Constructions of Multivariate Copulas

Xiaonan Zhu, Tonghui Wang and Varith Pipitpojanakarn

Abstract In this chapter, several general methods of constructions of multivariate
copulas are presented, which are generalizations of some existing constructions in
bivariate copulas. Dependence properties of new families are explored and examples
are given for illustration of our results.

1 Introduction

In recent years, copulas are hot topics in probability and statistics. By Sklar theorem
[16], the importance of copulas comes from two aspects, (1) describing dependence
properties of random variables, such as Joe [6], Nelsen [11], Siburg [15], Tasena
[17], Shan [14], Wei [20]; and (2) constructing the joint distributions of random
variables. In the second direction, there are many papers devoting to the constructions
of bivariate copulas, such as Rodriguez-Lallena [12], Kim [7], Durante [4], Mesiar
[9], Aguilo [1], Mesiar [10], but few of constructions of multivariate copulas, such
as Liebscher [8], Durante [3].

In this paper, we discussed several general methods of constructing multivariate
copulas, which are generalizations of some bivariate results. The paper is organized
as follows: In Sect. 2, we introduce some necessary definitions and existing results.
Several general methods for constructing multivariate copulas are provided in Sect. 3
and their dependence properties are discussed in Sect. 4. Finally, two examples are
given in Sect.5.
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2 Definitions and Existing Results

A function C : I — [ is called an n-copula [11], where I = [0, 1], if C satisfies
the following properties:

(1) C is grounded, i.e., for any u = (uy, -+ ,u,) € I", if at least one u; = 0, then
C(u) =0,
(i1)) One-dimensional marginals of C are uniformly distributed, i.e., for any u; € I,
i=1,---,n,
ca, .-, Lu,1,---,1) =u,,

(iii) C is n-increasing, i.e., for any u, v € I" such that u < v, we have

Ve(lu, vl) = >~ sgn@Ca) = 0,

where the sum is taken over all vertices a of the n-box [u, v] = [uy, v1] X - -+ X
[un, vu], and

1, if a; = u; for an even number of i’s,

sgn(a) = [

—1, if a; = u; for an odd number of i's.

Equivalently,
Ve(lu, v]) = ALC(H) = Ay -+ A C(D),

where A C(t) = C(t1, -+, 1y Vies Bty o o 00) — C(1y o Temty Uiy Tigers -0
t),k=1,---,n.

Note that above three conditions ensure that the range of C is /. By Sklar’s theorem
[16], any n random variables X, - -+ , X,, can be connected by an n-copula via the
equation

F(xy, -, x) =C(F1(x1), -+, Fa(x,)),

where F is the joint distribution function of X, --- , X,,, F; is the marginal distrib-
ution functions of X;,i = 1, - - - , n. In addition, if Xy, - - - , X,, are continuous, then
the copula C is unique.

There are three important functions for n-copulas defined respectively by

Mn(u) = min{ula T un}a

n

m,) = [ Ju,

i=1
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and
W, () = max{u; +---+u, —n+1,0},

for all u € I". Functions M,, and [T, are n-copulas for all n > 2, but W, is not
an n-copula for any n > 3. M,, and W, are called the Fréchert-Hoeffding upper
bound and lower bound of n-copulas respectively since for any n-copula C, we have
Wy =C = M,.

Let H : I" — R be a function. The functions H;,..;;: I* — R are called k-
dimensional marginals of H defined by

Hi ey, Wiy -+ suy ) = H(ug, -+, vp),

where v; = u;, if j = i; for some [ = &2, -+, k, otherwise, v; = 1.
Any n-copula C defines a function C: I" — [ by

Cy =142 (=D D Cipoif iy, -+, i), ()

k=1 1<ij<---<iy<n

It is called the survival functionof C. For more details about copulas theory, see
Nelsen’s book [11].

