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Preface

Econometrics is a branch of economics that uses mathematical (especially statis-
tical) methods to analyze economic systems, to forecast economic and financial
dynamics, and to develop strategies for achieving desirable economic performance.

Most traditional statistical techniques are based on the assumption that we know
the corresponding probability distributions—or at least that we know that the
corresponding distribution belongs to a known finite-parametric family of distri-
butions. In practice, such probabilistic models are only approximate. It is therefore
desirable to make sure that the conclusions made based on the statistical analysis
are valid not only for the corresponding (approximate) probability distributions, but
also for the actual distributions—which may be somewhat different. Statistical
methods which are valid not only for the approximate model but also for all the
models within its neighborhood are known robust.

There is also another important aspect of robustness: in day-by-day data, we
often encounter outliers that do not reflect the long-term economic tendencies, e.g.,
unexpected abrupt fluctuations. It is therefore important to develop and use tech-
niques whose results are minimally affected by such outliers.

Robust statistical techniques—and their applications to real-life economic and
financial situations—are the focus of this volume.

This book also contains applications of more traditional statistical techniques to
econometric problems.

We hope that this volume will help practitioners to learn how to apply new
robust econometric techniques, and help researchers to further improve the existing
robust techniques and to come up with new ideas on how to best assure robustness
in econometrics.

We want to thank all the authors for their contributions and all anonymous
referees for their thorough analysis and helpful comments.

The publication of this volume is partly supported by the Chiang Mai School of
Economics (CMSE), Thailand. Our thanks to Dean Pisit Leeahtam and CMSE for
providing crucial support. Our special thanks to Prof. Hung T. Nguyen for his
valuable advice and constant support.
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We would also like to thank Prof. Janusz Kacprzyk (Series Editor) and
Dr. Thomas Ditzinger (Senior Editor, Engineering/Applied Sciences) for their
support and cooperation in this publication.

El Paso, TX, USA Vladik Kreinovich
Chiang Mai, Thailand Songsak Sriboonchitta
Ishikawa, Japan Van-Nam Huynh
January 2017
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Robust Estimation of Heckman Model

Elvezio Ronchetti

Abstract Wefirst review the basic ideas of robust statistics and define themain tools
used to formalize the problem and to construct new robust statistical procedures. In
particularwe focus on the influence function, theGâteaux derivative of a functional in
direction of a pointmass, which can be used both to study the local stability properties
of a statistical procedure and to construct new robust procedures. In the second part
we show how these principles can be used to carry out a robustness analysis in [13]
model and how to construct robust versions of Heckman’s two-stage estimator. These
are central tools for the statistical analysis of data based on non-random samples from
a population.

Keywords Approximate models · Change-of-variance function · Huber function ·
Influence function · M-estimator · Sample selection · Two-stage estimator

1 Introduction

In science models are used as approximations to reality and statistical and economet-
ric models are no exception. Therefore, deviations from the assumptions of classical
models are typically observed on real data. They can be related to the structural form
of themodel (e.g. nonlinearity), the stochastic assumptions on the observations or the
errors (e.g. normality), the independence assumption, the presence of heteroskedas-
ticity etc. From a diagnostic point of view, robust statistics investigates the impact
of such deviations on procedures (estimators, confidence intervals etc.) which are
constructed and justified by relying on the underlying assumptions. From a more
operational and preventive point of view, it derives statistical procedures which are

E. Ronchetti (B)
Research Center for Statistics and Geneva School of Economics and Management,
University of Geneva, Geneva, Switzerland
e-mail: Elvezio.Ronchetti@unige.ch

© Springer International Publishing AG 2017
V. Kreinovich et al. (eds.), Robustness in Econometrics,
Studies in Computational Intelligence 692, DOI 10.1007/978-3-319-50742-2_1
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4 E. Ronchetti

still reliable in the presence of such deviations.More specifically, a classical (central)
model is still assumed, but it is believed to be only approximate in the sense that
the true distribution of the data lies in a (small) neighborhood of the model. Then,
estimators and tests are derived which are still reliable in the full neighborhood, i.e.
their statistical characteristics (such as bias, variance, confidence intervals coverage
and length, level, and power) remain stable on the full neighborhood. This has the
advantage to provide insurance and protection against small but harmful distribu-
tional deviations and to still benefit from the parametric structure of the model, e.g.,
its computational simplicity and interpretability. From a data analytic point of view,
robust procedures fit the majority of the data and identifies outliers and possible
substructures for further special treatment.

In situations when we are completely uncertain about the underlying distribution,
the use of nonparametric methods would be in principle preferable; see the discus-
sion in [11, p. 7]. However, nonparametric methods are not necessarily designed to
be robust in the sense mentioned above. Even the arithmetic mean which is the non-
parametric estimator of the expectation (if it exists) of any underlying distribution,
is very sensitive to outliers and is not robust. For a detailed discussion see [17, p. 6].

Most of the classical procedures in statistics and econometrics rely on assumptions
made on the structural and the stochastic parts of the model and their optimality is
justified under these assumptions. However, they are typically non-robust in the
presence of even small deviations from these assumptions. Standard examples are
least squares estimators in linear models and their extensions, maximum likelihood
estimators and the corresponding likelihood-based tests, and GMM techniques.

In the past decades, robust procedures have been developed for large classes of
models both in the statistical and econometric literature; see for instance, the books
by [11, 17, 18, 22] in the statistical literature and [5, 14, 26–29] in the econometric
literature. Moreover, the quantile regression approach [20] has proved fruitful as a
specific way to robustify classical procedures.

Here we show how these principles and tools can be applied to robustify the
statistical procedures used to analyze [13] model. Introduced in his seminal paper,
it is an important model in economics and econometrics and plays a central role in
the analysis of data based on non-random samples from a population.

The paper is organized as follows. In Sect. 2 we introduce the basic ideas in robust
statistics, provide two important robustness tools, the influence function (IF) and the
change-of-variance function (CVF), andwe summarize their properties. In Sect. 3 we
first formalize Heckman model and analyze the classical estimators for this model
from a robustness perspective. Then, we propose a robust version of Heckman’s
two-stage estimator. Finally, we provide numerical evidence on the performance of
the new estimator. In Sect. 4 we mention some future research directions.
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2 Basic Robustness Tools

2.1 Basic Approaches

Two main approaches have proved very useful for the study of the robustness prop-
erties of statistical procedures.

The first approach to formalize the robustness problem was [16] minimax theory,
where statistical estimation is viewed as a game between the Nature (which chooses
a distribution in the neighborhood of the model) and the statistician (who chooses a
statistical procedure in a given class). The payoff of the game is the asymptotic vari-
ance of the estimator under a given distribution in the neighborhood. The statistician
achieves robustness by constructing a minimax strategy which minimizes the payoff
at the worst possible distribution (least favorable distribution) in the neighborhood.

More specifically, in the simple normal location model, for a given sample
z1, . . . , zn the solution to this problem is the Huber estimator, an M-estimator which
is the solution Tn of the estimating equation

n∑

i=1

ψc(ri ) = 0, (1)

where ri = zi − Tn , ψc(·) is the so-called Huber function shown in Fig. 1 and
defined by

ψc(r) =
{
r |r | ≤ c
c sign(r) |r | > c.

(2)

Fig. 1 The Huber function

-2 -1 0 1 2

-2
-1

0
1

2
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By multiplying and dividing by ri the left-hand side of (1), the Huber estimator can
be rewritten implicitly as

Tn =
∑n

i=1 wc(ri )zi∑n
i=1 wc(ri )

,

where ri = zi − Tn are the residuals and

wc(r) = ψc(r)/r = 1 |r | ≤ c

= c

|r | |r | > c. (3)

Therefore, the Huber estimator can be interpreted as an iteratively re-weighted
average, where the weights are defined implicitly by (3). Outlying observations with
large residuals receive smaller weights than observation belonging to the bulk of
the data. Notice that the weighting scheme is not pre-imposed, but it is determined
automatically by the structure of the data. The tuning constant c controls the trade-
off between efficiency at the model and robustness. In particular c = ∞ leads to the
classical efficient estimator (here the mean, which is not robust), whereas a small
value of c enforces robustness at the price of some efficiency loss at the model. The
Huber function is a central tool in robust statistics: “huberizing” the residuals in a
given model is indeed a general way to construct new robust estimators.

The infinitesimal approach introduced by [9] in the framework of estimation, looks
at the quantities of interest (for instance the bias or the variance of an estimator) as
functionals of the underlying distribution and use their linear approximations to study
their behavior in a neighborhood of the ideal model. A key tool is a derivative of
such a functional, the influence function [10] which describes the local stability of
the functional. A key point here is that this analysis can be carried out on a general
functional, such as an estimator, its bias and variance, the coverage probability or
the length of a confidence interval etc. In the next subsection we define this concept
in a more formal way. A general review can be found in [2].

2.2 Influence Function and Change-of-Variance Function

For a given functional T (F), the influence function is defined by [10] as
I F(z; T, F) = limε→0 [T {(1 − ε)F + εΔz} − T (F)]/ε, whereΔz is the probability
measure which puts mass 1 at the point z. The IF describes the standardized asymp-
totic bias on the estimator due to a small amount of contamination ε at the point z.

An estimator is said to be locally robust if small departures from the assumed
distribution have only small effects on the estimator. Assume that we have a con-
taminated distribution Fε = (1 − ε)F + εG, where G is some arbitrary distribution
function. Using a [32] expansion, we can approximate the statistical functional T (Fε)

at the assumed distribution F as
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T (Fε) = T (F) + ε

∫
I F(z; T, F)dG + o(ε), (4)

and the maximum bias over the neighborhood described by Fε is approximately

sup
G

‖T (Fε) − T (F)‖ ∼= ε sup
z

‖I F(z; T, F)‖.

Therefore, a condition for local robustness is a bounded IFwith respect to z, which
means that if the I F(·; ·, ·) is unbounded then the bias of the estimator can become
arbitrarily large.

The IF can also be used to compute the asymptotic variance of T , namely

V (T, F) =
∫

I F(z; T, F) · I F(z; T, F)T dF(z). (5)

Robustness issues are not limited to the bias of an estimator, but concern also the
stability of its asymptotic variance. Indeed, the latter is used to construct confidence
intervals for the parameters and the influence of small deviations from the underlying
distribution on their coverage probability and length should be bounded. Therefore,
we investigate the behavior of the asymptotic variance of the estimator under a
contaminated distribution Fε and derive the CVF, which describes the influence of a
small amount of contamination on the asymptotic variance of the estimator.

The CVF of an M-estimator T at a distribution F is defined by the matrix

CV F(z; T, F) =
[
(∂/∂ε)V {T, (1 − ε)F + εΔz}

]

ε=0

, for all z where this expres-

sion exists; see [7, 12]. Again a [32] expansion of log V (T, Fε) at F gives

V (T, Fε) ∼= V (T, F) exp

{
ε

∫
CV F(z; T, F)

V (T, F)
dG

}
. (6)

If the CV F(z; T, F) is unbounded then the variance can become arbitrarily large or
small; see [11, p. 175].

3 Application to Heckman Model

This part is a summary of [34], where all the details can be found.

3.1 Estimation of Heckman Model

Heckman model or “Tobit type-2 model” introduced by [13] plays a central role in
the analysis of data based on non-random samples from a population, that is when the
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observations are present according to some selection rule. A simple example is the
analysis of consumer expenditures, where typically the spending amount is related
to the decision to spend. This type of problems arise in many research fields besides
economics, including sociology, political science, finance, and many others. Let us
formalize the problem by the following regression system

y∗
1i = xT1iβ1 + e1i , (7)

y∗
2i = xT2iβ2 + e2i , (8)

where the responses y∗
1i and y∗

2i are unobserved latent variables, x ji is a vector
of explanatory variables, β j is a p j × 1 vector of parameters, j = 1, 2, and the
error terms follow a bivariate normal distribution with variances σ2

1 = 1 (to ensure
identifiability), σ2

2, and correlation ρ. Here (7) is the selection equation, defining
the observability rule, and (8) is the equation of interest. The observed variables are
defined by

y1i = I (y∗
1i > 0), (9)

y2i = y∗
2i I (y

∗
1i > 0), (10)

where I is the indicator function.
Because of the presence of a selection mechanism the Ordinary Least Squares

(OLS) estimator is biased and inconsistent. Heckman [13] proposed two alternative
estimation procedures for this model. The first one is a Maximum Likelihood Esti-
mator (MLE) based on the assumption of bivariate normality of the error terms. The
second one is a two-stage procedure based on the equation

E(y2i |x2,i , y∗
1i > 0) = xT2iβ2 + E(e2i |e1i > −xT1iβ1),

which leads to the following modified regression

y2i = xT2iβ2 + βλλ(xT1iβ1) + vi , (11)

where βλ = ρσ2, λ(xT1iβ1) = φ(xT1iβ1)/Φ(xT1iβ1) is the Inverse Mills Ratio (IMR),
vi is the error term with zero expectation, and φ(·) denotes the density and Φ(·) the
cumulative distribution function of the standard normal distribution, respectively.
Heckman [13] proposed then to estimate β1 in the first stage by probit MLE and to
compute estimated values of λ, and in a second stage to use OLS in (11), where the
additional variable corrects for the sample selection bias.

Both estimation procedures have advantages and drawbacks, studied extensively
in the literature; see e.g. the general reviews by [31, 33] and references therein. Both
are sensitivite to the normality assumption of the error terms, which is often violated
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in practice. Another important issue is the presence of outlying observations, a well-
known problem in many classical models, which is often encountered in practice.
Outliers can be gross errors or legitimate extreme observations (perhaps coming from
a longtailed distribution). In both cases it is of interest to identify them and this can
be difficult by using only classical estimators.

Several strategies to tackle this problem can be considered. They include the
development ofmisspecification tests for normality as in [24] to be used for diagnostic
purposes, replacing the normality assumption by amore flexible class of distributions
(such as the t as in [21]), the use of semiparametric [1, 23, 25], and nonparametric
[6] methods. Here we show how to take a middle way between the classical strict
parametric model and the fully nonparametric setup by using the ideas presented in
the first part of the paper.

Although a robustification of the MLE for this model could be carried out [30],
we focus here on the robustness analysis of Heckman’s two-stage procedure for
the model specified by (7)–(10). It is structurally simpler, has a straightforward
interpretation, and leads to a robust estimator, which is computationally simple.

Let us consider a parametric sample selection model {Fθ}, where θ = (β1,β2,

σ2, ρ) lies in Θ , a compact subset of Rp1 × R
p2 × R

+ × [−1, 1]. Let FN be the
empirical distribution function putting mass 1/N at each observation zi = (z1i , z2i ),
where z ji = (x ji , y ji ), j = 1, 2, i = 1, . . . , N , and let F be the distribution function
of zi . The Heckman’s estimator can be represented as a two-stage M-estimator, with
probit MLE in the first stage and OLS in the second stage. Define two statistical
functionals S and T corresponding to the estimators of the first and second stage,
respectively. Then, the two-stage estimator can be expressed as a solution of the
empirical counterpart of the system:

∫
Ψ1{(x1, y1); S(F)}dF = 0, (12)

∫
Ψ2[(x2, y2);λ{(x1, y1); S(F)}, T (F)]dF = 0, (13)

where Ψ1(·; ·) and Ψ2(·; ·, ·) are the score functions of the first and second stage
estimators, respectively. In the classical case Ψ1(·; ·) and Ψ2(·; ·, ·) are given by

Ψ1{(x1, y1); S(F)} = {y1 − Φ(xT1 β1)} φ(xT1 β1)

Φ(xT1 β1){1 − Φ(xT1 β1)} x1, (14)

Ψ2[(x2, y2);λ{(x1, y1); S(F)}, T (F)] = (y2 − xT2 β2 − λβλ)

(
x2
λ

)
y1. (15)
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3.2 Influence Function and Change-of-Variance Function
of Heckman’s Two-Stage Estimator

For the model (7)–(10), the IF of the Heckman’s two-stage estimator is

I F(z; T, F) =
{∫ (

x2xT2 λx2
λxT2 λ2

)
y1dF

}−1 {
(y2 − xT2 β2 − λβλ)

(
x2
λ

)
y1

+
∫ (

x2βλ

λβλ

)
y1λ

′
dF · I F(z; S, F)

}
, (16)

where

I F(z; S, F) =
(∫ [

φ(xT1 β1)
2x1xT1

Φ(xT1 β1){1 − Φ(xT1 β1)}
]
dF

)−1

{y1 − Φ(xT1 β1) } ·

φ(xT1 β1)x1
Φ(xT1 β1){1 − Φ(xT1 β1)} . (17)

The first term of (16) is the score function of the second stage and it corresponds to
the IF of a standard OLS regression. The second term contains the IF of the first stage
estimator. Clearly, the first term is unbounded with respect to y2, x2 and λ. Notice
that the function λ is unbounded from the left, and tends to zero from the right. From
(17) we can see that the second term is also unbounded, which means that there is
a second source of unboundedness arising from the selection stage. Therefore, the
estimator fails to be locally robust. A small amount of contamination is enough for
the estimator to become arbitrarily biased.

The expression of the asymptotic variance for the two-stage estimator has been
derived by [13], and later corrected by [8]. It can be obtained by means of (5).
Specifically, denote the components of the IF as follows:

a(z) = (y2 − xT2 β2 − λβλ)

(
x2
λ

)
y1,

b(z) =
{∫ (

x2βλ

λβλ

)
y1λ

′
dF

}
· I F(z; S, F),

M(Ψ2) =
∫ (

x2xT2 λx2
λxT2 λ2

)
y1dF . (18)
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Then the asymptotic variance of Heckman’s two-stage estimator is

V (T, F) =
M(Ψ2)

−1
∫ {

a(z)a(z)T + a(z)b(z)T + b(z)a(z)T + b(z)b(z)T
}
dF(z) M(Ψ2)

−1.

and its CVF

CV F(z; S, T, F) = V − M(Ψ2)
−1

{∫
DHdF +

(
x2xT2 λx2
λxT2 λ2

)
y1

}
V

+ M(Ψ2)
−1

∫ {
AHa

T + AHb
T + BHb

T
}
dFM(Ψ2)

−1

+ M(Ψ2)
−1

∫ {
aAT

H + bAT
H + bBT

H

}
dFM(Ψ2)

−1

+ M(Ψ2)
−1

{
a(z)a(z)T + a(z)b(z)T + b(z)a(z)T + b(z)b(z)T

}
M(Ψ2)

−1

− V

{∫
DHdF +

(
x2xT2 λx2
λxT2 λ2

)
y1

}
M(Ψ2)

−1. (19)

The CVF has several sources of unboundedness. The first term of (19) contains
the derivative of the score function Ψ2(·; ·, ·) with respect to the parameter which
is unbounded. The same holds for the last term. Finally, in the fourth term there
are two components depending on the score functions of two estimators which
are unbounded. Clearly, the CVF is unbounded, which means that the variance
can become arbitrarily large. Taking into account that the two-stage estimator by
definition is not efficient, we can observe a combined effect of inefficiency with
non-robustness of the variance estimator. These problems can lead to incorrect con-
fidence intervals.

A similar analysis can be done on the test for selection bias, i.e. the t-test of the
coefficient βλ; see [34]. Not surprisingly, it turns out that the IF of the test statistic
is also unbounded and this implies non-robustness of the level and of the power of
the test.

3.3 A Robust Two-Stage Estimator

From the expression of the IF in (16), it is natural to construct a robust two-stage esti-
mator by robustifying the estimators in both stages. The idea is to obtain an estimator
with bounded bias in the first stage, then compute λ, which will transfer potential
leverage effects from the first stage to the second, and use the robust estimator in the
second stage, which will correct for the remaining outliers.
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Consider the two-stage M-estimation framework given by (12) and (13). We can
obtain a robust estimator by bounding (“huberizing”) both score functions. In the
first stage, we construct a robust probit estimator. We use a general class of M-
estimators of Mallows’ type, where the influence of deviations on y1 and x1 are
bounded separately; see [4]. The estimator is defined by the following score function:

Ψ R
1 {z1; S(F)} = ν(z1;μ)ω1(x1)μ

′ − α(β1), (20)

where α(β1) = 1
n

∑n
i=1 E{ν(z1i ;μi )}ω1(x1i )μ

′
i is a term to ensure the unbiased-

ness of the estimating function with the expectation taken with respect to the
conditional distribution of y|x , ν(·|·), ω1(x1) are weight functions defined below,
μi = μi (z1i ,β1) = Φ(xT1iβ1), and μ

′
i = ∂

∂β1
μi .

The weight functions are defined by

ν(z1i ;μi ) = ψc1(ri )
1

V 1/2(μi )
,

where ri = y1i−μi

V 1/2(μi )
are Pearson residuals and ψc1 is the Huber function defined by

(2). The tuning constant c1 is chosen to ensure a given level of asymptotic efficiency
at the normal model. A typical value is 1.345, as advocated by [4] in the GLM setting.
A simple choice of the weight function ω1(·) is ω1i = √

1 − Hii , where Hii is the i th
diagonal element of the hat matrix H = X (XT X)−1XT . More sophisticated choices
for ω1 are available, e.g. the inverse of the robust Mahalanobis distance based on
high breakdown robust estimators of location and scatter of the x1i . For the probit
case we have that μi = Φ(xT1iβ1), V (μi ) = Φ(xT1iβ1){1 − Φ(xT1iβ1)} and hence the
quasi-likelihood estimating equations are

n∑

i=1

{
ψc1(ri )ω1(x1i )

1

[Φ(xT1iβ1){1 − Φ(xT1iβ − 1)}]1/2 φ(xT1iβ1)x1i − α(β1)

}
= 0,

and E{ψc1(ri )} in the α(β1) term is equal to

E

[
ψc1

{
y1i − μi

V 1/2(μi )

}]
= ψc1

{ −μi

V 1/2(μi )

} {
1 − Φ(xT1iβ1)

}

+ψc1

{
1 − μi

V 1/2(μi )

}
Φ(xT1iβ1).

This estimator has a bounded IF and ensures robustness of the first estimation stage.
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To obtain a robust estimator for the equation of interest (second stage), we propose
to use an M-estimator of Mallows-type with the following Ψ -function:

Ψ R
2 (z2;λ, T ) = ψc2(y2 − xT2 β2 − λβλ)ω(x2,λ)y1, (21)

whereψc2(·) is the Huber function defined by (2), but with possibly a different tuning
constant c2,ω(·) is a weight function on the x’s, which can also be based on the robust
Mahalanobis distance d(x2,λ), e.g.

ω(x2,λ) =
{
x2 if d(x2,λ) < cm
x2cm

d(x2,λ)
if d(x2,λ) ≥ cm,

(22)

where cm is chosen according to the level of tolerance, given that the squared
Mahalanobis distance follows aχ2-distribution. The choices of c2,ω(·), and cm come
from the results in the theory of robust linear regression; see [11]. In our numerical
applications, we use c2 = 1.345 and cm corresponding to 5% critical level.

The robust estimator derived above assumes implicitly the presence of exclusion
restrictions, i.e. x1 �= x2, but often in practice the sets of explanatory variables are the
same for both selection and outcome equations, i.e. x1 = x2. This issue can lead to
multicollinearity because of quasi-linearity of the inverse Mills ratio in a substantial
range of its support. In practice it is recommended that there should be a predictor
which explains y1 and is not significant for y2, although it might not be easy to
find such a variable. From a robustness perspective, we would like our estimator
to be still reliable also when the exclusion restriction is not available. Therefore, a
slight modification of the robust estimator developed above is necessary to cover this
situation.

In the presence of a high degree of correlation between the explanatory vari-
ables, the Mahalanobis distance can become inflated. This leads to an increase in
the number of zero weights in (22) and, hence, to an additional loss of efficiency.
Given that the source of the multicollinearity is known, i.e. λ can be (approximately)
expressed as a linear combination of x2’s, a simple solution is to split the design
space (x2,λ)while computing the robustness weightsω(x2,λ). We split the (approx-

imately) linearly dependent components
(
x (1)
2 , . . . , x (p2)

2 ,λ
)
into two independent

components
(
x (1)
2 , . . . , x (q)

2

)
and

(
x (q+1)
2 , . . . , x (p2)

2 ,λ
)
and compute the robustness

weights ω
(
x (1)
2 , . . . , x (q)

2

)
and ω

(
x (q+1)
2 , . . . , x (p2)

2 ,λ
)
. Then, we combine these

weights as ω(x2,λ) = ω
(
x (1)
2 , . . . , x (q)

2

)
ω

(
x (q+1)
2 , . . . , x (p2)

2 ,λ
)
, which guarantee

robustness in this case. As a general rule, we suggest to group λ with variable(s)
having the smallest correlation with it.

Remark In the likelihood framework, the Huber function defines the most efficient
estimator, subject to a bounded influence function. Therefore, in addition to its com-
putational simplicity, it seems natural to use this function in our case. Of course,
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in principle other bounded score functions could be used, such as that defining
the maximum likelihood estimator under a tν distribution; see in a more restricted
setting [21].

3.4 A Simulation Study

We present some simulation results to illustrate the robustness issues and to compare
different estimators. In our experiment we generate y∗

1i = x11i + x12i + 0.75x13i +
e1i , where x11i ∼ N (0, 1), x12i ∼ N (−1, 0.5), and x13i ∼ N (1, 1). For the equation
of interestwhen the exclusion restriction is not available,we use the same explanatory
variables x2 = x1. When it is available, the variable x23i is generated independently
from x13i , and follows the same distribution. The errors e1 and e2 are from a bivariate
normal distribution with expectation 0, σ1 = σ2 = 1, and ρ = 0.7, which gives βλ =
0.7. The degree of censoring is controlled by the intercept in the selection equation,
denoted by β10 and set to 0, which corresponds to approximately 45% of censoring.
In the equation of interest the intercept is β20 = 0 and the slope coefficients are
β2 = (1.5, 1, 0.5)T . We find the estimates of β1 and β2 without contamination and
with two types of contamination. In the first scenario we contaminate x1 when the

Table 1 Bias, Variance and MSE of the classical, robust probit, and semiparametric binary
regression estimator at the model and under two types of contamination

N =
1000

Not contaminated x1 is contaminated, y1 = 1 x1 is contaminated, y1 = 0

Bias Var MSE Bias Var MSE Bias Var MSE

Classical

β10 −0.013 0.015 0.015 −0.074 0.011 0.016 −0.194 0.012 0.050

β11 0.007 0.005 0.005 −0.323 0.005 0.110 −0.291 0.005 0.089

β12 0.002 0.011 0.011 −0.456 0.013 0.221 −0.419 0.013 0.189

β13 0.008 0.004 0.004 −0.274 0.004 0.079 −0.247 0.004 0.065

Robust

β10 −0.011 0.016 0.016 −0.011 0.016 0.016 −0.013 0.016 0.016

β11 0.008 0.006 0.006 0.006 0.006 0.006 0.003 0.006 0.006

β12 0.004 0.013 0.013 0.002 0.013 0.013 −0.003 0.013 0.013

β13 0.009 0.004 0.004 0.007 0.004 0.004 0.004 0.005 0.005

Klein-Spady + Probit

β10 −0.014 0.020 0.020 0.024 0.010 0.011 −0.102 0.011 0.021

β11 0.005 0.005 0.005 −0.364 0.006 0.138 −0.330 0.005 0.114

β12 −0.001 0.015 0.015 −0.352 0.011 0.135 −0.320 0.011 0.113

β13 0.007 0.005 0.005 −0.267 0.004 0.075 −0.240 0.004 0.062
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corresponding y1 = 0.Wegenerate observations from themodel described above and
replace them with probability ε = 0.01 by a point mass at (x11, x12, x13, y1, y2) =
(2, 0, 3, 0, 1). In this case we study the effect of leverage outliers when they are not
transferred to the main equation. In the second scenario we contaminate x1 when
the corresponding y1 = 1. We use the same type of contamination as in the first
scenario, but the point mass is at (−2,−2,−1, 1, 0). Notice that the contaminating
point deviates by two standard deviations from the centers of distributions of the
explanatory variables, which is very hard to identify using standard exploratory
analysis. The sample size is N = 1000 and we repeat the experiment 500 times.

We compare Heckman’s estimator with two robust versions derived in Sect. 3.3,
i.e. the robust probit with OLS and the robust two-stage (2S) estimator. Moreover,
when an exclusion restriction is available, we add the quantile regression estimator
(QRE). This is the estimator proposed by [3] and extended by [15], which is a
combination of a semiparametric binary regression as in [19] in the first stage and
quantile regression in the second stage. It is computed using the code kindly provided
by M. Huber.

In Table1 we first consider only the first stage. We notice that the three estimators
perform well at the model (with very small effiency losses for our robust proposal

Table 2 Bias, Variance and MSE of the classical and robust two-stage estimators at the model and
under two types of contamination, when the exclusion restriction is not available

N =
1000

Not contaminated x1 is contaminated, y1 = 1 x1 is contaminated, y1 = 0

Bias Var MSE Bias Var MSE Bias Var MSE

Classical

β20 0.000 0.064 0.064 −1.872 0.445 3.947 −0.695 0.339 0.822

β21 −0.004 0.016 0.016 0.615 0.044 0.422 0.197 0.046 0.085

β22 0.000 0.023 0.023 0.406 0.040 0.205 0.111 0.041 0.053

β23 0.001 0.011 0.011 0.411 0.022 0.191 0.129 0.025 0.041

βλ −0.003 0.073 0.073 2.237 0.491 5.497 0.682 0.350 0.815

Robust probit + OLS

β20 0.001 0.064 0.064 −0.520 0.051 0.322 −0.004 0.065 0.065

β21 −0.005 0.016 0.016 0.229 0.012 0.064 −0.003 0.016 0.016

β22 −0.001 0.024 0.024 0.217 0.021 0.068 0.001 0.024 0.024

β23 −0.001 0.011 0.011 0.172 0.008 0.038 0.002 0.011 0.011

βλ −0.005 0.073 0.073 0.653 0.040 0.466 0.001 0.074 0.074

Robust 2S

β20 −0.027 0.080 0.081 −0.072 0.075 0.080 −0.030 0.081 0.082

β21 −0.005 0.020 0.020 0.025 0.018 0.019 0.006 0.020 0.020

β22 0.009 0.027 0.027 0.028 0.026 0.027 0.008 0.028 0.028

β23 0.008 0.013 0.013 0.022 0.012 0.013 0.008 0.013 0.013

βλ 0.019 0.099 0.099 0.078 0.088 0.094 0.021 0.100 0.100
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and for semiparametric binary regression with respect to the classical one). However,
under contamination only the robust proposal remains nearly unbiased. In Tables2,
3 and Figs. 2, 3 and 4 we consider classical and robust two-stage estimators. The
QRE is included in the table only when an exclusion restriction is available.

Again all estimators performwell without contamination. As expected, under con-
tamination Heckman’s estimator breaks down. This effect can be seen in Fig. 3 (with
exclusion restriction) and Fig. 4 (without exclusion restriction). When the exclusion
restriction is not available the magnitude of the bias of the classical estimator is con-
siderably higher than that when the exclusion restriction is available. The estimators
of the slope coefficients by QRE are robust. However, the estimators of the intercept
and βλ become severely biased. While it is true that often one is mostly interested

Table 3 Bias, Variance and MSE of the classical, robust two-stage estimators, and QRE at the
model and under two types of contamination, when the exclusion restriction is available

N =
1000

Not contaminated x1 is contaminated, y1 = 1 x1 is contaminated, y1 = 0

Bias Var MSE Bias Var MSE Bias Var MSE

Classical

β20 0.006 0.015 0.015 −0.638 0.062 0.469 −0.249 0.032 0.094

β21 −0.000 0.005 0.005 0.153 0.009 0.032 0.036 0.006 0.008

β22 0.002 0.011 0.011 0.002 0.015 0.015 −0.024 0.012 0.012

β23 −0.004 0.002 0.002 −0.041 0.002 0.004 −0.004 0.002 0.002

βλ −0.003 0.016 0.016 1.018 0.090 1.127 0.225 0.038 0.089

Robust probit + OLS

β20 0.007 0.015 0.015 −0.150 0.017 0.039 0.005 0.015 0.015

β21 −0.000 0.005 0.005 0.078 0.005 0.011 0.000 0.005 0.005

β22 0.002 0.011 0.011 0.056 0.012 0.016 0.002 0.011 0.011

β23 −0.004 0.002 0.002 −0.028 0.002 0.003 −0.004 0.002 0.002

βλ −0.003 0.017 0.016 0.368 0.012 0.148 −0.001 0.017 0.017

Robust 2S

β20 −0.001 0.017 0.017 −0.011 0.017 0.017 −0.003 0.017 0.017

β21 −0.001 0.005 0.005 0.003 0.005 0.005 −0.001 0.005 0.005

β22 0.004 0.012 0.012 0.008 0.012 0.012 0.004 0.012 0.012

β23 −0.004 0.002 0.002 −0.005 0.002 0.002 −0.004 0.002 0.002

βλ −0.001 0.021 0.021 0.023 0.021 0.021 0.001 0.022 0.022

QRE

β20 0.020 0.168 0.168 −0.029 5.998 5.999 0.099 3.299 3.310

β21 −0.009 0.010 0.010 0.011 0.009 0.009 −0.011 0.009 0.009

β22 −0.001 0.021 0.021 0.005 0.021 0.021 0.002 0.021 0.021

β23 −0.005 0.003 0.003 −0.005 0.003 0.003 −0.006 0.003 0.003

βλ −0.234 11.370 11.370 −0.575 338.820 339.150 −1.306 174.335 176.040
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Fig. 2 Comparison of classical and robust two-stage estimators without contamination, when the
exclusion restriction is not available (top panel), and when it is available (bottom panel). Case a
corresponds to the classical estimator, b corresponds to robust probit with OLS in the second stage,
and c to robust two-stage. Horizontal lines mark the true values of the parameters
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to y1 = 1. Case a corresponds to the classical estimator, b corresponds to robust probit with OLS in
the second stage, and c to robust two-stage. Horizontal linesmark the true values of the parameters
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Fig. 5 Relative efficiency of the robust two-stage estimator to the classical two-stage estimator.
The top and bottom panels correspond to the cases when the exclusion restriction is not available
and when it is available, respectively. The x axis corresponds to the proportion of contamination ε,
where x1 is contaminated and the corresponding y1 = 1
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Fig. 6 ROC curves for the sample selection bias test. Top left plot corresponds to the case without
exclusion restrictionwithout contamination, top right plot corresponds to the casewithout exclusion
restriction with contamination, bottom left plot corresponds to the case with exclusion restriction
without contamination, and bottom right plot corresponds to the case with exclusion restriction with
contamination. The solid line corresponds to the classical test and the dashed line corresponds to
the robust test

only in the slopes, the non-robustness with respect to βλ affects the subsequent test
for selectivity. Finally, notice that the QRE of the slopes have larger MSE than those
of the robust two-stage.

In the case when the outlier is not transferred to the equation of interest (Figs. 3
and 4 top panels) it is enough to use a robust probit, but when the outlier emerges
in the equation of interest (Figs. 3 and 4 bottom panels), a robust estimation of the
second stage is necessary. In this case the outliers influence not only both estimation
stages directly, but the effect of contamination is amplified by the influence through
λ. The behavior of the variances of the robust estimators remains stable, while the
variance of the classical estimator is seriously affected by the contamination.



20 E. Ronchetti

In Fig. 5 we study the efficiency of the estimators. We present the plots of the
relative efficiency of the robust two-stage estimator versus the classical estimator,
depending on the amount of contamination ε, which varies from zero to 3%.We show
the figures for the case when the contaminated observations emerge at both stages
(y1i = 1). As it is expected from the theory, the robust estimator is less efficient than
the classical one, when the distributional assumptions hold exactly. However, when
a small amount of contamination is introduced, the situation changes completely.
For instance, when the exclusion restriction is not available and the contaminated
observations emerge in the second stage, the classical estimator of βλ becomes less
efficient than the robust one with only 0.1% contamination (top panel of Fig. 5).
The efficiency loss of the classical estimator concerns not only the IMR parameter,
but also the other explanatory variables. Note that the behavior of the variance of
the robust estimator remains stable under contamination (Tables1 and 2). Finally,
in Fig. 6 we plot the Receiver Operating Characteristic (ROC) curves of the test
for selectivity. The data generating process (DGP) is as discussed above except for
ρ = −0.7, and the contamination is very mild (ε = 0.001). We study the case when
y1 = 1 and put the contaminating point mass at (−1.5,−1.75,−0.5, 1, 0). Without
contamination the curves are close, however when the data are slightly contaminated
the classical test loses its power.

4 Conclusion

We showed how to use basic ideas and tools from robust statistics to develop a
framework for robust estimation and testing for sample selection models. These
methods allow to deal with data deviating from the assumed model and to carry
out reliable inference even in the presence of small deviations from the assumed
normality model. Although we focused on the basic sample selection model, our
methodology can be easily extended to more general frameworks beyond simple
regression, such as the Switching RegressionModel and the Simultaneous Equations
Model with Selectivity.
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Sequential Monte Carlo Sampling for State
Space Models

Mario V. Wüthrich

Abstract The aim of these notes is to revisit sequential Monte Carlo (SMC)
sampling. SMC sampling is a powerful simulation tool for solving non-linear and/or
non-Gaussian state space models. We illustrate this with several examples.

1 Introduction

In these notes we revisit sequential Monte Carlo (SMC) sampling for (non-linear
and non-Gaussian) state space models in discrete time. SMC sampling and non-
linear particle filters were introduced in the 1990s by Gordon et al. [7] and Del
Moral [3]. Meanwhile there is a vast literature on SMC sampling and there are
excellent (overview) contributions such as Del Moral et al. [4, 5], Johansen and
Evers [9], Doucet and Johansen [6] and Creal [2]. In fact, we have learned SMC
methods from these references, in particular, from Doucet and Johansen [6]. The
reason for writing these notes is that we had to prepare for a tutorial lecture on SMC
sampling. For this purpose it is always advantageous to develop and implement own
examples to understand and back-test the algorithms. These own examples and their
implementation are probably our only real contributions here, but nevertheless they
might be helpful to a wider audience who wants to get familiar with SMC sampling.

Organization. We start by giving three explicit examples of state space models in
Sects. 2 and 3, the sampling algorithms are only presented later in Sect. 4. In Sect. 2
we give two examples of linear state space models: (1) a Gaussian linear state
space model and (2) a non-Gaussian linear state space model. These models can
be solved with the Kalman filter technique that is exact in the former case and that
is an approximation in the latter case. In Sect. 3 we consider (3) a non-Gaussian
and non-linear state space model. Moreover, we present the corresponding densities
of all three models. Section4 is devoted to the sampling algorithms. We start with
importance sampling, then discuss sequential importance sampling (SIS) and the last
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algorithm presented is a SMC sampling one. These algorithms are useful to solve the
three models introduced above. This is demonstrated in the examples Sect. 5. In this
section we also provide another practical example that corresponds to a stochastic
volatility model (that is inspired by the Heston [8] model) and we describe backward
smoothing of the resulting estimates.

2 Linear State Space Models

In this section we present two explicit examples of linear state space models: (1)
a Gaussian one in Sect. 2.1 and (2) a non-Gaussian one in Sect. 2.2. Moreover, we
present the Kalman filter technique that solves these models.

2.1 Gaussian Linear State Space Models and the Kalman
Filter

In many situations Gaussian linear state space models are studied. These are either
exact or used as an approximation to the full problem. Therefore, we start by
describing Gaussian linear state space models. Such models typically consist of
two processes: (i) a transition system, which describes the latent risk factor process,
and (ii) a measurement system, that describes the observable process.

The following structure gives a (one-dimensional) Gaussian linear state space
model:

(i) The transition system is described by a process (Θt )t∈N0 with Θ0 = θ0 and for
t ≥ 1

Θt = a + bΘt−1 + τηt , (1)

for a, b ∈ R, τ > 0 and (ηt )t≥1 being i.i.d. standard Gaussian distributed.
(ii) The measurement system is described by a process (Xt )t∈N with for t ≥ 1

Xt = Θt + σεt , (2)

for σ > 0 and (εt )t≥1 being i.i.d. standard Gaussian distributed and being inde-
pendent of the process (ηt )t≥1.

For given parameters θ0, a, b, τ ,σ one aims at inferring the (unobservable, latent)
vectorΘ1:t = (Θ1, . . . , Θt ) from given observations X1:t = (X1, . . . , Xt ). The tech-
nique usually used is the so-called Kalman filter [10] which can be interpreted as
an exact linear credibility estimator, see Sect. 9.5 in Bühlmann and Gisler [1]. The
Kalman filter provides the following algorithm:
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Step 1 (anchoring). Initialize

θ1|0 = E [Θ1|X1:0] = a + bθ0 and τ 2
1|0 = Var (Θ1 | X1:0) = τ 2,

where the empty vector X1:0 is assumed to generate the trivial σ-field, leading to
E[Θ1|X1:0] = E[Θ1] and Var(Θ1|X1:0) = Var(Θ1).

Step 2 (forecasting the measurement system). At time t ≥ 1 we obtain forecast

xt |t−1 = E
[
Xt |X1:t−1

] = E
[
Θt |X1:t−1

] = θt |t−1,

and prediction variance

s2t |t−1 = Var (Xt |X1:t−1 ) = Var (Θt |X1:t−1 ) + σ2 = τ 2
t |t−1 + σ2.

One period later, for given observation Xt , we receive (observable) prediction error

ζt = Xt − E
[
Xt |X1:t−1

] = Xt − xt |t−1.

Step 3 (Bayesian inference of the transition system).This prediction error ζt is used to
update the transition system at time t . Using inference we obtain Bayesian estimate

θt |t = E [Θt | X1:t ] = E
[
Θt |X1:t−1

] + Ktζt = θt |t−1 + Ktζt ,

with the so-called Kalman gain matrix (credibility weight)

Kt = Var (Θt |X1:t−1 )Var (Xt |X1:t−1 )−1 = τ 2
t |t−1/s

2
t |t−1,

and the variance τ 2
t |t−1 is updated by

τ 2
t |t = Var (Θt |X1:t ) = (1 − Kt )Var (Θt |X1:t−1 ) = (1 − Kt ) τ 2

t |t−1.

Step 4 (forecasting the transition system). For the latent risk factor we obtain forecast

θt+1|t = E
[
Θt+1 |X1:t

] = a + bE [Θt |X1:t ] = a + bθt |t ,

and prediction variance

τ 2
t+1|t = Var (Θt+1 |X1:t ) = b2 Var (Θt |X1:t ) + τ 2 = b2τ 2

t |t + τ 2.

Remark We emphasize the distinguished meanings of θt |t−1, xt |t−1 and θt |t . The
former two θt |t−1 and xt |t−1 are predictors to forecast Θt and Xt based on the
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information X1:t−1; the latter θt |t is an estimator for the latent Θt based on the infor-
mation X1:t . These predictors and estimators are exact and optimal (in a Bayesian
way) for Gaussian innovations in linear state space models. In fact, we obtain the
following exact credibility formula in Step 3 (weighted average between observation
Xt and (prior) forecast θt |t−1):

θt |t = E [Θt |X1:t ] = θt |t−1 + Ktζt = Kt Xt + (1 − Kt ) θt |t−1,

with credibility weight (Kalman gain matrix)

Kt = τ 2
t |t−1

τ 2
t |t−1 + σ2

= 1

1 + σ2/τ 2
t |t−1

∈ (0, 1).

This credibility estimator θt |t is exact in the Gaussian linear state space model and it
can be used as best linear approximation (for the quadratic loss function) for other
state space models, see Chap.9 in Bühlmann and Gisler [1].

Themain questionwewould like to address here is: how canwe optimally inferΘt

in non-Gaussian and non-linear state space models? Before addressing this question
we briefly consider a non-Gaussian linear state space model.

2.2 Non-Gaussian Linear State Space Models

We present for illustration one example of a non-Gaussian linear state space model.
Therefore, we replace (1)–(2) by the following structure:

(i) The transition system is described by a process (Θt )t∈N0 with Θ0 = θ0 and for
t ≥ 1

Θt = bΘt−1 + ηt , (3)

for b ∈ R and (ηt )t≥1 being i.i.d. gamma distributed with E[ηt ] = a and
Var(ηt ) = τ 2.

(ii) The measurement system is described by a process (Xt )t∈N with for t ≥ 1

Xt = Θt + σεt , (4)

for σ > 0 and (εt )t≥1 being i.i.d. standard Gaussian distributed and being inde-
pendent of process (ηt )t≥1.

Observe that the measurement systems (2) and (4) are identical, conditionally given
(Θt )t∈N0 . The transition systems (1) and (3) differ, but not in the first two moments,
that is,

E [Θt | Θt−1
] = a + bΘt−1 and Var (Θt | Θt−1) = τ 2. (5)
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This implies that linear credibility filtering provides the same Kalman filter results
in both models, see Chap.9 in Bühlmann and Gisler [1].

3 Non-Gaussian and Non-linear State Space Models

3.1 Illustrative Example

We consider the following non-Gaussian and non-linear state space model:

(i) The transition system is described by a process (Θt )t∈N0 with Θ0 = θ0 = 1 and
for t ≥ 1

Θt = bΘt−1 + √
Θt−1ηt , (6)

for b > 0 and (ηt )t≥1 being i.i.d. gamma distributed with E[ηt ] = a and
Var(ηt ) = τ 2.

(ii) The measurement system is described by a process (Xt )t∈N with for t ≥ 1

Xt = Θt + σεt , (7)

for σ > 0 and (εt )t≥1 being i.i.d. standard Gaussian distributed and being inde-
pendent of process (ηt )t≥1.

Note that in all three examples we consider the same measurement system (2), (4)
and (7), but the three transition systems (1), (3) and (6) differ. Below, we will choose
θ0 = 1 and b = 1 − a ∈ (0, 1), see (21). These parameter choices imply for the first
two linear state space models (1) and (3), see (5),

E [Θt ] = 1 and Var (Θt ) = τ 2 1 − b2t

1 − b2
≤ τ 2 1

1 − b2
.

The non-linear model (6) is mean reverting in the following sense, assume b =
1 − a ∈ (0, 1),

E
[
Θt | Θt−1

] = (1 − a) Θt−1 + √
Θt−1 a

⎧
⎨

⎩

< Θt−1 ifΘt−1 > 1,
= Θt−1 ifΘt−1 = 1,
> Θt−1 ifΘt−1 < 1.

For t = 1 and Θ0 = θ0 = 1 we obtain

E [Θ1| Θ0] = (1 − a)Θ0 + a
√

Θ0 = 1.

By induction, using the Markov property of (Θt )t∈N0 , the tower property of condi-
tional expectations and applying Jensen’s inequality, we obtain for t ≥ 2
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E [Θt | Θ0] = E
[
E

[
Θt | Θt−1

]∣∣ Θ0
] = E

[
(1 − a) Θt−1 + a

√
Θt−1

∣∣∣Θ0

]

< (1 − a)E
[
Θt−1| Θ0

] + aE
[
Θt−1| Θ0

]1/2 ≤ 1.

3.2 Bayesian Inference of the Transition System

The state spacemodels introduced above can be interpreted as Bayesianmodels. This
is highlighted next. In general, we will use letter π to denote (conditional) densities
that belong to the transition system and letter f for (conditional) densities that belong
to the measurement system.

We start with the non-Gaussian and non-linear state space model (6)–(7). Choose
parameters γ, c > 0 such that E[ηt ] = γ/c = a and Var(ηt ) = γ/c2 = τ 2. Given
the transition system Θ1:t , the observations X1:t have the following joint (product)
density

X1:t |{Θ1:t=θ1:t } ∼ f (x1:t | θ1:t ) =
t∏

s=1

f (xs | θs)

=
t∏

s=1

1√
2πσ

exp

{
− (xs − θs)

2

2σ2

}
.

The joint (prior) density of the vector Θ1:t is given by (for later purposes we indicate
θ0 in the notation)

Θ1:t |θ0 ∼ π (θ1:t | θ0) =
t∏

s=1

π (θs | θs−1)

=
t∏

s=1

1√
θs−1

cγ

Γ (γ)

(
θs − bθs−1√

θs−1

)γ−1

exp

{
−c

(
θs − bθs−1√

θs−1

)}

× 1{θs≥bθs−1}.

This implies that the posterior density ofΘ1:t , conditionally given (X1:t , θ0), satisfies

π (θ1:t | X1:t , θ0) ∝ f (X1:t | θ1:t )π (θ1:t | θ0) =
t∏

s=1

f (Xs | θs)π (θs | θs−1)

∝
t∏

s=1

1√
θs−1

(
θs − bθs−1√

θs−1

)γ−1

exp

{
− (Xs − θs)

2

2σ2
− c

(
θs − bθs−1√

θs−1

)}

× 1{θs≥bθs−1}. (8)
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Thus, we can determine the posterior density π(θ1:t |X1:t , θ0) in model (6)–(7) up to
the normalizing constant, but we do not immediately recognize that it comes from
a well-understood (multivariate) distribution function. Therefore, we determine the
posterior distribution numerically.

For completeness we also provide the posterior distribution in the linear state
space models of Sect. 2. In model (1)–(2) it is derived as follows. Given the vector
Θ1:t the observations X1:t , have the following joint (product) density

X1:t |{Θ1:t=θ1:t } ∼ f (x1:t | θ1:t ) =
t∏

s=1

1√
2πσ

exp

{
− (xs − θs)

2

2σ2

}
.

The joint (prior) density of the vector Θ1:t is given by

Θ1:t |θ0 ∼ π (θ1:t | θ0) =
t∏

s=1

1√
2πτ

exp

{
− (θs − a − bθs−1)

2

2τ 2

}
.

This implies that the posterior density ofΘ1:t , conditionally given (X1:t , θ0), satisfies

π (θ1:t | X1:t , θ0) ∝ f (X1:t | θ1:t ) π (θ1:t | θ0) =
t∏

s=1

f (Xs | θs)π (θs | θs−1)

∝ exp

{
−

t∑

s=1

(Xs − θs)
2

2σ2
+ (θs − a − bθs−1)

2

2τ 2

}
. (9)

From this we see that the posterior ofΘ1:t , given (X1:t , θ0), is a multivariate Gaussian
distribution (with known parameters) and any problem can directly be solved from
this knowledge. Observe that this slightly differs from the Kalman filter of Sect. 2.
In the Kalman filter we were estimating (the next) Θt based on observations X1:t ,
which provided Bayesian estimate θt |t . The full posterior π (θ1:t | X1:t , θ0) now also
allows us for backward smoothing, that is, we can study the Bayesian estimator of
Θs for any earlier time point s = 1, . . . , t given by

θs|t = E [Θs | X1:t ] .

The posterior distribution in model (3)–(4) is given by

π (θ1:t | X1:t , θ0) ∝ f (X1:t | θ1:t )π (θ1:t | θ0) (10)

∝
t∏

s=1

(θs − bθs−1)
γ−1 exp

{
− (Xs − θs)

2

2σ2
− c (θs − bθs−1)

}
1{θs≥bθs−1}.

The aim in the next section is to describe algorithms that allow us to simulate directly
from the posterior densities (8)–(10), respectively.
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4 Sequential Monte Carlo Sampling

In this section we follow Sect. 3 of Doucet and Johansen [6]. Throughout we assume
that all terms considered are well-defined, for instance, concerning integrability. The
aim is to sample from the (posterior) densities π(θ1:t |X1:t , θ0) that are known up to
the normalizing constants, that is,

π (θ1:t | X1:t , θ0) ∝ f (X1:t | θ1:t )π (θ1:t | θ0) =: γt (θ1:t ) ,

where the last identity definesγt whichdescribes the functional formof the (posterior)
density up to a normalizing constant Zt that is given by

Zt =
∫

γt (θ1:t ) dθ1:t .

In particular, this implies that we have (posterior) density

π (θ1:t | X1:t , θ0) = Z−1
t γt (θ1:t ).

We remark that the following algorithms are quite general. The careful reader will
notice that they require much less structure than the three models introduced above
possess.

4.1 Importance Sampling

A general way to obtain samples from a density π(θ1:t |X1:t , θ0) that is only known
up to a normalizing constant is to apply importance sampling. Assume h is a well-
behaved measurable function and we aim at calculating the (posterior) mean

E [h(Θ1:t )| X1:t ] =
∫

h(θ1:t )π (θ1:t | X1:t , θ0) dθ1:t =
∫
h(θ1:t )γt (θ1:t ) dθ1:t∫

γt (θ1:t ) dθ1:t
.

For importance sampling we choose an importance density qt that has at least the
same support as γt and from which we can (easily) sample. The latter is important
because otherwise the problem will not be solved. Using this importance density qt
and assuming that Θ̃1:t ∼ qt we can rewrite the above (posterior) mean as follows

E [h(Θ1:t )| X1:t ] =
∫
h(θ1:t ) γt (θ1:t )

qt (θ1:t )qt (θ1:t )dθ1:t
∫

γt (θ1:t )
qt (θ1:t )qt (θ1:t )dθ1:t

= E
[
h(Θ̃1:t )wt (Θ̃1:t )

∣∣ X1:t
]

E
[
wt (Θ̃1:t )

∣∣ X1:t
] ,

(11)
where we have defined the unnormalized importance weights
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wt (θ1:t ) = γt (θ1:t )
qt (θ1:t )

.

Remarks

• Identity (11) says that we can sample from a tractable density Θ̃1:t ∼ qt . To obtain
samples from γt we simply need to re-weight these samples using the importance
weights wt . Note that this requires that supp(γt ) ⊆ supp(qt ).

• Efficient algorithms to evaluate (11) numerically for arbitrary functions h will
consider importance densities qt such that wt has a small variance. This leads to
a fast convergence in the normalizing constant Zt (which is the denominator of
(11)). Ideally, one also wants to have fast convergence in the numerator of (11).
However, since this is not possible for arbitrary function h, one only focuses on
the importance weights for the normalizing constant.

• Note that we condition on σ{X1:t , θ0} in (11) because (strictly speaking) the impor-
tance weightswt depend on these observations (if we are aiming at calculating the
posterior distributions). Moreover, also the choice of qt (·) = qt (·|X1:t , θ0) may
depend on these observations.

We now evaluate (11) empirically. Choose I ∈ N independent samples Θ̃
(i)
1:t ∼ qt ,

i = 1, . . . , I . We obtain empirical estimate

Ê
(I ) [h(Θ1:t )| X1:t ] =

1
I

∑I
i=1 h(Θ̃

(i)
1:t )wt (Θ̃

(i)
1:t )

1
I

∑I
i=1 wt (Θ̃

(i)
1:t )

(12)

=
I∑

i=1

h(Θ̃
(i)
1:t )

wt (Θ̃
(i)
1:t )∑I

j=1 wt (Θ̃
( j)
1:t )

.

This importance sampling algorithm proposes to evaluate the function h under the
empirical (discrete) distribution

π̂(I ) (θ1:t | X1:t , θ0) =
I∑

i=1

Wt (Θ̃
(i)
1:t ) δ

Θ̃
(i)
1:t

(θ1:t ) ,

with normalized importance weights

Wt (Θ̃
(i)
1:t ) = wt (Θ̃

(i)
1:t )∑I

j=1 wt (Θ̃
( j)
1:t )

=
γt

(
Θ̃

(i)
1:t

)
/qt (Θ̃

(i)
1:t )

∑I
j=1 γt

(
Θ̃

( j)
1:t

)
/qt (Θ̃

( j)
1:t )

.

Estimate (12) is consistent satisfying the central limit theorem with asymptotic vari-
ance as I → ∞, see (27) in Doucet and Johansen [6],

1

I

∫
π (θ1:t | X1:t , θ0)2

qt (θ1:t )
(h(θ1:t ) − E [h(Θ1:t )| X1:t ])2 dθ1:t .
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Moreover, as mentioned in Doucet and Johansen [6], the asymptotic bias of this
empirical estimate is of order O(1/I ), the asymptotic variance of order O(1/I ), and
the mean squared error is asymptotically dominated by the variance term, see also
Theorem 2.2 in Johansen and Evers [9].

Note that so far we have not used the sequential product structure (8)–(10) of our
problems. This structure will help to control the computational complexity, this we
are going to explore next.

4.2 Sequential Importance Sampling

Observe that the evaluation of the importance weights wt can be complex if we do
not benefit from the additional Markovian structure of problems (8)–(10). This can
be achieved by considering a product structure for the importance density qt , i.e. we
choose (by a slight abuse of notation)

qt (θ1:t ) = qt (θ1:t | X1:t , θ0) =
t∏

s=1

qs (θs | X1:s, θ0:s−1) . (13)

These (conditional) importance densities qs(θs |X1:s, θ0:s−1)may also depend on X1:s ,
often this is not highlighted in the notation. In the sequel we drop “conditional” in
the terminology because notation already indicates this. Using (8) we calculate the
importance weights recursively

wt (θ1:t ) =
t∏

s=1

f (Xs |θs) π (θs |θs−1)

qs (θs |X1:s, θ0:s−1)

= wt−1(θ1:t−1)
f (Xt |θt )π (θt |θt−1)

qt (θt |X1:t , θ0:t−1)
,

with initialization w0(θ1:0) = 1. This allows us to define the incremental importance
weights

αt (θ1:t ) = f (Xt | θt )π (θt | θt−1)

qt (θt | X1:t , θ0:t−1)
,

and then the unnormalized importance weights under (8)–(10) and (13) are written as

wt (θ1:t ) = wt−1(θ1:t−1) αt (θ1:t ) =
t∏

s=1

αs(θ1:s).

Here, we see the sequential nature of the algorithm!
In view of the Markovian structure in (8)–(10) it makes sense to also choose a

Markovian structure in (13) because the numerator of the incremental importance
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weights αt (θ1:t ) only depends on Xt , θt and θt−1, thus we choose importance density

qt (θt | Xt , θt−1) ≡ qt (θt | X1:t , θ0:t−1) . (14)

This provides incremental importance weights

αt (θt−1:t ) = αt (θ1:t ) = f (Xt | θt ) π (θt | θt−1)

qt (θt | Xt , θt−1)
. (15)

We arrive at the following algorithm under (8)–(10), (13) and (14).

Sequential importance sampling (SIS) algorithm.
� Set Θ̃

(i)
0 = θ0 and w0(Θ̃

(i)
1:0) = 1 for i = 1, . . . , I.

� Repeat for s = 1, . . . , t:

• repeat for i = 1, . . . , I:
– sample Θ̃

(i)
s ∼ qs

(
·
∣∣∣Xs, Θ̃

(i)
s−1

)
;

– calculate the importance weights

αs(Θ̃
(i)
s−1:s) =

f
(
Xs

∣∣∣Θ̃(i)
s

)
π

(
Θ̃

(i)
s

∣∣∣ Θ̃
(i)
s−1

)

qs

(
Θ̃

(i)
s

∣∣∣ Xs, Θ̃
(i)
s−1

) ,

ws(Θ̃
(i)
1:s) = ws−1(Θ̃

(i)
1:s−1) αs(Θ̃

(i)
s−1:s);

• calculate for i = 1, . . . , I the normalized importance weights

Ws(Θ̃
(i)
1:s) =

ws(Θ̃
(i)
1:s)∑I

j=1 ws(Θ̃
(j)
1:s)

∝ ws(Θ̃
(i)
1:s).

This SIS algorithm provides empirical distributions for any s = 1, . . . , t

π̂(I ) (θ1:s | X1:s, θ0) =
I∑

i=1

Ws(Θ̃
(i)
1:s) δ

Θ̃
(i)
1:s

(θ1:s) . (16)

If we are only interested in s = t wewould not need to calculateWs(Θ̃
(i)
1:s) for s < t in

the SIS algorithm, however this is going to be important in the refinement of the SIS
algorithm. Note that any marginal π̂(I )(θs |X1:t , θ0) can easily be obtained, for s = t
this refers to Step 3 in the Kalman filter, for s < t this refers to backward smoothing.

A main deficiency of the SIS algorithm is that the variance increases rapidly in
the number of periods t considered, and thus a large number I of simulations is
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needed in order to get accurate results, Doucet and Johansen [6] provide an example
in Sect. 3.3. Therefore, variance reduction techniques should be applied and the SIS
algorithm needs to be refined.

4.3 Sequential Monte Carlo with Adaptive Resampling

The SIS algorithm provides empirical distributions π̂(I )(θ1:s |X1:s, θ0) for s = 1,
. . . , t , see (16). These empirical distributions are estimates for the true distribu-
tions π(θ1:s |X1:s, θ0). Resampling the particle system means that we sample from
these empirical distributions π̂(I )(θ1:s |X1:s, θ0), that is, we may sample Θ

( j)
1:s ∼

π̂(I )(θ1:s |X1:s, θ0) i.i.d. for j = 1, . . . , I. Denote for i = 1, . . . , I

N (i)
s =

I∑

j=1

δ
Θ̃

(i)
1:s

(
Θ

( j)
1:s

)
,

the number of times that Θ̃(i)
1:s was re-chosen among the I trials Θ

(1)
1:s , . . . , Θ

(I )
1:s . This

provides a second (resampled) empirical distribution

π(I ) (θ1:s | X1:s, θ0) =
I∑

i=1

N (i)
s

I
δ
Θ̃

(i)
1:s

(θ1:s) . (17)

This resampled empirical distribution π(I ) (θ1:s | X1:s, θ0) serves as an approximation
to the empirical distribution π̂(I )(θ1:s |X1:s, θ0) and henceforth to π(θ1:s |X1:s, θ0).

The important remark here is that this resampling does not necessarily reduce
the variance, but it may remove particles Θ̃

(i)
1:s that have low weights Ws(Θ̃

(i)
1:s) (are

in an unlikely region of the probability space) and we only work in the part of the
probability space that has a sufficiently high probabilitymass. There are the following
important remarks:

• There are more efficient resampling techniques than the i.i.d. resampling one
proposed above (which in fact provides a multinomial distribution). Doucet
and Johansen [6] support the systematic resampling technique. It samples U1 ∼
Uniform[0, 1] and then defines Ui+1 = U1 + i/I for i = 1, . . . , I − 1. An unbi-
ased resampled distribution is obtained by setting

N (i)
s =

I∑

j=1

1{
i−1∑
k=1

Ws (Θ̃
(k)
1:s ) ≤ Uj ≤

i∑
k=1

Ws (Θ̃
(k)
1:s )

}. (18)

• For convergence results we refer to the literature mentioned in Doucet and
Johansen [6].



Sequential Monte Carlo Sampling for State Space Models 37

• The resampling step may lead to degeneracy of π(I )(θ1:s |X1:s, θ0) with positive
probability. Therefore, one should always back-testwhether the resulting empirical
distribution is sufficiently rich for the indexes s = 1, . . . , t under consideration.

• In many cases one applies adaptive resampling, i.e. the resampling step is only
applied if the weights are too disperse. One way to measure dispersion is the
effective sample size (ESS) defined by

ESSs =
(

I∑

i=1

(
Ws(Θ̃

(i)
1:s)

)2
)−1

∈ [1, I ]. (19)

The resampling is then only applied if the ESS is too small. Note that if all particles
have the same weight 1/I , then ESSs is equal to I , if one particle concentrates the
entire probability mass, then ESSs is equal to 1.

This provides the following algorithm under (8)–(10), (13) and (14) and given resam-
pling threshold χ ∈ [1, I ].

Sequential Monte Carlo (SMC) with adaptive resampling algorithm.
� Set Θ̃

(i)
0 = θ0 and w0(Θ̃

(i)
1:0) = 1 for i = 1, . . . , I.

� Repeat for s = 1, . . . , t:

• repeat for i = 1, . . . , I:
– sample Θ̃

(i)
s ∼ qs

(
·
∣∣∣Xs, Θ̃

(i)
s−1

)
;

– calculate the importance weights

αs(Θ̃
(i)
s−1:s) =

f
(
Xs

∣∣∣Θ̃(i)
s

)
π

(
Θ̃

(i)
s

∣∣∣ Θ̃
(i)
s−1

)

qs

(
Θ̃

(i)
s

∣∣∣ Xs, Θ̃
(i)
s−1

) ,

ws(Θ̃
(i)
1:s) = ws−1(Θ̃

(i)
1:s−1) αs(Θ̃

(i)
s−1:s);

• calculate for i = 1, . . . , I the normalized importance weights

Ws(Θ̃
(i)
1:s) =

ws(Θ̃
(i)
1:s)∑I

j=1 ws(Θ̃
(j)
1:s)

∝ ws−1(Θ̃
(i)
1:s−1) αs(Θ̃

(i)
s−1:s),

and the corresponding ESSs according to (19);
• if ESSs ≤ χ resample Θ

(1)
1:s , . . . , Θ

(I)
1:s from (16) and set for i = 1, . . . , I

ws(Θ̃
(i)
1:s) = 1, Ws(Θ̃

(i)
1:s) =

1
I

and Θ̃
(i)
1:s ← Θ

(i)
1:s.

Operation Θ̃
(i)
1:s ← Θ

(i)
1:s is an assignment in the R coding language sense.
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This SMC with adaptive resampling algorithm provides empirical distributions
for any s = 1, . . . , t

π̂(I ) (θ1:s | X1:s, θ0) =
I∑

i=1

Ws(Θ̃
(i)
1:s) δ

Θ̃
(i)
1:s

(θ1:s) . (20)

Note that the weightsWs(Θ̃
(i)
1:s) and particles Θ̃

(i)
1:s may now differ from the ones of the

SIS algorithm (16) due to the potential resampling step that is performed whenever
ESSu ≤ χ for u ≤ s. Often one chooses resampling threshold χ = I/2.

5 Examples and Backward Smoothing

In Sect. 5.1 we study the two linear state space models introduced in Sect. 2, in
Sect. 5.2 we explore the non-Gaussian and non-linear state space model of Sect. 3,
and in Sect. 5.3 we consider a (new) model that may serve as a stochastic volatility
model for asset prices.

5.1 Linear State Space Models

We start by considering the linear state space models (1)–(2) and (3)–(4) in the
Gaussian and the gamma case, respectively. As parameters we choose

θ0 = 1, a = 1/10, b = 9/10, τ = √
1/10, σ = 1/2. (21)

The transition systems (1) and (3) have the same first two moments, but different
distributional properties, in particular, the gamma one is bounded from below by
zero, whereas the Gaussian one is unbounded from below. In Fig. 1 (lhs) we plot 10
sample pathsΘ1:t , t = 100, in the transition system for each of the two linear models.
This figure is complemented by the empirical means and the confidence bounds of
2 empirical standard deviations (of 1’000 simulations). We see that these measures
coincide for the Gaussian and gamma cases, however, the sample paths look rather
different in the two models. Based on two selected samples Θ1:t (darker trajectories)
in the transition system we draw a sample X1:t (for each model) in the measurement
system according to (2) and (4), respectively. The ones given in Fig. 1 (rhs) are used
in the further analysis in order to infer Θt from X1:t , i.e. we aim at calculating the
Bayesian estimate

θt |t = E [Θt | X1:t ] .
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Fig. 1 (lhs) Simulated sample paths Θ1:100 of the Gaussian linear transition system (1) and the
gamma linear transition system (3) for parameters (21) complemented by the empirical means and
the confidence bounds of 2 empirical standard deviations; the darker sample paths were selected
for the subsequent state space model analysis; (rhs) empirical samples X1:100 and Θ1:100 in the two
linear state space models (1)–(2) and (3)–(4) for parameters (21) and the selected sample paths of
the (lhs)

In the Gaussian linear state space model we can calculate θt |t exactly, using the
Kalman filter; in the gamma linear state space model the Kalman filter provides the
best linear (credibility) approximation to the conditional mean of Θt , given X1:t ,
see Chap.9 in Bühlmann and Gisler [1]. The Kalman filter results are presented in
Fig. 2. We observe that the Kalman filter achieves to estimate the true Θ1:t quite
accurately, however the noise in X1:t slightly distorts these estimates. Of course, the
bigger the parameter σ the harder it becomes to infer the transition system Θ1:t from
the observations X1:t .

Next we explore the SIS and the SMC algorithms and compare the results to
the Kalman filter ones. We therefore need to choose importance densities qt . A
simple (non-optimal) way is to choose qt (·|Xt , θt−1) = π(·|θt−1), see also (14). This
choice provides incremental importance weights under model assumptions (2) and
(4) given by

αt (θt−1:t ) = f (Xt | θt ) = exp

{
− (Xt − θt )

2

2σ2

}
. (22)

Note that these incremental importance weights are uniformly bounded. In the case
of the Gaussian innovations (1) the choice of the importance density qt could be
improved because we can directly simulate from the posterior distribution (which is
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Fig. 2 (Estimated) posterior means θt |t = E[Θt |X1:t ] using the Kalman filter complemented by
the (estimated) confidence bounds of 2 posterior standard deviations Var(Θt |X1:t )1/2: (lhs) (exact)
Gaussian linear state space model posterior means and (rhs) (estimated) gamma linear state space
model posterior means

a multivariate normal one). However, we refrain from doing so because our choice
works in all three models introduced above and leads to identical incremental impor-
tance weights (22).

Finally, we choose I = 10′000 independent samples and for the SMC with adap-
tive resampling algorithm we choose resampling threshold χ = I/2. All parameters
are now determined andwe can sample from to the SIS and SMCalgorithms. In Fig. 3

Fig. 3 Comparison between the true sample Θ1:t , the Kalman filter estimate θt |t , the SIS estimate
and the SMC estimate in the Gaussian linear state space model (1)–(2): (lhs) estimates and (rhs)
resulting differences to the true sample Θ1:t
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Fig. 4 Comparison between the true sample Θ1:t , the Kalman filter estimate θt |t , the SIS estimate
and the SMC estimate in the gamma linear state space model (3)–(4): (lhs) estimates and (rhs)
resulting differences to the true sample Θ1:t

(lhs) we provide the results for the Gaussian linear state space model (1)–(2). We
observe that the SMC estimates coincide almost perfectly with the (exact) Kalman
filter estimates θt |t . On the other hand the SIS estimates start to deviate from θt |t after
roughly t = 20 time steps because the normalized importance weightsWt (Θ̃

(i)
1:t ) start

to be too disperse and a resampling step should be applied. Figure3 (rhs) shows the
differences between the estimates θt |t and the true factors Θt . Also here we see that
the SIS estimates start to have difficulties with increasing t .

Next we analyze the same plots for the gamma linear state space model (3)–(4). In
this model the Kalman filter gives a best linear credibility approximation to the true
posterior mean E[Θt |X1:t ], and the SIS and SMC estimates should be exact up to
simulation error. Also here we see that the SIS algorithm has a poor behavior for
bigger t and one should prefer the SMC estimate. Interestingly, the SMC estimate
clearly differs from the Kalman filter estimate because of the different distributional
properties from the Gaussian ones. In particular, the Kalman filter has difficulties to
cope with the tails which leads to too extreme estimates. We conclude that we should
choose the SMC estimates, as soon as the number of samples I is sufficiently large
(Fig. 4).

In Fig. 5we plot the posterior standard deviationsVar(Θt |X1:t )1/2. In theGaussian
model the SMC and the Kalman filter estimates coincide, whereas the SIS estimate
has a poor volatile behavior. In the gamma model the SMC estimate is also volatile
and of smaller size than the Kalman filter estimate (which is also not exact in the
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Fig. 5 (Estimated) posterior standard deviation Var(Θt |X1:t )1/2 from the Kalman filter, the SIS
and SMC algorithms for the (lhs) Gaussian and the (rhs) the gamma linear state space models

non-Gaussian case). Here one should probably use a smoothed version of the SMC
estimate because the Kalman filter over-estimates the posterior standard deviation
because it cannot cope with the tail of the gamma distribution.

5.2 Non-Gaussian and Non-linear State Space Models

In this section we explore the non-linear state space model (6)–(7). The posterior
density is given by (8) and under the choice qt (·|Xt , θt−1) = π(·|θt−1) we obtain
incremental importanceweights (22). These are, of course, again bounded andwe can
apply the algorithm from before, the only change lies in the choice of the importance
distribution which now has a non-linear scaling, see (8).

In Fig. 6 (rhs) we provide an explicit sample Θ1:t for the transition system and
a corresponding sample X1:t for the measurement system. Note that we provide
exactly the same random samples, but with scaling (6) instead of scaling (3). Figure7
then shows the resulting Kalman filter approximations, where for the non-linear
model (6) we use first order Taylor approximation

√
Θt−1 ≈ 1 in the Kalman filter

application. Note that this could be refined by a second order Taylor approximation√
Θt−1 ≈ 1 + (Θt−1 − 1)/2.
In Fig. 8 we then compare the Kalman filter, SIS and SMC estimates of the poste-

rior meansE[Θt |X1:t ]. We observe that the Kalman filter receives too high peaks and
should not be used for the gamma non-linear state space model. The SIS estimate
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Fig. 6 (lhs) Simulated sample paths Θ1:100 of the gamma linear transition system (3) and the
gamma non-linear transition system (6) for parameters (21) complemented by the empirical means
and the confidence bounds of 2 empirical standard deviations; the darker sample paths were selected
for the state space model analysis; (rhs) empirical samples X1:100 and Θ1:100 in the two models
(note that we give exactly the same random samples, only scaling in the transition system differs)

Fig. 7 Estimated posterior means θt |t = E [Θt | X1:t ] using the Kalman filter complemented by
the estimated confidence bounds of 2 posterior standard deviations: (lhs) gamma linear and (rhs)
gamma non-linear state space models; in the latter we approximate

√
Θt−1 ≈ 1

becomes poorer for bigger t , hence the SMC estimate, that looks reasonable in Fig. 8
(rhs), should be preferred. In Fig. 9 we also see that the Kalman filter over-estimates
posterior variance because it cannot cope with the gamma distribution and it can-
not interpret scaling

√
Θt−1 in (6). For this reason a smoothed version of the SMC

posterior standard deviation estimate should be used.
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Fig. 8 Comparison between the true sample Θ1:t , the Kalman filter estimate θt |t , the SIS estimate
and the SMC estimate in the gamma non-linear state space model (6)–(7): (lhs) estimates and (rhs)
resulting differences to the true sample Θ1:t

Fig. 9 Estimated posterior
standard deviation
Var(Θt |X1:t )1/2 from the
Kalman filter, the SIS and
SMC algorithms for the
gamma non-linear state
space model

5.3 Stochastic Volatility Model for Asset Prices

We close this section with an example that considers stochastic volatility modeling
in the transition system and (de-trended) logarithmic asset prices in the measurement
system. Inspired by the Heston [8] model we consider a gamma non-linear transition
system for the stochastic volatility process and a log-normal model for the de-trended
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asset prices. Note that de-trended asset prices means that the log-normal distribution
has to have a negative mean parameter being equal to minus one half of the variance
parameter. This motivates the following model:

(i) The transition system is described by a process (Θt )t∈N0 with Θ0 = θ0 = 1 and
for t ≥ 1

Θt = bΘt−1 + √
Θt−1ηt , (23)

for b ∈ R and (ηt )t≥1 being i.i.d. gamma distributed with E[ηt ] = a and
Var(ηt ) = τ 2.

(ii) The measurement system is described by a process (Xt )t∈N with for t ≥ 1

Xt = −σ2Θt/2 + σ
√

Θtεt , (24)

for σ > 0 and (εt )t≥1 being i.i.d. standard Gaussian distributed and being inde-
pendent of process (ηt )t≥1.

The posterior density of Θ1:t for given observations X1:t is given by

π (θ1:t | X1:t , θ0) ∝ f (X1:t | θ1:t )π (θ1:t | θ0) (25)

∝
t∏

s=1

1√
θsθs−1

(
θs − bθs−1√

θs−1

)γ−1

× exp

{
− (Xs + σ2θs/2)2

2σ2θs
− c

(
θs − bθs−1√

θs−1

)}
1{θs≥bθs−1}.

The transition system of the stochastic volatility process (Θt )t∈N0 given in (23) is
exactly the same as (6). Therefore, Fig. 6 (lhs) provides typical trajectories for the
parameters (21). In contrast to the previous models we now also have a non-linearity
in the measurement system (24). We would like to indicate two different extreme
cases: (i) for σ � 1 very large we obtain

Xt = − σ2Θt/2 + σ
√

Θtεt ≈ − σ2Θt/2. (26)

For this reason we expect to detect the transition system rather accurately in this case
(in fact the filter becomes almost superfluous); (ii) for σ � 1 very small we obtain

Xt = − σ2Θt/2 + σ
√

Θtεt ≈ σ
√

Θtεt . (27)

In this case we expect the de-trending term −σ2Θt/2 to be almost useless in sup-
porting the filtering algorithm.

