes. Finally, a loading stage stores the date into the final
target, usually a data warehouse.

Distributed file systems and not only SQL (NoSQL) solutions emerged to over-
come these shortcomings: to scale up and to handle data variety. A distributed file
system allows to store files in any format and size. Files are divided in blocks in order
to be accessed concurrently and replicated to be fault tolerant (e.g., in the event of
some node crashing). Some popular examples of these architectures are as follows:

• HDFS.
• Google GFS.

Table 20.1 NoSQL database systems

NoSQL Data model Written in Protocol Licence

Cassandra Column Java CQL3 Apache

MongoDB Document C++ BSON AGPL

CouchDB Document Erlang HTTP/REST Apache

HBase Column Java HTTP/REST Apache

Redis Key-value C Telnet BSD

Accumulo Document Java and C++ Thrift Apache

Hypertable Column C++ Thrift and C++ library GPL 2.0

OrientDB Graph Java Java and HTTP/REST Apache

Neo4j Graph Java Java API and HTTP/REST GPL

Couchbase Document Erlang and C memcached Apache

Scalaris Key-value Erlang JSON-RPC Apache

Riak Key-value Erlang and C HTTP/REST Apache

Kyoto Tycoon Key-value C++ HTTP/REST GPL



20 Big Data Analytics and Knowledge Discovery Applied … 409

• Amazon S3.
• Tachyon (in-memory).

The main difference of NoSQL databases and traditional relational databases
is that NoSQL is based on different data models besides the relational one. Some
popular NoSQL examples and its underlaying data model are listed in Table20.1.

20.2.2 Data Processing

The principal aim of data processing is to extract knowledge from the raw data to
achieve the goals proposed in further stages. In the WU scope, such goals are local-
ization of leakages, detection of malfunctions, demand prediction, fraud detection,
etc. From the raw data to any of these goals achievement, there are multiple steps to
be performed.

From a technical point of view, data processing requires certain computing
resources working together and led by a set of instructions to achieve a final goal.
These instructions are specified by means of a programming language, and there
are more than 600 different programming languages. Not all of them are equally
suitable for doing the same task, since in their evolution each programming lan-
guage has been designed to improve certain particular aspects. Some of them, for
example, are more suitable to develop data processing tasks. The most popular tools
and languages to analyse and process data are MATLAB, R, Weka (a Java Machine
Learning framework), Python and Scala. These tools are designed to allow the user
to focus on the data and avoid further computer’s technical challenges. But when the
datasets are large and cannot be allocated in the main memory, these tools are not
able to process them in an acceptable time. Then, several approaches, such as the Big
Data techniques nowadays, allow to handle large datasets in a distributed fashion in
order to allow the expansion of the computing resources used to face this problem.

Indeed, Big Data is not trying to solve a new problem: the analysis of large
data volumes to extract knowledge has been carried out since long time ago. High-
performance computing (HPC) was introduced in the 1960s [14]. HPC is the term to
describe the use of supercomputers and parallel processing techniques to solve com-
plex computational problems, e.g., modelling, simulation and analysis that cannot
be practically addressed by conventional computers. In order to use a supercomputer
by means of HPC, high programming and network skills are required. Most HPC
applications are written in Fortran, C or C++, with the aid of Message Passing Inter-
face (MPI) libraries to scale up and parallelize tasks. In addition, application authors
must manage communications, synchronization, I/O, debugging, etc. Big Data tries
to simplify these tasks with a new programming model called MapReduce. Many
industries have the need and the interest to embrace and support this new paradigm
to overcome the limitations of traditional tools. These industries include

• Search engines (e.g., Google and Yahoo).
• Social networks (e.g., Facebook, Twitter and Linkdln).
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• Client-oriented services such as recommender systems (e.g., Amazon, Ooyala,
Spotify and Netflix).

• Wearables and mobile technologies (e.g., smartphones, tablets, clocks, bracelets
and clothes).

• Banks (e.g., credit approval and fraud).
• Governments (e.g., thread prediction and prevention, tax compliance, crime pre-
diction and prevention).