Now let’s recall some existing results. In 2004, Rodriguez-Lallena and Ubeda-
Flores [12] considered the following family of bivariate copulas,

Co(u,v) =uv+0f(u)g), 2

where f, g : [0, 1] — R are two functions, 6 € R is a parameter. This family is a
generalization of the well-known bivariate Farlie-Gumble-Morgenstern (or FGM,
for short) family,

Co(u,v) = uv + uv(l —u)(1 —v),

where u, v € [0, 1] and 6 € [—1, 1]. In 2011, Kim et al. [7] extended Rodriguez-
Lallena and Ubeda-Flores’s work to the family,

Clu,v) =C"(u,v) +0fw)g), 3)

where C* is a known bivariate copula, f, g : [0, 1] = R are two functions, 6 is a
parameter. In 2013 and 2015, Durante et al. [4] and Mesiar et al. [10] considered
more general cases,

C(u,v) =C*(u,v) + H(u,v), (@)

where C* is a known bivariate copula, H : [0, 1] x [0, 1] — R is a function.
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3 Constructions of Multivariate Copulas

The constructions of all above results are adding some perturbation functions to a
given bivariate copula. In fact, any n-copula C can be represented by a perturbation
of the independent copula IT, [19]. Based on this idea, we are going to extend these
bivariate results to multivariate cases.

Firstly, for any given n-copula C* : I" — [0, 1], we consider the construction,

C(ul’u23 1“71) = C*(ul”'th ,Mn) +H(M1,Lt2, 7“71)7 (5)

where H : I" — R is a function, called a perturbation function. C is called a per-
turbation of C* by H.

Theorem 1 Let C* be an n-copula, H : I — R be a function. C is defined by (5).
Then C is an n-copula if and only if H satisfies the following three conditions,

i) HQO,uz, -+ ,uy) =---=H(uy, - ,u,_1,0) =0forall (uy,---,u,) €1,
(1) Thereare 1 <i < j < n such that

H(uly." s Uji—1, laui-‘r]a”' 7un)=H(u|"" ’uj—1717uj+17"' 7”}1)=0’

(iii) Ve« ([u,v]) + Vg ([u, v]) = 0 for all n-box [u,v] in I".

Proof The conditions (i) and (ii) ensure that C is grounded, and its one-dimensional
marginals are uniform distributed, respectively. The n-increasing property of C is
guaranteed by the condition (iii). O

Next we provide a necessary and sufficient condition on H under which C defined
by (5) is an absolutely continuous n-copula.

Theorem 2 Let C* be an absolutely continuous n-copula with the density c*,
H : I" — R be a non-zero absolutely continuous function with the Radon-Nikodym
derivative h with respect to the Lebesgue measure on I". C is defined by (5) is an
absolutely continuous n-copula if and only if H satisfies the following conditions.

(1) H(OvuZa"' ’un) = =H(ula"' ’un—lvo) =Of0rall(1/lj,"' 7un) € I”)
(1) Thereare 1 <i < j < n such that

Huy, -~ uicy, Lwigy, - yup) = H@uy, -+ yujoy, Lujpg, - ou,) =0,

(iii) ¢* + h > 0 almost surely.
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Proof Firstly, the boundary conditions of copulas are ensured by the condition (i)
and (ii).

Next, we show that the condition (iii) is equivalent to the n-increasing prop-
erty of C. On the one hand, suppose that C is n-increasing. If ¢* 4+ & is not non-
negative almost surely, then there exist u < v € I” such that ¢* + & < 0 on [u, v].
Note that V- ([u, v]) = f[u,v] (c* 4+ h)(t)dt. So V- ([u, v]) < 0. It contradicts the n-
increasing property of C. On the other hand, if ¢* + 4 > 0 almost surely, we must
have Vo ([u, v]) > O forallu, v e I" withu < v. |

Now let’s consider a special case of (5) as follows, which are multivariate exten-
sions of the result in [7].

Clur, g, -+ ) = C*(uy, g, -+ ) + [ [ fiw), 6)

i=I

where C* is an n-copula, f; : [0, 1] — Ris a function,i = 1,2, --- , n.
The following theorem give us a sufficient condition under which C defined by
(6) is an n-copula.