For the transition system we use the parameters (21) and the importance density
qt (·|Xt , θt−1) is chosen as π(·|θt−1). In Fig. 10 we present the SIS and SMC algo-
rithm results for σ = 0.25. These results are compared to the SMC algorithm results
provided by model (27) (since σ = 0.25 is comparably small). The first observation
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Fig. 10 Comparison between the true sample Θ1:t , the SIS estimate and the SMC estimate in the
stochastic volatility model (23)–(24) for σ = 0.25: (lhs) estimates and (rhs) resulting differences to
the true sample Θ1:t ; the approximation on the (lhs) uses (27) with SMC and it is almost identically
equal to the original SMC estimate (and therefore not visible in the plot)

Fig. 11 Comparison between the true sample Θ1:t , the SIS estimate and the SMC estimate in the
stochastic volatility model (23)–(24) for σ = 10: (lhs) estimates and (rhs) resulting differences to
the true sample Θ1:t ; the approximation on the (lhs) uses (26)

is that we cannot distinguish the SMC results from models (24) and (27), thus, our
de-trending term is too small to be helpful to improve inference of the transition
system. Secondly, we observe based on scaling (27) that the transition innovation ηt
and the measurement innovation εt live on a competing scale which makes it difficult
to infer Θt from X1:t . In fact, as can be seen from Fig. 10 (lhs), this leads to a visible
delay in the filtered estimation of Θt . This is quite a typical phenomenon in filtering
and it comes from the fact that “we cannot look into the future for smoothing”.

In our second example we choose a large σ = 10 and compare the solution of
model (24) to the (deterministic) one of model (26), see Fig. 11 (lhs). We see that
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Fig. 12 Estimated posterior standard deviation Var(Θt |X1:t )1/2 from the SIS and SMC algorithms
for stochastic volatility model (23)–(24) for (lhs) σ = 0.25 and (rhs) σ = 10

approximation (26) clearly fluctuates around the true Θt , but fluctuation is still a
bit too large to directly extract Θt from the observations Xt . This means that σ is
not sufficiently large and we should use SMC filtering. The SMC filter provides
very good results, in fact much better results than in the previous example σ = 0.25,
because the predictive power of the de-trending term is already quite large in this
situation. This can also be seen by comparing Figs. 10 (rhs) and 11 (rhs). Finally, in
Fig. 12 we present the posterior standard deviations which (in a smoothed version)
allow us to construct confidence bounds for the prediction. For σ = 0.25 they are in
the range of 0.4, for σ = 10 they are of size 0.1 which is clearly smaller (due to the
higher predictive power of the de-trending term).

5.4 Backward Smoothing and Resample-Moves

In Fig. 10 (lhs) we have seen that the filter estimates θt |t always come with a delay in
reaction. Backward smoothing means that we use later information to re-assess the
value of Θt . We have already met this idea in Sect. 3.2 and after the description of
the SIS algorithm. Basically this means that we infer Θt by considering

θt |T = E [Θt | X1:T ] for later time points T ≥ t.

Using the simulated samples we calculate empirically at time T ≥ t , see also (12),

Ê
(I ) [Θt | X1:T ] =

I∑

i=1

Θ̃
(i)
t

wT (Θ̃
(i)
1:T )

∑I
j=1 wT (Θ̃

( j)
1:T )

.
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Fig. 13 Comparison between the true sample Θ1:t , the SIS estimate and the SMC estimate in the
stochastic volatility model (23)–(24) for σ = 0.25: (lhs) SIS estimates of θt |t and of θt |t+2 and θt |100
(backward smoothed) and (lhs) SMC estimates of θt |t and of θt |t+2 (backward smoothed)

This seems straightforward, however, this empirical method needs some care! It can
be done in a direct manner for the SIS algorithm. We provide the results in Fig. 13
(lhs) for the stochastic volatility model with σ = 0.25 for T = t + 2 and T = 100.
We see a clear left shift of the estimates θt |T , that is, for more information X1:T we
can better distinguish the competing innovations εt and ηt . If T is too large the model
looks like it is over-smoothing, whichmeans that an appropriate time lag T − t needs
to be determined for smoothing.

For the SMC algorithm backward smoothing is much more delicate due to the
resampling step. Observe that the resampling step (17) at time s tends to select only
the particles Θ̃

(i)
1:s that have a sufficiently large importance weight Ws(Θ̃

(i)
1:s). From

these selected particles I new trajectories are simulated into the future after time s.
But, this selection also implies a thinning of the past trajectories (because part of the
particles are dropped in the resampling step and, thus, also their history).Applying the
resampling step several times therefore leads to very poor properties at the beginning
of the trajectories because of the successive selection of the fittest particles. For this
reason in SMC sampling it is preferable to do backward smoothing for time lags that
are smaller than the time lags between adaptive resampling steps. An example for
T = t + 2 is presented in Fig. 13 (rhs). We see that also here backward smoothing
leads to better inference compared to the true value Θt (which can be seen by the
left shift of θt |t+2 versus θt |t ).

There are ways to deal with the deficiency of the SMC algorithm that it cannot be
used for arbitrary backward smoothing because of potential degeneracy of trajectories
for big time lags. Ways to fix these problems are, for instance, a resample-move or
a block sample step. Such methods mainly aim at spreading the degenerate part of
the trajectories by aMarkov chain Monte Carlo (MCMC) step using theMetropolis–
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Hastings algorithm, the Gibbs sampler or related techniques. We briefly explain the
resample-move, for more details we refer to Doucet and Johansen [6].

Consider the posterior density π(θ1:t |X1:t , θ0) as the invariant (stationary limit)
distribution of a Markov process (Θ

(s)
1:t )s∈N having transition kernel K (θ(s+1)

1:t |θ(s)
1:t ).

As a consequence we obtain identity

∫
π (θ1:t | X1:t , θ0) K

(
θ′
1:t

∣∣ θ1:t
)
dθ1:t = π

(
θ′
1:t

∣∣ X1:t , θ0
)
.

This immediately implies that for given Θ1:t ∼ π(·|X1:t , θ0) we can resample from
the transition kernel Θ ′

1:t ∼ K (·|Θ1:t ) and the resulting sample is still distributed
according to π(·|X1:t , θ0). As a consequence if we obtain in the adaptive resampling
step of the SMC algorithm N (i)

t > 1 particles that have the same past history Θ̃
(i)
1:t ,

see (17), we can spread these particles by applying an independent resample-move
to each particle using transition kernel K (·|Θ̃(i)

1:t ). In addition, MCMC sampling
theory provides explicit constructions of transition kernels K for given invariant
distributions π(·|X1:t , θ0) as soon as the latter are known up to the normalizing
constants (which is the case in our situation, see for instance (8)). In practice, only
a fixed time lag is resampled by this MCMC step, firstly because then one does not
need to deal with different lengths of resample-moves as t increases, and secondly
because filtering is also only applied to limited time lags (to preserve stationarity in
real world time series).

6 Conclusions and Outlook

Gaussian linear state spacemodels can be solvedwithKalman filter techniques. Non-
Gaussian or/and non-linear state space models can only be solved numerically. A
powerful simulation method is sequential Monte Carlo (SMC) sampling. The result-
ing sampler is a version of importance sampling that benefits from the underlying
Markovian structure of state space models. We have presented the SMC sampler and
we have illustrated it in terms of several examples.

This outline and the examples presented were always based on known densities
(up to the normalizing constants). Unknown model parameters add an additional
complexity to the problem. Solving the latter problemmay take advantage ofMarkov
chainMonteCarlo (MCMC)methods, in particular, the particlemarginalMetropolis-
Hastings (PMMH) algorithm may be useful.
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Robustness as a Criterion for Selecting a
Probability Distribution Under Uncertainty

Songsak Sriboonchitta, Hung T. Nguyen, Vladik Kreinovich
and Olga Kosheleva

Abstract Often, we only have partial knowledge about a probability distribution,
andwewould like to select a single probability distribution ρ(x) out of all probability
distributions which are consistent with the available knowledge. One way to make
this selection is to take into account that usually, the values x of the corresponding
quantity are also known only with some accuracy. It is therefore desirable to select
a distribution which is the most robust—in the sense the x-inaccuracy leads to the
smallest possible inaccuracy in the resulting probabilities. In this paper, we describe
the corresponding most robust probability distributions, and we show that the use
of resulting probability distributions has an additional advantage: it makes related
computations easier and faster.

1 Formulation of the Problem

Need to make decisions under uncertainty. One of the main objectives of science
is to understand the world, to predict the future state of the world under different
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possible decisions—and then, to use these predictions to select the decision for which
the corresponding prediction is the most preferable.

When we have the full knowledge of the situation, the problem of selecting the
best decision becomes a straightforward optimization problem. In practice, however,
we rarely have the full knowledge. Usually, we have some uncertainty about the
future situations. It is therefore important to make decisions under uncertainty.

Traditional decisionmaking assumes that we know the probabilities. There exist
many techniques for decision making under uncertainty. Most of these techniques
assume that we know the probabilities of different outcomes—i.e., in precise terms,
that we know the probability distribution on the set of all possible outcomes; see,
e.g., [2, 6, 7, 14].

In practice, we often have only partial knowledge about the probabilities. In
many real-life random phenomena, we only have partial knowledge about the cor-
responding probability distributions. In such situations, several different probability
distributions are consistent with the available data.

The resulting need to select a single probability distribution. As we have men-
tioned, most decision making techniques use a single probability distribution. So, to
be able to apply these techniques to the practical situations, when several different
probability distributions are consistent with our knowledge, we need to be able to
select a single probability distribution—and use it in decision making.

What we do in this paper. To select a probability distribution, we can take into
account that, in addition to imprecise knowledge about probabilities of different val-
ues of the corresponding quantity x (or quantities),we also have imprecise knowledge
about the actual values of these quantities.

Indeed, the knowledge about these values comes from measurements, and mea-
surements are never absolutely accurate: there is always a difference between the
measurement result and the actual value, the difference known as the measurement
error; see, e.g., [13]. In other words, when the measurement result is x̃ , the actual
value x can be (and usually is) slightly different. It is therefore reasonable to select
a probability distribution which is the most robust, i.e., for which the change from x̃
to x has the smallest possible effect on the resulting probabilities.

In this paper, we show that this robustness idea indeed enables us to select a single
distribution.

2 Robustness: From an Informal General Idea to a Precise
Description

1-D case: analysis of the problem. Let us start with a 1-D case, when we have a
single quantity x . In this case, we are interested in the probability of different events
related to this quantity, i.e., in mathematical terms, in the probabilities of different
subsets of the real line.
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In many cases, it makes sense to limit ourselves to connected sets. In the 1-D case,
the only connected sets are intervals [x, x] (finite or infinite).

This make practical sense: e.g., it corresponds to checking whether x is larger
than or equal to a certain lower threshold x and/or checking whether x is smaller
than or equal to a certain upper threshold x , or to checking whether x belongs to the
given tolerance interval [x, x].

From this viewpoint, all we need is for different intervals [x, x], to find the prob-
ability that the value x belongs to this interval.

A 1-D probability distribution can be naturally described in terms of the corre-
sponding probability density function ρ(x). In terms of this function, the desired
probability is equal to the integral P = ∫ x

x ρ(x) dx .

Local robustness. As we have mentioned earlier, all the values of the quantity—in
particular, the threshold values—and known with uncertainty. Let us consider, for
example, the effect of uncertainty in x on the resulting probability. If we replace the
value x with a slightly different value x ′ = x + Δx , then the original probability P
changes to the slightly different probability

P ′ =
∫ x

x+Δx
ρ(x) dx

=
∫ x

x
ρ(x) dx −

∫ x+Δx

x
ρ(x) dx = P −

∫ x+Δx

x
ρ(x) dx .

(1)

When the valueΔx is small, we can, in the first approximation, ignore the changes of
the function ρ(x) on the narrow interval [x, x + Δx] and thus, get ∫ x+Δx

x ρ(x) dx ≈
ρ(x) · Δx . Then, the resulting change in probabilityΔP

def= P ′ − P can be described
as ΔP ≈ −ρ(x) · Δx , so |ΔP| ≈ ρ(x) · |Δx |.

Thus, the effect of the uncertainty Δx (with which we know x) on the change in
probability P is determined by the value ρ(x). Similarly, the effect of the uncertainty
Δx with which we know x on the change in probability P is determined by the
value ρ(x).

We can summarize both cases by saying that for any point x , the effect of the
uncertaintyΔx (with whichwe know x) on the change in probability P is determined
by the value ρ(x). This value ρ(x) thus serves as a measure of local robustness at
the point x .

From local robustness to global robustness. For different values x , the local robust-
ness degree is, in general, different. To select a distribution, we need to combine these
values into a single criterion.

Local robustness values are proportional to approximation errors caused by uncer-
tainty Δx . There are two natural ways to combine different approximation errors:

• we can consider the worst-case error, or
• we can consider the mean squared error.
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Theworst-case error corresponds to selecting the largest possible value of the approx-
imation error, i.e., in our terms, the largest possible value max

x
ρ(x).

The mean squared error means considering the mean value of the squared error,
i.e., equivalently, of the squared coefficient ρ2(x). In contrast to the worst-case
approach, where the global criterion is uniquely determined, here, we have two
possible choices:

• we can interpret mean as the average over all possible x , i.e., as a quantity propor-
tional to the integral

∫
(ρ(x))2 dx ;

• alternatively, we can interpret mean as averaging over the probability distribution
characterized by the probability density ρ(x); in this case, as a criterion of global
robustness, we get the quantity

∫
ρ(x) · (ρ(x))2 dx =

∫
(ρ(x))3 dx . (2)

Thus, we arrive at the following conclusion.

Resulting criteria of global robustness.We have three possible choices of selecting
the most robust probability distribution:

• we can select a probability distribution ρ(x) for which the maximum max
x

ρ(x)

attains the smallest possible value;
• we can select a probability distribution ρ(x) for which the integral

∫
(ρ(x))2 dx

attains the smallest possible value; and
• we can select a probability distribution ρ(x) for which the integral

∫
(ρ(x))3 dx

attains the smallest possible value.

Relation tomaximum entropy approach. Traditionally in probability theory, when
we only have partial knowledge about the probability distribution, we select a distri-
bution for which the entropy−∫

ρ(x) · ln(ρ(x)) dx attains the largest possible value
(see, e.g., [3]), or, equivalently, for which the integral

∫
ρ(x) · ln(ρ(x)) dx attains

the smallest possible value.
It is worth mentioning that, in general, if we assume that the criterion for selecting

a probability distribution is scale-invariant (in some reasonable sense), then this crite-
rion is equivalent to optimizing either entropy, or generalized entropy

∫
ln(ρ(x)) dx

or
∫

ρα(x) dx , for some α > 0; see, e.g., [5]. Our analysis shows that the generalized
entropy corresponding to α = 2 and α = 3 describes mean-squared robustness.

The worst-case criterion can also be thus interpreted. Indeed, it is known that for
non-negative values v1, . . . , vn , we have

max(v1, . . . , vn) = lim
p→∞((v1)

p + . . . + (vn)
p)1/p (3)

and similarly,

max
x

ρ(x) = lim
p→∞

(∫
(ρ(x))p dx

)1/p

. (4)
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Thus, minimizing max
x

ρ(x) is, for large enough p, equivalent to minimizing the

expression
(∫

(ρ(x))p dx
)1/p

and hence, equivalent to minimizing the corresponding
generalized entropy

∫
(ρ(x))p dx .

Multi-D case. In the multi-D case, when the probability density function ρ(x)
depends on several variables x = (x1, . . . , xm), we can also consider general con-
nected sets S. Similarly to the 1-D case, if we add, to the set S, a small neighborhood
of a point x , of volume ΔV , then the resulting change in probability is equal to
ΔP = ρ(x) · ΔV . Vice versa, if the set S contained the point x with some neigh-
borhood, and we delete an x-neighborhood of volume ΔV from the set S, then we
get ΔP = −ρ(x) · ΔV .

In both cases, we have |ΔP| = ρ(x) · ΔV . Thus, in the multi-D case too, the
value ρ(x) serves as a measure of local robustness at a point x . So, when we apply
the usual techniques for combining local robustness measures into a single global
one, we get one of three criteria described above.

Whatwe do in the following sections.Now thatwe know thatwe have three possible
ways of selecting the most robust probability distribution, let us consider these three
ways one by one. For each way, on several simple examples, we explain what exactly
probability distribution will be thus selected.

Comment. It is worth mentioning that a similar idea of selecting the most robust
description is actively used in fuzzy logic [4, 11, 16]; namely, in [8–11], it is shown
how we can select the most robust membership functions and the most robust “and”-
and “or”-operations.

While our problem is different, several related formulas are similar—and this
similarity helped us with our results.

3 Selecting a Probability Distribution that Minimizes∫
(ρ(x))2 dx

General idea. In this section, we will describe, for several reasonable types of partial
knowledge,which probability distribution corresponds to the smallest possible values
of the global robustness criterion

∫
(ρ(x))2 dx .

Types of partial knowledge about the probability distribution. What type of
partial knowledge dowe have about a random variable? For example, about a random
measurement error?

First, we can have lower and upper bounds on the measurement error (and, more
generally, on the possible values of the random variable).

Second, we may know:

• the mean value, i.e., the first moment of the corresponding random variable,
• the variance (i.e., equivalently, the second moment),
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• sometimes the skewness (i.e., equivalently, the third moment) that characterizes
the distribution’s asymmetry, and

• the excess (i.e., equivalently, the fourth moment) that describes how heavy are the
distribution’s tails.

In general, we will therefore consider the cases when we know the bounds and some
moments (maybe none).

Simplest case, when we only know the bounds. Let us start with the simplest case,
when we only know the bounds a and a on the values of the corresponding random
variable x , i.e., we know that always a ≤ x ≤ a and thus, that ρ(x) = 0 for values
x outside the interval [a, a].

In this case, the problem of selecting the most robust distribution takes the fol-
lowing form: minimize

∫ a
a (ρ(x))2 dx under the constraints that

∫ a
a ρ(x) dx = 1 and

ρ(x) ≥ 0 for all x . To solve this constrained optimization problem, we can apply
the Lagrange multiplier methods to reduce it to an easier-to-solve unconstrained
optimization problem

∫ a

a
(ρ(x))2 dx + λ ·

(∫ a

a
ρ(x) dx − 1

)
→ min

ρ(x)
, (5)

under the condition that ρ(x) ≥ 0 for all x .
According to calculus, for every x , when the value ρ(x) corresponding to the

optimum is inside the corresponding range (0,∞), the derivative of the above objec-
tive function with respect to ρ(x) should be equal to 0. Differentiating the above
expression and equating its derivative to 0, we get 2ρ(x) + λ = 0, hence ρ(x) = c
for some constant c (equal to −λ/2; strictly speaking, we should be talking here
about variational derivative, not a regular derivative).

So, for every x from the interval [a, a], ρ(x) > 0 implies that ρ(x) = c. In other
words, for every x ∈ [a, a], we have either ρ(x) = 0 or ρ(x) = c.

Let S denote the set of all the points x ∈ [a, a] for which ρ(x) > 0. Let L denote
the total length (1-DLebesguemeasure) of this set. Then, the condition

∫ a
a ρ(x) dx =

∫
S ρ(x) dx = 1 implies that c · L = 1, hence c = 1

L
. Thus, the value of the desired

objective function takes the form

∫ a

a
(ρ(x))2 dx = L ·

(
1

L

)2

= 1

L
. (6)

One can easily see that this value is the smallest if and only if the length L is the
largest.

The largest possible length of a set S ⊆ [a, a] is attainedwhen this subset coincide
with the interval—and is equal to the length a − a of this interval. In this case,
ρ(x) = const for all points x ∈ [a, a].
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Thus, in this case, the most robust distribution is the uniform distribution on the
interval [a, a].
Comment. It is worth mentioning that in this case, when we only know the bounds
a and a on the values of the corresponding random variable x , maximum entropy
method leads to the exact same uniform distribution.

What if we also know the mean? Let us now consider the next case, when, in
addition to the bounds a and a on the values of the corresponding random variable
x , we also know its mean μ.

In this case, we need tominimize the functional
∫
(ρ(x))2 dx under the constraints∫

ρ(x) dx = 1,
∫
x · ρ(x) dx = μ, and ρ(x) ≥ 0. By using the Lagrange multiplier

method, we can reduce this constraint optimization problem to the following uncon-
strained optimization problem:

∫ a

a
(ρ(x))2 dx + λ ·

(∫ a

a
ρ(x) dx − 1

)
+ λ1 ·

(∫ a

a
x · ρ(x) dx − μ

)
→ min

(7)
under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].

Similarly to the previous case, for the points x for which ρ(x) > 0, the derivative
of the above expression relative to ρ(x) should be equal to 0, so we conclude that
for some x , we have ρ(x) = p0 + q · x for appropriate constants p0 = −λ/2 and
q = −λ1/2. In other words, the probability density ρ(x) is either determined by a
linear expression or it is equal to 0.

One can check that, in general, the desired minimum is attained when

ρ(x) = max(0, p0 + q · x). (8)

In particular, in the case when ρ(x) > 0 for all x ∈ [a, a], the probability density
function ρ(x) is linear for all x ∈ [a, a]: ρ(x) = p0 + q · x . We can get explicit
expressions for p0 and q if we reformulate this linear function in an equivalent

form ρ(x) = ρ0 + q · (x − ã), where ã
def= a + a

2
is the interval’s midpoint. In this

case, the condition
∫ a
a ρ(x) dx = 1 takes the form

∫ Δ

−Δ
(ρ0 + q · t) dt = 1, where

t
def= x − ã and Δ

def= a − a

2
is the half-width (radius) of the interval [a, a]. The

integral of an odd function t over a symmetric interval [−Δ,Δ] is equal to 0, so we
have 2Δ · ρ0 = 1 and thus,

ρ0 = 1

2Δ
= 1

a − a
, (9)

exactly the value corresponding to the uniform distribution on the interval [a, a].
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The value q can be determined by the condition
∫ a
a x · ρ(x) dx = μ. Since

∫ a
a ρ(x) dx = 1, this condition is equivalent to

∫ a
a (x − ã) · ρ(x) dx = μ − ã and

thus, to ∫ Δ

−Δ

t · (μ0 + q · t) dt =
∫ Δ

−Δ

(t · μ0 + q · t2) dt = μ − ã. (10)

Here similarly, the integral of t is equal to 0, and the integral of t2 is equal to

∫ Δ

−Δ

t2 dt = t3

3

∣∣∣∣
Δ

−Δ

= 2Δ3

3
, (11)

thus the above condition leads to q · 2Δ
3

3
= μ − ã and to

q = 3(μ − ã)

2Δ3
. (12)

Substituting, into this formulas, the definition of half-width in terms of the bounds
a and a, we get an equivalent formula

q = 12 · (μ − ã)

(a − a)3
. (12a)

The resulting linear formula ρ(x) = ρ0 + q · (x − ã) only works when the result-
ing expression is non-negative for all x , i.e., when ρ0 + q · t ≥ 0 for all t ∈ [−Δ,Δ].
This, in its turn, it equivalent to ρ0 ≥ |q| · Δ, i.e., to

1

2Δ
≥ 3 · |μ − ã|

2Δ2
, and, equiv-

alently, to |μ − ã| ≤ 1

3
· Δ.

When |μ − ã| >
1

3
· Δ, we have to consider probability density functions ρ(x)

which are equal to 0 on some subinterval of the interval [a, a]. For a random variable
x ∈ [a, a], its means value μ also has to be within the same interval, so we must
have μ ∈ [a, a] and μ − ã ∈ [−Δ,Δ].
• When μ − ã → Δ, i.e., when μ → a, the corresponding probability distribution
get concentrated on a narrower and narrower interval containing the point x = a.

• Similarly, when μ − ã → −Δ, i.e., when μ → a, the corresponding probability
distribution get concentrated on a narrower and narrower interval containing the
point x = a.

Comment. If instead of our robustness criterion, we would look for the probability
distribution with the largest entropy, then the corresponding derivative would take
a form − ln(ρ(x)) − 1 + λ + λ1 · x = 0, so ln(ρ(x)) = a + b · x , where a = λ − 1
and b = λ1, and we would get an exponential distribution ρ(x) = exp(a + b · x).
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What if we also know the first two moments? Let us now consider the next case,
when, in addition to the bounds a and a on the values of the corresponding random
variable x , and the mean μ, we also know the second moment M2—or, equivalently,
the variance V = σ 2 = M2 − μ2.

In this case, we need to minimize the functional
∫ a
a (ρ(x))2 dx under the con-

straints
∫ a
a ρ(x) dx = 1,

∫ a
a x · ρ(x) dx = μ,

∫ a
a x2 · ρ(x) dx = M2, and ρ(x) ≥ 0.

By using the Lagrange multiplier method, we can reduce this constraint optimization
problem to the following unconstrained optimization problem:

∫ a

a
(ρ(x))2 dx + λ ·

(∫ a

a
ρ(x) dx − 1

)
+

λ1 ·
(∫ a

a
x · ρ(x) dx − μ

)
+ λ2 ·

(∫ a

a
x2 · ρ(x) dx − M2

)
→ min (13)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
Similarly to the previous case, for the points x for which ρ(x) > 0, the derivative

of the above expression relative to ρ(x) should be equal to 0, so we conclude that for
some x , we have ρ(x) = p0 + q · x + r · x2, where p0 = −λ/2, q = −λ1/2, and
r = −λ2/2. In other words, the probability density ρ(x) is either determined by a
quadratic expression or it is equal to 0. One can check that, in general, the desired
minimum is attained when

ρ(x) = max
(
0, p0 + q · x + r · x2) . (14)

It should bementioned that for themaximum entropy case, similar arguments lead

to the Gaussian distribution ρG(x) = const · exp
(

− (x − μ0)
2

2σ 2
0

)
truncated to some

interval [b, b] ⊆ [a, a] of the given interval [a, a]: ρ(x) = ρG(x) for x ∈ [b, b] and
ρ(x) = 0 for all other x .

Let us consider particular cases. When r < 0, we get a bell-shaped distribution—
i.e., somewhat similar in shape to the Gaussian distribution. However, the new dis-
tribution has several advantages over the Gaussian distribution:

• first, the new distribution is more robust—it is actually the most robust of all the
distributions on the given interval with the given two moments (this is how we
selected it);

• second, the new probability distribution function ρ(x) is continuous on the entire
real line—while, due to the fact that the probability density of a Gaussian distrib-
ution is always positive, the pdf of the truncated Gaussian distribution is discon-
tinuous at the endpoints b and b of the corresponding interval;

• third, the new distribution is computationally easier, since computation with poly-
nomials (e.g., computing probability over different intervals or different moments)
is much easier than computation with the Gaussian pdf.
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When the variance is sufficiently high, we get r > 0, which corresponds to a
bimodal distribution. Bimodal distributions are common in measuring instruments
(see, e.g., [12]). There are two main reasons for the bimodal distribution. The first
is the effect of the sinusoid signal in the electric grid. Electric grids are ubiquitous,
and the electromagnetic field created by the electric plugs affects all electromagnetic
devices. The resulting noise is proportional to sin(ω · t) at a random time t—and the
resulting random variable indeed has a bimodal distribution.

The second reason is related to the very process of manufacturing the correspond-
ing measuring instrument. Indeed, usually, we have a desired upper bound on the
measurement error. At first, the measurement error of the newly manufactured mea-
suring instrument is normally distributed. This can be explained by the fact that there
are many different independent factors that contribute to this original measurement
error and thus, due to the Central Limit Theorem, we expect the overall effect of
these factors to be approximately normally distributed; see, e.g., [13, 15]. However,
the range of the corresponding errors Δx is usually much wider than the desired
tolerance bounds. Thus, the manufacturers start tuning the instrument until it fits into
the bounds; this tuning stops as soon as we get into the desired intervals [−Δ,Δ].
As a result:

• all the cases when originally, we had Δx ≤ −Δ are converted to −Δ and
• all the cases when originally, we had Δx ≥ Δ are converted to Δ.

Hence, the vicinities of the two extreme values−Δ andΔ get a high probability—and
thus, very high values of probability density ρ(x). So, we get a distribution which is
either bimodal or even tri-modal (with a smaller original peak).

In our robust approach, we cover bimodal distributions by using the same easy-
to-process quadratic formulas as the more usual unimodal ones—a clear advantage
over themore traditional approach, when bimodal distributions are modeled by using
much more computationally complex expressions.

What if we also know higher moments? In many cases, we also know higher
moments. For example, often, we know third and/or fourth moments, i.e., equiva-
lently, skewness and excess. For such situations, traditionally, there are no easy-to-use
expression. However, in our case, we do get such an expression.

Namely, let us now consider the case, when, in addition to the bounds a and a on
the values of the corresponding random variable x , we also know the values of the
first m moments

∫ a
a xk · ρ(x) dx = Mk , k = 1, 2, . . . ,m.

In this case, we need to minimize the functional
∫ a
a (ρ(x))2 dx under the con-

straints
∫ a
a ρ(x) dx = 1,

∫ a
a xk · ρ(x) dx = Mk for k = 1, . . . ,m, and ρ(x) ≥ 0 for

all x . By using the Lagrange multiplier method, we can reduce this constraint opti-
mization problem to the following unconstrained optimization problem:
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∫ a

a
(ρ(x))2 dx + λ ·

(∫ a

a
ρ(x) dx − 1

)
+

m∑

k=1

λk ·
(∫ a

a
xk · ρ(x) dx − Mk

)
→ min (15)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
For the points x forwhichρ(x) > 0, the derivative of the above expression relative

to ρ(x) should be equal to 0, so we conclude that for some x , we have ρ(x) =
p0 +

m∑
k=1

qk · xk , where p0 = −λ/2 and qk = −λk/2. In other words, the probability

density ρ(x) is either determined by a polynomial expression or it is equal to 0. One
can check that, in general, the desired minimum is attained when

ρ(x) = max

(
0, p0 +

m∑

k=1

qk · xk
)

. (16)

This polynomial expression is easy to process, so we have a distribution whose
processing is computationally easy—as opposed to the usual not-so-computationally
easy approaches of dealing with, e.g., skew-normal distributions [1].

Multi-D case: good news.What is we want to analyze a joint distribution of several
variables? Similarly to the 1-D case, if we know several moments, then the most
robust pdf ρ(x1, . . . , xd) on a given box [a1, a1] × . . . × [ad , ad ] is described by a
polynomial, or, to be more precise, by an expression

ρ(x1, . . . , xd) = max(0, P(x1, . . . , xd)) (17)

for some polynomial P(x1, . . . , xd).
The degree of this polynomial depends on what moments we know:

• if we do not know any moments, then P(x1, . . . , xd) is a constant, and thus, we get
a uniform distribution—similarly to what we get if we use the maximum entropy
approach;

• if we only know the means E[xi ], then P(x1, . . . , xd) is a linear function;
• if we also know second moments E[(xi )2] and E[xi · x j ]—i.e., equivalently, the
covariance matrix—then P(x1, . . . , xd) is a quadratic function;

• if we also know third (and fourth) order moments, then P(x1, . . . , xd) is a cubic
(quartic) polynomial, etc.

These polynomial pdf’s are not only more robust, but they are also much easier to
process than Gaussian or other usually used pdf’s.

But maybe we are missing something? Not really, since, as it is well known,
polynomials are universal approximators—in the sense that any arbitrary continu-
ous function on a given box can be, with any desired accuracy, approximated by a
polynomial.
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Multi-D case: remaining challenges.While, aswe havementioned on several exam-
ple, the robust approach to selecting a probability distribution has many advantages
over the maximum entropy approach, there are situations in which the use of the
robust approach faces some challenges.

One such situation is when we know the marginal distributions ρ1(x1) and ρ2(x2),
and we need to reconstruct the original 2-D distribution ρ(x1, x2). In the usual
maximum entropy approach, the corresponding optimization problem leads to the
independence-related formula ρ(x1, x2) = ρ1(x1) · ρ2(x2); see, e.g., [3]. This makes
perfect sense: if we know nothing about the relation between two random variables,
it is reasonable to assume that they are independent.

For our robust approach, however, the situation is less intuitive. Specifically, we
want to find a distributionρ(x1, x2) ≥ 0 on the box A = [a1, a1] × [a2, a2] forwhich
the following conditions are satisfied:

• ∫
A ρ(x1, x2) dx1 dx2 = 1,

• ∫ a2
a2

ρ(x1, x2) dx2 = ρ1(x1) for all x2, and

• ∫ a1
a1

ρ(x1, x2) dx1 = ρ2(x2) for all x2.

(Strictly speaking, we do not need the first condition, since it automatically follows
from, e.g., the second one if we integrate both sides over x1.)

For this constraint optimization problem, theLagrangemultiplier techniquemeans
minimizing the functional

∫

A
(ρ(x1, x2))

2 dx1 dx2 +
∫ a1

a1

dx1 λ1(x1) ·
(∫ a2

a2

ρ(x1, x2) dx2

)
+

∫ a2

a2

dx2 λ2(x2) ·
(∫ a1

a1

ρ(x1, x2) dx1

)

for appropriate values λi (xi ). When ρ(x1, x2) > 0, differentiating this objective
function with respect to ρ(x1, x2) leads to ρ(x1, x2) = a1(x1) + a2(x2), where
a1(x1) = −λ1(x1)/2 and a2(x2) = −λ2(x2)/2.

In general, we get

ρ(x1, x2) = max(0, a1(x1) + a2(x2)). (18)

In particular, when ρ(x1, x2) > 0 for all x1 ∈ [a1, a1] and x2 ∈ [a2, a2], then we
get ρ(x1, x2) = a1(x1) + a2(x2). Integrating over x2, we conclude that

ρ1(x1) = (a2 − a2) · a1(x1) + C1,

where C1
def= ∫ a1

a1
a2(x2). Thus, a1(x1) = 1

a2 − a2
· ρ1(x1) + C1, for some

constant C1.
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Similarly, we get a2(x2) = 1

a1 − a1
· ρ2(x2) + C2, for some constant C1. So,

ρ(x1, x2) = 1

a2 − a2
· ρ1(x1) + 1

a1 − a1
· ρ2(x2) + C, (19)

where C
def= C1 + C2. We can find the constant C if we integrate both sides of this

equality over all x1 ∈ [a1, a1] and all x2 ∈ [a2, a2]; we then get

1 = 1 + 1 + C · (a1 − a1) · (a2 − a2). (20)

Thus, C = − 1

(a1 − a1) · (a2 − a2)
and so,

ρ(x1, x2) = 1

a2 − a2
· ρ1(x1) + 1

a1 − a1
· ρ2(x2) − 1

(a1 − a1) · (a2 − a2)
. (21)

When both x1 and x2 are uniformly distributed, the result is the uniform distribution
on the box in which the random variables x1 and x2 are independent—similarly to
the maximum entropy approach. However, in general, this is not independence, it
is a mixture of the two distributions—and it is not very clear what is the intuitive
meaning of this mixture.

4 Selecting a Probability Distribution that Minimizes∫
(ρ(x))3 dx

General idea. As we have mentioned earlier, one of the possible ways to describe
robustness is to select the probability distribution corresponds to the smallest possible
values of the global robustness criterion

∫
(ρ(x))3 dx .

Simplest case, when we only know the bounds. Let us start with the simplest case,
when we only know the bounds a and a on the values of the corresponding random
variable x , i.e., we know that always a ≤ x ≤ a and thus, that ρ(x) = 0 for values
x outside the interval [a, a].

In this case, the problem of selecting the most robust distribution takes the fol-
lowing form: minimize

∫ a
a (ρ(x))3 dx under the constraints that

∫ a
a ρ(x) dx = 1 and

ρ(x) ≥ 0 for all x . To solve this constrained optimization problem, we can apply
the Lagrange multiplier methods to reduce it to an easier-to-solve unconstrained
optimization problem

∫ a

a
(ρ(x))3 dx + λ ·

(∫ a

a
ρ(x) dx − 1

)
→ min

ρ(x)
. (22)
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When ρ(x) > 0, then differentiation over ρ(x) leads to 3(ρ(x))2 + λ = 0, i.e., to
ρ(x) = c, where c = √−λ.

Similarly to the case of the criterion
∫
(ρ(x))2 dx , we can conclude that the small-

est value of the robustness criterion is attained when ρ(x) > 0 for all x ∈ [a, a], i.e.,
when we have a uniform distribution on the given interval. In other words, in this
simplest case, we have the same distribution as when we use the first robustness
criterion or when we use the maximum entropy approach.

What if we also know several moments? Let us now consider the case, when, in
addition to the bounds a and a on the values of the corresponding random variable
x , we also know the values of the first m moments

∫ a

a
xk · ρ(x) dx = Mk, k = 1, 2, . . . ,m. (23)

In this case, we need to minimize the functional
∫ a
a (ρ(x))3 dx under the con-

straints
∫ a
a ρ(x) dx = 1, and

∫ a
a xk · ρ(x) dx = Mk for k = 1, . . . ,m. By using the

Lagrange multiplier method, we can reduce this constraint optimization problem to
the following unconstrained optimization problem:

∫ a

a
(ρ(x))3 dx + λ ·

(∫ a

a
ρ(x) dx − 1

)
+

m∑

k=1

λk ·
(∫ a

a
xk · ρ(x) dx − Mk

)
→ min (24)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
For the points x forwhichρ(x) > 0, the derivative of the above expression relative

to ρ(x) should be equal to 0, so we conclude that for some x , we have (ρ(x))2 =
p0 +

m∑
k=1

qk · xk , where p0 = −λ/3 and qk = −λk/3. In other words, the probability

density ρ(x) is either determined by a square root of a polynomial expression or it
is equal to 0. One can check that, in general, the desired minimum is attained when

ρ(x) =
√√√√max

(
0, p0 +

m∑

k=1

qk · xk
)

. (25)

Similarly, in the multi-D case, we get

ρ(x1, . . . , xd) = √
max(0, P(x1, . . . , xd)), (26)

for an appropriate polynomial P(x1, . . . , xd).
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The results of this approach are less desirable than the results of using the first
robustness criterion. From the computational viewpoint, integrating polynomials is
easy, but integrating square roots of polynomials is not easy. From this viewpoint, the
first robustness criterion—that was analyzed in the previous section—is much more
computationally advantageous that the second robustness criterion that we analyze
in this section.

It turns out that square roots also lead to less accurate approximations. Let us
illustrate it on the example of approximating a Gaussian distribution by a quadratic
polynomial versus by a square root of a quadratic polynomial. Without losing gen-
erality, we can restrict ourselves to a standard normal distribution with 0 mean and
standard deviation 1, for which the probability density is proportional to

f (x)
def= exp

(
− x2

2

)
= 1 − x2

2
+ x4

8
+ . . . (27)

If we approximate this expression in the vicinity of 0, then the best quadratic approx-
imation corresponds to taking the first two terms in the above Taylor expansion

f1(x) = 1 − x2

2
, and the accuracy δ1 = | f1(x) − f (x)| of this approximation is

largely determined by the first ignored terms: δ1 ≈ x4

8
.

On the other hand, if we use square roots of quadratic polynomials, then, due to
the symmetry of the problem with respect to the transformation x → −x , we have to
use symmetric quadratic polynomials a · (1 + b · x2). For this polynomial, we have
√
a · (1 + b · x2) = √

a ·
(
1 + b · x2

2

)
+ . . . For these terms to coincide with the

first two terms in the Taylor expansion of the function f (x), we must therefore take
a = 1 and b = −1. For the resulting approximating function f2(x) = √

1 − x2, we
have

f2(x) =
√
1 − x2 = 1 − x2

2
− x4

8
+ . . . (28)

Here, the approximation accuracy is equal to f2(x) − f (x) = − x4

8
+ . . . So asymp-

totically, the approximation error has the form δ2 = | f2(x) − f (x)| ≈ x4

4
—which

is twice larger than when we use the first robustness criterion

∫
(ρ(x))2 dx → min. (29)
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5 Selecting a Probability Distribution that Minimizes
max
x

ρ(x)

Reminder. If we use the worst-case description of robustness, then we should select
a distribution ρ(x) for which the value max

x
ρ(x) is the smallest possible.

Analysis of the problem. In this case, whatever moments conditions we impose,
if there is a point x0 in the vicinity of which 0 < ρ(x0) < max

x
ρ(x), then we

can decrease all the value ρ(x) for which ρ(x) = max by some small amount—
compensating it with an appropriate increase in the vicinity of x0, and satisfy the
same criteria while decreasing the value max

x
ρ(x).

Thus, when the desired criterion max
x

ρ(x) is the smallest possible, then for every

x , we either have ρ(x) = 0 or ρ(x) is equal to this maximum.
This somewhat informal argument can be formally confirmed if we take into

account that, that we have mentioned earlier, the worst-case criterion can be viewed
as a limit, when p → ∞, of the criteria

∫ a
a (ρ(x))p dx → min.

Let us thus consider the case, when, in addition to the bounds a and a on the
values of the corresponding random variable x , we also know the values of the
first m moments

∫ a
a xk · ρ(x) dx = Mk , k = 1, 2, . . . ,m. In this case, we need to

minimize the functional
∫ a
a (ρ(x))p dx under the constraints

∫ a
a ρ(x) dx = 1, and

∫ a
a xk · ρ(x) dx = Mk for k = 1, . . . ,m. By using the Lagrange multiplier method,
we can reduce this constraint optimization problem to the following unconstrained
optimization problem:

∫ a

a
(ρ(x))p dx + λ ·

(∫ a

a
ρ(x) dx − 1

)
+

m∑

k=1

λk ·
(∫ a

a
xk · ρ(x) dx − Mk

)
→ min (30)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
For the points x forwhichρ(x) > 0, the derivative of the above expression relative

to ρ(x) should be equal to 0, so we conclude that for some x , we have (ρ(x))p−1 =
p0 +

m∑
k=1

qk · xk , where p0 = −λ/p and qk = −λk/p. Thus, for such points x , we

have ρ(x) = const · (P(x))1/(p−1) for some polynomial P(x). When p → ∞, we
have 1/(p − 1) → 0, and the 0-th power of a positive number is always 1. Thus, we
indeed have ρ(x) = const whenever ρ(x) > 0. A similar conclusion can be made in
the multi-D case. So, we arrive at the following conclusion.

Resulting formulas. For the worst-case robustness criterion, for the optimal distri-
bution ρ(x), the probability density is either equal to 0, or to some constant.
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To be more precise, both in the 1-D case and in the multi-D case, the zone at
which ρ(x) > 0 is determined by some polynomial P(x), i.e., we have:

• ρ(x) = 0 when P(x) ≤ 0 and
• ρ(x) = c when P(x) > 0.

The value c is determined by the condition that the total probability should be

equal to 1:
∫

ρ(x) dx = 1, hence c = 1

A
, where A is the Lebesque measure (length,

areas, volume, etc., depending on the dimension d) of the set of all the points
x = (x1, . . . , xd) for which P(x1, . . . , xd) > 0.

Shall we recommend this approach? It depends on what we want:

• If the goal is to get a good approximation to the original cdf, then clearly no: in
contrast to polynomials, these functions do not have a universal approximation
property.

• On the other hand, in critical situations, when we want to minimize worst-
case dependence on the input’s uncertainty, these are the distributions that we
should use.

Acknowledgements We acknowledge the partial support of the Center of Excellence in Econo-
metrics, Faculty of Economics, Chiang Mai University, Thailand. This work was also supported in
part by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE
Center of Excellence) andDUE-0926721, and by an award “UTEP and Prudential Actuarial Science
Academy and Pipeline Initiative” from Prudential Foundation.

References

1. AzzaliniA, CapitanioA (2013) The Skew-Normal andRelated Families. CambridgeUniversity
Press, Cambridge, Massachusetts

2. Fishburn PC (1969) Utility Theory for Decision Making. Wiley, New York
3. Jaynes ET, Bretthorst GL (2003) Probability theory: the logic of science. Cambridge University

Press, Cambridge
4. Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic. Prentice Hall, Upper Saddle River
5. Kreinovich V, Kosheleva O, Nguyen HT, Sriboonchitta S (2016) Why some families of

probability distributions are practically efficient: a symmetry-based explanation. In: Huynh
VN, Kreinovich V, Sriboonchitta S (eds) Causal inference in econometrics. Springer, Cham,
pp 133–152

6. Luce RD, Raiffa R (1989) Games and decisions: introduction and critical survey. Dover,
New York

7. Nguyen HT, Kosheleva O, Kreinovich V (2009) Decision making beyond Arrow’s ‘impossi-
bility theorem’, with the analysis of effects of collusion and mutual attraction. Int J Intell Syst
24(1):27–47

8. Nguyen HT, Kreinovich V, Lea B, Tolbert D (1992) How to control if even experts are not
sure: robust fuzzy control. In: Proceedings of the second international workshop on industrial
applications of fuzzy control and intelligent systems, College Station, Texas, 2–4 December
1992, pp 153–162



68 S. Sriboonchitta et al.

9. Nguyen HT, Kreinovich V, Tolbert D (1993) On robustness of fuzzy logics. In: Proceedings
of the 1993 IEEE international conference on fuzzy systems FUZZ-IEEE’93, San Francisco,
California, March 1993, vol 1, pp 543–547

10. Nguyen HT, Kreinovich V, Tolbert D (1994) A measure of average sensitivity for fuzzy logics.
Int J Uncertainty Fuzziness Knowl Based Syst 2(4):361–375

11. Nguyen HT, Walker EA (2006) A first course in fuzzy logic. Chapman and Hall/CRC, Boca
Raton, Florida

12. Novitskii PV, Zograph IA (1991) Estimating the measurement errors. Energoatomizdat,
Leningrad (in Russian)

13. Rabinovich SG (2005) Measurement errors and uncertainty. Theory and practice. Springer,
Berlin

14. Raiffa H (1970) Decision analysis. Addison-Wesley, Reading
15. SheskinDJ (2011)Handbook of parametric and nonparametric statistical procedures. Chapman

& Hall/CRC, Boca Raton, Florida
16. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353



Why Cannot We Have a Strongly Consistent
Family of Skew Normal (and Higher Order)
Distributions

Thongchai Dumrongpokaphan and Vladik Kreinovich

Abstract In many practical situations, the only information that we have about the
probability distribution is its first few moments. Since many statistical techniques
requires us to select a single distribution, it is therefore desirable to select, out of all
possible distributions with these moments, a single “most representative” one. When
we know the first two moments, a natural idea is to select a normal distribution.
This selection is strongly consistent in the sense that if a random variable is a sum of
several independent ones, then selecting normal distribution for all of the terms in the
sum leads to a similar normal distribution for the sum. In situations when we know
three moments, there is also a widely used selection—of the so-called skew-normal
distribution. However, this selection is not strongly consistent in the above sense. In
this paper, we show that this absence of strong consistency is not a fault of a specific
selection but a general feature of the problem: for third and higher order moments,
no strongly consistent selection is possible.

1 Formulation of the Problem

Need to select a distribution based on the first few moments. In many practical
situations, we only have a partial information about the probability distribution. For
example, often, all we know is the values of the first few moments.

Most probabilistic and statistical techniques assume that we know the exact form
of a probability distribution; see, e.g., [5]. In situations when we only have partial
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information about the probability distribution, there are many probability distribu-
tions which are consistent with our knowledge. To use the usual techniques in such
a situation, we therefore need to select, from all possible distributions, a single one.

In situations when we know the first two moments, there is a strongly consistent
way of selecting a single distribution. In situations when all we know is the first
two moments μ = ∫

x · ρ(x) dx and M2 = ∫
x2 · ρ(x) dx , a natural idea is to select

a distribution for which the entropy (uncertainty) S = − ∫
ρ(x) · ln(ρ(x)) dx is the

largest possible; see, e.g., [3].
By applying the Lagrange multiplier techniques, one can easily check that

maximizing entropy under the constraints
∫

ρ(x) dx = 1, μ = ∫
x · ρ(x) dx and

M2 = ∫
x2 · ρ(x) dx leads to the Gaussian (normal) distribution, with probability

density

ρ(x) = 1√
2πσ

· exp
(

− (x − μ)2

2σ2

)
,

where σ2 = M2 − μ2.
This selection is strongly consistent in the following sense. Often, the random

variable of interest has several components. For example, an overall income consists
of salaries, pensions, unemployment benefits, interest on bank deposits, etc. Each of
these categories, in its turn, can be subdivided into more subcategories. If for each
of these categories, we only know the first two moments, then, in principle, we can
apply the selection:

• either to the overall sum,
• or separately to each term,
• or we can go down to the next level of granularity and apply the selection to each
term on this granularity level, etc.

It seems reasonable to require that whichever granularity level we select, the
resulting distribution for the overall sum should be the same. This is indeed true
for normal distributions. Indeed, knowing μ and M2 is equivalent to knowing μ and
the variance σ2, and it is known that for the sum X = X1 + X2 of two independent
random variables, its mean and variance are equal to the sum of the means and
variances of the two components: μ = μ1 + μ2 and σ2 = σ2

1 + σ2
2. So:

• If we apply the selection to the sum itself, we then get a normal distribution with
mean μ and standard deviation σ.

• Alternatively, if we first apply the selection to each component, we conclude that
X1 is normally distributed with mean μ1 and standard deviation σ1 and X2 is
normally distributed with mean μ2 and standard deviation σ2.

It is known that the sum of two independent normally distributed random variables
is also normally distributed, with the mean μ = μ1 + μ2 and the variance σ2 =
σ2
1 + σ2

2. Thus, in both cases, we indeed get the same probability distribution. This
strong consistency is one of the reasons why selecting a normal distribution is indeed
ubiquitous in practical applications.
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Selection of a skew normal distribution is not strongly consistent. A natural next
case is when, in addition to the first two moments μ and M2, we also know the third
momentM3. Alternatively, this can be described as knowing themeanμ, the variance
V = σ2, and the third central moment

m3
def= E[(X − μ)3].

In this case, we can no longer use the Maximum Entropy approach to select a
single distribution. Indeed, if we try to formally maximize the entropy under the four
constrains corresponding to the condition

∫
ρ(x) dx = 1 and to the three moments,

then the Lagrange multiplier method leads to the function

ρ(x) = exp(a0 + a1 · x + a2 · x2 + a3 · x3)

which does not satisfy the requirement
∫

ρ(x) dx = 1:

• when a3 > 0, then ρ(x) → ∞ as x → +∞, so
∫ ∞
−∞ ρ(x) dx = ∞; and

• when a3 < 0, then ρ(x) → ∞ as x → −∞, so also
∫ ∞
−∞ ρ(x) dx = ∞.

There is a widely used selection, called a skew normal distribution (see, e.g., [2,
4, 6]), when we choose a distribution with the probability density function

ρ(x) = 1

2ω
· φ

(
x − η

ω

)
· Φ

(
α · x − η

ω

)
,

where:

• φ(x)
def= 1√

2π
· exp

(
− x2

2

)
is the pdf of the standard Gaussian distribution, with

mean 0 and standard deviation 1, and
• Φ(x) is the corresponding cumulative distribution function

Φ(x) =
∫ x

−∞
φ(t) dt.

For this distribution,

• μ = η + ω · δ ·
√
2

π
, where δ

def= α√
1 + α2

,

• σ2 = ω2 ·
(
1 − 2δ2

π

)
, and

• m3 = 4 − π

2
· σ3 · (δ · √

2/π)3

(1 − 2δ2/π)3/2
.

The skew normal distribution has many applications, but it is not strongly consis-
tent in the above sense: in general, the sum of two independent skew normal variables
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is not skew normal, and thus, the result of applying the selection depends on the level
of granularity to which this selection is applied.

Natural question. Since the usual selection corresponding to three moments is not
strongly consistent, a natural question is:

• is this a fault of this particular selection—and an alternative strongly consistent
selection is possible,

• or is this a feature of the problem—and for the case of three moments, a strongly
consistent selection is not possible?

In this paper, we show that under the reasonable assumption of scale-invariance, for
three and more moments, a strongly consistent selection is not possible—and thus,
the absence of string consistency is a feature of the problem and not a limitation of
the current selection of skew normal distributions.

2 Analysis of the Problem and the Main Result

Let us formulate the selection problem in precise terms. We want to assign, to
each triple (μ, V,m3) consisting of the mean, the variance, and the central third
moment m3, a probability distribution ρ(x,μ, V,m3).

Let us list the natural properties of this assignment.

First property: continuity. Moments are rarely known exactly, we usually know
them with some accuracy. It is thus reasonable to require that if the moments change
slightly, then the corresponding distribution should not change much. In other words,
it is reasonable to require that the function ρ(x,μ, V,m3) is a continuous function
of μ, V , and m3.

Comment. As we can see from our proof, to prove the impossibility, it is sufficient
to impose an even weaker requirement: that the dependence of ρ(x,μ, V,m3) on μ,
V , and m3 is measurable.

Second property: strong consistency.We require that if X1 and X2 are independent
random variables for which:

• X1 is distributed according to the distribution ρ(x,μ1, V1,m31), and
• X2 is distributed according to the distribution ρ(x,μ2, V2,m32),

then the sum X = X1 + X2 is distributed according to the distribution

ρ(x,μ1 + μ2, V1 + V2,m31 + m32).

Final property: scale-invariance. Numerical values of different quantities depend
on the choice of a measuring unit. For example, an income can be described in Baht
or—to make comparison with people from other countries easier—in dollars. If we
change the measuring unit to a new one which is λ times smaller, then the actual
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incomes will not change, but the numerical values will change: all numerical values
will be multiplied by λ: x → x ′ = λ · x .

If we perform the selection in the original units, then we select a distribution with
the probability density function ρ(x,μ, V,m3). If we simply re-scale x to x ′ = λ · x ,
then for x ′, we get a new distribution ρ′(x ′) = 1

λ
· ρ

(
x ′

λ
,μ, V,m3

)
.

We should get the exact same distribution if we make a selection after the
re-scaling to the new units. After this re-scaling:

• the first moment is multiplied by λ: μ → λ · λ,
• the variance is multiplied by λ2: V → λ2 · V , and
• the central third moment is multiplied by λ3: m3 → λ3 · m3.

So, in the new units, we get a probability distribution ρ(x ′,λ · μ,λ2 · V,λ3 · m3). A
natural requirement is that the resulting selection should be the same, i.e., that we
should have

1

λ
· ρ

(
x ′

λ
,μ, V,m3

)
= ρ(x ′,λ · μ,λ2 · V,λ3 · m3)

for all x , λ, μ, V , and m3.

Comment. One can easily check that the both the above selection corresponding to
skew normal distributions is scale-invariant (and that for the case of two moments,
the standard normal-distribution selection is also scale-invariant).

Now, we can formulate the problem in precise terms.

Definition 1

• We say that a tuple (μ, V,m3) is possible if there exists a probability distribution
with mean μ, variance V , and central third moment m3.

• By a 3-selection, we mean a measurable mapping that maps each possible tuple
(μ, V,m3) into a probability distribution ρ(x,μ, V,m3).

• We say that a 3-selection is strongly consistent if for every two possible tuples, if
X1 ∼ ρ(x,μ1, V1,m31), X2 ∼ ρ(x,μ2, V2,m32), and X1 and X2 are independent,
then X1 + X2 ∼ ρ(x,μ1 + μ2, V1 + V2,m31 + m32).

• We say that a 3-selection is scale-invariant if for every possible tuple (μ, V,m3),
for every λ > 0, and for all x ′, we have

1

λ
· ρ

(
x ′

λ
,μ, V,m3

)
= ρ(x ′,λ · μ,λ2 · V,λ3 · m3).

Proposition 1 No 3-selection is strongly consistent and scale-invariant.
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Comment. A similar result can be formulated—and similarly proven—for the case
when we also know higher order moments. In this case, instead of the original

moments, we can consider cumulants κn: terms at
in · tn
n! in the Taylor expansion

of the corresponding generating function ln(E[exp(i · t · X)]). For n = 1, n = 2,
and n = 3, we get exactly the mean, the variance, and the central third moment. In
general, cumulants are additive: if X = X1 + X2 and X1 and X2 are independent,
then κn(X) = κn(X1) + κn(X2).

Discussion. Since we cannot make a strongly consistent selection, what should we
do? One possible idea is to use the fact that, in addition to the sum, min and max are
also natural operations in many applications. For example, in econometrics, if there
are several ways to invest money with the same level of risk, then an investor selects
the one that leads to the largest interest rate.

From this viewpoint, once we have normally distributed random variables, it is
also reasonable to consider minima andmaxima of normal variables. Interestingly, in
some cases, these minima and maxima are distributed according to the skew normal
distribution. This may be an additional argument in favor of using these distributions.

Proof It is known that when we deal with the sum of independent random variables
X = X1 + X2, then, instead of the original probability density functions, it is more
convenient to consider characteristic functions

χX1(ω)
def= E[exp(i · ω · X1)], χX2(ω)

def= E[exp(i · ω · X2)],

and
χX (ω)

def= E[exp(i · ω · X)].

Indeed, for these characteristic functions, we have

χX (ω) = χX1(ω) · χX2(ω).

Comment. To avoid possible confusion, it is worth noticing that this frequency ω is
unrelated to the parameter ω of the skew normal distribution.

Thus, instead of considering the original probability density functions

ρ(x,μ, V,m3),

let us consider the corresponding characteristic functions

χ(ω,μ, V,m3)
def=

∫
exp(i · ω · x) · ρ(x,μ, V,m3) dx .

Since the original dependence ρ(x,μ, V,m3) is measurable, its Fourier transform
χ(ω,μ, V,m3) is measurable as well.
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In terms of the characteristic functions, the strong consistency requirement takes
a simpler form

χ(ω,μ1 + μ2, V1 + V2,m31 + m32) = χ(ω,μ1, V1,m31) · χ(ω2,μ2, V,m32).

This requirement becomes even simpler if we take logarithm of both sides. Then, for

the auxiliary functions �(ω,μ, V,m3)
def= ln(χ(ω,μ, V,m3)), we get an even simpler

form of the requirement:

�(ω,μ1 + μ2, V1 + V2,m31 + m32) = �(ω,μ1, V1,m31) + �(ω2,μ2, V,m32).

It is known (see, e.g., [1]) that the only measurable functions with this additivity
property are linear functions, so

�(ω,μ, V,m3) = μ · �1(ω) + V · �2(ω) + m3 · �3(ω)

for some functions �1(ω), �2(ω), and �3(ω).
Let us now use the scale invariance requirement. When we re-scale a random

variable X , i.e., replace its numerical values x to new numerical values x ′ = λ · x ,
then, for the new random variable X ′ = ω · X , we have

χX ′ (ω) = E[exp(i · ω · X ′)] = E[exp(i · ω · (λ · X))] = E[exp(i · (ω · λ) · X)] = χX (λ · ω).

Thus re-scaled characteristic function χ(λ · ω,μ, V,m3) should be equal to the
characteristic function obtained when we use re-scaled values of the moments
χ(ω,λ · μ,λ2 · V,λ3 · m3):

χ(λ · ω,μ, V,m3) = χ(ω,λ · μ,λ2 · V,λ3 · m3).

Their logarithms should also be equal, so:

�(λ · ω,μ, V,m3) = �(ω,λ · μ,λ2 · V,λ3 · m3).

Substituting the above linear expression for the function �(ω,μ, V,m3) into this
equality, we conclude that

μ · �1(λ · ω) + V · �2(ω · ω) + m3 · �3(λ · ω) =
λ · μ · �1(ω) + λ2 · V · �2(ω) + λ3 · m3 · �3(ω).

This equality must hold for all possible triples (μ, V,m3). Thus, the coefficient at μ,
V , and m3 on both sides must coincide.

• By equating coefficients atμ, we conclude that �1(λ · ω) = λ · �1(ω). In particular,
for ω = 1, we conclude that �1(λ) = λ · �1(1), i.e., that �1(ω) = c1 · ω for some
constant c1.
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• By equating coefficients at V , we conclude that �2(λ · ω) = λ2 · �1(ω). In partic-
ular, for ω = 1, we conclude that �2(λ) = λ2 · �1(1), i.e., that �2(ω) = c2 · ω2 for
some constant c2.

• By equating coefficients atm3, we conclude that �3(λ · ω) = λ3 · �3(ω). In partic-
ular, for ω = 1, we conclude that �3(λ) = λ · �3(1), i.e., that �3(ω) = c3 · ω3 for
some constant c3.

Thus, we get �(ω,μ, V,m3) = c1 · μ · ω + c2 · V · ω2 + c3 · m3 · ω3. Since, by
definition, �(ω,μ, V,m3) is the logarithm of the characteristic function, we thus
conclude that the characteristic function has the form

χ(ω, u, V,m3) = exp(c1 · μ · ω + c2 · V · ω2 + c3 · m3 · ω3).

In principle, once we know the characteristic function, we can reconstruct the prob-
ability density function by applying the inverse Fourier transform. The problem here
is that, as one can easily check by numerical computations, the Fourier transform of
the above expression is, in general, not an everywhere non-negative function—and
thus, cannot serve as a probability density function.

This proves that a strongly consistent selection of a probability distribution is
indeed impossible.

Comment. If we only consider two moments, then the above proof leads to the
characteristic function χ(ω,μ, V ) = exp(c1 · μ · ω + c2 · V · ω2) that describes the
Gaussian distribution. This, we have, in effect proven the following auxiliary result:

Definition 2

• We say that a tuple (μ, V ) is possible if there exists a probability distribution with
mean μ and variance V .

• By a 2-selection, we mean a measurable mapping that maps each possible tuple
(μ, V ) into a probability distribution ρ(x,μ, V ).

• We say that a 2-selection is strongly consistent if for every two possible tuples,
if X1 ∼ ρ(x,μ1, V1), X2 ∼ ρ(x,μ2, V2), and X1 and X2 are independent, then
X1 + X2 ∼ ρ(x,μ1 + μ2, V1 + V2).

• We say that a 2-selection is scale-invariant it if for every possible tuple (μ, V ), for
every λ > 0, and for all x ′, we have

1

λ
· ρ

(
x ′

λ
,μ, V

)
= ρ(x ′,λ · μ,λ2 · V ).

Proposition 2 Every strongly consistent and scale-invariant 2-selection assigns, to
each possible tuple (μ, V ), a Gaussian distribution with mean μ and variance V .
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Econometric Models of Probabilistic Choice:
Beyond McFadden’s Formulas

Olga Kosheleva, Vladik Kreinovich and Songsak Sriboonchitta

Abstract Traditional decision theory assumes that for every two alternatives, peo-
ple always make the same (deterministic) choice. In practice, people’s choices are
often probabilistic, especially for similar alternatives: the same decision maker can
sometimes select one of them and sometimes the other one. In many practical situa-
tions, an adequate description of this probabilistic choice can be provided by a logit
model proposed by 2001 Nobelist D. McFadden. In this model, the probability of
selecting an alternative a is proportional to exp(β · u(a)), where u(a) is the alter-
native’s utility. Recently, however, empirical evidence appeared that shows that in
some situations, we need to go beyond McFadden’s formulas. In this paper, we use
natural symmetries to come up with an appropriate generalization of McFadden’s
formulas.

1 Need to Go Beyond McFadden’s Probabilistic Choice
Models: Formulation of the Problem

Traditional (deterministic choice) approach to decision making. In the traditional
(deterministic) approach to decision making (see, e.g., [2, 4, 5, 8, 9]), we assume
that for every two alternatives a and b:

• either the decision maker always prefers the alternative a,
• or the decision maker always prefers the alternative b,
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• or the decision maker always states that the alternatives a and b are absolutely
equivalent to him/her.

Under this assumption, preferences of a decision maker can be described by a utility
function which can be defined as follows. We select two alternatives which are not
present in the original choices:

• a very bad alternative a0, and
• a very good alternative a1.

Then, each actual alternative a is better than the very bad alternative a0 andworse that
the very good alternative a1: a0 < a < a1. To gauge the quality of the alternative a to
the decisionmaker,we can consider lotteries L(p) inwhichwegeta1 with probability
p and a0 with the remaining probability 1 − p.

In accordance with our assumption, for every p, we either have L(p) < a or
a < L(p), or we have equivalence L(p) ∼ a.

When p = 1, the lottery L(1) coincides with the very good alternative a1 and
is, thus, better than a: a < L(1). When p = 0, the lottery L(0) coincides with the
very bad alternative a0 and is, thus, worse than a: L(0) < a. Clearly, the larger the
probability p of the very good outcome, the better the lottery; thus, if p < p′, then:

• a < L(p) implies a < L(p′), and
• L(p′) < a implies L(p) < a.

Therefore, we can conclude that sup{p : L(p) < a} = inf{p : a < L(p)}. This joint
value

u(a)
def= sup{p : L(p) < a} = inf{p : a < L(p)}

has the following properties:

• if p < u(a), then L(p) < a; and
• if p > u(a), then a < L(p).

In particular, for every small ε > 0, we have L(u(a) − ε) < a < L(u(a) + ε). In
other words, modulo arbitrary small changes in probabilities, the alternative a is
equivalent to the lottery L(p) in which a1 is selected with the probability p = u(a):

a ≡ L(u(a)).

This probability u(a) is what is known as utility.
Once we know all the utility values, we can decide which alternative the decision

maker will choose: the one with the largest utility. Indeed, as we have mentioned,
p < p′ implies that L(p) < L(p′), so when u(a) < u(b), we have

a ≡ L(u(a)) < L(u(b)) ≡ b

and thus, a < b.
The above definition of utility depends on the choice of two alternatives a0 and a1.

If we select two different benchmarks a′
0 and a

′
1, then, as one can show, the new values
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of the utility are linearly related to the previous ones: u′(a) = k · u(a) + �, for some
real numbers k > 0 and �. Thus, utility is defined modulo linear transformation.

Actual choices are often probabilistic. In practice, people sometimesmake different
choices when repeatedly presented with the same pair of alternatives a and b. This
is especially true when the compared alternatives a and b are close in value. In such
situations, we cannot predict which of the alternatives will be chosen.

The best we can do is try to predict the frequency (probability) P(a, b)with which
the decision maker will select a over b. More generally, we would like to predict the
probability P(a, A) of selecting an alternative a from a given set of alternatives A
that contains a.

In the probabilistic situation, we can still talk about utilities. In the probabilistic
case, we can still have a deterministic distinction:

• for some pairs (a, b), the decision maker selects a more frequently than b:
P(a, b) > 0.5; in such situations, we can say that a is preferable to b (b < a);

• for some other pairs (a, b), the decision maker selects b more frequently than a:
P(a, b) < 0.5; in such situations, we can say that b is preferable to a (a < b);

• finally, for some pairs (a, b), the decision maker selects a exactly as many times
as b (a ∼ b): P(a, b) = 0.5; in such situations, we can say that to this decision
maker, a and b are equivalent.

Usually, the corresponding preference relations are transitive. For example, if a < b
and b < c, i.e., if in most situations, the decision maker selects b rather than a and c
rather than b, then we should expect a < c, i.e., we should expect that in most cases,
the decision maker will prefer c to a.

Because of this, we can still perform the comparisonwith lotteries, and thus, come
up with the utility u(a) of each alternative—just like we did in the deterministic case.
The main difference from the deterministic case is that:

• in the deterministic case, once we know all the utilities, we can uniquely predict
which decision the decision maker will make;

• in contrast, in the probabilistic case, after we know the utility values u(a) and u(b),
we can predict which of the two alternatives will be selected more frequently, but
we still need to find out the probability P(a, b).

Natural assumption. Since the alternatives can be described by their utility values, it
is reasonable to assume that the desired probability P(a, A) of selecting an alternative
a from the set A = {a, . . . , b} of alternatives depends only on the utilities u(a), …,
u(b) of these alternatives.

McFadden’s formulas for probabilistic selection.The 2001Nobelist D.McFadden
proposed the following formula for the desired probability P(a, A):

P(a, A) = exp(β · u(a))∑
b∈A

exp(β · u(b))
;
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see, e.g., [6, 7, 10]. In many practical situations, this formula indeed describes peo-
ple’s choices really well.

Need to go beyond McFadden’s formulas. While McFadden’s formula works in
many practical situations, in some case, alternative formulas provide a better expla-
nation of the empirical choices; see, e.g., [3] and references therein.

In this paper, we use natural symmetries to come up with an appropriate general-
ization of McFadden’s formulas.

2 Analysis of the Problem

A usual important assumption and its consequences (see, e.g., [4]). In principle,
we may have many different alternatives a, b, . . . In some cases, we prefer a, in
other cases, we prefer b. It is reasonable to require that once we have decided on
selecting either a or b, then the relative frequency of selecting a should be the same
as when we simply select between a and b, with no other alternatives present:

P(a, A)

P(b, A)
= P(a, b)

P(b, a)
= P(a, b)

1 − P(a, b)
.

Once we make this assumption, we can then describe the general probabilities
P(a, A) in terms of function of one variable. Indeed, let us add a new alternative an
to our list of alternatives. Then, because of our assumption, we have:

P(a, A)

P(an, A)
= P(a, an)

1 − P(a, an)
,

hence
P(a, A) = P(an, A) · f (a),

where we denoted f (a)
def= P(a, an)

1 − P(a, an)
. In other words, for every alternative a,

we have P(a, A) = c · f (a), where c
def= P(an, A) does not depend on a. This con-

stant c can then be found from the condition that one of the alternatives b ∈ A will
be selected, i.e., that

∑
b∈A

P(b, A) = 1. Substituting p(b, A) = c · f (b) into this for-

mula, we conclude that c · ∑
b∈A

f (b) = 1, hence

c = 1∑
b∈A

f (b)
,

and thus,
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P(a, A) = f (a)∑
b∈A

f (b)
.

So, the probabilities are uniquely determined by some values f (a) corresponding
to different alternatives. Since we assumed that the probabilities depend only on the
utilities u(a), we thus conclude that f (a) must depend only on the utilities, i.e.,
that we have f (a) = F(u(a)) for some function F(u). In terms of this function, the
above formula for the probabilistic choice takes the form

P(a, A) = F(u(a))∑
b∈A

F(u(b))
. (1)

From this viewpoint, all we need to do is to find an appropriate function F(u).

The function F(u) must be monotonic. The better the alternative a, i.e., the larger
its utility u(a), the higher should be the probability that we select this alternative.
Thus, it is reasonable to require that the function F(u) is an increasing function of
the utility u.

The function F(u) is defined modulo a constant factor. The above formula does
not uniquely define the function F(u): indeed, if wemultiply all the values of F(u) by
a constant, i.e., consider the new function F ′(u) = C · F(u), then in the Formula (1),
constants C in the numerator and the denominator will cancel each other, and thus,
we will get the exact same probabilities.

Vice versa, if two functions F(u) and F ′(u) always lead to the same probabilities,
this means, in particular, that for every two utility values u1 and u2, we have

F(u2)

F(u1) + F(u2)
= F ′(u2)

F ′(u1) + F ′(u2)
.

Reversing both sides of this equality and subtracting 1 from both sides, we conclude
that

F(u1)

F(u2)
= F ′(u1)

F ′(u2)
,

i.e., equivalently, that
F ′(u1)
F(u1)

= F ′(u2)
F(u2)

.

In other words, the ratio
F ′(u)

F(u)
is the same for all utility values u, and is, therefore,

a constant C . Thus, in this case, F ′(u) = C · F(u).
So, two functions F(u) and F ′(u) always lead to the same probabilities if and

only if their differ by a constant factor.
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In these terms, how can we explain the original McFadden’s formulas. As we
have mentioned earlier, utilities are defined modulo a general linear transformation.
In particular, it is possible to add a constant to all the utility values

u(a) → u′(a) = u(a) + c

and still get the description of exactly the same preferences. Since this shift does not
change the preferences, it is therefore reasonable to require that after such a shift,
we get the exact same probabilities.

Using new utility values u′(a) = u(a) + c means that we replace the values
F(u(a)) with the values F(u′(a)) = F(u(a) + c). This is equivalent to using the

original utility values but with a new function F ′(u)
def= F(u + c).

As we have mentioned earlier, the requirement that the two functions F(u) and
F ′(u)describe the sameprobabilities is equivalent to requiring that F ′(u) = C · F(u)

for some constant C , so F(u + c) = C · F(u). The factor C is, in general, different
for different shifts c: C = C(c). Thus, we conclude that

F(u + c) = C(c) · F(u). (2)

It is known (see, e.g., [1]) that every monotonic solution to this function equation
has the form F(u) = C0 · exp(β · u). This is exactly McFadden’s formula.

Discussion. For a general monotonic function, the proof of the function-equation
result may be somewhat complicated. However, under a natural assumption that the
function F(u) is differentiable, this result can be proven rather easily.

First, we take into account that C(c) is a ratio of two differentiable functions
F(u + c) and F(u), and is, thus, differentiable itself. Since both functions F(u) and
C(c) are differentiable, we can differentiate both sides of the equality (2) by c and
take c = 0. As a result, we get the following equality:

dF

du
= β · F,

where we denoted β
def= dC

dc |c=0
. By moving all the terms containing the unknown

F to one side and all other terms to the other side, we conclude that:

dF

F
= β · du.

Integrating both sides of this equality, we get ln(F) = β · u + C1, where C1 is the
integration constant. Thus, F(u) = exp(ln(F)) = C0 · exp(β · u), wherewe denoted

C0
def= exp(C1).

Our main idea and the resulting formulas. Please note that while adding a con-
stant to all the utility values does not change the probabilities computed by using
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McFadden’s formula, multiplying all the utility values by a constant—which is also
a legitimate transformation for utilities—does change the probabilities.

Therefore, we cannot require that the probability Formula (1) not change for all
possible linear transformations of utility: once we require shift-invariance, we get
McFadden’s formula which is not scale-invariant.

Since we cannot require invariance with respect to all possible re-scalings of
utility, we should require invariance with respect to some family of re-scalings.

If a formula does not change when we apply each transformation, it will also
not change if we apply them one after another, i.e., if we consider a composition
of transformations. Each shift can be represented as a superposition of many small
(infinitesimal) shifts, i.e., shifts of the type u → u + B · dt for some B. Similarly,
each scaling can be represented as a superposition of many small (infinitesimal) scal-
ings, i.e., scalings of the type u → (1 + A · dt) · u. Thus, it is sufficient to consider
invariancewith respect to an infinitesimal transformation, i.e., a linear transformation
of the type

u → u′ = (1 + A · dt) · u + B · dt.

Invariancemeans that the values F(u′) lead to the sameprobabilities as the original
values F(u), i.e., that F(u′) is obtained from F(u) by an appropriate (infinitesimal)
re-scaling F(u) → (1 + C · dt) · F(u). In other words, we require that

F((1 + A · dt) · u + B · dt) = (1 + C · dt) · F(u),

i.e., that
F(u + (A · u + B) · dt) = F(u) + C · F(u) · dt. (3)

Here, by definition of the derivative, F(u + q · dt) = F(u) + dF

du
· q · dt. Thus,

from (3), we conclude that

F(u) + (A · u + B) · dF
du

· dt = F(u) + C · F(u) · dt.

Subtracting F(u) from both sides and dividing the resulting equality by dt , we
conclude that

(A · u + B) · dF
du

= C · F(u).

We can separate the variables by moving all the terms related to F to one side and
all the terms related to u to another side. As a result, we get

dF

F
= C · du

A · u + b
.

We have already shown that the case A = 0 leads to McFadden’s formulas. So,
to get a full description of all possible probabilistic choice formulas, we need to
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consider the cases when A �= 0. In these cases, for x
def= u + k, where k

def= B

A
, we

have
dF

F
= c · dx

x
,

where c
def= C

A
. Integration leads to ln(F) = c · ln(x) + C0 for some constant C0,

thus F = C1 · xc for C1
def= exp(C0), i.e., to

F(u) = C1 · (u + k)c. (4)

Conclusions and discussion. In addition to the original McFadden’s formula for
the probabilistic choice, we can also have the case when F(u) is described by the
formula (4) and where, therefore, the probabilistic choice is described by the formula

P(a, A) = (u(a) + k)c∑
b∈A

(u(b) + k)c
.

This expression is in good accordance with the empirical dependencies described
in [3] that also contain power-law terms.

It is worth mentioning that while we derived the new formula as an alterna-
tive to McFadden’s formula, this new formula can be viewed as a generalization of

McFadden’s formula. Indeed, it is known that exp(u) = lim
n→∞

(
1 + u

n

)n
and thus,

exp(β · u) = lim
n→∞

(
1 + β · u

n

)n

. Thus, when n is large, the use of McFadden’s

expression F(u) = exp(β · u) is practically indistinguishable from the use of the

power-law expression F≈(u) =
(
1 + β · u

n

)n

. This power-law expression, in its

turn, can be represented in the form (4), with c = n, k = n

β
, and C1 =

(
β

n

)n

.

So, instead of a 1-parametric McFadden’s formula, we now have a 2-parametric
formula. We can use this additional parameter to get an even more accurate descrip-
tion of the actual probabilistic choice.
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How to Explain Ubiquity of Constant
Elasticity of Substitution (CES) Production
and Utility Functions Without Explicitly
Postulating CES

Olga Kosheleva, Vladik Kreinovich and Thongchai Dumrongpokaphan

Abstract In many situations, the dependence of the production or utility on the
corresponding factors is described by the CES (Constant Elasticity of Substitution)
functions. These functions are usually explained by postulating two requirements:
an economically reasonable postulate of homogeneity (that the formulas should not
change if we change a measuring unit) and a less convincing CSE requirement. In
this paper, we show that the CES requirement can be replaced by a more convincing
requirement—that the combined effect of all the factors should not depend on the
order in which we combine these factors.