This data-driven approach has also arrived to the water sector. Companies such
as Takadu [2] prove the data-driven success with profits to the water utilities by
means of reducing the operational costs. Furthermore, MapReduce [5] was created
from Google, to process large datasets with a parallel and scalable algorithm on a
cluster of commodity hardware. This new programming model can take advantage
of locality of data, processing them on the storage assets in order to reduce time
latencies generated by the movement of data through the network. Basically, this
programming model is based on the following three stages:

1. Map stage splits the input data into a sequence of key–value pairs. The key-value
pairs are created by the user-defined function passed to the map task.

2. Shuffle stage sorts the key-value pairs from the previous stage by key, divides
them again and passes them to the next stage.

3. Reduce stage aggregates/combines the key-value pairs associated to the same
key. The way to combine the pairs is defined in the user-defined function passed
to the reduce task.

This programming model allows to process large batch-oriented data volumes
(a.k.a data-at-rest). The first version of MapReduce is batch oriented because it
writes each output of each stage to the disk, which has meaningful impact on disk
access (input/output operations) performance. The situation is even worse regard-
ing intensive iterative algorithms that needs to make several passes over the whole
dataset (e.g., neural networks can require thousands of passes in the training stage).
The highly heterogeneous data access rates affects drastically the computation time
of the final result.

Furthermore, MapReduce programming model is fault tolerant. The map and
reduce tasks are dispatched by a director to different computers in order to parallelize
them, but if any task fails due to a node failure (e.g., communication or disk failure),
the uncompleted task is derived to another node.

An important drawback of this programming model is that it also requires
advanced programming skills to be implemented. Thus, new programming mod-
els have emerged to address this drawback. For instance, Hive and Pig are SQL-like
languages to perform queries and advanced data pipelines in an easier fashion. In
Table20.2, some of these Big Data frameworks are listed.

In many cases, the batch-oriented approach does not allow to face applications
where real-time queries are required (e.g., stock market and fraud). Hence, new data
streaming processing frameworks emerge to be able to process continuous input data
streams. For instance, Apache Storm is an open-source streaming framework, used
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Table 20.2 Big data processing frameworks

Framework Batch Real time

Hadoop MapReduce Disk-based No

Hive Disk-based No

Pig Disk-based No

Apache storm No streaming

Apache spark Disk-based and in-memory In-memory and streaming

by some important companies such as Twitter to process massive input feeds. This
approach allows to process each input data stream in real time.

An improved version of the programming model MapReduce has been performed
by Algorithms, Machines and People Laboratory (AMPLab) from the University of
Berkeley. The project is called Apache Spark [12]. It is an open-source cluster com-
puting framework that aims to make intensive data analytics faster. This framework
provides in-memory cluster computing, which is much quicker than disk-based sys-
tems (see Sect. 20.2.1) such as the original HadoopMapReduce. In addition, Apache
Spark provides a data streaming processing engine to process input data streams in
real time.

20.3 Proposed Approach

In this section, it is proposed an approach to predict water demand and detect sus-
picious behaviours— e.g., a leak, a smart meter breakdown or even a fraud—by
extracting water consumption patterns [7] and applying an unsupervised cluster
analysis. Moreover, a software framework, based on Big Data techniques, imple-
ments this approach to tackle the barriers, mentioned in Sect. 20.2, of the traditional
data storage and analysis.

Analogously, to the four-stage scheme detailed in Sect. 20.1, it is defined an
approach based on the processes detailed next. At an early stage of this process,
the historical AMR raw data are transferred from the WU into a distributed file
system HDFS. Then, a preprocessing process is performed to align irregular sam-
pling instants to sharp o’clock hours and fill some missing readings. After, a filtering
process filters relevant information and discards useless data (e.g., empty households
with none consumption), followed by a feature extraction process, which transforms
the time series high-dimensional data into a space of fewer dimensions. Finally, an
unsupervised cluster analysis process extracts a set of groups, minimizing the dis-
tance between the members of the same group and maximizing the distance between
groups.

Although each smart meter collects hourly sampled data, in practice the interval
is not exactly an hour: an observed demand is registered at 10:46 and the next one
at 11:49. Also, these readings are not aligned to sharp o’clock hours (i.e., 10:00,
11:00, etc.). Moreover, some readings are missing mainly due to communication
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Fig. 20.3 Aggregated hourly average consumption pattern generated by the feature extraction
process within a week period

problems, among others. In this work, it has been assumed the data collected is
valid. The problem of data validation/reconstruction has already been addressed in
[3, 6]. In this preprocessing stage, a linear interpolation is applied to homogenize
the sampling interval and to align the sampling time to o’clock hours. When only
less than 10 samples are missing, a simple linear interpolation is enough to provide
a reliable reconstructed signal. Given a vector of observed demands of length N ,
x = (x1, x2, . . . , xN ), first a linear interpolation method is applied obtaining x̂ =
(x̂1, x̂2, . . . , x̂ p) with a regular sampling time.