Theorem 3 Let C* be an n-copula, f; : [0, 1] - R be a function, i =1,2,--- ,n.
C : [0, 17" — R is defined by (6) is an n-copula if fi,--- , f, satisfy the following
conditions,

@) f1(0) =--- = f,(0) =0, and there exist at least two functions f; and f; such
that f;(1) = f;(1) =0,1<1i,j <n,
(1) f; is absolutely continuous,
(i) min(B) > sup [——VC*([”’ ")
- Au,v)
where B = {oy, - a; B, -+ B, : 1 <k <n,kisodd,iy,--- ,ixand j,,---,
Jn—k are pairwise distinct}, o; =inf{f/(u;) 1 u; € A;} <0, [ =
sup{f/(u,) cu; € Ai} >0, A, ={u; €[0,1]: f'(u;) exists}, i =1,---,n,
and A(u,v) = (vi —uy) - - (v, — uy).

cu,vel0, 1] u < v],

Proof Firstly, if there is f; = 0, then C = C* is an n-copula. So without loss of
generality, we may assume that f; is non-zero,i =1, --- , n.

Since C* is an n-copula, C is grounded and its marginals are uniformly distributed
if and only if C satisfies the above condition (i). Next we are going to show that C
is n-increasing if C satisfies the conditions (ii) and (iii).

Suppose that C satisfies conditions (ii) and (iii). By Lemma 2.2 in [12], it holds
that forany u, v € [" withu < v,

(fl (U]) - fl (M])) o (fn(vn) - .ﬁ’l(ul’l)) > _ VC*([U’ V])
(vp —up) - (Vg — up) - A(u, v)

’



254 X. Zhu et al.
ie.,
Ve(lu, v]) = Ve ([, vD) + (fi(v1) — fiu1)) -+ (fu(0n) = fu(un)) > 0,

so C is n-increasing. O

Based on the construction (6), we introduce the following parametric families of
n-copulas, which is a multivariate extension of (3).

C(I/l], Ug, -+, un) = C*(l/ll, Ugy -+, un) + enﬁ(ul)s (7)

where C* is an n-copula, f; : [0, 1] — Ris a function,i = 1,2, -+ ,n,0 € R.

Corollary 1 Let C* be ann-copula, f; : [0, 1] — R be a function,i = 1,2, -
C : [0, 1]" — R is defined by (6) is an n-copula if fi,---, fu and 6 satzsfy the

following conditions,

@) fi(0) =--- = f,(0) =0, and there exist at least two functions f; and f; such
that fi(1) = f;(1) =0,1<i,j <n,

(i1) f; is absolutely continuous,

Ve ([u, v]) 0 Ve ([u,v)) |
(1i1) sup{—ﬁ vel0, 1] u < v} (B) < 0 < sup{ —A(u,v)

u,vel0, 11", u<v}

n(B
where B is the same as(Tzleorem 3, B'={aj, -, BB, 1 <k <
n, k is even,iy,---,i; and ji,---, ju—x are pairwise dzstznct} o =
inf{f/(u;) 1 u; € A;} < 0,8 =sup{f/(u;) 1u; € A;} > 0,A; = {u; € [0, 1]:
f'(u;) existsh, i =1,--- ,n, and A(u,v) = (v; —uy) -+ (v, — uy).

Remark 1 Conditions in Theorem 3 and Corollary 1 are sufficient but may not be nec-
essary. Consider the Fréchert-Hoeffding upper bound of n-copulas, M, (uy, - - - , u,)
= min{u,, - -- , u,}. For any u, v € [0, 1]" such that u < v, it can be shown that

VM,, ([us V]) = maX{min{Ul, R vn} - maX{Ml, R un}v 0}

Thus,
_ Ve ([u, v])

P A y)

:u,ve[O,l]",u<v] =0.

So functions fi, ---, f, that satisfy conditions in Theorem 3 or Corollary 1 for
M, must be zero, i.e., f =---= f, =0.

Next we provide a stronger sufficient condition on fi, -- -, f, to ensure that C
defined by (6) is an n-copula. Example2.1 in [12] shows that the condition is not
necessary.
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Theorem 4 Let C be defined by (6). C is an n-copula if fi,---, f, satisfy the
following conditions,
(i) f1(0) = --- = f,(0) = 0, and there exist at least two functions f; and f; such

that f;(1) = f;(1) =0, 1 <i,j <n,
(ii) f; satisfies the Lipschitz condition,

[ fi(v) = fi(w)] < M;|v — ul,
forallu,v € I, such that M; > 0,i =1, --- ,n, and

HM <i f[VC*([u D cu,ve[0, 11" u §v].
A(u,v)

Proof By the condition (i), C is grounded and one-dimensional marginals of C are
uniformly distributed. For any u, v € I" with u < v, by the condition (ii), we have

_i) = fin) - o) = fa@n)) _ 1AQD = Aol 1fn@a) = fo(un)l

(v —up) - (vn — up) N

[vr —url - vg — uyl
n

=[m
1

<inf [ Ve ([u, v])

Ay) cu, v e [0, 1]",u§v].