1 Formulation of the Problem

CESproduction functionsandCESutility functionareubiquitous.Most observed
data about production y is well described by the CES production function

y =
( n∑

i=1

ai · xri
)1/r

, (1)
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where xi are the numerical measures of the factors that influence production, such
as amount of capital, amount of labor, etc.; see, e.g., [6, 17, 18, 23].

A similar Formula (1) describes how the person’s utility y depends on different
factors xi such as amounts of different types of consumer goods, utilities of other
people, etc.; see, e.g., [7, 12, 13, 28].

How this ubiquity is explained now. The current explanation for the empirical
success of CES function is based on the following two requirements.

The first requirement is that the corresponding function y = f (x1, . . . , xn) is
homogeneous, i.e., that:

f (λ · x1, . . . , λ · xn) = λ · f (x1, . . . , xn). (2)

This requirement makes perfect economic sense: e.g., we can describe different
factors by using different monetary units, and the results should not change if we
replace the original unit by a one which is λ times smaller. After this replacement,
the numerical value of each factor changes from xi to λ · xi and y is replace by
λ · y. The value f (λ · x1, . . . , λ · xn) that we obtain by using the new units should
thus be exactly λ times larger than the value f (x1, . . . , xn) obtained in the original
units—and this is exactly the requirement (2).

The second requirement is that the corresponding function f (x1, . . . , xn) should
provide constant elasticity of substitution (CES). The requirement is easier to explain
for the case of two factors n = 2. In this case, this requirement deals with “substitu-
tion” situations in which we change x1 and then change the original value x2 to the
new value x2(x1) so that the overall production or utility remain the same.

The corresponding substitution rate can then be calculated as s
def= dx2

dx1
. The sub-

stitution function x2(x1) is explicitly defined by the equation f (x1, x2(x1)) = const.
By using the formula for the derivative of the implicit function, we can conclude that
the substitution rate has the form

s = − f,1(x1, x2)

f,2(x1, x2)
,

where we denoted

f,1(x1, x2)
def= ∂ f

∂x1
(x1, x2) and f,2(x1, x2)

def= ∂ f

∂x2
(x1, x2).

The requirement is that for each percent of the change in ratio
x2
x1
, we get the same

constant number of percents change in s:

ds

d

(
x2
x1

) = const.
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This explanation needs strengthening.While homogeneity is a reasonable require-
ment, the above CES condition sounds somewhat too mathematical to be fully con-
vincing for economists.

To explain the ubiquity of CSE production and utility functions, it is therefore
desirable to come up with additional—hopefully, more convincing—arguments in
favor of these functions. This is what we intend to do in this paper.

2 Main Idea Behind a New Explanation

Main idea. In our explanation, we will use the fact that in most practical situations,
we combine several factors. We can combine these factors in different order:

• For example, we can first combine the effects of capital and labor into a single
characteristic that describes the joint even of both factors, and then combine it
with other factors.

• Alternatively, we can first combine capital with other factors, and only then com-
bine the resulting combined factor with labor, etc.

The result should not depend on the order in which we perform these combinations.

What we do in this paper. In this paper, we show that this idea implies the CES
functions. Thus, we indeed get a new explanation for the ubiquity of CES production
and utility functions.

3 Derivation of the CES Functions from the Above Idea

Towards formalizing our idea. Let us denote a function that combines factors i and
j into a single quantity xi j by fi, j (xi , x j ). Similarly, let us denote a function that
combines the values xi j and xk� into a single quantity xi jk� by fi j,k�(xi j , xk�). In these
terms, the requirement that the resulting values do not depend on the order implies,
e.g., that we always have

f12,34( f1,2(x1, x2), f3,4(x3, x4)) = f13,24( f1,3(x1, x3), f2,4(x2, x4)). (3)

Additional requirement. In both production and utility situations, for each i and
j , the combination function fi, j (xi , x j ) is an increasing function of both variables
xi and x j . It is reasonable to require that it is continuous, and then when one of
the factors tends to infinity, the result also tends to infinity. Under these reasonable
assumptions, the combination functions tends out to be invertible in the following
sense:
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Definition 1 A function f : A × B → C is called invertible if the following two
conditions are satisfied:

• for every a ∈ A and for every c ∈ C , there exists a unique value b ∈ B for which
c = f (a, b);

• for every b ∈ B and for every c ∈ C , there exists a unique value a ∈ A for which
f (a, b) = c.

Comment. In mathematics, functions invertible in the sense of Definition 1 are called
generalized quasigroups; see, e.g., [5].

Let us now formalize the above requirement.

Definition 2 Let Xi , Xi j , and X be sets, where i = 1, 2, 3, 4.We say that invertible
operations fi, j : Xi × X j → Xi j and fi j,k� : Xi j × Xk� → X (for different i , j , k,
and �) satisfy the generalized associativity requirement if for all xi ∈ Xi , we have

f12,34( f1,2(x1, x2), f3,4(x3, x4)) = f13,24( f1,3(x1, x3), f2,4(x2, x4)). (4)

Comment. In mathematical terms, this requirement is known as generalized
mediality [5].

Groups and Abelian groups: reminder. To describe operations that satisfy the gen-
eralized associativity requirement, we need to recall that a set G with an associative
operation g(a, b) and a unit element e (for which g(a, e) = g(e, a) = a) is called a
group if every element is invertible, i.e., if for every a, there exists an a′ for which
g(a, a′) = e. A group in which the operation g(a, b) is commutative is known as
Abelian.

Proposition [3–5, 25–27] For every set of invertible operations that satisfy the gen-
eralized associativity requirement, there exists an Abelian group G and 1–1 map-
pings ri : Xi → G, ri j : Xi j → G and rX : X → G for which, for all xi ∈ Xi and
xi j ∈ Xi j , we have

fi j (xi , x j ) = r−1
i j (g(ri (xi ), r j (x j ))) and

fi j,kl(xi j , xk�) = r−1
X (g(ri j (xi j ), rk�(xk�))).

Discussion.All continuous 1-DAbelian groups with order-preserving operations are
isomorphic to the additive group of real numbers, with g(a, b) = a + b. Thus, we
can conclude that all combining operations have the form

fi j (xi , x j ) = r−1
i j (ri (xi ) + r j (x j )), (5)

i.e., equivalently, fi j (xi , x j ) = y means that

ri j (y) = ri (xi ) + r j (x j ). (6)
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Let us use homogeneity: result.We will now prove that homogeneity leads exactly
to the desired CES combinations. This will give us the desired new explanation of
the ubiquity of the CES operations.

Homogeneity leads to CES operations: proof. Homogeneity means that if the
relation (6) holds for some values xi , x j , and y, then, for every λ, a similar relation
holds for re-scaled values λ · xi , λ · x j , and λ · y, i.e.:

ri j (λ · y) = ri (λ · xi ) + r j (λ · x j ).

To utilize this requirement, let us use the idea of substitution: for each possible value
x ′
i = xi + Δxi , let us find the corresponding value x ′

j = x j + Δx j for which the
right-hand side of the Formula (6) remains the same—and thus, the combined value
y remains the same:

ri (x
′
1) + r j (x

′
j ) = ri (xi + Δxi ) + r j (x j + Δx j ) = ri (xi ) + r j (x j ). (7)

In general, the substitute value x ′
j is a function of x

′
i : x

′
j = x ′

j (x
′
i ). WhenΔxi = 0,

i.e., when x ′
i = xi , we clearly have x ′

j = x j , so Δx j = 0. For small Δxi , we get

y′
j = y j + k · Δxi + o(Δxi ), where k

def= dx ′
j

dx ′
i

, soΔx j = k · Δxi + o(Δxi ) for some

real number k.
Here, ri (xi + Δxi ) = ri (xi ) + r ′

i (xi ) · Δxi + o(Δxi ), where, as usual, f ′ denotes
the derivative. Similarly,

r j (x j + Δx j ) = r j (x j + k · Δxi + o(Δxi )) = r j (x j ) + k · r ′
j (x j ) · Δxi + o(Δxi ).

Thus, the condition (7) takes the form

ri (xi ) + r j (x j ) + (r ′
i (xi ) + k · r ′

j (x j )) · Δxi + o(Δxi ) = ri (xi ) + r j (x j ).

Subtracting the right-hand side from theboth sides, dividingboth sides of the resulting
equation by Δxi , and tending Δxi to 0, we conclude that

r ′
i (xi ) + k · r ′

j (x j ) = 0,

i.e., that

k = − r ′
i (xi )

r ′
j (x j )

. (8)

Homogeneity means, in particular, that if now apply the combination function ri j
to the values

λ · x ′
i = λ · xi + λ · Δxi
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and
λ · x ′

j = λ · x j + λ · k · Δxi + o(Δxi ),

then we should get the value λ · y. So:
ri (λ · xi + λ · Δxi ) + r j (λ · x j + λ · k · Δxi + o(Δxi )) =

ri (λ · xi ) + r j (λ · x j ).
(9)

For small Δxi , we have

ri (λ · xi + λ · Δxi ) = r(λ · xi ) + λ · Δxi · r ′
i (λ · xi ) + o(Δxi ),

where f ′ denote a derivative, and similarly,

r j (λ · x j + λ · k · Δxi + o(Δx1)) = r(λ · x2) + λ · k · Δxi · r ′
j (λ · x j ) + o(Δxi ).

Substituting these expressions into the Formula (9), we conclude that

ri (λ · xi ) + λ · Δxi · r ′(λ · xi ) + r j (λ · x j ) + λ · k · r ′
j (λ · x j ) · Δxi + o(Δxi ) =

ri (λ · xi ) + r j (λ · x j ).

Subtracting the right-hand side from the left-hand side, dividing the result by Δxi
and tending Δxi to 0, we conclude that

r ′(λ · xi ) + k · r ′
j (λ · x j ) = 0,

i.e., in view of the Formula (8), that

r ′(λ · xi ) − r ′
i (xi )

r ′
j (x j )

· r ′
j (λ · x j ) = 0.

Moving the second term to the right-hand side and dividing both sides by r ′
i (xi ), we

conclude that
r ′
i (λ · xi )
r ′
i (xi )

= r ′
j (λ · x j )

r ′
j (x j )

.

The right-hand side of this formula does not depend on xi at all, thus, the left-hand
side also does not depend on xi , it only depends on λ:

r ′
i (λ · xi )
r ′
i (xi )

= c(λ)
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for some function c(λ). Thus, the derivative Ri (xi )
def= r ′

i (xi ) satisfies the functional
equation

Ri (λ · xi ) = Ri (xi ) · c(λ)

for all λ and xi .
It is know that every continuous solution to this equation has the form r ′

i (xi ) =
Ri (xi ) = Ai · xαi

i for some Ai and αi ; see, e.g., [5]. For differentiable functions, this
can be easily proven if we differentiate both sides of this equation by c and take

c = 1. Then, we get xi · dRi

dci
= c · Ri . Separating variables, we get

dRi

Ri
= c · dxi

xi
.

Integration leads to ln(Ri ) = c · ln(xi ) + C1 and thus, to the desired formula.
Integrating the above expression for r ′

i (xi ), we get ri (xi ) = ai · xβi
i + Ci and sim-

ilarly, r j (x j ) = a j · xβ j

j + C j . One can easily check that homogeneity implies that
βi = β j andCi + C j = 0, so the sum ri (xi ) + r j (x j ) takes the form ai · xri + a j · xrj .

By considering a similar substitution between xi and y (in which x j remains
intact), we conclude that ri j (y) = const · yr , so we indeed get the desired formula
ri j (xi , x j ) = (ai · xri + a j · xrj )1/r . By using similar formulas to combine xi j with xk ,
etc., we get the desired CES combination function.

4 Possible Application to Copulas

What is a copula: a brief reminder. Specifically, a 1-D probability distribution
of a random variable X can be described by its cumulative distribution function

(cdf) FX (x)
def= Prob(X ≤ x). A 2-D distribution of a random vector (X,Y ) can be

similarly described by its 2-D cdf FXY (x, y) = Prob(X ≤ x & Y ≤ y).
It turns out that we can always describe F(x, y) as

FXY (x, y) = CXY (FX (x), FY (y))

for an appropriate function CXY : [0, 1] × [0, 1] → [0, 1] known as a copula; see,
e.g., [20, 22].

For a joint distribution of several random variables X , Y , …, Z , we can similarly
write

FXY ...Z (x, y, . . . , z)
def= Prob(X ≤ x & Y ≤ y& . . . & Z ≤ z) =

CXY ...Z (FX (x), FY (y), . . . , FZ (z))

for an appropriate multi-D copula CXY ...Z .
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Vine copulas. When we have many (n � 1) random variables, then to exactly
describe their joint distribution, we need to describe a general function of n vari-
ables. Even if we use two values for each variable, we get 2n combinations, which
for large n can be astronomically large. Thus, a reasonable idea is to approximate
the multi-D distribution.

A reasonable way to approximate is to use 2-D copulas. For example, to describe a
joint distribution of three variables X , Y , and Z , we first describe the joint distribution
of X and Y as FXY (x, y) = CXY (FX (x), FY (y)), and then use an appropriate copula
CXY,Z to combine it with FZ (z):

FXY Z (x, y, z) ≈ CXY,Z (FXY (x, y), FZ (z)) = CXY,Z (CXY (FX (x), FY (y), FZ (z)).

Such an approximation, when copulas are applied to one another like a vine, are
known as vine copulas; see, e.g., [1, 2, 8, 9, 11, 14–16, 19, 21, 24].

Natural analogue of associativity. It is reasonable to require that the result of
the vine copula approximation should not depend on the order in which we combine
the variables. In particular, for four random variables X , Y , Z , and T , we should get
the same result in the following two situations:

• if we first combine X with Y , Z and T , and then combine the two results; or
• if we first combine X with Z , Y with T , and then combine the two results.

Thus, we require that for all possible real numbers x , y, z, and t , we get

CXY,ZT (CXY (FX (x), FY (y)),CZT (FZ (z), FT (t))) =

CXZ ,YT (CXZ (FX (x), FZ (z)),CYT (FY (y), FT (t))).

If we denote a = FX (x), b = FY (y), c = FZ (z), and d = FT (t), we conclude that
for every a, b, c, and d, we have

CXY,ZT (CXY (a, b),CZT (c, d)) = CXZ ,YT (CXZ (a, c),CYT (b, d)).

This is exactly the generalized associativity requirement. Thus, if we extend copu-
las to invertible operations, then we can conclude that copulas can be re-scaled to
associative operations—in the sense of the above Proposition.
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How to Make Plausibility-Based Forecasting
More Accurate

Kongliang Zhu, Nantiworn Thianpaen and Vladik Kreinovich

Abstract In recent papers, a new plausibility-based forecasting method was pro-
posed.While this method has been empirically successful, one of its steps—selecting
a uniformprobability distribution for the plausibility level—is heuristic. It is therefore
desirable to check whether this selection is optimal or whether a modified selection
would like to a more accurate forecast. In this paper, we show that the uniform dis-
tribution does not always lead to (asymptotically) optimal estimates, and we show
how to modify the uniform-distribution step so that the resulting estimates become
asymptotically optimal.

1 Plausbility-Based Forecasting: Description, Successes,
and Formulation of the Problem

Need for prediction. One of the main objectives of science is, given the available
data x1, . . . , xn , to predict future values of different quantities y.

The usual approach to solving this problem consists of two stages:

• first, we find a model that describes the observed data; and
• then, we use this model to predict the future value of each of the quantities y.

In some cases, it is sufficient to have a deterministic model, that describes the depen-
dence of each observed value on the known values describing the i-th observation
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and on the (unknown) parameters p of the model: xi = fi (p). In this case, we can
predict the value y as y = f (p) for an appropriate function f (p).

For example, in Newtonian’s model of the Solar system, once we know the initial
locations, initial velocities, and masses of all the celestial bodies (which, in this case,
are the parameters p), we can predict the position and velocity of each body at any
future moment of time.

In this deterministic case, we can use the known observed values to estimate the
parameters p of the corresponding probabilistic model, and then we can use these
parameters to predict the desired future values. This is how, e.g., solar eclipses can
be predicted for centuries ahead.

Need for statistical prediction. In most practical problems, however, a fully deter-
ministic prediction is not possible, since, in addition to the parameters p, both the
observed values xi and the future value y are affected by other parameters beyond
our control, parameters that can be viewed as random. Thus, instead of a deter-
ministic model, we have a general probabilistic model xi = f (p, z1, . . . , zm) and
y = f (p, z1, . . . , zm), where z j are random variables.

Usually, we do not know the exact probability distribution for the variables zi , but
weknowafinite-parametric family of distributions that contains the actual (unknown)
distribution. For example, we may know that the distribution is Gaussian, or that it
is uniform. Let q denote the parameter(s) that describe this distribution.

In this case, both xi and y are random variables whose distribution depends on all
the parameters θ = (p, q): xi ∼ fi,θ and y ∼ fθ .

In this case, to identify the model:

• we first estimate the parameters θ based on the observations x1, . . . , xn , and then
• we use the distribution fθ corresponding to these parameter values to predict the
values y—or, to be more precise, to predict the probability of different values of y.

Need for a confidence interval. Since in the statistical case, we cannot predict the
exact value of y, it is desirable to predict the range of possible values of y.

For many distributions—e.g., for a (ubiquitous) normal distribution—it is, in
principle, possible to have arbitrarily small and arbitrarily large values, just the prob-
ability of these values is very small. In such situations, there is no guaranteed range
of values of y.

However, we can still try to estimate a confidence interval, i.e., for a given
small value α > 0, an interval [y

α
, yα] that contains the actual value y with

confidence 1 − α. In other words, we would like to find an interval for which
Prob(y ∈ [y

α
, yα]) ≥ α.

In the idealized situation, when we know the probabilities of different values of
y—i.e., in precise terms, when we know the corresponding cumulative distribution

function (cdf) F(y)
def= Prob(Y ≤ y)—then we know that Y ≤ F−1

(α

2

)
with prob-

ability α/2 and that Y > F−1
(
1 − α

2

)
with probability α/2. Thus, with probability

1 − α, we have y ∈ [y
α
, yα], where y

α
= F−1

(α

2

)
and
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yα = F−1
(
1 − α

2

)
.

In general, a statistical estimate based on a finite sample is only approximate.
Thus, based on a finite sample, we can predict the value of the parameters θ only
approximately—and therefore, we only have an approximate estimate of the prob-
abilities of different values of y. So, instead of the actual cdf F(y), we only know
the bounds on the cdf: F(y) ≤ F(y) ≤ F(y). We want to select the interval [y

α
, yα]

in such a way that the probability of being outside this interval is guaranteed not to
exceed α.

For the lower bound y
α
, all we know about the probability F(y

α
) of being smaller

than this bound is that this probability is bounded, from above, by the known value

F(y
α
): F(y

α
) ≤ F(y

α
). Thus, to guarantee that this probability does not exceed

α

2
,

we must select a bound y
α
for which F(y

α
) = α

2
. In other words, we should take

y
α

= (F)−1
(α

2

)
,

Similarly, the probability 1 − F(yα) of being larger than the upper bound yα is
bounded, from above, by the known value 1 − F(yα): 1 − F(yα) ≤ F(yα). Thus,

to guarantee that this probability does not exceed
α

2
, we must select a bound yα for

which 1 − F(yα) = α

2
. In other words, we should take

yα = (F)−1
(
1 − α

2

)
.

Plausibility-based forecasting: a brief reminder. In [1, 3, 4], a new forecasting
method was proposed. In this method, we start by forming a likelihood function,
i.e., a function that describes, for each possible value θ , the probability (density)
of observing the values x = (x1, . . . , xn). If we assume that the probability density
function corresponding to each observation xi has the form fi,θ (xi ), then, under the
natural assumption that the observations x1, . . . , xn are independent, we conclude
that:

Lx (θ) =
n∏

i=1

fθi (xi ).

The likelihood function is normally used to find the maximum likelihood estimate

for the parameters θ , i.e., the estimate θ̂ for which Lx

(
θ̂
)

= max
θ

Lx (θ).

In the plausibility-based approach to forecasting, instead of simply computing
this value θ̂ , we use the likelihood function to define the plausibility function as
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plx (θ) = Lx (θ)

sup
θ ′

Lx (θ ′)
= Lx (θ)

Lx

(
θ̂
) .

Based on this plausibility function, we define, for each real number ω ∈ [0, 1], a
plausibility region

Γx(ω) = {θ : plx (θ) ≥ ω}.

We then represent a probability distribution for y as y = g(θ, z) for an auxiliary
variable z whose distribution does not depend on θ . Usually, as z, we select a random
variable which is uniformly distributed on the interval [0, 1]. Such a representation
is possible for each random variable with a probability density function fθ (y) and
corresponding cumulative distribution function Fθ (y): namely, we can simply take
g(θ, z) = F−1

θ (z), where F−1 denotes an inverse function, i.e., a function for which
F−1

θ (Fθ (x)) = x for all x .
Based on the plausibility regions, we then compute the belief and plausibility of

each set A of possible values of θ as follows:

Bel(A) = Prob(g(Γx(ω), z) ⊆ A)

and
Pl(A) = Prob(g(Γx(ω), z) ∩ A 	= ∅),

where both ω and z are uniformly distributed on the interval [0, 1]. After that, we
compute the lower and upper bounds on the cdf F(y) for y as

F(y) = Bel((−∞, y])

and
F(y) = Pl((−∞, y]).

Then, for any given small value α > 0, we predict that y is, with confidence

1 − α > 0, contained in the interval [y
α
, yα], where y

α
= (F)−1

(α

2

)
and yα =

(F)−1
(
1 − α

2

)
.

Remaining problem. While the new approach has led to interesting applications,
the motivations for this approach are not very clear. To be more precise:

• it is clear why, to simulate z, we use a uniform distribution on the interval [0, 1]—
because we represent the corresponding probabilistic model for y as y = g(θ, z)
for exactly this distribution for z;

• what is less clear is why we select a uniform distribution for ω.

Yes, this ω-distribution sounds like a reasonable idea: we know that ω is located on
the interval [0, 1], we do not know which values ω are more probable and which
are less probable, so we select a uniform distribution. However, since we are not



How to Make Plausibility-Based Forecasting More Accurate 103

just making reasonable estimates, we are making predictions with confidence, it is
desirable to come upwith amore convincing justification for selecting the probability
distribution for ω: namely, a justification that would explain why we believe that the
predicted value y belongs to the above-constructed confidence interval.

Maybewe can get a justification, ormaybewe can conclude that the above interval
is only an approximation—and by selecting a different probability distribution for
ω, we can make the resulting forecasting more accurate.

This is the problem that we will be analyzing in this paper.

2 On a Simple Example, Let Us Compare
Plausibility-Based Forecasting with Known Methods

Let us consider the simplest possible situation. To analyze this problem, let us
consider the simplest case:

• when we have only one parameter θ = θ1,
• when the predicted value y simply coincides with the value of this parameter, i.e.,
when the probabilistic model y = g(θ, z) has the form g(θ, z) = θ , and

• when the likelihood Lx (θ) is continuous and strictly decreasing as we move away
from the maximum likelihood estimate θ̂ ; in other words, we assume that:

– for θ ≤ θ̂ the likelihood function strictly increases, while
– for θ ≥ θ̂ the likelihood function strictly decreases.

Comment.While the first two conditions are really restrictive, the third condition—
monotonicity—is not very restrictive, it is true in the overwhelming majority of
practical situations.

Let us analyze this simplest possible situation. Since in our case, y = θ , the desired
bounds on the predicted value y are simply bounds on the value θ of the corresponding
parameter, bounds that contain θ with a given confidence α. In other words, what we
want is a traditional confidence interval for θ .

In the above simplest possible situation, we can explicitly express the result-
ing confidence interval in terms of the likelihood function. According to the
plausibility-based forecasting method, we select

F(y) = Bel((−∞, y]) = Prob({θ : plx (θ) ≥ ω} ⊆ (−∞, y]).

Since we assumed that the likelihood function Lx (θ) is increasing for θ ≤ θ̂ and
decreasing for θ ≥ θ̂ , the plausibility function plx (θ) – which is obtained by Lx (θ)

by dividing by a constant—also has the same property:

• the function plx (θ) is increasing for θ ≤ θ̂ , and
• the function plx (θ) is decreasing for θ ≥ θ̂ .
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In this case, the set {θ : plx (θ) ≥ ω} is simply an interval [θ−, θ+], whose endpoints
can be described as follows:

• the lower endpoint θ− is the value to the left of θ̂ for which plx (θ) = ω, and
• the upper endpoint θ+ is the value to the right of θ̂ for which plx (θ) = ω.

In these terms, the condition that the set {θ : plx (θ) ≥ ω} = [θ−, θ+] is contained in
(−∞, y] simply means that θ+ ≤ y.

Since θ+ ≥ θ̂ , we thus have y ≥ θ̂ as well. The plausibility function is strictly
decreasing for θ ≥ θ̂ , the inequality θ+ ≤ y is equivalent to pl(θ+) ≥ pl(y). By
the construction of the value θ+, we know that pl(θ+) = ω. Thus, the condition
{θ : plx (θ) ≥ ω} ⊆ (−∞, y] is simply equivalent to ω ≥ plx (y). Hence,

F(y) = Prob(ω ≥ plx (y)).

When ω is uniformly distributed on the interval [0, 1], then, for all z, the probability
Prob(ω ≥ z) that ω is in the interval [z, 1], is simply equal to the width of bthis
interval, i.e., to 1 − z. In particular, for z = plx (y), we have F(y) = 1 − plx (y). In
these terms, in the plausibility-based forecasting method, as the upper bound θα of

the confidence interval, we select the value θα for which 1 − plx (θα) = 1 − α

2
, i.e.,

for which
plx (θα) = α

2
.

Similarly, the condition that the set {θ : plx (θ) ≥ ω} = [θ−, θ+] has a non-empty
intersection with (−∞, y] simply means that θ− ≤ y.

Since θ− ≤ θ̂ , this inequality is always true for y ≥ θ̂ . So, for y ≥ θ̂ , we have
F(y) = 1. For y ≤ θ̂ , the inequality θ− ≤ y is equivalent to pl(θ−) ≤ pl(y). By
the construction of the value θ−, we know that pl(θ−) = ω. Thus, the condition
{θ : plx (θ) ≥ ω} ∩ (−∞, y] 	= ∅ is simply equivalent to ω ≤ plx (y). Hence,

F(y) = Prob(ω ≤ plx (y)).

When ω is uniformly distributed on the interval [0, 1], then, for all z, the probability
Prob(ω ≤ z) is simply equal to z. In particular, for z = plx (y), we have F(y) =
plx (y). In these terms, in the plausibility-based forecasting method, as the lower
bound θα of the confidence interval, we select the value θα for which

plx (θα) = α

2
.

Thus, the confidence interval obtained by using the plausibility method is the
interval [θα, θα] between the two values θα < θ̂ < θα for which

plx (θα) = plx (θα) = α

2
.
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The confidence interval [θα, θα] consists of all the values θ for which

plx (θ) ≥ α

2
.

In terms of the likelihood function Lx (θ), thismeans that, as the confident interval,
we select the set of all the values θ for which

Lx (θ)

Lx

(
θ̂
) ≥ α

2
,

i.e., equivalently, for which

ln (Lx (θ)) ≥ ln
(
Lx

(
θ̂
))

− (ln(2) + | ln(α)|). (1)

Let us compare the resulting confident interval with the traditional likelihood-
based confidence interval. In traditional statistics, one of themethods to estimate the
confidence interval based on the likelihood function—based onWilks’s theorem—is
to select the set of all possible values θ for which

ln (Lx (θ)) ≥ ln
(
Lx

(
θ̂
))

− 1

2
· χ2

1,1−α; (2)

see, e.g., [2], where χ2
1,1−α is the threshold for which, for the χ2

1 -distribution—i.e.,
for the square of the standard normally distributed random variable, with 0 means
and standard deviation 1, we have Prob(χ2 ≤ χ2

1,1−α) = 1 − α.
The corresponding confidence interval (2) is somewhat different from the interval

(1) obtained by using plausibility-based forecasting. It is known thatWilks’s theorem
provides an asymptotically accurate description of the confidence region when the
number of observations n increases.

It is desirable to modify the plausibility-based forecasting method to make it
asymptotically optimal. It is desirable to modify the plausibility-based forecasting
method to make its results asymptotically optimal.

3 How to Best Modify the Current Plausibility-Based
Forecasting Method: Analysis of the Problem

Problem: reminder. In the previous section, we have shown that the use of a (heuris-
tically selected) unform distribution for the variable ω, while empirically efficient,
does not always lead us to asymptotically optimal estimates. Let us therefore try
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to find an alternative distribution for ω for which, in the above case, the resulting
confidence interval will be asymptotically optimal.

Which distribution forωwe should select: analysis of the problem. In the general
case, we still have F(y) = Prob(ω ≤ px (y)). We want to make sure that for the

Wilks’s bound, this probability is equal to
α

2
.

For the Wilks’s bound, by exponentiating both sides of the Formula (2), we con-
clude that

px (y) = Lx (θ)

Lx (θ̂)
= exp

(
−1

2
· χ2

1,1−α

)
;

thus, we conclude that

Prob

(
ω ≤ exp

(
−1

2
· χ2

1,1−α

))
= α

2
. (3)

By definition of χ2
1,1−α , if we take a variable n which is normally distributed with 0

mean and standard deviation 1, then we have:

Prob
(
n2 ≤ χ2

1,1−α

) = 1 − α.

Thus, for the opposite event, we have

Prob
(
n2 ≥ χ2

1,1−α

) = (1 − (1 − α)) = α.

The inequality n2 ≥ χ2
1,1−α occurs in two equally probable situations:

• when n is positive and n ≥
√

χ2
1,1−α and

• when n is negative and n ≤ −
√

χ2
1,1−α .

Thus, the probability of each of these two situations is equal to
α

2
; in particular, we

have:

Prob

(
n ≤ −

√
χ2
1,1−α

)
= α

2
. (4)

Let us transform the desired inequality (3) to this form. The inequality

ω ≤ exp

(
−1

2
· χ2

1,1−α

)

is equivalent to

ln(ω) ≤ −1

2
· χ2

1,1−α,

hence to
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−2 ln(ω) ≥ χ2
1,1−α,

√−2 ln(ω) ≥
√

χ2
1,1−α,

and
−√−2 ln(ω) ≤ −

√
χ2
1,1−α.

Thus, the desired inequality (3) is equivalent to

Prob

(
−√−2 ln(ω) ≤ −

√
χ2
1,1−α

)
= α

2
.

In view of the Formula (4), this equality is attained if we have n = −√−2 ln(ω). In
this case, −2 ln(ω) = n2, hence

ln(ω) = −n2

2
,

and thus,

ω = exp

(
−n2

2

)
. (5)

So, we arrive at the following conclusion.

Conclusion. Instead of a uniformly distributed random variable ω, we need to use
a variable (5), where n is a random variable distributed according to the standard
normal distribution—with 0 means and standard deviation 1.

What is theprobability density function of this distribution? In general, ifwe have
a random variable with a probability density function ρX (x), then for any function
f (x), for the random variable Y = f (X), we can determine its probability density
function ρY (y) from the condition that for y = f (x), we have

Prob( f (x) ≤ Y ≤ f (x + dx)) = Prob(x ≤ X ≤ x + dx) = ρX (x) · dx .

Here, f (x) = y band

f (x + dx) = f (x) + f ′(x) · dx = y + f ′(x) · dx,

hence

Prob( f (x) ≤ Y ≤ f (x + dx)) = Prob(y ≤ Y ≤ y + f ′(x) · dx) = ρY (y) · | f ′(x)| · dx .

Equating these two expressions, we conclude that for y = f (x), we have
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ρY (y) = ρX (x)

| f ′(x)| .

In our case,

ρX (x) = 1√
2π

· exp
(

− x2

2

)

and

f (x) = exp

(
− x2

2

)
,

hence

f ′(x) = − exp

(
− x2

2

)
· x .

Thus,

ρY (y) = 1√
2π · |x | .

From y = exp

(
− x2

2

)
, we conclude that

x2

2
= − ln(y), thus, |x | = √

2 · | ln(y)|.
So, the probability distribution function for y = ω has the form

ρ(ω) = 1√
2π · √

2 · | ln(ω)| = 1

2 · √
π · √| ln(ω)| .

This distribution is indeed close to uniform. The value ln(ω) is changing very
slowly, so, in effect, the resulting probability density function is close to a constant,
and thus, the corresponding probability distribution is close to the uniform one.

4 Resulting Recommendations

As a result of the above analysis, we arrive at the following modification of the
plausibility-based forecasting algorithm.

In this modification, first, we define the likelihood function Lx (θ) and then find

its largest possible value Lx

(
θ̂
)

= max
θ

Lx (θ).

Then, we define the plausibility function as

plx (θ) = Lx (θ)

sup
θ ′

Lx (θ ′)
= Lx (θ)

Lx

(
θ̂
) .
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Based on this plausibility function, we define, for each real number ω ∈ [0, 1], a
plausibility region

Γx(ω) = {θ : plx (θ) ≥ ω}.

We then represent a probability distribution for y as y = g(θ, z) for an auxiliary
variable z which is uniformly distributed on the interval [0, 1].

Based on the plausibility regions, we then compute the belief and plausibility of
each set A of possible values of θ as follows:

Bel(A) = Prob(g(Γx(ω), z) ⊆ A)

and
Pl(A) = Prob(g(Γx(ω), z) ∩ A 	= ∅),

where both z is uniformly distributed on the interval [0, 1], and ω is distributed in
accordance with the probability density

ρ(ω) = 1

2 · √
π · √| ln(ω)| .

The corresponding random variable can be simulated as

ω = exp

(
−n2

2

)
,

where n is a standard normally distributed randomvariable, with 0mean and standard
deviation 1.

After that, we compute the lower and upper bounds on the cdf F(y) for y as

F(y) = Bel((−∞, y])

and
F(y) = Pl((−∞, y]).

Then, for any given small value α > 0, we predict that y is, with confidence

1 − α > 0, contained in the interval [y
α
, yα], where y

α
= (F)−1

(α

2

)
and yα =

(F)−1
(
1 − α

2

)
.
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Structural Breaks of CAPM-type Market
Model with Heteroskedasticity and Quantile
Regression

Cathy W.S. Chen, Khemmanant Khamthong and Sangyeol Lee

Abstract In this study we analyze the market beta coefficients of two large capi-
talization stocks, American International Group (AIG) and Citigroup, from 2005 to
2016 based on a capital asset pricing model (CAPM). Since the daily returns of stock
prices experience structural changes in their underlying CAPM-type models, we de-
tect the number and locations of change employing the residual-based cumulative
sum (CUSUM) of squares test and then estimate the parameters for each sub-period
to evaluate market risk. Moreover, using the quantile regression method, we explore
the different behaviors of the market beta and lagged autoregressive effects for dif-
ferent sub-periods and quantile levels. Our final result pertains to the relationship
between time-varying betas and structural breaks.

Keywords CAPM · Change point test · CUSUM test · Beta coefficient · Asym-
metric effect · GARCH model · Quantile regression

1 Introduction

American International Group, Inc. (AIG) is an insurance company that provides
property casualty insurance, life insurance, retirement products, mortgage insurance,
and other financial services to customers in over 100 countries and jurisdictions.
Citigroup Inc. is a financial services holding company whose businesses provide
consumers, corporations, governments, and institutions with a wide range of finan-
cial products and services, including consumer banking and credit, corporate and
investment banking, securities brokerage, trade and securities services, and wealth
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management. Both AIG and Citigroup are two large market capitalization (large-
cap) stocks in the U.S. A large-cap (or big-cap) stock refers to a company with a
market capitalization value of more than $5 billion. This study aims to explore the
performances of these two stock’s market beta coefficients during 2005–2016.

The capital asset pricing model (CAPM) is one of the most commonly applied
models in finance and investment. The portfolio selection model, introduced by
Markowitz [21], offers a suitable portfolio based only on the mean and variance for
the returns of assets contained in the portfolio. The original CAPM of Sharp [23]
and Lintner [19] proposes efficient and intuitive predictions to measure risk and the
relation between expected return and market risk premiums. CAPM is still widely
used in many applications such as in estimating the cost of capital for firms and
in evaluating the performance of managed portfolios. Here, we consider CAPM as
follows:

E(Ri ) = R f + βi (E(Rm) − R f ),

where E(Ri ) and E(Rm) are the expected returns of the capital asset and the market
portfolio, respectively; R f is the risk-free rate; E(Rm) − R f is called the market
risk premium; and βi stands for the sensitivity of the expected asset returns to the
expected market returns and can be estimated as:

Cov(Rt − R f , Rm − R f )

Var(Rm − R f )
.

The CAPMobtains historic achievements in asset pricing and portfolio selection, but
still has some empirical defects in that the constant beta coefficient and time invariant
variance in the original market model make it less convincing to capture the dynam-
ics of the real financial market (see Engle and Rodrigues [9]). The autoregressive
conditionally heteroskedastic (ARCH) and generalized ARCH (GARCH) models of
Engle [8] and Bollerslev [2] provide an efficient technique tomeasure price volatility.
Bollerslev et al. [4] are the first to model a dynamic market beta in terms of time-
varying variances and covariance, via a multivariate GARCH model. Harvey [12]
uses the generalized method of moments, whereas Schwert and Seguin [22] employ
the weighted least-squares estimation approach that is robust to heteroskedasticity
for portfolio returns. Both studies provide evidence that does not favor the Sharpe-
LintnerCAPM.The existingmarketmodel is usually set up like aCAPM-typemodel,
which takes the form of a GARCH specification [6, 18] or exhibits a nonlinear form
[7]. Chen et al. [6] propose an asymmetric market model with heteroskedasticity and
use a quantile regression to show that each market beta varies with different quantile
levels. This set-up helps capture different states of market conditions and asymmetric
risk through market beta and negative news. Although the asymmetric market model
of Chen et al. [6] is favorable and successfully obtains model adequacy for many
stock’s returns traded in the Dow Jones Industrial Average, it is not directly applica-
ble to the stocks of AIG and Citigroup, because their daily returns might have struc-
tural changes in their underlying models. Like most financial corporations in 2008,
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Citigroup’s massive derivative portfolios were primarily made up of Collateralized
Debt Obligations (CDOs) and Mortgage Backed Securities (MBSs), with the major-
ity of its CDOs and MBSs of subprime quality. When the mortgage bubble burst,
Citigroup, Lehman Brothers, and AIG among many others were hit incredibly hard
for their bets on subprime lending. The authorities let Lehman Brothers go bankrupt,
whileCitigroupwas teetering on the edge of bankruptcy. Leading up to the crisis, AIG
had transformed itself from an insurance company into one of the leading players in
the new credit default swap market. AIG was in the business of insuring leveraged
debt just at the time when the financial system was on the brink of collapse. As a
result of its large default swap positions, the U.S. government took over AIG under
an $85 billion bailout package in 2008. In this study we focus on the market risk of
AIG and Citigroup stocks. For this task, we check the existence of structural changes
in the CAPM-type model with heteroskedasticity, using the residual-based cumula-
tive sum (CUSUM) of squares test for return volatility. The CUSUM of squares test
is a device that detects any changes of model parameters, because it has the ability
to note the change point and to allocate its location accurately. In order to test for
a variance change, Inclan and Tiao [11] propose the CUSUM of squares test for
independent and identically distributed (i.i.d.) normal random variables, based on
the earlier work of Brown et al. [5] who consider it to test for the constancy of the
regression coefficients. The CUSUM of squares test can also detect multiple change
points in the unconditional variance of possibly heteroskedastic time series [14]. Lee
et al. [17] and Lee and Lee [16] later use the residual-based CUSUMof squares test to
detect a parameter change in GARCH(1,1) models. This test’s merits help overcome
certain drawbacks, such as size distortions, that the estimates-based CUSUM test
[15] might have and improves the power of the CUSUM of squares test of Kim et al.
[14]. The stability of the test is due to the removal of trend and correlations. Under
the assumption of no change points, the test is simplified into testing for the variance
change of the i.i.d. error terms. Our goal is to explore the implications of long-run
changes in market betas for CAPM-based models. This research analyzes AIG and
Citigroup stock returns over 12years (January 3, 2005–March 31, 2016) with daily
data, particularly applying the CUSUM of squares test to detect the change points
in a market model with GARCH effect. Our first set of results renders the piecewise
CAPM-based market model with GARCH effect, wherein we determine the number
of change points in order to divide the whole time series into several sub-series of
homogeneity, estimate the model parameters for each sub-period, and evaluate the
market risk. Next, our second set of results concerns a piecewise quantile regression,
so as to explore the different behaviors in the market beta and lagged autoregressive
effect for different sub-periods and quantile levels. Some researchers expect the mar-
ket beta to be time-varying. Our last set of results pertains to the relationship between
time-varying betas and structural breaks. The intuition behind the empirical success
of our piecewise CAPM-based model is as follows. In our approach based on the
CUSUM test, given the structural break points, the proposed model captures asym-
metric risk by allowing the market beta to change discretely over time when driven
by market information. Our empirical results show that the CUSUM of squares test
is very powerful to detect changes in the model parameters. This paper is organized
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as follows. Section2 presents the CAPM-based market model with structural breaks
and employs the CUSUM of squares test. Section3 uses the piecewise CAPM-based
model to amend the CAPM-type model with heteroskedasticity for the daily excess
returns of the AIG and Citigroup stocks and adopts the quantile regression method to
explore the market beta coefficients of these two stocks for different sub-periods and
quantile levels. We further model time-varying betas using the CAPM-based market
model with GARCH(1,1) innovation. Section4 offers a comparison of time-varying
betas and structural breaks from the CUSUM of squares test. Section5 provides
concluding remarks.

2 Structural Change Market Models

The market model in finance relates the excess return of an individual stock to that
of a market index (see [24]), displayed as follows:

rt = β0 + β1rm,t + at , t = 1, . . . , n, (1)

rt = (ln Pt − ln Pt−1) × 100 − r f,t ,

rm,t = (ln Pm,t − ln Pm,t−1) × 100 − r f,t ,

where Pt and Pm,t are the individual stock and market price; r f,t are the risk-free
return; rt , rm,t are the individual stock and market excess return, and at is the error
term. The parameters β0 and β1 denote the excess return, with respect to the market.
Here, β1 is a coefficient that measures the expected change in rt given a change in
rm,t . Numerous works have demonstrated that employing the GARCH process for
at in a market model can achieve better performance.
Chen et al. [6] propose a GARCH-type market model that is an asymmetric market
model with heteroscedasticity by adding one more parameter in the regression to
investigate the magnitude of negative and positive news from the previous day to the
response of the stock market return. This is a measure of the leverage effect of rm,t−1.
In general, theGARCH(1,1)model is sufficient to capture volatility clustering inmost
financial applications [3]. To incorporate conditional variance into the system, Chen
et al. [6] consider the asymmetric market model with GARCH errors as follows:

rt = β0 + φ1rt−1 + β1rm,t + β2 I(rm,t−1<0)rm,t−1 + at , (2)

at = σtεt , εt i.i.d. ∼ t∗(v)

σ2
t = α0 + α1a

2
t−1 + γ1σ

2
t−1,

where t∗(v) represents a standardized Student-t distribution with zero mean and unit
variance; σ2

t denotes the conditional variance at time t, α0 > 0, 0 ≤ α1, γ1 < 1,
α1 + γ1 < 1; and I(rm,t−1<0) is an indicator function:



Structural Breaks of CAPM-type Market Model . . . 115

I(rm,t−1<0) =
{
1 if rm,t−1 < 0

0 if rm,t−1 ≥ 0.

Therefore, when rm,t−1 < 0, the lag effect from the previous day is measured by
β2 in the model; otherwise, there is no lag effect in the model. This model contains
the lagged value of the excess return, which helps identify whether the return series
shows mean reversion or market efficiency.

Although the asymmetric market model of Chen et al. [6] is quite promising and
appropriate in describing many stocks traded in the Dow Jones Industrial Average,
it cannot be directly applied to AIG and Citigroup, because their daily stock returns
might have structural changes during the period of investigation. In this section we
provide a method to check for the structural changes in model (1), related to the
excess returns of both AIG and Citigroup to a market index. Our procedure is as
follows.

Step 1: Identify structural changes by fitting the asymmetric market model in (1) to
each returns series and apply the CUSUM of squares test to their residuals to detect
the change in volatility of each series.

Step 2:Detect the change in volatility of each series based on the CUSUMof squares
test based on the residuals from Step 1:

Tn = 1√
nτ̂

max
1≤k≤n

∣∣∣∣∣

k∑

t=1

ε̂2t − k

n

n∑

t=1

ε̂2t

∣∣∣∣∣ ,

where τ̂ 2 = V̂ar(ε21) and ε̂t = ât
σ̂t
,

with ât are the estimates of at from the asymmetric market model in (1). Those
estimators play an important role to detect changes in the parameters in the presence
of any such changes: the i.i.d. property of the true errors still remains therein when
no changes exist.

Step 3: If change points exist, divide the returns series into sub-sample periods based
on their volatility.

For the computational task, we use the “changepoint” package in R. We then
examine the relationship between the excess return of an individual stock and that of
a market index for each sub-period. Next, we estimate model parameters to evaluate
market risk.

We further inspect the beta coefficients of the two firms’ financial investments
under extreme market conditions rather than for normal market conditions. Here, an
asymmetric market model with quantile regression is applied as well to explore the
different behaviors in the market beta and lagged autoregressive effect for different
sub-periods and quantile levels. The model by Chen et al. [6] is written as follows:

Q(τ )(rt |Ft−1) = β(τ )
0 + φ(τ )

1 rt−1 + β(τ )
1 rm,t + β(τ )

2 I(rm,t−1<0)rm,t−1, (3)



116 C. Chen et al.

where Q(τ )(rt ) represents the conditional τ th quantile estimates of the stock excess
return at time t , and Ft−1 is information set up to time t − 1. The quantile regression
minimizes an asymmetrically weighted sum of absolute errors as follows:

min
β(τ )

n∑

t=1

ρτ

(
rt − Q(τ )(rt |Ft−1)

)
,

where ρτ (u) = u × [τ − I(u<0)] and β(τ ) = (β(τ )
0 ,φ(τ )

1 ,β(τ )
1 ,β(τ )

2 )T . When τ = .05
and u < 0, the weight is−.95, while when u ≥ 0, the weight is 0.05. In other words,
when u < 0, the absolute error’s weight is 0.95, while for u ≥ 0, the absolute error’s
weight is 0.05.

3 Analytics Results

In our study we use the S&P500 Index as the market portfolio proxy for analyzing
AIG and Citigroup share prices. The datasets are downloaded from Yahoo Finance,
containing the daily three-month U.S Treasury bill rate and the level of the S&P500
Index. The sample period begins from January 3, 2005 toMarch 31, 2016 and consists
of 2,830 observations at maximum. For our analysis, we follow the steps below.
Step 1: Transform the daily three-month U.S Treasury bill rate it into the risk-free
rate r f,t :

r f,t =
⎛

⎜⎝
(
1 + it

100

) 1

365 − 1

⎞

⎟⎠ × 100.

Step 2: Calculate the excess returns of the individual stock and the market portfolio
based on stock price Pt and the value of themarket portfolio Pm,t on day t , via Eq. (1).

Figure1 presents the time series plots of daily excess returns for S&P500, T-bill,
AIG, and Citigroup from January 3, 2005 to March 31, 2016, showing that the two
series of returns forAIG andCitigroup aremuchmore volatile, especially their severe
downturn during the global financial crisis from 2008 to 2009 versus other periods.
Since a direct usage of model (1) is not appropriate owing to the different pattern as
seen in Fig. 1, we consider model (1) with structural breaks.

We now employ Steps 1 and 2 to detect the change points in the market model
fitted to AIG and Citigroup returns. Figure2 provides time series plots with multiple
change points from market model (1), detected from the residual-based CUSUM of
squares test. More precisely, AIG excess returns have three change points at 123,
697 and 1338, which are the respective observations at June 28, 2005, October 9,
2007, and April 27, 2010; whereas Citigroups excess returns have two change points
of detection at 696 and 1773, which are the respective observations at October 8,



Structural Breaks of CAPM-type Market Model . . . 117

Fig. 1 Time series plots: a daily excess returns of S&P500, b risk-free rate, c daily excess returns
of AIG, and d daily excess returns of Citigroup from January 3, 2005 to March 31, 2016
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Fig. 2 Detection of change points from CAPM-based model residuals using CUSUM of squares
test: AIG and Citigroup from January 3, 2005 to March 31, 2016

2007 and January 1, 2012. Here, we ignore the change point of 123 for AIG, since
otherwise there would not be enough observations in the first sub-series, thereby
dividing each time series into three sub-periods. The two stock returns naturally are
very volatile during the global financial crisis from 2008 to 2009, contained in the
second sub-period for both AIG and Citigroup.

Table1 lists summary statistics for the three sub-series of each stock’s daily return,
including the market (S&P500) and the Treasury bill (T-bill). The excess returns of
the three sub-periods for AIG and Citigroup have the widest range in the second
period, i.e. the 2nd sub-periods of AIG (−93.63 to 50.68) and Citigroup (49.5 to
45.6), respectively, whereas the market return (S&P500) ranges from −9.5 to 11.
This shows that the excess returns on stocks are much more volatile than those on
the market portfolio. All the stock returns have fat tails with the excess kurtosis
exceeding 3 (except for the T-bill) and negative skewness (except the 1st sub-period
of Citigroup and the T-bill), indicating that the left tail is heavier. The last column
presents the correlation coefficients between the individual stock returns and market
returns in each period, all ofwhich are positive around 0.4791 to 0.7470,meaning that
an increase in the market value is associated with that of the value of the stock returns



Structural Breaks of CAPM-type Market Model . . . 119

Ta
bl
e
1

Su
m
m
ar
y
st
at
is
tic
s:
tw
o
da
ily

ex
ce
ss

re
tu
rn
s
an
d
th
re
e
su
bs
er
ie
s
of

ea
ch

st
oc
k
fr
om

Ja
nu
ar
y
3,

20
05

to
M
ar
ch

31
,2

01
6

St
oc
k

M
ea
n

SD
Q
1

M
ed
ia
n

Q
3

M
in

M
ax

Sk
ew

ne
ss

E
xc
es
s

ku
rt
os
is

r

T-
bi
ll

0.
00
35

0.
00
5

0.
00
01

0.
00
04

0.
00
76

0
0.
01
39

1.
08
57

−0
.5
23
6

–

S&
P5

00
0.
01
53

1.
26
12

−0
.4
59

0.
06
62

0.
55
75

−9
.4
70
4

10
.9
56
5

−0
.3
21
2

10
.7
68
1

–

A
IG

−0
.1
06
7

4.
73
17

−1
.0
36

−0
.0
00
5

0.
96
04

−9
3.
62
99

50
.6
81
2

−2
.9
75
2

83
.0
94
6

0.
49
46

A
IG

1
0.
00
03

1.
10
69

−0
.5
16
6

0.
01
58

0.
57
56

−8
.3
99
1

5.
81
81

−0
.3
48
6

7.
95
37

0.
58
44

A
IG

2
−0

.5
35
4

9.
36
12

−3
.3
69

−0
.3
68
5

2.
57
05

−9
3.
62
99

50
.6
81
2

−1
.5
55
6

21
.4
59
8

0.
47
91

A
IG

3
0.
02
75

2.
04
67

−0
.9
49
2

0.
06
46

1.
03
57

−1
7.
48
5

12
.3
70
9

−0
.3
33

6.
79
37

0.
71
89

C
iti
gr
ou
p

−0
.0
79
8

3.
65
74

−1
.0
21
8

−0
.0
21
1

0.
96
41

−4
9.
46
96

45
.6
31
6

−0
.4
91
3

35
.0
59
9

0.
66
27

C
iti
gr
ou
p
1

0.
01
62

1.
02
84

−0
.4
73
3

0
0.
51
71

−5
.3
75
3

5.
59
3

0.
03
54

4.
68
6

0.
71
89

C
iti
gr
ou
p
2

−0
.2
49
2

5.
60
97

−2
.2
27
3

−0
.2
12
2

1.
82
75

−4
9.
46
96

45
.6
31
6

−0
.2
69
2

14
.9
82
1

0.
66
38

C
iti
gr
ou
p
3

0.
02
96

1.
73
94

−0
.8
90
5

0.
03
31

0.
95
06

−8
.5
53
4

7.
06
31

−0
.1
62
5

1.
94

0.
74
7

D
at
e
of

th
re
e
su
bs
er
ie
s
fo
r
ea
ch

st
oc
k:

A
IG

1:
1/
3/
20
05
–1
0/
8/
20
07
,A

IG
2:

10
/9
/2
00
7–
4/
26
/2
01
0,

A
IG

3:
4/
27
/2
01
0–
3/
31
/2
01
6

C
iti
gr
ou
p
1:

1/
3/
20
05
–1
0/
5/
20
07
,C

iti
gr
ou
p
2:

10
/8
/2
00
7–
1/
13
/2
01
2,

C
iti
gr
ou
p
3:

1/
17
/2
01
2–
3/
31
/2
01
6



120 C. Chen et al.

in each period. It shows that the highest and lowest correlations are respectively the
third sub-period of Citigroup and the second sub-period of AIG, which represents
their strong and weak linear dependence with the market.

Fig. 3 Scatter plot of daily excess returns between AIG stock (Y-axis) and S&P composite index
from January 2005 toMarch 2016. AIG 1: 1/3/2005–10/8/2007, AIG 2: 10/9/2007–4/26/2010, AIG
3: 4/27/2010–3/31/2016
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Fig. 4 Citigroup 1: 1/3/2005–10/5/2007, Citigroup 2: 10/9/2007–4/26/2010, Citigroup 3:
1/17/2012–3/31/2016

Figures3 and 4 show scatterplots of the market-to-stock excess returns of the
stocks for each sub-period. These plots display a positive correlation between each
excess stock return and the market for each sub-period. We see that 95% of obser-
vations for the first sub-series lie inside the ellipse, but the other subseries show that
a lot of observations are spread outside the ellipse, especially in the second series of
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Table 2 Parameter estimates and unconditional variance of three subseries for the market model
with GARCH effect

Stock β0 φ1 β1 α0 α1 γ1 v
α0

1 − α1 − γ1

AIG 1 −0.030 0.149 0.783 0.060 0.228 0.705 3.805 0.896

s.e. 0.025 0.040 0.030 0.029 0.084 0.097 0.547

AIG 2 −0.281 −0.008 1.769 2.581 0.332 0.667 2.847 2580.950

s.e. 0.114 0.040 0.084 0.990 0.077 0.332 0.225

AIG 3 −0.007 −0.035 1.244 0.004 0.018 0.979 4.021 1.173

s.e. 0.023 0.024 0.030 0.002 0.002 0.001 0.402

Citigroup 1 −0.012 0.039 0.916 0.080 0.114 0.733 4.404 0.526

s.e. 0.023 0.039 0.036 0.041 0.050 0.110 0.725

Citigroup 2 −0.213 0.047 1.694 0.337 0.231 0.761 4.482 40.951

s.e. 0.057 0.032 0.053 0.107 0.047 0.039 0.609

Citigroup 3 −0.057 0.076 1.387 0.006 0.023 0.974 4.672 1.446

s.e. 0.031 0.029 0.037 0.003 0.004 0.003 0.672

Date of time period for each stock:
AIG 1: 1/3/2005–10/8/2007, AIG 2: 10/9/2007–4/26/2010, AIG 3: 4/27/2010–3/31/2016
Citigroup 1: 1/3/2005–10/5/2007, Citigroup 2: 10/8/2007–1/13/2012, Citigroup 3: 1/17/2012–3/31/2016

each stock. In other words, the scatter plots provide empirical evidence to support
our quantile regression setting for examining the behavior and variation of themarket
beta, especially under extreme market conditions.

To estimate model parameters for each sub-period and also evaluate the market
risk of model (1), we use the “rugrach” package in R, available on CRAN (https://
cran.r-project.org/web/packages/changepoint/changepoint). The initial results show
that there is no need to fit an asymmetric effect on each sub-period any longer: the
proposed market model is given in (4). Indeed, the market beta has no significant
asymmetric impact on each sub-period for both AIG and Citigroup. Table2 shows
the estimation results on market model (4) for each sub-period:

rt = β0,i + φ1,i rt−1 + β1,i rm,t + at , (4)

at = σtεt , εt i.i.d. ∼ t∗(v)

σ2 = α0,i + α1,i a
2
t−1 + γ1,iσ

2
t−1,

i =

⎧
⎪⎨

⎪⎩

1 if t < c1
2 if c1 ≤ t < c2,

3 if t ≥ c2

where c1 and c2 are pre-fixed change points obtained based on the CUSUM test. To
ensure stationarity and positive volatilities, we impose the following constraints on
the volatility parameters:

α0,i > 0, 0 ≤ α1,i , γ1,i < 1,α1,i + γ1,i < 1, i = 1, 2, 3.

https://cran.r-project.org/web/packages/changepoint/changepoint
https://cran.r-project.org/web/packages/changepoint/changepoint
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We note the significant AR(1) coefficient at the 5% level for the first sub-period of
AIG and the third sub-period of Citigroup. The estimates of β1 appear to be crucial
for all sub-periods, having the relationship of β1,2 > β1,3 > 1 > β1,1, where β1,i

denotes themarket beta of sub-period i . The last column in Table2 shows the average
unconditional variance,α0,i/1 − α1,i − γ1,i . The average unconditional variances of
the second sub-period exhibit more extreme values than other sub-periods of each
stock: they are respectively 2581 and 41 for AIG and Citigroup during the global

Fig. 5 Time plots of volatility of model (4) for each sub-period of AIG



124 C. Chen et al.

Fig. 6 Time plots of volatility of model (4) for each sub-period of Citigroup

financial crisis. It is obvious that one should separate these extreme periods in model
building.

Figures5 and 6 provide estimated volatilities of all sub-periods for AIG and Citi-
group. These plots demonstrate that the estimated volatilities of the second sub-period
have tremendous volatility magnitude. Note that Figs. 5 and 6 do not have the same
scale in the y-axis; the first and third periods have the same scale, while the second
period of the two excess stock returns looks much more volatile, especially from
2008 to 2009.
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Table 3 Ljung-Box statistics from the standardized residuals, ãt−1, and squared standardized
residuals, ã2t−1, based on Model in (4)

Stock Q(1) p-value Q2(1) p-value Q(5) p-value Q2(5) p-value

AIG1 0.63 0.4274 0.0195 0.8889 3.084 0.4105 0.5751 0.9455

AIG2 3.317 0.0686 0.0117 0.9138 5.044 0.1027 0.1131 0.9976

AIG3 0.9492 0.3299 1.854 0.1733 1.1051 0.9299 2.382 0.5314

Citigroup1 1.376 0.2408 0.3561 0.5507 3.877 0.2456 0.989 0.8622

Citigroup2 2.251 0.1336 0 0.9993 3.062 0.4158 0.4716 0.962

Citigroup3 0.1731 0.6773 1.996 0.1577 1.3912 0.8723 2.464 0.5135

Date of three subseries for each stock:
AIG1: 1/3/2005–10/8/2007, AIC2: 10/9/2007–4/26/2010, AIG3: 4/27/2010–3/31/2016
Citigroup1: 1/3/2005–10/5/2007, Citigroup2: 10/8/2007–1/13/2012, Citigroup3: 1/17/2012–3/31/2016

Diagnostic checking is an important task in model fitting. Here, we use the Ljung-
Box test [20] to examine model adequacy based on the autocorrelation functions
(ACFs) of standardized residuals ãt−1 = (at−1/σt−1) to check the adequacy of the
mean equation as well as those of the squared standardized residuals ã2t−1 to check
the validity of the volatility equation as shown in Table3. The Ljung-Box statistics
show that market model (4) is adequate for all sup-periods: all p-values appear to
be greater than 0.05. Figures7 and 8 present the ACF plots of squared standardized
residuals for all three subseries of AIG and Citigroup, respectively. To save space,
we do not list ACF plots of standardized residuals for all three subseries for the two
stocks. No significant autocorrelations are shown in the residuals for all subseries of
the two, thus indicating that the market model with structural breaks fits quite well
to AIG and Citigroup stocks in each sub-period.

We finally consider the quantile regression on the asymmetric market mode and
estimate market model (5) as follows:

Q(τ )(rt |Ft−1) = β(τ )
o,i + φ(τ )

1,i rt−1 + β(τ )
1,i rm,t + β(τ )

2,i I(rm,t−1<0)rm,t−1, (5)

i =

⎧
⎪⎨

⎪⎩

1 if t < c1
2 if c1 ≤ t < c2,

3 if t ≥ c2

where Q(τ )(rt ) represents the conditional τ th quantile estimates of stock excess
return at time t , and Ft−1 is information set up to time t − 1. Again, c1 and c2 are
pre-fixed change points based on the CUSUM test. In Table4 the estimate results
of the numbers represent the quantile estimates and the corresponding least square
estimates (LSEs) for the asymmetric quantile model (5). It shows that the intercept
β(τ )
0,i increases in τ as expected; the intercepts are negative at low quantile levels

and positive at high quantile levels for each sub-period. The quantile estimates of
β(τ )
1,i behave very differently across the quantile levels and sub-periods. For example,

the relation β(τ )
1,1 < β(τ )

1,3 < β(τ )
1,2 is true for all quantile levels for AIG and Citigroup.
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Fig. 7 ACF plots of squared standardized for AIG1, AIG2, and AIG3 based on the market model
with GARCH effects in (4), respectively

Moreover, the estimates of β(0.1)
1,2 are the highest among all quantile levels for both

stocks, i.e. β(0.1)
1,2 = 2.2540 and β(0.1)

1,2 = 2.0444 for AIG and Citigroup, respectively.
There are some asymmetric effects during the second sub-period for AIG and

Citigroup for some τ levels. Table4 shows that β(τ )
2,2 is significantly positive at lower

quantile levelswhen τ = 0.1 and0.2 forCitigroup,whileβ(τ )
2,2 is significantly negative

at higher quantile levels for AIG (τ = 0.7, 0.8) and Citigroup (τ = 0.7, 0.8, 0.9).
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Fig. 8 ACF plots of squared standardized for Citigroup1, Citigroup2, and Citigroup3 based on the
market model with GARCH effects in (4), respectively

The AR(1) coefficients, φ(τ )
1,1 and φ(τ )

1,3, are insignificant for all τ . We observe that

some of the coefficients of φ(τ )
1,2 are significant in the lower regime and/or the upper

regime in extreme quantile levels. This implies that investors react differently and
have different preferences when facing variedmarket news, especially under extreme
quantile levels. Figures9 and 10 provide all quantile levels versus the corresponding
parameter estimates, including 95% confidence intervals for model (5) in each sub-
period for AIG and Citigroup, respectively. The LSE and 95% confidence intervals
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Fig. 9 AIG: Parameter estimates and the corresponding 95% confidence intervals for model (5)
under all quantile levels. The first two rows denote the quantile plots of the first sub-period. The
3rd and 4th rows denote the quantile plots of the second sub-period. The 5th and 6th rows denote
the quantile plots of the third sub-period
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Fig. 10 Citigroup: Parameter estimates and the corresponding 95% confidence intervals for model
(5) under all quantile levels. The first two rows denote the quantile plots of the first sub-period. The
3rd and 4th rows denote the quantile plots of the second sub-period. The 5th and 6th rows denote
the quantile plots of the third sub-period
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are denoted by solid and dash lines, respectively. We find that the estimates of β(τ )
2,2

behave very differently from LSE, which is lower than that of LSE in most cases.

4 Times-Varying Betas

For the CAPM-type market model in Eq. (1), we have:

β = Cov(rt , rm,t )

Var(rm,t )
.

Ferson and Harvey [10] propose a conditional CAPM that describes the time-varying
dynamics of the market beta. Adrian and Franzoni [1] introduce ‘learning’ into
standard conditional CAPM models, by estimating betas with the Kalman filter.
Tsay [25] also demonstrates time-varying betas based on the CAPM-type model
with GARCH (1,1) innovations. In this section we compare structural changes of
beta coefficients and time-varying betas by using the CAPM-based model in (1)
with GARCH (1,1) errors, which model the time-varying β. Following Tsay’s [25]
suggestion, we estimate Cov(rt , rm,t ) as follows.

Var(ri + rm,t ) = Var(rt ) + 2Cov(rt , rm,t ) + Var(rm,t ),

Var(ri − rm,t ) = Var(rt ) − 2Cov(rt , rm,t ) + Var(rm,t ).

We thus obtain:

Cov(ri , rm,t ) = Var(ri + rm,t ) − Var(ri − rm,t )

4
(6)

This indicates that time-varying covariances between excess returns rm,t and rt can be
obtained by the volatilities of rt + rm,t and rt − rm,t . Since the estimate of Var(rm,t )

can be obtained by the volatility of the GARCH(1,1) model with Gaussian errors, βt

can be estimated via the ratio of Eq.6 and the estimate of Var(rm,t ). Figures11 and 12
illustrate the time-varying β for the daily excess returns of AIG and Citigroup stocks,
indicating that the betas fluctuate substantially in the period between the suggested
two break points and is high in the latter part of 2008. The magnitude of variations of
the time-varying betas is much more severe for AIG within the range of (-7.7, 7.3).
This result highlights that it is reasonable to discretize time-varying betas over time
into three sub-periods based on the CUSUM of squares test.
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Fig. 11 Time-varying betas for the daily excess returns of AIG stock from January 3, 2005 to
December 31, 2016. The daily excess returns of the S&P 500 index are used as the market returns.
The vertical lines denote the two structure breaks detected by the CUSUM test

Fig. 12 Time-varying betas for the daily excess returns of Citigroup stock from January 3, 2005 to
December 31, 2016. The daily excess returns of the S&P 500 index are used as the market returns.
The vertical lines denote the two structure breaks detected by the CUSUM test
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5 Conclusion

The world economy faced one of its most considerable systemic risk crises in 2008.
In fact, the contagion began in 2007 after home prices in the U.S. had just peaked,
leading to the values of subprime mortgage portfolios plunging downward first for
the entire U.S. financial sector and then to financial markets overseas. On September
15, 2008, the government decided to not bail out Lehman Brothers, allowing one of
the largest investment banks in theU.S. to go bankrupt. One day later, the government
instead rescued AIG, because it was deemed too big to fail (see [13]), bailing out the
insurance company to the amount of $85 billion.

In this work we use the CAPM-type model with heteroskedasticity for AIG and
Citigroup stock returns during 2005 to 2016with two structural breaks to discriminate
the period influenced by the global financial crisis, subsequently observing a dramatic
change in the beta coefficient and volatility in the second sub-period for both stocks.
We confirm the time-varying nature of market risk in response to changes in the
market, and that this variation can change over different time periods. Next, the
quantile regression method reveals a different behavior in the market beta and lagged
autoregressive effect for different sub-periods and quantile levels. Our findings are
consistent with the fact that the beta coefficients of AIG and Citigroup stocks in
the second sub-period show a more extreme trend, and that the third sub-period has
the second highest beta coefficient, indicating high risk for AIG and Citigroup even
for the last sub-period relative to other listed stocks in the market. All these results
confirm the validity of our method in examining the behavior of the beta coefficient
and volatility of big-cap stocks such as AIG and Citigroup.
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Weighted Least Squares and Adaptive Least
Squares: Further Empirical Evidence

Martin Sterchi and Michael Wolf

Abstract This paper compares ordinary least squares (OLS), weighted least squares
(WLS), and adaptive least squares (ALS) by means of a Monte Carlo study and
an application to two empirical data sets. Overall, ALS emerges as the winner: It
achieves most or even all of the efficiency gains of WLS over OLS when WLS
outperforms OLS, but it only has very limited downside risk compared to OLS when
OLS outperforms WLS.

1 Introduction

The linear regression model is still a cornerstone of empirical work in the social
sciences. The standard textbook treatment assumes conditional homoskedasticity
of the error terms. When this assumption is violated—that is, when conditional
heteroskedasticity is present—standard inference is no longer valid. The current
practice in such a setting is to estimate the model by ordinary least squares (OLS)
and use heteroskedasticity-consistent (HC) standard errors; this approach dates back
to [14].

[13] propose to ‘resurrect’ the previous practice of using weighted least squares
(WLS), which weights the data before applying OLS. Theweighting scheme is based
on an estimate of the skedastic function, that is, of the function that determines the
conditional variance of the error term given the values of the regressors. In practice,
the model for estimating the skedastic function may be misspecified. If this is the
case, using standard inference based on theweighted datawill not be valid. Therefore,
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[13] propose to also use HC standard errors for weighted data (as would be done
for the original data) and prove asymptotic validity of the resulting inference under
suitable regularity conditions.

[13] also propose adaptive least squares (ALS) where a pretest for conditional
heteroskedasticity decides whether the applied researcher should use OLS (with
HC standard errors) or WLS (with HC standard errors). Asymptotic validity of the
resulting inference is established as well.

In addition to providing asymptotic theory, [13] examine finite-sample perfor-
mance of WLS and ALS compared to OLS via Monte Carlo simulations. But these
simulations are restricted to univariate regressions (that is, regressions where there is
only one regressor in addition to the constant). In applied work, though, multivariate
regressions are more common.

The purpose of this paper is two-fold. On the one hand, we provide extensive
Monte Carlo simulations comparing WLS and ALS to OLS in multivariate regres-
sions, covering both estimation and inference. On the other hand, we compare the
results of WLS and ALS to OLS for two empirical data sets.

The remainder of the paper is organized as follows. Section2 gives a brief descrip-
tion of the methodology for completeness. Section3 examines finite-sample perfor-
mance via a Monte Carlo study. Section4 provides an application to two empirical
data sets. Section5 concludes.

2 Brief Description of the Methodology

For completeness, we give a brief description of the methodology for WLS and ALS
here. More details can be found in [13].

2.1 The Model

We maintain the following set of assumptions throughout the paper.

(A1) The linear model is of the form

yi = x ′
iβ + εi (i = 1, . . . , n), (1)

where xi ∈ R
K is a vector of explanatory variables (regressors), β ∈ R

K is a
coefficient vector, and εi is the unobservable error term with certain properties
to be specified below.

(A2) The sample
{
(yi , x ′

i )
}n
i=1 is independent and identically distributed (i.i.d.).
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(A3) All the regressors are predetermined in the sense that they are orthogonal to
the contemporaneous error term:

E(εi |xi ) = 0. (2)

(A4) The K × K matrix Σxx
..= E(xi x ′

i ) is nonsingular (and hence finite). Further-
more,

∑n
i=1 xi x

′
i is invertible with probability one.

(A5) The K × K matrix Ω ..= E(ε2i xi x
′
i ) is nonsingular (and hence) finite.

(A6) There exists a nonrandom function v : R
K → R+ such that

E(ε2i |xi ) = v(xi ). (3)

Therefore, the skedastic function v(·) determines the functional form of the
conditional heteroskedasticity. Note that under (A6),

Ω = E
[
v(xi ) · xi x ′

i

]
.

It is useful to introduce the customary vector-matrix notations

y ..=
⎡

⎢⎣
y1
...

yn

⎤

⎥⎦ , ε ..=
⎡

⎢⎣
ε1
...

εn

⎤

⎥⎦ , X ..=
⎡

⎢⎣
x ′
1
...

x ′
n

⎤

⎥⎦ =
⎡

⎢⎣
x11 . . . x1K
... . . .

...

xn1 . . . xnK

⎤

⎥⎦ ,

so that Eq. (1) can be written more compactly as

y = Xβ + ε. (4)

Furthermore, assumptions (A2), (A3), and (A5) imply that

Var(ε|X) =
⎡

⎢⎣
v(x1)

. . .

v(xn)

⎤

⎥⎦ .

2.2 Estimators: OLS, WLS, and ALS

The well-known ordinary least squares (OLS) estimator of β is given by

β̂OLS
..= (X ′X)−1X ′y.

Under the maintained assumptions, the OLS estimator is unbiased and consistent.
This is the good news.
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A more efficient estimator can be obtained by reweighting the data (yi , x ′
i ) and

then applying OLS in the transformed model

yi√
v(xi )

= x ′
i√

v(xi )
β + εi√

v(xi )
. (5)

Letting

V ..=
⎡

⎢⎣
v(x1)

. . .

v(xn)

⎤

⎥⎦ ,

the resulting estimator can be written as

β̂BLUE
..= (X ′V−1X)−1X ′V−1y. (6)

It is the best linear unbiased estimator (BLUE) and is consistent; in particular, it
is more efficient than the OLS estimator. However, it is generally not a feasible
estimator, since the skedastic function v(·) is generally unknown.

A feasible approach is to estimate the skedastic function v(·) from the data in
some way and to then apply OLS in the model

yi√
v̂(xi )

= x ′
i√

v̂(xi )
β + εi√

v̂(xi )
, (7)

where v̂(·) denotes the estimator of v(·). The resulting estimator is the weighted least
squares (WLS) estimator. Letting

V̂ ..=
⎡

⎢⎣
v̂(x1)

. . .

v̂(xn)

⎤

⎥⎦ ,

the WLS estimator can be written as

β̂WLS
..= (X ′V̂−1X)−1X ′V̂−1y.

It is not necessarily unbiased. If v̂(·) is a consistent estimator of v(·), than WLS is
asymptoticallymore efficient thanOLS.But even if v̂(·) is an inconsistent estimator of
v(·), WLS can result in large efficiency gains over OLS in the presence of noticeable
conditional heteroskedasticity; see Sect. 3.

The idea of adaptive least squares (ALS) is that we let the data ‘decide’ whether
to use OLS or WLS for the estimation. Intuitively, we only want to use WLS if there
is ‘noticeable’ conditional heteroskedasticity present in the data. Here, ‘noticeable’
is with respect to the model used for estimating the skedastic function in practice.
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[13] suggest applying a test for conditional heteroskedasticity. Several such tests
exists, the most popular ones being the tests of [2, 14]; also see [9, 10]. If the null
hypothesis of conditional homoskedasticity it not rejected by such a test, use the OLS
estimator; otherwise, use the WLS estimator. The resulting estimator is nothing else
than the ALS estimator.

2.3 Parametric Model for Estimating the Skedastic Function

In order to estimate the skedastic function v(·), [13] suggest the use of the following
parametric model:

vθ(xi ) ..= exp
(
ν + γ2 log |xi,2| + . . . + γK log |xi,K |), (8)

with θ ..= (ν, γ2, . . . , γK )′, assuming that xi,1 ≡ 1 (that is, the original regression
contains a constant). Otherwise, the model should be

vθ(xi ) ..= exp
(
ν + γ1 log |xi,1| + γ2 log |xi,2| + . . . + γK log |xi,K |),

with θ ..= (ν, γ1, . . . , γK )′.Such amodel is a special case of the formofmultiplicative
conditional heteroskedasticity previously proposed by [5] and Sect. 9.3 of [8], among
others.

Assuming model (8), the test for conditional heteroskedasticity specifies

H0 : γ2 = . . . = γK = 0 versus H1 : at least one γk �= 0 (k = 2, . . . , K ).

To carry out the test, fix a small constant δ > 0, estimate the following regression by
OLS:

log
[
max(δ2, ε̂2i )

] = ν + γ2 log |xi,2| + . . . + γK log |xi,K | + ui , (9)

with ε̂i ..= yi − x ′
i β̂OLS, and denote the resulting R2-statistic by R2.1 Furthermore,

denote by χ2
K−1,1−α the 1 − α quantile of the chi-squared distribution with K − 1

degrees of freedom. Then the test rejects conditional homoskedasticity at nominal
level α if n · R2 > χ2

K−1,1−α.
Last but not least, the estimate of the skedastic function is given by

v̂(·) ..= vθ̂(·),

where θ̂ is an estimator of θ obtained by the OLS regression (9).

1The reason for introducing a small constant δ > 0 on the left-hand side of (9) is that, because one
is taking logs, one needs to avoid a residual of zero, or even very near zero. The choice δ = 0.1
seems to work well in practice.
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2.4 Inference: OLS, WLS, and ALS

2.4.1 Confidence Intervals

A nominal 1 − α confidence interval for βk based on OLS is given by

β̂k,OLS ± tn−K ,1−α/2 · SEHC(β̂k,OLS), (10)

where tn−K ,1−α/2 denotes the 1 − α/2 quantile of the t distribution with n − K
degrees of freedom. Here SEHC(·) denotes a HC standard error. Specifically [13]
suggest to use the HC3 standard error introduced by [12].

A nominal 1 − α confidence interval for βk based on WLS is given by

β̂k,WLS ± tn−K ,1−α/2 · SEHC(β̂k,WLS), (11)

where again [13] suggest to use the HC3 standard error.
A nominal 1 − α confidence interval for βk based on ALS is given by either (10)

or (11), depending on whether the ALS estimator is equal to the OLS estimator or
to the WLS estimator.