Once applied the previous filter, the following statistical indicators are estimated
over the hourly consumption vectors z: maximum, minimum, mean and variance.
These indicators are used to discard null smartmeter consumption readings, probably
occurring in uninhabited houses. In addition, smart meters with negative readings are
also discarded, since backflow should not be occurring in the end points of district
metered areas (DMAs).

The feature extraction stage aggregates a year dataset to a weekly pattern. Differ-
ent techniques for representing and reducing the dimensionality of time series has
been proposed in the literature [11], e.g., the Gaussian Mixture Models [13] for rep-
resenting water demands. In this chapter, a feature vector ωi = (ωi1, ωi2, . . . , ωi168)

of length 168 (i.e., the number of hours in a week period) represents the weekly
pattern for a given smart meter i (see Fig. 20.3) where each component k is given by

ωik =
∑

h( j)=k z j

Mk
(20.1)

where Mk is the number of observations that satisfies h( j) = k, and h( j) is the hour
of the week with time stamp j .

The dataset considered here is composed by a set of AMRmeter demand readings
in an hourly sampled fashion.No additional information is available, such as the smart
meter’s diameter or the consumer activity.

The unsupervised clustering method applied in this chapter is the k-means [9].
This algorithm aims at partitioning n observations into k clusters in which each
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observation belongs to the nearest cluster. The number of clusters k is unknown,
and therefore, it must be estimated previously. As will be seen in the application
of this methodology (Sect. 20.4), first a cluster analysis indicator is obtained for a
range of clusters, and then, the number of clusters whose indicator does not improve
significantly when adding an extra cluster is selected.

We have designed and developed a framework to implement the approach pre-
sented to handle large volumes of data. In particular, it is proposed a scalable solution
to adapt the resources to the problem requirements, in order to allow the application
of the approach presented to a small town or even to a group of cities.

As introduced in Sect. 20.2, the volume of raw data generated by the AMRmeters
is too big to be analysed and stored by means of traditional technologies. Depending
on the amount of data to process, ad hoc centralized traditional solutions could be sat-
isfactorily applied in the short term. However, the increasing number of smart meters
deployed each year is unsustainable to handle in the midterm and long term. Thus, it
is proposed a framework based on Big Data technologies to achieve horizontal scal-
ability without limiting the data volume. Furthermore, all the technologies involved
here are open source, which substantially reduces the final implementation cost.

The framework presented here is composed by three main modules: The storage
system module stores the raw data and is supported by Hadoop with HDFS. The
processing module implements the methodology detailed before in this section, and
it is based on a large-scale data processing engine called Spark. The preprocessing
and feature extraction stages are based on built-in Spark functions, with the exception
of the linear interpolator, provided by a numerical processing library called Breeze.
The unsupervised cluster analysis module (i.e., the k-means algorithm) is provided
by MLlib, a scalable machine learning libraryon top of Apache Spark, a general
engine for large-scale data processing. Finally, the results module saves the output
from the processing stage in a NoSQL distributed database (Apache Cassandra).

20.4 Results

In this section, the results obtained fromTarragona, Torremolinos and Alicante, three
different locations from Spain, are presented. Figure20.4 shows the three locations
marked in a map of Spain. The data used are AMR data samples from the total
population.

20.4.1 Tarragona

Two different datasets are considered here for the city of Tarragona, coming from
residential and non-residential customers, respectively. The unsupervised clustering
performed on each of these datasets is presented in this section. These results were
helpful to determine the basic differences between these two separate groups of users.
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Fig. 20.4 Case studies

The first dataset contains raw data gathered from199 sensors of residential houses.
17 of these sensors are discarded as they do not comply with the following predefined
quality requirements:

• The time series of the customer cannot have more than a 10% of missing data.
• The total consumption of the customer must be positive, to avoid empty houses.

The remaining set has 182 sensors, which will be used to obtain the corresponding
demand patterns.