So

(f1(wr) = fi) -~ (fu(n) — fu(un)) > su [_VC*([U’ vl .
(W — 1) (g — ttn) =P Ay

,ve|o, 1]",u§v].

Thus, as the proof of Theorem 3, C is n-increasing. ]

4 Properties of New Families

In this section, we are going to study some non-parametric copula-based measures
of multivariate association, some dependence concepts for copulas defined in Sect. 3
and some properties of those families.

Firstly, recall that the multivariate generalizations of Kendall’s tau, Spearman’s
rho, and Blomgqvist’s beta (see [13, 18] for details) are given by

1 n
T,,(C)Zm[z /IHC(u)dC(u)—1i|, (8)
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n+1 n—1
pn(C) = Tp— [2 (/ C(wdIl,(w) + Hn(u)dC(u)) - 1} )
—n — n

In

21c (1) +C (31,)] -1

) 10
2}171 1 ( )

Bn ) =

where 1,, is the vector (1, ---, 1) € R".

Theorem 5 Let C be an n-copula defined by (5), then the Kendall’s tau, Spearman’s
rho, and Blomqvist’s beta of C are given by

T2(C) = 17,(C*) + 1, (H) + ay, (11)
1
Pu(C) = pu(C*) + pu(H) + ZL (12)
"—n—1
. 1 _211—1
(€)= 5u(C) + Bu(H) + ——, (13)
where a; = Zn_ll_] [2" [, C*@)dH (u) +2" [, H@)dC* ) + 1].

Proof Firstly, by the definition of 7,,,

72 (C) = ﬁ [2/ C(w)dC(u) — 1}

= —zn_ll 1 [2/ C*(u) + H(u)d(C*(u) + H(u)) — 1}
- .

= —Zn_ll 1[2”/ C*(w)dC*(u) +2"/ H (u)d H (u)
- n 1”

+2”/ C*(wydH ) +2" [ HwdC*u) — 1]
Iﬂ

I)X
=7u(CY) + 7 (H) + ar.

Secondly, by the definition of p,,

e P {2"—1 [ / Cd I, ) + / n,,(u>dC(u)] - 1}
2" —n—1 n n

__nrt [2”*1 [ / C*(w) + HWd T, (w) + / M, ()d(C*(w) + H(u>>] - 1]
2 —n—1 m "
n+1

2" —p—1
+/ I, (w)dH (u)] — 1}
III

n+1
pn(C*) + pu(H) + o
om_p—

Pl / C*d T, () + / H(w)d T, (w) + / Iy (wdC* ()
In In I
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Lastly, by the definition of survival functions, for any u € 1",

Cu) =1+ Z(—l)k Z Cirigeiy Wiy y o s Ug,)

k=1 1<ij<-<ip<n

=14+ > (=D D0 (Gl i i) + Higiyeg iy )]
k=1

1<ij<--<iy<n

=1+ (=D D Ch iy ug)
k=1

1<ij<---<iy<n

+1+ Z(_l)k Z Hiliz'~~ik(uils Tt uilf) -1
k=1

1<ij<--<iy<n

=C*(u)+ H(u) — 1.

Thus,
2= (1,)+C(31,)] -1
e = 22 1C Gl + T )
2 et (J1) + H (31) + T (J1) + A (31,) 1] - 1
- T
2 [C* (31) + CF (31)| = 1 +2" ' [H (31) + H (310)] -1 +1-2"""
- T
1— n—1
= n(C*) o+ fu(H) +

O

Remark 2 Inthe above theorem, although the perturbation function H is notacopula,
we still use m (H) to denote the corresponding values of H, where m = 7, p,,, or (3,
and use H to denoted the corresponding function of H defined by (1). The similar
notations are used in the following context.