2.4.2 Testing a Set of Linear Restrictions

Consider testing a set of linear restrictions on β of the form

H0 : Rβ = r,

where R ∈ R
p×K is matrix of full row rank specifying p ≤ K linear combinations

of interest and r ∈ R
p is a vector specifying their respective values under the null.

A HC Wald statistic based on the OLS estimator is given by

WHC(β̂OLS)
..= n

p
· (Rβ̂OLS − r)′

[
R ÂvarHC(β̂OLS)R

′]−1
(Rβ̂OLS − r).

Here ÂvarHC(β̂OLS) denotes a HC estimator of the asymptotic variance of β̂OLS, that
is, of the variance of the limiting multivariate normal distribution of β̂OLS. More
specifically, if √

n(β̂OLS − β)
d−→ N (0,Σ),

where the symbol
d−→ denotes convergence in distribution, then ÂvarHC(β̂OLS) is

an estimator of Σ . Related details can be found in Sect. 4 of [13]; in particular, it is
again recommended to use a HC3 estimator.
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A HC Wald statistic based on the WLS estimator is given by

WHC(β̂WLS)
..= n

p
· (Rβ̂WLS − r)′

[
R ÂvarHC(β̂WLS)R

′]−1
(Rβ̂WLS − r).

For a generic Wald statistic W , the corresponding p-value is obtained as

PV (W ) ..= Prob{F ≥ W̃ }, where F ∼ Fp,n .

Here, Fp,n denotes the F distribution with p and n degrees of freedom.
HC inference based on the OLS estimator reports PV (WHC(β̂OLS)) while HC

inference based on the WLS estimator reports PV (WHC(β̂WLS)). Depending on the
outcome of the test for conditional heteroskedasticity, ALS inference either coincides
with OLS inference (namely, if the test does not reject conditional homoskedasticity)
or coincides withWLS inference (namely, if the test rejects conditional homoskedas-
ticity).

3 Monte Carlo Evidence

3.1 Configuration

We consider the following multivariate linear regression model

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + εi . (12)

The regressors are first generated according to a uniform distribution between 1 and
4, denoted by U [1, 4]. The simulation study is then repeated with the regressors
generated according to a Beta distribution with the parameters α = 2 and β = 5,
denoted by Beta(2,5). In order to guarantee a range of values comparable to the one
for the uniformly distributed regressors, the Beta distributed regressors have been
multiplied by five. [11] chooses a standard lognormal distribution for the regressors
and points out that, as a result, HC inference becomes particularly difficult because
of a few extreme observations for the regressors. Since both the standard lognormal
distribution and the Beta(2,5) distribution are right-skewed, the second part of the
simulation study is in the spirit of the one in [11].

The error term model in (12) is given by

εi ..= √
v(xi )zi (13)

where zi ∼ N (0, 1) and zi is independent of all explanatory variables xi . Here, v(·)
corresponds to the skedastic function and will be specified below. Alternatively, a
settingwith error terms following a t-distributionwith five degrees of freedom (scaled
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Table 1 Parametric specifications of the skedastic function

S.1 v(xi ) = z(γ) · |xi,1|γ · |xi,2|γ · |xi,3|γ with γ ∈ {0, 1, 2, 4}
S.2 v(xi ) = z(γ)

(
γ|xi,1| + γ|xi,2| + γ|xi,3|

)
with γ ∈ {1, 2, 3}

S.3 v(xi ) = z(γ) exp
(
γ|xi,1| + γ|xi,2| + γ|xi,3|

)
with γ ∈ {0.5, 1}

S.4 v(xi ) = z(γ)
(|xi,1| + |xi,2| + |xi,3|

)γ with γ ∈ {2, 4}

to have variance one) will be tested. Without loss of generality, the parameters in
(12) are all set to zero, that is, (β0,β1,β2,β3) = (0, 0, 0, 0).

We consider four parametric specifications of the skedastic function as shown in
Table1. For the sake of simplicity, all specifications use only one parameter γ. (For
example, Specification S.1 uses a common power γ on the absolute values of xi,1,
xi,2, and xi,3.) It would in principle be possible to use more than one parameter in a
given specification, but then the number of scenarios in ourMonte Carlo study would
become too large. [11] proposes the use of a scaling factor for the specifications in
order to make sure that the conditional variance of εi is on average one, while the
degree of heteroskedasticity remains the same. For that reason, all the specifications
in Table1 contain a scaling factor z(γ). [4] suggest measuring the aforementioned
degree of heteroskedasticity by the ratio of the maximal value of v(x) to the minimal
value of v(x). Consequently, in the case of conditional homoskedasticity, the degree
of heteroskedasticity is one. The full set of results is presented in Table4; note
that in specification S.2, the degree of heteroskedasticity does not depend on the
value of γ.

3.2 Estimation of the Skedastic Function

The following parametric model is used to estimate the skedastic function:

vθ(xi ) = exp(υ + γ1 log |xi,1| + γ2 log |xi,2| + γ3 log |xi,3|). (14)

It can be reformulated as

vθ(xi ) = exp(υ) · |xi,1|γ1 · |xi,2|γ2 · |xi,3|γ3 . (15)

Formulation (15) is equivalent to specification S.1 with exp(υ) = z(γi ). Hence, in
the case of specification S.1, we assume the correct functional form of the skedastic
function when estimating it. For all other specifications mentioned in the previous
section—namely S.2–S.4—model (14) is misspecified.
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The parameters of model (14) will be estimated by the following OLS regression:

log[max(δ2, ε̂2i )] = υ + γ1 log |xi,1| + γ2 log |xi,2| + γ3 log |xi,3| + ui , (16)

where the ε̂2i are the squared OLS residuals from regression (12). [13] suggest using
a small constant δ > 0 on the left-hand side of (16) in order to avoid taking the
logarithm of squared OLS residuals near zero; as they do, we use δ = 0.1.

Denote the fitted values of the regression (16) by ĝi . Then weights of the data for
the application of WLS are simply given by v̂i

..= exp(ĝi ), for i = 1, . . . , n.

3.3 Estimation, Inference, and Performance Measures

The parameters in the regression model (12) are estimated using OLS and WLS.
In addition, we include the ALS estimator. As suggested in Remark 3.1 of [13], a
Breusch-Pagan test will be applied in order to determine the ALS estimator. Condi-
tional homoskedasticity is rejected if nR2 > χ2

3,0.9, where the R
2 statistic in this test

is taken from the OLS regression (16). If conditional homoskedasticity is rejected,
ALS coincides with WLS; otherwise ALS coincides with OLS.

To measure the performance of the different estimators, we use the empirical
mean squared error (eMSE) given by

eMSE(β̃k)
..= 1

B

B∑

b=1

(β̃k,b − βk)
2, (17)

where β̃k denotes a generic estimator (OLS, WLS, or ALS) of the true parameter βk .
As is well known, the population mean squared error (MSE) can be broken down
into two components as follows:

MSE(β̃k) = Var(β̃k) + Bias2(β̃k). (18)

Thus, the MSE corresponds to the sum of the variance of an estimator β̃k and its
squared bias. While OLS is unbiased even in the case of conditional heteroskedastic-
ity, WLS and ALS can be biased. Therefore, using the eMSE makes sure that OLS,
WLS, and ALS are compared on equal footing.

We also assess the finite-sample performance of confidence intervals of the type

β̃k ± tn−4,1−α/2 · SE(β̃k), (19)
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where SE is either the HC standard error or the maximal (Max) standard error2 of
the corresponding estimator β̃k and tn−K ,1−α/2 denotes the 1 − α/2 quantile of the t
distribution with n − K degrees of freedom.

First, we compute the empirical coverage probability of nominal 95% confidence
intervals. Second, for OLS-Max, WLS-HC,WLS-Max, ALS-HC and ALS-Max, we
compute the ratio of the average length of the confidence interval to the average
length of the OLS-HC confidence interval, which thus serves as the benchmark. All
the performance measures are chosen as in [13] to facilitate comparability of the
results.

3.4 Results

We discuss separately the results for estimation and inference. For compactness of
the exposition, we only report results for β1. (The results for β2 and β3 are very
similar and are available from the authors upon request.)

3.4.1 Estimation

Tables5 and 6 in the appendix present the basic set of results when the regressors
are generated according to a uniform distribution while the error terms are normally
distributed. If the specification used to estimate the weights corresponds to the true
specification of the skedastic function (Table5),WLS is generallymore efficient than
OLS, except for the case of conditional homoskedasticity (γ = 0). For γ = 0, OLS
is more efficient than WLS, which is reflected by ratios of the eMSE’s (WLS/OLS)
that are higher than one for all of the sample sizes. As n increases the ratios get
closer to one, indicating a smaller efficiency loss of WLS compared to OLS. On the
other hand, for positive values of γ, WLS is always more efficient than OLS and the
efficiency gains can be dramatic for moderate and large sample sizes (n = 50, 100)
and for noticeable conditional heteroskedasticity (γ = 2, 4). ALS offers an attractive
compromise between OLS and WLS. Under conditional homoskedasticity (γ = 0),
the efficiency loss compared to OLS is negligible, as all the eMSE ratios are no larger
than 1.03. Under conditional heteroskedasticity, the efficiency gains over OLS are
not as large as for WLS for small sample sizes (n = 20) but they are almost as large
as for WLS for moderate sample sizes (n = 50) and equally as large as for WLS for
large sample sizes (n = 100) (Tables2 and 3).

2See Sect. 4.1 of [13] for a detailed description of the Max standard error. In a nutshell, the Max
standard error is the maximum of the HC standard error and the ‘textbook’ standard error from an
OLS regression, which assumes conditional homoskedasticity.
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Table 2 OLS and WLS results for the CEO salaries data set. WLS/OLS denotes the ratio of the
WLS-HC standard error to the OLS-HC standard error. For this data set, ALS coincides with WLS

Response variable: log(salary)

OLS

Coefficient Estimate SE-HC t-stat

constant 4.504 0.290 15.54

log(sales) 0.163 0.039 4.15

log(mktval) 0.109 0.052 2.11

ceoten 0.012 0.008 1.54

R2 = 0.32 R̄2 = 0.31 s = 0.50 F = 26.91

WLS

Coefficient Estimate SE-HC t-stat WLS/OLS

constant 4.421 0.240 18.45 0.83

log(sales) 0.152 0.037 4.13 0.94

log(mktval) 0.126 0.044 2.91 0.84

ceoten 0.015 0.007 2.31 0.88

R2 = 0.33 R̄2 = 0.32 s = 1.73 F = 29.04

Table 3 OLS and WLS results for the housing prices data set. WLS/OLS denotes the ratio of the
WLS-HC standard error to the OLS-HC standard error. For this data set, ALS coincides with WLS

Response variable: log(price)

OLS

Coefficient Estimate SE (HC) t-stat

constant 11.084 0.383 28.98

log(nox) −0.954 0.128 −7.44

log(dist) −0.134 0.054 −2.48

rooms 0.255 0.025 10.10

stratio −0.052 0.005 −11.26

R2 = 0.58 R̄2 = 0.58 s = 0.27 F = 175.90

WLS

Coefficient Estimate SE (HC) t-stat WLS/OLS

constant 10.195 0.272 37.43 0.71

log(nox) −0.793 0.097 −8.17 0.76

log(dist) −0.127 0.035 −3.62 0.65

rooms 0.307 0.016 19.23 0.63

stratio −0.037 0.004 −8.78 0.90

R2 = 0.68 R̄2 = 0.68 s = 1.33 F = 267.8

The higher the degree of heteroskedasticity, the higher the efficiency gain is of
WLS over OLS. For instance, γ = 4 results in very strong conditional heteroskedas-
ticity, as can be seen in Table4. As a result, the ratio of the eMSE of WLS to the
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eMSE of OLS is below 0.05 for large sample sizes (n = 100). However, in the case
of conditional homoskedasticity (γ = 0), OLS is more efficient than WLS, which is
reflected by ratios of the eMSE’s (WLS/OLS) that are higher than one for all of the
sample sizes (though getting closer to one as n increases).

Figure1 displays density plots of the three estimators of β1 in the case of the
four different parameter values of specification S.1 and for n = 100. The four plots
visualize the potential efficiency gains of WLS and ALS over OLS as presented in
Table5 numerically. In the cases of γ = 2 and γ = 4, the density of ALS is virtually
equal to the density of WLS, as there is no visible difference. It can be clearly seen
how the variances of WLS and ALS get smaller relative to OLS when the degree of
conditional heteroskedasticity increases.

What changes if the specification used to estimate the skedastic function does not
correspond to the true specification thereof? The results for this case are presented
in Table6. First of all, the linear specification S.2 results in WLS being less efficient
than OLS. Although the linear specification represents a form of conditional het-
eroskedasticity, it is of a different form than our parametric model used to estimate
the skedastic function (that is, misspecified model). Due to the linearity of specifica-
tion S.2, any choice of γ will result in the same degree of heteroskedasticity, given
the sample size n. Therefore, the results of the simulation study were the same for
different values of γ. Next, in specification S.3, WLS is more efficient than OLS for
both choices of γ and all sample sizes. Finally, specification S.4 results inWLS being
less efficient than OLS for small andmoderate sample sizes (n = 20 and n = 50) and
γ = 2, whereas WLS is clearly more efficient when γ = 4. Unsurprisingly, γ = 4
corresponds to a considerably higher degree of heteroskedasticity than γ = 2. Again,
ALS offers an attractive compromise. It is never noticeably less efficient than OLS
(that is, eMSE ratios never larger than 1.03) but is nearly as efficient (n = 50) or as
efficient (n = 100) as WLS when WLS outperforms OLS.

Do the results differ if the regressors are not uniformly distributed or if the error
terms are not normally distributed? In order to answer this question, the simulation
study has been repeated with two different settings.

First, the regressors were chosen to follow a Beta(2,5) distribution, as specified in
Sect. 3.1. As a consequence, the degree of heteroskedasticity is higher in most cases
(except for specification S.3). compared to when the regressors follow a uniform
distribution; see Table4. A comparison of the two results reveals that, once again,
the main factor relevant for the efficiency of WLS compared to OLS seems to be
the degree of heteroskedasticity. Interestingly though, these results do not seem to
apply to any degree of heteroskedasticity. Consider for example the first specifica-
tion S.1. In the case of conditional homoskedasticity, the ratios of the eMSE’s are
similar, whereas introducing conditional heteroskedasticity (γ = 1 and γ = 2) leads
to considerably stronger efficiency gains of WLS compared to OLS in the case of
the Beta-distributed regressors. Unsurprisingly, the degree of heteroskedasticity for
these two specifications is substantially higher in the case of Beta-distributed regres-
sors. However, for γ = 4, WLS is more efficient in the case of uniformly distributed
regressors, although the degree of heteroskedasticity is considerably lower than with
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Beta-distributed regressors. The results for the other specifications (S.2–S.4) gener-
ally support the findings described in this paragraph.

Second, the basic setting has been changed by letting zi follow a t-distributionwith
five degrees of freedom (scaled to have variance one). For small andmoderate sample
sizes (n = 20, 50), the efficiency gains of WLS over OLS are more pronounced
compared to normally distributed zi , whereas the efficiency gains are similar for
n = 100.

As before, ALS offers an attractive compromise: (i) it is never noticeably less
efficient than OLS and (ii) it enjoys most (n = 50) or practically all (n = 100) of the
efficiency gains of WLS in case WLS outperforms OLS.

Remark 1 (Graphical Comparison)We find it useful to ‘condense’ the information
on the ratios of the eMSE’s contained in Tables5, 6, 7, 8, 9 and 10 into a single
Fig. 2. For each sample size (n = 20, 50, 100) and each method (WLS and ALS)
there are 27 eMSE ratios compared to OLS. Here the number 27, corresponds to
all combinations of specification of the skedastic function, corresponding parameter,
distribution of the regressors, and distribution of the error term. For each sample
size (n = 20, 50, 100), two boxplots are juxtaposed: one for the 27 eMSE ratios of
WLS and one for the 27 eMSE ratios of ALS. In each case, a dashed horizontal line
indicates the value of 1.0 (that is, same efficiency as OLS).

It can be seen that for each sample size, ALS has smaller risk of efficiency loss
(with respect to OLS) than WLS: the numbers above the horizontal 1.0-line do not
extend as far up. On the other hand, ALS also has a smaller chance of efficiency
gain (with respect to OLS) than WLS: the numbers below the horizontal 1.0-line do
not extend as far down. But the corresponding differences diminish with the sample
size: There is a marked difference for n = 20, a moderate difference for n = 50, and
practically no difference for n = 100.

Therefore, it can also be seen graphically that ALS offers an attractive com-
promise: (i) it is never noticeably less efficient than OLS and (ii) it enjoys most
(n = 50) or practically all (n = 100) of the efficiency gains of WLS in case WLS
outperforms OLS. ��

3.4.2 Inference

As described in Sect. 3.3, we use two performance measures to evaluate confidence
intervals: the empirical coverage probability of a nominal 95% confidence interval
and the ratio of the average length of a confidence interval to the average length of
the OLS-HC confidence interval.3

The results for the basic setting, in which the regressors are uniformly distrib-
uted and the error terms are normally distributed, are presented in Tables11 and 12.

3The second performance measure does not depend on the nominal confidence level, since by
definition (19), it is equivalent to the ratio of the average standard error of a given method to the
average OLS-HC standard error.
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In general, confidence intervals based on WLS-HC standard errors tend to under-
cover for small and moderate sample sizes (n = 20, 50). The empirical coverage
probabilities for the OLS-HC confidence intervals, on the other hand, are generally
satisfactory. Based on the theory, we would expect that all the HC confidence inter-
vals tend to undercover in small samples due to the bias and increased variance of HC
standard error estimates. Yet, the results here indicate that the HC confidence inter-
vals for the WLS estimator are more prone to liberal inference. [6, p. 137] points out
that the large-sample approximations forWLS are often unsatisfactory becauseWLS
requires the estimation of more parameters (the parameters of the skedastic function)
than OLS. Increasing the sample size improves the adequacy of the WLS-HC con-
fidence intervals and the empirical coverage probabilities are always above 94% for
n = 100. ALS-HC confidence intervals exhibit better coverage thanWLS-HC confi-
dence intervals: Already for n = 50, the empirical coverage probabilities are always
over 94%.

When the degree of heteroskedasticity is high, then the average length ofWLS-HC
confidence intervals can be substantially shorter than the average length of OLS-HC
confidence intervals. For instance, for specification S.1 with γ = 4 and n = 100,
the average length of the WLS-HC confidence interval amounts to only 18% of the
average length of the OLS-HC confidence interval, while the empirical coverage
probability is more than satisfactory (95.8%). It is important to note that on aver-
age short confidence intervals are only desirable if, at the same time, the empirical
coverage probability is satisfactory. These findings have important implications for
empirical research. It is crucial to only apply WLS in combination with HC standard
errors when the sample size is large enough, that is, n ≥ 100. For smaller sample
sizes, the results of the simulation study have shown that the empirical coverage
probabilities can be too low. On the other hand, the ALS-HC confidence interval
appears trustworthy for moderate sample sizes already, that is, for n ≥ 50. Further-
more, the efficiency gains of the ALS-HC confidence interval over the OLS-HC (in
terms of average length) are generally also substantial in the presence of notice-
able conditional heteroskedasticity. For instance, for specification S.1 with γ = 4
and n = 100, the average length of the ALS-HC confidence interval also amounts
to only 18% of the average length of the OLS-HC confidence interval, while the
empirical coverage probability is more than satisfactory (95.8%).

As before, we want to analyze what happens when the regressors follow a Beta
distribution as specified in Sect. 3.1, instead of a uniform distribution. As can be
seen in Tables13 and 14, for most of the specifications, the WLS-HC confidence
intervals do not have a satisfactory empirical coverage probability, especially for
small sample sizes. In the case of S.1 with γ = 2 or γ = 4, however, the empirical
coverage probability is surprisingly high even for small sample sizes. [3] note that in
the case of severe heteroskedasticity, the HC standard errors might be upward biased.
In fact, the degree of heteroskedasticity is quite extreme for these two specifications
and it is much higher than in the case of uniformly distributed regressors; see Table4.
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In contrast to the WLS-HC confidence intervals, the ALS-HC confidence intervals
exhibit satisfactory coverage for moderate and large sample sizes (n = 50, 100)with
all empirical coverage probabilities exceeding 94%.

Themain result shown in [3] is that the bias ofHC standard errors not only depends
on the sample size, but also on whether or not a sample contains high leverage points.
In empirical work, an observation is usually considered as a high leverage point if
its diagonal element of the hat matrix is larger than 2p/n, where p is the rank of
the design matrix X .4 A comparison of the diagonal elements of the hat matrix for
both distributional assumptions of the regressors reveals that the samples created by
Beta-distributed regressors generally containmore high leverage points. For instance,
when n = 100, the sample with Beta distributed regressors contains six high leverage
points, while the samplewith uniformly distributed regressors only contains two high
leverage points. Interestingly, for n = 100, the empirical coverage probability, for
both OLS-HC and WLS-HC, is always larger for uniformly distributed regressors,
that is, samples with fewer high leverage points, except for S.1 with γ = 2, 4 (which
was discussed above).

Remark 2 (Maximal Standard Errors) The problem of undercoverage for small and
moderate sample sizes (=20, 50) can be mitigated by using maximal standard errors,
that is, by the use of WLS-Max and ALS-Max. Using maximal standard errors is
proposed in Sect. 8.1 of [1], for example. However, these intervals can overcover by
a lot for large sample sizes (n = 100), exhibiting empirical coverage probabilities
sometimes near 100%. (This is also true for OLS-Max, although to a lesser extent.)
Therefore, using maximal standard errors to mitigate undercoverage for small and
moderate sample sizes seems a rather crude approach. A more promising approach,
not leading to sizeable overcoverage for large sample sizes, would be the use of
bootstrap methods. This topic is currently under study. ��
Remark 3 (Graphical Comparison) We find it useful to ‘condense’ the information
on the ratios of the average lengths of confidence intervals contained in Tables11,
12, 13, 14, 15 and 16 into a single Fig. 3. We only do this for the sample size n = 100
to ensure a fair comparison. Comparisons for n = 20, 50 would not be really fair
to OLS, given that WLS confidence intervals tend to undercover for n = 20, 50 and
that ALS confidence intervals tend to undercover for n = 20.

It can be seen that bothWLS and ALS are always weakly more efficient than OLS
in the sense that none of the average-length ratios are above 1.0. It can also be seen
that, for all practical purposes, ALS is as efficient as OLS. ��

4 Empirical Applications

This section examines the application of OLS, WLS, and ALS to two empirical data
sets. As will be seen the use of WLS and ALS can lead to much smaller standard

4It can be shown [7, e.g.] that p/n corresponds to the average element of the hat matrix.
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errors (and thus much shorter confidence intervals) in the presence of noticeable
conditional heteroskedasticity.

The two data sets are taken from [15].5 In the first example, we model CEO
salaries while in the second example, we model housing prices.

4.1 CEO Salaries

This cross-sectional data set from 1990 contains the salaries of 177 CEOs as well as
further variables describing attributes of the CEOs and the corresponding companies.
Themodel considered in this section tries to explain the log of the CEO salaries.6 The
variables (one response and three explanatory) used in the regression model under
consideration are as follows:

log(salary): log of CEO’s salary (in US$1,000)
log(sales): log of firm sales (in million US$)
log(mktval): log of market value (in million US$)
ceoten: years as the CEO of the company

The sample size is n = 177 and the number of regressors (including the constant)
is K = 4. Based on the results of the Monte Carlo study in Sect. 3, the sample size
is large enough so that WLS and ALS inference can both be trusted.

The model is specified as in [15, p. 213] and is first estimated using OLS. The
results are shown in the upper part of Table2. The estimated coefficients are all
positive, which intuitively makes sense. Examining the t-statistics (based on HC
standard errors) shows that all estimated coefficients are significant at the 5% level
except for the estimated coefficient on ceoten, which is insignificant.

The lower part of Table2 shows the WLS results. The WLS estimates do not
substantially differ from the OLS estimates. However, the HC standard errors are
always smaller for WLS compared to OLS and generally noticeably so, with the
ratios ranging from 0.93 to 0.84. In particular, now all estimated coefficients are
individually significant at the 5% level, including the estimated coefficient on ceoten.

To determine the nature of ALS, we run a Breusch-Pagan test as described in
Sect. 2.3.7 The critical value of the test is χ2

3,0.90 = 6.25 and the value of the test
statistic is 8.25. Hence, the test detects conditional heteroskedasticity and ALS coin-
cides with WLS.

5The two data sets are available under the names CEOSAL2 and HPRICE2, respectively at http://
fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html.
6The log always corresponds to the natural logarithm.
7This regression results in taking the log of log(sales) and log(mktval) on the right-hand side;
taking absolute values is not necessary, since log(sales) and log(mktval) are always positive.
Furthermore, some observations have a value of zero for ceoten; we replace those values by 0.01
before taking logs.

http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html
http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html


Weighted Least Squares and Adaptive Least Squares: Further Empirical Evidence 151

4.2 Housing Prices

This cross-sectional data set from 1970 contains 506 observations from communities
in the Boston area. The aim is to explain the median housing price in a community
by means of the level of air pollution, the average number of rooms per house and
other community characteristics. The variables (one response and four explanatory)
used in the regression model under consideration are as follows:

log(price): log of median housing price (in US$)
log(nox): log of nitrogen oxide in the air (in parts per million)
log(dist): log of weighted distance from 5 employment centers (in miles)
rooms: average number of rooms per house
stratio: average student-teacher ratio

The sample size is n = 506 and the number of regressors (including the constant)
is K = 5. Based on the results of the Monte Carlo study in Sect. 3, the sample size
is large enough so that WLS and ALS inference can both be trusted.

Themodel follows an example in [15, p. 132]. The results from theOLS estimation
are reported in the upper part of Table3. All the estimated coefficients have the
expected sign and are significant at the 1% level.

The lower part of Table3 shows the WLS results. The WLS estimates do not
substantially differ from the OLS estimates. However, the HC standard errors are
always smaller for WLS compared to OLS and generally noticeably so, with the
ratios ranging from 0.90 to 0.63. As for OLS, all estimated coefficients are signifi-
cant at the 1% level. But the corresponding confidence intervals based on WLS are
shorter compared to OLS due to the smaller standard errors, which results in more
informative inference. For example, a 95% confidence interval for the coefficient
on rooms is given by [0.276, 0.338] based on WLS and by [0.258, 0.356] based on
OLS. Needless to say, the smaller standard errors for WLS compared to OLS would
also result in more powerful hypothesis tests concerning the various regression coef-
ficients.

To determine the nature of ALS, we run a Breusch-Pagan test as described in
Sect. 2.3. The critical value of the test is χ2

4,0.90 = 7.78 and the value of the test
statistic is 92.08. Hence, the test detects conditional heteroskedasticity and ALS
coincides with WLS.

5 Conclusion

The linear regression model remains a cornerstone of applied research in the social
sciences.Many real-life data sets exhibit conditional heteroskedasticity whichmakes
text-book inference based on ordinary least squares (OLS) invalid. The current prac-
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tice in analyzing such data sets—going back to [14]—is to use OLS in conjunction
with heteroskedasticity consistent (HC) standard errors.

In a recent paper, [13] suggest to return to the previous practice of using weighted
least squares (WLS), also in conjunction with HC standard errors. Doing so ensures
validity of the resulting inference even if the model for estimating the skedastic
function is misspecified. In addition, they make the new proposal of adaptive least
squares (ALS), where it is ‘decided’ from the data whether the applied researcher
should use either OLS or WLS, in conjunction with HC standard errors.

This paper makes two contributions. On the one hand, we have compared finite-
sample performance of OLS,WLS, andALS formultivariate regressions via aMonte
Carlo study.On the other hand,we have comparedOLS,WLS, andALSwhen applied
to two empirical data sets.8

The results of the Monte Carlo study point towards ALS as the overall winner.
When WLS outperforms OLS, then ALS achieves most (for moderate sample sizes)
or even all (for large sample sizes) of the gains of WLS; and these gains can be
dramatic. When OLS outperforms WLS, then it also outperforms ALS but by a
much smaller margin. Consequently, when comparing ALS to OLS, there is large
upside potential and only very limited downside risk.

The application to two empirical data sets have shown that WLS and ALS can
achieve large efficiency gains over OLS in the presence of noticeable conditional
heteroskedasticity. Namely, smaller standard errors result in shorter (and thus more
informative) confidence intervals and in more powerful hypothesis tests.

A Figures and Tables

8[13] only use univariate regressions in their Monte Carlo study and do not provide any applications
to empirical data sets.
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Fig. 1 Density plots for the estimators of β1 for Specification S.1 and its four parameter values.
The sample size is 100, the regressors are U [1, 4]-distributed and the error terms follow a standard
normal distribution

Table 4 Degree of heteroskedasticity for the different specifications of the scedastic function. The
degree of heteroskedasticity is measured as max(v(x))/min(v(x))

S.1 S.2 S.3 S.4

Uniform Beta Uniform Beta Uniform Beta Uniform Beta

γ = 0 γ = 1 γ = 0.5 γ = 2

n = 20 1.0 1.0 1.9 3.0 14.4 10.0 3.8 8.7

n = 50 1.0 1.0 2.0 5.3 15.2 24.0 4.1 28.0

n = 100 1.0 1.0 2.8 6.4 34.0 25.2 7.9 41.1

γ = 1 γ = 2 γ = 1 γ = 4

n = 20 9.7 174.1 1.9 3.0 206.2 99.5 14.3 76.0

n = 50 10.4 439.3 2.0 5.3 231.8 576.9 16.5 781.9

n = 100 24.3 682.5 2.8 6.4 1,157.5 633.8 62.5 1,689.3

γ = 2 γ = 3

n = 20 93.3 30,323.5 1.9 3.0

n = 50 108.3 193,011.0 2.0 5.3

n = 100 590.5 465,764.5 2.8 6.4

γ = 4

n = 20 8,699.6 0.92 × 109

n = 50 11,737.4 37 × 109

n = 100 348,646.3 217 × 109
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Fig. 2 Boxplots of the ratios of the eMSE of WLS (left) and ALS (right) to the eMSE of OLS. For
a given sample size n = 20, 50, 100, the boxplots are over all 27 combinations of specification of
the skedastic function, parameter value, distribution of the regressors, and distribution of the error
terms
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Fig. 3 Boxplots of the ratios
of the average length of
WLS confidence intervals
for β1 (left) and ALS
confidence intervals for β1
(right) to the average length
of OLS confidence intervals
for β1. For the given sample
size n = 100, the boxplots
are over all 27 combinations
of specification of the
skedastic function, parameter
value, distribution of the
regressors, and distribution
of the error terms
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Table 5 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.1. The numbers in parentheses express the ratios of the eMSE of a given estimator to the eMSE
of the OLS estimator. The regressors are U [1, 4]-distributed and the error terms follow a standard
normal distribution.

OLS WLS ALS

S.1 (γ = 0)

n = 20 0.064 0.077 (1.19) 0.066 (1.03)

n = 50 0.029 0.032 (1.13) 0.029 (1.03)

n = 100 0.013 0.014 (1.08) 0.013 (1.02)

S.1 (γ = 1)

n = 20 0.071 0.065 (0.92) 0.070 (0.98)

n = 50 0.026 0.022 (0.85) 0.025 (0.93)

n = 100 0.011 0.008 (0.72) 0.008 (0.73)

S.1 (γ = 2)

n = 20 0.084 0.042 (0.50) 0.062 (0.73)

n = 50 0.028 0.012 (0.42) 0.014 (0.49)

n = 100 0.010 0.003 (0.27) 0.003 (0.27)

S.1 (γ = 4)

n = 20 0.097 0.019 (0.20) 0.041 (0.42)

n = 50 0.034 0.004 (0.10) 0.004 (0.12)

n = 100 0.010 0.000 (0.04) 0.000 (0.04)
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Table 6 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specifications
S.2–S.4. The numbers in parentheses express the ratios of the eMSE of a given estimator to the
eMSE of the OLS estimator. The regressors are U [1, 4]-distributed and the error terms follow a
standard normal distribution

OLS WLS ALS

S.2 (γ > 0)

n = 20 0.066 0.077 (1.17) 0.068 (1.03)

n = 50 0.028 0.030 (1.10) 0.028 (1.03)

n = 100 0.012 0.013 (1.04) 0.012 (1.02)

S.3 (γ = 0.5)

n = 20 0.077 0.064 (0.83) 0.073 (0.94)

n = 50 0.028 0.022 (0.79) 0.024 (0.88)

n = 100 0.011 0.007 (0.65) 0.008 (0.67)

S.3 (γ = 1)

n = 20 0.092 0.036 (0.39) 0.058 (0.63)

n = 50 0.030 0.010 (0.33) 0.012 (0.39)

n = 100 0.011 0.002 (0.20) 0.002 (0.20)

S.4 (γ = 2)

n = 20 0.069 0.074 (1.08) 0.070 (1.02)

n = 50 0.027 0.028 (1.03) 0.027 (1.01)

n = 100 0.012 0.011 (0.92) 0.011 (0.93)

S.4 (γ = 4)

n = 20 0.076 0.063 (0.83) 0.072 (0.94)

n = 50 0.027 0.021 (0.79) 0.024 (0.88)

n = 100 0.011 0.007 (0.61) 0.007 (0.62)
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Table 7 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.1. The numbers in parentheses express the ratios of the eMSE of a given estimator to the eMSE
of the OLS estimator. The regressors are Beta(2,5)-distributed and the error terms follow a standard
normal distribution

OLS WLS ALS

S.1 (γ = 0)

n = 20 0.142 0.172 (1.21) 0.147 (1.03)

n = 50 0.032 0.037 (1.13) 0.033 (1.03)

n = 100 0.013 0.014 (1.09) 0.013 (1.02)

S.1 (γ = 1)

n = 20 0.122 0.081 (0.66) 0.106 (0.87)

n = 50 0.034 0.016 (0.46) 0.020 (0.58)

n = 100 0.016 0.006 (0.36) 0.006 (0.36)

S.1 (γ = 2)

n = 20 0.129 0.049 (0.38) 0.095 (0.74)

n = 50 0.033 0.006 (0.18) 0.010 (0.31)

n = 100 0.017 0.002 (0.13) 0.002 (0.13)

S.1 (γ = 4)

n = 20 0.136 0.038 (0.28) 0.115 (0.84)

n = 50 0.025 0.003 (0.13) 0.013 (0.52)

n = 100 0.014 0.003 (0.18) 0.003 (0.19)
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Table 8 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specifications
S.2–S.4. The numbers in parentheses express the ratios of the eMSE of a given estimator to the
eMSE of the OLS estimator. The regressors are Beta(2,5)-distributed and the error terms follow a
standard normal distribution

OLS WLS ALS

S.2 (γ > 0)

n = 20 0.131 0.152 (1.16) 0.134 (1.02)

n = 50 0.033 0.035 (1.04) 0.034 (1.01)

n = 100 0.014 0.014 (0.97) 0.014 (0.99)

S.3 (γ = 0.5)

n = 20 0.123 0.121 (0.99) 0.122 (0.99)

n = 50 0.035 0.029 (0.81) 0.032 (0.91)

n = 100 0.018 0.013 (0.70) 0.014 (0.72)

S.3 (γ = 1)

n = 20 0.111 0.070 (0.63) 0.098 (0.88)

n = 50 0.036 0.013 (0.37) 0.018 (0.50)

n = 100 0.025 0.007 (0.28) 0.007 (0.28)

S.4 (γ = 2)

n = 20 0.123 0.124 (1.01) 0.123 (1.00)

n = 50 0.035 0.029 (0.82) 0.032 (0.92)

n = 100 0.016 0.012 (0.72) 0.012 (0.74)

S.4 (γ = 4)

n = 20 0.115 0.079 (0.69) 0.103 (0.89)

n = 50 0.037 0.016 (0.44) 0.020 (0.54)

n = 100 0.021 0.007 (0.33) 0.007 (0.33)
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Table 9 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.1. The numbers in parentheses express the ratios of the eMSE of a given estimator to the eMSE of
the OLS estimator. The regressors areU [1, 4]-distributed but the error terms follow a t-distribution
with five degrees of freedom

OLS WLS ALS

S.1 (γ = 0)

n = 20 0.064 0.070 (1.10) 0.064 (1.01)

n = 50 0.028 0.030 (1.08) 0.029 (1.01)

n = 100 0.013 0.013 (1.04) 0.013 (1.01)

S.1 (γ = 1)

n = 20 0.071 0.060 (0.84) 0.067 (0.94)

n = 50 0.026 0.022 (0.82) 0.024 (0.91)

n = 100 0.011 0.008 (0.70) 0.008 (0.72)

S.1 (γ = 2)

n = 20 0.084 0.038 (0.45) 0.058 (0.70)

n = 50 0.028 0.011 (0.41) 0.014 (0.50)

n = 100 0.011 0.003 (0.28) 0.003 (0.28)

S.1 (γ = 4)

n = 20 0.096 0.016 (0.17) 0.038 (0.39)

n = 50 0.034 0.004 (0.11) 0.004 (0.13)

n = 100 0.011 0.001 (0.05) 0.001 (0.05)



160 M. Sterchi and M. Wolf

Table 10 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.2–S.4. The numbers in parentheses express the ratios of the eMSE of a given estimator to the
eMSE of the OLS estimator. The regressors are U [1, 4]-distributed but the error terms follow a
t-distribution with five degrees of freedom

OLS WLS ALS

S.2 (γ > 0)

n = 20 0.065 0.070 (1.07) 0.066 (1.00)

n = 50 0.027 0.029 (1.05) 0.028 (1.01)

n = 100 0.012 0.012 (1.00) 0.012 (1.00)

S.3 (γ = 0.5)

n = 20 0.077 0.058 (0.76) 0.069 (0.90)

n = 50 0.027 0.021 (0.76) 0.024 (0.87)

n = 100 0.012 0.007 (0.63) 0.008 (0.66)

S.3 (γ = 1)

n = 20 0.091 0.031 (0.35) 0.055 (0.60)

n = 50 0.030 0.010 (0.32) 0.012 (0.40)

n = 100 0.011 0.002 (0.21) 0.002 (0.21)

S.4 (γ = 2)

n = 20 0.068 0.068 (1.00) 0.067 (0.99)

n = 50 0.027 0.026 (0.98) 0.027 (0.99)

n = 100 0.012 0.011 (0.89) 0.011 (0.94)

S.4 (γ = 4)

n = 20 0.076 0.058 (0.76) 0.068 (0.90)

n = 50 0.027 0.020 (0.76) 0.023 (0.87)

n = 100 0.012 0.007 (0.60) 0.007 (0.62)
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Table 11 Empirical coverage probabilities of nominal 95%confidence intervals forβ1 in the case of
Specification S.1 (in percent). The numbers in parentheses express the ratios of the average length of
a given confidence interval to the average length of OLS-HC. The regressors areU [1, 4]-distributed
and the error terms follow a standard normal distribution

OLS-HC OLS-Max WLS-HC WLS-Max ALS-HC ALS-Max

S.1 (γ = 0)

n = 20 96.4 97.1 (1.02) 92.7 (0.91) 93.6 (0.93) 95.4 (0.98) 96.1 (1.00)

n = 50 95.5 96.2 (1.02) 93.3 (0.97) 94.1 (0.99) 94.9 (0.99) 95.7 (1.01)

n = 100 95.4 95.9 (1.02) 94.1 (0.99) 94.7 (1.01) 95.1 (1.00) 95.6 (1.01)

S.1 (γ = 1)

n = 20 96.6 97.1 (1.01) 93.0 (0.81) 93.9 (0.82) 95.0 (0.91) 95.6 (0.93)

n = 50 95.7 96.7 (1.04) 93.9 (0.85) 94.7 (0.88) 94.2 (0.91) 95.1 (0.93)

n = 100 95.5 96.7 (1.06) 94.3 (0.81) 95.2 (0.84) 94.1 (0.82) 95.1 (0.85)

S.1 (γ = 2)

n = 20 96.3 96.6 (1.00) 92.9 (0.58) 93.9 (0.59) 94.4 (0.70) 94.4 (0.71)

n = 50 95.4 96.3 (1.03) 94.1 (0.60) 95.1 (0.62) 94.3 (0.62) 94.8 (0.64)

n = 100 95.4 97.2 (1.09) 94.3 (0.50) 96.7 (0.56) 94.3 (0.50) 96.7 (0.56)

S.1 (γ = 4)

n = 20 96.1 96.2 (1.00) 94.2 (0.31) 94.9 (0.32) 94.2 (0.40) 94.8 (0.41)

n = 50 94.8 95.2 (1.01) 94.6 (0.27) 97.1 (0.31) 94.5 (0.27) 97.0 (0.31)

n = 100 95.7 97.6 (1.11) 95.8 (0.18) 99.9 (0.32) 95.8 (0.18) 99.9 (0.32)
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Table 12 Empirical coverage probabilities of nominal 95% confidence intervals for β1 in the
case of Specification S.2–S.4 (in percent). The numbers in parentheses express the ratios of the
average length of a given confidence interval to the average length of OLS-HC. The regressors are
U [1, 4]-distributed and the error terms follow a standard normal distribution

OLS-HC OLS-Max WLS-HC WLS-Max ALS-HC ALS-Max

S.2 (γ > 0)

n = 20 96.5 97.1 (1.02) 92.8 (0.90) 93.6 (0.92) 95.4 (0.97) 96.1 (0.99)

n = 50 95.7 96.4 (1.03) 93.5 (0.96) 94.2 (0.98) 95.0 (0.99) 95.7 (1.01)

n = 100 95.5 96.0 (1.03) 94.2 (0.97) 94.7 (0.99) 94.9 (0.99) 95.4 (1.01)

S.3 (γ = 0.5)

n = 20 96.5 96.9 (1.01) 92.7 (0.76) 93.5 (0.78) 94.6 (0.88) 95.1 (0.89)

n = 50 95.7 96.5 (1.03) 93.9 (0.82) 94.5 (0.84) 94.1 (0.88) 94.7 (0.89)

n = 100 95.5 96.5 (1.05) 94.2 (0.77) 94.9 (0.79) 94.1 (0.78) 94.8 (0.80)

S.3 (γ = 1)

n = 20 96.5 96.7 (1.00) 92.4 (0.49) 93.1 (0.50) 93.1 (0.61) 93.7 (0.62)

n = 50 95.3 95.8 (1.02) 93.9 (0.53) 94.7 (0.54) 94.1 (0.54) 94.4 (0.55)

n = 100 95.5 96.9 (1.07) 94.1 (0.43) 96.6 (0.47) 94.1 (0.43) 96.6 (0.47)

S.4 (γ = 2)

n = 20 96.5 97.1 (1.01) 92.9 (0.87) 93.7 (0.89) 95.3 (0.96) 95.9 (0.97)

n = 50 95.7 96.5 (1.03) 93.6 (0.93) 94.4 (0.95) 94.7 (0.97) 95.6 (0.99)

n = 100 95.4 96.2 (1.03) 94.2 (0.92) 94.8 (0.93) 94.4 (0.94) 95.0 (0.96)

S.4 (γ = 4)

n = 20 96.6 97.0 (1.01) 92.9 (0.76) 93.7 (0.78) 94.7 (0.88) 95.3 (0.89)

n = 50 95.7 96.6 (1.03) 94.0 (0.82) 94.7 (0.84) 94.1 (0.87) 94.9 (0.90)

n = 100 95.5 96.5 (1.05) 94.1 (0.75) 94.9 (0.77) 94.0 (0.75) 94.9 (0.77)
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Table 13 Empirical coverage probabilities of nominal 95%confidence intervals forβ1 in the case of
Specification S.1 (in percent). The numbers in parentheses express the ratios of the average length
of a given confidence interval to the average length of OLS-HC. The regressors are Beta(2,5)-
distributed and the error terms follow a standard normal distribution

OLS-HC OLS-Max WLS-HC WLS-Max ALS-HC ALS-Max

S.1 (γ = 0)

n = 20 96.0 97.0 (1.03) 91.2 (0.89) 92.7 (0.92) 94.7 (0.97) 95.8 (1.00)

n = 50 95.3 95.9 (1.02) 93.1 (0.97) 94.1 (0.99) 94.7 (0.99) 95.4 (1.01)

n = 100 95.2 96.0 (1.03) 93.7 (0.99) 94.7 (1.01) 94.8 (1.00) 95.6 (1.02)

S.1 (γ = 1)

n = 20 97.7 98.6 (1.05) 93.9 (0.67) 95.6 (0.71) 95.6 (0.83) 96.9 (0.88)

n = 50 95.4 95.9 (1.02) 94.1 (0.62) 95.6 (0.65) 94.5 (0.65) 95.0 (0.69)

n = 100 94.7 95.3 (1.02) 94.0 (0.55) 95.7 (0.60) 94.0 (0.55) 95.7 (0.60)

S.1 (γ = 2)

n = 20 98.2 98.8 (1.04) 96.8 (0.50) 98.1 (0.53) 97.4 (0.73) 98.4 (0.76)

n = 50 95.4 95.7 (1.01) 96.3 (0.38) 98.2 (0.46) 95.9 (0.42) 97.6 (0.49)

n = 100 94.7 95.3 (1.02) 95.7 (0.31) 98.2 (0.39) 95.7 (0.31) 98.2 (0.39)

S.1 (γ = 4)

n = 20 98.7 99.1 (1.01) 99.0 (0.45) 99.5 (0.48) 98.7 (0.84) 99.1 (0.85)

n = 50 97.2 97.3 (1.01) 98.6 (0.38) 99.6 (0.53) 98.5 (0.57) 99.1 (0.65)

n = 100 95.3 96.4 (1.05) 96.6 (0.35) 98.4 (0.46) 96.5 (0.36) 98.3 (0.47)



164 M. Sterchi and M. Wolf

Table 14 Empirical coverage probabilities of nominal 95% confidence intervals for β1 in the
case of Specification S.2–S.4 (in percent). The numbers in parentheses express the ratios of the
average length of a given confidence interval to the average length of OLS-HC. The regressors are
Beta(2,5)-distributed and the error terms follow a standard normal distribution

OLS-HC OLS-Max WLS-HC WLS-Max ALS-HC ALS-Max

S.2 (γ > 0)

n = 20 96.5 97.5 (1.04) 91.8 (0.87) 93.2 (0.90) 95.0 (0.96) 96.1 (1.00)

n = 50 95.2 95.8 (1.02) 93.0 (0.92) 93.9 (0.95) 94.2 (0.97) 95.0 (0.99)

n = 100 94.9 95.4 (1.02) 93.5 (0.93) 94.2 (0.94) 94.0 (0.96) 94.5 (0.97)

S.3 (γ = 0.5)

n = 20 97.0 97.9 (1.04) 92.2 (0.81) 93.8 (0.84) 95.1 (0.93) 96.2 (0.97)

n = 50 95.4 95.8 (1.01) 93.1 (0.82) 93.8 (0.83) 94.0 (0.89) 94.3 (0.89)

n = 100 94.7 94.9 (1.01) 93.2 (0.78) 93.5 (0.79) 93.7 (0.82) 93.9 (0.82)

S.3 (γ = 1)

n = 20 97.7 98.4 (1.04) 94.5 (0.64) 95.9 (0.67) 95.9 (0.84) 97.0 (0.87)

n = 50 95.9 96.0 (1.01) 94.0 (0.56) 95.3 (0.59) 94.1 (0.62) 94.9 (0.63)

n = 100 94.6 94.8 (1.00) 93.2 (0.47) 93.9 (0.48) 93.6 (0.48) 94.1 (0.49)

S.4 (γ = 2)

n = 20 97.0 97.9 (1.04) 92.5 (0.82) 94.1 (0.85) 95.3 (0.94) 96.4 (0.98)

n = 50 95.3 95.8 (1.01) 93.1 (0.83) 94.0 (0.85) 93.8 (0.89) 94.3 (0.90)

n = 100 94.7 95.1 (1.01) 93.4 (0.79) 93.9 (0.80) 93.8 (0.82) 94.2 (0.83)

S.4 (γ = 4)

n = 20 97.8 98.5 (1.05) 94.8 (0.68) 96.1 (0.71) 96.2 (0.85) 97.2 (0.89)

n = 50 95.6 95.8 (1.01) 93.8 (0.60) 95.0 (0.63) 93.9 (0.65) 94.5 (0.65)

n = 100 94.5 94.7 (1.00) 93.3 (0.52) 94.2 (0.53) 93.8 (0.53) 94.4 (0.54)
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Table 15 Empirical coverage probabilities of nominal 95%confidence intervals forβ1 in the case of
Specification S.1 (in percent). The numbers in parentheses express the ratios of the average length of
a given confidence interval to the average length of OLS-HC. The regressors areU [1, 4]-distributed
and the error terms follow a t-distribution with five degrees of freedom

OLS-HC OLS-Max WLS-HC WLS-Max ALS-HC ALS-Max

S.1 (γ = 0)

n = 20 97.1 97.8 (1.03) 93.3 (0.88) 94.3 (0.90) 96.1 (0.97) 96.8 (0.99)

n = 50 95.8 96.6 (1.04) 93.5 (0.95) 94.6 (0.98) 95.1 (0.98) 96.1 (1.02)

n = 100 95.4 96.0 (1.03) 94.3 (0.97) 95.0 (1.00) 95.1 (0.99) 95.7 (1.02)

S.1 (γ = 1)

n = 20 97.2 97.7 (1.02) 93.7 (0.79) 94.6 (0.81) 95.7 (0.91) 96.4 (0.92)

n = 50 96.0 97.0 (1.05) 93.9 (0.84) 95.1 (0.87) 94.5 (0.90) 95.7 (0.94)

n = 100 95.5 96.8 (1.07) 94.2 (0.81) 95.4 (0.85) 94.2 (0.82) 95.4 (0.86)

S.1 (γ = 2)

n = 20 97.0 97.2 (1.01) 93.7 (0.58) 94.6 (0.59) 94.4 (0.71) 95.2 (0.72)

n = 50 95.8 96.8 (1.04) 94.3 (0.60) 95.7 (0.64) 94.0 (0.63) 95.4 (0.67)

n = 100 95.4 97.2 (1.11) 94.5 (0.51) 97.1 (0.58) 94.5 (0.51) 97.1 (0.58)

S.1 (γ = 4)

n = 20 96.6 96.7 (1.00) 95.0 (0.32) 95.6 (0.33) 94.9 (0.41) 95.5 (0.42)

n = 50 95.4 96.0 (1.02) 95.5 (0.28) 97.7 (0.33) 95.4 (0.29) 97.6 (0.33)

n = 100 95.5 97.6 (1.12) 96.0 (0.20) 99.9 (0.35) 96.0 (0.20) 99.9 (0.35)
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Table 16 Empirical coverage probabilities of nominal 95% confidence intervals for β1 in the
case of Specification S.2–S.4 (in percent). The numbers in parentheses express the ratios of the
average length of a given confidence interval to the average length of OLS-HC. The regressors are
U [1, 4]-distributed and the error terms follow a t-distribution with five degrees of freedom

OLS-HC OLS-Max WLS-HC WLS-Max ALS-HC ALS-Max

S.2 (γ > 0)

n = 20 97.1 97.7 (1.03) 93.3 (0.87) 94.2 (0.89) 96.0 (0.96) 96.7 (0.99)

n = 50 95.9 96.8 (1.04) 93.5 (0.94) 94.6 (0.97) 95.1 (0.98) 96.0 (1.02)

n = 100 95.4 96.2 (1.04) 94.2 (0.95) 95.0 (0.98) 94.9 (0.98) 95.6 (1.02)

S.3 (γ = 0.5)

n = 20 97.1 97.5 (1.01) 93.4 (0.75) 94.2 (0.76) 95.3 (0.88) 95.9 (0.89)

n = 50 95.9 96.8 (1.04) 93.9 (0.81) 94.9 (0.83) 94.2 (0.87) 95.2 (0.90)

n = 100 95.5 96.6 (1.06) 94.2 (0.77) 95.2 (0.80) 94.1 (0.77) 95.1 (0.81)

S.3 (γ = 1)

n = 20 97.0 97.1 (1.00) 93.2 (0.49) 94.0 (0.50) 93.9 (0.62) 94.6 (0.63)

n = 50 95.7 96.4 (1.03) 94.2 (0.53) 95.3 (0.55) 94.0 (0.55) 95.0 (0.57)

n = 100 95.4 96.9 (1.08) 94.3 (0.44) 97.0 (0.50) 94.3 (0.44) 97.0 (0.50)

S.4 (γ = 2)

n = 20 97.2 97.7 (1.02) 93.4 (0.85) 94.4 (0.87) 95.9 (0.95) 96.5 (0.97)

n = 50 95.9 96.9 (1.05) 93.7 (0.91) 94.8 (0.94) 94.9 (0.96) 95.9 (1.00)

n = 100 95.4 96.4 (1.05) 94.2 (0.90) 95.0 (0.93) 94.4 (0.93) 95.3 (0.97)

S.4 (γ = 4)

n = 20 97.2 97.6 (1.01) 93.6 (0.75) 94.4 (0.77) 95.5 (0.88) 96.1 (0.89)

n = 50 96.0 96.9 (1.05) 94.0 (0.81) 95.1 (0.84) 94.3 (0.87) 95.4 (0.91)

n = 100 95.5 96.6 (1.06) 94.2 (0.74) 95.3 (0.78) 94.1 (0.75) 95.2 (0.78)
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Prior-Free Probabilistic Inference
for Econometricians

Ryan Martin

Abstract The econometrics literature is dominated by the frequentist school which
places primary emphasis on the specification of methods that have certain long-run
frequency properties, mostly disavowing any notion of inference based on the given
data. This preference for frequentism is at least partially based on the belief that
probabilistic inference is possible only through a Bayesian approach, the success
of which generally depends on the unrealistic assumption that the prior distribution
is meaningful in some way. This paper is intended to inform econometricians that
an alternative inferential model (IM) approach exists that can achieve probabilistic
inference without a prior and while enjoying certain calibration properties essen-
tial for reproducibility, etc. Details about the IM construction and its properties are
presented, along with some intuition and examples.

Keywords Belief · Calibration · Inferential model · Marginal inference · Plausi-
bility · Random set · Validity

1 Introduction

There is a general impression among statisticians, econometricians, and others that
“probabilistic inference” can be achieved only through a Bayesian approach, i.e.,
where a prior distribution and likelihood function is converted into a posterior distri-
bution, via Bayes’s theorem, from which inference can be drawn. But the difficulties
involved in eliciting or otherwise constructing/justifying a suitable prior distribution
explains why, despite the benefits of working with probabilities, researchers tend to
shy away from the Bayesian approach. The more familiar alternative to the Bayesian
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approach, often called “frequentist,” abandons the notion of probabilistic inference
in exchange for certain error rate control based on repeated sampling. The question
to be considered here is whether it is necessary for one to choose between the two
approaches. In other words, is it possible to carry out probabilistic inference, like a
Bayesian, but without a prior, and while retaining the benefits of the frequentist’s
repeated sampling guarantees? My answer to this question is YES, and this paper
intends to justify this claim.

Before introducing the proposal to be discussed herein, it is worthwhile to com-
ment briefly on some previous attempts at this goal of prior-free probabilistic infer-
ence.

• Objective Bayes. Here the idea is to introduce a prior distribution which is “ob-
jective” or “non-informative” in some way, and then carry out the usual Bayesian
prior-to-posterior update; see, for example, Ghosh et al. [17, Chap.5], Berger [1],
and Ghosh [18]. To me, a more accurate name for these priors is “default,” since
the idea is that the user will not have to make their own choices for their own
specific applications. From a foundational point of view, perhaps the most impor-
tant concern is that a prior distribution cannot be non-informative, i.e., the prior
will always have some kind of a influence, and this may be harmful unless it is
based on genuine prior information or the sample size is large. From a practical
point of view, one of the main issues is that the default-prior Bayes approach does
not provide any error rate guarantees, except perhaps in the large-sample limit.
Another concern is that one of the selling points of the Bayesian approach, namely,
the ability to obtain marginal inference via integration, is lost because a “good”
default prior for the full parameter may not be a good default prior for a function
thereof.

• Confidence distributions. Frequentists can define a probability distribution on the
parameter space for inference, called a “confidence distribution” (e.g., [38, 39,
45]). To me, however, confidence distributions are only a summary of the output
of a particular method and, therefore, do not provide any new methods or un-
derstanding. For example, one can use a likelihood ratio test or the bootstrap to
construct a confidence distribution, but, e.g., the interval estimates it produces are
exactly the same as that from the likelihood ratio test or the bootstrap behind the
scenes. With this understanding, it is clear that, if the method use to generate the
confidence distribution have certain desirable properties, then so will the confi-
dence distribution. However, like objective Bayes, integrating a joint confidence
distribution may not give a confidence distribution on the specified margin.

• Fiducial andDempster–Shafer. The goal of prior-free probabilistic inference dates
back to Fisher’s fiducial ideas (e.g., [15, 47]) and to the developments of Dempster
[4–8] and Shafer [40, 42]. Most would agree that there is something intriguing
about these two approaches, but they have not gained popularity in the statistics
or econometrics literature—indeed, Efron [10, p. 105] refers to fiducial infer-
ence as “Fisher’s biggest blunder.” There are a number of explanations for why
these fiducial-like methods are not fully satisfactory, and these focus primarily on
Fisher’s over-confidence in the idea, but perhaps a more important concern is that,
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in general, these methods do not have any frequency calibration. Given the impor-
tance of reproducibility in all areas of science, this kind of calibration is essential.
Recent extensions of the fiducial ideas, e.g., Hannig [20] and Hannig et al. [21],
focus on an asymptotic calibration property. However, like the objective Bayes
and confidence distributions, these also have difficulties with marginalization.

This somewhat critical assessment is not intended to say that these other methods
have no value. In my opinion, all of these methods provide a sort of approximation
to whatever is the “best possible” mode of inference. That these methods fall short
of a completely satisfactory solution is not a serious criticism, given the importance
and difficulty of the problem at hand; as (e.g., [11], p. 41) writes

…perhaps the most important unresolved problem in statistical inference is the use of Bayes
theorem in the absence of prior information.

Efron later1 called this the “Holy grail” of statistics. From our efforts to understand
these existing methods, especially fiducial and Dempster–Shafer, Chuanhai Liu and
I have developed what we believe to be a solution to this fundamental problem.

This new approach is called the inferential model (IM) approach, and was intro-
duced in Martin and Liu [27]; a thorough introduction can be found in Martin and
Liu [30]. The reasoning behind the name is as follows: like we use sampling models
to describe how data are generated, we use inferential models to describe how data
are processed for the purpose of inference. The goal here is to present both some
intuition and some details behind the IM approach to an econometrics audience.

Why should econometricians be interested in IMs? The ability to provide prob-
abilistic inference with a prior or a Bayesian approach, as discussed above, is one
benefit, but there are others. First, a feature of the IM construction is its ability to
produce inferential output which is valid or, in other words, calibrated with respect to
the posited sampling model; see Sect. 2. This validity property is automatic from the
construction, and does not require any large-sample approximations, etc. Therefore,
procedures derived from the IM’s output have frequentist error rate control guaran-
tees, e.g., the IM’s 95% interval estimates have guaranteed coverage probability at
least 0.95. Second, the starting point of the IM construction is what we have termed
an “association,” a known relationship between the observable data, the unknown
parameters, and some unobservable auxiliary variables. Econometricians often call
these “functional” or “structural” models and they are very comfortable with this
formulation, perhaps more so than statisticians. The result is that econometricians
do not need to rethink how they formulate their problems before they can reconsider
how they carry out their analysis.

Naturally, the benefits of the IM approach do not come without a cost. From
a technical point of view, in order to follow the general development and theory,
the user would need some basic understanding of random sets; however, in specific
applications, the necessary probability calculations for these random sets can often

1At his keynote address for a workshop on foundations at Rutgers University in April 2016, http://
statistics.rutgers.edu/bff2016.

http://statistics.rutgers.edu/bff2016
http://statistics.rutgers.edu/bff2016
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be streamlined, re-expressed in terms of ordinary probability calculations for ran-
dom variables. From an interpretation point of view, the user would need to rethink
the role that probability plays in statistical inference. Indeed, inference requires a
summary of the evidence in the observed data (and in any other input) supporting the
truthfulness and falsity of various assertions or hypotheses of interest. The natural
way to encode such a summary of evidence is via the belief and plausibility functions,
and this is form of the IM’s output. Details about the random sets and the IM output
are provided in Sect. 2 below. More generally, since the goal of the IM approach is
to provide the “best possible” inference, care is needed at every step. In particular,
the dimension of the auxiliary variables mentioned above is important in terms of
the IM’s efficiency, so reducing the dimension as much as possible is critical; see
Sect. 3.

In Sect. 4, I will put the IMmachinery into action in several different variations on
the linear regression model, commonly in econometrics applications. Finally, some
concluding remarks are given in Sect. 5.

2 Basic IM Framework

2.1 Objectives

Before describing the details of the IM approach, it will help to give somemotivation
by describing what, in my opinion, is the goal of statistical inference. According to
Martin and Liu [32], probabilistic inference obtains from

a function by : 2Θ → [0, 1] such that, for any assertion or hypothesis A about the parameter
of interest, by(A) represents the data analyst’s degree of belief in the truthfulness of the claim
“θ ∈ A” based on the observed data Y = y.

In other words, the inferential output by encodes the evidence in the observed data
(and any other relevant input) concerning the parameter θ. Of course, by could be a
probability measure, e.g., Bayesian posterior distribution, but that is not necessary
from the definition. Indeed, given the “evidence” interpretation, there is reason to
think that the mathematical tools used to describe evidence, such as belief and plau-
sibility functions [40] might be preferred. It turns out that Shafer’s generalization of
probability will appear quite naturally in the IM construction; see Sect. 2.3.

An important question is the following: why should one data analyst’s degrees
of belief be meaningful to anyone else? It is essential that these beliefs, which nec-
essarily have some personal or subjective element, be calibrated to a common scale
so that others can interpret their values. While various scales could be considered, a
natural choice is a scale based on frequencies relative to the sampling model PY |θ.
Along this line, the probabilistic inference based on the function by is called valid if

sup
θ∈Ac

PY |θ
{
bY (A) ≥ 1 − α

} ≤ α ∀ α ∈ (0, 1), ∀ A ⊆ Θ. (1)
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Inwords, the validity condition (1) says that, if the assertion A is false, then bY (A),
as a function of Y ∼ PY |θ, with θ /∈ A, is stochastically no larger than Unif(0, 1).
In addition to calibrating the degrees of belief, validity has some important conse-
quences; see, e.g., (10). Remarkably, it turns out to be relatively straightforward to
construct an IM such that the corresponding degrees of belief satisfy (1).

2.2 Intuition

To build up some intuition for how the IM approach can meet the goals described
above, consider the following basic representation of the sampling model, Y ∼ PY |θ,
for the observable data Y , i.e.,

Y = a(θ,U ), U ∼ PU , (2)

where θ ∈ Θ is the unknownparameter of interest, andU is an unobservable auxiliary
variable, taking values in a space U, with a known distribution PU . A classical
example of this is the case of the simple normal mean model, Y ∼ N(θ, 1), which
can be rewritten in association form,Y = θ +U , whereU ∼ N(0, 1).Modelswritten
in the association form (2) are standard in econometrics; see Sect. 4. Suppose, for the
moment, that, for a given (y, u), there is a unique solution θ = θ(y, u) to the equation
in (2). Since Y = y is observable, if I also happened to know the value u� of U that
corresponds to the observed y and the true θ = θ�, then I can easily and exactly solve
the inference problem, since θ� = θ(y, u�). Of course, I can never see u� so what I
just described cannot be put into practice. However, it does provide some important
intuition, namely, that the inference problem can—and arguably should—be cast
in terms of U and u�, instead of θ. This observation is important because there is
information in the specified PU concerning the likely values ofU , whereas typically
nothing really concrete is known about θ. Therefore, the starting point for the IM
approach is the idea that it suffices to take u� as the inferential target, instead of θ, but
the question remains of how to harness the information inPU to make valid inference
on θ through U .

The careful reader will recognize that my argument above relies heavily on the
assumption that the Eq. (2) has a unique solution, and this rarely holds even for very
simple models. I will discuss this issue in detail in Sect. 3 but, for now, suffice it to
say that most problems will admit an association of the form (2) for which a unique
solution to the equation exists. So, working from the assumption that there is a unique
solution is essentially without loss of generality.
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2.3 Construction

Based on the shift of focus from θ toU , Martin and Liu [27] put forth a concise three-
step construction of an IM. The previous subsection essentially described the first
step, the A-step. The second and third steps are where things get more interesting. In
particular, the P-step suggests the use of a random set to predict2 the unobserved value
of U with a random set, and the C-step combines the results of the A- and P-steps
to produce a new random set whose distribution produces the relevant inferential
output.

A-step Define an association Y = a(θ,U ), withU ∼ PU , of the form (2) that speci-
fies the relationship between the observable dataY , the unknown parameter θ, and the
unobservable auxiliary variableU . Depending on the application and the goal, some
preprocessing may be recommended before writing the association; see Sect. 3. The
result is a set-valued function u 	→ Θy(u), indexed by the observed Y = y, given by

Θy(u) = {θ ∈ Θ : y = a(θ, u)}, u ∈ U. (3)

In the case discussed above where there is a unique solution to y = a(θ, u), then
Θy(u) is a singleton, but there are examples, e.g., discrete-data problems, where
Θy(u) will have even uncountably many elements.

P-step Define a predictive random set S ∼ PS supported on a collection S of subsets
of U, i.e., the realizations of S are subsets of U, to predict the unobserved value, say,
u� of U . Thorough introductions of the theory of random sets are presented in, e.g.,
Molchanov [34] andNguyen [36], but only some very basic notions are required here.
Certain conditions on PS will be required for the inferential output to be meaningful
but, roughly, PS must be specified such that the “net” S cast to hit u� of U should
hit its target with high probability for all likely values of u�; see (7) below. This
condition seems rather complicated but, fortunately, it turns out to be relatively easy
to arrange.

C-step Combine the results of the A- and P-steps by constructing new random set,
defined on subsets of the parameter space Θ , that corresponds to those θ values
consistent with both the association (3) and the random set S. That is, write

Θy(S) =
⋃

u∈S
Θy(u), S ∼ PS . (4)

This new random set represents the set of all θ values consistent with y and a
set S of (presumably) “reasonable” set of u values. The key property is this: Θy(S)

2This is not an ideal choice of word because “predict” has a particular meaning in statistics and
econometrics, but the meaning here is different. “Guess” or “impute” are other potential words
to describe the operation in consideration, but both still miss the mark slightly. A more accurate
description of what I have in mind is “to cast a net” at the target.
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contains the true θ if and only if S contains the value u� corresponding to the
observed y and the true θ. Therefore, as hinted at by the intuition above, the quality
of inference about θ is tied directly to how well S predicts the unobserved value of
U . This inference about θ is summarized by the function3

by(A) = by(A;PS) = PS{Θy(S) ⊆ A}, A ⊆ Θ. (5)

That is, the degree of belief assigned to the claim “θ ∈ A” based on data Y = y is
the PS -probability that Θy(S) is consistent with the claim. This function is a belief
function in the sense of, e.g., Shafer [40, 41, 43] and Nguyen [35], a generalization
of a probability measure, and some consequences of this will be discussed below.

To summarize, the IM construction proceeds by specifying an association and a
predictive random set that acts like a net cast to catch the unobserved value of the
auxiliary variable. These two pieces are combined in the C-step to generate a new
random set whose distribution is to be used for inference on the parameter. This dis-
tribution, the IM’s output, takes the form of a belief function defined on the parameter
space. This generalizes the familiar Bayesian approach in the sense that, if a genuine
prior for θ is available, then it can be incorporated and the corresponding IM output
would be the Bayesian posterior ([29], Remark 4). However, the IM construction can
be carried out without a prior, and apparently the only cost is that the output is a belief
function instead of a probabilitymeasure—but the output is still “probabilistic” in the
sense of Sect. 2.1. There is nothing particularly special about probability measures
beyond that they are familiar to statisticians and econometricians. In fact, one could
argue that probability may not be appropriate for summarizing evidence or degrees
of belief, which is essentially what inference is about. For example, if evidence is de-
scribed via a probability P, then the complementation formula, P(Ac) = 1 − P(A),
implies that evidence in support of the truthfulness of A is evidence against the
truthfulness of Ac. However, in a statistical inference problem, it is possible that the
data is not particularly informative for certain assertions. In such cases, it would be
reasonable to say that there is little evidence to support the truthfulness of either
A or Ac. Probabilities cannot facilitate this conclusion, but belief functions can, so
perhaps the latter are more suitable; see, e.g., Shafer [40] and Martin and Liu [32]
for more on this.

2.4 Properties

The above construction shows how that shift of focus from the parameter θ to the
auxiliary variable U can lead to probabilistic inference, and the logic behind this

3The formula (5) silently assumes that Θy(S) is non-empty with PS -probability 1 for all y. This
holds automatically in many cases, often because of the preprocessing discussed in Sect. 3, but not
in all. The ideal remedy seems to be choosing a predictive random set which is elastic in a certain
sense; see Ermini Leaf and Liu [12].
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construction appears to be sound. However, the belief function by in (5) is largely
determined by the predictive random set S ∼ PS , which is specified by the data
analyst. What makes one data analyst’s degrees of belief meaningful to another?
What kind of properties of the degrees of belief are desirable, and what conditions
are required to achieve these? This section will address these questions.

As a preview for the IM approach and its output, I presented the validity condition,
Eq. (1), in Sect. 2.1. In particular, validity implies that the event “bY (A) ≥ 0.9” has
probability no more than 0.1 when Y ∼ PY |θ with θ /∈ A; this makes sense because
by(A) should tend to be small when A is false. Therefore, the validity condition
calibrates the belief function values, telling users what are “small” and “large” belief
values. Bayesian posterior probabilities, for example, are not guaranteed to be valid,
as the example in Martin and Liu [32, Sect. 5.2] clearly demonstrates.

How can validity be achieved? Since the belief function values are determined by
the predictive random set, it is reasonable to suspect that validity can be achieved
through a judicious choice of S ∼ PS . Indeed, Martin and Liu [27] give sufficient
conditions on S such that the corresponding belief function is provably valid. They
provide general conditions for constructing a suitable predictive random set, but
a simpler condition, which is easy to check but not helpful for construction, is as
follows. Let

γ(u) = γ(u;PS) = PS{S 
 u}, u ∈ U, (6)

denote the contour function of S, i.e., the probability that S catches a specified target
u. Intuitively, the contour function should be large for all but the “extreme values”
of u relative to PU . Formally, Martin and Liu [27] say that S is valid if

PU {γ(U ) ≤ α} ≤ α, ∀ α ∈ (0, 1), (7)

or, in other words, γ(U ) is stochastically no smaller than Unif(0, 1) as a function of
U ∼ PU . Theorem 2 in Martin and Liu [27] says that if S satisfies (7) [and is such
thatΘy(S) is non-empty with PS -probability 1 for all y], then the IM output satisfies
the validity condition (1). The most common scenario, and one of the simplest, is
when PU is Unif(0, 1) and, for this case, there is a “default” predictive random set
S of the form

S = {u ∈ [0, 1] : |u − 0.5| ≤ |U ′ − 0.5|}, U ′ ∼ Unif(0, 1), (8)

i.e., S is a symmetric interval about 0.5 with a random width, and this satisfies the
condition (7). This can be verified directly by first writing down the contour function,

γ(u) = P{|Unif(0, 1) − 0.5| ≥ |u − 0.5|} = 1 − |2u − 1|,

and then recognizing that 1 − |2U − 1| isUnif(0, 1)whenU is. I will use this default
predictive random set in the examples in Sect. 4, but this is mainly for simplicity—in
some cases, there are better choices of S in terms of IM efficiency; see Sect. 5.
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There are many ways to calibrate the numerical values of the belief function
output, but there are some additional advantages to doing so relative to the sam-
pling model. This is related to the question about repeated sampling properties of
the inferential output, and is particularly relevant given the recent concerns about
reproducibility in scientific research; see, e.g., Nuzzo [37] and the collection of re-
ports published by Nature4 on the “Challenges in Irreproducible Research.” Simply
put, the validity result implies that decision procedures constructed based on the IM
output are guaranteed to control frequentist error rates at the specified level. Here I
will focus only on the case of set/interval estimation. As mentioned above, the belief
function output differs from an ordinary probability. One difference is that it may
not be additive, i.e.,

by(A) + by(A
c) ≥ 1 ∀ A ⊆ Θ.

Define the corresponding plausibility function py as

py(A) = 1 − by(A
c), (9)

and observe that non-additivity implies that by(A) ≤ py(A) for all A. This inequality
explains why by and py are sometimes referred to as lower and upper probabilities.
Anyway, the plausibility function is a useful tool for designing decision procedures.
In particular, the 100(1 − α)% plausibility region for θ, defined as

Πα(Y ) = {ϑ ∈ Θ : py(ϑ) ≥ α}, where py(ϑ) = py({ϑ}), (10)

is the IM counterpart of a frequentist confidence region or a Bayesian credible region.
It is the set made up of parameter values which are, pointwise, sufficiently plausible
based on the observed data Y = y. This is a nice interpretation, arguably easier
to understand and more meaningful than the explanation of confidence intervals.
Moreover, the IM’s validity property guarantees that the plausibility region in (10)
has the nominal coverage probability, i.e.,

PY |θ{Πα(Y ) 
 θ} ≥ 1 − α, ∀ θ ∈ Θ.

This is a direct consequence of the validity property, and is not a large-sample
limit approximation. Compared to existing methods which rely almost entirely on
asymptotic approximations for justification, the IM approach needs no asymptot-
ics: it stands on its own from a logic point of view, and even provides stronger
results in terms of sampling distribution properties than the traditional “frequentist”
approaches.

As a last point about the IMoutput, it isworthmentioning that the plausibility func-
tion in (9) is closely related to the familiar p-value introduced in standard introductory
textbooks for the purpose of testing hypotheses. P-values have always been quite con-
troversial and, recently, the journal Basic and Applied Social Psychology has banned

4http://www.nature.com/nature/focus/reproducibility/index.html.

http://www.nature.com/nature/focus/reproducibility/index.html
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their use [44]; see also, the recent statement5 issued by American Statistical Asso-
ciation. Much of this controversy exists because there is confusion about what a p-
value actually is; a quick look at any standard introductory text will reveal a list of
incorrect interpretations of p-values, but none address the question directly. Martin
and Liu [28] demonstrate that, for any p-value, there exists a valid IM whose plau-
sibility function, at the specified assertion, is numerically equal to the given p-value.
Therefore, p-values are plausibilities and this provides an easy interpretation which
is directly in line with how they are used in practice. Moreover, their demonstration
makes clear that p-values should not be taken as some “magic number” that contains
any especially powerful information—it is only one feature of a proper assessment of
the information in the available data concerning inference on θ. Of course, if the goal
of defining a p-value is simply to construct a testing rulewith suitable frequentist error
rate control, then there is no trouble with the mathematics; in fact, the IM’s validity
property can be used to prove such claims.

3 Dimension Reduction Techniques

3.1 What’s the Issue?

In the basic IM construction, the intuition was designed around cases where the
association (2) had a unique solution θ = θ(y, u) for any given (y, u) pair. While the
construction and validity properties discussed above do not require this uniqueness,
except in how it affects the (non) emptiness of Θy(S), it turns out that having a
unique solution is beneficial in terms of the efficiency6 of the IM. Unfortunately,
the uniqueness condition rarely holds when considering an association in terms of
the full sampling model. To see this, suppose that Y = (Y1, . . . ,Yn) is a vector of
iid N(θ, 1) random variables. Then the naive association, Y = θ 1n +U , where 1n
is an n-vector of unity and U = (U1, . . . ,Un) is a vector of n iid N(0, 1) random
variables, does not admit a unique solution for θ unless y and u differ only by a
constant shift. The problem in this case is differing dimensions, i.e., the auxiliary
variable U is n-dimensional while the parameter is a scalar. Fortunately, there often
is a transformation which will allow for the dimension of the auxiliary variable to be
reduced to that of the parameter, so that a unique solution is available.

Here I will comment on two cases where the dimension reduction steps have been
studied. The first is a general reduction step—conditioning—that can be carried out

5http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108.
6Efficiency is essentially the rival to validity, and the goal is to balance between the two. For example,
a belief function that always takes value 0 for all A �= Θ , which is achieved by a choosing an extreme
predictive random set S ≡ U, is sure to be valid, but then the corresponding plausibility function
would always be 1; consequently, the plausibility regions would be unbounded and practically
useless. So, roughly, the idea behind efficiency is to have the smallest predictive random set such
that the IM is still efficient. More on this in Sect. 5.

http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108
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in most problems, while the second step—marginalization—is specific to the case
that only some feature of the full parameter is of interest. This discussion focuses only
on the A-step portion of the IM construction. Once the dimension of the auxiliary
variable has been reduced as far as possible, one can proceed with the P- and C-steps
to get valid inference on the interest parameter.