First, the number of groups is estimated using the within-group sum of squares
measure (WSS). This is the sum of the squared differences between the centre of the
cluster and its members. Hence, a set of compact groups will obtain a lower WSS
than a set of groupswith spreadmembers. Finally, it is selected the number of clusters
to which adding one more cluster does not provide a significant decrease of WSS.

Figure20.5 shows the WSS plot, indicating that ten clusters are enough. And
Fig. 20.6 shows the clustered patterns for the first dataset, with the cluster centre
(weekly average) depicted as a solid black line. With the exception of cluster 10,
whose consumption and maximum value are the highest within all the clusters, all
them have more than two members. Most of the patterns show the standard morn-
ing/evening activity peaks which are the characteristic of domestic consumption and
can be associated to the living habits and characteristics of the users, such as show-
ering and cooking schedule, working week schedule, activity during the weekends
and the number of inhabitants per household. At this point, no further information
about the nature of the data or the sensors (e.g., activity declared by the customer,
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Fig. 20.5 WSS plot of the residential customers

Fig. 20.6 Clustered demand patterns of Tarragona residential customers

address, sensor model, brand or calibre, among others) is included in the analysis.
This will be discussed and analysed further in this chapter.

The second dataset contains raw data gathered from 110 sensors of industrial
costumers. 40 of these sensors are discarded as they donot complywith the predefined
quality requirements defined before. It was found that some of these had already been
replaced due to malfunction in readings. This leaves a remaining set of 70 sensors,
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Fig. 20.7 WSS plot, non-residential customers

which can be used to obtain the corresponding demand patterns. The WSS plot for
this dataset (Fig. 20.7) shows six clusters is enough in this case, because adding one
more does not decrease the WSS. After the algorithm is applied (see Fig. 20.8), it is
seen how almost all the sensors are classified in cluster 5, which has the lowest mean
weekly demand. The remaining clusters do not contain more than six sensors.

All of these patterns show a quite high weekly consumption average, consistent
with their registered use as industrial consumers, and with the exception of cluster 2,
all have day-to-day activity patterns. Also, although cluster 1 shows a day-to-day
basis consumption, these appear to be consistent with a part-time business, given the
long inactive interval between working hours and the high average level of consump-
tion. It also shows high consumption on Sundays. Similarly, cluster 6 also shows high
consumption during the weekends, but with irregularities during the week. Cluster 2
shows uninterrupted use during theweekdays, which could correspond to a factory or
business with reduced or null activity during the weekend. Cluster 4 shows a regular
domestic water consumption behaviour, with morning/evening activity peaks. But
this cluster shows a higher average consumption than a regular domestic consump-
tion. This could be caused by a house with more persons than usual or an inefficient
use due to the deterioration of the installation (excessive pressure, appliances ineffi-
cient appliances, etc.).

In this cluster analysis, the 81% of the sensors are classified in cluster 6 with a
mean weekly demand of 54,4 l/h. The mean pattern shows regular to constant use
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Fig. 20.8 Clustered demand patterns of Tarragona non-residential customers

during the day, in contrast to the rest of the patterns which appear noisy. These could
range from local businesses to restaurants, bars and domestic businesses.

Further analysis executed using the clustering for this dataset proved that it would
not be useful for seasonal, classification or regression analysis, since neither enough
data nor sensors were available to find a generalized outcome; some of these data did
not figure in the billing information (representing extra loss of information) so they
had to be discarded, and due to the fact that 8% belong to the same class, it would
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prove difficult to find an underlying relationship with other variables associated to
the account, or the meter.

20.4.2 Torremolinos

In this dataset, it is unknown whether the use of the sensors is domestic or industrial.
After applying the filters, detailed in the previous cases on the raw dataset, 1209

sensors are found to be useful for the analysis, while 503 show big gap rates when
passed through the filtering process and thus are discarded from the analysis. This
leaves 706 sensors for the unsupervised clustering stage. Figure20.9 shows theWSS
plot. Although 10 clusters could have been enough, because adding one more does
not decrease the WSS significantly, it is decided to use 12 to force the extraction of
irregular patterns associated with a different use of the sensor regarding the other
clusters.