Remark 3 As n increasing, we can see that

72(C) A 7y (C) + 7 (H) +2 / CrwdHW +2 [ HwdC* ),
n [n

pn(C) = pu(C*) + pu(H),

and

Bu(C) = Bu(C) + Bu(H).
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Corollary 2 Let C be an n-copula defined by (7), then the Kendall’s tau, Spearman’s
rho, and Blomqvist’s beta of C are given by

n
7(C) = 7(C*) + 7 O] [ ) + a2, (14)
i=1
" . n+1
(€)= pu(C) + O] [+ 57— (15)
i=1
1 —2n— 1
B (C) = B(C* )+ﬁn(9Hfz) + T (16)
i=1
1 n n
where a, = T [2” S 0C @) [T £ wiydu +2" [, 0] fi (ui)dC* (w) + 1:|.
- i=1 i=1
In 2013, Tasena et al. [17] defined a measure of multivariate complete dependence
as follows. Let C be an n-copula of random variables X, - - - , X,,. Define
0;C — ;C)?
Si(X1, -, X,) = 6;(C) = f(—ﬂ)
JmC(1—mC)
where m;C : I"~! — [ is defined by
7T,'C(M1, tee 9un71) = C(”l? e, U1, lsuiv Tt 7un71)a i = 1721 e, N

By Theorem 3.6 in [17], d; satisfies following properties,

) 0=<6(C) =<1,
(i) 6;(C) =1 if and only if (Xy,---, X;—1, Xis1, -, X,,) is a function of X;.
For details, see [17].

Theorem 6 Let C be an n-copula defined by (5). If
H@uy, - uimr, Ly, oo uy) =0,

then
f28 H(0;C* — m;C*) — (0; H)2

%(C) = 0(C7) — [ mCH (1 —mC*)
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Proof By the definition,

5,(C) = [©O,C —mC)?
[mC(l —mC)
_ J@(C*+ H) — 7 (C* + H))?
[ m(C* + H)[1 — m(C* + H)]
[(B:C*+ O;H — mC* — m H)?
T [(mC* + mH)(1 — mC* — mH)
IfmHWu, - up)=H@y, - ,ui—1, Lujpr, -+, uy,) =0, then

[©,C* 4+ 0;H — m;C* — m; H)?
f(mC* +mH)Y(1 —mC*r; H)

[(B;C* + 8, H — m,C*)>
T w1 —mCY)
[[@iC* = mC*? = 20;H(0;C* — mC*) + (8; H)?]

f7r,»C*(l —mC*)

[(@:C* = mC*)? [20;H(0;C* — mC*) — (0, H)>
T [mCr(1—mCr) [mC*(1 — mC*)
[20;H(&;C* — mC*) — (O, H)>

f’/T,'C*(l—ﬂ'[C*) '

6i(C) =

=0(C*) —

Corollary 3 Let C be an n-copula defined by (7). If f;(1) = 0, then

[20f T1 fi0.C* —mC*) — @ f 1 f)?
A J#i
TmC (1 —mC)

6i(C) = 6:(C*) —

Now, let’s recall some dependence concepts of copulas. For details, see [6, 11].
Let C; and C, be two n-copulas. If C; > C, (C, > C, resp.), i.e., Ci(u) > C,(u)
(Ci(u) > C,(u) resp.) for all u € I", then we say that C| is more positive lower
(upper resp.) orthant dependent (PLOD) (PUOD resp.) than C,. C; is more positive
orthant dependent (POD) than C, if C; > C, and C; > C, hold.

The following results give us some dependence relations between C and C*. The
proof is trivial.