3.2 Conditioning

Consider the naive baseline association Y = a(θ,U ) that describe the sampling
model, and may or may not admit a unique solution for θ. Suppose that there ex-
ists two pairs of functions (τ , η) and (T, H) such that both u 	→ (τ (u), η(u)) and
y 	→ (T (y), H(y)) are one-to-one and the association equation maps as follows:

T (Y ) = b
(
θ, τ (U )

)
and H(Y ) = η(U ).

Since the functions are one-to-one, nothing is lost in going from the original naive
association to this one. What is gained, however, is that the parameter is gone from
the second equation. This means that the feature of η(U ) is actually observed, so
there is no need to predict its value with a random set, etc. Moreover, the informa-
tion in its observed value can potentially be used to help improve the prediction of
the complementary feature τ (U ). This suggests working with the reduced auxiliary
variable V1 = τ (U ) and the association

T (Y ) = b(θ, V1), V1 ∼ PV1|V2=H(y),

where V2 = η(U ) and the latter is the conditional distribution of V1, given that V2

equals the observed value H(y). Often, the transformations can be chosen such that
the reduced association admits a unique solution for θ, in terms of T (Y ) and V1,
which is desirable.

One kind of reduction that can always be carried out is a reduction to a minimal
sufficient statistic. Indeed, if T (Y ) denotes a minimal sufficient statistic and H(Y )

is complement, making y 	→ (T (y), H(y)) one-to-one, then the sampling model can
be characterized through the marginal distribution of T (Y ) together with the condi-
tional distribution of H(Y ), given T (Y ). The latter conditional distribution, by the
definition of sufficiency, does not depend on the parameter, has no effect on the infer-
ence problem and, therefore, can be dropped. However, it is interesting to note that,
outside these “regular” problems where the minimal sufficient statistic has the same
dimension as the parameter, there are opportunities to reduce the dimension beyond
that provided by sufficiency alone. Some examples of that are given in Martin and
Liu [29], Cheng et al. [2], and Martin and Liu [25]. This is consistent with the claim
in Fraser [16] that conditioning is often more useful than sufficiency in applications.

The tool that has been used to reduce the dimension of the auxiliary variable
beyond that provide by sufficiency is an approach based on solving a suitable
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differential equation. Intuitively, a function η(U ) of the auxiliary variable can be
fully observed from the sample data if η(uy,θ) is not sensitive to changes in θ, where
uy,θ is the solution to the baseline association for u based on a given (y, θ). This
insensitivity can be described by requiring that η satisfy the following differential
equation:

∂η(uy,θ)

∂θ
= 0.

I will not go into any details here but this approach is both interesting and has proved
successful in the applications mentioned above. Further investigation is needed.

3.3 Marginalization

While the dimension-reduction strategy based on conditioning is general, the next
approach is for the case where only some feature of the full parameter θ is of interest.
Towards this, suppose that θ can be expressed in terms of a lower-dimensional interest
parameter ψ and a nuisance parameter λ. Since the dimension of ψ is smaller than
that of θ, even after a conditioning argument, there is an opportunity to further reduce
the auxiliary variable dimension.

Suppose that the baseline association, Y = a(ψ,λ;U ), which could be the result
of the conditioning argument above, can be rewritten as

G(Y,ψ) = b(ψ, V1) and K (Y,ψ,λ, V2) = 0,

where V = (V1, V2) is a new pair of auxiliary variables; note that the first equation
does not depend on the nuisance parameter λ so V1 should be of dimension smaller
than U . When the function K is such that, for any (y,ψ, v2), there exists λ such
that the above equality holds, Martin and Liu [31] call the association “regular,” and
they prove that a suitable marginal association for ψ obtains by simply ignoring the
second equation that involves λ, working with only

G(Y,ψ) = b(ψ, V1), V1 ∼ PV1 ,

where PV1 is the marginal distribution of V1 derived from the joint distribution of
(V1, V2). This characterization of “regular”marginal inference problems, and the cor-
responding strategy for carrying out marginalization, has already proved to be useful
in other contexts; see Theorem 2.3 in Hannig et al. [21]. In addition to the examples
below, Martin and Liu [31] present marginal IM solutions to Stein’s many-normal-
means problem, the Behrens–Fisher problem, and the gamma mean problem; also,
Martin and Lingham [26] present an IM approach to prediction, which can be viewed
as an extreme marginalization problem in which θ itself is a nuisance parameter.

The examples in Sect. 4 below should shed some light on the kind of calculations
involved to make valid marginal inference. To conclude this section, I would like
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to make some comments about the difficulty of valid marginal inference in general.
The key point is that marginalization needs to be considered as from the outset, i.e.,
one cannot construct a method for inference on θ and then expect that its desir-
able properties will carry over to marginal inference on a function ψ = ψ(θ). The
considerable work (e.g., [46]) on constructing default priors on the full parameter
θ for marginal inference on various ψ is a testament to this difficulty, as are the
striking results of Gleser and Hwang [19] that raise serious concerns about the use
of Wald-style plug-in confidence intervals in certain marginal inference problems.
These comments are intended to make clear that there is good reason for putting so
much care into marginal inference.

4 Examples

4.1 Linear Regression

As a first illustrative example, consider the standard linear regression model. That is,

Y = Xβ + σZ ,

where Y is a n-dimensional vector of response variables, X is a fixed n × pmatrix of
predictor variables, β is a p-dimensional vector of unknown slope coefficients, σ is
an unknown scale parameter, and Z is a n-dimensional vector of iid N(0, 1) random
variables. Assume that p < n and that X has rank p. This is a classic model in both
statistics and econometrics texts. Below we will consider several different interest
parameters.

First, since Z is n-dimensional but there are p + 1 ≤ n parameters, there is an
immediate opportunity to reduce the auxiliary variable dimension via conditioning. It
turns out that, in this case, the first dimension reduction step corresponds to working
with an association based on the minimal sufficient statistics. That is, a reduced-form
(conditional) association is

β̂ = β + σV1 and σ̂ = σV2, (11)

where (β̂, σ̂2) are the usual least-squares estimators, and (V1, V2) are independent,
with V1 ∼ Np(0, (X�X)−1) and (n − p − 1)V 2

2 ∼ ChiSq(n − p − 1). As an aside,
this conditional association can also be derived by using the differential equation-
based technique described in Sect. 3; take η(z) = (1�

p Mz)−1(Mz), where 1p is the
p-vector of unity, and M = In − X (X�X)−1X� projects onto the space orthogonal
to that spanned by the columns of X . The new auxiliary variable, V = (V1, V2), is of
the same dimension as the parameter θ but, for scalar parameters of interest, further
reduction is possible. This is the baseline association from which various different
IMs can be constructed. Interest here is in features of the β vector, but it is possible
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to construct a marginal IM for σ ([30], Sect. 8.2.4) and even a marginal IM for
predicting a future observation Yn+1 [26].

A straightforward manipulation of (11) gives

β̂ = β + σ̂V1/V2 and σ̂ = σV2.

Since σ only appears in the second equation, and that a solution exists for all
data and all auxiliary variables, a marginal association for the vector β obtains by
simply ignoring the second equation. Moreover, the ratio V1/V2 becomes a sin-
gle p-dimensional auxiliary variable having a scaled multivariate t-distribution, i.e.,
U = V1/V2 ∼ tp(0, (X�X)−1; n − p − 1). Therefore, we have the following mar-
ginal association for β:

β̂ = β + σ̂U, U ∼ tp(0, (X�X)−1; n − p − 1). (12)

From here, one can construct an IM for simultaneous inference on the β vector,
or marginal IMs for various features of β. Here are two marginalization problems.

• A first and relatively simple feature to consider is, say, ψ = β1. It follows imme-
diately from (12) that a marginal association for β1 is

β̂1 = β1 + σ̂U1,

and this completes the A-step of the IM construction. For the P-step, the optimal
predictive random set is a symmetric interval around zero. That is, make a change-
of-auxiliary variable and writeW = Fn(U1), where Fn is the distribution function
of the appropriate Student-t distribution. Then the optimal predictive random set
S forW is the default (8). This completes the P-step, and the C-step is straightfor-
ward. Indeed, it is easy to see that the corresponding plausibility intervals (10) for
β1 are exactly the usual Student-t intervals based on the distribution theory of the
least-squares estimator. In particular, the guaranteed validity of the marginal IM
provides an alternative indirect prove of the well-known result that these standard
Student-t confidence intervals have exact coverage probability.

• Next, consider a ratio of regression coefficients, say, ψ = β2/β1, as the interest
parameter. This is a difficult marginal inference problem, similar to that considered
by Fieller [14] and Creasy [3] related to the instrumental variable models widely
used in econometrics, a special case of the general situation studied by Gleser and
Hwang [19] and Dufour [9]. From the discussion above, the following reduced-
form association can be reached immediately:

β̂1 = β1 + σ̂U1 and β̂2 = β2 + σ̂U2.
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Substituting β2 = ψβ1 into the second equation, it follows that

β̂2 − ψβ̂2 = σ̂(U2 − ψU1) and β̂1 = β1 + σ̂U1.

Based on the general ideas in Sect. 3.3, the latter equation can be ignored, leading
to the one-dimensional association

β̂2 − ψβ̂1 = σ̂(U2 − ψU1).

To complete the A-step, it is desirable to rewrite the equation in terms of a single
scalar auxiliary variable, instead of the pair (U1,U2). The simplest strategy is to
let Fψ denote the distribution function ofU2 − ψU1, and setW = Fψ(U2 − ψU1).
Then the above association can be written as

β̂2 − ψβ̂1 = σ̂F−1
ψ (W ), W ∼ Unif(0, 1). (13)

The only difficulty with this approach is that, to my knowledge, the distribution of
U2 − ψU1 is not a standard one with a closed-form distribution function. But this
is only a minor obstacle, since it is straightforward to evaluate Fψ viaMonte Carlo.
Having completed the A-step in (13), the P-step requires a predictive random set
for the unobserved value of W ∼ Unif(0, 1). Here I will suggest—for simplicity
and not necessarily for optimality as in the previous example—to use the default
predictive random set in (8). Then the belief and plausibility function for ψ obtain
from the C-step. In particular, for constructing a plausibility region for ψ as in
(10), the pointwise plausibility function is

py(ψ) = PS
{S 
 Fψ

(
σ̂−1(β̂2 − ψβ̂)

)}

= 1 − ∣∣2Fψ

(
σ̂−1(β̂2 − ψβ̂1)

) − 1
∣∣.

It follows from the general IM validity theory that the 100(1 − α)% plausibility
region (10) based on the plausibility function above has the nominal coverage
probability for all n, not just asymptotically. To put this in perspective, recall the
unexpected result in Gleser and Hwang [19] that says the usual Wald-style plug-
in intervals based on the delta theorem are not valid, moreover, their coverage
probability is zero. It is possible to construct genuine confidence intervals using
techniques other than the IM approach described here, e.g., using the deviance-
based technique advocated in Schweder andHjort [39], but the IM approach seems
to handle the Gleser–Hwang challenge automatically, whereas other approaches
require some special care and/or modifications.
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4.2 Panel Data

For the sake of space, I will not go into details here about the IM approach to the
problem of panel or longitudinal data. However, the models used for analyzing these
data are ones that have attracted some attention from IM users. In particular, Cheng
et al. [2] studied the linear mixed effects model with special interest in marginal
inference on the heritability coefficient, i.e., the proportion of total variance that
can be attributed to the individual effect. There, in fact, they employ the differential
equation-based approachmentioned briefly in Sect. 3.2 to achievemaximal reduction
of the auxiliary variable dimension and exact marginal inference. Ongoing work of
Chuanhai Liu and myself will further investigate both the fixed and random effects
models like those often used in panel data applications.

5 Discussion

This paper was intended to give econometricians an introduction to the logic behind
and the mechanics involved in implementing the new IM approach. I don’t know
much about econometrics, but I think that IMs have a lot of potential because the
structural/functional models are so common and can be immediately recast into
the IM’s “association” language, with auxiliary variables, etc. Some feedback I have
received from statisticians is that they are uncomfortable with the association setup—
likelihoods are more familiar—in part because that representation is not unique.
Non-uniqueness is not a real concern to me, nor is it for the econometricians who
are already working with these associations, so the IM approach seems like a good
fit for them. Beyond being a good fit, I think the IM’s emphasis on a deeper level
of thinking about inference would be beneficial to econometrics in general which,
based onmyminimal experience, seems to be focused primarily on finding estimators
with desirable asymptotic properties and, therefore, not really addressing the issue
of uncertainty.

Though the story presented here may appear to be nearly complete, there are still
lots of open questions to consider. First, I did not really address here any “real” econo-
metrics applications and, to my knowledge, these have yet to be touched by anyone
who has any experience with IMs. This is important not only for the development
of IMs but also for econometrics: showing that the new approach makes sense and
actually works well (probably better than existing methods) in real and challenging
problems, such as instrumental variable models, could have a huge impact in the
econometrics field. Second, the question about how to choose the “best” predictive
random set for a given problem is almost completely open. It may be that there is
no realistic notion of optimality here, but there should be some guidelines for users
to help ensure a certain level of efficiency. Third, there is the fundamental question
about model assessment, i.e., how can the IM approach, which is designed for infer-
ence on the model-specific parameters, provide a valid assessment of the uncertainty
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in the model itself? Some first steps towards this have been made in Martin et al.
[33] but more work is needed.

Finally, I want to mention some alternative ways to view and/or present the IM
approach. As an attempt to bridge the gap between the foundational aspects of the
IM approach and the actual methodology, I wanted to develop an alternative way
to sell the IM-based methodology to users without them having to get through all
the technicalities of random sets, etc. Two papers [22, 23] show that it is possible
to construct an IM based on some default or generalized associations, e.g., using
likelihood ratios, apparentlywithout loss of efficiency; in a third paper [24], I propose
an intermediate-level statistics theory course that teaches students some of the IM-
based reasoning but using the more familiar language of p-values.

Acknowledgements The author thanks the organizers of the 10th International Conference of the
Thailand Econometric Society, in particular, Professor Hung Nguyen, for the invitation to present
at the conference and to submit a paper for the proceedings.
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Robustness in Forecasting Future Liabilities
in Insurance

W.Y. Jessica Leung and S.T. Boris Choy

Abstract The Gaussian distribution has been widely used in statistical modelling.
Being susceptible to outliers, the distribution hampers the robustness of statistical
inference. In this paper, we propose two heavy-tailed distributions in the normal
location-scale family and show that they are superior to the Gaussian distribution
in the modelling of claim amount data from multiple lines of insurance business.
Moreover, they also enable better forecasts of future liabilities and risk assessment
and management. Implications on risk management practices are also discussed.

Keywords Heavy-tailed distribution · Bayesian inference · Markov chain Monte
Carlo · Loss reserve · Risk diversification
1 Introduction

As a specialised and unique part of the actuarial endeavour, loss reserving has been
oneof themost classical, yet challenging, problems in the insurance industry.The fun-
damental purpose of loss reserving is to ensure sufficient capital is set aside to fund
outstanding claim payments, avoiding the risk of insolvency. In the insurance indus-
try, outstanding claims can be viewed as losses that are incurred, but yet to be devel-
oped. These claims remain to be the greatest source of liability that the insurance com-
pany is legally obliged to cover. From the perspective of enterprise risk management,
loss incurred from a particular line or multiple lines of business is regarded as finan-
cial risk. Intuitively, a tailor-made model for the loss data in multiple lines is of great
interest to the insurer to understand the stochastic nature of the data from different
lines of business. With the use of statistical and econometrics tools, the uncertainty
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in relation to the variability of the point estimates can be quantified, enabling a more
accurate forecast of future liability and better risk assessments and management.

From an insurer’s perspective, the motivation for accurately forecasting loss
reserves is twofold. Externally, regulators worldwide are moving towards a risk-
based capital framework, mandating disclosure of uncertainty in loss reserve esti-
mates and calculation of various risk measures. For example, the second-generation
of China’s Risk-Oriented Solvency System has been implemented in early 2016
[11]. Likewise, Singapore has adopted a one year Value-at-Risk (VaR) approach as
a solvency requirement which is consistent with the Solvency II requirement in the
European Union. Similarly, the Swiss Solvency Test and the Australian Prudential
Regulation Authority prudential standard GPS320 are also analogues of risk-based
capital requirements in Switzerland and Australia respectively [2]. All of the above
riskmeasures require information regarding the variability of the loss reserve in addi-
tion to point estimates. Typically, this refers to certain percentile of the estimated
future claim amount distribution or a point estimate of the loss reserve, on top of
which a margin to be held for prudence can be added [5]. As such, it is crucial that
insurance companies, especially those that operate across various countries, align
their loss reserving methodologies to comply with the legal requirements in differ-
ent jurisdictions by adopting a risk-based approach and embracing changes in the
regulatory environment.

Internally, inaccurate loss reserve estimates will either prejudice the profitability
of an insurance company or increase the risk of financial distress. Overestimating
the required loss reserve contravenes the principle of efficient capital use, inducing
opportunity costs. Underestimating the required loss reserve and failure in reserving
sufficient funds for future claimsmay result in insolvency and bankruptcy. Therefore,
it is important that insurance companies accurately forecast their future liabilities.
This enables them to have greater insight into their cost base, which facilitates the
optimisation in capital allocation decisions and improvement of premium pricing
strategies.

However, in reality, the inherent time delay involved in the process of reporting
claims and settlements adds a layer of complexity in forecasting loss reserve. More-
over, loss reserve data always follow a heavy-tailed distribution and may contain
some extreme values that distort statistical inference. In this paper, we consider two
robustifying bivariate distributions, namely Student-t and variance gamma (VG) dis-
tributions, to compete with the Gaussian distribution in fitting loss reserve data from
two lines of business: the personal and commercial automobile. These distributions
are extremely good in capturing tail behaviour of the data and hence provide a robust
analysis and better forecasts.

The aim of this paper is to provide a risk management perspective in the con-
text of the loss reserving problem. More specifically, we highlight the importance
of incorporating heavy-tailed distributions in actuarial models in order to enhance
model robustness. It is shown that robustness is critical in determining an insur-
ance companys reserve level and risk capital. It is vital for the company to come
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up with robust and informative solutions in actuarial modelling in order to fulfil the
risk-based capital requirement and mitigate the risk of insolvency or bankruptcy.
In the empirical study of loss reserve data from two lines of automobile business, we
adopt a two-way analysis of variance (AVOVA) model for the loss reserve data and
use data augmentation technique to handle the Student-t and VG distributions in a
Bayesian framework. The Bayesian Markov chain Monte Carlo techniques produce
realisations from the intractable joint posterior distribution for Bayesian inference
and predictive modelling. The entire predictive distribution of the loss reserve data
can be obtained, enabling analyst to quantify the financial risks in the risk capital
analysis. To demonstrate, risk measures including VaR and Tail value-at-risk (TVaR)
are calculated for the insurers personal and commercial automobile businesses indi-
vidually, as well as the combined portfolio.

This paper is structured as follows. Section1 briefly introduces the loss reserving
in risk management and actuarial context. Section2 explains the run-off triangle
for loss reserve data and proposes robust models for fitting observed loss data and
forecasting unpaid losses. Section3 presents statistical inference of an empirical
study on two lines of automobile business and models are evaluated and compared.
Forecasts of future losses and risk measures are provided in Sect. 4. Finally, this
paper is concluded in Sect. 5.

2 Methodology

2.1 Run-Off Triangle

Let Yi j where i = 1, ..., I and j = 1, ..., J be the incremental claim amount paid
by an insurer in accident year i (the origin year that claims are filed) and settled in
development year j (the number of years before claims are settled). The observed
annual claim amounts are typically presented in a run-off triangle, or loss triangle,
as shown in Table1.

Table 1 Run-off triangle

Accident Year i Development Year j

1 2 ... j ... J

1

2 Observations of Yi j
.
.
.

i
.
.
. Forecasts of Yi j
I
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The shaded area in the upper triangle contains the observed claim data that are
known as at year I , while the unshaded area in the lower triangle contains unobserved
future claimamountswhichwill be forecasted.Claimamounts in a particular calendar
year are the sum of the values along the off-diagonal. In this paper, we consider run-
off triangles that have the same number of development years and accident years,
i.e. I = J .

In real world, insurance companies have multiple lines of business and each line
has its own run-off triangle. The understanding of the dependence amongst the claim
amount data in the run-off triangles is crucial in themanagement of actuarial risk. This
paper primarily focuses on two lines of business. Claim amount data in two run-off
triangles are assumed to be dependent and are modelled by a bivariate distribution.

2.2 Two-Way ANOVA Model

Inspired by the multiplicative model in De Vylder [4], Kremer [9] suggested a fixed
effects two-way analysis of variance (ANOVA) model for the logarithmic trans-
formed claim amounts.

Let zi j = (zi j1, zi j2) = (ln yi j1, ln yi j2) contains the log-claim amounts from two
lines of business. The two-way ANOVA model is specified by:

zi j = μ + αi + β j + εi j

where μ = (μ1,μ2)
′ is the vector of overall means, αi = (αi,1,αi,2)

′, i = 1, ..., I,
is the vector of accident year effects, β j = (β j,1,β j,2)

′, j = 1, ..., J is the vector of
development year effects, and εi j = (εi, j,1, εi, j,2)

′, i = 1, ..., I, j = 1, ..., J is the
vector of random errors which is assumed follow a bivariate distribution D with a
zero mean vector and a covariance matrix given by:

Σ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

As the ANOVA is a fixed effects model, we impose either one of the following
two constraints on the parameter values.

Constraint 1: α1,1 = α1,2 = β1,1 = β1,2 = 0 and all other α and β are free parame-
ters.

Constraint 2:
I∑

i=1
αi,k =

J∑
j=1

β j,k = 0 for k = 1, 2.

In this paper, Constraint 2 is adopted.
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2.3 Error Distributions

The choice of an appropriate error distribution plays an important role in statistical
modelling. Inappropriate choices may lead to biased and non-robust analysis. For
symmetric error distributions, the Gaussian distribution has been the most popular
error distribution in many applications but it fails to provide a robust analysis should
outliers exist. Heavy-tailed distributions are insensitive to outliers and therefore they
provide a robust analysis. Amongst many heavy-tailed distributions, the Student-t
distribution is most widely used. In this paper, the random errors are assumed to
follow either a bivariate Student-t distribution or a bivariate VG distribution.

Both univariate and multivariate t and VG distributions are members of the scale
mixture of normal (SMN) family [1, 3]. If the random errors in the bivariate two-
way ANOVAmodel follow a bivariate t distribution, then its joint probability density
function (PDF) can be given in the following integral form.

f (εi j |Σ, ν) =
∫ ∞

0
N2(εi j |0,λi jΣ)IG

(
λi j

∣∣∣
ν

2
,
ν

2

)
dλ

where N2(·|·, ·) is the bivariate Gaussian PDF, IG(·|·, ·) is the inverse gamma PDF,
ν is the degrees of freedom and λi j are the auxiliary variables, known as the scale
mixture variables, which can be used to identify potential outliers. For bivariate VG
error distribution, the PDF can also be expressed as

f (εi j |Σ, ν) =
∫ ∞

0
N2(εi j |0,λi jΣ)Ga

(
λi j

∣∣∣
ν

2
,
ν

2

)
dλ

where Ga(·|·, ·) is the gamma PDF and ν shape parameter of the VG distribution.
The SMN representation for the PDF of a heavy-tailed distribution facilitates

the data augmentation technique that enables efficient Bayesian computation. The
introduction of the scale mixture variables in Bayesian Markov chain Monte Carlo
(MCMC) results in a simpler Gibbs sampling scheme for simulating posterior sam-
ples for statistical analysis.

2.4 Markov Chain Monte Carlo

Since higher-order integrals are often encountered inBayesian analysis, the joint pos-
terior distribution and the predictive distribution are always intractable. The MCMC
algorithms [7] have become a popular way to obtain Bayesian solutions via stochastic
simulation. Amongst the MCMC techniques, Gibbs sampling scheme [6, 8] remains
the mostly used algorithm. It generates posterior realisations from the successively
updated full conditional distributions and these realisations mimic a random sample
from the intractable joint posterior distribution. Realisations of the predictive dis-
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tributions can be simulated in a similar way. In this paper, we implement a Gibbs
sampler in OpenBUGS, an open source software which conducts Bayesian inference
using Gibbs sampling scheme. Vague and Noninformative priors are adopted for all
model parameters to allow for objectivity in the analysis. The only exception is the
degrees of freedom of the Student-t distribution has a truncated exponential prior
distribution. In model implementation, we run a Gibbs sampler for 10,000 iterations
a burn-in period of 1,000 iterations.

3 Empirical Study

This section presents an empirical study of claim amount data from two lines of
automobile business of a major US insurer. The data are modelled by a bivariate
two-way ANOVA model as described in Sect. 2.2 with different error distributions.
Models are then compared and evaluated with Goodness-of-fit measurements and
model selection criteria. Parameter estimates are also shown.

3.1 Data Set

In this empirical study, 10years of incremental claim history (1988–1997) for 2 dif-
ferent lines of automobile business, namely the personal automobile and commercial
automobile, are analysed. The run-off triangles are sourced from the Schedule P of
the National Association of Insurance Commissioners’ (NAIC) database. Subject to
the willingness of insurers to disclose information, the availability of run-off trian-
gles of this size from the same company across multiple lines of business is scarce.
This dataset is also considered by other researchers in a different context (Shi and
Frees [10]; Avanzi et al. [2]).

For simplicity, the claim amount data are log-transformed, i.e. zi j = ln(yi j ).
Tables2 and 3 display the data for the personal automobile and commercial automo-
bile, respectively.

3.1.1 Parameter Estimation

The log-claim amount data in two run-off triangles are modelled by a bivariate two-
way ANOVA model with fixed effects. Data in the run-off triangles are assumed
to be dependent and independent, respectively under different error distributions to
generate different results for comparison. Table4 presents the parameter estimates
and several conclusions can be made. Firstly, it is observed that the overall mean
estimate for the personal automobile line is relatively consistent across the differ-
ent models. The overall mean estimate for the commercial automobile from the
heavy-tailed distributions tends to be larger than that of the Gaussian distribution.
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Table 2 Log-transformed incremental paid losses for personal automobile

Development Year
1 2 3 4 5 6 7 8 9 10

A
cc

id
en

t
Y
ea

r

1 14.13 14.01 13.19 12.66 12.03 11.29 10.58 9.62 9.29 8.32
2 14.27 14.18 13.39 12.74 12.15 11.25 10.46 9.75 9.43
3 14.38 14.25 13.43 12.81 12.08 11.27 10.77 10.14
4 14.39 14.22 13.40 12.68 12.00 11.35 10.89
5 14.43 14.27 13.33 12.61 12.08 11.57
6 14.49 14.23 13.27 12.76 12.38
7 14.53 14.17 13.36 12.98
8 14.54 14.19 13.50
9 14.61 14.23
10 14.61

Table 3 Log-transformed incremental paid losses for commercial automobile

Development Year
1 2 3 4 5 6 7 8 9 10

A
cc

id
en

t
Y
ea

r

1 10.43 10.72 10.75 10.47 10.06 9.43 8.80 8.12 7.77 6.66
2 10.54 10.85 10.62 10.29 9.45 9.32 8.66 8.35 7.55
3 10.61 10.94 10.94 10.39 9.67 9.04 8.87 7.03
4 10.61 10.81 10.58 10.09 9.48 9.44 7.98
5 10.52 10.84 10.44 10.14 9.87 8.65
6 10.62 10.88 10.60 10.59 8.80
7 10.96 11.13 11.36 9.80
8 11.03 11.79 9.95
9 11.63 10.41
10 10.53

Secondly, the correlation parameter ρ are modelled as negative across the models,
indicating a potential negative correlation between the random error terms of the per-
sonal and commercial automobile lines. Thirdly, the degrees of freedom parameter
is estimated to be approximately 4 in the dependence case and approximately 3 in
independence case, indicating the impact of modelling correlations. Moreover, it is
possible that the assumption of the same degrees of freedom across different lines
of business is restricting the model from capturing the actual degrees of freedom.
In fact, a substantial difference in degrees of freedom exists between two lines of
business when the triangles are modelled individually in a univariate setting.
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Table 4 Posterior means of model parameters under six different two-way ANOVA models
Parameter Dependent Independent

N t VG N t VG

μ1 11.720 11.700 11.710 11.720 11.690 11.710

α1,1 −0.209 −0.189 −0.193 −0.209 −0.184 −0.191

α2,1 −0.118 −0.089 −0.092 −0.118 −0.081 −0.088

α3,1 −0.005 −0.009 −0.008 −0.005 −0.009 −0.011

α4,1 −0.042 −0.040 −0.041 −0.040 −0.041 −0.042

α5,1 −0.027 −0.026 −0.026 −0.027 −0.029 −0.028

α6,1 0.023 0.007 0.008 0.023 0.000 0.004

α7,1 0.050 0.029 0.035 0.049 0.025 0.029

α8,1 0.064 0.060 0.062 0.064 0.062 0.065

α9,1 0.096 0.090 0.089 0.096 0.092 0.091

α10,1 0.169 0.166 0.166 0.168 0.165 0.171

β1,1 2.717 2.731 2.727 2.717 2.738 2.730

β2,1 2.493 2.524 2.519 2.493 2.535 2.528

β3,1 1.670 1.689 1.684 1.670 1.697 1.691

β4,1 1.073 1.085 1.084 1.074 1.090 1.088

β5,1 0.464 0.453 0.454 0.463 0.453 0.452

β6,1 −0.296 −0.298 −0.301 −0.296 −0.301 −0.305

β7,1 −0.955 −0.945 −0.947 −0.954 −0.945 −0.947

β8,1 −1.778 −1.837 −1.821 −1.777 −1.849 −1.834

β9,1 −2.193 −2.200 −2.201 −2.195 −2.199 −2.204

β10,1 −3.195 −3.203 −3.198 −3.196 −3.219 −3.199

μ2 9.186 9.290 9.263 9.185 9.321 9.287

α1,2 0.133 0.034 0.059 0.137 0.000 0.033

α2,2 0.031 −0.077 −0.060 0.034 −0.105 −0.080

α3,2 −0.034 −0.036 −0.027 −0.037 −0.040 −0.031

α4,2 −0.140 −0.178 −0.159 −0.141 −0.181 −0.161

α5,2 −0.152 −0.188 −0.180 −0.156 −0.192 −0.183

α6,2 −0.137 −0.093 −0.088 −0.133 −0.078 −0.083

α7,2 0.166 0.213 0.203 0.169 0.237 0.212

α8,2 0.157 0.289 0.240 0.152 0.307 0.241

α9,2 0.190 0.187 0.195 0.189 0.233 0.224

α10,2 −0.215 −0.150 −0.183 −0.213 −0.182 −0.172

β1,2 1.563 1.417 1.454 1.562 1.385 1.427

β2,2 1.720 1.656 1.666 1.724 1.623 1.643

β3,2 1.466 1.453 1.450 1.470 1.435 1.440

β4,2 1.087 1.078 1.082 1.087 1.068 1.076

β5,2 0.420 0.430 0.426 0.422 0.435 0.428

β6,2 0.028 0.036 0.046 0.024 0.040 0.047

β7,2 −0.607 −0.590 −0.589 −0.610 −0.573 −0.574

β8,2 −1.394 −1.205 −1.274 −1.397 −1.165 −1.235

β9,2 −1.608 −1.604 −1.602 −1.609 −1.604 −1.604

β10,2 −2.677 −2.671 −2.660 −2.674 −2.643 −2.648

df – 4.770 4.806 – 3.625 3.584

ρ −0.341 −0.228 −0.262 – – –
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3.2 Model Comparison

For model evaluation purposes, two error measurements and one model selection
criteria are used to choose the best model for the log-claim amount data. Error mea-
surements compare different models by accounting the deviation of the estimation
from the actual observations. In this paper, in-sample estimation errors (in the upper
triangle) are measured by
(1) Mean absolute deviation (MAD):

MAD = 1

2n

n,2∑

i=1, j=1

|zi, j − ẑi, j |

and

(2) Mean absolute percentage error (MAPE):

MAPE = 1

2n

n,2∑

i=1, j=1

|zi, j − ẑi, j |
zi, j

× 100%

Formodel selection criteria, ameasure ofmodel adequacy and ameasure ofmodel
complexity are traded off in order to avoid the problem of overfitting. In this paper,
models are selected based on Bayesian information criteria (BIC)

BIC = −2 ln(L̂) + k ln(n)

where L̂ is the maximum value of the likelihood function, k is the number of model
parameters and n is the number of observations in the model. The most competitive
model is the one which has the smallest BIC value, MAD and MAPE. The results of
model comparisons are given in Table5.

From Table5, it is observed that both the Student-t and VG distributions outper-
formed the Gaussian distribution. Under the dependence assumption, the Student-
t distribution is slightly better than the VG distribution in all three model com-
parison criteria. It has the smallest MAD = 0.1422, MAPE = 2.030% and BIC
(127.40) among the three models with dependent random errors. However, under

Table 5 Model comparisons of the six models using MAD, MAPE and BIC

Dependence Independence

N t VG N t VG

MAD 0.1510 0.1422 0.1424 0.1507 0.1423 0.1414

MAPE (%) 2.161 2.030 2.033 2.157 2.032 2.019

BIC 160.01 127.40 130.36 161.62 112.75 119.59
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the independence assumption, the Student-t distribution defects the VG distribution
only in the BIC while the VG distribution has the smallest MAD = 0.1414 and
MAPE = 2.019%.

It is observed that the VG and Student-t distributions yield similar results. Some
may argue that they are indifferent from each other. However, the performance of the
distribution largely depends on the characteristics of the data set. In fact, in order to
investigate the nature of the individual triangles, the models are run individually on
a univariate basis. It is found that the VG distribution has a better fit in the personal
automobile line while the Student-t distribution has a better fit in the commercial
automobile line. Therefore, applying bivariate distributions that restrict the same
marginal distribution in all lines of business may compromise in model accuracy
as it is possible that the characteristic of individual lines of business is substantially
different from each other. Nevertheless, the focus of this study is on the robustness of
the models. It is evident that the Gaussian error distribution is not robust to outliers
whereas heavy-tailed distributions are better at capturing the tail behaviour.

Another observation from the goodness-of-fitmeasurement is that the independent
models performed relatively better than the dependent models. Yet, the independent
Student-t model which is the second best independent model, did not outperformed
other dependent models. This may suggest moderate correlations which is discussed
in the next section.

4 Estimation of Future Liabilities

4.1 Reserve Forecasts

The ultimate objective of loss reserving analysis is to forecast future liabilities so
that sufficient fund can be allocated to the reserve to settle future payments. For the
personal automobile and commercial automobile lines, outstanding claim amounts
are the exponent of the unobserved values in the low triangle. Therefore, the loss
reserve forecast of a line of business is the sum of all outstanding claim amounts in
the lower triangle. From an accounting or risk management point of view, apart from
the total loss reserve, it is also the interest of reserve actuaries to forecasts loss reserve
for next calendar year, which is the sum of claim amounts in the first off-diagonal.

A major advantage of using the Bayesian approach for statistical analysis and
predictive analysis is that the Gibbs sampling scheme can easily simulate the out-
standing claim amounts and the predictive distributions become accessible. The pos-
terior mean, median, standard deviation, percentiles, credible interval and other risk
measures of the next year loss reserve and total reserve can be obtained from the
Gibbs output.

Tables6 and 7 presents the posterior mean and standard deviation of the total
reserve and next calendar year reserve (in million dollars), respectively. Since the
data were recorded from 1988 to 1997, the next calendar year is 1998.
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Table 6 Total reserve forecasts for the six models

Reserve N t VG

Mean Std Dev Mean Std Dev Mean Std Dev

Dependent

Personal auto 6.4800 0.4634 6.4230 0.5023 6.4410 0.4966

Commercial auto 0.4437 0.0996 0.5348 0.1696 0.5011 0.1304

Total reserve 6.9240 0.4431 6.9580 0.5146 6.9420 0.5054

Independent

Personal auto 6.4770 0.4578 6.4020 0.5211 6.4610 0.4774

Commercial auto 0.4408 0.0927 0.5584 0.2234 0.5190 0.1344

Total reserve 6.9170 0.4685 6.9600 0.5696 6.9800 0.5023

Table 7 Next calendar year reserves for the six models

Reserve N t VG

Mean Std Dev Mean Std Dev Mean Std Dev

Dependent

Personal auto 3.2700 0.2388 3.2710 0.2589 3.2750 0.2568

Commercial auto 0.1766 0.0356 0.2090 0.0633 0.1964 0.0473

Total NY reserve 3.4470 0.2309 3.4800 0.2619 3.4720 0.2588

Independent

Personal auto 3.2680 0.2360 3.2690 0.2695 3.2940 0.2477

Commercial auto 0.1758 0.0333 0.2163 0.0810 0.2018 0.0478

Total NY reserve 3.4440 0.2388 3.4850 0.2822 3.4960 0.2550

From Tables6 and 7, we have the following observations. Firstly, the posterior
means of the reserves are close to one another in all models. This is in consistent
with the close estimates of overall mean across different models as shown in Table4.
Secondly, reserve predictions from heavy-tailed models are larger than those from
the Gaussian distribution. This means that models with heavy-tailed error distrib-
utions are more conservative in loss reserving, protecting the insurance company
against insolvency. On the contrary, models with Gaussian error distribution may
lead to the underestimation of the loss reserves. Thirdly, the standard deviations of
the entire portfolio are smaller than that of the individual lines of business. It is a direct
result of the diversification of risks, suggesting a negative correlation coefficient for
the random errors in the two-way ANOVA models for the personal automobile and
commercial automobile claim amount data. This is also in consistent with the para-
meter estimates shown in Table4.
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Table 8 Value-at-Risks of loss reserves under different models

Personal automobile

Dependent Independent

N t VG N t VG

Percentile Total reserve

70th 6.6950 6.6300 6.6523 6.6950 6.5970 6.6680

90th 7.0840 7.0330 7.0351 7.0800 6.9630 7.0630

95th 7.2791 7.2730 7.2821 7.2610 7.1780 7.2731

99th 7.6890 7.8550 7.8620 7.6340 7.8041 7.7690

Percentile Next calendar year reserve

70th 0.4784 0.5829 0.5413 0.4754 0.6056 0.5634

90th 0.5145 0.6353 0.5828 0.5089 0.6553 0.6097

95th 0.5371 0.6702 0.6103 0.5295 0.6893 0.6404

99th 0.6629 0.8645 0.7756 0.6454 0.8704 0.8099

Commercial automobile

Percentile Total reserve

70th 3.3810 3.3750 3.3810 3.3770 3.3660 3.4010

90th 3.5820 3.5870 3.5830 3.5750 3.5580 3.6050

95th 3.6791 3.7111 3.7100 3.6830 3.6720 3.7140

99th 3.8970 3.9990 4.0110 3.8670 4.0090 3.9800

Percentile Next calendar year reserve

70th 0.1894 0.2268 0.2115 0.1888 0.2344 0.2179

90th 0.2219 0.2757 0.2499 0.2187 0.2804 0.2609

95th 0.2393 0.3063 0.2761 0.2357 0.3062 0.2882

99th 0.2870 0.3968 0.3431 0.2758 0.3918 0.3483

4.2 Implications in Risk Management Practice

Information regarding the variability of the loss reserve forecast has important impli-
cations in decision making of capital allocation. The predictive variability enables
reserve actuaries to have greater insight into the reasonable range of capital to be
set aside for outstanding claims and the risk margin. As such, considering the vari-
ety of risk management tools that can be implemented, a predictive distribution of
loss reserve from a stochastic model is more preferred by reserve actuaries com-
pared to merely a point estimate obtained form a deterministic model. This section
computes the risk measures, Value-at-Risk (VaR) and Tail Conditional Expectation
(TCE), of loss reserves under different two-way ANOVA models for the personal
and commercial automobile lines.

Risk margin is the amount of capital to be held in addition to a point estimate for
prudential riskmanagement purposes. VaR is ameasure of risk that can be interpreted
as the maximum loss that can occur with (1 − α) confidence over a certain period.
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Table 9 Tail conditional expectation of loss reserves under different models

Total reserve

TVaR Dependence Independence

N t VG N t VG

Personal automobile

90% 7.3559 7.3814 7.3951 7.3339 7.3695 7.3677

95% 7.5363 7.6252 7.6461 7.5057 7.6800 7.5757

99% 7.9285 8.1975 8.2607 7.9021 8.7643 8.0724

Commercial automobile

90% 0.6492 0.8733 0.7685 0.6310 0.9341 0.7970

95% 0.7075 0.9960 0.8579 0.6824 1.1084 0.8818

99% 0.8619 1.4613 1.1504 0.8065 2.0421 1.1444

Next calendar year reserve

Personal automobile

90% 3.7210 3.7686 3.7682 3.7119 3.7705 3.7672

95% 3.8126 3.8958 3.8994 3.8010 3.9322 3.8795

99% 4.0138 4.2040 4.2151 4.0034 4.5036 4.1450

Commercial automobile

90% 0.2497 0.3345 0.2937 0.2437 0.3536 0.3013

95% 0.2695 0.3796 0.3257 0.2611 0.4155 0.3297

99% 0.3218 0.5501 0.4297 0.3040 0.7468 0.4143

In fact, theVaR(α) is simply the 100(1 − α)th percentile of the predictive distribution.
In addition to the commonly used 90th, 95th and 99th percentile, the 70th percentile
is also considered as a risk margin in the insurance industry. Table8 displays the
Value-at-Risks (in million US dollars) at various levels for the total reserves and next
calendar year reserves in the two lines of automobile business.

From Table8, both Student-t distribution and the VG distribution provide more
conservative estimates, whereas the Gaussian distribution reserves substantially less
than those of the heavy-tailed distributions. The difference between the Gaussian
distribution and heavy-tailed distributions is amplified with higher VaRs in the next
calendar year reserve.

Another riskmeasure that is commonly used in the industry and often demanded in
regulatory requirements is the TCE which is the expected loss given the
occurrence of an extreme event beyond a certain probability (1 − α). In the context,
the 100(1 − α)% TCE is the expected loss reserve given that this reserve is greater
than the 100(1 − α)% VaR. Table9 exhibits the 90th, 95th and 99th TCE values (in
million US dollars) of the reserves under different two-way ANOVAmodels.

From Table9, it is observed that the dependence assumption in the models tends
to produce larger TCEs. Similar to VaRs, the Student-t and VG distributions pro-
duce more conservative risk measures than the Gaussian distribution. In this case,
the difference in the TCE is more obvious between the Gaussian and heavy-tailed
distributions.
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5 Conclusion

In this paper, we provide a robust inference in the analysis of loss reserve data in
two lines of insurance business. The proposed methodology can be straightforwardly
applied to multiple lines of business. Although the Gaussian distribution is the most
widely used error distribution inmany statisticalmodelling, being sensitive to outliers
and unable to provide a robust analysis are its main defects. In the forecast of future
liabilities, our empirical study shows that the Gaussian distribution provides a less
conservative forecast than its two rivals and thismay result in a high risk of insolvency.
Moreover, the Gaussian distribution may also overestimate the linear correlation
between two lines of business, falling into the trap of correlation illusion. On the
contrary, the heavy-tailedStudent-t andVGdistributions suggest no linear correlation
between the two lines of business. In fact, these two distributions are shown to be
superior to theGaussian distribution in terms of estimation errors andmodel selection
criteria. Risk measures and risk margins can be evaluated from the full predictive
distribution of loss reserve accordingly with the use of Bayesian MCMC methods.
Finally,wemake no claim thatwe have found the bestmodel for the claim reserve data
in this paper. Analysis on the individual lines of business suggests theVGdistribution
fits the personal automobile loss data better while the Student-t distribution fits the
commercial automobile loss data better. Our work triggers the further study of more
advanced models for loss reserving.
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On Conditioning in Multidimensional
Probabilistic Models

Radim Jiroušek

Abstract Graphical Markov models, and above all Bayesian networks have become
a very popular tool for multidimensional probability distribution representation and
processing. The technique making computation with several hundred dimensional
probability distribution possible was suggested by Lauritzen and Spiegelhalter. How-
ever, to employ it one has to transform a Bayesian network into a decomposable
model. This is because decomposable models (or more precisely their building
blocks, i.e., their low-dimensional marginals) can be reordered in many ways, so
that each variable can be placed at the beginning of the model. It is not difficult to
show that there is a much wider class of models possessing this property. In compo-
sitional models theory we call these models flexible. It is the widest class of models
for which one can always restructure the model in the way that any variable can
appear at the beginning of the model. But until recently it had been an open problem
whether this class of models is closed under conditioning; i.e., whether a conditional
of a flexible model is again flexible. In the paper we will show that this property holds
true, which proves the importance of flexible models for practical applications.

1 Introduction

Graphical Markov models [12] have become a very popular way for the represen-
tation of multidimensional probability distributions. This is not only because these
models efficiently represent multidimensional models with a reasonable number
of parameters, but mainly because one can get a ready-made software that makes
the application of graphical models to practical problems easier [14, 22]. The first
algorithms for knowledge propagation (conditioning) in singly connected Markov
and Bayesian networks were proposed by Judea Pearl [17], who also suggested
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collapsing variables into a single node to cope with “loops” (for historical notes see
[18]). In a way, this idea appeared later also in the Lauritzen Spiegelhalter method
(discussed below in more details).

In our best knowledge the only computational processes performing the compu-
tations directly with Bayesian networks, which are not based on simulations, are
those by Ross Shachter [19, 20]. His procedures, based on two rules called node
deletion and edge reversal, were designed to realize both basic procedures, of which
all computations with probabilistic models consists: marginalization and condition-
ing. Regarding marginalization, Shachter’s node deletion rule is based on the idea
that some variables may easily be deleted because of their special position in the
model. In fact, this property holds also for other graphical models. For Bayesian
networks it is about variables having no children in the respective acyclic digraph.
For decomposable models it is about variables whose nodes are simplicial in the
respective chordal graph. Similarly, when considering non-graphical approaches it
is about variables appearing only in one of the building blocks of the model. We do
not go into details here, because when speaking about computational procedures in
this paper we will primarily have in mind the other computational procedures, those
realizing computation of conditional distributions.1

Naturally, not all graphical models are equally convenient for computation of
conditionals. Undoubtedly, from the mentioned point of view the most advantageous
are decomposable models, for which Lauritzen and Spiegelhalter [13] suggested a
computational process realizing computation of conditionals locally. This process
takes advantage of the following two facts. First, the building blocks of decompos-
able models, i.e., their low-dimensional marginals, can be ordered to meet so called
Running Intersection Property (RIP). This is the very property that makes the process
of computation of conditionals local (the process does not need any auxiliary space,
the computations can be performed in the space required for the model representa-
tion). Second advantageous property is that there are many such RIP orderings; for
each variable one can always find an ordering, in which the selected variable can be
placed at the beginning of the model. And this second property makes computations
of all conditionals possible. And this is the property that will be studied in this paper
in detail.

To make our considerations more general, we will not deal with a specific class
of graphical models. Instead, we will consider a general class of models that fac-
torizes into a system of its marginals (or generally, into a system of general low-
dimensional distributions), i.e., so called compositional models. Therefore, the next
section introduces notation and basic concepts necessary to describe compositional
models and the rest of this paper is organized as follows. Section 3 is devoted to
the presentation of principles making the local computations with decomposable
models possible. Introduction of flexible models, as well as new results enabling us
to prove the main assertion of this paper are presented in Sect. 4. The last section

1The reader interested in marginalization procedures is referred to algorithms designed for compu-
tations with compositional models either in Malvestuto’s papers [15, 16] and/or in [2].
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concludes the paper referring to the relation of the presented results with other re-
search areas and presenting an open problem.

2 Basic Notions and Notation

In this text we use almost the same notation as in [9] presented at the 6th International
Conference of the Thailand Econometric Society in 2013. We deal with a finite system
of finite-valued random variables N . For u ∈ N , Xu denote the respective finite
(nonempty) set of values of variable u. The set of all combinations of the considered
values will be denoted XN = ×u∈NXu . Analogously, for K ⊂ N , XK = ×u∈KXu .

Distributions of the considered variables will be denoted by Greek letters (π, κ, λ,
μ, δ with possible indices); thus π(K ) denote a |K |-dimensional distribution and
π(x) a value of probability distribution π for point x ∈ XK . Its marginal distribution
for J ⊆ K will be denoted π↓J . Analogously, x↓J denote the projection of x ∈ XK

into XJ . When computing marginal distributions we do not exclude situations when
J = ∅. In this case, naturally, π↓∅ = 1.

Consider a distribution π(N ), and three disjoint subset K , L , M ⊂ N , K �= ∅,
L �= ∅. We say that for distributionπ variables K and L are conditionally independent
given variables M , if for all x ∈ XK∪L∪M

π↓K∪L∪M(x) · π↓M(x↓M) = π↓K∪M(x↓K∪M) · π↓L∪M(x↓L∪M).

This independence will be denoted K ⊥⊥ L|M[π ].
Two distributions κ(K ) and λ(L) are said to be consistent if their joint marginals

coincide: κ↓K∩L = λ↓K∩L .
Having two distributions defined for the same set of variables π(K ) and κ(K ),

we say that κ dominates π (in symbol π � κ) if for all x ∈ XK

κ(x) = 0 =⇒ π(x) = 0.

2.1 Operator of Composition

Prior to introducing compositional models we have to present a formal definition of
the operator of composition.

Definition 1 For arbitrary two distributions κ(K ) and λ(L), for which κ↓K∩L �
λ↓K∩L their composition is for each x ∈ X(L∪K ) given by the following formula
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(κ  λ)(x) = κ(x↓K )λ(x↓L)

λ↓K∩L(x↓K∩L)
.

In case that κ↓K∩L �� λ↓K∩L the composition remains undefined.

The following assertion summarizes the basic properties of this operator. The
respective proofs can be found in [6, 7].

Theorem 1 Suppose κ(K ), λ(L) and μ(M) are probability distributions. The fol-
lowing statements hold under the assumption that the respective compositions are
defined:

1. (Domain): κ  λ is a probability distribution for K ∪ L.
2. (Composition preserves first marginal): (κ  λ)↓K = κ .
3. (Reduction): If L ⊆ K then, κ  λ = κ .
4. (Extension): If M ⊆ K then, κ↓M  κ = κ .
5. (Perfectization): κ  λ = κ  (κ  λ)↓L .
6. (Commutativity under consistency): In general, κ  λ �= λ  κ , however, κ and

λ are consistent if and only if κ  λ = λ  κ .
7. (Associativity under RIP): In general, (κ  λ)  μ �= κ  (λ  μ). However,

if K ⊃ (L ∩ M), or L ⊃ (K ∩ M) then, (κ  λ)  μ = κ  (λ  μ).
8. (Exchangeability): If K ⊃ (L ∩ M) then, (κ  λ)  μ = (κ  μ)  λ.
9. (Simple marginalization): If (K ∩ L) ⊆ M ⊆ K ∪ L then, (κ  λ)↓M =

κ↓K∩M  λ↓L∩M.
10. (Conditional independence): (K \ L) ⊥⊥ (L \ K )|(K ∩ L)[κ  λ].
11. (Factorization): Let M ⊇ K ∪ L. (K \ L) ⊥⊥ (L \ K )|(K ∩ L)[μ] if and only

if μ↓K∪L = μ↓K  μ↓L .

When computing conditionals we will need a degenerate one-dimensional distribu-
tion expressing certainty. Consider variable u and its value a ∈ Xu . The distribution
δa(u) expressing for certain that variable u = a is defined for each x ∈ Xu as

δa(x) =
{

1, if x = a;
0, otherwise.

For the proof of the following assertion showing how to compute conditional
distributions see Theorem 2.3 in [3].

Theorem 2 Consider a distribution κ(K ), variable u ∈ K, its value a ∈ Xu, and
L ⊆ K \ {u}. If κ↓{u}(a) > 0, then the corresponding conditional distribution
κ(L|u = a) can be computed

κ(L|u = a) = (δa(u)  κ)↓L .
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2.2 Compositional Models

To enable the reader understanding of the following text without necessity to look
up the respective parts from the previous papers, we briefly define a compositional
model and present two basic properties, proofs of which can be found in [7]. To
simplify the exposition let us first make the following conventions.

In the rest of the paper we will consider a system of n oligodimensional distribu-
tions κ1(K1), κ2(K2), . . . , κn(Kn). Therefore, whenever we speak about distribution
κk , we will assume it is a distribution of variables Kk , i.e., κk(Kk). Moreover, when-
ever we use the operator of composition, we will assume that the composed distri-
butions meet the assumption from Definition 1, and therefore we assume that the
corresponding composition is defined. Thus, formulas κ1  κ2  . . .  κn will always
be defined and determine the distributions of variables K1 ∪ K2 ∪ . . . ∪ Kn .

To avoid necessity to write too many parentheses in the formulas, let us accept a
convention that we will apply the operators from left to right. Thus

κ1  κ2  κ3  . . .  κn = (. . . ((κ1  κ2)  κ3)  . . .  κn),

and the parentheses will be used only when we will want to change this default
ordering.

Definition 2 A compositional model κ1  κ2  . . .  κn is said to be perfect if

κ1  κ2 = κ2  κ1,

κ1  κ2  κ3 = κ3  (κ1  κ2) ,

...

κ1  κ2  . . .  κn = κn  (κ1  . . .  κn−1) .

Theorem 3 A compositional model κ1  κ2  . . .  κn is perfect if and only if all
distributions κk (k = 1, . . . , n) are the marginals of the distribution (κ1  κ2  . . .

 κn).

The following assertion, which is in fact a generalization of Property 5 of
Theorem 1, shows that each compositional model can be transformed into a per-
fect one.

Theorem 4 For a compositional model κ1  κ2  . . .  κn the sequence μ1, μ2, . . . ,

μn computed by the following process

μ1 = κ1,

μ2 = μ
↓K2∩K1
1  κ2,
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μ3 = (μ1  μ2)
↓K3∩(K1∪K2)  κ3,

...

μn = (μ1  . . .  μn−1)
↓Kn∩(K1∪...∪Kn−1)  κn

defines a perfect model, for which

κ1  . . .  κn = μ1  . . .  μn.

3 Decomposable Models and Local Computations

The purpose of this short section is to explain which properties of decomposable
model make local computations possible [5], and why we are interested in a class of
flexible models that will be introduced in the next section.

Definition 3 We call a compositional model κ1  κ2  . . .  κn decomposable if the
corresponding sequence of variable sets K1, K2, . . . , Kn meets the running intersec-
tion property (RIP), i.e., if

∀i = 2, . . . , n ∃ j (1 ≤ j < i)

(
Ki ∩ (

i−1⋃

k=1

Kk) ⊆ K j

)
.

The important properties of decomposable models are expressed by the following
two lemmas. The first one follows from the existence of a join tree [1], the proof of
the latter one can be found in [7],

Lemma 1 If K1, . . . , Kn meets RIP, then for each � ∈ {1, . . . , n} there exists a per-
mutation i1, . . . , in such that Ki1 = K�, and Ki1 , Ki2 , . . . , Kin meets RIP.

Lemma 2 If κ1, . . . , κn is a sequence of pairwise consistent probability distributions
such that K1, . . . , Kn meets RIP, then the compositional model κ1  κ2  . . .  κn is
perfect.

Let us explain general principles why the mentioned properties guarantee the
possibility to compute conditionals locally (for more details see [13], or e.g. [8],
where the reasoning is based on compositional models). Due to Theorem 2, the
computation of conditionals from a model κ1  . . .  κn means to compute

δa(u)  (κ1  κ2  . . .  κn).

This is an easy task in case that u ∈ K1, because, in this case,

δa(u)  (κ1  κ2  . . .  κn) = (δa(u)  κ1)  κ2  . . .  κn. (1)
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This equality can be proven by the multiple application of Property 7 of Theorem 1
(in more details it will be shown in the proof of Theorem 7). Now, consider the
application of the perfectization procedure from Theorem 4 to the right hand side of
Eq. (1). The reader can notice that if the sequence K1, K2, . . . , Kn meets RIP, then
K3 ∩ (K1 ∪ K2) equals either K3 ∩ K1 or K3 ∩ K2. Similarly, K4 ∩ (K1 ∪ K2 ∪ K3)

equals K4 ∩ K j for some j ≤ 3. Formally, thanks to RIP we can define a function

f : {3, 4, . . . , n} −→ {1, 2, . . . , n − 1},

such that for all i = 3, . . . , n

f (i) < i, and K f (i) ⊇ Ki ∩ (K1 ∪ K2 ∪ . . . ∪ Ki−1).

It means that for all i = 3, 4, . . . , n the marginal distributions necessary in the per-
fectization process

μ1 = δa(u)  κ1,

μ2 = μ
↓K2∩K1
1  κ2,

μ3 = (μ1  μ2)
↓K3∩(K1∪K2)  κ3 = μ

↓K3∩K f (3)

f (3)  κ3, (2)

...

μn = (μ1  . . .  μn−1)
↓Kn∩(K1∪...∪Kn−1)  κn = μ

↓Kn∩K f (n)

f (n)  κn

can be computed from μ f (i) as μ
↓Ki∩K f (i)

f (i) , because μ1  . . .  μi−1 is a perfect model
and therefore μ f (i) is marginal to μ1  . . .  μi−1. All this means that for decom-
posable models the process of perfectization can be performed locally, and that
the resulting perfect model μ1  . . .  μn is decomposable. The last statement fol-
lows from Lemma 2 because μ1, . . . , μn are defined for K1, . . . , Kn , which meet
RIP, and all μi are pairwise consistent because they are marginals of μ1  . . .  μn

(Theorem 3).
From the point of view of the following section it is important to realize that

the process described by Expressions (2) can always be performed, though for gen-
eral (non-decomposable) models this process may be computationally more space-
demanding. The question to be answered is whether one gets a possibility to consider
a wider class of probability distributions when giving up the requirement that the
computations must be local.

4 Flexible Models

Regardless the fact whether the model is decomposable or not, Equality (1) holds in
case that u ∈ K1. It means that computations of conditionals is algorithmically simple
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for conditioning by variables from K1. Therefore, in this section we are interested in
models that can be equivalently expressed in many ways, so that each variable may
appear among the arguments of the first distribution.

Definition 4 A model κ1  κ2  . . .  κn is called flexible if for each u ∈ K1 ∪ . . . ∪
Kn there exists a permutation i1, i2, . . . , in such that u ∈ Ki1 and

κi1  κi2  . . .  κin = κ1  κ2  . . .  κn.

Lemmas 1 and 2 say that a decomposable model consisting of pairwise consistent
distribution is flexible. Therefore, any decomposable model can be transformed into
a flexible one by the application of the perfectization procedure from Theorem 4.
Nevertheless, it is important to realize that flexibility, in contrast to decomposabil-
ity, is not a structural property [11]. Decomposability is a property of a sequence
of sets K1, K2, . . . , Kn , and any compositional model with a sequence of variable
sets K1, K2, . . . , Kn meeting RIP is decomposable. Contrarily, for any sequence of
variable sets K1, K2, . . . , Kn one can find a compositional model that is flexible. A
trivial example confirming this assertion is a model κ1  κ2  . . .  κn , where all dis-
tributions κi are uniform. In this case κ1  κ2  . . .  κn is a uniform multidimensional
distribution regardless the ordering of the distributions in the model.

To illustrate their properties, let us present two nontrivial examples of flexible
models.

4.1 Examples of Flexible Models

Circle. Consider a compositional model composed of two-dimensional distributions

κ1(u1, u2)  κ2(u2, u3)  . . .  κn−1(un−1, un)  κn(un, u1).

If the considered distributions are pairwise consistent, then this model is flexible,
because of Property 3 of Theorem 1,

κ1(u1, u2)  κ2(u2, u3)  . . .  κn−1(un−1, un)  κn(un, u1)

= κ1(u1, u2)  κ2(u2, u3)  . . .  κn−1(un−1, un),

which shows that the model in the right hand side of this expression is in fact
decomposable. Realize, however, that from the given set of pairwise consistent two-
dimensional distributions we can set up a number of other (generally different) flex-
ible models. For example, cyclic re-orderings

κi (ui , ui+1)  . . .  κn(un, u1)  κ1(u1, u2)  . . .  κi−1(ui−1, ui )
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yield other n − 1 decomposable, and thus flexible models. In fact any permutation of
these distributions bring forth a flexible model. When considering n = 8 as in Fig. 1,
taking all their permutations into account, one gets 46 of possibly different models,
and all of them are flexible (because all of them are decomposable).

Two channel transmission. The flexible models from the preceding example were
decomposable. To see that not all flexible models are, or can be easily transformed
into decomposable ones, consider the following compositional model consisting of
four distributions (see Fig. 2)

κ1(u1, u2, u3)  κ2(u2, v2)  κ3(u3, v3)  κ4(v1, v2, v3).

Further assume that Xu2 = Xv2 , and Xu3 = Xv3 , and that the distributions κ2 and
κ3 realize noiseless duplex transmission:

κ2(x, y) > 0 if and only if x = y,

κ3(x, y) > 0 if and only if x = y.

Fig. 1 Eight
two-dimensional
distributions forming a cycle

Fig. 2 Six-dimensional
flexible model



210 R. Jiroušek

In case that distributions κ1, κ2, κ3 and κ4 are pairwise consistent, it is not difficult
to show that

κ1(u1, u2, u3)  κ2(u2, v2)  κ3(u3, v3)  κ4(v1, v2, v3)

= κ4(v1, v2, v3)  κ2(u2, v2)  κ3(u3, v3)  κ1(u1, u2, u3), (3)

which means that the model is flexible. To show that Equality (3) holds it is enough
to use Properties 6 and 8 of Theorem 1:

κ1(u1, u2, u3)  κ2(u2, v2)  κ3(u3, v3)  κ4(v1, v2, v3)

= κ2(u2, v2)  κ1(u1, u2, u3)  κ3(u3, v3)  κ4(v1, v2, v3)

= κ2(u2, v2)  κ3(u3, v3)  κ1(u1, u2, u3)  κ4(v1, v2, v3)

= κ2(u2, v2)  κ3(u3, v3)  κ4(v1, v2, v3)  κ1(u1, u2, u3)

= κ2(u2, v2)  κ4(v1, v2, v3)  κ3(u3, v3)  κ1(u1, u2, u3)

= κ4(v1, v2, v3)  κ2(u2, v2)  κ3(u3, v3)  κ1(u1, u2, u3).

4.2 Conditioning in Flexible Models

Let us turn our attention to the main problem of this paper that had remained open
for more than five years: Are conditionals of a flexible model flexible? The answer
to this question, given by Theorem 7 below, is based on the following, surprisingly
simple assertion and its corollary.

Theorem 5 Let π(K ∪ L) = κ(K )  λ(L) be defined, and either M ⊆ K, or M ⊆
L. Then

μ(M)  π(K ∪ L) = (μ  π)↓K  (μ  π)↓L . (4)

Proof First, notice that the right hand side of Equality (4) is a composition of mar-
ginals of the same distribution. Therefore it is undefined if and only if μ  π is
undefined.

Assuming K ⊇ M we can compute

μ  π = (μ  π)↓K  (μ  π) Property 4, Theorem 1

= (μ  π)↓K  μ  π Property 7, Theorem 1

= (μ  π)↓K  μ  (
π↓K  π↓L) Properties 10 and 11, Theorem 1

= (μ  π)↓K  μ  π↓K  π↓L Property 7, Theorem 1

= (μ  π)↓K  μ  π↓L Property 3, Theorem 1

= (μ  π)↓K  (
μ  π↓L) Property 7, Theorem 1

= (μ  π)↓K  (μ  π)↓L . Property 9, Theorem 1
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In case that M ⊆ L , using the same computations as above we get

μ  π = (μ  π)↓L  (μ  π)↓K = (μ  π)↓K  (μ  π)↓L ,

where the last equality holds because of Property 6 of Theorem 1. ��
Corollary 1 Letπ(K ∪ L) = κ(K )  λ(L) be defined. Then for any u ∈ K ∪ L and
a ∈ Xu such that π↓{u}(a) > 0, the conditional ϑ(K ∪ L) = δa(u)  π(K ∪ L) can
be expressed in the form of a composition

ϑ = ϑ↓K  ϑ↓L .

Repeat, flexible sequences are those, which can be reordered in many ways so that
each variable can appear among the arguments of the first distribution. As showed in
the example two channel transmission it does not mean that each distribution appears
at the beginning of the generating sequence. Therefore, the property of flexibility is
not a structural property [11] (it is not a property of a sequence K1, K2, . . . , Kn like
decomposability), and therefore we have to prove that the perfectization procedure
from Theorem 3 preserves flexibility.

Theorem 6 If a model κ1  κ2  . . .  κn is flexible then its perfectized form μ1 
μ2  . . .  μn defined by the procedure

μ1 = κ1,

μ2 = μ
↓K2∩K1
1  κ2,

μ3 = (μ1  μ2)
↓K3∩(K1∪K2)  κ3,

...

μn = (μ1  . . .  μn−1)
↓Kn∩(K1∪...∪Kn−1)  κn

is also flexible.

Proof To prove this assertion it is enough to show that for each permutation
i1, i2, . . . , in for which

κi1  κi2  . . .  κin = κ1  κ2  . . .  κn, (5)

and for each j = 1, . . . , n, distribution μi1  μi2  . . .  μi j is marginal to κ1  . . . 
κn , which means that

μi1  μi2  . . .  μi j = (κ1  κ2  . . .  κn)
↓Ki1 ∪...∪Ki j. (6)

Consider a permutation i1, i2, . . . , in for which Eq. (5) holds true. For j = 1
Equality (6) holds trivially because all distributions μ1, μ2, . . . , μn are marginals
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of μ1  . . .  μn = κ1  . . .  κn (Theorem 3). So, to finish the proof by an induction,
let us show that if μi1  . . .  μi j−1 is the marginal of κ1  . . .  κn , the same must
hold also for

μi1  . . .  μi j = (μi1  . . .  μi j−1)  μi j .

So, we assume that

μi1  . . .  μi j−1 = (κ1  . . .  κn)
↓Ki1 ∪...∪Ki j−1, (7)

which means (because of Eq. (5) and Property 2 of Theorem 1) that

μi1  . . .  μi j−1 = κi1  . . .  κi j−1 ,

and therefore also

(κ1  κ2  . . .  κn)
↓Ki1 ∪...∪Ki j = κi1  κi2  . . .  κi j = μi1  . . .  μi j−1  κi j

= μi1  . . .  μi j−1  μi j ,

where the last equality holds due to Property 5 of Theorem 1, because

μi j = (κ1  κ2  . . .  κn)
↓Ki j .

��
The following theorem, which is the main result of this paper, states that the

computation of a conditional from a flexible model does not spoil its flexibility.

Theorem 7 Consider a flexible model π = κ1  κ2  . . .  κn, variable u ∈ K1, its
value a ∈ Xu such thatπ↓{X}(a) > 0, and the corresponding conditional distribution
ϑ = δa(u)  (κ1  κ2  . . .  κn). Then

ϑ = ϑ↓K1  ϑ↓K2  . . .  ϑ↓Kn ,

is a flexible model.

Proof First, let us start with showing that

ϑ = δa(u)  (κ1  κ2  . . .  κn) = δa(u)  κ1  κ2  . . .  κn. (8)

For this, it is enough to apply Property 7 of Theorem 1 and the fact that u ∈ K1, and
therefore u ∈ K1 ∪ . . . ∪ Ki for all i = 1, . . . , n − 1. In this way we get

δa(u)  (κ1  κ2  . . .  κn) = δa(u)  (
(κ1  κ2  . . .  κn−1)  κn

)

= δa(u)  (κ1  κ2  . . .  κn−1)  κn

= δa(u)  (κ1  κ2  . . .  κn−2)  κn−1  κn

= . . . = δa(u)  κ1  κ2  . . .  κn.
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The rest of the proof follows the idea from the proof of Theorem 6. The only
difference is, as the reader will see, that we have to employ Corollary 1.

To get a perfect model for conditional distribution ϑ , apply the perfectization
procedure to (δa(u)  κ1)  κ2  . . .  κn:

μ1 = δa(u)  κ1,

μ2 = μ
↓K2∩K1
1  κ2,

...

μn = (μ1  . . .  μn−1)
↓Kn∩(K1∪...∪Kn−1)  κn.

We will again show that for each permutation i1, i2, . . . , in for which

κi1  κi2  . . .  κin = κ1  κ2  . . .  κn,

and for each j = 1, . . . , n, distribution μi1  μi2  . . .  μi j is marginal to ϑ , which
means that

μi1  μi2  . . .  μi j = (ϑ)
↓Ki1 ∪...∪Ki j. (9)

For j = 1 Equality (9) holds because Theorem 3 guarantees that all the distribu-
tions from a perfect sequence are marginal to the resulting distribution. To conclude
the induction we will show that if μi1  . . .  μi j−1 is the marginal of ϑ , the same
must hold also for

μi1  . . .  μi j = (μi1  . . .  μi j−1)  μi j .

Assume
μi1  . . .  μi j−1 = ϑ

↓Ki1 ∪...∪Ki j−1 . (10)

The considered permutation is selected in the way that
(
κi1  . . .  κi j−1

)  κi j is
marginal to κ1  . . .  κn , and therefore, due to Property 10 of Theorem 1,

(Ki1 ∪ . . . ∪ Ki j−1) \ Ki j ⊥⊥ Ki j \ (Ki1 ∪ . . . ∪ Ki j−1)[κ1  . . .  κn].

Due to Corollary 1, the same conditional independence relation holds also for dis-
tribution ϑ , and therefore, due to Property 11 of Theorem 1,

ϑ
↓Ki1 ∪...∪Ki j = ϑ

↓Ki1 ∪...∪Ki j−1  ϑ
↓Ki j .

Since ϑ = μ1  . . .  μn is a perfect model, μi j = ϑ
↓Ki j , and Eq. (9) holds because

we assume that Eq. (10) holds true. ��
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5 Concluding Remarks and Open Problem

In this paper we have proven that when computing conditionals from a flexible model,
the resulting model, after perfectization, is again flexible. Though one cannot expect
that the respective computational processes will be “local”, the revealed property
speaks out in favor of the efforts aiming to the design of new computational pro-
cedures similar to “message passing” propagation algorithms [4] for computations
in join trees, or Shenoy-Shafer architecture algorithms [21]. This is a good piece
of news, because it means that flexible models, more general models than decom-
posable ones, can be used for knowledge representation in computer aided decision
systems.

The class of the considered models would increase even more, if instead of general
flexible models introduced in Definition 4 one considered M-flexible models, where
set M contains those variables that are required to appear at the beginning of the
model. It means that M-flexible models are suitable for computations of conditionals
with conditioning variables from M . It is obvious that, in some applications (such as
computer-aided diagnosis making), the user can specify in advance a set of variables,
conditioning by which has a sense. When trying to specify a proper diagnosis we can
use a model, in which conditioning by the diagnosis and/or other hidden variables
is not allowed. It means models, in which conditioning is allowed only for features
that are measurable (observable).

Another remark concerns causal models. Since the compositional models are also
used for modeling causality [10], it is important to realize that the results presented
in this paper are not applicable to causal models. This is because the reordering of
distributions of a causal model is not allowed (except for very special cases). On
the other hand side, these results are unnecessary for the computation of impact of
intervention, because the application of the Pearl’s do-operator is in compositional
models always easy to compute (for details see [10]).

The last remark concerns the relation of decomposable and flexible models. As
said above, the class of flexible models covers the class of decomposable models.
However, in [7], decomposable models were defined in a different, much broader,
sense. Let us call them weakly decomposable here.

Definition 5 A model κ1  κ2  . . .  κn is called weakly decomposable if there ex-
ists a decomposable model λ1(L1)  λ2(L2)  . . .  λm(Lm) such that

• λ1  λ2  . . .  λm = κ1  κ2  . . .  κn , and
• for each j = 1, 2, . . . ,m there is i ∈ {1, 2, . . . , n}, for which λ j (L j ) = κ

↓L j

i .

It means that weakly decomposable models can be transformed into decomposable
ones without increase in space requirements. Example 13.3 in [7] presents a weakly
decomposable model that is neither flexible nor perfect. It is a five-dimensional
model whose structure is depicted in the left hand side of Fig. 3 (the structure of the
equivalent decomposable model is in the right hand side of this figure).

Above introduced two channel transmission example is not weakly decomposable,
but still there is a way (rather nontrivial) how to transform it into a decomposable
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Structure of a weakly decomposable
model

Structure of an equivalent decomposable
model

Fig. 3 Structure of a weakly decomposable model and its decomposable equivalent

Fig. 4 Six-dimensional
decomposable model

model without increase in space requirements. The reader can easily verify that it is
the model (Fig. 4)

κ1(u1, u2, u3)  λ4(u1, u2, v3)  κ2(u2, v2)  κ3(u3, v3),

where

λ4(u1, u2, v3) = (κ1(u1, u2, u3)  κ2(u2, v2)  κ3(u3, v3)  κ4(v1, v2, v3))
↓{u1,u2,v3}.

In fact, all flexible models we dealt with were models that could be in a way
transformed into decomposable ones. So, we can conclude the paper by present-
ing an open question: Does there exist a flexible models for which all equivalent
decomposable models are defined with distributions defined by a larger number of
probabilities than the original flexible model?
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New Estimation Method for Mixture
of Normal Distributions

Qianfang Hu, Zheng Wei, Baokun Li and Tonghui Wang

Abstract Normal mixture models are widely used for statistical modeling of data,
including classification and cluster analysis. However the popular EM algorithms for
normalmixturesmaygive imprecise estimates due to singularities or degeneracies. To
avoid this,we propose a new two-step estimationmethod: first truncate thewhole data
set to tail data sets that contain points belonging to one component normal distribution
with very high probability, and obtain initial estimates of parameters; then upgrade
the estimates to better estimates recursively. The initial estimates are simply Method
of Moments Estimates in this paper. Empirical results show that parameter estimates
are more accurate than that with traditional EM and SEM algorithms.

1 Introduction

The mixture of normal distributions is used in many areas, such as biology, genet-
ics, medicinal science, economics and so on. In the research literature of mixture of
normal distributions, themost popular algorithm to estimate the parameters is Expec-
tation Maximization (EM) algorithm proposed by Arthur Dempster, Nan Laird and
Donald Rubin in 1977. EM is an iterative method for finding maximum likelihood
estimates or maximum a posteriori (MAP) estimates of parameters in statistical
models that contain unobserved latent variables. However, EM typically converges
to a local optimum–not necessarily the global optimum, there is no bound on the
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convergence rate in general, and it is sensitive to initial values. For these weak points
there are some improvements, such as [1–5], etc. All these improvements do not give
much more accurate estimates for mixture distribution, especially for high dimen-
sional mixture data. Hence in this paper we propose a new estimation method and
show that it dominates previous estimations in our empirical study.

For a mixture of normal distributions, suppose the samples of the component
normal distributions could be separated completely, there should be no difficulty
in estimating all the parameters using the Maximum Likelihood Estimation (MLE)
or the Method of Moments (MM). While we can not separate the samples of the
component distributions from the whole sample data completely, we are able to
get such samples respectively with very high probability, because it is much more
possible for points in a truncated sample far from the center of the data to follow
one distribution than to follow another distribution. Then we could use the truncated
samples to estimate the parameters of the component normal distributions.

It is not uncommon that truncated samples are used to estimate the parameters
of original distribution ([6–9], etc.). After applying usual estimation methods for
truncated normal distribution, for example MM, we propose an iterative upgrading
process which is used to approach the real parameters step by step starting fromMM.
We proved that under some conditions the upgraded estimates are better than initial
estimates of the original normal distribution.

To estimate the parameters of one-dimensional mixture of normal distributions,
we propose a newmethodwhich is called Truncation andUpgrading (TU) algorithm.
In the truncation step, we set a reasonable cut point which ensures that points in the
truncated sample belong to one component distribution with high probability, and the
sample size is as large as possible. In the upgrading step, we apply the approaching
process illustrated in Sect. 2 to the truncated sample to obtainmore accurate estimates
than initial estimates from an usual estimation method, here we use MME with this
algorithm estimation of parameters in one component distribution is followed by
estimation of parameters in another component distribution. From the simulation
comparisons in Sect. 4, TU algorithm does give more accurate results than other
methods, such as EM, SEM.

Due to hardship for parameter estimation of multivariate mixture of normal dis-
tributions using usual methods, simulation analysis on this topic is rarely seen. How-
ever, with the TU algorithm, parameter estimation for multivariate mixture of normal
distributions is almost as easy as that for one dimensional mixture of normal dis-
tributions. It is well known that the marginal distributions of a multivariate normal
distribution are also normal distributions. Similar statement holds true for a mul-
tivariate mixed normal distributions too. Because of this property, the estimation
problem of a multivariate mixture of normal model is reduced to the estimation the
parameters of one dimensional mixture of normal distributions.