Figure20.10 shows the 12 clusters after the cluster analysis. And Table20.3 sum-
marizes the contents of the clustered patterns. Approximately 80% of the sensors
show ameanweekly consumption ranging between 1.02 and 6.2 l/h, classifying them
as low consumers. These sensors belong either to clusters 7, 8 or 10, whose patterns
show consistent and reduced daily use. Since Torremolinos is a coastal city, where

Fig. 20.9 WSS plot of Torremolinos residential and non-residential customers
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Fig. 20.10 Clustered demand patterns of Torremolinos residential and non-residential customers

some of the sensors might be installed in summer homes, more information about
the user behavioural consumption pattern can be obtained from the seasonal analy-
sis. The cluster mean morphology, which does not show the pronounced two-peak

Table 20.3 Summary
statistics for unsupervised
clustering of consumption
patterns in Torremolinos

Cluster Mean # Sensors

1 16.348 29

2 30.212 5

3 32.805 1

4 41.400 1

5 37.311 1

6 27.404 1

7 1.028 252

8 3.258 174

9 10.040 65

10 6.203 137

11 77.458 2

12 14.146 38
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consumption pattern associated with domestic users, is a slight indicator of atypical
domestic behaviour which could be the characteristic to cities such as Torremolinos.
On the other hand, clusters 3, 4, 5 and 6 contain only one sensor each, whose mean
consumption is quite high compared to the rest of the clusters. Given the irregularities
in the consumption pattern, these can be early classified as non-domestic users and
further validated in the regression analysis and classification analysis.

20.4.3 Alicante

Finally, some results based on the Alicante city DMA (Spain) are presented. Alicante
is a coastal city with a population of around 300 thousand people. The dataset used
in this work is the hourly sampling observational readings from 51,117 smart meters
within a one-year period (from July 2013 to July 2014). This dataset has 317, 705
and 562 observed readings that corresponds to a size of 14 GB.

Due to the limitation of space and the difficulty to visualize thousands of results,
a reduced set of 100 smart meters is considered for illustrative purposes (Fig. 20.11),
out of the complete initial set of 51117 smart meters.

As it has been pointed out in Sect. 20.4.1, the k-means algorithm requires the
number of clusters input parameter. Hence, the WSS is obtained (see Fig. 20.12).
Notice that after considering nine clusters, the sum begins to be stable.

Fig. 20.11 Heatmap where each row is the weekly water demand pattern of AMR meters. The
horizontal axis is the time index of the week. The red vertical lines divide each day (starts from
Monday)
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Fig. 20.12 Evolution of theWSS in the vertical axis against the number of clusters in the horizontal
axis

Fig. 20.13 Cluster analysis using k-means algorithm of 9 selected clusters in Alicante DMA

The clusters obtained are shown in Fig. 20.13. On the one hand, clusters 2, 3, 4,
5 and 6 have several members, allowing the WU to perform certain tasks of interest
over the network, e.g., forecast the demand of a client or the DMA, improve the leak
detection model or detect a pattern change different to the pattern expected to the
activity declared in the contract.

On the other hand, clusters 1, 7, 8 and 9 are single-member clusters (i.e., outliers)
which must be analysed in more detail. Cluster 1 is an irregular consumption pattern
with several peaks between 100 to 200 l/h that could be generated by, e.g., some irri-
gation or washing system. Therefore, the WU could change the type of fee assigned
to this consumer or could verify whether the real activity of the client is not the one
declared by the client in the contract (fraud). The pattern of cluster 7 shows a regular
daily shape with higher average consumption in relation to the rest of clusters; thus,
the WU can change the type of fee assigned to this consumer or even give advice
to this client in order to achieve a responsible water consumption. Cluster 9 shows
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the water demand pattern with the lowest number of consecutive low consumption
hours (valleys), probably due to a leak occurring in the DMA.

20.5 Conclusions

This chapter has presented the application of Big Data analytics and knowledge dis-
covery tools to AMR data combined with other streams of information (e.g., data
coming from the billing system, call centre service and meteorological informa-
tion) in order to help with fraud detection, maintenance requirements prediction,
water/energy user consumption patterns determination and response generation to
variations in the demand. This chapter also presents novel algorithms and method-
ologies to carry out real-time streaming data processing, data analytics, data qual-
ity assessment and improvement, as well as prediction and visualization tasks, at
extremely large scale and with diverse structured and unstructured data from multi-
ple sources such as water, power, telecommunication and other utilities, as well as
from socialmedia. The algorithms andmethodologies presented have been illustrated
using real data coming from several WU.
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