Proposition 1 Let C| and C, be two n-copulas defined by (5). If they share the same
n-copula C* and may have different perturbation functions H; i = 1, 2, then

(i) C1 more PLOD than C, if and only if H) > H,,

(ii) C1 more PUOD than C, if and only ifﬁl > H,,

(iii) C1 more POD than C, if and only if H; > H, and H, > H,.
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Proposition 2 Let C| and C; are two n-copulas defined by (7). If they share the same
known n-copula C* and may have different perturbation functions fji, - - -, fin, and
parameters 0;, j = 1,2 respectively, then
n n
(i) Cy more PLOD than C; if and only if 01 [ fii = 0211 fai,

i=1 i=1

(ii) Cy more PUOD than C, if and only if 0, || f1; = 6211 f»
i=1 i=1

n n n
(iii) C, more POD than C, if and only if 0,[] fi; = 0211 fai and 0, [] f1i >
i=1 i=1 i=1

0211 fai
i=1

The next theorem give us a property of the construction (6).

Theorem 7 Let (U, --,UY) and (Uy, - -- , Uy,) be random vectors with uniform
marginals on [0, 1] and connected by copulas C* and C respectively. C and C*
satisfy conditions of Theorem 3. Suppose that f;(1) = f;(1) =0,1 <i < j <n.
(i) If there is 1 <1 <n such that | #i, j and f;(1) =0, then P{U; < U;} =
P{U? < U}k},
(i) If fi(1) #Oforalll #1i, jand fi = f;, then P{U; < U;} = P{U/ < Uj}

Proof (i) Let ¢ and c¢* be the densities of C and C* respectively, then we have

0"C(u)

By om, =< @+ 157w,

i=1

c(u) =

Then

1 uj 1
P{U,‘<Uj}=/"’/“"/ c@uy, -, uy)duy - du; - du,
0 0 0
1 uj 1
:/ .../ .../ C*(u17'..1ui7.'.7un)dul'..dui..'dun
/ / /fl(u) S i) - fo(un)duy - - - duy

_ Pwr < U+ [] O - fk<0))/ / F10) £ )
k#i, j
= P{U; < Uj},

since f;(0) = fi(1) =0and! #1i, j.
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(i1) Similarly, if f;(1) # O foralll # i, j,
n 1 uj , )
PU; <Uj} = PU; < U+ [] (D) - fk(on/ / £ f i duidu,
oty o Jo

n 1 uj
— Pl < U+ [ fk<1>/ / £ £ i) dusdu
0 0

ki, j

n 1
— Py < U+ [ fka)/o Fi ) £y,

ki, j

Since f; = fj,
1 1
/0 Fu)) £1)du =fj(1)ﬁ(l)—fj(0)ﬁ(0)—/0 £ £
1 1
_ /0 £ £ )du; = — /0 Fiu)) £y,

and hence [ f;(u;) f}(u;)du; = 0.So P{U; < U;} = P{U} < U}, o

The following example shows that the converse of the above result (ii) in
Theorem 7 may not hold in general. Moreover, it shows that Theorem3 in [7] is
incorrect.

Example 1 Let (U*, V*) and (U, V) be random vectors with uniform marginals
on [0, 1]. Suppose that (U*, V*) is connected by the independent copula, i.e.,
C*(u,v) = uv, and (U, V) is connected by C(u, v) = C*(u, v) + f(u)g(v), where

1
fw) =u(l —u), glv) = Ev(l —v). Then f and g satisfy the conditions in Theo-

rem 3. In fact, C belongs to the bivariate FGM family.
As the proof of the above theorem, we have

1 v 1 v
P{U <V} :/ / c(u, v)dudv :/ / c*u,v) + f g (v)dudv
0 Jo 0 Jo

1 v 1
= P{U* < V*} +/ / f(wg (v)dudv = P{U* < V*} +/ f()g' (w)dv.
0 Jo 0

where

1 1
/ fg' (vdv =/ lv(l —v)(1 —=2v)dv =0.
0 0 2

Thus P{U <V} = P{U* < V*},but f # g.
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5 Examples

In this section, we provide two examples. The given copula C* in the first example is
the simplest one, the independent copula. To emphasis multivariate and for simplicity,
we will only consider 3-copulas, but results could be extended to n-copulas. In
the second example, C* is nontrivial. Also for simplicity, we will only consider
2-copulas.