This paper is organized as follows. After the introduction, Sect. 2 introduces the
details of the parameter estimates upgrade process for truncated normal distribution;
Sect. 3 describes the steps of TU algorithm for different mixture of normal distrib-
utions; Sect. 4 shows comparison among estimates from several methods with the
same simulation plans. And Sect. 5 is the conclusion of the study.
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2 Estimate Upgrade for Truncated Normal Distribution
Parameters

2.1 Truncated Normal Distribution

Suppose X ∼ N (μ, σ 2) is a normal distribution. When X ∈ (a, b), −∞ ≤ a < b ≤
∞, then X conditional on a < X < b is a truncated normal distribution. Let Y be
the truncated normal distribution, the density function f (y) is given by:

f (y) =
1
σ
φ(

y−μ

σ
)

Φ(
b−μ

σ
) − Φ(

a−μ

σ
)
I (a < y < b).

where φ(.) andΦ(.) are the density and cumulative functions of the standard normal
distribution, and I (.) is an indicator function. When a = −∞, the truncated normal
distribution is a right truncated normal distribution. When b = ∞, the truncated
normal distribution is a left truncated distribution.

The corresponding mean and variance are

E(Y ) = μ − σ
φ(a′) − φ(b′)
Φ(b′) − Φ(a′)

,

Var(Y ) = σ 2
[
1 + a′φ(a′) − b′φ(b′)

Φ(b′) − Φ(a′)
−

( φ(a′) − φ(b′)
Φ(b′) − Φ(a′)

)2]
,

where a′ = a−μ

σ
, and b′ = b−μ

σ
.

2.2 Estimate Upgrade for Truncated Normal Distribution
Parameters

Intuitively, the estimation based on the truncated sample will be inferior to the esti-
mation based on complete sample data. Therefore if we could make up the missing
part of the normal distribution properly, we should have got better estimators of
the normal distribution than the estimators dependent only on the truncated normal
distribution samples. In the following we will introduce the estimate upgrade with
initial estimates coming from the usual method of moments. The initial estimates
could come from other estimation methods. Here for simplicity, we get them from
method of moments. Also we show that for given initial estimates of the truncated
normal distribution, under some conditions the procedure does improve the estima-
tion accuracy.



220 Q. Hu et al.

Theorem 2.1 Given a sample x1, x2, . . . , xm1 from a normal distribution N (μ, σ 2)

with a < xi < b, and i = 1, 2, . . . ,m1,. Denote the parameter estimates from MM

are μ̂0, σ̂ 2
0 , p0 =

b∫
a

f (x |μ̂0, σ̂
2
0 )dx, p =

b∫
a

f (x |μ, σ 2)dx, and p ≥ 0.2. Then

I: assume |p0 − p| < 0.3 and σ̂ 2
0 = σ 2, define μ̂t = I μ̂t−1,x + I μ̂t−1,missing,

t > 0, where I μ̂t−1,x = pt−1 × 1
m1

m1∑
i=1

xi ,

I μ̂t−1,missing =
a∫

−∞
x f (x |μ̂t−1, σ̂

2
t−1)dx +

∞∫

b
x f (x |μ̂t−1, σ̂

2
t−1)dx,

pt−1 =
b∫
a

f (x |μ̂t−1, σ̂
2
t−1)dx. Repeat the upgrading process, the upgraded estimate

sequence converges.
II: assume |p0 − p| < 0.5 and μ̂0 = μ, define σ̂ 2

t = ˆIσ 2
t−1,x + ˆIσ 2

t−1,missing,

t > 0, where ˆIσ 2
t−1,x = pt−1 × 1

m1

m1∑
i=1

(xi − μ̂t−1)
2,

ˆIσ 2
t−1,missing =

a∫
−∞

(x − μ̂t−1)
2 f (x |μ̂t−1, σ̂

2
t−1)dx +

∞∫

b
(x − μ̂t−1)

2 f (x |μ̂t−1, σ̂
2
t−1)dx,

pt−1 =
b∫
a

f (x |μ̂t−1, σ̂
2
t−1)dx. Repeat the upgrading process, the upgraded estimate

sequence converges.

This theorems proof is in the appendix.

3 TU for the Mixture of Normal Models

3.1 Mixture of Normal Distributions

Given an observed sample X = (X1, . . . , Xn), where X j ∈ Rd follows some mix-
ture of normal distributions. The density function of the mixture is given as follows.,

p(X,Θ) =
k∑

j=1

w j G(x,m j ,Σ j ), w j ≥ 0 and
k∑

j=1

w j = 1,

whereG(x,m j ,Σ j ) = 1
(2π)d/2|Σ j |1/2 exp

(− 1
2 (x − m j )

TΣ j (x − m j )
)
, j = 1, 2, . . . ,

k. In estimation of mixture of normal models, the parameters to be estimated are w j ,
m j , and Σ j .
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3.2 TU Algorithm

To obtain better parameter estimates of mixture of normal models, we propose a new
method, Truncation and Upgrade (TU) algorithm. In the truncation step, we try to
find a reasonable truncated point which ensures that points in the truncated sample
belong to one component normal distribution with high probability and the sample
size is as large as possible. In the upgrade step, we apply the estimate upgrademethod
in Sect. 2 to upgrade initial estimates fromMMEbased on the truncated sample.With
TU algorithm the parameters of one component distribution are estimated followed
by estimation of the parameters of another distribution. This method not only works
well in the univariate mixture cases, but also in the multivariate mixture cases.

For simplicity, we mainly consider the mixture of only two normal distributions,
since mixture with several normal distributions could be generalized from this. In
this section, we will describe the TU algorithm for univariate and multivariate mixed
normal models respectively.

For an univariate mixture random variable X withw1N (μ1, σ
2
1 ) + w2N (μ2, σ

2
2 ),

its mean and variance are as follows.

μ = w1μ1 + w2μ2, (1)

σ 2 = w1σ
2
1 + w2σ

2
2 + w1w2(μ1 − μ2)

2. (2)

Given a random sample distributed as X, there are two frequently seen patterns about
its fitted density curve. In one pattern the curve has one peak and is symmetric like
Fig. 1 left, which implies that the means of the two distributions are very close. Thus
we assume the two means are the same. In the other pattern the curve has two peaks

Fig. 1 Histograms with equal means (left) or unequal means (right)
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clearly or is asymmetric like Fig. 1 right. For this pattern we assume the two means
are different. We will describe TU algorithm steps for each pattern. The thumb rule
to decide the same mean case is this: if the highest peak of the total sample is in the
5% confidence interval of the total sample mean, the means are all equal to the total
sample mean. Otherwise the two distributions have different means.

3.2.1 The TU Algorithm for the Equal Mean Case

The TU algorithm is inspired with the following observation. For a random sample
with the mixture of normal distributions described as above, there is about 95.45%
of probability that a point in distribution N2 lies in the interval (μ2 − 1.96σ2, μ2 +
1.96σ2) when μ1 = μ2 and σ 2

1 > σ 2
2 . If a sample point is not in this interval, then

this point belongs to N1 with a large probability in general. By this observation, we
could ensure some truncated sample from one normal distribution approximately.

In practice, for the same mean normal mixture model to be estimable, it has to
satisfy two requirements. Firstly, the difference between w1 and w2 is required to be
small, say |w1 − w2| < 0.4. Secondly the variances σ 2

1 and σ 2
2 are required not be

very close. Without loss of generality, we assume σ 2
1 > σ 2

2 . Because the variance of
the mixture is between the two single variances σ 2

1 and σ 2
2 from Eq. (2), the sample

points beyond the interval [μ̂ − 2σ̂ , μ̂ + 2σ̂ ] belong to the distribution N1(μ1, σ
2
1 )

with very high possibility.

T-Step Compute the sample mean and variance as the parameter estimates μ̂ and
σ̂ 2 of the mixture. Extract the samples beyond the interval [μ̂ − 2σ̂ , μ̂ + 2σ̂ ] and
denote as S1, and the sample size ism1. From the above discussion, almost all points
in S1 come from N1(μ1, σ

2
1 ), therefore we assume it is a truncated normal sample.

With S1 we can get the initial estimates for distribution N1(μ1, σ
2
1 ), namely μ̂1,0 and

σ̂1,0 from the usual MME.

U-Step Using the initial estimates μ̂1,0, σ̂1,0 of μ1 and σ1, calculate

pt−1 = P(x /∈ [μ̂ − 2σ̂ , μ̂ + 2σ̂ ]) = 1 −
∫ μ̂+2σ̂

μ̂−2σ̂
f (x |μ̂1,0, σ̂

2
1,0)dx,

ˆIμ2σ =
∫ μ̂+2σ̂

μ̂−2σ̂
x f (x |μ̂1,0, σ̂

2
1,0)dx,

ˆIσ 2
2σ =

∫ μ̂+2σ̂

μ̂−2σ̂
(x − μ̂1,0)

2 f (x |μ̂t−1, σ̂
2
1,0)dx,

ˆIσ 2
x = pt−1

1

m1

m1∑

i=1

(xi − μ̂1,0)
2.
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Let μ̂1,1 = I μ̂x1 + I μ̂2σ , I σ̂ 2
1,1 = I σ̂ 2

x + I σ̂ 2
2σ . Thenwe have the new estimates μ̂1,1,

σ̂1,1 of μ1 and σ1, Repeat this process to get μ̂1,t , σ̂ 2
1,t t = 2, 3, . . ., till the updated

estimates converge. Denote μ̂1 = lim
t→∞ μ̂1,t , and σ̂ 2

1 = lim
t→∞ σ̂ 2

1,t .

Calculate the estimator of sample size n1, i.e., n̂1 = m1
pt−1

, we get the estimate
of the distribution weight ŵ1 = n̂1/n, then we could obtain all the other parameter
estimates from Eqs. (1) and (2).

3.2.2 TU Algorithm for Different Means Case

For the mixture of normal distributions with two different means, without loss of
generality, we assume that μ1 < μ2, σ 2

1 ≥ σ 2
2 . So the left distribution is N1(μ1, σ

2
1 )

and the right distribution is N2(μ2, σ
2
2 ). The TU steps are as follows.

T-Step In Fig. 2 (right), a, b, c, d represent four points in a two-mode density curve:
the 2.5% quantile, the first peak, the second peak, the 97.5% quantile. In case there is
only one mode observed, then we have b = c as a special case of two-mode density
curve. Let X1 be the sample of points falling in the interval (−∞, 2c − d], and its
size ism1. Taking X1 as a truncated normal sample, initial estimates of the parameters
in N1(μ1, σ

2
1 ) are obtained with MME. And the estimates are denoted as μ̂1,0, σ̂ 2

1,0.
The Truncation step is based on the fact that almost all points in X1 come from the

distribution N1(μ1, σ
2
1 ). Since c is very close to the μ2, in the histogram the points

in the interval [c, d] account for approximately 48−50% of all the sample points
from N2(μ2, σ

2
2 ). By symmetry of the normal distribution, there is same percentage

of points from N2 in the interval [2c − d, c). Thus interval (2c − d,+∞) contains

Fig. 2 Truncated samples for equal means or unequal means
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more than 96% of points from N2. So we conclude that the sample X1 containing
points in the interval (−∞, 2c − d] mostly come from the distribution N1.

U-Step Using the initial estimates μ̂1,0, σ̂1,0 of μ1 and σ1, calculate

pt−1 =
∫ 2c−d

−∞
f (x |μ̂1,0, σ̂

2
1,0)dx,

I μ̂right =
∫ +∞

2c−d
x f (x |μ̂1,0, σ̂

2
1,0)dx,

I σ̂ 2
right =

∫ +∞

2c−d
(x − μ̂1,0)

2 f (x |μ̂1,0, σ̂
2
1,0)dx,

ˆIσ 2
x = pt−1

1

m1

m1∑

i=1

(xi − μ̂1,0)
2,

Let μ̂1,1 = ˆIμx1 + I μ̂right ,
ˆIσ 2
1,1 = I σ̂ 2

x + I σ̂ 2
right

. Then we have the new estimates

μ̂1,1, σ̂1,1 of μ1 and σ1. Repeat this process to get μ̂1,t , σ̂ 2
1,t t = 2, 3, . . ., until the

upgraded estimates converge. Denote μ̂1 = lim
t→∞ μ̂1,t , and σ̂ 2

1 = lim
t→∞ σ̂ 2

1,t .

TheT-Step is slightly different for the parameter estimation of N2(μ2, σ
2
2 ) depend-

ing on the size of |μ1 − μ2|. When the difference of the two means is significantly
different from 0, the T-Step is the same as above. Otherwise we take out m2 points
randomly from the truncated sample containing all points greater than c. Here
m2 = m1 p2/p1, p2 = P(X > c), and X follows N1(μ̂1, σ̂1

2
). With the truncated

sample repeat the U-Step till we get μ̂2 and σ̂ 2
2 . The distribution weights are esti-

mated as ŵ1 = n1
n1+n2

, ŵ2 = 1 − ŵ1. Where n1 = m1/p1, it is the estimated number
of sample points following distribution N1(μ1, σ

2
1 ), and n2 is computed similarly.

Fig. 3 Density contour of a
bivariate normal mixture
distribution
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Fig. 4 Histograms of projections of a mixture of bivariate normal distributions

The TU algorithm could also be used to estimate the parameters of multivariate
normal mixture distribution. Figure3 is the density contour of a mixture of bivariate
normal distributions, the density function is f (x, y) = w1 f (x1, y1) + w2 f (x2, y2).
Figure4 contains the projections of Fig. 3 on x and y axis, both projections are
mixtures of univariate normal distributions. The left of Fig. 4 is the projection on
x-axis and the right is on y-axis. The parameter estimation steps are as follows.

(1) Project all the points on each axis.
(2) Use the above TU algorithm to obtain upgraded parameter estimates in mixture

of univariate normal distributions.
(3) Estimate the correlation coefficient using conditional distribution of one variable

on the other variable.

For the correlation coefficient between two random normal variables X and Y , it
is estimated using the fact

(Y |X = x) ∼ N (μ1 + σ2

σ1
ρ(x − μ1), σ

2
2 (1 − ρ2)).

Notice that the variance of the condition distribution has no relation with x . Sup-
pose we have sufficiently large size of data, the estimation could be carried out by
computing the sample variance of a small neighborhood of x .

For instance, if a > μ1, then the neighborhood could be set as [μ1 − ε, μ1 + ε],
where ε is a small positive number. Denote the sample in the neighborhood as Y1,
the corresponding sample variance is σ̂ 2

Y1
, approximately we have σ̂ 2

Y1
= σ̂ 2

2 (1 − ρ2).
Then we get the estimate of correlation coefficient ρ̂. If a < μ1, then the neighbor-
hood could be set as [a − ε, a], similarly we get ρ̂.
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4 Comparison Among Estimation Methods

For comparison purpose, we will test our new algorithm on the same data as EM and
SEM were tested in the 1995 paper of Celeux et al. Just like the 1995 paper, each
result table in this article is based on a simulation consisting of n iterations, in each
iteration is generated a sample of size N of a mixture of normal distributions.

In every table, one column is for the real values of the parameters, the subsequent
columns give the estimates for the 3 selected algorithms. The results of EM are just
the result of EM in the 1995 paper. The values in the first row of the intersections
of parameter and algorithm are mean values of estimates. The values in presences in
the second row are the standard deviations computed over the n simulations.

In this paper the main concern is the estimate accuracy because the convergence
times are very short, even for the most time consuming TU algorithm it only takes
several seconds to converge with a usual laptop. So in the following tables, we
just provide the mean value and standard deviation of parameter estimates for each
parameter under each algorithm.

4.1 Estimation of Normal Mixture Distribution with Same
Means

For the mixture of normal distributions 1
3N (0, 1) + 2

3N (0, 16), a random sample of
600 points is generated in iteration. After 200 iterations means and variances of the
estimates with EM, SEM, and TU algorithms are summarized in Table1.

From Table1, we can conclude that except the mean of estimates of p1 by TU is
slightly worse than that by SEM, TU dominates both EM and SEM algorithms in the
sense of sample mean and variance of estimates.

Table 1 Means and variances of the estimates for 1/3N (0, 1) + 2/3N (0, 16)

Parameter Real value EM SEM TU

p1 0.333 0.38 (0.28) 0.33 (0.16) 0.32 (0.01)

μ1 0.000 0.05 (3.67) 0.04 (1.67) 0.01 (0.01)

σ 2
1 1.000 2.03 (2.15) 1.17 (1.31) 1.11 (0.08)

μ2 0.000 0.40 (2.56) 0.01 (1.49) –0.01 (0.02)

σ 2
2 16.000 12.69 (5.72) 14.24 (3.97) 15.53 (1.91)
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4.2 Mixture of Different Mean Normal Distributions

For the normal mixture distribution 1
3N (0, 1) + 2

3N (0.8, 2.25), a random sample
of 600 points is generated in each iteration, after 200 iterations Table2 gives the
comparison of the results with EM, SEM, and TU algorithms.

For themixture of normal distributions 1
3N (0, 1) + 2

3N (0.8, 2.25), a random sam-
ple of 600 points is generated in iteration. After 200 iterations means and variances
of the estimates with EM, SEM, and TU algorithms are summarized in Table2.

Table2 continuously shows that TU dominates EM and SEM in almost all para-
meter estimates. Except this, when the estimates of μ1 and σ 2

2 are relatively bad in
EM and SEM, TU still give much better estimates.

4.3 Mixture of Four Normal Distributions

The mixture of normal of four distributions 1
4N (0, 1) + 1

4N (2, 2.25) +
1
4N (9, 2.25) + 1

4N (15, 2.25) is used by the same paper as above.
Figure5 is the histogram of a sample of the mixture distribution; it is easy to

distinguish the right two distributions. So first we estimate the parameters in the
right most distribution, after that the sample points from this distribution are taken

Table 2 Means and variances of the estimates for 1/3N (0, 1) + 2/3N (0.8, 2.25)

Parameter Real value EM SEM TU

p1 0.333 0.27 (0.21) 0.17 (0.25) 0.38 (0.04)

μ1 0.000 0.58 (1.70) 0.33 (1.54) 0.07 (0.10)

σ 2
1 1.000 0.86 (0.99) 0.32 (0.58) 1.14 (0.04)

μ2 0.800 0.83 (0.57) 0.78 (0.54) 0.77 (0.10)

σ 2
2 2.250 1.57 (0.54) 1.68 (0.61) 2.13 (0.14)

Fig. 5 A mixture of four
normal distributions



228 Q. Hu et al.

Table 3 Means and variances of the estimates for the mixture of 4 normal distributions

Parameter Real value EM SEM TU

p1 0.25 0.30 (0.14) 0.33 (0.14) 0.26 (0.05)

μ1 0.00 1.07 (2.79) 1.02 (2.39) 0.04 (0.09)

σ 2
1 1.00 1.07 (0.77) 1.28 (0.86) 1.00 (0.10)

p2 0.25 0.21 (0.14) 0.19 (0.14) 0.24 (0.05)

μ2 2.00 3.31 (3.34) 4.31 (4.23) 1.84 (0.13)

σ 2
2 2.25 1.43 (1.40) 1.46 (1.42) 2.35 (0.22)

p3 0.25 0.22 (0.15) 0.23 (0.08) 0.25 (0.01)

μ3 9.00 7.84 (4.16) 9.28 (0.99) 8.98 (0.06)

σ 2
3 2.25 3.46 (4.99) 2.47 (2.13) 2.44 (0.21)

μ4 15.00 12.86 (4.41) 14.41 (2.72) 14.98 (0.06)

σ 2
4 2.25 4.06 (4.38) 2.43 (1.02) 2.27 (0.15)

out from the whole sample. The other three component distributions are estimated
consecutively.

The simulation contains 100 iterations, in each iteration a random sample of
600 points is generated. Table3 shows that the TU performs much better than other
estimation methods.

4.4 Mixture of Multi-dimensional Normal Distributions

TU algorithm is also useful in estimation of multi-dimensional mixture of normal
distributions. We use the same simulation plan as in Table4 for the distribution
1
3N (µ1,Σ1) + 2

3N (µ2,Σ2), where µ1 = (0, 0)T , µ2 = (0, 2)T , Σ1 =
(

1 0.5
0.5 1

)

and Σ2 =
(
16 3
3 2.25

)
. Figure6 left and right are the projections of the distribution

on axis x and axis y respectively. Table4 is the result of TU algorithm after 100
iterations.

From the mixture distribution of Fig. 6 (left), we estimate the parameters p1, µx1 ,
µx2 , σ 2

x1 , and σ 2
x2 . From the mixture distribution of Fig. 6 (right), we estimate the

parameters p1, µy1 , µy2 , σ 2
y1 , and σ 2

y2 . For the two estimate of p1, we choose one
from the projection with the component distributions could be better distinguished.
In this example we choose p1 estimated from axis x . In estimating the correlation
coefficient, the small neighborhood of x is chosen from the projection on x axis.
Table4 shows that TU estimates are all close to the real parameters.
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Fig. 6 Histograms of projections of a mixture of bivariate normal distributions

Table 4 Means and variances of the estimates for the two dimensional normal mixture with TU

Parameter Real value TU

p1 0.67 0.69(0.11)

µ1 (0, 0)T (0.11, 0.03)T

(0.05, 0.02)T

Σ1

(
1 0.5

0.5 1

) (
1.19 0.48

0.48 0.93

)

(
0.43 0.03

0.03 0.12

)

µ2 (0, 2)T (−0.08, 2.11)T

(0.002, 0.21)T

Σ2

(
16 3

3 2.25

) (
15.11 3.23

3.23 2.40

)

(
2.11 0.26

0.26 1.08

)

5 Conclusion

To overcome the weakness of low precision by EM algorithms in parameter estima-
tion of mixture of normal distributions, we propose a new estimation method TU
to get more accurate estimates. Though the convergence of the upgrade process is
proved with strict conditions, the conditions could be loosed a lot in real applica-
tions, and the convergence of the upgraded estimates could still be accomplished. In
this paper empirical results with simulation data show that TU algorithm not only
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dominates EM and SEM algorithms when sample size is more than 100, it always
results in estimates that are very close to real parameters.

Appendix

Proof of Theorem2.1
For convenience, we set a = −∞. These results also hold true for b = ∞ and

a < X < b.
I: Since the variance of normal distribution always exists, by the law of large

numbers:

1

m1

m1∑

i=1

xi
p→ 1

p
Iμx = 1

p

∫ b

−∞
x f (x |μ, σ 2)dx .

Then

μ̂t ≈ pt−1
Iμx

p
+ I μ̂t−1,missing ,

where

Iμx =
∫ b

−∞
x f (x |μ, σ 2)dx

=
∫ b

−∞
(x − μ + μ) f (x |μ, σ 2)dx

= μF(b|μ, σ 2) − σ 2 f (b|μ, σ 2).

Similarly,

ˆIμ
t−1,x

=
∫ b

−∞
x f (x |μ̂t−1,

ˆσ 2
t−1)dx

= μ̂t−1F(b|μ̂t−1, σ̂ 2
t−1) − σ̂ 2

t−1 f (b|μ̂t−1, σ̂
2
t−1).

Because the following equation is always true:

μ̂t−1 =
∫ b

−∞
x f (x |μ̂t−1,

ˆσ 2
t−1)dx +

∫ +∞

b
x f (x |μ̂t−1,

ˆσ 2
t−1)dx

= ˆIμ
t−1,x

+ ˆIμ
t−1,missing

= pt−1

ˆIμ
t−1,x

pt−1
+ ˆIμ

t−1,missing
,
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μ̂t − μ̂t−1 =
(
pt−1

ˆIμx

p
+ ˆIμ

t−1,missing

)
−

(
pt−1

ˆIμ
t−1,x

pt−1
+ ˆIμ

t−1,missing

)

= pt−1

((
μ − σ 2 f (b|μ, σ 2)

F(b|μ, σ 2)

)
−

(
μ̂t−1 − σ̂ 2

t−1

f (b|μ̂t−1, σ̂
2
t−1)

F(b|μ̂t−1, σ̂
2
t−1)

))

= pt−1

(
μ − μ̂t−1 − σ 2 f (b|μ, σ 2)

F(b|μ, σ 2)
+ σ̂ 2

t−1

f (b|μ̂t−1, σ̂
2
t−1)

F(b|μ̂t−1, σ̂
2
t−1)

)
.

Suppose σ̂ 2
0 = σ 2, let g(μ) = σ 2 f (b|μ,σ 2)

F(b|μ,σ 2)
, then

g′(μ) = σ 2

(
f (b|μ, σ 2)

F(b|μ, σ 2)

)′
= s f (s)F(s) − f 2(s)

F2(s)
,

where s = b−μ

σ
, and f (s), F(s) are the density function and cumulative function of

the standard normal distribution. Then

μ̂t − μ̂t−1 = pt−1
(
μ − μ̂t−1 − g(μ) + g(μ̂t−1)

)
. (3)

By the Lagrange’s mean value theorem we have

g(μ) − g(μ̂t−1) = (
μ − μ̂t−1

)
g′(c),

where c is between μ and μ̂t−1. So the above Eq. (3) is

μ̂t − μ̂t−1 = pt−1(1 − g′(c))
(
μ − μ̂t−1

)
.

Denote s1 = b−c
σ
. Then 1 − g′(c) > 0 and 0 < F(s1)(1 − g′(c)) < 1 are always true.

And when 0.2 < F(s1) < 0.8, 0 < (F(s1) + 0.3)(1 − g′(c)) < 2.
Ifμ < μ̂t−1, then pt−1 < F(s1) < p, therefor 0 < pt−1(1 − g′(c)) < F(s1)(1 −

g′(c)) < 1 is always true. So μ < μ̂t < μ̂t−1. And then the upgraded estimate
sequence converges.

If μ > μ̂t−1, then μ̂t > μ̂t−1, and p < F(s1) < pt−1. When p > 0.05, 0 <

pt−1(1 − g′(c)) < 1. Then μ̂t−1 < μ̂1 < μ. When 0.2 < p < 0.5, so if |pt−1 −
p| < 0.3, we have 0 < pt−1(1 − g′(c)) < (F(s1) + 0.3)(1 − g′(c)) < c. This
implies μ̂t−1 < μ̂t < μ + (μ − μ̂t−1).

If μ̂t > μ, that is to sayμ < μ̂t < μ + (μ − μ̂t−1), then from the aboveparagraph
the sequence of following upgraded estimate converges. If μ̂t < μ, that is to say
μ̂t−1 < μ̂t < μ. Then we could also have the conclusion that the upgraded estimate
sequence converges.

So from the above we can conclude that when σ̂ 2
0 = σ 2, the upgraded estimate

sequence converges. The results hold true for left truncated and both sides truncated
normal distributions.
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II: Since the variance of normal distribution always exists, by the law of large
numbers:

ˆIσ 2
x

pt−1

p→ 1

p
Iσ 2

x = 1

p

∫ b

−∞
(x − μ)2 f (x |μ, σ 2)dx

And

Iσ 2
x =

∫ b

−∞
(x − μ)2 f (x |μ, σ 2)dx

= σ 2
∫ b

−∞
x − μ

σ

1√
2π

exp{− (x − μ)2

2σ 2
}d (x − μ)2

2σ 2

= σ 2[F(t) − t f (t)],

Iσ 2
x

p
= σ 2

(
1 − s f (s)

F(s)

)
,

where s = b−μ

σ
, and f (s), F(s) are the density function and cumulative function of

the standard normal distribution.
Similarly:

ˆIσ 2
t−1,x

pt−1
= ˆσt−1

2
(
1 − t̂ f (t̂)

F(t̂)

)
,

where ŝ = b−μ

σ̂
, and f ()̇, F()̇ are the density function and cumulative function of

the standard normal distribution.
Assume μ̂0 = μ, Let g(σ 2) = σ 2

(
1 − s f (s)

F(s)

)
, then

g′(σ 2) = 1 − s f (s)

F(s)
− 1/2s3 f (s) + 1/2t f (s)

F(s)
− 1/2s2 f 2(s)

F2(s)
.

By the Lagrange’s mean value theorem we have

g(σ 2) − g(σ̂ 2
t−1) = (σ 2 − σ̂ 2

t−1)g
′(d2),

where d2 is between σ 2 and σ̂ 2
t−1.
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And we also have this equation

σ̂ 2
t−1 = ˆIσ 2

t−1,x
+ ˆIσ 2

t−1,missing
,

So

σ̂ 2
t − σ̂ 2

t−1 = ( ˆIσ 2
x + ˆIσ 2

t−1,missing
) − ( ˆIσ 2

t−1,x
+ ˆIσ 2

t−1,missing
)

= pt−1

⎛

⎝ Iσ 2
x

p
−

ˆIσ 2

t−1,x

pt−1

⎞

⎠

= pt−1g
′(d)(σ 2 − σ̂ 2

t−1)

Denote s2 = b−μ

d . Then from R software g′(d) > 0 and 0 < F(s2)g′(d) < 1 are
always true. And when 0 < F(s2) < 0.5, 0 < (F(s2) + 0.5)g′(d) < 1.

If σ̂ 2
t−1 < σ 2, then pt−1 < F(s2) < p, then 0 < pt−1g′(d) < F(s2)g′(d) < 1 is

always true. So σ̂ 2
t−1 < σ̂ 2

t < σ 2 is always true. And then the upgrading process of
estimators converges.

If σ̂ 2
t−1 > σ 2, then σ̂ 2

1 < σ̂ 2
t−1, p < F(s2) < pt−1. As |pt−1 − p| < 0.5, when

F(s2) > 0.5, 0 < pt−1g′(d) < 1, when F(s2) < 0.5, 0 < pt−1g′(d) < (F(s2) +
0.5)g′(d) < 1. That is to say σ 2 < σ̂ 2

1 < σ̂ 2
t−1. Then we could also have the con-

clusion that the upgrading process of estimator converges.
So from the above we can conclude that when μ̂t−1 = μ, the upgrading process

of estimators converges to σ 2.

References

1. Dias JG, Wedel M (2004) An empirical comparison of EM, SEM and MCMC performance for
problematic Gaussian mixture likelihoods. Stat Comput 14:323–332

2. Celeux G, Chauveau D, Diebolt J (1995) On stochastic versions of the EM algorithm. Institute
National de Recherche en Informatique et en Automatique, Mars, pp 1–22

3. Karlis D, Xekalaki E (2003) Choosing initial values for the EM algorithm for finite mixtures.
Comput Stat Data Anal 41:577–590

4. Yao W (2013) A note on EM algorithm for mixture models. Stat Probab Lett 83:519–526
5. Chen LS, Prentice RL, Wang P (2014) A penalized EM algorithm incorporating missing data

mechanism for gaussian parameter estimation. Biometrics 70:312–322
6. Horrace WC (2005) Notes: some results on the multivariate truncated normal distribution. J

Multivariate Anal 94:209–221
7. Horrace WC (2015) Moments of the truncated normal distribution. J Prod Anal 43:133–138
8. del Castillo J, Daoudi J (2009) The mixture of left–right truncated normal distributions. J Stat

Plann Infer 139:3543–3551
9. Emura T, Konno Y (2014) Erratum to: multivariate normal distribution approaches for depen-

dently truncated data. Stat Papers 55:1233–1236



EM Estimation for Multivariate
Skew Slash Distribution

Weizhong Tian, Guodong Han, Tonghui Wang and
Varith Pipitpojanakarn

Abstract In this paper, the class of multivariate skew slash distributions under dif-
ferent type of setting is introduced and its density function is discussed. A procedure
to obtain the Maximum Likelihood estimators for this family is studied. In addition,
the Maximum Likelihood estimators for the mixture model based on this family are
discussed. For illustration of the main results, we use the actual data coming from the
Inner Mongolia Academy of Agriculture and Animal Husbandry Research Station
to show the performance of the proposed algorithm.

1 Introduction

Despite the central role played by the magic bell-shaped normal distribution in sta-
tistics, there has been a sustained interest among statisticians in constructing more
challenging distributions for their procedures. A first family of scenarios can be
represented by a finite mixture of normal distributions [15]. Another family of sce-
narios is described by the standard slash distribution was introduced by Rogers and
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Tukey [18], representing the distribution of the ratio X = ZU− 1
q , where Z is a stan-

dard normal variate independent of U ∼ U (0, 1), a standard uniform variate and
q > 0. We obtain the canonical slash when q = 1, whereas q → ∞ yields the nor-
mal distribution. The probability density function of the univariate slash distribution
is symmetric about the origin and has heavier tails than those of the normal density,
with, for the canonical slash, the same tail heaviness as the Cauchy.

The slash distribution has been mainly used in simulation studies because it rep-
resents an extreme situation, see Andrews et al. [1], Gross [12], and Morgenthaler
and Tukey [16]. Recently, Gomez et al. [11] introduced extension of univariate and
multivariate slash distributions as a scalemixture of elliptically contour distributions.
Arslan and Genc [6] introduced a generalization of multivariate slash distribution by
using Kotz-type distribution, and Reyes et al. [17] introduced the modified slash
distribution in univariate and multivariate settings as a scale mixture of normal dis-
tribution and exponential distribution with the scale parameter 2. They gave some
distributional properties and parameter estimations.

The multivariate skew slash distributions were introduced by Wang and Genton
[21], under the multivariate skew normal setting, see [3, 8, 13, 20], which is an
extension of the skew normal distribution [7, 9]. Later on, Arslan [4, 5] discussed
about two alternative types of skew slash distribution in multivariate setting. In this
paper, I will discuss another type of multivariate skew slash distribution, under the
multivariate skew normal distribution introduced by Sahu et al. [19], which is given
in the following.

A random vector Y is said to follow a p-dimensional skew normal distribution
with a location vector ξ ∈ �p, a positive definite scale covariancematrixΣ ∈ Mp×p,
and a skewness vector Λ ∈ �p, if its density function is

f (y; ξ ,Σ,Λ) = 2φp (y; ξ ,Ω)Φp (Λ
′Ω−1(y − ξ);Δ), (1)

where Ω = Σ + ΛΛ′ and Δ = (Ip + Λ′Σ−1Λ)−1, with Ip is a p × p identity
matrix, φp (·;μ;Σ) is the p-dimensional normal density function with mean vector
μ and covariance matrix Σ , and Φp (·;Σ) is the p-dimensional distribution func-
tion with mean vector 0 and covariance matrix Σ . Let us denote this distribution by
Y ∼ SNp (ξ ,Σ,Λ). By Propositions of Arellano-Valle et al. [2], Azzalini and Dalla
[9], it turns out that (1) has a stochastic representation

Y = ξ + ΛT + Z, (2)

where T is a standard half normal variate independent of Z, p-dimensional normal
variate with mean vector 0 and covariance matrix Σ .

The remainder of this paper is organized as follows. The definition of multivariate
skewslash distribution and its density function are discussed inSect. 2.Aprocedure to
obtain the Maximum Likelihood (ML) estimators for the parameters of the proposed
distribution is provided in Sect. 3. TheML estimators for the mixture model based on
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multivariate skew slash distributions are discussed in Sect. 4. A application is studied
to show the performance of the proposed algorithm in Sect. 5.

2 Multivariate Skew Slash Distribution

In this section, the definition of this new type of multivariate slash distribution, its
stochastic representation and density function are studied.

Definition 1 A random vector X ∈ �p has a p-dimensional skew slash distribu-
tion with location parameter μ, positive definite scale matrix parameter Σ , and tail
parameter q > 0, denoted by X ∼ SSL p(μ,Σ,Λ, q), if

X = μ + YU− 1
q (3)

where Y ∼ SNp(0,Σ,Λ) is independent of U ∼ U (0, 1).

Remark 1
(i) X in (3) has a standard multivariate skew slash distribution when μ = 0 and
Σ = Ip, and the probability density function is

f p (x;μ,Σ,Λ) = 2q
∫ 1

0

uq+p−1φp (ux; 0,Ω)Φ(uΛ′Ω−1x;Δ)du. (4)

(ii)X in (3) reduces to the multivariate slash distribution SL p(μ,Σ, q) when Λ = 0
and has the density

f p (x;μ,Σ) = q
∫ 1

0

uq+p−1φp (ux; uμ,Ω)du. (5)

(iii) X in (3) reduces to the skew normal distribution SNp(μ,Σ,Λ) when q → ∞.
(iv) X in (3) reduces to the normal distribution Np(μ,Σ) when both Λ = 0 and
q → ∞.

Themultivariate skew slash distribution includes awide variety of contour shapes. To
illustrate the skewness and tail behavior of the skew slash, we draw the density of the
univariate skew slash distribution SSL 1(0, 1, 1, 1) together with the densities of the
standard normal distribution N (0, 1) and slash distribution SL 1(0, 1, 1, 1) (Fig. 1).

Next we consider the linear transformation Y = b + AX, where X ∼ SL p

(μ,Σ,Λ), b ∈ �k , and A is a nonsingular matrix.

Proposition 1 If X ∼ SSL p(μ,Σ,Λ), then its linear transformation Y = b +
AX ∼ SSL p(b + Aμ, AΣ A′, AΛ, q).

The above result implies that the class of skew slash distributions is invariant under
linear transformations.
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−2 −1 0 1 2 3 4 5
x−value

SSL1(μ=0,σ=1,α=1,q=1))

SL1(μ=0,σ=1,q=1)

SN1(μ=0,σ=1,α=1)

Fig. 1 Density curves of SSL1 (0, 1, 1, 1) (black-*), SL1 (0, 1, 1) (blue-) and SN1 (0, 1, 1) (red-)

3 EM Estimation for Multivariate Skew Slash Distribution

The EM algorithm is a popular iterative algorithm for ML estimation in models
with incomplete data, which was introduced by Dempster et al. [10]. Recently, Lin
[14] proposed EM algorithm to compute maximum likelihood estimates of model
parameters for skew normal mixture models. Arslan [6] provided ML estimators for
the parameters of the proposed distribution based on the EM algorithm.

Assume that we have independent and identically distributed data X1, X2, · · · ,
Xn ∈ �p and wish to fit a multivariate skew slash SSL p(μ,Σ,Λ, q) distribution
with the unknown parameters μ, Σ and Λ, and we assume that q > 0 is known. The
log-likelihood function that we need to maximize is

�(μ,Σ,Λ) =
n∑

i=1

log f p (xi ;μ,Σ,Λ). (6)

Since the maximization of this function is not very tractable, the maximum likeli-
hood estimators of the parameters cannot be easily obtained. However, because of the
advantage of the scale mixture representation of this distribution, EM algorithm pro-
cedure can be applied to find the maximum likelihood estimators for the parameters
of the multivariate skew slash distribution.

From (3), a hierarchical representation of the multivariate skew slash distribution
is given by
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X|(T = t,U = u) ∼ Np(μ + u− 1
q Λt, u− 2

q Σ), (7)

X|(U = u) ∼ SNp(μ, u− 2
q Σ, u− 1

q Λ), (8)

X|(T = t) ∼ SL p(μ + Λt,Σ). (9)

Suppose that the latent mixing variables (t1, u1), (t2, u2), · · · , (tn, un) from the
mixture representation in (7) are also observable and we define (Xi , ti , ui ) for
i = 1, 2, · · · , n as the complete data, where Xi and (ti , ui ) are called observed and
missing data, respectively.

By (7)–(9), we can obtain the joint density of (X, t, u) is

f (X, t, u) = 2(2π)−
p
2
∣∣u− 2

q Σ
∣∣− 1

2 exp

{
− t2

2

}
(10)

× exp

{
−1

2
tr

[(
u− 2

q Σ
)

−1
(
x − μ − u− 1

q Λt
) (

x − μ − u− 1
q Λt
)′]}

,

where tr(A) is the trace of a square matrix A. The log-likelihood function for the
complete data (Xi , ti , ui ) for i = 1, 2, · · · , n is

�(μ,Σ,Λ) = n log 2 − pn

2
log(2π) − n

2
log |Σ | + 1

q

n∑

i=1

log(ui ) − 1

2

n∑

i=1

t2i

(11)

− 1

2

n∑

i=1

tr

[(
u− 2

q Σ
)−1 (

x − μ − u− 1
q Λt
) (

x − μ − u− 1
q Λt
)′]

.

Note that since
∑n

i=1
log(ui ) and

∑n
i=1

t2i do not contain any unknown parameters,
they can be ignored. We knew only the observed data Xi , while the missing data
(ti , ui ) are unknown, for i = 1, · · · , n. To overcome this problem, the conditional
expectation of L(μ,Σ,Λ) given the observed data Xi and the current estimates μ̂,
Σ̂ and Λ̂ are obtained. After taking the conditional expectation of L(μ,Σ,Λ), we
get

Q(μ,Σ,Λ) = E
[
�(μ,Σ,Λ)|Xi , μ̂, Σ̂, Λ̂

]
(12)

= − pn

2
log(2π) − n

2
log |Σ |

− 1

2

n∑

i=1

E

[
tr

[(
u

− 2
q

i Σ

)
−1

(
xi − μ − u

− 1
q

i Λti

)

(
xi − μ − u

− 1
q

i Λti

)′ ]
|Xi , μ̂, Σ̂, Λ̂

]
,

after simplifying, the last term in (12) is
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tr

[
Σ−1

(
u

− 2
q

i (xi − μ)(xi − μ)′ − u
1
q
i ti
[
Λ(xi − μ)′ + (xi − μ)Λ′]+ ΛΛ′t2

i

)]
.

To compute this conditional expectation, we have to find the conditional distrib-
ution of U , T and UT given X. After some straightforward algebra, the probability
density function of this conditional distributions can be obtained as follows

fU |X(u)=
etr
[
− 1

2u
2
q Ω−1(x − μ)(x − μ)′

]
Φ
(
u− 1

q Λ′Ω−1(x − μ);Δ
)

q
∫ 1

0

u p+q−1etr

[
−u2

2
Ω−1(x − μ)(x − μ)′

]
Φ
(
uΛ′Ω−1(x − μ);Δ

)
du

,

fT |X(t) =
exp
{
− t2

2

} ∫ 1

0

u p+q−1etr

[
−u2

2
Σ−1(x − μ − Λt)(x − μ − Λt)′

]
du

∫ 1

0

u p+q−1etr

[
−u2

2
Ω−1(x − μ)(x − μ)′

]
Φ
(
uΛ′Ω−1(x − μ);Δ

)
du

,

where etr(A) = exp{tr(A)} and tr denotes trace.
Thus, using this conditional distribution above, we calculate and denote

ai = E

[
u

− 2
q

i |Xi , μ̂, Σ̂, Λ̂

]
,

bi = E

[
u

1
q

i ti |Xi , μ̂, Σ̂, Λ̂

]
,

ci = E
[
t2i |Xi , μ̂, Σ̂, Λ̂

]
.

Replace E[u
2
q

i |Xi , μ̂, Σ̂, Λ̂], E[u
1
q

i ti |Xi , μ̂, Σ̂, Λ̂] and E[t2i |Xi , μ̂, Σ̂, Λ̂] by ai , bi
and ci in Eq. (12), we obtain the following objective function which will be maxi-
mized with respect to μ,Σ,Λ,

Q(μ,Σ,Λ) = E
[
�(μ,Σ,Λ)|Xi , μ̂, Σ̂, Λ̂

]
(13)

= − pn

2
log(2π) − n

2
log |Σ | − 1

2

n∑

i=1

tr

[
Σ−1

[
ai (xi − μ)(xi − μ)′

− bi

[
Λ(xi − μ)′ + (xi − μ)Λ′]+ ΛΛ′ci

]]
.

By the Eq. (13), we can obtain the following estimators
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μ̂ =
∑n

i=1

(
aixi − bi Λ̂

)

∑n

i=1
ai

,

Λ̂ =
∑n

i=1
bi

(
xi − μ̂

)

∑n

i=1
ci

,

Σ̂ = 1

n

n∑

i=1

[
ai

(
xi − μ̂

)
(xi − μ̂)′ − bi

[
Λ̂(xi − μ̂)′ + (xi − μ̂)Λ̂

′]+ ci Λ̂Λ̂
′]

.

Using the steps of EM algorithm, we can formulate the following simple iteratively
algorithm to calculate the ML estimates of the parameters. The algorithm is iterated
until a reasonable convergence criterion is reached. This algorithm can be easily
implemented and the convergence is guaranteed since it is an EM algorithm. The
iteratively algorithm is as following,

(1) Set iteration number k = 1 and select initial estimates for the parameters
μ,Σ,Λ.

(2) Use μ̂(k), Σ̂(k), Λ̂(k) and Xi to calculate a
(k)
i , b(k)

i and c(k)
i for i = 1, · · · , n.

(3) Use the following updating equations to calculate the new estimates,

μ̂
(k+1) =

∑n

i=1

(
a(k)
i
xi − b(k)

i
Λ̂

(k)
)

∑n

i=1
a(k)
i

,

Λ̂
(k+1) =

∑n

i=1
b(k)
i

(
xi − μ̂

(k+1)
)

∑n

i=1
c(k)
i

,

Σ̂(k+1)=1

n

n∑

i=1

[
a(k)
i

(
xi − μ̂

(k+1)
) (

xi − μ̂
(k+1)

)′ −b(k)
i

[
Λ̂

(k+1)
(
xi − μ̂

(k+1)
)′

+
(
xi − μ̂

(k+1)
)

Λ̂
(k+1)′

]
+ c(k)

i
Λ̂

(k+1)
Λ̂

(k+1)′
]
.

(4) Repeat these steps until convergence.

4 EM Estimation for Multivariate Skew Slash Mixture
Models

In this section the EM estimation for a k-component mixture model in which a set
of random sample X1, · · · ,Xn ∈ �p follows a mixture of multivariate skew slash
distributions will be considered. Its probability density function of themixturemodel
can be written as
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X j ∼
k∑

i=1

ωi f p (xi ;μi ,Σi ,Λi ), ωi ≤ 0,
k∑

i=1

ωi = 1, (14)

where Θ = (Θ1, · · · ,Θk) with Θ i = (ωi ,μi ,Σi ,Λi ) being the unknown parame-
ters of component i , and ω′

i s being the mixing probabilities for i = 1 · · · , k.
The EM estimates Θ̂ based on a set of independent observations X =

(X′
i , · · · ,X′

n)
′, is

Θ̂ = argmax
Θ

�(Θ|X),

where

�(Θ|X) =
n∑

j=1

(
k∑

i=1

ωi f p (xi ;μi ,Σi ,Λi )

)
, (15)

is called the observed log-likelihood function. Generally, there is no explicit analyti-
cal solution of Θ̂ , but it can be achieved iteratively by using the EM algorithm under
the complete data framework discussed later.

In the context of hierarchical mixture modeling, for each X j , it is conve-
nient to introduce a set of zero-one indicator variables Z j = (Z1 j , · · · , Zkj )

′ for
j = 1, · · · , n, which is a multinomial random vector with 1 trial and cell proba-
bilities ω1, · · · , ωk , denoted as Z j ∼ M (1;ω1, · · · , ωk). Note that the r th element
Zr j = 1 if X j arises from component r . From (3), with the inclusion of indicator
variables Z j ’s, a hierarchical representation of (14) with q > 0 is given by

X j |(T = t j ,U = u j , Zi j = 1) ∼ Np

(
μi + u

− 1
q

j Λt j , u
− 2

q Σi

)
, (16)

X j |(U = u j , Zi j = 1) ∼ SNp

(
μi , u

− 2
q

j Σi , u
− 1

q

j Λi

)
, (17)

X j |(T = t j , Zi j = 1) ∼ SL p
(
μi + Λi t j ,Σi

)
. (18)

Denoted Z = (Z′
1, · · · ,Z′

n), t = (t1, · · · , tn)′, u = (u1, · · · , un)′, ω =
(ω1, · · · , ωk)

′, μ = (μ′
1, · · · ,μ′

k)
′, Λ = (Λ′

1, · · · ,Λ′
k)

′ and Σ = (Σ1, · · · ,Σk).
The complete data log-likelihood function is

�(Θ|X, t,u,Z) (19)

=
n∑

j=1

k∑

i=1

Zi j

{
− p

2
log(2π) − log(ωi ) − 1

2
log |Σi | + 1

q
log(u j ) − 1

2
t2j

}

− 1

2

n∑

j=1

k∑

i=1

Zi j

{
tr

[(
u

− 2
q

j Σi

)−1 (
x j − μi − u

− 1
q

j Λi t j

)(
x j − μi − u

− 1
q

j Λi t j

)′]}
.

Note that log(2π)Zi j , Zi j log(ui ) and Zi j t2i does not contain any unknown parame-
ters Θ , thus they can be ignored, and we knew only the observed data X j , while the
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missing data (t j , u j , Zi j ) are unknown, for j = 1, · · · , n and i = 1, · · · , k. Simi-
larly, we will take the conditional expectation of �(Θ) given the observed data X
and the current estimates ω̂, μ̂, Σ̂ and Λ̂.

After taking the conditional expectation of �(Θ), we get

Q(Θ) = E
[
�(Θ)|X, Θ̂

]
(20)

=
n∑

j=1

k∑

i=1

Zi j

{
− log(ωi ) − 1

2
log |Σi | − tr

[
Σ−1

(
u j

− 2
q (x j − μi )(x j − μi )

′

− 2u
1
q
j t j
[
Λ(x j − μi )

′ + (x j − μi )Λ
′]+ ΛiΛ

′
i t
2
j

)
|X, Θ̂

]}
.

Define

E
[
Zi j |X j , Θ̂

]
= ω̂i f p (x j ; μ̂i , Σ̂i , Λ̂i )
∑k

i=1 ω̂i f p (x j ; μ̂i , Σ̂i , Λ̂i )
= ẑi j ,

E

[
Zi j u

− 2
q

j |X j , Θ̂

]
= ẑi j ai j ,

E

[
Zi j u

1
q

j t j |X j , Θ̂

]
= ẑi j bi j

E
[
Zi j t

2
j |X j , Θ̂

]
= ẑi j ci j ,

where ai j = E[u
2
q

j |Zi j = 1,X j , Θ̂], bi j = E[u
1
q

j t j |Zi j = 1,X j , Θ̂] and ci j = E[t2j |
Zi j = 1,X j , Θ̂] can be obtained by (16), (17) and (18). The function (20) can be
written as

Q(Θ) = E
[
�(Θ)|X, Θ̂

]
(21)

=
n∑

j=1

k∑

i=1

ẑi j

{
− log(ωi ) − 1

2
log |Σi | − tr

[
Σ−1

(
ai j (x j − μi )(x j − μi )

′

− bi j
[
Λ(x j − μi )

′ + (x j − μi )Λ
′]+ ΛiΛ

′
i ci j

)
|X, Θ̂

]}
.

By the Eq. (21), we can obtain the following estimators,

ω̂i =
∑n

j=1 ẑi j

n
,

μ̂i =
∑n

j=1

(
ẑi j ai j x j − ẑi j bi j Λ̂i

)

∑n

j=1
ẑi j ai j

,
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Λ̂i =
∑n

j=1
ẑi j bi j (x j − μ̂i )

∑n

j=1
ẑi j ci j

,

Σ̂i = 1

n

n∑

j=1

ẑi j

[
ai j (x j − μ̂i )(x j − μ̂i )

′ − bi j

[
Λ̂(x j − μ̂i )

′ + (x j − μ̂i )Λ̂
′]

+ ci j Λ̂i Λ̂i
′
]
.

Similarly, the iteratively algorithm is,

(1) Set iteration number m = 1 and select initial estimates for the parameters ωi ,
μi ,Σi ,Λi , for i = 1, · · · , k.

(2) Using ω̂(m)
i

, μ̂
(m)
i , Σ̂

(m)
i , Λ̂

(m)

i
and X j to calculate ẑ(m)

i j
, a(m)

i j
, b(m)

i j
and c(m)

i j
for

i = 1, · · · , k and j = 1, · · · , n.
(3) Using the following updating equations to calculate the new estimates, for i =

1, · · · , k,

ω̂(m+1)
i

=
∑n

j=1 ẑ
(m)
i j

n
,

μ̂
i

(m+1) =
∑n

j=1

(
ẑ(m+1)
i j a(m+1)

i j
x j − ẑ(m+1)

i j b(m+1)
i j

Λ̂
(m+1)
i

)

∑n

j=1
ẑ(m)
i j a(m)

i j

,

Λ̂
(m+1)

i
=
∑n

j=1
ẑ(m)
i j b(m)

i j

(
x j − μ̂i

(m)
)

∑n

j=1
ẑ(m)
i j c(m)

i j

,

Σ̂(m+1)
i

= 1

n

n∑

j=1

ẑ(m)

i j

[
a(m)

i j

(
x j − μ̂i

(m)
) (

x j − μ̂
(m)

i

)′ − bi j

[
Λ̂

(m)

i

(
x j − μ̂

(m)

i

)′

+
(
x j − μ̂

(m)

i

)
Λ̂

′(m)

i

]
+ c(m)

i j
Λ̂

(m)

i
Λ̂

′(m)

i

]
.

(4) Repeat these steps until convergence.

5 Simulation and Application

In this section, we give a small simulation study on bivariate skew slash distribution
to show that the iteratively algorithm is working as claimed, and then, we present a
practical application of the bivariate skew slash distribution.
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We generate two different sample data using scale mixture representation given
in (2) and Definition1 with q = 2. Data I coming from μ

1
= (1, 2)′, Λ2 = (1,−1)′

and Σ1 =
(

1 0.5
0.5 1

)
. Data II coming from μ

2
= (1, 1, 1)′, Λ2 = (1, 0,−1)′ and

Σ2 =
⎛

⎝
1 0.3 0.7
0.3 1 0.4
0.7 0.4 1

⎞

⎠.

The data are generated as follows, for each i = 1, · · · , n, we generate Ti from
univariate standard normal distribution, Zi from the bivariate normal distribution
with location parameter 0 and scale parameter Σ j with j = 1, 2, and Ui from the
uniform distribution on (0, 1) with power of −1/q.

In the simulation study, we take the sample size n = 50, 100, 200. To see
the performance of the estimators, we used the Euclidean norm between the
estimates and the true values of the parameters. Here, the Euclidean norm is

defined as ||μ̂ − μ|| = √(μ̂ − μ)′(μ̂ − μ), ||Λ̂ − Λ|| =
√

(Λ̂ − Λ)′(Λ̂ − Λ) and

||Σ̂ − Σ || =
√

(Σ̂ − Σ)′(Σ̂ − Σ). We stop the algorithm when the Euclidean
norms are less than 10−3. For each simulation scheme, we repeat the simulation
100 times.

Simulation results are given in Tables1 and 2. In these tables, we give the estimator
for μ, Λ and Σ , we also provided the standard error for the 100 times run.

From these tables, we can see that when the sample size increases, the standard
error for all the parameters decrease. Also, the sample size affects the estimator of
parameters. When the sample size is getting bigger, the estimators are getting better.
In summary, our simulation study works for some fixed situation, but here I just
consider the bivariate case. As a result of this limited simulation study, we can say
that the overall performance of the algorithm is satisfactory to compute the estimators
for the parameters of the multivariate skew slash distribution.

In the next, we discuss a practical application on the actual data. The study was
conducted at an experimental site of the Inner Mongolia Academy of Agriculture
and Animal Husbandry Research Station. The site has an elevation of 1450m and is
in a temperate continental climate, characterized by a short growing season and long
cold winter with a frost-free period of 175days. The data was collected here about

Table 1 Estimator and standard error (±) for μ1 , Λ1 and Σ1 with different size of data

n μ̂1 S.E of μ̂1 Λ̂1 S.E of Λ̂1 Σ̂1 S.E of Σ̂1

50

(
1.101

1.868

)
0.237

(
1.112

−1.097

)
0.271

(
0.907 0.401

0.401 0.916

)
0.310

100

(
1.036

1.986

)
0.073

(
1.014

−0.964

)
0.032

(
0.973 0.472

0.472 0.976

)
0.101

200

(
1.005

2.002

)
0.010

(
0.998

−1.002

)
0.011

(
0.989 0.496

0.496 1.012

)
0.039
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Table 2 Estimator and standard error (±) for μ2 , Λ2 and Σ2 with different size of data

n μ̂2 S.E of μ̂1 Λ̂2 S.E of Λ̂2 Σ̂2 S.E of Σ̂2

50

⎛

⎜⎝
1.101

1.103

1.101

⎞

⎟⎠ 0.197

⎛

⎜⎝
1.101

−0.107

−0.892

⎞

⎟⎠ 0.217

⎛

⎜⎝
0.906 0.410 0.809

0.410 0.910 0.302

0.809 0.302 0.913

⎞

⎟⎠ 0.341

100

⎛

⎜⎝
1.041

1.039

1.029

⎞

⎟⎠ 0.092

⎛

⎜⎝
1.101

−0.048

−0.953

⎞

⎟⎠ 0.104

⎛

⎜⎝
0.977 0.351 0.760

0.351 0.979 0.453

0.760 0.453 0.969

⎞

⎟⎠ 0.187

200

⎛

⎜⎝
1.003

1.004

1.002

⎞

⎟⎠ 0.011

⎛

⎜⎝
1.002

0.004

−0.993

⎞

⎟⎠ 0.015

⎛

⎜⎝
0.992 0.310 0.691

0.310 1.007 0.404

0.691 0.404 1.004

⎞

⎟⎠ 0.032

the growth nutrient of root for different plants in 2013. The root were buried in the
different districts under different treatments in May, took out in August, and dried
them to a constant weight. We chose 617 roots and focus on two different variables
of the nutrient, Carbon and Nitrogen. The content of total Carbon and total Nitrogen
in root were calculated in percentage (Fig. 2).

We fit a bivariate skew slash distribution to these data with q = 2. The fit-
ted parameters, obtained by EM estimation method, are μ̂ = (14.753, 0.836)′,

Λ̂ = (−2.042, 1.276)′ and Σ̂ =
(
3.241 0.291
0.291 0.927

)
. We draw the fitted bivariate skew

slash distribution density function in Fig. 3.

Fig. 2 Scatter plot and fitted contours of Carbon and Nitrogen
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0 5 10 15 20 25 30 35 40 45 500

Fig. 3 Bivariate skew slash distribution with μ̂, Λ̂ and Σ̂

6 Discussion

We have introduced a multivariate skew slash distribution, which based on the a
different type of skew normal distributed variable. A simulation and practical appli-
cation are given based on the EM estimation algorithm. But, our study is limited and
we only consider the case when q is known. As a result of this limited study, we
can say that the overall performance of the algorithm is satisfactory to compute the
estimations for the parameters of the multivariate variate skew slash distribution. In
the future, we will analyze the case when q is unknown and the matrix variate skew
slash distribution.
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Constructions of Multivariate Copulas

Xiaonan Zhu, Tonghui Wang and Varith Pipitpojanakarn

Abstract In this chapter, several general methods of constructions of multivariate
copulas are presented, which are generalizations of some existing constructions in
bivariate copulas. Dependence properties of new families are explored and examples
are given for illustration of our results.

1 Introduction

In recent years, copulas are hot topics in probability and statistics. By Sklar theorem
[16], the importance of copulas comes from two aspects, (1) describing dependence
properties of random variables, such as Joe [6], Nelsen [11], Siburg [15], Tasena
[17], Shan [14], Wei [20]; and (2) constructing the joint distributions of random
variables. In the second direction, there aremany papers devoting to the constructions
of bivariate copulas, such as Rodríguez-Lallena [12], Kim [7], Durante [4], Mesiar
[9], Aguilo [1], Mesiar [10], but few of constructions of multivariate copulas, such
as Liebscher [8], Durante [3].

In this paper, we discussed several general methods of constructing multivariate
copulas, which are generalizations of some bivariate results. The paper is organized
as follows: In Sect. 2, we introduce some necessary definitions and existing results.
Several general methods for constructing multivariate copulas are provided in Sect. 3
and their dependence properties are discussed in Sect. 4. Finally, two examples are
given in Sect. 5.
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2 Definitions and Existing Results

A function C : I n → I is called an n-copula [11], where I = [0, 1], if C satisfies
the following properties:

(i) C is grounded, i.e., for any u = (u1, · · · , un)
′ ∈ I n , if at least one ui = 0, then

C(u) = 0,
(ii) One-dimensional marginals of C are uniformly distributed, i.e., for any ui ∈ I ,

i = 1, · · · , n,
C(1, · · · , 1, ui , 1, · · · , 1) = ui ,

(iii) C is n-increasing, i.e., for any u, v ∈ I n such that u ≤ v, we have

VC([u, v]) =
∑

sgn(a)C(a) ≥ 0,

where the sum is taken over all vertices a of the n-box [u, v] = [u1, v1] × · · · ×
[un, vn], and

sgn(a) =
{

1, if ai = ui for an even number of i ′s,
−1, if ai = ui for an odd number of i ′s.

Equivalently,
VC([u, v]) = Δv

uC(t) = Δvn
un

· · ·Δv1
u1

C(t),

where Δvk
uk

C(t) = C(t1, · · · , tk−1, vk, tk+1, · · · , tn) − C(t1, · · · , tk−1, uk, tk+1, · · · ,

tn), k = 1, · · · , n.
Note that above three conditions ensure that the range ofC is I . BySklar’s theorem

[16], any n random variables X1, · · · , Xn can be connected by an n-copula via the
equation

F(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)),

where F is the joint distribution function of X1, · · · , Xn , Fi is the marginal distrib-
ution functions of Xi , i = 1, · · · , n. In addition, if X1, · · · , Xn are continuous, then
the copula C is unique.

There are three important functions for n-copulas defined respectively by

Mn(u) = min{u1, · · · , un},

Πn(u) =
n∏

i=1

ui ,
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and
Wn(u) = max{u1 + · · · + un − n + 1, 0},

for all u ∈ I n . Functions Mn and Πn are n-copulas for all n ≥ 2, but Wn is not
an n-copula for any n ≥ 3. Mn and Wn are called the Fréchert-Hoeffding upper
bound and lower bound of n-copulas respectively since for any n-copula C , we have
Wn ≤ C ≤ Mn .

Let H : I n → R be a function. The functions Hi1i2···ik: I k → R are called k-
dimensional marginals of H defined by

Hi1i2···ik (ui1 , · · · , uik ) = H(v1, · · · , vn),

where v j = uil if j = il for some l = 1, 2, · · · , k, otherwise, v j = 1.
Any n-copula C defines a function C : I n → I by

C(u) = 1 +
n∑

k=1

(−1)k
∑

1≤i1<···<ik≤n

Ci1i2···ik (ui1 , · · · , uik ). (1)

It is called the survival functionof C . For more details about copulas theory, see
Nelsen’s book [11].

Now let’s recall some existing results. In 2004, Rodríguez-Lallena and Úbeda-
Flores [12] considered the following family of bivariate copulas,

Cθ(u, v) = uv + θ f (u)g(v), (2)

where f, g : [0, 1] → R are two functions, θ ∈ R is a parameter. This family is a
generalization of the well-known bivariate Farlie-Gumble-Morgenstern (or FGM,
for short) family,

Cθ(u, v) = uv + θuv(1 − u)(1 − v),

where u, v ∈ [0, 1] and θ ∈ [−1, 1]. In 2011, Kim et al. [7] extended Rodríguez-
Lallena and Úbeda-Flores’s work to the family,

C(u, v) = C∗(u, v) + θ f (u)g(v), (3)

where C∗ is a known bivariate copula, f, g : [0, 1] → R are two functions, θ is a
parameter. In 2013 and 2015, Durante et al. [4] and Mesiar et al. [10] considered
more general cases,

C(u, v) = C∗(u, v) + H(u, v), (4)

where C∗ is a known bivariate copula, H : [0, 1] × [0, 1] → R is a function.
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3 Constructions of Multivariate Copulas

The constructions of all above results are adding some perturbation functions to a
given bivariate copula. In fact, any n-copula C can be represented by a perturbation
of the independent copula Πn [19]. Based on this idea, we are going to extend these
bivariate results to multivariate cases.

Firstly, for any given n-copula C∗ : I n → [0, 1], we consider the construction,

C(u1, u2, · · · , un) = C∗(u1, u2, · · · , un) + H(u1, u2, · · · , un), (5)

where H : I n → R is a function, called a perturbation function. C is called a per-
turbation of C∗ by H .

Theorem 1 Let C∗ be an n-copula, H : I n → R be a function. C is defined by (5).
Then C is an n-copula if and only if H satisfies the following three conditions,

(i) H(0, u2, · · · , un) = · · · = H(u1, · · · , un−1, 0) = 0 for all (u1, · · · , un) ∈ I n,
(ii) There are 1 ≤ i < j ≤ n such that

H(u1, · · · , ui−1, 1, ui+1, · · · , un) = H(u1, · · · , u j−1, 1, u j+1, · · · , un) = 0,

(iii) VC∗([u, v]) + VH ([u, v]) ≥ 0 for all n-box [u, v] in I n.

Proof The conditions (i) and (ii) ensure that C is grounded, and its one-dimensional
marginals are uniform distributed, respectively. The n-increasing property of C is
guaranteed by the condition (iii). �	

Next we provide a necessary and sufficient condition on H under whichC defined
by (5) is an absolutely continuous n-copula.

Theorem 2 Let C∗ be an absolutely continuous n-copula with the density c∗,
H : I n → R be a non-zero absolutely continuous function with the Radon-Nikodym
derivative h with respect to the Lebesgue measure on I n. C is defined by (5) is an
absolutely continuous n-copula if and only if H satisfies the following conditions.

(i) H(0, u2, · · · , un) = · · · = H(u1, · · · , un−1, 0) = 0 for all (ui , · · · , un) ∈ I n,
(ii) There are 1 ≤ i < j ≤ n such that

H(u1, · · · , ui−1, 1, ui+1, · · · , un) = H(u1, · · · , u j−1, 1, u j+1, · · · , un) = 0,

(iii) c∗ + h ≥ 0 almost surely.
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Proof Firstly, the boundary conditions of copulas are ensured by the condition (i)
and (ii).

Next, we show that the condition (iii) is equivalent to the n-increasing prop-
erty of C . On the one hand, suppose that C is n-increasing. If c∗ + h is not non-
negative almost surely, then there exist u < v ∈ I n such that c∗ + h < 0 on [u, v].
Note that VC([u, v]) = ∫

[u,v](c
∗ + h)(t)dt. So VC([u, v]) < 0. It contradicts the n-

increasing property of C . On the other hand, if c∗ + h ≥ 0 almost surely, we must
have VC([u, v]) ≥ 0 for all u, v ∈ I n with u ≤ v. �	

Now let’s consider a special case of (5) as follows, which are multivariate exten-
sions of the result in [7].

C(u1, u2, · · · , un) = C∗(u1, u2, · · · , un) +
n∏

i=1

fi (ui ), (6)

where C∗ is an n-copula, fi : [0, 1] → R is a function, i = 1, 2, · · · , n.
The following theorem give us a sufficient condition under which C defined by

(6) is an n-copula.

Theorem 3 Let C∗ be an n-copula, fi : [0, 1] → R be a function, i = 1, 2, · · · , n.
C : [0, 1]n → R is defined by (6) is an n-copula if f1, · · · , fn satisfy the following
conditions,

(i) f1(0) = · · · = fn(0) = 0, and there exist at least two functions fi and f j such
that fi (1) = f j (1) = 0, 1 ≤ i, j ≤ n,

(ii) fi is absolutely continuous,

(iii) min(B) ≥ sup

{
− VC∗([u, v])

Δ(u, v)
: u, v ∈ [0, 1]n,u < v

}
,

where B = {αi1 · · ·αik β j1 · · · β jn−k : 1 ≤ k ≤ n, k is odd, i1, · · · , ik and j1, · · · ,

jn−k are pairwise distinct}, αi = inf{ f ′
i (ui ) : ui ∈ Ai } < 0, βi =

sup{ f ′
i (ui ) : ui ∈ Ai } > 0, Ai = {ui ∈ [0, 1] : f ′(ui ) exists}, i = 1, · · · , n,

and Δ(u, v) = (v1 − u1) · · · (vn − un).

Proof Firstly, if there is fi = 0, then C = C∗ is an n-copula. So without loss of
generality, we may assume that fi is non-zero, i = 1, · · · , n.

SinceC∗ is an n-copula,C is grounded and its marginals are uniformly distributed
if and only if C satisfies the above condition (i). Next we are going to show that C
is n-increasing if C satisfies the conditions (ii) and (iii).

Suppose that C satisfies conditions (ii) and (iii). By Lemma 2.2 in [12], it holds
that for any u, v ∈ I n with u < v,

( f1(v1) − f1(u1)) · · · ( fn(vn) − fn(un))

(v1 − u1) · · · (vn − un)
≥ − VC∗([u, v])

Δ(u, v)
,
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i.e.,

VC([u, v]) = VC∗([u, v]) + ( f1(v1) − f1(u1)) · · · ( fn(vn) − fn(un)) ≥ 0,

so C is n-increasing. �	
Based on the construction (6), we introduce the following parametric families of

n-copulas, which is a multivariate extension of (3).

C(u1, u2, · · · , un) = C∗(u1, u2, · · · , un) + θ

n∏

i=1

fi (ui ), (7)

where C∗ is an n-copula, fi : [0, 1] → R is a function, i = 1, 2, · · · , n, θ ∈ R.

Corollary 1 Let C∗ be an n-copula, fi : [0, 1] → R be a function, i = 1, 2, · · · , n.
C : [0, 1]n → R is defined by (6) is an n-copula if f1, · · · , fn and θ satisfy the
following conditions,

(i) f1(0) = · · · = fn(0) = 0, and there exist at least two functions fi and f j such
that fi (1) = f j (1) = 0, 1 ≤ i, j ≤ n,

(ii) fi is absolutely continuous,

(iii) sup{− VC∗([u, v])
Δ(u, v)

: u, v ∈ [0, 1]n,u < v} 1

max(B ′)
≤ θ ≤ sup{− VC∗([u, v])

Δ(u, v)
:

u, v ∈ [0, 1]n,u < v} 1

min(B)
,

where B is the same as Theorem 3, B ′ = {αi1 · · · αik β j1 · · ·β jn−k : 1 ≤ k ≤
n, k is even, i1, · · · , ik and j1, · · · , jn−k are pairwise distinct}, αi =
inf{ f ′

i (ui ) : ui ∈ Ai } < 0, βi = sup{ f ′
i (ui ) : ui ∈ Ai } > 0, Ai = {ui ∈ [0, 1] :

f ′(ui ) exists}, i = 1, · · · , n, and Δ(u, v) = (v1 − u1) · · · (vn − un).

Remark 1 Conditions inTheorem3 andCorollary1 are sufficient butmay not be nec-
essary. Consider the Fréchert-Hoeffding upper bound of n-copulas, Mn(u1, · · · , un)

= min{u1, · · · , un}. For any u, v ∈ [0, 1]n such that u < v, it can be shown that

VMn ([u, v]) = max{min{v1, · · · , vn} − max{u1, · · · , un}, 0}.

Thus,

sup

{
− VC∗([u, v])

Δ(u, v)
: u, v ∈ [0, 1]n,u < v

}
= 0.

So functions f1, · · · , fn that satisfy conditions in Theorem3 or Corollary1 for
Mn must be zero, i.e., f1 = · · · = fn = 0.

Next we provide a stronger sufficient condition on f1, · · · , fn to ensure that C
defined by (6) is an n-copula. Example2.1 in [12] shows that the condition is not
necessary.
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Theorem 4 Let C be defined by (6). C is an n-copula if f1, · · · , fn satisfy the
following conditions,

(i) f1(0) = · · · = fn(0) = 0, and there exist at least two functions fi and f j such
that fi (1) = f j (1) = 0, 1 ≤ i, j ≤ n,

(ii) fi satisfies the Lipschitz condition,

| fi (v) − fi (u)| ≤ Mi |v − u|,

for all u, v ∈ I , such that Mi > 0, i = 1, · · · , n, and

n∏

1

Mi ≤ inf

{
VC∗([u, v])
Δ(u, v)

: u, v ∈ [0, 1]n,u ≤ v
}

.

Proof By the condition (i), C is grounded and one-dimensional marginals of C are
uniformly distributed. For any u, v ∈ I n with u < v, by the condition (ii), we have

− ( f1(v1) − f1(u1)) · · · ( fn(vn) − fn(un))

(v1 − u1) · · · (vn − un)
≤ | f1(v1) − f1(u1)| · · · | fn(vn) − fn(un)|

|v1 − u1| · · · |vn − un |

≤
n∏

1

Mi

≤ inf

{
VC∗ ([u, v])

Δ(u, v)
: u, v ∈ [0, 1]n,u ≤ v

}
.

So

( f1(v1) − f1(u1)) · · · ( fn(vn) − fn(un))

(v1 − u1) · · · (vn − un)
≥ sup

{
− VC∗ ([u, v])

Δ(u, v)
: u, v ∈ [0, 1]n,u ≤ v

}
.

Thus, as the proof of Theorem3, C is n-increasing. �	

4 Properties of New Families

In this section, we are going to study some non-parametric copula-based measures
of multivariate association, some dependence concepts for copulas defined in Sect. 3
and some properties of those families.

Firstly, recall that the multivariate generalizations of Kendall’s tau, Spearman’s
rho, and Blomqvist’s beta (see [13, 18] for details) are given by

τn(C) = 1

2n−1 − 1

[
2n

∫

I n

C(u)dC(u) − 1

]
, (8)
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ρn(C) = n + 1

2n − n − 1

[
2n−1

(∫

I n

C(u)dΠn(u) +
∫

I n

Πn(u)dC(u)

)
− 1

]
, (9)

βn(C) = 2n−1
[
C

(
1
21n

) + C
(
1
21n

)] − 1

2n−1 − 1
, (10)

where 1n is the vector (1, · · · , 1)′ ∈ R
n .

Theorem 5 Let C be an n-copula defined by (5), then the Kendall’s tau, Spearman’s
rho, and Blomqvist’s beta of C are given by

τn(C) = τn(C
∗) + τn(H) + a1, (11)

ρn(C) = ρn(C
∗) + ρn(H) + n + 1

2n − n − 1
, (12)

βn(C) = βn(C
∗) + βn(H) + 1 − 2n−1

2n − 1
, (13)

where a1 = 1

2n−1 − 1

[
2n

∫
I n C∗(u)d H(u) + 2n

∫
I n H(u)dC∗(u) + 1

]
.

Proof Firstly, by the definition of τn ,

τn(C) = 1

2n−1 − 1

[
2n

∫

I n

C(u)dC(u) − 1

]

= 1

2n−1 − 1

[
2n

∫

I n

C∗(u) + H(u)d(C∗(u) + H(u)) − 1

]

= 1

2n−1 − 1
[2n

∫

I n

C∗(u)dC∗(u) + 2n
∫

I n

H(u)d H(u)

+ 2n
∫

I n

C∗(u)d H(u) + 2n
∫

I n

H(u)dC∗(u) − 1]
= τn(C

∗) + τn(H) + a1.

Secondly, by the definition of ρn ,

ρn(C) = n + 1

2n − n − 1

{
2n−1

[∫

I n
C(u)dΠn(u) +

∫

I n
Πn(u)dC(u)

]
− 1

}

= n + 1

2n − n − 1

{
2n−1

[∫

I n
C∗(u) + H(u)dΠn(u) +

∫

I n
Πn(u)d(C∗(u) + H(u))

]
− 1

}

= n + 1

2n − n − 1
{2n−1[

∫

I n
C∗(u)dΠn(u) +

∫

I n
H(u)dΠn(u) +

∫

I n
Πn(u)dC∗(u)

+
∫

I n
Πn(u)d H(u)] − 1}

= ρn(C∗) + ρn(H) + n + 1

2n − n − 1
.
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Lastly, by the definition of survival functions, for any u ∈ I n ,

C(u) = 1 +
n∑

k=1

(−1)k
∑

1≤i1<···<ik≤n

Ci1i2···ik (ui1 , · · · , uik )

= 1 +
n∑

k=1

(−1)k
∑

1≤i1<···<ik≤n

[
C∗

i1i2···ik
(ui1 , · · · , uik ) + Hi1i2···ik (ui1 , · · · , uik )

]

= 1 +
n∑

k=1

(−1)k
∑

1≤i1<···<ik≤n

C∗
i1i2···ik

(ui1 , · · · , uik )

+ 1 +
n∑

k=1

(−1)k
∑

1≤i1<···<ik≤n

Hi1i2···ik (ui1 , · · · , uik ) − 1

= C∗(u) + H(u) − 1.

Thus,

βn(C) = 2n−1
[
C

( 1
21n

) + C
( 1
21n

)] − 1

2n−1 − 1

= 2n−1
[
C∗ ( 1

21n
) + H

( 1
21n

) + C∗ ( 1
21n

) + H
( 1
21n

) − 1
] − 1

2n−1 − 1

= 2n−1
[
C∗ ( 1

21n
) + C∗ ( 1

21n
)] − 1 + 2n−1

[
H

( 1
21n

) + H
( 1
21n

)] − 1 + 1 − 2n−1

2n−1 − 1

= βn(C∗) + βn(H) + 1 − 2n−1

2n − 1
.

�	
Remark 2 In the above theorem, although the perturbation function H is not a copula,
we still use m(H) to denote the corresponding values of H , where m = τn , ρn, or βn ,
and use H to denoted the corresponding function of H defined by (1). The similar
notations are used in the following context.

Remark 3 As n increasing, we can see that

τn(C) ≈ τn(C
∗) + τn(H) + 2

∫

I n

C∗(u)d H(u) + 2
∫

I n

H(u)dC∗(u),

ρn(C) ≈ ρn(C
∗) + ρn(H),

and
βn(C) ≈ βn(C

∗) + βn(H).
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Corollary 2 Let C be an n-copula defined by (7), then the Kendall’s tau, Spearman’s
rho, and Blomqvist’s beta of C are given by

τn(C) = τn(C
∗) + τn(θ

n∏

i=1

fi ) + a2, (14)

ρn(C) = ρn(C
∗) + ρn(θ

n∏

i=1

fi ) + n + 1

2n − n − 1
, (15)

βn(C) = βn(C
∗) + βn(θ

n∏

i=1

fi ) + 1 − 2n−1

2n − 1
, (16)

where a2 = 1

2n−1 − 1

[
2n

∫
I n θC∗(u)

n∏
i=1

fi
′(ui )du + 2n

∫
I n θ

n∏
i=1

fi (ui )dC∗(u) + 1

]
.

In 2013, Tasena et al. [17] defined ameasure ofmultivariate complete dependence
as follows. Let C be an n-copula of random variables X1, · · · , Xn . Define

δi (X1, · · · , Xn) = δi (C) =
∫
(∂i C − πi C)2∫
πi C(1 − πi C)

,

where πi C : I n−1 → I is defined by

πi C(u1, · · · , un−1) = C(u1, · · · , ui−1, 1, ui , · · · , un−1), i = 1, 2, · · · , n.

By Theorem3.6 in [17], δi satisfies following properties,

(i) 0 ≤ δi (C) ≤ 1,
(ii) δi (C) = 1 if and only if (X1, · · · , Xi−1, Xi+1, · · · , Xn) is a function of Xi .

For details, see [17].

Theorem 6 Let C be an n-copula defined by (5). If

H(u1, · · · , ui−1, 1, ui+1, · · · , un1) = 0,

then

δi (C) = δ(C∗) −
∫
2∂i H(∂i C∗ − πi C∗) − (∂i H)2∫

πi C∗(1 − πi C∗)
.
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Proof By the definition,

δi (C) =
∫
(∂i C − πi C)2∫
πi C(1 − πi C)

=
∫
(∂i (C∗ + H) − πi (C∗ + H))2∫
πi (C∗ + H)[1 − πi (C∗ + H)]

=
∫
(∂i C∗ + ∂i H − πi C∗ − πi H)2∫

(πi C∗ + πi H)(1 − πi C∗ − πi H)
.

If πi H(u1, · · · , un1) = H(u1, · · · , ui−1, 1, ui+1, · · · , un1) = 0, then

δi (C) =
∫
(∂i C∗ + ∂i H − πi C∗ − πi H)2∫
(πi C∗ + πi H)(1 − πi C∗πi H)

=
∫
(∂i C∗ + ∂i H − πi C∗)2∫

πi C∗(1 − πi C∗)

=
∫ [

(∂i C∗ − πi C∗)2 − 2∂i H(∂i C∗ − πi C∗) + (∂i H)2
]

∫
πi C∗(1 − πi C∗)

=
∫
(∂i C∗ − πi C∗)2∫
πi C∗(1 − πi C∗)

−
∫
2∂i H(∂i C∗ − πi C∗) − (∂i H)2∫

πi C∗(1 − πi C∗)

= δ(C∗) −
∫
2∂i H(∂i C∗ − πi C∗) − (∂i H)2∫

πi C∗(1 − πi C∗)
.

�	
Corollary 3 Let C be an n-copula defined by (7). If fi (1) = 0, then

δi (C) = δi (C
∗) −

∫
2θ f ′

i

∏
j �=i

f j (∂i C∗ − πi C∗) − (θ f ′
i

∏
j �=i

f j )
2

∫
πi C∗(1 − πi C∗)

.

Now, let’s recall some dependence concepts of copulas. For details, see [6, 11].
Let C1 and C2 be two n-copulas. If C1 ≥ C2 (C1 ≥ C2 resp.), i.e., C1(u) ≥ C2(u)

(C1(u) ≥ C2(u) resp.) for all u ∈ I n , then we say that C1 is more positive lower
(upper resp.) orthant dependent (PLOD) (PUOD resp.) than C2. C1 is more positive
orthant dependent (POD) than C2 if C1 ≥ C2 and C1 ≥ C2 hold.

The following results give us some dependence relations between C and C∗. The
proof is trivial.

Proposition 1 Let C1 and C2 be two n-copulas defined by (5). If they share the same
n-copula C∗ and may have different perturbation functions Hi i = 1, 2, then

(i) C1 more PLOD than C2 if and only if H1 ≥ H2,
(ii) C1 more PUOD than C2 if and only if H 1 ≥ H 2,
(iii) C1 more POD than C2 if and only if H1 ≥ H2 and H 1 ≥ H 2.
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Proposition 2 Let C1 and C2 are two n-copulas defined by (7). If they share the same
known n-copula C∗ and may have different perturbation functions f j1, · · · , f jn , and
parameters θ j , j = 1, 2 respectively, then

(i) C1 more PLOD than C2 if and only if θ1
n∏

i=1
f1i ≥ θ2

n∏
i=1

f2i ,

(ii) C1 more PUOD than C2 if and only if θ1
n∏

i=1
f1i ≥ θ2

n∏
i=1

f2i ,

(iii) C1 more POD than C2 if and only if θ1
n∏

i=1
f1i ≥ θ2

n∏
i=1

f2i and θ1
n∏

i=1
f1i ≥

θ2
n∏

i=1
f2i .

The next theorem give us a property of the construction (6).

Theorem 7 Let (U ∗
1 , · · · , U ∗

n ) and (U1, · · · , Un) be random vectors with uniform
marginals on [0, 1] and connected by copulas C∗ and C respectively. C and C∗
satisfy conditions of Theorem3. Suppose that fi (1) = f j (1) = 0, 1 ≤ i < j ≤ n.

(i) If there is 1 ≤ l ≤ n such that l �= i, j and fl(1) = 0, then P{Ui < U j } =
P{U ∗

i < U ∗
j },

(ii) If fl(1) �= 0 for all l �= i, j and fi = f j , then P{Ui < U j } = P{U ∗
i < U ∗

j }.
Proof (i) Let c and c∗ be the densities of C and C∗ respectively, then we have

c(u) = ∂nC(u)

∂u1 · · · ∂un
= c∗(u) +

n∏

i=1

fi
′(ui ).

Then

P{Ui < U j } =
∫ 1

0
· · ·

∫ u j

0
· · ·

∫ 1

0
c(u1, · · · , ui , · · · , un)du1 · · · dui · · · dun

=
∫ 1

0
· · ·

∫ u j

0
· · ·

∫ 1

0
c∗(u1, · · · , ui , · · · , un)du1 · · · dui · · · dun

+
∫ 1

0
· · ·

∫ u j

0
· · ·

∫ 1

0
f ′
1(ui ) · · · f ′

i (ui ) · · · f ′
n(un)du1 · · · dui · · · dun

= P{U ∗
i < U ∗

j } +
n∏

k �=i, j

( fk(1) − fk(0))
∫ 1

0

∫ u j

0
f ′

j (u j ) f ′
i (ui )dui du j

= P{U ∗
i < U ∗

j },

since fl(0) = fl(1) = 0 and l �= i, j .
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(ii) Similarly, if fl(1) �= 0 for all l �= i, j ,

P{Ui < U j } = P{U ∗
i < U ∗

j } +
n∏

k �=i, j

( fk(1) − fk(0))
∫ 1

0

∫ u j

0
f ′

j (u j ) f ′
i (ui )dui du j

= P{U ∗
i < U ∗

j } +
n∏

k �=i, j

fk(1)
∫ 1

0

∫ u j

0
f ′

j (u j ) f ′
i (ui )dui du j

= P{U ∗
i < U ∗

j } +
n∏

k �=i, j

fk(1)
∫ 1

0
fi (u j ) f ′

j (u j )du j .

Since fi = f j ,

∫ 1

0
fi (u j ) f ′

j (u j )du j = f j (1) fi (1) − f j (0) fi (0) −
∫ 1

0
f j (u j ) f ′

i (u j )du j

= −
∫ 1

0
f j (u j ) f ′

i (u j )du j = −
∫ 1

0
fi (u j ) f ′

j (u j )du j ,

and hence
∫ 1
0 fi (u j ) f ′

j (u j )du j = 0. So P{Ui < U j } = P{U ∗
i < U ∗

j }. �	
The following example shows that the converse of the above result (ii) in

Theorem7 may not hold in general. Moreover, it shows that Theorem3 in [7] is
incorrect.

Example 1 Let (U ∗, V ∗) and (U, V ) be random vectors with uniform marginals
on [0, 1]. Suppose that (U ∗, V ∗) is connected by the independent copula, i.e.,
C∗(u, v) = uv, and (U, V ) is connected by C(u, v) = C∗(u, v) + f (u)g(v), where

f (u) = u(1 − u), g(v) = 1

2
v(1 − v). Then f and g satisfy the conditions in Theo-

rem3. In fact, C belongs to the bivariate FGM family.
As the proof of the above theorem, we have

P{U < V } =
∫ 1

0

∫ v

0
c(u, v)dudv =

∫ 1

0

∫ v

0
c∗(u, v) + f ′(u)g′(v)dudv

= P{U∗ < V ∗} +
∫ 1

0

∫ v

0
f ′(u)g′(v)dudv = P{U∗ < V ∗} +

∫ 1

0
f (v)g′(v)dv.

where ∫ 1

0
f (v)g′(v)dv =

∫ 1

0

1

2
v(1 − v)(1 − 2v)dv = 0.

Thus P{U < V } = P{U ∗ < V ∗}, but f �= g.



262 X. Zhu et al.

5 Examples

In this section, we provide two examples. The given copula C∗ in the first example is
the simplest one, the independent copula. To emphasismultivariate and for simplicity,
we will only consider 3-copulas, but results could be extended to n-copulas. In
the second example, C∗ is nontrivial. Also for simplicity, we will only consider
2-copulas.

Example 2 Let C∗ be the independent 3-copula, i.e., C∗(u, v, w) = uvw. Let
f (x) = x(1 − xk), where u, v, w, x ∈ I , k ∈ N, the set of all positive integers. Con-
sider the 3-copula family,

C(u, v, w) = C∗(u, v, w) + θ f (u) f (v) f (w)

= uvw + θuvw(1 − uk)(1 − vk)(1 − wk),

where θ ∈ R.
It is clear that f (x) satisfies the conditions (i) and (ii) of Corollary1. Next we

will use the condition (iii) of Corollary1 to find the range of the parameter θ for each

k. Firstly, it is easy to see that
VC∗([u, v])
Δ(u, v)

= 1 for any u, v ∈ [0, 1]3 with u < v.

Secondly, f ′(x) = 1 − (k + 1)xk , so

α = inf{ f ′(x) : x ∈ I } = f ′(1) = 1 − (k + 1) = −k,

and
β = sup{ f ′(x) : x ∈ I } = f ′(0) = 1.

Thus, as the notations in Theorem3, B = {−k,−k3}, B ′ = {k2}. So by the con-
dition (iii) of Corollary1, the range of θ is

− 1

max(B ′)
≤ θ ≤ − 1

min(B)
,

i.e.,

− 1

k2
≤ θ ≤ 1

k3
.

So, we can see that the range of θ is shrinking as k increasing. Specifically, if

k = 1, −1 ≤ θ ≤ 1. If k = 2, −1

4
≤ θ ≤ 1

8
. If k = 3, −1

9
≤ θ ≤ 1

27
.

Next, let’s compute three measures discussed in Sect. 4 for these 3-copulas. By
the definition of τn ,

τ3 (θ f (u) f (v) f (w)) = 1

3

[
8θ(

k + 1

2k + 3
− k + 2

k + 3
+ 1

3
) − 1

]
.
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a2 = 1

3

[
8
∫

I 3
θC∗(u)

3∏

i=1

fi
′(ui )du + 8

∫

I 3
θ

3∏

i=1

fi (ui )dC∗(u) + 1

]

= 1

3

[
− θk3

(k + 2)3
+ θk3

(k + 2)3
+ 1

]
= 1

3
.

So by Corollary2,

τ3(C) = τ3(C
∗) + τ3(θ f (u) f (v) f (w)) + a2

= 0 + 1

3

[
8θ

(
k + 1

2k + 3
− k + 2

k + 3
+ 1

3

)
− 1

]
+ 1

3

= 8θ

3

(
k + 1

2k + 3
− k + 2

k + 3
+ 1

3

)
.

So the range of τ3(C) is

8

3k3

(
k + 1

2k + 3
− k + 2

k + 3
+ 1

3

)
≤ τ3(C) ≤ − 8

3k2

(
k + 1

2k + 3
− k + 2

k + 3
+ 1

3

)
.

By the definition of ρn ,

ρ3(θ f (u) f (v) f (w)) = 4

[
θk3

8(k + 2)3
− θk3

8(k + 2)3

]
− 1 = −1.

So

ρ3(C) = ρ3(C
∗) + ρ3(θ f (u) f (v) f (w)) + 3 + 1

23 − 3 − 1
= 0 − 1 + 1 = 0.

By the definition of survival function (1),

θ

3∏

i=1

fi

(
1

2
,
1

2
,
1

2

)
= 1 − θ

8

(
1 − 1

2k

)3

.

So

β3(θ f (u) f (v) f (w)) =
22

[
θ

3∏
i=1

fi
(
1
2 ,

1
2 ,

1
2

) + θ
3∏

i=1
fi

(
1
2 ,

1
2 ,

1
2

)
]

− 1

22 − 1

=
4

[
θ

8

(
1 − 1

2k

)3

+ 1 − θ

8

(
1 − 1

2k

)3
]

− 1

3
= 1.
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Thus,

β3(C) = β3(C
∗) + β3(θ f (u) f (v) f (w)) + 1 − 23−1

23 − 1

= 0 + 1 − 3

7
= 4

7
.

Lastly, since f (u) f (v) f (w) = uvw(1 − uk)(1 − vk)(1 − wk) ≥ 0 for all
(u, v, w) ∈ I 3, we have that C is more PLOD than Π3 if and only if θ ≥ 0 and
Π3 is more PLOD than C if and only if θ ≤ 0.

Remark 4 From the above example, we can see that this 3-copulas family,
C(u, v, w) = C∗(u, v, w) + θuvw(1 − uk)(1 − vk)(1 − wk), is interesting.As long
as this C is a 3-copula, ρ3(C) and β3(C) are free of θ. Specifically, we always have
ρ3(C) = ρ3(C∗) and β3(C) = β3(C∗) + 4

7 .

Example 3 Let C∗ be a Frank’s copula [2, 5] defined by

C∗(u, v) = ln

[
1 + (eu − 1)(ev − 1)

e − 1

]
.

Let
H = θ(1 − u)(1 − eu)(1 − v)(1 − ev),

where θ ≥ 0. Define a bivariate function C by C = C∗ + H. We will use Theorem2
to find the range of θ such that C is a copula.

Firstly, it is easy to see that H(0, v) = H(u, 0) = H(1, v) = H(u, 1) = 0.
Secondly, we can find that

c∗(u, v) = (e − 1)(u + v)

[e − 1 + (eu − 1)(ev − 1)]2 ,

and
h(u, v) = θ(ueu − 1)(vev − 1).

It can be shown that minimum values of c = c∗ + h occur at (0, 1) and (1, 0). So

c ≥ 0 if and only if c(0, 1) = c(1, 0) = c∗(0, 1) + h(0, 1) = 1

e − 1
− θ(e − 1) ≥ 0.

Thus C = C∗ + H is a copula if θ ≤ 1

(e − 1)2
.
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Plausibility Regions on the Skewness
Parameter of Skew Normal Distributions
Based on Inferential Models

Xiaonan Zhu, Ziwei Ma, Tonghui Wang and Teerawut Teetranont

Abstract Inferential models (IMs) are new methods of statistical inference. They
have several advantages: (1) They are free of prior distributions; (2) They rely on
data. In this paper, 100(1 − α)% plausibility regions of the skewness parameter of
skew-normal distributions are constructed by using IMs, which are the counterparts
of classical confidence intervals in IMs.

1 Introduction

In practical applications, the skew data sets occur in many diverse fields of our life,
such as economics, finance, biomedicine, environment, demography, and pharma-
cokinetics. Usually for mathematical convenience, they are assumed to be normally
distributed. This restrictive assumption, however, may result in not only a lack of
robustness against departures of the normal distribution and but also invalid statis-
tical inferences, especially when data are skewed. To fix this issue, one solution is
skew-normal distributions defined by Azzalini in 1985 [2]. Theoretically, the skew
normal family is an extension from normal distribution family, which shares a num-
ber of formal properties of normal distribution, such as Z2 ∼ χ2, if Z is a centered
skew normal random variable. In practical, skew normal is suitable for the analysis
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of data which is unimodal empirical distributed but with some skewness [1, 8]. In
past three decades, the family of skew-normal distributions, including multivariate
skew-normal distributions, has been studied by many authors, e.g. Azzalini [3, 5, 6],
Wang et al. [16], Ye et al. [17].

However, estimations of the skewness parameter is challenging, since for a random
sample Z1, . . . , Zn ∼ SN (0, 1, λ), its maximum likelihood function of the skewness
parameter λ may be unbounded, and the method of moments may not give us good
estimators. As stated in Azzalini and Capitanio’s work [4], “... there are cases where
the likelihood shape and the MLE are problematic. We are not referring here to
difficulties with numerical maximization, but to the intrinsic properties of the likeli-
hood function, not removable by change of parameterizations. In case of this sort,
the behavior of the MLE appears quite unsatisfactory, and an alternative estimation
method is called for ...”. Recently, some researchers tried to solve this issue, such as
Azzalini and Capitanio [4], Sartori [15], Liseo and Loperfido [9], Debarshi [7] and
Mameli et al. [14].

In this paper, we make inferences about the skewness parameter of skew-normal
distributions in three cases by using Inferential Models (IMs for short). IMs are new
methods of statistical inference introduced by Martin and Liu [10, 12]. Compar-
ing with Fisher’s fiducial inference, Dempster-Shafer theory of belief functions and
Bayesian inference, IMs have several advantages: (1) IMs are free of prior distrib-
utions; (2) IMs depend on the observed data. For details of IMs, see Martin et al.’s
work [10–13].

The paper is organized as follows. In Sect. 2, some necessary concepts and def-
initions of skew-normal distributions and IMs are reviewed briefly. In Sect. 3, the
skewness parameter is estimated by using IMs in three different cases. For each case,
the plausibility function and the 100(1 − α)% plausibility region are given, which
is the counterpart of classical confidence interval in IMs. Simulation studies and one
example are provided in Sect. 4.

2 Preliminaries

2.1 Skew-Normal Distributions

A random variable Z is said to be skew-normal with the skewness parameter λ, if its
density function is

f (z; λ) = 2φ(z)Φ(λz),

where λ, z ∈ R, φ and Φ are the density function (p.d.f.) and distribution function
(c.d.f.) of standard normal N (0, 1). Z is called a centered skew normal random
variable, denoted by Z ∼ SN (0, 1, λ) [5].
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For any μ ∈ R and σ > 0, let

X = μ + σ Z ,

then X is said to be skew-normal with the location parameter μ, scale parameter σ

and skewness parameter λ, denoted by X ∼ SN (μ, σ 2, λ). The density function of
X is

f (x;μ, σ 2, λ) = 2

σ
φ

(
x − μ

σ

)
Φ

(
λ(x − μ)

σ

)
.

There is an alternative representation of Z ∼ SN (0, 1, λ) [5],

Z = δ|Z0| +
√
1 − δ2Z1, δ ∈ (−1, 1), (1)

where Z0, Z1 ∼ N (0, 1), Z0 and Z1 are independent and the relations between λ

and δ are δ(λ) = λ√
1 + λ2

and λ(δ) = δ√
1 − δ2

. For more details of skew-normal

distributions, see Azzalini’s book [5].
Multivariate skew-normal distributions were defined by Azzalini and Dalla Valle

[6] and Azzalini and Capitanio [4]. A random vector X ∈ R
k is said to have a mul-

tivariate skew-normal distribution, denoted by X ∼ SNk(Σ,α), if its density func-
tion is

f (x) = 2φk(x;Σ)Φ(αT x),

whereΣ is a positive definite k × kmatrix,α ∈ R
k ,αT is the transpose ofα,φk(x;Σ)

is the k-dimensional normal density with mean zero and covariance matrix Σ , and
Φ(·) is the c.d.f. of standard normal distribution N (0, 1).

As univariate skew-normal distributions, there is another method to construct
multivariate skew-normal distributions. Let Y = (Y1 . . . ,Yk)T be a k-dimensional
normal random vector distributed withY ∼ Nk(0, Ψ ), independent of Y0 ∼ N (0, 1).
Then (

Y0
Y

)
∼ Nk+1

{
0,

(
1 0
0 Ψ

)}
,

where Ψ is a k × k covariance matrix. If δi ∈ (−1, 1), i = 1, . . . , k, and let

Zi = δi |Y0| +
√
1 − δ2i Yi ,

then Zi ∼ SN (0, 1, λ(δi )), i = 1, . . . , k, and Z = (Z1 . . . , Zk)
T ∼ SNk(Σ, α),

where

αT = λTΨ −1Δ−1

(1 + λTΨ −1λ)
1
2

, Δ = diag((1 − δ21)
1
2 , . . . , (1 − δ2k )

1
2 ),

λ = (λ(δ1), . . . , λ(δk))
T , Σ = Δ(Ψ + λλT )Δ.
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In 2009, Wang et al. [16] defined another family of multivariate skew-normal dis-
tributions as following, which are extensions of Azzalini and Dalla Valle’s definition.

Let Z ∼ SNk(Ik, α), where Ik is the k × k identity matrix. The distribution of
Y = μ + BTZ is called amultivariate skew-normal random vector with the location
parameter μ ∈ R

n , scale parameter B, a k × nmatrix, and shape parameter α ∈ R
k ,

and is denoted by Y = SNn(μ, B, α). Note that

SNk(Σ, α) = SNk(0,Σ
1
2 ,Σ

1
2 α).

Next, we propose some results of multivariate skew-normal distributions, which
we will use to obtain main results of the paper.

Proposition 1 Suppose that (X1, X2, . . . , X2n)
T ∼ SN2n(μ12n, σ 2I2n, λ12n), where

μ, λ ∈ R, σ > 0, 12n is the column vector (1, . . . , 1)T ∈ R
2n, I2n is the 2n × 2n iden-

tity matrix. Let T =
n∑

i=1
(X2i−1 − X2i )

2, then
(1 + λ2)T

2σ 2
∼ χ2

n .

Proof By the above discussion of multivariate skew-normal distributions, we have

Xi = μ + σ(δ|Y0| +
√
1 − δ2Yi ), i = 1, . . . , 2n,

where δ = λ√
1 + λ2

, and Y0, Y1, . . . , Y2n are independent distributed with N (0, 1).

So for each i = 1, . . . , n,

X2i−1 − X2i = σ
√
1 − δ2(Y2i−1 − Y2i ) = σ

√
2(1 − δ2)Zi = σ

√
2

1 + λ2
Zi ,

where Z1, . . . , Zn are independent distributed with N (0, 1). So

(1 + λ2)

2σ 2
(X2i−1 − X2i )

2 = Z2
i ∼ χ2

1 .

Thus
(1 + λ2)T

2σ 2
= (1 + λ2)

2σ 2

n∑

i=1

(X2i−1 − X2i )
2 =

n∑

i=1

Z2
i ∼ χ2

n . ��

Now let’s consider the representation of SN (0, 1, λ) in (1). We can make some
connection between skew normal distributions and Cauchy distributions.

Recall that a random variable Z is said to be Cauchy (0, 1) (or standard Cauchy)
if its density function is

f (z) = 1

π
(
1 + z2

) , for z ∈ R.
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There is a well known representation of standard Cauchy random variable is

Z = Z1

Z0
∼ Cauchy (0, 1),

where Z1 is a standard normal distributed random variable, and Z0 is a half normal
distributed random variable, i.e., its p.d.f. is

fZ0(z0) = 2 exp

{
− z20

2

}
,

and Z0 and Z1 are independent. Furthermore, let W = η + ωZ , then W ∼ Cauchy
(η, ω), where η and ω are location and scale parameter respectively.

Based on the above definition and facts, we have the following results.

Proposition 2 Suppose that X = δZ0 + √
1 − δ2Z1, i.e., X ∼ SN (0, 1, λ), where

λ = δ

1 − δ2
, then

X√
1 − δ2Z0

∼ Cauchy (λ, 1).

Proof The proof is straightforward based on the density functions and independent
assumption of Z0 and Z1. ��

Consequently, we could extend the above result to a more general case.

Proposition 3 Suppose that Y = μ + σ X, i.e., Y ∼ SN
(
μ, σ 2, λ

)
, then

Y − μ√
1 − δ2Z0

∼ Cauchy (σλ, σ ).

Proof Notice that
Y − μ√
1 − δ2Z0

= σ
X√

1 − δ2Z0

and
X√

1 − δ2Z0

∼ Cauchy (λ, 1),

which verifies the statement. ��

2.2 Inference Models

In this section, we provide a brief review of IMs and the section refers to Martin and
Liu’s works [10, 12].

Let X be an observable random sample with a probability distribution PX |θ on a
sample space X, where θ is an unknown parameter, θ ∈ Θ , a parameter space. Let
U be an unobservable auxiliary variable on an auxiliary space U, where althoughU
is unobservable, we assume that U and U are well-known. An association is a map
a : U × Θ → X such that

X = a(U, θ).

An IM consists of three steps based on a fixed association.
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Association Step (A-step) Suppose we have an association X = a(U, θ) and an
observation X = x , where x could be a scalar or vector, then the unknown θ must
satisfy

x = a(u∗, θ),

for some unobserved u∗ ofU . So from the observation X = x , we can construct sets
of solutions

Θx (u) = {θ ∈ Θ : x = a(u, θ)}, x ∈ X, u ∈ U.

Prediction Step (P-step) Since the true u∗ is unobservable, tomake a valid inference,
the key point is to predicate u∗ validly.

Let u → S(u) be a set-value map from U to S, a collection of PU -measurable
subsets of U. Then the random set S : U → S is called a predictive random set ofU
with distribution PS = PU ◦ S−1. We will use S to predict u∗.

Combination Step (C-step) Define

Θx (S) = ∪
u∈SΘx (u).

For any assertion A of θ , i.e., A ⊆ Θ , the belief function and plausibility function
of A with respect to a predictive random set S are defined by,

belx (A; S) = PS{Θx (S) ⊆ A : Θx (S) �= ∅};

plx (A; S) = PS{Θx (S) � Ac : Θx (S) �= ∅}.
Note that

plx (A; S) = 1 − belx (Ac; S), belx (A; S) + belx (Ac; S) ≤ 1, for all A ⊆ Θ.

To make a good inference for assertions, we need some concepts of validity.

Definition 1 Let X and Y be two random variables. We say that X is stochastically
no smaller than Y , denoted by X ≥st Y , if P(X > a) ≥ P(Y > a), for all a ∈ R.

Definition 2 ([12]) A predictive random set S is valid for predicting the unobserved
auxiliary variable U if γS(U ), as a function of U ∼ PU , is stochastically no smaller
than Uniform(0, 1), where γS is called the contour function of S defined by

γS(u) = PS(S � u), u ∈ U.

If γS(U ) ∼ Uniform(0, 1) then S is efficient.
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A simple way to construct a valid predictive random set was provided by Martin
and Liu [12] as follows.

Theorem 1 Let S be a collection of subsets of U. If S and PU satisfy following
conditions,

(i) S is nested, i.e., all elements of S can be ordered by inclusions,
(ii) There is some F ∈ S such that PU (F) > 0,
(iii) All closed subsets of U are PU -measurable,
(iv) S contains ∅, U, and all of the other elements are closed subsets, and define a

predictive random set S, with distribution PS, supported on S, such that

PS{F ⊆ K } = sup
F∈S;F⊆K

PU (F), K ⊆ U,

then S is valid.

Definition 3 ([12]) Suppose X ∼ PX |θ and let A be an assertion of interest. Then
the IM with a belief function belx (· ; S) is valid for A if

sup
θ /∈A

PX |θ {belX (A; S) ≥ 1 − α} ≤ α, for all α ∈ (0, 1).

The IM is valid if it is valid for all A.

Theorem 2 ([12]) Suppose the predictive random set S is valid andΘx (S) �= ∅with
PS-probability 1 for all x. Then the IM is valid.

Remark 1 (a) It is easy to see that the IM is valid if and only if

sup
θ∈A

PX |θ {plX (A; S) ≤ α} ≤ α, for all α ∈ (0, 1), A ⊆ Θ.

(b) By the definition of validity of IMs, for any false assertion A, i.e., the true θ0 /∈ A,

sup
θ /∈A

PX |θ {belX (A; S) ≥ 1 − α} ≤ α,

and for any true assertion A, i.e., the true θ0 ∈ A,

sup
θ∈A

PX |θ {plX (A; S) ≤ α} ≤ α.

It means that if the IM is valid, the Type I error and Type II error of inferences
can be controlled by the plausibility function and the belief function respectively.

Given an IM, a 100(1 − α)% plausibility region is defined by

Πx (α) = {θ ∈ Θ : plx (θ; S) > α},

which is an IM-based counterpart of classical confidence intervals.
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3 Plausibility Regions on the Skewness Parameter of Skew
Normal Distributions

In this section, we are going to use IMs to find belief functions and plausibility
functions of the skewness parameter of skew-normal distributions, and construct
plausibility regions on the parameter in three different cases. For simplicity, we may
assume μ = 0 and/or σ 2 = 1, and λ > 0, but our results should still hold when μ

and σ 2 are known.

3.1 Samples are Identical Distributed but not Independent

Suppose that X11, X12, X21, . . . , Xn1, Xn2 are identical distributed samples from
SN (0, 1, λ) but not independent such that (X1, X2, . . . , X2n)

T ∼ SN2n(02n, I2n,
λ12n).

A-step If we define a statistic T =
n∑

i=1
(Xi1 − Xi2)

2, then by Proposition1 we have

an association

T = 2

1 + λ2
F−1

χ2
n

(U ),

whereU ∼ Uniform(0, 1), and Fχ2
n
is the c.d.f. of χ2

n . For any observation t > 0 and
u ∈ [0, 1],

Θt (λ) =
{
λ : t = 2

1 + λ2
F−1

χ2
n

(u)

}
=
⎧
⎨

⎩

(
2F−1

χ2
n

(u)

t
− 1

) 1
2

⎫
⎬

⎭ .

P-step The parameter set

Θt (λ) =
⎧
⎨

⎩

(
2F−1

χ2
n

(u)

t
− 1

) 1
2

⎫
⎬

⎭ �= ∅

requires
2F−1

χ2n
(u)

t − 1 > 0, so we have u > Fχ2
n

(
t
2

)
. Hence for the auxiliary variable

U , we use an elastic predictive random set S defined as following to predicate it.
See Chap.5 in [12] for details of elastic predictive random sets.

S(u) =
{ [1 − Fχ2

n
( t2 ), Fχ2

n
( t2 )], if Fχ2

n
( t2 ) > 0.5 and 1 − Fχ2

n
( t2 ) < u < Fχ2

n
( t2 ),

[0.5 − |u − 0.5|, 0.5 + |u − 0.5|], otherwise,
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for all u ∈ [0, 1]. By Theorem5.1 in [12], the predictive random set

S(F−1
χ2
n

(u)) =
{ [F−1

χ2
n

(1 − Fχ2
n
( t
2 )), t

2 ], if Fχ2
n
( t
2 ) > 0.5, and 1 − Fχ2

n
( t
2 ) < u < Fχ2

n
( t
2 ),

[F−1
χ2
n

(0.5 − |u − 0.5|), F−1
χ2
n

(0.5 + |u − 0.5|)], otherwise,

is valid for inference about every assertion of λ.

C-step By the P-step, we have

Θt (S) =

⎧
⎪⎨

⎪⎩

{0}, if Fχ2
n
( t
2 ) > 0.5, and 1 − Fχ2

n
( t
2 ) < u < Fχ2

n
( t
2 ),[(

2F−1
χ2n

(0.5−|u−0.5|)
t − 1

) 1
2

,

(
2F−1

χ2n
(0.5+|u−0.5|)

t − 1

) 1
2

]
, otherwise,

so we can use the above IM to get the following result.

Proposition 4 For any singleton assertion A = {λ},

belt (A; S) = 0,

plt (A; S) = 1 − ∣∣2Fχ2
n
(
t (1 + λ2)

2
) − 1

∣∣,

and the 100(1 − α)% plausibility region Πt (λ) is

(
max

{
2F−1

χ2
n

( α
2 )

t
− 1, 0

}) 1
2

< λ <

(
max

{
2F−1

χ2
n

(1 − α
2 )

t
− 1, 0

}) 1
2

.

Proof It is clear that {Θx (S) ⊆ A} = ∅, so belt (A; S) = 0.

plt (A; S) = 1 − belt (Ac; S) = 1 − PS(Θt (S) ⊆ Ac)

= 1 − PU

(
F−1

χ2
n

(0.5 − |U − 0.5|) >
t (1 + λ2)

2

)
− PU

(
F−1

χ2
n

(0.5 + |U − 0.5|) <
t (1 + λ2)

2

)

= 1 − PU

(
|U − 0.5| < |Fχ2

n
(
t (1 + λ2)

2
) − 0.5|

)

= 1 −
∣∣∣∣2Fχ2

n

(
t (1 + λ2)

2

)
− 1

∣∣∣∣ .

By the definition, Πt (α) = {λ : plt (λ; S) > α}. Let

plt (λ; S) = 1 − |2Fχ2
n
(
t (1 + λ2)

2
) − 1| > α
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Table 1 Simulation results of average lower bounds (AL), average upper bounds (AU), average
lengths (ALength) and coverage probabilities (CP) of 95% plausibility regions for identical distrib-
uted but not independent samples from SN (0, 1, λ) with size 2n

λ = 1 λ = 2

2n AL AU ALength CP 2n AL AU ALength CP

10 0.0759 2.4467 2.3708 0.9501 10 0.4276 4.1293 3.7017 0.9460

30 0.1994 1.7478 1.5484 0.9519 30 1.1144 3.0232 1.9087 0.9488

50 0.3206 1.5598 1.2392 0.9505 50 1.3268 2.7630 1.4362 0.9504

100 0.5405 1.3924 0.8519 0.9500 100 1.5229 2.5193 0.9964 0.9524

λ = 5 λ = 10

2n AL AU ALength CP 2n AL AU ALength CP

10 2.2145 9.6246 7.4100 0.9511 10 4.8120 19.3389 14.5269 0.9470

30 3.3062 7.1770 3.8708 0.9487 30 6.7628 14.2924 7.5296 0.9555

50 3.6766 6.6352 2.9585 0.9514 50 7.4313 13.1619 5.7305 0.9478

100 4.0404 6.1036 2.0631 0.9514 100 8.1409 12.1451 4.0042 0.9500

Fig. 1 Graphs of plausibility functions of identical distributed but not independent simulative data
from SN (0, 1, λ) with size 2n = 50
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and then solve it for λ. We have

(
max

{
2F−1

χ2
n

( α
2 )

t
− 1, 0

}) 1
2

< λ <

(
max

{
2F−1

χ2
n

(1 − α
2 )

t
− 1, 0

}) 1
2

. ��

In Table1 and Fig. 1 we provide a simulation study of SN (0, 1, λ) when λ = 1, 2, 5
and 10.

3.2 Samples Are i.i.d. from SN(0, δ2λ, λ) Where δ2λ
Is a Nonnegative Monotone Function of λ

In this subsection, we suppose that the population is SN (0, δ2λ, λ) with unknown δ2λ
and λ, but δ2λ is a nonnegative monotone function of λ, i.e., there is a nonnegative
monotone function g such that δ2λ = g(λ).Without loss of generality, wemay assume
that g is monotone increasing.

Now, suppose that we have a random sample X1, . . . , Xn from SN (0, δ2λ, λ), i.e.,
X1, . . . , Xn are i.i.d. with SN (0, δ2λ, λ).

A-step Since Xi ∼ SN (0, δ2λ, λ),
Xi

δλ

∼ SN (0, 1, λ). So
X2
i

δ2λ
∼ χ2

1 , i = 1, . . . , n. As

the above case, if we let T =
n∑

i=1
X2
i , then we have

T

δ2λ
= T

g(λ)
= F−1

χ2
n

(U ),

where U ∼ Uniform(0, 1), and Fχ2
n
is the c.d.f. of χ2

n . Thus we have an association
of λ

T = g(λ)F−1
χ2
n

(U ).

For any t > 0 and u ∈ [0, 1],

Θt (λ) =
{
g−1

(
t

F−1
χ2
n

(u)

)}
.
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P-step For the auxiliary variable U , we also choose the default predictive random
set S(U ) = [0.5 − |U − 0.5|, 0.5 + |U − 0.5|]. Then

S(F−1
χ2
n

(U )) = [F−1
χ2
n

(0.5 − |U − 0.5|), F−1
χ2
n

(0.5 + |U − 0.5|)].

It is valid for every assertion of λ.

C-step By the P-step, we have

Θt (S) =
[
g−1

(
t

F−1
χ2
n

(0.5 + |U − 0.5|)

)
, g−1

(
t

F−1
χ2
n

(0.5 − |U − 0.5|)

)]
.

Thus we have the following result.

Proposition 5 For any singleton assertion A = {λ},

belt (A; S) = 0,

plt (A; S) = 1 − ∣∣2Fχ2
n
(

t

g(λ)
) − 1

∣∣,

and the 100(1 − α)% plausibility region Πt (λ) is

g−1

(
t

F−1
χ2
n

(1 − α
2 )

)
< λ < g−1

(
t

F−1
χ2
n

( α
2 )

)
.

Proof It is clear that {Θx (S) ⊆ A} = ∅, so belt (A; S) = 0.

plt (A; S) = 1 − belt (Ac; S) = 1 − PS(Θx (S) ⊆ Ac)

= 1 − PU

(
F−1

χ2
n

(0.5 + |U − 0.5|) <
t

g(λ)

)
− PU

(
F−1

χ2
n

(0.5 − |U − 0.5|) >
t

g(λ)

)

= 1 − PU

(
|U − 0.5| <

∣∣∣∣Fχ2
n

(
t

g(λ)

)
− 0.5

∣∣∣∣

)

= 1 −
∣∣∣∣2Fχ2

n
(

t

g(λ)
) − 1

∣∣∣∣ .

By the definition, Πt (α) = {λ : plt (λ; S) > α}. Let

plt (λ; S) = 1 − |2Fχ2
n
(

t

g(λ)
) − 1| > α
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and then solve it for λ. We have

g−1

(
t

F−1
χ2
n

(1 − α
2 )

)
< λ < g−1

(
t

F−1
χ2
n

( α
2 )

)
.

��

Remark 2 (a) In this case, since we assume that the scale parameter is a one-to-
one function of the skewness parameter, we can estimate the scale parameter
instead of the skewness parameter as we did above. Actually, when μ and λ of a
skew-normal population SN (μ, σ 2, λ) are known, we can use the same method
to estimate σ 2.

(b) In these two cases, since we used the default predictive random sets [0.5 − |U −
0.5|, 0.5 + |U − 0.5|], the 100(1 − α)% plausibility regions are identical with
classical equal-tailed 100(1 − α)% confidence intervals.

Example 1 Suppose that thepopulation X ∼ SN (0, 1 + λ2, λ)withunknownλ > 0,
we have

X = λ|Z0| + Z1,

where Z0, Z1 ∼ N (0, 1), and Z0 and Z1 are independent. So g(x) = 1 + x2 and
g−1(x) = √

x − 1.
In this case, by Proposition 5, for any singleton assertion A = {λ0},

belt (A; S) = 0,

plt (A; S) = 1 − ∣∣2Fχ2
n
(

t

1 + λ2
0

) − 1
∣∣,

Table 2 Simulation results of average lower bounds (AL), average upper bounds (AU), average
lengths (ALength) and coverage probabilities (CP) of 95% plausibility regions for random sample
from SN (0, 1 + λ2, λ) with size n

λ = 1 λ = 2

n AL AU ALength CP n AL AU ALength CP

10 0.2349 2.1872 1.9522 0.9518 10 1.1016 3.6923 2.5906 0.9500

30 0.4612 1.5802 1.1189 0.9478 30 1.4555 2.7897 1.3341 0.9499

50 0.5824 1.4277 0.8452 0.9470 50 1.5659 2.5768 1.0109 0.9498

100 0.7187 1.2922 0.5735 0.9491 100 1.6825 2.3861 0.7035 0.9511

λ = 5 λ = 10

n AL AU ALength CP n AL AU ALength CP

10 3.3181 8.6669 5.3487 0.9485 10 6.7712 17.1714 10.4002 0.9474

30 3.9118 6.6819 2.7700 0.9486 30 7.9088 13.2980 5.3892 0.9491

50 4.1279 6.2315 2.1035 0.9515 50 8.3034 12.3855 4.0821 0.9505

100 4.3509 5.8133 1.4624 0.9465 100 8.7422 11.5827 2.8404 0.9523
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Fig. 2 Graphs of plausibility functions of i.i.d. simulative data from SN (0, 1 + λ2, λ) with size
n = 50

and the 100(1 − α)% plausibility region Πt (λ) is

(
max

{
t

F−1
χ2
n

(1 − α
2 )

− 1, 0

}) 1
2

< λ <

(
max

{
t

F−1
χ2
n

( α
2 )

− 1, 0

}) 1
2

.

In Table2 and Fig. 2 we provide a simulation study of SN (0, 1 + λ2, λ) when λ =
1, 2, 5 and 10.

3.3 Samples with some extra information

From the stochastic representation (1) of skew-normal distributions, suppose that we
can observe the ratio X√

1−δ2|Z0| , then by Proposition2 we have

X√
1 − δ2|Z0|

= λ + Z1

|Z0| ∼ Cauchy (λ, 1).
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Based on this fact, we can build up an IM to make inferences on λ, which is the
location parameter of a Cauchy random variable X√

1−δ2|Z0| .
Now suppose that X1, X2, . . . , Xn are a random sample from a Cauchy pop-

ulation with the scale parameter 1, and an unknown location parameter λ, i.e.,
Xi ∼ Cauchy (λ, 1) for i = 1, 2, . . . n and Xi ’s are independent.

Since Cauchy distributions are stable, sample mean X̄ ∼ Cauchy (λ, 1), which
means X̄ can only provide information for location parameter λ as much as a single
sample. But we know that order statistics are minimal sufficient statistics of location
parameters, and the median of a random sample is a good estimator for λ. Thus, we
will use sample median to construct IMs for λ as follows.

A-step Since X1, X2, . . . , Xn are independent distributed with Cauchy (λ, 1), we
have

Xi = λ +Ui ,

where U1, . . . ,Un are independent distributed with Cauchy (0, 1).
Now let M be the sample median of X1, X2, . . . , Xn defined by

M =
{
X(k), if n = 2k + 1,
1
2

(
X(k) + X(k+1)

)
, if n = 2k,

where X(1), . . . , X(n) are order statistics of X1, . . . , Xn . The association is

M = λ +Umed = λ + G−1 (U ),

whereUmed is the median ofU1,U2, . . . ,Un ,U ∼ Uniform (0, 1) and G is the c.d.f.
of the median Umed.

For any m ∈ R, and u ∈ [0, 1],

Θm (λ) = {
λ : m = λ + G−1(u)

} = {
m − G−1 (u)

}
.

P-step Since we assume λ > 0, we must have m − G−1 (u) > 0, i.e., u < G(m). So
we use an elastic predictive random set

S (u) =
{
[G (m) , 1 − G (m)] , ifG (m) < u < 1 − G (m) ,[
1
2 − ∣∣u − 1

2

∣∣ , 1
2 + ∣∣u − 1

2

∣∣] , otherwise.

C-step Combine above two steps, we obtain the expanded set

Θm (S) =
{

{0} , ifG (m) < u < 1 − G (m) ,[
m − G−1

( 1
2 + ∣∣u − 1

2

∣∣) ,m − G−1
( 1
2 − ∣∣u − 1

2

∣∣)] , otherwise.

So we can use the above IM to get the following result.
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Proposition 6 For any singleton assertion A = {λ},

belm (A; S) = 0,

plm (A; S) = 1 − |2G (m − λ) − 1|,

and the 100(1 − α)% plausibility region Πλ(α) is

Πλ (α) =
{
λ : m − G−1

(
1 − α

2

)
< λ < m − G−1

(γ

2

)}
.

Proof It is clear that {Θx (S) ⊆ A} = ∅, so belm(A; S) = 0.

plm (λ) = 1 − belm
(
Ac; S)

= 1 − PU

(
m − G−1

(
1

2
+
∣∣∣∣u − 1

2

∣∣∣∣

)
> λ

)
− PU

(
m − G−1

(
1

2
−
∣∣∣∣u − 1

2

∣∣∣∣

)
< λ

)

= 1 − PU (1 − G (m − λ) < u < G (m − λ)) − PU (G (m − λ) < u < 1 − G (m − λ))

= 1 − |2G (m − λ) − 1| .

By the definition, Πm(α) = {λ : plm(λ; S) > α}. Let plm(λ; S) = 1 −
|2G (m − λ) − 1| > α and solve it, then we have
Πα (λ) = {

λ : m − G−1
(
1 − α

2

)
< λ < m − G−1

(
α
2

) }
. ��

In Table3 and Fig. 3 we provide a simulation study of SN (0, 1, λ) when λ = 1,
2, 5 and 10.

Remark 3 The p.d.f. of median is as follows.

(a) If n = 2k + 1, g (u) = n!
(k)!2 F

k (u) (1 − F (u))k f (u) , where F (u) = 1
2 +

1
π
arctan (u) and f (u) = 1

π

(
1 + x2

)−1
, which are c.d.f. and p.d.f. of Cauchy

(0, 1) respectively, thus the c.d.f. of median is

G (u) = (k + 1)

(
n

k + 1

)∫ F(u)

0
t k (1 − t)k dt.

(b) If n = 2k, the p.d.f. of median is

g (u) =
∫ ∞

−∞
n!

(k − 1)!2 (F (2u − v) (1 − F (v)))k−1 f (2u − v) f (v) dv,

thus the c.d.f. of median is G (u) = ∫ u
−∞ g (s) ds.
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Table 3 Simulation results of average lower bounds (AL), average upper bounds (AU), average
lengths (ALength) and coverage probabilities (CP) of 95% plausibility regions when some extra
information is given

λ = 1 λ = 2

n AL AU ALength CP n AL AU ALength CP

11 -0.1025 2.1115 2.2140 0.9522 11 0.8897 3.1037 2.2140 0.9464

31 0.4090 1.5890 1.1800 0.9447 31 1.4139 2.5939 1.1800 0.9543

51 0.5485 1.4485 0.9000 0.9505 51 1.5528 2.4528 0.9000 0.9514

101 0.6879 1.3079 0.6200 0.9502 101 1.6881 2.3081 0.6200 0.9486

λ = 5 λ = 10

n AL AU ALength CP n AL AU ALength CP

11 3.8896 6.1036 2.2140 0.9471 11 8.8950 11.1090 2.2140 0.9486

31 4.4073 5.5873 1.1800 0.9502 31 9.4129 10.5929 1.1800 0.9523

51 4.5513 5.4513 0.9000 0.9546 51 9.5484 10.4484 0.9000 0.9501

101 4.6931 5.3131 0.6200 0.9474 101 9.6873 10.3073 0.6200 0.9474

Fig. 3 Graphs of plausibility functions of i.i.d. simulative data from SN (0, 1, λ) with size n = 51
when some extra information are given
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Fig. 4 Histogram, estimated density functions and the plausibility function of λ for Example2

4 Simulation Study and an Example

In this section,we perform a simulation study to compare average lower bounds (AL),
average upper bounds (AU), average lengths (ALength) and coverage probabilities
(CP) of 95% plausibility regions of three cases discussed above. We choose samples
sizes of 10, 30, 50 and 100. For each simple size, we simulated 10,000 times for
λ = 1, 2, 5 and 10. We also provide graphs of plausibility functions for each case
based on simulative data with sample size n = 50. Lastly, we provide an example
for illustration of our results.

Example 2 The data set was obtained from a study of leaf area index (LAI) of robinia
pseudoacacia in theHuaiping forest farmofShannxi Province fromJune toOctober in
2010 (with permission of authors). The LAI is given in Table4 of Appendix. By Ye
et al.’s work [18], the LAI is approximately distributed as SN (1.2585, 1.83322,
2.7966) via MME. We use our first result in Sect. 3.1 to explore the data again.
In Fig. 4, the top graph is the plausibility function of λ based on the data set, where
pl(2.492922) = 1 and the bottom graph is the histogram of the data set and estimated
density functions, where the red curve is the density of SN (1.2585, 1.83322, 2.7966)
via MME and the blue curve is the density of SN (1.2585, 1.83322, 2.492922) by
using IMs. Here since in this paper we suppose that the location and scale parameters
are known, we used MME μ̂ = 1.2585 and σ̂ = 1.8332 to standardize the data set,
and then we used our result to obtain pl(2.492922) = 1.

Acknowledgements The authors would like to thank referees for their valuable comments.
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Appendix

Table 4 The observed values of LAI

LAI (Y )

June (Y1) July (Y2) September (Y3) October (Y4)

4.87 3.32 2.05 1.50

5.00 3.02 2.12 1.46

4.72 3.28 2.24 1.55

5.16 3.63 2.56 1.27

5.11 3.68 2.67 1.26

5.03 3.79 2.61 1.37

5.36 3.68 2.42 1.87

5.17 4.06 2.58 1.75

5.56 4.13 2.56 1.81

4.48 2.92 1.84 1.98

4.55 3.05 1.94 1.89

4.69 3.02 1.95 1.71

2.54 2.78 2.29 1.29

3.09 2.35 1.94 1.34

2.79 2.40 2.20 1.29

3.80 3.28 1.56 1.10

3.61 3.45 1.40 1.04

3.53 2.85 1.36 1.08

2.51 3.05 1.60 0.86

2.41 2.78 1.50 0.70

2.80 2.72 1.88 0.82

3.23 2.64 1.63 1.19

3.46 2.88 1.66 1.24

3.12 3.00 1.62 1.14
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International Yield Curve Prediction
with Common Functional Principal
Component Analysis

Jiejie Zhang, Ying Chen, Stefan Klotz and Kian Guan Lim

Abstract We propose an international yield curve predictive model, where common
factors are identified using the common functional principal component (CFPC)
method that enables a comparison of the variation patterns across different economies
with heterogeneous covariances. The dynamics of the international yield curves are
further forecasted based on the data-driven common factors in an autoregression
framework. For the 1-day ahead out-of-sample forecasts of the US, Sterling, Euro
and Japanese yield curve from 07 April 2014 to 06 April 2015, the CFPC factor
model is compared with an alternative factor model based on the functional principal
component analysis.

Keywords Yield curve forecasting · Common factors

JEL classification C32 · C53 · E43 · E47
1 Introduction

Yield curve, also known as term structure of interest rates, illustrates the relationship
between interest rate and time to maturity. Yield curve forecasting is important in
economies. It is not only used by households, firms and financial institutions as
primary input factors in making many economic and financial decisions, but also
used by central banks to conduct monetary policy in order to achieve policy goals on
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social investment, price stability and employment. Various forecast approaches have
been proposed,which can be generally categorized into three strands [18]: the class of
no-arbitrage and equilibrium models with theoretical underpinnings, factor models
driven by economic theory, and reduced-form factor models driven by statistical
data. The former class is widely used in studying risk premia and pricing derivatives.
Yet, it is found to forecast poorly, compared with a simple random walk model [11,
12]. The second class can be fitted to multiple shapes of yield curves, e.g. humps,
S shapes and monotonic curves such as in [23]. However it assumes uniform factor
loadings and may misrepresent unique characteristics of some economies. The latter
class has evolved from univariate factor models to multivariate factor models, and
to functional factor models in recent advances. The modeling approach developed
in this paper falls into the third class, and we show how it successfully forecasts the
international yield curves compared to a bunch of alternative data-driven models.

Compared with individual interest rates, yield curve provides richer information
about the whole spectrum of interest rates and is capable of reflecting markets’
expectation on monetary policy and economic conditions. Numerous studies have
detected predictive power in yield curves, see e.g. [14, 24]. It is however challenging
to explore the cross-sectional dependence of international yield curves of multiple
economies given the large dimensionality and simultaneously unique features. This
motivates a proper factor extraction via dimension reduction to reduce the complexity
of forecast models.

Factormodels provide a balance betweenmodel complexity and forecast accuracy
by representing the cross-sectional dependence with a few number of factors. The
famous [23] model utilizes three factors—level, slope and curvature—within expo-
nential factor loadings. Diebold and Li [9] took into account the temporal evolution
of yield curves and developed the Dynamic Nelson-Siegel (DNS) model, which not
only kept the parsimony and goodness-of-fit of the Nelson-Siegel interpolation, but
also forecasted well compared with the traditional statistical models; see also [6].

The NS exponential factor loadings, though supported by economic theory, are
less flexible to characterize features of international yield curves that are specific to
the particular economies. This prompts identifying factors in a data-driven way as in
[21]. Knez et al. [20] employed the principal component analysis (PCA) approach for
analyzing fixed income data of five sectors and detected three to four common fac-
tors. Diebold et al. [10] extended the DNSmodel to multiple countries and identified
two factors for the US, UK, German and Japanese zero-coupon government yields.
Egorov et al. [13] discovered two factors for the US, LIBOR and EURIBOR term
structures. All these studies assumed common covariance structure of the interna-
tional yield curves of different economies, which ignores the heterogeneity among
various groups. For multi-groups with individual covariance matrices, [16] devel-
oped Common Principal Component Analysis (CPC) in the multivariate setting that
employed a common eigenstructure of these positive definite covariance matrices
across several groups but yet allowed individual eigenvalues of each group to reflect
heterogeneity.

In most studies, the international interest rates at various maturities are consid-
ered as multiple discrete variables. The PCA and CPC methods extract (common)
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factors based on covariance estimation. The covariance estimation again faces the
challenge of high dimensionality that further influences the accuracy of factor iden-
tification. The recent development of functional data analysis paves the way for an
accurate estimation. The multivariate interest rates can eventually be considered as
a functional yield curve that is defined over a continuous interval of the time to
maturity. Functional principal component analysis (FPC) reduces dimensionality of
functional data based on the covariance operator estimation, which is an extension of
the traditional multivariate PCA in functional domain as in [4]. Ferraty and Vieu [15]
showed that FPC is a useful tool to quantify proximities between functional objects
(e.g. yield curves) in reduced dimension, see also [8, 22, 26, 28, 30]. Coffey et al.
[7] stated that the Common FPC (CFPC) is a useful tool for multi-groups of patients.
Hyndman and Yasmeen [19] used a partial common principal component model to
forecast age-specific mortality rates in Australia. When yield curves are considered,
[5] used the FPC and identified three factors of the US yield curves. Benko et al. [3]
derived multiple hypothesis tests based on the Common Functional Principal Com-
ponent (CFPC) Analysis that is to verify the additional insight of using the common
functional principal components. They found that the CFPC reduced the number of
factors by half with a higher estimation precision than the FPC.

We propose an international yield curve predictive model, where common factors
are identified using the CFPC method that enables a comparison of the variation
patterns across different economies with heterogeneous covariances. The dynam-
ics of the international yield curves are further forecasted based on the data-driven
common factors in an autoregression framework. For the 1-day ahead out-of-sample
forecasts of the US, Sterling, Euro and Japanese yield curve from 07 April 2014 to
06 April 2015, the CFPC model is compared with an alternative factor model based
on the FPC method.

The reminder of the paper is structured as follows. In Sect. 2, we describe the data
used. In Sect. 3, we present the CFPC method, and detail the estimation. In Sect. 4,
we implement the proposed method to the international yield curves and report the
forecast accuracy. Finally, Sect. 5 concludes.

2 Data

Since the credit crisis in 2007, most banks started using the Overnight Indexed
Swaps (OIS) as risk-free interest rate when valuing collateralized derivatives. In a
swap, a leg of fixed interest rate is exchanged for a leg of the floating rate that is the
geometric mean of the overnight rate. There is a payment from the fixed-rate payer
to the floating-rate payer if the geometric average of daily rates is less than the fixed
rate for the period; otherwise the payment is vice versa. The fixed rate in the swap is
referred to as the OIS rate, while the floating side replicates the aggregated interest
that occurs when daily loans are sequentially rolled over at the overnight rate.

We consider the daily Bloomberg OIS data of four economies from July 09,
2012, until April 06, 2015: the US Effective Federal Funds Rate (USEFFR), the
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Fig. 1 3D plots of the OIS curves with maturities in months for USEFFR, SONIA, EONIA, and
TONAR capturing the movement of the yield curves over time

Sterling OverNight Index Average (SONIA), the Euro OverNight Index Average
(EONIA) and the Tokyo OverNight Average Rate (TONAR). On each day, there are
21 maturities of each economy. Two missing values in the data set were identified
and replaced by using the average yield of the OIS with the same maturities of the
two adjacent trading days. Moreover, four data irregularities have been discovered
and corrected using the average yield with the same maturities of the two adjacent
trading days. Figure1 shows the time evolutions of the four OIS yield curves of
USEFFR, SONIA, EONIA, and TONAR. It can be seen that while the levels and
the slopes of the yield curves differ considerably, there is a common decline in the
long-term-maturity yields.

The shape, level and serial dependence of the international yield curves vary over
time. As an illustration, Fig. 2 displays the OIS yield curves of the four economies
on different days. It shows that the yield curves are generally steeper in the past e.g.
on May 31, 2013 and March 31, 2014 than in recent times, e.g. on January 30, 2015.
Among others, the EONIA yield curves flatten from the mid-term-maturity over
time, though the level continuously drops. The international yield curves exhibited
different movements, which vary the dependence among the groups. For example,
the level of EONIA was considerably higher than that of TONAR at the beginning of
the sample in 2012. However, on January 30, 2015, the EONIA and TONAR curves
dropped to a similar level.

The sample covariance surfaces of the international yield curves are displayed
in Fig. 3. The covariance surfaces show a common shape for the four economies
with greater values among larger maturities and smaller among short maturities.
However, the variance-covariances of different economies are distinct in terms of
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Fig. 2 OIS yield curves for USEFFR, SONIA, EONIA, and TONAR for the selected dates July
31, 2012, May 31, 2013, March 31, 2014, and January 30, 2015

Fig. 3 Sample covariance surfaces of the USEFFR, SONIA, EONIA, and TONAR yield curves
with maturities in months from July 09, 2012 to April 06, 2015
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magnitude. For example the range of the covariances ofUSEFFR is−0.0134–0.2067,
while that of TONAR is 0.0000–0.0285. For this reason, we adopt a common fac-
tor extraction approach rather an analysis of the combined data set. The CPC and
CFPC are appropriate for the multi-groups with heterogeneity that characterize com-
mon characteristics while preserving unique features of yield curves across different
economies.

Moreover, serial dependence is exhibited in theOIS curves. Figure4 illustrates the
sample autocorrelations of the OIS rates at three representative maturities of short-
term (1-month), mid-term (12-month) and long-term (120-month). The autocorrela-
tions of SONIA, and TONARdecline slower than those ofUSEFFR andEONIA. The
long-termmaturity rates are persistentwith the least decline across all the four groups.
All the autocorrelations are significant up to a lag order of 60 days. Among them, the
minimums are 0.8105 for theUSEFFR (12-month), 0.9106 for the SONIA (1-month),
0.7747 for the EONIA (12-month), and 0.9094 for the TONAR (1-month). As the
dimension reduction methods are implemented under independence assumption, the
serial dependence will be carried forward to the factors and this motivates the use of
autoregressive model.

Fig. 4 Autocorrelation function of OIS time series of 1-month (· · · ), 12- (- - -) and 120-month (—)
maturity for USEFFR, SONIA, EONIA, and TONAR
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3 Method

In this section, we present the Common Functional Principal Component Analysis
(CFPC) method that is used to characterize the multi-group yield curves in a data-
driven way.

Let X : (Ω,A,P) → (L2(T ),BL2(T ))be ameasurable function,where (Ω,A,P)

is a probability space and BL2(T )) is a Borel field defined on the functional Hilbert
space L2(T )); see [2].

The Karhunen-Loève expansion of a random function X has the form:

X (τ ) = μ(τ ) +
∞∑

j=1

ξ jφ j (τ ). (1)

which converges in L2 to X uniformly in τ ∈ [0, 1]; see [1]. The Karhunen-Loève
expansion forms the theoretical basis of analyzing the random function X by exam-
ining the corresponding orthonormal eigenfunctions φ j and the principal component
scores ξ j ; see [17].

Suppose there is only one group, then the Functional Principal Component Analy-
sis (FPC) method is to find orthonormal functions φ1,φ2, . . . such that the variances
of the principal scores are maximal. Thus, the problem of finding factors translates to
an optimization problem on the covariance function ν(π, τ ) : L2(T ) → R, π, τ ∈
[0, 1], given by ν(π, τ ) = Cov (X (π), X (τ )) = E{(X (π) − μ(π)) (X (τ ) − μ(τ ))},
where μ(τ ) denotes the mean function:

argmax
φ j

Var(ξ j ) = argmax
φ j

∫

T

∫

T
φ j (π)ν(π, τ )φ j (τ )dπdτ , (2)

subject to the constraint
〈φ j ,φl〉 = δ jl , (3)

where, the j-th principal component score is defined as

ξ j =
∫

T
(X (π) − μ(π))φ j (π)dπ. (4)

Due to the orthogonality of φ j and φl for j �= l, it follows thatE(ξ jξl) = 0 for j �= l.
We have E(ξ2j ) = λ j and E(ξ j ) = 0, see [3]. The covariance operator Υ : L2(T ) →
L2(T ) associated with the covariance function ν is defined as

(Υ z)(τ ) =
∫

T
ν(π, τ )z(π)dπ, (5)
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for a continuous function z(π), π ∈ [0, 1]. The Cauchy-Schwarz inequality implies
that the problem (2) transforms to the eigenequation [25]:

∫

T
ν(π, τ )φ j (π)dπ = λ jφ j (τ ), (6)

where φ j represents the eigenfunction and λ j the corresponding eigenvalue of the
covariance operator Υ . Or equivalently,

(Υ φ j )(τ ) = λ jφ j (τ ). (7)

3.1 Common Functional Principal Component Analysis

Now we extend the dimension reduction to multi-groups, where each economy g
is an element of G. The CFPC assumes a common eigen-structure across different
economies. In particular, the covariance operators Υg have common orthonormal
eigenfunctions φ j across the G groups, i.e. φg1, j = φg2, j for 1 ≤ g1, g2 ≤ G, with
different eigenvalues λg, j to represent the heterogeneity among the groups. The
covariance function of group g is defined as:

νg(π, τ ) =
∞∑

j=1

λg, jφ j (π)φ j (τ ). (8)

The eigenequation (2) in the CFPC translates to

∫

T
νg(π, τ )φ j (π)dπ = λg, jφ j (τ ) ⇐⇒ (Υgφ j )(τ ) = λg, jφ j (τ ), (9)

subject to the constraint
〈φ j ,φl〉 = δ jl . (10)

3.2 Estimation

In our estimation, we shall approximate integrals over continuous general functions
f (s). The integrals

∫
T Xg,t (π)φ j (π)dπ can be approximated with numeric quadra-

ture techniques:
∫

T
f (s)ds ≈

L∑

l=1

wl f (sl), (11)
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where L is the number of discrete arguments or quadrature points sl , and wl are
quadrature weights. The application of quadrature techniques of type (11) to the left
side of the eigenequation (9) yields an approximation of the form:

∫

T
νg(π, τ )φ j (π)dπ ≈

L∑

l=1

wlνg(πl , τ )φ j (πl)

= ν̄g(τ )Tw ∗ φ̄ j , (12)

where thevectors are set to ν̄g(τ )= (νg(π1, τ ), . . . , νg(πL , τ ))T ,w = (w1, . . . , wL)
T,

φ̄ j = (φ j (π1), . . . ,φ j (πL))
T and ∗ is a Hadamard product. The symmetry of the

covariance function leads to:

Υ φ j = VgW φ̄ j , (13)

with the (L × L)matrix Vg = (νg(πl ,πk))l,k containing the values of the covariance
function at the quadrature points, φ̄ j = (φ j (π1), . . . ,φ j (πL))

T , and W being the
diagonal (L × L) matrix having the weights wl as elements. Thus, the eigenequa-
tion (9) is refined to

VgW φ̄ j = λg, j φ̄ j , (14)

subject to the orthonormality condition

φ̄ jW φ̄T
l = δ jl . (15)

By assuming positive weights, as most quadrature techniques do, the approximated
eigen-equation can be transformed to a standard form,

W 1/2VgW
1/2u j = λg, j u j , (16)

under the constraint
〈u j , ul〉 = δ jl , (17)

and we have u j = W 1/2φ̄ j .
Suppose the interval T is divided into L − 1 equal-sized intervals and the func-

tion is evaluated at the boundaries sl with 1 ≤ l ≤ L of these sub-intervals. The
trapezoidal rule works

T (h) =
∫

T
f (s)ds = h

{
f (s1)

2
+

L−1∑

l=2

f (sl) + sL
2

}
, (18)
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where h = |T |
L−1 is the width of the sub-intervals. Hence, the weight vector is

w = (w1, . . . , wL)
T = (h/2, h, . . . , h, h/2)T . The error of the approximation for

the twice differentiable function f in the interval T is controlled [27]:

||
∫

T
f (s)ds − T (h)|| ≤ h3

12
max
t∈T

| f ′′(t)|. (19)

When applying the trapezoidal rule Eq. (16) translates to

diag (h/2, h, . . . , h, h/2)1/2 Vgdiag (h/2, h, . . . , h, h/2)1/2 u j = λg, j u j , (20)

where u j = diag (h/2, h, . . . , h, h/2)1/2 φ̄ j is subject to the constraint

〈u j , ul〉 = δ jl . (21)

3.3 Factor AR Model

For each of the obtained single common factor, denoted as ξg, j t for the j-th factor
of the g-th economy, an autoregressive model of order 1 (AR(1)) is employed to
perform the forecast.

ξg, j t = αg, j0 + αg, j1ξg, j t−1 + εg, j t , (22)

where αg, j0 and αg, j1 are the unknown parameters, and {εg, j t } is white noise sat-
isfying the usual definition: E(εg, j t ) = 0 for all t , E(ε2g, j t ) = σ2

εg j
, εg, j t and εg, js

are independent for t �= s. In the AR(1) approach, the parameters are estimated via
maximum likelihood estimation under Gaussianity. Yield curve forecast is directly
obtained based on the forecasts of these common factors.

4 Real Data Analysis

In this section, we apply the common functional factor model to perform out-of-
sample forecasts of the yield curves and elaborate on its accuracy in a comparison
with an alternative functional factor model based on the FPC method.
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We use the yield data as described in Sect. 2: the fourOIS data sets of theUSEFFR,
SONIA, EONIA, and TONAR from July 09, 2012 to April 06, 2015. There are
716 daily yield curves in each economy. We perform factor extraction and forecast
1-day ahead yield curves with the two specifications: FPC assuming homogeneous
covariance operators among different economies and CFPC incorporating unique
features of the international yield curves.

We perform out-of-sample forecast in real time with the forecast beginning on
April 07, 2014, till April 06, 2015. The first factor model is estimated with the first
455 observations from July 09, 2012, until April 4, 2014, and is used to forecast the
international interest rates for April 07, 2014. We move forward one day at a time
to redo estimation and forecast till the end of the sample. In total, we obtain 261
out-of-sample one-step-ahead forecasts.

4.1 Forecasting Performance Measures

The forecasting power is evaluated using the root mean squared error (RMSE) which
is common in forecast study, e.g. [29]. The RMSE is defined through

RMSE(τ ) =
√√√√ 1

m0

m0∑

t=1

(
yt+h,τ − ŷt+h|t,τ

)2
,

where the forecast error (yt+h,τ − ŷt+h|t,τ ) at time (t + h) for time to maturity τ is
derived using observed score value yt+h of the h-step-ahead forecast for the score
and m0 is the number of periods being forecasted.

4.2 Forecast Results

We selected three functional factors via the FPC method. The explanatory power
of the three factors sums up to 99.8%, with the first explaining 90.4% variation,
the second 9.1%, and the third 0.3% respectively. Figure5a displays the estimated
functional principal component scores. The first factor has an exponential increasing
trend, representing the general shape of the OIS yield curve residuals. The second
one shows an increasing section up to the short-term around 48-month maturity,
followed by a decline. It captures the curvature behavior of the residual curves. The
third factor is twisting from a hump around 24-month maturity to a valley around
108 months, and it is increasing thereafter.
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(a) Functional principal component scores against the maturities (months).

(b) Functional principal components of the USEFFR curves.

(c) Functional principal components of the SONIA curves.

Fig. 5 a Functional principal component scores against the maturities (months). b Functional
principal components of the USEFFR curves. c Functional principal components of the SONIA
curves.d Functional principal components of the EONIA curves. e Functional principal components
of the TONAR curves

Figure5b–e display the time evolution of the functional factors. The factors of the
USEFFR and SONIA curves share several common characteristics. For example, the
first factor shows the simultaneous increase in summer 2013 and decrease frommid-
2014 onward. Meanwhile, these two economies exhibit obvious difference when the
second factor is compared. The second factor of the USEFFR is more pronounced
than that of the SONIA. Likewise, the second factor of the EONIA shows a more
volatile evolution than that of the TONAR.
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(d) Functional principal components of the EONIA curves.

(e) Functional principal components of the TONAR curves.

Fig. 5 (continued)

Common Functional Principal Component Model

The CFPC on the other hand incorporates the heterogeneous covariance matrices
and extracts common functional factors. Figure6a illustrates the common functional
component scores. The CFPC scores are similar to those of FPC and thus share the
similar interpretations. Again, the first common functional factor is slowly increasing
up to maturities of around 144 months, and thereafter stays flat but with a slight
decrease for 360 months. In contrast, the second common factor is increasing up to
48 months maturity and thereafter declines faster. The third one shows a strong
increase up to 36-monthmaturity, followed by aminimumat 108months. Figure6b–e
illustrate the time series of the common functional factors of the CFPC method.

Table1 reports the explained variation of the common functional factors for each
economy. The first factors capture between 81.3% of the variation for the SONIA
curves and 98.5% for the EONIA curves, the second one 1.1% (EONIA) and 18.0%
(SONIA), and the third one represents between 0.1% (USEFFR) and 1.1% (TONAR)
respectively.



300 Y. Chen et al.

The RMSEs are calculated for the international yield curves forecasts of different
economies. Table2 summarizes the prediction power of the four economies. It shows
that the FPC model is more accurate when considering the EONIA curves, and the
CFPC model is more precise for the USEFFR, SONIA and TONAR. In general, the
CFPC model seems to be more flexible for the OIS forecasts and is a good choice
when forecasting a diverse group of international yield curves.

(a) Common functional component scores against the maturities (months).

(b) Common functional components of the USEFFR curves

(c) Common functional components of the SONIA curves

Fig. 6 a Common functional component scores against the maturities (months). b Common func-
tional components of the USEFFR curves. c Common functional components of the SONIA curves.
d Common functional components of the EONIA curves. e Common functional components of the
TONAR curves
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(d) Common functional components of the EONIA curves

(e) Common functional components of the TONAR curves

Fig. 6 (continued)

Table 1 Explained variation
of the first three common
functional factors

USEFFR
(%)

SONIA
(%)

EONIA
(%)

TONAR
(%)

CFPC1 89.7 81.3 98.5 92.7

CFPC2 9.9 18.0 1.1 4.8

CFPC3 0.1 0.6 0.3 1.1

Total 99.7 99.9 99.9 98.6

Table 2 RMSE for one-step-ahead interest rates forecasts, evaluated at the given maturities; lower
error measures are highlighted in boldface indicating better accuracy

Maturity
(months)

FPC CFPC FPC CFPC

USEFFR SONIA

1 0.025 0.020 0.030 0.012

2 0.026 0.024 0.031 0.015

3 0.029 0.028 0.033 0.020

4 0.033 0.034 0.038 0.029

5 0.038 0.040 0.040 0.034

6 0.043 0.046 0.039 0.036

(continued)
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Table 2 (continued)

Maturity
(months)

FPC CFPC FPC CFPC

12 0.064 0.077 0.041 0.045

24 0.046 0.056 0.033 0.033

36 0.036 0.036 0.038 0.038

48 0.049 0.050 0.044 0.044

60 0.051 0.052 0.046 0.046

72 0.049 0.049 0.045 0.045

84 0.047 0.047 0.044 0.044

96 0.045 0.045 0.044 0.044

108 0.045 0.044 0.045 0.045

120 0.046 0.045 0.046 0.046

144 0.047 0.047 0.045 0.045

180 0.048 0.049 0.043 0.043

240 0.045 0.046 0.042 0.042

300 0.045 0.044 0.042 0.041

360 0.045 0.044 0.041 0.039

EONIA TONAR

1 0.083 0.098 0.009 0.008

2 0.077 0.089 0.009 0.007

3 0.073 0.082 0.009 0.007

4 0.071 0.076 0.008 0.006

5 0.069 0.072 0.009 0.006

6 0.067 0.066 0.009 0.005

12 0.061 0.046 0.013 0.007

24 0.039 0.034 0.020 0.019

36 0.014 0.019 0.015 0.018

48 0.025 0.018 0.008 0.009

60 0.031 0.030 0.015 0.015

72 0.030 0.032 0.025 0.027

84 0.027 0.030 0.025 0.026

96 0.027 0.030 0.021 0.023

108 0.028 0.029 0.017 0.018

120 0.030 0.029 0.018 0.018

144 0.035 0.033 0.026 0.026

180 0.041 0.041 0.029 0.030

240 0.033 0.034 0.025 0.025

300 0.034 0.034 0.024 0.024

360 0.039 0.040 0.032 0.032
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5 Conclusion and Outlook

Weproposed theCFPCmodel to characterize the common functional factors underly-
ingmultiple groups of yield curves.We found that the CFPCmodel captured between
98.6% (TONAR) and 99.7% (USEFFR) of the variation and was useful for explain-
ing yield curves across different economic regions. In the AR framework, the factor
model delivers reasonable forecasting performance. For the Japanese economy, i.e.
the TONAR yield curves, the CFPC model is superior to the alternative.

Our study contributes to the existing literature on yield curve modeling and fore-
casting by using the CFPC method. It is data-driven and thus can be safely used in
other applications of groups with heterogeneity in covariance matrices.
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An Alternative to p-Values in Hypothesis
Testing with Applications in Model Selection
of Stock Price Data

Hien D. Tran, Son P. Nguyen, Hoa T. Le and Uyen H. Pham

Abstract In support of the American Statistical Association’s statement on p-value
in 2016, see [8], we investigate, in this paper, a classical question in model selection,
namely finding a “best-fit” probability distribution to a set of data. Throughout his-
tory, there have been a number of tests designed to determine whether a particular
distribution fit a set of data, for instance, see [6]. The popular approach is to compute
certain test statistics and base the decisions on the p values of these test statistics.
As pointed out numerous times in the literature, see [5] for example, p values suffer
serious drawbacks which make it untrustworthy in decision making. One typical
situation is when the p value is larger than the significance level α which results in
an inconclusive case. In many studies, a common mistake is to claim that the null
hypothesis is true or most likely whereas a big p value merely implies that the null
hypothesis is statistically consistent with the observed data; there is no indication that
the null hypothesis is “better” than any other hypothesis in the confidence interval.
We notice this situation happens a great deal in testing goodness of fit. Therefore,
hereby, we propose an approach using the Akaike information criterion (AIC) or the
Bayesian information criterion (BIC) to make a selection of the best fit distribution
among a group of candidates. As for applications, a variety of stock price data are
processed to find a fit distribution. Both the p value and the new approach are com-
puted and compared carefully. The virtue of our approach is that there is always a
justified decisionmade in the end; and, there will be no inconclusiveness whatsoever.
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1 Introduction

p values date back to the early work of the founders of modern statistics, namely
the early twentieth century with Fisher, Neyman and Pearson. The methods marked
the beginning of applications of the theory probability to statistics in order to create
systematic procedures for utilizing observed data to verify assumptions. It has been
widely adopted to a great number of applications in diverse scientific fields. Although
p value has already been proven worthy inmany cases, a lot of warnings from leading
researchers have been issuing against misunderstandings and misuses of p values
over several decades. These misinterpretations of what kind of information p values
provide have led to inappropriate conclusionswith severe consequences.Aware of the
seriousness of the issue, the American Statistical Association officially announced a
statement about the usages of p values in 2016. To the extreme is the ban of p values
by the editors of the journal “Basic and Applied Social Psychology” in 2015.