Example 2 Let C* be the independent 3-copula, i.e., C*(u, v, w) = uvw. Let
fx)=x1 - x%), where u, v, w, x € I,k € N, the set of all positive integers. Con-
sider the 3-copula family,

Clu,v,w) =C*(u, v, w) +0fu)f)f(w)

= uvw + Quvw(l — u®)(1 — v*) (1 — wb),

where 0 € R.
It is clear that f(x) satisfies the conditions (i) and (ii) of Corollary 1. Next we

will use the condition (iii) of Corollary 1 to find the range of the parameter 6 for each

Ve« ([u, .
k. Firstly, it is easy to see that % =1 for any u, v € [0, 1P withu < v.
u,v

Secondly, f'(x) = 1 — (k + 1)x¥, so
a=inf{f'X):xel}=f1D=1—-(k+1)=—k,

and

B =sup{f'(x):x el}=f'(0) =1

Thus, as the notations in Theorem3, B = {—k, —k3}, B’ = {k?}. So by the con-
dition (iii) of Corollary 1, the range of 6 is

—; <f<— ! ,
max(B’) — — min(B)

ie.,
_i <@ < i

k2T Tk
So, we can see that the range of 6 is shrinking as k increasing. Specifically, if

1 1 1
k=1,-1<0<1.Ttk=2,—-<0<-Ifk=3,—=<0< —.
4 8 9 27

Next, let’s compute three measures discussed in Sect.4 for these 3-copulas. By
the definition of 7,,,

+2) -1

2%k+3 k+3 '3

1 k+1 k+2 1
Ts(ﬂf(u)f(v)f(w))=§[89( + + }
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3 3
azzé[s / 6C* @[ [/ (w)du +38 / 6Hﬁ(ui>d0*(u>+l}
IE oo

i=1
1 0k> N 0k> il 1
C3 (k+2)3  (k+2)3 R

So by Corollary 2,

73(C) = 13(C*) + 13(0 f (u) f (v) f (W) + a2

1 k+1 k+2 1 1
=0+-[(8{——-——"—-+=-)—1 -
+3[ (%+3 k+3+3) }+3
80 (k+1 k+2 1
3 \2k+3 k+3 3)°
So the range of 73(C) is
8 k+1 k+2 1 8 k+1 k+2
— 4+ ) <O <= —
3k3\2k+3 k+3 3 3k2 \2k+3 k+3

By the definition of p,,,

0k> 0k>

py(Of () f () f (w)) = 4 [

So
p3(C) = p3(C*) + p3(0 f () f (v) f (w)) +

=0-14+1=0.

By the definition of survival function (1),

So

&k+m3_8®+2ﬁ}_1

3+

23 _3_

1
1

=—1.

B30 f () f (v) f (w)) =

!
7)-

263
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Thus, .
1 — 23~
B5(C) = B5(C7) + B30 @) f @) f w)) + —5——

=0+4+1-— 3 = 4

B 77

Lastly, since f(u)f)f(w)=uvw(l —u*)(1 —v*)(1 —w*) >0 for all
(u, v, w) € I, we have that C is more PLOD than 7 if and only if # > 0 and
IT; is more PLOD than C if and only if < 0.

Remark 4 From the above example, we can see that this 3-copulas family,
Cu, v, w) = C*(u, v, w) + Quvw(l — u*)(1 = V(A — wk),isinteresting.Aslong
as this C is a 3-copula, p3(C) and (5(C) are free of 6. Specifically, we always have
p3(C) = p3(C*) and 35(C) = B3(C*) + 4.

Example 3 Let C* be a Frank’s copula [2, 5] defined by

C*(u,v) = In [1+W].
e—1

Let
H=01—-u)(1—-¢e"(1—-v)(—¢e),

where 6 > 0. Define a bivariate function C by C = C* 4+ H. We will use Theorem?2
to find the range of € such that C is a copula.
Firstly, it is easy to see that H(0,v) = H(u,0) = H(1,v) = H(u, 1) = 0.
Secondly, we can find that

(e =D+
e — 14 (e" — D)(e? = DI*’

c*(u,v) =

and
h(u,v) = 0we" — 1)(ve” —1).

It can be shown that minimum values of ¢ = ¢* + h occur at (0, 1) and (1, 0). So
1

¢ > 0ifandonlyifc(0, 1) = ¢(1,0) = ¢*(0, 1) + (0, 1) = pumr fe—1) > 0.
e —

Thus C = C*+ Hisacopulaif < ——.
(e —1)?
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