There are a number of commonly seen mistakes in interpretations of p values.
For a summary, see [5]. The main criticism is that p-values are not the probabilities
that null hypotheses are true. Therefore, a p-value by itself should not be used to
perform any statistical testing. Along this line is the fallacious conclusion that the
null hypothesis holds when the p value is greater than the significance level α. This
error and a way to avoid it are the focus of the present paper.

Note that, although a number of alternatives for p-value have been suggested,
many researchers in statistics and data analysis believe there is no quick fix for all
the problems of p values. The following excerpt by Andrew Gelman is extracted
from [4]

In summary, I agree with most of the ASAs statement on p-values but I feel that the problems
are deeper, and that the solution is not to reform p-values or to replace them with some
other statistical summary or threshold, but rather to move toward a greater acceptance of
uncertainty and embracing of variation.

In this paper, on studying the question of choosing a good probability distribution
to fit stock price data, we frequently encounter the inconclusive situationwhere p val-
ues of our predetermined candidate distributions are all greater than the significance
level α. In our case, we must choose a model for subsequent questions, therefore, we
are in need of amechanism tomake a justified choice of probability distribution.After
havingdoneawide rangeof experimentswithdata,we realize thatbyusingacombina-
tion of theAkaike Information criterion (AIC) and theBayesian Information criterion
(BIC), one can make an excellent selection from the set of prescribed distributions.



An Alternative to p-Values in Hypothesis Testing with Applications… 307

1.1 Summary of Our Contributions

In this paper, we propose an alternative method for statistical hypothesis testing
utilizing the Akaike Information criterion and the Bayesian Information criterion.
Each method has its own strength and those two strengths complement each other.

For application, we compute and compare the p values, the BIC and the AIC for
a wide range of stock price data.

2 The Akaike Information Criterion (AIC)

The AIC was designed to find the probability model that gives the best prediction
among a set of candidates. One important point is that no candidate is assumed to be
the true unknown model. In practice, the set-up of the AIC is as follows:

Suppose we have models M1, . . . , Mk where each model is a set of densities:

Mj =
{
p(y; θ j ) : θ j ∈ Θ j

}

Suppose further that we have collected a sample Y1, . . . ,Yn from an unknown
density f .

First step is to use the maximum likelihood estimator to obtain θ̂i for each model
Mi . The result is a set of estimates p̂ j (y) = {p(y; θ̂ j )}, ∀ j .

The quality of p̂ j (y) as an estimate of f can bemeasured by the Kullback–Leibler
(KL) distance:

K ( f, p̂ j ) =
∫

f (y) log

(
f (y)

p̂ j (y)

)
dy

=
∫

f (y) log( f (y))dy −
∫

f (y) log p̂ j (y)dy

To minimize the KL distance, we just have to maximize the quantity

K j =
∫

f (y) log p̂ j (y)dy

Let �̂ j (θ j ) be the log-likelihood function for model j . Akaike, see [1], showed
that the sample mean

K̄ j = 1

n

n∑

i=1

log p̂ j (yi ) = �̂ j (θ̂ j )

n

is a biased estimator of K j . Therefore, we will compute the unbiased estimator
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K̂ j = K̄ j − d j

n

where d j is the dimension of the parameter space Θ j , or in other words, d j is the
number of free parameters in model j .

AIC( j) is a rescale of the KL distance, namely

AIC( j) = 2nK̂ j = 2� j (θ̂ j ) − 2d j

3 Bayesian Information Criterion (BIC) and Bayes Factor
Approximation

The BIC assumes that one of the candidate distributions is the true model. It tries to
find the best model using the Bayesian framework.

Let p j be the prior probability of model j . Moreover, on each parameter space
Θ j , assume a prior distribution π j (θ j ).

By Bayes’ theorem,

P(Mj | Y1, . . . ,Yn) ∝ P(Y1, . . . ,Yn | Mj )p j

Furthermore,

P(Y1, . . . ,Yn | Mj ) =
∫

P(Y1, . . . ,Yn | Mj , θ j )π j (θ j )dθ j =
∫

L(θ j )π j (θ j )dθ j

To maximize P(Mj | Y1, . . . ,Yn), we can equivalently maximize the quantity

log
∫

L(θ j )π j (θ j )dθ j + log p j

Using some Taylor series approximation, we obtain

log
∫

L(θ j )π j (θ j )dθ j + log p j ≈ � j (θ̂ j ) − d j

2
log n

To be comparable with AIC, we can define

BIC( j) = 2� j (θ̂ j ) − d j log n

In view of model selection problem using Bayesian statistics, Bayes factor can be
defined by

Bayes factor(Mk, Mj ) = P(Yn|Mk)

P(Yn|Mj )
,
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which measures the evidence for the model Mk versus model Mj based on the data
information. The Bayes factor chooses the model with the largest value of marginal
likelihood among a set of candidate models.

Noting that
P(Mk |Yn)
P(Mj |Yn) = P(Yn|Mk)

P(Yn|Mj )
× P(Mk)

P(Mj )
,

[
Posterior odds(Mk, Mj ) = Bayes factor(Mk, Mj ) × Prior odds(Mk, Mj )

]

the Bayes factor is also given as the ratio of posterior odds and prior odds

Bayes factor(Mk, Mj ) = Posterior odds(Mk, Mj )

Prior odds(Mk, Mj )
.

Note that the BIC gives a rough approximation to the logarithm of the Bayes
factor, see [2]

log
[
Bayes factor(Mk , Mj )

] = log [P(Yn |Mk)] − log
[
P(Yn |Mj )

] ≈ (BIC j − BICk)/2.

4 Some Remarks AIC and BIC

Firstly, in both AIC and BIC, the minimum value is the desired value. However,
since the penalty on the number of free parameters of models on BIC is much
larger than that of the AIC due to the dependence on the sample size n, BIC and AIC
usually behave differently on the same study. BIC prefers a simpler model with fewer
parameters while AIC tends to choose complex model. So, if researchers would like
to minimize errors for future predictions of data, AIC will be the suitable criterion,
but, if a particular best fit model is more important than prediction then the BIC will
be better.

Second, the next remark is about the differences between values of the criteria.
Since there might be unexplained variations in variables, two models with similar
criterion values should receive the same ranking in evaluating models.

In practice, we use the following tables from [3].
For AIC,

AIC j − AICmin Level of empirical support for model j
0–2 Substantial
4–7 Considerably less
>10 Essentially none
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For BIC,

BIC j − BICmin Evidence against model j
0–2 Not worth more than a bare mention
2–6 Positive
4–7 Strong
>10 Very strong

Third, it should be emphasized that AIC or BIC only helps select the most suitable
model among a list of candidates. Therefore, in some situations, if all the candidate
models are badly supported by the observed data, the model chosen by AIC or
BIC is simply the “least bad” model to fit data. It might still be of very poor quality.
Therefore, one should take extra precautionwhenusing thewinningmodel to perform
any statistical inferences.

Last, AIC and BIC provide ranking systems to evaluate candidate models. How-
ever, they do not reveal how well the observed data are consistent with any particular
model, the kind of information routinely extracted from p values.

5 Applications

Weuse for best-fitting test of data. The variable h represents the decision in hypothesis
testing problem, in

h = 1: Reject the null hypothesis at the default 0.01 significance level,
h = 0: Do not reject the null hypothesis at the default 0.01 significance level.

5.1 Closing Prices Data of the Company Apple

Weconsider the closing prices ofApple company from06-Nov-2012 to 12-Aug-2013
from 200 observations.

Data transformation is the closing price today divided by the closing price yes-
terday.

5.1.1 Chi Square and Jacque Bera Test

Figure1 shows the histogram of data and then using Chi square test, the result on
distribution is shown in Table1.

According to descriptive statistics such as the histogram and QQ plot, we can see
that data seems to follow a normal distribution.
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Fig. 1 The closing price graph

Table 1 Chi square test

Distribution Normal Gamma Generalized beta Student

h 0 0 1 0

p-value 0.0179218 0.013424 2.95E-22 0.0741824

Table 2 Jarque Bera test

h 1

p-value 0.001

However, from the Table1 we cannot conclude that data follow normal, Gamma
or Student distribution at 0.01 significance level, because p-value>0.01. In the mean
time, the generalized Beta distribution should not be a good candidate for fitting.

In addition, with analysis of Table2 at 0.01 significance level, Jarque Bera test
shows that the data does not follow a normal distribution.

5.1.2 AIC, BIC and Bayes Factor

From Sects. 3 and 4, we will use AIC, BIC and Bayes factor for model selection in
terms of model distribution.
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Fig. 2 QQ plot

Table 3 AIC, BIC, Bayes factor

Distribution Normal Gamma Generalized
beta

Student Distribution
min

Bayes factor

AIC −992.782 −989.834 −795.547 375.138 Normal

BIC −986.186 −983.238 −788.950 385.033 Normal 4.366218

According to the Table3, the data follows a normal distribution. Furthermore,
Bayes factor coefficient 4.366 in the Table3 (which is more than 3) can tell the data
fits a normal distribution better than other distributions (Fig. 2).

In the similar method, we consider several other datum.

5.2 Closing Prices Data of the Company Google

We consider the closing prices of Google company from 07-Dec-11 to 11-Sep-12
from 200 observations.

5.2.1 Chi Square and Jarque Bera Test

Figure3 shows the histogram of data is approximately symmetric. In addition, a
normal distribution appears from the QQ plot in Fig. 4.
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Fig. 3 The closing price graph

Fig. 4 QQ plot

Just like in the case of Apple company, from the Table4 we can not conclude data
follows normal, Gamma nor Student distribution at 0.01 significance level.

In addition, with analysis of Table5 at 0.01 significance level, Jarque Bera test
shows that the data does not follow a normal distribution with p-value <0.01.
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Table 4 Chi square test

Distribution Normal Gamma Generalized beta Student

h 0 0 1 0

p-value 0.0498823 0.0434246 2.425E-16 0.8561765

Table 5 Jarque Bera test

h 1

p-value 0.001

Table 6 AIC, BIC, Bayes factor

Distribution Normal Gamma Generalized
beta

Student Distribution
min

Bayes factor

AIC −1140.45 −1138.04 −1009.67 375.0561 Normal

BIC −1133.86 −1131.45 −1003.07 384.951 Normal 3.335081

5.2.2 AIC, BIC and Bayes Factor

According to the Table6, the data follows a normal distribution. Furthermore, Bayes
factor coefficient in the Table6 shows that data fits a normal distribution better than
other distributions.

5.3 Closing Prices Data USD/CHF Exchange Rate

We consider the closing prices of USD/CHF exchange rate from 12-Nov-2014 to
20-Aug-2015 from 200 observations.

5.3.1 Chi Square and Jarque Bera Test

Figure5 shows the histogram of data and the Chi square test for different distributions
results in Table7.

Again, descriptive statistics make normal distribution a plausible choice. How-
ever, from the Table7, we cannot conclude data follow normal, Gamma or Student
distribution at 0.01 significance level.

In addition, with analysis of Table8 at 0.01 significance level, Jarque Bera test
shows that the data does not follow the normal distribution (Fig. 6).
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Fig. 5 The closing price graph

Table 7 Chi square test

Distribution Normal Gamma Generalized beta Student

p-value 0.1742495 0.1769862 1.63E-09 0.3069157

Fig. 6 QQ plot
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Table 8 Jarque Bera test

h 1

p-value 0.001021

Table 9 AIC

Distribution Normal Gamma Generalized
beta

Student Distribution
min

Bayes factor

AIC −829.771 −827.134 −757.99 374.9986 Normal

BIC −823.174 −820.537 −751.394 384.8936 Normal 3.738204

5.3.2 AIC, BIC and Bayes Factor

According to the Table9, the data follows a normal distribution. Furthermore, Bayes
factor coefficient in the Table9 shows that the data fits a normal distribution better
than other distributions.

5.4 Simulated Data from a Normal Distribution with Mean 2
and Standard Deviation 0.5

By simulating data from a normal distribution with mean 2 and standard deviation
0.5, we obtained six sets of simulation data with 250 observations for each.

All the data from previous sections have shown that Jarque Bera test always
disagree with Chi square goodness-of-fit test. For illustration purposes, simulated
data have been used for two reasons: first, to show that Jarque Bera test will work for
ideal cases (e.g. simulated data), and then to confirm the strength of AIC and BIC in
model selection without p values.

5.4.1 Chi Square and Jarque Bera Test

Based on chi-square test, Table10 shows that the data do not follow the generalized
Beta distribution, and we can not conclude that data follows normal, Gamma nor
Student distribution at 0.01 significance level.

Following the analysis of Table11, at 0.01 significance level, none of these data
sets come out from a normal distribution.

Unlike in case of the experimental data, Jarque Bera test and Chi square test give
the same conclusions, that is no basis to conclude that the data follows a normal
distribution or not.
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Table 10 Chi square test

Distribution Normal Gamma Generalized beta Student

Data 1: h 0 0 1 0

Data 1: p-value 0.464447 0.013139 9.03E-05 0.33762

Data 2: h 0 0 1 0

Data 2: p-value 0.378353 0.061114 1.07E-06 0.257894

Data 3: h 0 0 1 0

Data 3: p-value 0.81861 0.40886 6.74E-05 0.71038

Data 4: h 0 0 1 0

Data 4: p-value 0.2631097 0.0136797 8.58E-04 0.1796478

Data 5: h 0 0 1 0

Data 5: p-value 0.9791309 0.1178657 1.71E-08 0.9350344

Data 6: h 0 1 1 0

Data 6: p-value 0.401851 0.0041582 5.60E-06 0.2864364

Table 11 Jarque Bera test

Data 1 2 3 4 5 6

h 0 0 0 0 0 0

p-value 0.5 0.5 0.5 0.260869 0.465078 0.346738

Table 12 AIC

Distribution
and AIC

1 2 3 4 5 6

Normal 372.4261 359.9674 382.5945 371.5895 370.1364 358.3627

Gamma 384.7519 375.7018 388.9089 381.0509 404.0931 381.1214

Generalized
beta

430.6064 456.1119 448.8263 419.3184 496.9188 438.2722

Student 471.0849 472.6507 467.6781 472.8842 469.7819 467.9981

Distribution
min

Normal Normal Normal Normal Normal Normal

5.4.2 AIC, BIC and Bayes Factor

According to the Table12, the data follows a normal distribution.
Bayes factor coefficient in the Table13 (which is greater than 3) shows the data

fit a normal distribution better than other distributions.
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Table 13 BIC and Bayes factor

Distribution
and BIC

1 2 3 4 5 6

Normal 379.469 367.0103 389.6374 378.6327 377.1793 365.4057

Gamma 391.7949 382.7447 395.9519 388.0938 411.136 388.1643

Generalized
beta

437.6493 463.1548 455.8692 426.3614 503.9618 445.3151

Student 481.6492 483.2151 478.2424 483.4486 480.3463 478.5625

Distribution
min

Normal Normal Normal Normal Normal Normal

Bayes factor 474.8135 2610.171 23.50536 113. 3589 23638475 87494.11

6 Conclusion

In this paper, we present the BIC andAIC criteria together with the usage suggestions
in practice. The main contribution is that AIC and BIC resolve the second error in the
list of twelve common errors of p values as found in [5]. On one hand, we propose
using BIC and AIC as alternatives for p value in model selection, in association with
approximated Bayes factor as a confirmation. On the other hand, we also highlight
the similarities and differences between the two criteria which serve as the guidelines
on when to use which criteria.

As for applications, we collect various stock price data and show that the classical
p value approach results in inconclusiveness in most of the time. In contrast, BIC or
AIC will offer a justified decision in all these cases.
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Confidence Intervals for the Common Mean
of Several Normal Populations

Warisa Thangjai, Sa-Aat Niwitpong and Suparat Niwitpong

Abstract This paper proposes a novel approach for confidence interval estimation
for the common mean of several normal populations. This will be achieved by using
the concept of an adjusted method of variance estimates recovery approach. The
Monte Carlo simulation was used to evaluate the coverage probability and average
length. Simulation results are presented to compare the performance from the pro-
posed approach with that of existing approaches. The promising simulation results
indicated that the proposed approach should be considered as an alternative to the
interval estimation for the common mean.

Keywords Normal distribution ·Generalized confidence interval ·Adjustedmethod
of variance estimates recovery

1 Introduction

The mean of a normal distribution has been used for statistical estimation in many
fields of applied research covering areas of social and behavioral sciences and clinical
trials. For example, Meier [7] provided the ability to estimate the mean percentage of
albumin in the plasma protein with four different methods to obtain data. For other
examples see Eberhardt et al. [3] and Skinner [9].

For multiple sample cases, it is a common practice to replicate an experiment or
collect data at different settings. Therefore inference procedures regarding several
normal means are of interest. The paper by Krishnamoorthy and Lu [5] presented
procedures for hypothesis testing and interval estimation of the common mean of
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several normal populations based on inverting weighted linear combinations of the
generalized pivotal quantities which use concepts of generalized p-values and gen-
eralized confidence interval. A new generalized pivotal based on the best linear
unbiased estimator of the common mean was proposed by Lin and Lee [6].

Inference procedures referring to common mean based on several independent
normal samples are of practical and theoretical importance. The goal of this paper is
to develop a novel approach for confidence interval estimation of the common normal
mean derived from several independent samples. This paper investigates the concept
method of variance estimates recovery (MOVER) confidence interval which is called
adjustedMOVER confidence interval, and then compares the results with the exiting
confidence intervals: the generalized confidence interval (GCI) was proposed by Lin
and Lee [6] and the large sample confidence interval. The MOVER approach was
inspired by the score interval approach proposed by Bartlett [1]. Many researchers
have successfully used the MOVER approach to construct confidence interval for
the common parameter; for example, see Zou and Donner [12], Zou et al. [13],
Donner and Zou [2], Suwan and Niwitpong [10], and Niwitpong and Wongkhao [8].
However, no adjusted MOVER approach exists for the common mean on several
independent normal samples. Therefore, this paper proposes the adjusted MOVER
approach focusing on the common mean of several normal populations.

This paper is organized as follows. The proposed approach and computational
procedures to construct confidence interval for the common mean of several nor-
mal populations are presented in Sect. 2. Two existing approaches including GCI
approach and large sample approach are addressed in Sect. 2. Section3, simula-
tion results are presented to evaluate the empirical coverage probabilities and av-
erage lengths of the proposed approach are compared to the existing approaches.
Section4, illustrates the proposed approaches with real examples. And finally, Sect. 5
summarizes this paper.

2 Confidence Intervals for the Common Mean of Several
Normal Populations

2.1 The Generalized Confidence Interval Approach (GCI)

Suppose that X∼ = (X1, X2, . . . , Xn) is a random sample from a distribution which

depends on a vector of parameters θ∼ =
(
θ, v∼

)
where θ is the parameter of interest

and v∼ is a vector of nuisance parameters. Weerahandi [11] defines a generalized

pivot R
(
X∼ , x∼, θ, v∼

)
for interval estimation, where x∼ is an observed value of X∼ , as a

random variable having the following two properties:
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(1) R
(
X∼ , x∼, θ, v∼

)
has a distribution free of the vector of nuisance parameters v∼.

(2) The observed value of R
(
X∼ , x∼, θ, v∼

)
is θ .

Let Rα be the 100α-th percentile of R. Then Rα becomes a 100 (1 − α)% lower
bound for θ and

(
Rα/2, R1−α/2

)
becomes the 100 (1 − α)% two-side generalized

confidence interval for θ .
Consider k independent normal populations with a common mean θ . Let Xi1,

Xi2, . . . , Xini be a random sample from the i-th normal population as follows:

Xi j ∼ N
(
μi , σ

2
i

) ; i = 1, 2, . . . , k.

Let X̄i and S2i denote sample mean and sample variance for normal data for the
i-th sample and let x̄i and s2i denote observed sample mean and observed sample
variance respectively. From

X̄i ∼ N

(
μi ,

σ 2
i

ni

)
,Ui = (ni − 1) S2i

σ 2
i

= Vi

σ 2
i

∼ χ2
ni−1; i = 1, 2, . . . , k,

where χ2
ni−1 denotes the chi-square distribution with ni − 1 degrees of freedom.

Let vi be the observed values of Vi ,

Vi = (ni − 1) S2i , vi = (ni − 1) s2i ; i = 1, 2, . . . , k.

According to Lin and Lee [6], the generalized pivotal quantity to estimate the
common mean θ based on the best linear unbiased estimator of common mean θ is

Rθ =
∑k

i=1
ni x̄iUi

vi
− Z

√∑k
i=1

niUi
vi∑k

i=1
niUi
vi

(1)

where Z denotes the standard normal distribution.
Therefore, the 100 (1 − α)% confidence interval for the common mean θ based

on the generalized confidence interval approach is

(Rθ (α/2) , Rθ (1 − α/2)) (2)

The following algorithm is used to construct the generalized confidence interval:

Algorithm 1

Step 1: Generate Xi1, Xi2, . . . , Xini from N
(
μi , σ

2
i

)
, i = 1, 2, . . . , k, and calculate

the observed values of x̄i and s2i .

Step 2: Generate Z ∼ N (0, 1).
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Step 3: Generate Ui ∼ χ2
ni−1 and then calculate vi and σ 2

i .

Step 4: Repeat step 3, calculate Rθ following (1) for i = 1, 2, . . . , k.

Step 5: Repeat step 2–4 a total of m times and obtain an array of Rθ ’s. Rank this
array of Rθ ’s from small to large.

Let Rθ (α) be the 100α-th percentile of Rθ . Then Rθ (α) is an estimate of
the lower bound of the 100 (1 − α)% one-sided confidence interval for θ and
(Rθ (α/2) , Rθ (1 − α/2)) is a 100 (1 − α)% two-sided generalized confidence in-
terval for θ .

2.2 The Large Sample Approach

The large sample estimate of the mean of normal distribution is a pooled estimate of
mean defined as

θ̂ =
∑k

i=1
θ̂ (i)

var
(
θ̂ (i)

)

∑k
i=1

1

var
(
θ̂ (i)

)
, (3)

where θ̂ (i) = x̄i and var
(
θ̂ (i)

)
= s2i /ni .

Since the distribution of θ̂ is close to normal for a sufficiently large sample. The
quantiles of the normal distribution are used to gain a confidence interval. Therefore,
the 100 (1 − α)% confidence interval for the common mean θ based on the large
sample approach is

⎛

⎜⎝θ̂ − z1−α/2

√√√√
1

∑k
i=1

1

var
(
θ̂ (i)

)
, θ̂ + z1−α/2

√√√√
1

∑k
i=1

1

var
(
θ̂ (i)

)

⎞

⎟⎠ , (4)

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution.

2.3 The Adjusted Method of Variance Estimates Recovery
Approach (Adjusted MOVER)

Let θ(1), θ (2), · · · , θ (k) be k parameters of interest. The common mean defined as
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θ =
∑k

i=1
θ(i)

var(θ(i))∑k
i=1

1
var(θ(i))

.

Suppose it is of interest to construct a 100 (1 − α)%two-sided confidence interval
(L ,U ) for common mean θ . In order to motivate the MOVER approach, introduced
by Zou et al. [13], with confidence intervals for θ(1), θ (2), · · · , θ (k) are given by
(l1, u1) , (l2, u2) , · · · , (lk, uk), respectively.

TheMOVER approach is based on central limit theorem. The 100 (1 − α)% two-
sided confidence interval (L ,U ) for the parameter θ(1) + θ(2) under the assumption
of independence between the point estimates θ̂ (1) and θ̂ (2). The lower limit L and the
upper limit U are given by

L = θ̂ (1) + θ̂ (2) − zα/2

√
v̂ar

(
θ̂ (1)

)
+ v̂ar

(
θ̂ (2)

)
,

and

U = θ̂ (1) + θ̂ (2) + zα/2

√
v̂ar

(
θ̂ (1)

)
+ v̂ar

(
θ̂ (2)

)
,

where zα/2 is the α/2 quantile of the standard normal distribution.
Motivating the MOVER approach to construct a 100 (1 − α)% two-sided confi-

dence interval (L ,U ) for θ(1) + θ(2) + · · · + θ(k), where the estimates θ̂ (1), θ̂ (2), . . . ,

and θ̂ (k) are independent. Using the central limit theorem, a lower limit L is given by

L = θ̂ (1) + . . . + θ̂ (k) − zα/2

√
v̂ar

(
θ̂ (1)

)
+ . . . + v̂ar

(
θ̂ (k)

)
,

where zα/2 is the α/2 quantile of the standard normal distribution. The lower limit

L is not readily applicable because var
(
θ̂ (i)

)
(i = 1, 2, . . . , k) is unknown.

Suppose that a 100 (1 − α)% two-sided confidence interval for θ(i) is given by
(li , ui ), where i = 1, 2, . . . , k. The lower limit L is in the neighborhood of l1 + l2 +
. . . + lk . Inspired by the score interval approach; see Bartlett [1], the procedure to
estimate the variances for lower limit L at θ(1) + θ(2) + . . . + θ(k) = l1 + l2 + . . . +
lk , i.e., θ(i) = li . The central limit theorem

li = θ̂ (i) − zα/2

√
v̂ar

(
θ̂ (i)

)
,

which gives a variance estimate for θ̂ (i) at θ(i) = li of

v̂ar
(
θ̂ (i)

)
=

(
θ̂ (i) − li

)2

z2α/2

. (5)
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Therefore, the lower limit L for θ(1) + θ(2) + . . . + θ(k) is given by

L = θ̂ (1) + . . . + θ̂ (k) − zα/2

√
v̂ar

(
θ̂ (1)

)
+ . . . + v̂ar

(
θ̂ (k)

)
(6)

= θ̂ (1) + . . . + θ̂ (k) − zα/2

√√√√√
(
θ̂ (1) − l1

)2

z2α/2

+ . . . +
(
θ̂ (k) − lk

)2

z2α/2

= θ̂ (1) + . . . + θ̂ (k) −
√(

θ̂ (1) − l1
)2 + . . . +

(
θ̂ (k) − lk

)2
.

By performing similar stepswith the idea that u1 + u2 + . . . + uk is close to upper
limit U , and the variance estimate at θ(i) = ui is

v̂ar
(
θ̂ (i)

)
=

(
ui − θ̂ (i)

)2

z2α/2

, (7)

the upper limit U as

U = θ̂ (1) + · · · + θ̂ (k) + zα/2

√
v̂ar

(
θ̂ (1)

)
+ · · · + v̂ar

(
θ̂ (k)

)
(8)

= θ̂ (1) + · · · + θ̂ (k) + zα/2

√√√√√
(
u1 − θ̂ (1)

)2

z2α/2

+ · · · +
(
uk − θ̂ (k)

)2

z2α/2

= θ̂ (1) + · · · + θ̂ (k) +
√(

u1 − θ̂ (1)
)2 + · · · +

(
uk − θ̂ (k)

)2
.

Since
li = x̄i − t1−α/2

si√
ni

; i = 1, 2, . . . , k (9)

and
ui = x̄i + t1−α/2

si√
ni

; i = 1, 2, . . . , k. (10)

From the i-th sample, the maximum likelihood estimator of common mean θ is

θ̂ (i) = x̄i . (11)
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The adjusted MOVER uses the concepts of large sample approach and MOVER
approach are defined in (3)–(8); the common mean θ is weighted average of mean
θ̂ (i) based on k individual samples as; see Graybill and Deal [4]

θ̂ =
∑k

i=1
θ̂ (i)

var
(
θ̂ (i)

)

∑k
i=1

1

var
(
θ̂ (i)

)
, (12)

which gives a variance estimate for θ̂ (i) at θ(i) = li and θ(i) = ui of

var
(
θ̂ (i)

)
= 1

2

⎛

⎜⎝

(
θ̂ (i) − li

)2

z2α/2

+
(
ui − θ̂ (i)

)2

z2α/2

⎞

⎟⎠ . (13)

Therefore, the lower limit L for the common mean θ is given by

L = θ̂ − z1−α/2

√√√√√
1

∑k
i=1

z2α/2(
θ̂ (i)−li

)2

. (14)

Similarly, the upper limit U for the common mean θ is given by

U = θ̂ + z1−α/2

√√√√√
1

∑k
i=1

z2α/2(
ui−θ̂ (i)

)2

. (15)

Therefore, the 100 (1 − α)% confidence interval for the common mean θ based
on adjusted MOVER approach is

⎛

⎜⎜⎜⎝θ̂ − z1−α/2

√√√√√
1

∑k
i=1

z2α/2(
θ̂ (i)−li

)2

, θ̂ + z1−α/2

√√√√√
1

∑k
i=1

z2α/2(
ui−θ̂ (i)

)2

⎞

⎟⎟⎟⎠ . (16)

The following algorithm is used to estimate the coverage probability and average
length:

Algorithm 2

Step 1: Generate Xi1, Xi2, . . . , Xini from N
(
μi , σ

2
i

)
, i = 1, 2, . . . , k, and calculate

the observed values of x̄i and s2i .



328 W. Thangjai et al.

Step 2: For each approach, construct confidence intervals and record whether or not
all the values of μ fall in their corresponding confidence intervals.

Step 3: Repeat steps 1–2 a total of M times. Then, for each approach, the fraction
of times that all μ are in their corresponding confidence intervals provides
an estimate of the coverage probability.

3 Simulation Studies

In this section, simulation studies are carried out to evaluate the performance of the
proposed approach for the commonmean of several normal populations, comparison
studies are also conducted using the GCI approach and large sample approach. The
performance of these three approaches was evaluated through the empirical cover-
age probabilities and the average lengths. In particular, the confidence interval is
satisfactory when the coverage probability is greater than or close to the nominal
confidence level (1 − α) and the shortest average length.

In the simulation, each confidence interval is computed at the nominal confidence
level of 0.95. Following Lin and Lee [6], the number of samples used are k = 2 with
the sample sizes (n1, n2) = (10,10), (15,15), (30,10) and (10,30), respectively, the
populationmean of normal data within each sampleμ1 = μ2 = 1, and the population
variance

(
σ 2
1, σ

2
2

) = (5,5), (5,10), (5,15), (5,20), (5,30), (5,40) and (5,50). For each
parameter setting, 10000 random samples are generated and thus 2500 Rθ ’s are
obtained for each of the random samples.

Table1 presents the simulated coverage probabilities and average lengths of 95%
two-sided confidence intervals for mean, respectively. The coverage probabilities
of the GCI approach and the proposed approach are much closer to the nominal
confidence level of 0.95 than that of the large sample approach. The average lengths
of the large sample confidence interval are shorter than those of the GCI and the
proposed confidence interval. Overall, the GCI approach and the proposed approach
provide much better confidence interval estimation than the large sample approach.

4 An Empirical Application

In this section, two examples were previously considered by Krishnamoorthy and
Lu [5]. The first data, originally given by Meier [7], comes from four experiments
which estimate the mean percentage of albumin in the plasma protein of normal
human subjects: experiment A, experiment B, experiment C and experiment D. The
summary statistics are x̄1 = 62.3, x̄2 = 60.3, x̄3 = 59.5, x̄4 = 61.5, s21 = 12.986,
s22 = 7.840, s23 = 33.433, s24 = 18.513, n1 = 12, n2 = 15, n3 = 7 and n4 = 16.
The 95% generalized confidence intervals for the population mean percentage of
albumin in the plasma protein are (60.0104, 64.5896), (58.7494, 61.8506), (54.1524,
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Table 1 Empirical coverage probabilities (CP) and average lengths (AL) of approximately 95%
of two-side confidence bounds for mean of the normal distribution: 2 sample cases

n1 n2 σ 2
1 σ 2

2 GCI Large sample Adjusted MOVER

CP AP CP AP CP AP

10 10 5 5 0.9420 2.0474 0.9038 1.8249 0.9420 2.1062

5 10 0.9421 2.3902 0.9048 2.1205 0.9431 2.4475

5 15 0.9415 2.5578 0.9055 2.2593 0.9429 2.6077

5 20 0.9446 2.6607 0.9111 2.3385 0.9436 2.6991

5 30 0.9420 2.7926 0.9086 2.4439 0.9445 2.8207

5 40 0.9461 2.8643 0.9158 2.4937 0.9493 2.8782

5 50 0.9458 2.9072 0.9125 2.5258 0.9474 2.9152

15 15 5 5 0.9438 1.6536 0.9199 1.5326 0.9435 1.6771

5 10 0.9408 1.9169 0.9203 1.7731 0.9416 1.9403

5 15 0.9466 2.0413 0.9266 1.8825 0.9485 2.0600

5 20 0.9452 2.1235 0.9240 1.9538 0.9468 2.1381

5 30 0.9458 2.2107 0.9233 2.0290 0.9463 2.2204

5 40 0.9527 2.2632 0.9331 2.0724 0.9530 2.2679

5 50 0.9500 2.2988 0.9316 2.1013 0.9536 2.2994

10 30 5 5 0.9437 1.4216 0.9264 1.3387 0.9467 1.4336

5 10 0.9438 1.7984 0.9220 1.6776 0.9443 1.8217

5 15 0.9417 2.0214 0.9162 1.8733 0.9425 2.0526

5 20 0.9418 2.1731 0.9161 2.0021 0.9437 2.2080

5 30 0.9479 2.3723 0.9231 2.1629 0.9487 2.4069

5 40 0.9467 2.5011 0.9231 2.2633 0.9500 2.5332

5 50 0.9421 2.5833 0.9151 2.3227 0.9440 2.6114

30 10 5 5 0.9441 1.4203 0.9258 1.3368 0.9425 1.4317

5 10 0.9446 1.5237 0.9283 1.4405 0.9447 1.5269

5 15 0.9429 1.5683 0.9292 1.4863 0.9442 1.5683

5 20 0.9504 1.5900 0.9341 1.5076 0.9502 1.5870

5 30 0.9499 1.6136 0.9386 1.5333 0.9514 1.6098

5 40 0.9473 1.6226 0.9360 1.5443 0.9484 1.6190

5 50 0.9514 1.6345 0.9406 1.5569 0.9515 1.6308

64.8476) and (59.2073, 63.7927) for experiment A, experiment B, experiment C
and experiment D respectively. Using the generalized confidence interval approach,
the 95% generalized confidence interval for the overall mean is (59.9106, 62.1268)
with the length of interval 2.2163. The 95% confidence interval by the large sample
approach is (60.0038, 61.9860) with the length of interval 1.9821. In comparison,
the 95% confidence interval by the proposed approach is (59.9030, 62.0958) with
the length of interval 2.1928.

The second data, originally given byEberhardt et al. [3], comes from four different
analytical methods which estimate the mean selenium content in nonfat milk power:
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atomic absorption spectrometry (method 1), neutron activation instrumental (method
2), radiochemical (method 3) and isotope dilution mass spectrometry (method 4).
The summary statistics are x̄1 = 105.00, x̄2 = 109.75, x̄3 = 109.50, x̄4 = 113.25,
s21 = 85.711, s22 = 20.748, s23 = 2.729, s24 = 33.640, n1 = 8, n2 = 12, n3 = 14 and
n4 = 8. The 95% generalized confidence intervals for the population mean sele-
nium content in nonfat milk power are (97.2601, 112.7399), (106.8559, 112.6441),
(108.5462, 110.4538) and (108.4011, 118.0989) for method 1, method 2, method 3
and method 4 respectively. Using the generalized confidence interval approach, the
95% generalized confidence interval for the overall mean is (108.7193, 110.5284)
with the length of interval 1.8090. The 95% confidence interval by the large sample
approach is (108.8045, 110.3996) with the length of interval 1.5950. In comparison,
the 95% confidence interval by the proposed approach is (108.7047, 110.4740) with
the length of interval 1.7693. As a result, the length of the large sample confidence
interval is shorter than that of the GCI and the proposed confidence interval. These
results confirm the simulation results in the previous section.

5 Discussion and Conclusions

Lin and Lee [6] proposed the GCI approach on the common mean of several normal
populations, based on the best linear unbiased estimator of mean. This is better than
the existing approaches in terms of having the shortest average lengths.

The simulation studies indicated that the GCI approach and the adjustedMOVER
approach both provide much better confidence interval estimates than the large sam-
ple approach. However, confidence interval based on the adjustedMOVER approach
is also easier to use than the confidence interval based on GCI which is a computa-
tional approach. As a result, the adjusted MOVER approach should be considered
as an alternative to estimate the confidence interval for the common mean.
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A Generalized Information Theoretical
Approach to Non-linear Time Series Model

Songsak Sriboochitta, Woraphon Yamaka, Paravee Maneejuk
and Pathairat Pastpipatkul

Abstract The limited data will bring about an underdetermined, or ill-posed prob-
lem for the observed data, or for regressions using small data set with limited data
and the traditional estimation techniques are difficult to obtain the optimal solution.
Thus the approach of Generalized Maximum Entropy (GME) is proposed in this
study and applied it to estimate the kink regression model under the limited informa-
tion situation. To the best of our knowledge, the estimation of kink regression model
using GME has been not done yet. Hence, we extend the entropy linear regression
to non-linear kink regression by modifying the objective and constraint functions
under the context of GME. We use both Monte Carlo simulation and real data study
to evaluate the performance of our estimation from Kink regression and found that
GME estimator performs slightly better compared to the traditional Least squares
and Maximum likelihood estimators.

Keywords Kink regression · Maximum entropy · GDP/Debt ratio

1 Introduction

In information theory, there is a classical maximum entropy (ME) principle which
was introduced by Jaynes [11] and is based on Shannons entropy measure. Then,
Golan, Judge and Miller, [6] developed a generalized entropy estimation (GME)
for constructing distributions based on limited information. They adapt the entropy
approach into the regression context by transforming the estimated parameters of
the model to be described by a discrete probability distribution defined on a certain
interval or support bound. They, then maximize these entropies to estimate unknown
probabilities of parameters and error term subject to the constraints imposed by
the data. Nowadays, this estimation approach has found wide-spread applications
in various fields of science such as engineering, communication and information,
physics, chemistry, biology, political science as well as economics. However, in this
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study, we will focus our study in the economic problem. We found from literature
review that the entropy estimation has been employed in linear regression framework
such as the work of Golan, Perloff, and Shen [9], Al-Nasser [1, 2] and Wu [14]. For
more detail from a brief review on the ME econometrics, refer to Golan [4].

AlthoughGMEhasbeenwidelyemployed toestimate linear regressionmodels and
was applied successfully to economic data, there is no study on non-linear regression
models.Manyprevious researchers andpractitioners oftenfind that the economic data
seems to have a non-linear structure and the usual linear regression fails to explain
this non-linear relationship.We then introduce our contribution, generalized entropy-
based approach to fitting economic data within the non-linear model framework.

Recently, nonlinear regressionmodels have beenwidely applied in economics and
one of the most interesting nonlinear regression models is kink regression. The kink
regression model was first modified and popularized by Card, Lee, Pei andWeber [3]
and then developed a theory of least square (LS) estimation and inference by Hansen
[8]. In this paper, we do not emphasize in this models structure but the estimation
method is what we want to develop. In the area of macroeconomic study, one of the
common problems in analyzing macroeconomic model is the limitation of data, such
as from the lack of high frequency data or long period data, sincemany countries have
a poor data collection system, especially in the less developed countries. Thus, in the
estimation of the unknown parameters of the model, the limited data will bring about
an underdetermined, or ill-posed problem for the observed data, or for regressions
that face with a small data sets, i.e. the number of unknown parameters are larger
than the number of data points [7, 10]. In the last decade, the traditional Maximum
likelihood (ML) and least squares (LS) estimation methods have been proposed
and employed in various models. However, the validity of the normal assumption
has been questioned and, in the case of the ML estimation, there is difficulty to
construct an appropriate likelihood function. Without a likelihood function, it is not
possible to do an estimation and testing. Although the Bayesian method is another
traditional estimation that is proposed to deal with the small sample data by adding
a prior distribution on model parameters, this prior distribution assumption has been
questioned inmany studies. To overcome these problems, this study proposes a GME
estimation method to the kink regression framework. Mittelhammer, Judge, Miller
[13] suggested that GME estimation is the most suitable alternative option available
to the model estimation in order to avoid making any parametric assumptions.

In previous literature, we found some evidences that the entropy estimation is
outperforms those two traditional estimations. Golan et al. [5] did an experiment
study on the Tobit model and compare the GME with ML estimator when the error
term is not normal. They found that GME estimator was more efficient than the ML
estimator with small data set since it showed a lower Mean Square Error (MSE).
The comparison between GME and ML estimator was also presented in Wu [14]
who also did an experiment study to investigate the performance of GME estimator
when the errors are generated from either normal or non-normal distributions. The
result showed that the proposedGMEestimator provides superior performance under
various error distributions.
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As we mentioned above, GME estimator can be employed as an alternative to
LS and ML estimators. Yet, to the best of our knowledge, the estimation of kink
regression using GME estimator has not been proposed in the literature, and hence
the study we conducted is the first concerned with applying the GME estimator to
kink regression model. Thus, our objective is to develop an estimation model with
kink regression when the data is limited or has small samples.

The kink regression model structure and the GME approach are presented in
Sect. 2. In Sect. 3, the experiment study and results are presented. The application
of regression kink model, where GDP growth is the dependent variable and the
debt/GDP ratio is the regressor, are presented in Sect. 4. Conclusion and discussion
is provided in Sect. 5.

2 Kink Regression Model

2.1 Model Structure

The two-regime kink regression model can be written as

Yt = β−
1 (x ′

1,t ≤ γ1)− + β+
1 (x ′

1,t > γ1)+ + , · · · , +β−
K (x ′

K ,t ≤ γK )−
+ β+

K (x ′
K ,t > γK )+ + εt

(1)

where Yt is [T × 1] continuous dependent variable at time t, x ′
k,t is a matrix of

(T × K ) continuous independent variables at time t, andβ is amatrix of (T × K × 2)
unknown parameters where (β−

1 , . . . , β−
K ) and (β+

1 , . . . , β+
K ) are the regressor coef-

ficients with respect to variable x ′
k,t for value of

(
x ′
k,t ≤ γk

)
− (lower regime) and with

respect to variable x ′
k,t for value of

(
x ′

k,t > γk
)
+ (upper regime) respectively. Fol-

lowing, Hansen [8], the regressor variables are subject to regime-change at unknown
kink point or threshold variable (γ1, . . . , γK ) and thereby separating these regressors
into two regimes. These threshold variables are compact and strictly in the interior of
the support of (x1,t , . . . , xK ,t ). In addition, the error term of the model εt is [T × 1]
dimensional vector whichmay represent one ormore sources of noise in the observed
system, such as errors in the data and modeling errors.

2.2 Generalized Maximum Entropy Approach

In this study, we proposed to use a maximum entropy estimator to estimate our
unknown parameters in Eq.1. Before, we discuss this estimator for kink regres-
sion and its statistical properties, let us describe briefly the concept about the
entropy approach. The maximum entropy concept is about inferring the probability
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distribution thatmaximizes information entropy given a set of various constraints. Let
pk be a proper probability mass function on a finite set α where α = {a1, . . . , aK }.
Shannon [12] developed his information criteria and proposed classical entropy,
that is

H(p) = −
K∑

k=1

pk log pk (2)

where 0 log 0 = 0 and
∑K

k=1 pk = 1. The entropy measures the uncertainty of a
distribution and reaches a maximum when pk has uniform distribution [14]. To
apply this concept to be an estimator in our model, we generalize the maximum
entropy into the inverse problem to the kink regression framework. Rather than
searching for the point estimates (β−

1 , . . . , β−
k ) and (β+

1 , . . . , β+
K ), we can view these

unknown parameters as expectations of random variables with M support value for
each estimated parameter value (k), Z = [z1, . . . , zK ]where zk = [zk1, . . . , z̄km] for
all k = 1, . . .K . Note that zk1 and z̄km denote the lower and upper bound, respectively,
of each support zk . Thus we can express parameter β−

k and β+
k as

β−
k =

∑

m

p−
kmz

−
km, xk,t ≤ γk

β+
k =

∑

m

p+
kmz

+
km, xk,t > γk

(3)

where p−
km and p+

km are the M dimensional estimated probability distribution defined
on the set z−

km and z+
km , respectively. For the threshold γk , we also view each (k) ele-

ment of γ as a discrete random variable with M support value, qk = [q
k1

, . . . , q̄km],
where q

k1
and q̄km are the lower and upper bounds of γk

γk =
∑

m

hkmqkm (4)

Next, similar to the above expression, εt is also constructed as the mean value of
some random variable v. Each εt is assumed to be a random vector with finite and
discrete random variable with M support value, vt = [vt1, . . . ., vtM ]. Let wt be an
M dimension proper probability weights defined on the set vt such that

εt =
∑

m

wtmvtm (5)

Using the reparameterized unknowns β−
k , β

+
k , γk , and εt , we can rewrite Eq. 1 as
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Yt =
∑

m

p−
1mz

−
1m(x ′

1,t ≤
∑

m

h1mq1m)− +
∑

m

p+
1mz

+
1m(x ′

1,t >
∑

m

h1mq1m)++, . . . .,

+
∑

m

p−
Kmz

−
Km(x ′

K ,t ≤
∑

m

hKmqKm)− +
∑

m

p+
Kmz

+
Km(x ′

K ,t >
∑

m

hKmqKm)+

+
∑

m

wtmvtm (6)

where the vector support z−
km , z

+
km , qKm , and vtm , are convex set that is symmetric

around zero with 2 ≤ M < ∞. Then, we can construct our Generalized Maximum
Entropy (GME) estimator as

H(p, h, w) = argmax
p,h,w

{H(p) + H(h) + H(w)} ≡ −
∑

k

∑

m

p−
km log p−

km

−
∑

k

∑

m

p+
km log p+

km −
∑

k

∑

m

hkm log hkm −
∑

t

∑

m

wtm logwtm

(7)

subject to

Yt =
∑

m

p−
1mz

−
1m(x ′

1,t ≤
∑

m

h1mq1m)− +
∑

m

p+
1mz

+
1m(x ′

1,t >
∑

m

h1mq1m)++, . . . .,

+
∑

m

p−
Kmz

−
Km(x ′

K ,t ≤
∑

m

hKmqKm)− +
∑

m

p+
Kmz

+
Km(x ′

K ,t >
∑

m

hKmqKm)+

+
∑

m

wtmvtm (8)

∑

m

p+
km = 1,

∑

m

p−
km = 1,

∑

m

hkm = 1,
∑

m

wtm = 1 (9)

where p, h, and w are on the interval [0, 1]. Consider repressor (k = 1), this opti-
mization problem can be solved using the Lagrangianmethodwhich takes the form as

L = H(p, h, w) + λ′
1(Y t −

∑

m

p−
1mz

−
1m(x ′

1,t ≤
∑

m

h1mq1m)−

+
∑

m

p+
1mz

+
1m(x ′

1,t >
∑

m

h1mq1m)+ +
∑

m

wtm vtm) + λ′
2(1 −

∑

m

p−
km)

+ λ′
3(1 −

∑

m

p+
km) + λ′

4(1 −
∑

m

hkm) + λ′
5(1 −

∑

m

wtm) (10)

where λ′
i , i = 1, . . . , 5 are the vectors of Lagrangian multiplier. Thus, the resulting

first-order conditions are
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∂L

p−
1m

= − log(p−
1m) −

∑

m

λ1mz
−
1m(x ′

1,t ≤
∑

m

h1mq1m)− − λ2i = 0 (11)

∂L

p+
1m

= − log(p+
1m) −

∑

m

λ1mz
+
1m(x ′

1,t >
∑

m

h1mq1m)+ − λ3i = 0 (12)

∂L

wtm
= − log(wtm) −

∑

m

λ1m vtm) − λ5i = 0 (13)

∂L

h1m
= − log(h1m) −

∑

m

λ1m p
−
1mz

−
1m(x ′

1,t ≤
∑

m

q1m)−

+
∑

m

λ1m p
+
1mz

+
1m(x ′

1,t >
∑

m

q1m)+ − λ4i = 0
(14)

∂L

λ1
= −(Y t −

∑

m

p−
1mz

−
1m(x ′

1,t ≤
∑

m

h1mq1m)−

+
∑

m

p+
1mz

+
1m(x ′

1,t >
∑

m

h1mq1m)+ +
∑

m

wtm vtm) = 0
(15)

∂L

λ2
= 1 −

∑

m

p−
1m = 0 (16)

∂L

λ3
= 1 −

∑

m

p+
1m = 0 (17)

∂L

λ4
= 1 −

∑

m

h1m = 0 (18)

∂L

λ5
= 1 −

∑

m

wtm = 0 (19)

Thus, we have

p−
1m = exp(−λ2i −

∑

m

λ1mz
−
1m(x ′

1,t ≤
∑

m

h1mq1m)−) = 1, (20)

p+
2m = exp(−λ2i −

∑

m

λ1mz
+
1m(x ′

1,t >
∑

m

h1mq1m)+) = 1, (21)

wtm = exp(−λ5i −
∑

m

λ1mvtm) = 1, (22)
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h1m =

exp

(
−λ4i −

(
∑

m

λ1m p−
1mz

−
1m(x ′

1,t ≤
∑

m

q1m)− +
∑

m

λ1m p+
1mz

+
1m(x ′

1,t >
∑

m

q1m)+

))
= 1

(23)
Then, by setting λ = 0, this optimization yields

�

p
−
1m =

exp(−z−
1m

∑
t

�

λ1t (x ′
1,t ≤ ∑

m
h1mq1m)−)

∑
m
exp(−z−

1m

∑
t

�

λ1t (x ′
1,t ≤ ∑

m
h1mq1m)−)

, (24)

�

p
+
1m =

exp(−z+
1m

∑
t

�

λ1t (x ′
1,t >

∑
m
h1mq1m)+)

∑
m
exp(−z+

1m

∑
t

�

λ1t (x ′
1,t >

∑
m
h1mq1m)+)

, (25)

�

wtm = exp(−�

λ1tv1m)
∑
m
exp(−�

λ1tv1m)
, (26)

�

h1m =
exp

(
−

(∑
t

�

λ1t p
−
1mz

−
1m(x ′

1,t ≤ ∑
m
q1m)− + ∑

t

�

λ1t p
+
1mz

+
1m(x ′

1,t >
∑
m
q1m)+

))

∑
m
exp

(
−

(∑
t

�

λ1t p
−
1mz

−
1m(x ′

1,t ≤ ∑
m
q1m)− + ∑

t

�

λ1t p
+
1mz

+
1m(x ′

1,t >
∑
m
q1m)+

))

(27)
Summing up the above equations, we maximize the joint-entropy objective, Eq. 7

subject to the Kink regression Eq. 8, with adding restrictions Eq. 9. The solution
to this maximization problem is unique by forming the Lagrangean and solving for

the first-order conditions to obtain the optimal solution
�

p
−
1m ,

�

p
+
1m ,

�

h1m , and
�

wtm .
Then these estimated probabilities are used to derive the point estimates for the Kink
regression coefficients and error term, see Eqs. 3, 4, and 5.

2.3 Testing for a Threshold Effect and Goodness of Fit Test

Since the non-linear structure of the model has been proposed in this study, we
develop an entropy-ratio test, which is introduced in Golan and Dose [7], to check
whether or not kink regression model is significant relative to the linear regression
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model. It corresponds to the likelihood ratio test which measures the entropy dis-
crepancybetween the constrained andunconstrainedmodel.Consider the constrained
simple linear repression model with one regressor.

Yt = β1(x
′
1,t ) + εt (28)

The null hypothesis of entropy test is present in Eq. 28 with the restriction β1 =
β−
1 = β+

1 . Under this hypothesis the kink or threshold variable γ1 does not exist.
While the alternative unconstraint hypothesis can be presented by

Yt = β−
1 (x ′

1,t ≤ γ1)− + β+
1 (x ′

1,t > γ1)+ + εt (29)

Hence, the entropy ratio statistic can be defined as

ER = 2
∣∣HU (β−

1 �= β+
1 ) − HR(β1 = β−

1 = β+
1 )

∣∣ (30)

where R∗ =0 implies no informational value of the data set, andR*=1 implies perfect
certainty or perfect in-sample prediction. And Hu(β

−
1 �= β+

1 )/HR(β1 = β−
1 = β1

+)

is directly related to the normalized entropy measure [6, 9].

3 Experiment Study

In this section, we conduct a simulation and experiment study to investigate the
finite sample performance of the propose GME method. In the first part of these
experiments, the purposed of these experiments is to compare the performance of
the estimation when the number of support varies in its values as M = 3, 5, 7.
For example, for three point support z1m = [−z, 0, z] or for five points support
z1m = [−z,−z/2, 0, z/2, z]. The support space of the β1, γ1, and εt are chosen
to be uniformly symmetric around zero. In this study, several choices of the support
for each of GME unknown parameters and errors are used. The support space of β1

are specified to be in the interval [−z, z] for z = 3, 6, and 9. The support space of
γ1 is specified to be in the interval [−h, h] for h = 5, 10, and 15. Lastly, the interval
[−v, v], for v = 1, 2, and 3, are set for model errors εt .

In the second part, we also conduct a Monte Carlo simulation study to show
the performance of our proposed entropy estimation on kink regression model with
the least square (LS) and maximum likelihood (ML) estimation. To compare these
methods, the study used Bias and Mean Squared Error (MSE) approaches.

Our sampling experiment model is based on

Yt = α + β−
1 0 + β+

1 (x ′
1,t > γ1)+ + εt (31)
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we simulate x ′
1,t˜Unif[−3, 5] and threshold value isγ1 = 3.The true value for parame-

ter α, β−
1 , and β+

1 are set to be 1, 2, and −1, respectively. To make a fair comparison,
the error terms are generated from χ2(2), N (0, 1), t (0, 1, 4), and Unif(−2, 2). In
this Monte Carlo simulation, we consider sample size n = 20 and n = 40. Then, we
assess the performance of our proposed method through the Bias and Mean Squared
Error (MSE) of each parameter in which the Bias and MSE of each parameter are
given by

Bias = N−1
N∑

r=1

(φ̃r−φr ),

and

MSE = M−1
M∑

r=1

(φ̃r−φr )
2.

where N = 100 is the number of bootstrapping; and φ̃r and φr are the estimated
value and true value, respectively.

3.1 Experiment Results

In the first experiment study, the choice of number of support points (M) and value
of support space z, h and v are considered in this experiment. According to Heckelei,
Mittelhammer, and Jansson [10], the choice of referenceprior probabilities on support
points and the number of support points are complicated, composite, and difficult to
be defined. Thus, we examine the performance of the GME estimator by varying its
support space and the number of support points.Weuse the same simulated datawhen
the error is generated from N (0, 1) to investigate the performance of the proposed
estimator for all cases. The estimated results for this experiment are shown in Table1.
We observe that whenwe increase the number of support points, theMSE and Bias of
the estimated parameters are decrease. However, with regard to the value of support
space, the increase in the value of bound does not represent a lower Bias and MSE in
some cases. Thus, we can conclude that regarding to the number of support points,
this experiment showed that the GME estimation performs better when the number
of support points increase. For the support value, our experiment results seem not be
quite stable, we suspect that the value of the support might not large enough.

3.2 Comparison of the Estimation Results

Next we turn our attention to the second experiment to investigate the perfor-
mance of GME estimator when the errors are generated from either normal or non-
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normal distributions. In this experiment, we consider two more estimators, LS and
ML, to compare with GME estimator on kink regression model. For GME esti-
mator, we employ seven-point support z = [−9,−4.5,−2.25, 0, 2.25, 4.5, 9], h =
[−15,−7.5,−3.25, 0, 3.25, 7.5, 15], and v = [−3,−1.5,−0.75, 0, 0.75, 1.5, 3].
Using the same sample simulation design explained above, we generate our data from
χ2(2), N (0, 1), t (0, 1, 4), and Unif(−2, 2); and the results are shown in Tables2, 3,
4, and 5, respectively.

According to the above Tables, the similar results are obtained from different
cases. We found that GME estimator seems to outperform LS and ML estimators
in terms of lower MSE and Bias of parameters. Whereas, the parameters in kink
regression model, especially α, provide a strong accuracy when compared with the
other two estimators. In addition, considering the sample size of this experiment,

Table 2 Kink regressions with χ2(2) errors

N=20 GME LS ML

Bias MSE Bias MSE Bias MSE

α 0.1664 0.4672 1.0598 1.5575 1.1346 1.6454

β−
1 −0.0359 0.0167 0.2909 0.9606 −0.0374 0.0145

β+
1 0.0429 0.0223 0.0215 0.0221 0.0078 0.0032

γ1 0.1788 0.5294 0.3584 1.9196 0.4675 0.3906

N=40 GME LS ML

Bias MSE Bias MSE Bias MSE

α −0.0723 0.0526 1.2323 1.1651 1.2659 1.7246

β−
1 −0.1669 0.2791 0.392 1.819 0.0537 0.0342

β+
1 0.0895 0.0802 0.0169 0.0043 −0.0117 0.0066

γ1 0.1999 0.3999 −0.0956 0.2846 0.1503 0.1183

Source: Calculation

Table 3 Kink regressions with N (0, 1) errors

N=20 GME LS ML

Bias MSE Bias MSE Bias MSE

α −0.0681 0.1668 0.2364 0.5312 −0.357 0.2671

β−
1 0.0083 0.0028 −0.0323 0.0024 −0.0279 0.0017

β+
1 0.0072 0.0098 −0.0684 0.0802 −0.0199 0.0143

γ1 −0.0557 0.1573 0.0486 0.2466 −0.0371 0.0611

N=40 GME LS ML

Bias MSE Bias MSE Bias MSE

α −0.0105 0.0039 −0.0579 0.0586 0.0297 0.0467

β−
1 0.0028 0.0001 −0.0166 0.1045 0.0179 0.0205

β+
1 0.0045 0.0002 0.0498 0.0267 0.0194 0.0013

γ1 −0.0138 0.0031 −0.2366 0.2657 −0.0916 0.0376

Source: Calculation
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Table 4 Kink regressions with t (0, 1, 4) errors

N=20 GME LS ML

Bias MSE Bias MSE Bias MSE

α −0.0551 0.0054 0.4439 6.4992 −0.1075 0.0646

β−
1 0.001 0.0005 0.0082 0.0054 0.0147 0.0005

β+
1 −0.0056 0.0005 −0.1838 6.1044 −0.0176 0.0061

γ1 −0.0055 0.0012 0.3329 5.3791 −0.0773 0.0164

N=40 GME LS ML

Bias MSE Bias MSE Bias MSE

α −0.0271 0.032 0.0745 0.0697 0.2726 0.152

β−
1 −0.0235 0.027 0.0011 0.0013 0.0719 0.0128

β+
1 0.0165 0.0131 −0.0276 0.0031 −0.0127 0.0026

γ1 0.0388 0.08 0.0185 0.0336 −0.1401 0.0743

Source: Calculation

Table 5 Kink regressions with Unif(−2, 2) errors

N=20 GME LS ML

Bias MSE Bias MSE Bias MSE

α −0.0727 0.1667 0.687 2.8672 0.8237 0.9328

β−
1 −0.0687 0.0098 0.0468 0.0087 0.0448 0.008

β+
1 0.003 0.0105 −0.0442 0.0233 −0.0546 0.0081

γ1 0.0031 0.2609 0.2429 0.8261 0.3161 0.1994

N=40 GME LS ML

Bias MSE Bias MSE Bias MSE

α −0.0914 0.0994 −0.1981 0.1254 −0.7941 0.8471

β−
1 −0.114 0.1364 0.0138 0.0028 0.043 0.6761

β+
1 0.0646 0.0449 0.091 0.0099 0.1726 0.0317

γ1 0.1579 0.2877 −0.2178 0.0924 −0.4565 0.376

Source: Calculation

we found that the performance is quite similar between n = 20 and n = 40 for GME
estimator since the values of Bias and MSE are not much different. In contrast, the
larger sample size can bring a lower Bias and MSE of the parameters in the case of
LS and MLE. This indicates that the larger sample size cannot reduce uncertainty
and its performance seems to be a little affected. Consider our key threshold or kink
parameter γ1, the interesting result is obtained. We found that the values of Bias and
MSE for GME estimator increase when the error of the model is assumed to have
non-normal distribution.

In summary, we can conclude that the overall performance of the GME estimator
applied to kink regression is quite good. The GME estimators produce a lowest bias
estimates when compared with LS and MLE when the errors are generated from
normal and non-normal distribution.



A Generalized Information Theoretical Approach to Non-linear Time Series Model 345

4 Empirical Illustration

Finally, the method presented in this paper as well as LS and MLE are applied to
the real data analysis. We consider the growth/debt regression problem which was
introduced in Hansen [8]. The paper suggested that the growth of economy tends
to slow when the government debt relative to GDP exceeds a threshold. Thus, we
employed this model specification and applied it in Thai economy and our model
can be written as

GDPt = β−
1 (Debt/GDPt ≤ γ1)− + β+

1 (Debt/GDPt > γ1)+ + εt

Our dataset consists of yearly data GDP growth and Debt/GDP ratio for Thailand.
The sample period spans from 1993 to 2015, covering 22 observations. The data
are collected from Thomson Reuter DataStream, Faculty of Economic, Chiang Mai
University. The data is plotted in Fig. 1. Prior to estimating the kink regressionmodel,
it is necessary to check whether there exists a kink or threshold effect or not. The
study conducted an Entropy ratio test as discussed in Sect. 2.3 and the result is shown
in Table5. The Entropy ratio test statistic is significant at 1% level. This result led
us to reject the null hypothesis of linear regression (Hlinear ) for the relationship
between GDP growth and Debt/GDP ratio for Thai economy, which means that the
kink regression model is better to describe this non-linear relationship.

4.1 Application Result

The kink regression model is then estimated by three estimators, GME, LS, and
MLE, and the estimated results are shown in Table6. Similar results are obtained in
this study, as we can see a negative effect of Debt/GDP on the economic growth in
both two regimes. We are surprised that our result show negative sign in both of the
two regime which seem not correspond to the Keynesian economics approaches that

Fig. 1 GDP growth and Debt/GDP ratio plot
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Fig. 2 Kink plot of GDP
growth and Debt/GDP

suggested Debt/GDP ratio should have a positive effect during economic recession
(regime 1). We reckon that the Thai economy may not change too much along our
sample period and the Thai economic structure is different from those of advanced
countries. However, we can observe that there exists a significant kink point and the
fitted kink regression line is plotted in Fig. 2. The result illustrates a steep negative
slope for low GDP-Debt ratio, with a kink or threshold point (γ1) around 3.47% (For
GME), switching to a low negative slope for GDP-Debt ratio above that point.

Table 6 Coefficients (standard errors) from Kink regression

Parameter GME LS MLE

α 0.0782*** 0.0790*** 0.0757*

(−0.0127) (−0.0172) (−0.0395)

β−
1 (regime 1) −0.0143 −0.0223 −0.0039

(−0.0245) (−0.0183) (−0.0197)

β+
1 (regime 2) −0.0104*** −0.0136** −0.0145*

(−0.005) (−0.0072) (−0.0084)

γ1 2.8001*** 3.5008*** 3.9686

(−1.2011) (−1.7383) (−3.7315)

sigma 0.0354***

(−0.0053)

RMSE 0.0347 0.0365 0.0357

Source: Calculation
Note: ***, **, * are significant at 1, 5, and 10% level, respectively
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Table 7 Kink regression application result

{H}_{linear} {H}_{kink} Entropy ratio

Regime 1 vs. Regime 2 26.35955 50.55449 47.999***

Source: Calculation
Note: *** is significant at 1% level

Consider the performance of GME estimator, Table7 also provide the Root Mean
Square Error (RMSE) of each estimator and confirms that RMSE value of the entropy
kink regression model is lower than those of the other two estimators. These results
gave us a confidence that entropy kink regression technique can at least better than
the traditional methods, namely Maximum likelihood (ML) and least squares (LS)
estimation.

5 Conclusion

This paper developed an estimation of kink regression model using the Generalized
Maximum Entropy (GME) estimator and applied it in both experiment and appli-
cation studies. An interesting contribution is the model can capture a non-linear
relationship between response variable and its covariate when the data set is too
small. The results of experiment presented in this study provide a strong evidence
about the robust performance of the GME compared with the traditional estimation
by Maximum likelihood (ML) and least square (LS). It is evident that with various
sample sizes, number of support points and support space for unknown parameters
and disturbance, the Bias and MSE of GME estimators are quite smaller when the
number of support increase but the Bias and MSE values of the parameters are not
quite stable when we consider various support space and number of observations.
We, then compare the GME estimator with LS and ML estimators and found that
the values of Bias and MSE are lower for GME. Therefore, the GME can provide a
better alternative for the Kink regression model compared with the other parametric
methods. In addition, we apply our method to study the effect of Debt/GDP ratio
on the economic growth and found that Debt/GDP ratio provide a negative effect
on economic growth for both regimes and the value of RMSE of GME estimator is
slightly better than those of others.
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Predictive Recursion Maximum Likelihood
of Threshold Autoregressive Model

Pathairat Pastpipatkul, Woraphon Yamaka and Songsak Sriboonchitta

Abstract In the threshold model, it is often the case that an error distribution is not
easy to specify, especially when the error has a mixture distribution. In such a situ-
ation, standard estimation yields biased results. Thus, this paper proposes a flexible
semiparametric estimation for Threshold autoregressive model (TAR) to avoid the
specification of error distribution in TAR model. We apply a predictive recursion-
based marginal likelihood function in TAR model and maximize this function using
hybrid PREM algorithm. We conducted a simulation data and apply the model in
the real data application to evaluate the performance of the TAR model. In the sim-
ulation data, we found that hybrid PREM algorithm is not outperform Conditional
Least Square (CLS) and Bayesian when the error has a normal distribution. How-
ever, when Normal-Uniform mixture error is assumed, we found that the PR-EM
algorithm produce the best estimation for TAR model.

Keywords Threshold autoregressive ·PR-EMalgorithm ·Predictive recursionmar-
ginal likelihood · Stock market

1 Introduction

Most financial time series data have non-linear movements reflecting different eco-
nomic behaviors over time. Thus it is not appropriate to assume linearity in econo-
metric modeling attempts. The threshold autoregressive (TAR) model developed by
Tong [11] is one of the most popular nonlinear time series models appear in the
literature and TAR has become influential as well in the fields of economics and
econometrics. This model allows regime shift in the time series data, which is deter-
mined by a threshold value. Moreover, it is typically applied to time series data as
an extension of autoregressive models, in order to capture the regime switching in
economics data. In the recent years, TAR model has been widely applied in various
research fields such as ecology, agriculture, economics, and finance.
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It is interesting to highlight that the estimation of TAR model has been estimated
by many approaches such as conditional least squares (e.g., [5, 7]), Maximum Like-
lihood (e.g., [3, 8]) and Bayesian estimation by Geweke and Terui [4], Chen and Lee
[2], and Koop and Potter [2]. However, these approaches assume the density function
to have normal distributionwithmean zero and variance, σ 2; thus, if the density is not
normal, then these conventional models might not be appropriate for estimating the
parameters in TAR model. Ang [1] suggested that the Normal distribution presents
a symmetric and zero excess kurtosis which might not be correct to model the finan-
cial time series data. Recently, alternative non-normal density estimation procedures
such as nonparametric maximum likelihood and Bayes have been proposed to deal
with these problems. Nevertheless, Martin and Han [9] claimed that nonparametric
Maximum Likelihood is generally rough and the optimization is unstable while non-
parametric Bayes needs a large round of iterations if the prior is not proper. Thus,
to solve these problems, they proposed a general scale mixture model for the error
distribution using Predictive Recursion marginal likelihood LPR(θ) and developed
the hybrid Predictive Recursion-Expected Maximization (PREM) algorithm based
on the scale mixture of normals model for the error terms for maximizing LPR(θ)

in the linear regression model.
Thismain purpose of this paper is to extend the estimation technique ofMartin and

Han [9] to estimate the parameters andpurpose an alternativeway forTARestimation.
To the best as our knowledge, we are the first ever to estimate TAR model using this
method. Therefore the model becomes improved and has more flexible where the
error distribution is taken to be a general scale mixture of normal with unknown
mixing distribution. The remainder of this paper is organized as follows: The next
section introduces the TAR model and estimation approach. Section3 consists of
simulations and demonstrates estimation of parameters compared to some existing
methods. An empirical application is provided in Sect. 4 while conclusions is given
in Sect. 5.

2 Methodology

2.1 Threshold Autoregressive Model

In this paper, we present a simplest class of TARmodel, namely Self Exciting Thresh-
old Autoregressive (SETAR), which consist of lag order (p) of autoregressive (AR)
and k regimes. This model is a piecewise linear models or regime switching model
The paper focused on the SETAR models because it is the most popular in forecast-
ing and predicting and it is easily to estimated using PREM algorithm Tong [11]
introduced SETAR with 2 regimes and specified as the following:
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yt = α0 + αi

p1∑

i=1

yt−p1 + ε1,t i f yt−d > ω (1)

yt = β0 + βi

p2∑

i=1

yt−p2 + ε2,t i f yt−d ≤ ω

where αi and βi are the estimated coefficients, ε ∼ N (0, σ 2), is threshold value and
is an n × 1 vector of independent and identically distributed (iid) errors with normal
distribution. The movement of the observations between the regimes is controlled by
Yt−d , the delay variable. If Yt−d is greater or lower thanω, the separated observations
canbe estimated asARprocess then theARorder canbevary across regime.Thus, it is
important to select the appropriated lag delay (d) of delay variable. In the TARmodel
Eq. (1) is separated into two regimes which the non-linear model depends on below
or above the threshold parameter. In addition the different lag order of autoregressive
in each regime is allowed to be different. For identification of regimes, we interpret
first regime as high growth regime while second regime is interpreted as low growth
regime.

2.2 Predictive Recursion Marginal Likelihood

Consider the TAR model Eq. (1), errors are assumed to have normal distribution and
iid. But in this case, the error distribution is taken to be a general scale mixture of
normal with unknown mixing distribution. As we mentions before, the assumption
of normal distributionmight not be appropriate in some cases. Following,Martin and
Han [9], they purposed that the density function of the model should have a heavy
tail thus the estimated parameters can be sensitive to the extreme observations. The
general form of the error density as a mixture can be written as

f (εi ) =
∫ ∞

0
N (εi

∣∣o, u2 )Ψ (du) (2)

f (εi ) =
∫ ∞

0
N (yi − xiβ

∣∣o, u2 )Ψ (du) (3)

Then, applying the PR algorithm which is a recursive estimation of mixing distrib-
ution to estimate the mixing density [10]. Therefore, in TAR model, we can extend
the general form of the error density and apply the PR algorithm to the residuals to
estimate themixing density, let xi = yt−1, . . . , yi,t−p thus the PRmarginal likelihood
for β and α can be written as

LPR(θ) =
2∑

j=1

(

n∏

i=1

f j,i−1,θ (ε j,i ) (4)
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where θ = (β, α) based on y1, . . . , yk and x1, ...., xk , k = 1, . . . n repeated step
in PR algorithm. Ψ is an unspecified mixing distribution with supported on U
[Umin,Umax], where Umin is fix at 0.00001 and Umax can be specified as posi-
tive integer, [0,∞]. However, there are many possibilities of density of the Ψ , in
this study, the uniform density on U is preferred as an initial start of the PR-EM
algorithm.

To estimate the β and α, normally, the numerical optimization technique is used
to maximize the likelihood function to obtain the estimated parameters in the model.
However, the study employed hybrid PREM algorithm as proposed in Martin and
Han [9] as an optimization algorithmof thismodel since it workwell in the estimation
of the parameter in semiparametric mixture model.

2.3 Hybrid PREM Algorithm

Martin and Han [9] proposed a hybrid PREM algorithm taking an advantage of the
latent scale parameter structure U1, ....,Un in the mixture model. Note that xi =
yt−1, . . . , yi,t−p then, we take a logarithm in Eq. (4), we get

log LPR(θ)

=
n∑

i=1

log
∫

N (yi − xiβ
∣∣0, u2)Ψi−1,β +

n∑

i=1

log
∫

N (yi − xiα
∣∣0, u2)Ψi−1,α

=
[

n∑

i=1

logN (yi − xiβ

∣∣∣∣∣0,U
2
i ) −

n∑

i=1

log

{
N (yi − xiβ

∣∣0,U 2
i

fi−1,β(yi − xiβ)

}]
(5)

+
[

n∑

i=1

logN (yi − xiα

∣∣∣∣∣0,U
2
i ) −

n∑

i=1

log

{
N (yi − xiα

∣∣0,U 2
i

fi−1,α(yi − xiα)

}]

Then, integrate out Ui with respect to the density Ψ
β

β̃
(u) and Ψ α

α̃
(u), thus

log LPR(θ)

=
[

n∑

i=1

log
∫

N (yi − xiβ

∣∣∣∣∣0,U
2
i ) −

n∑

i=1

log

{
N (yi − xiβ

∣∣0,U 2
i

fi−1,β(yi − xiβ)

}
Ψ

β

β̃
(u)d(u)

]

(6)

+
[

n∑

i=1

log
∫

N (yi − xiα

∣∣∣∣∣0,U
2
i ) −

n∑

i=1

log

{
N (yi − xiα

∣∣0,U 2
i

fi−1,α(yi − xiα)

}
Ψ α

α̃ (u)

]
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Where
	

α and
	

β are some estimate. Let rewrite Eq. (6) as Q1(β, α

∣∣∣
	

β,
	

α ) +
Q2(β, α

∣∣∣
	

β,
	

α ) where

Q1(β, α

∣∣∣
	

β,
	

α )=
[
0.5

n∑

i=1

w1,i (yi − xiβ)2 + β0

]
+

[
0.5

n∑

i=1

w2,i (yi − xiα)2+α0

]

Where wi is a weight which depend on mixing distribution and error term in each
step and can be computed by

	

w1,i =
∫

u−2Ψ α
i,α(u)du i f yt−d > ω

	

w2,i =
∫

u−2Ψ
β

i,β(u)du i f yt−d ≤ ω (7)

These weights is required to help the PR algorithm not too sensitive to the out-
lier. To maximize the PR marginal likelihood, we conducted PR-EM algorithm by
maximizing Q1 correspond to weighted least square.

2.4 Bayesian Inference on Threshold Autoregressive Model

The posterior estimation can be computed by combining these prior with the
likelihood function using Bayes theorem in order to compute the posterior. Let
Θ = α, β, σ 2

1 , σ 2
2 , the posterior estimation can be formed as following

Posterior probability ∝ likelihood x Prior probability

Pr(Θ,ω |yt , xt ) = Pr(yt , xt |Θ,ω)Pr(Θ,ω) (8)

Where the likelihood function is compute form the summation of normal density
distribution with mean equal xiα for regime 1 and xiβ for regime 2.

Following Chen and Lee [2], The Metropolis-Hasting (MH) sampler has been
employed to sample the initial parameters In this study, we use normal distribution
for parameter coefficient and threshold parameter. The distribution for variance is
assumed to be inverse gamma. To sample the initial parameters, Θ0 and ω0. The
MH algorithm is conducted to sampler from the posterior density, Pr(Θ,ω). The
proportion distribution for each parameters are generate be Gaussian distribution
and uniform distribution.
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2.4.1 Conditional Least Square on Threshold Autoregressive Model

The conditional least square (CLS) in the estimation method that minimize the sum
square errors of the model to obtain the estimated parameters [5]. Let E |Yt < ∞,

t = 1, ...N , Then the objection function for minimize sum square errors can be
written as:

Min Er(α, β, ω) =
N∑

i=1

[Y j − Eθ (Y j

∣∣Bj−1)]2

With respect to α, β, ω.

3 Simulation Study

In this section, we carry out the simulation study to evaluate the performance and
accuracy of the PR-EM algorithm. We proceed the simulation to examine the esti-
mation performance of this estimation applying in TARmodel. The simulation is the
realization of a simple two regime SETAR model. In this simulation, we generate
random data from this model specification:

yt = 0.2 + 0.6yt−1 + ε1,t i f yt−1 > 0.4

yt = 0.1 + 0.4yt−1 + ε1,t i f yt−1 > 0.4

Where the error terms are assumed to be normal distribution. We generate 200, 500,
and 1000 observations using the specified parameters. Figure1 shows the stationary
path of the simulated data from the specified parameter. In addition, we compare
our estimation method with parametric Conditional least square (CLS) and Bayesian
methods for robustness.

Tables1, 2 and 3 present the estimation result for the specified parameter in TAR
model, considering 3 sets of sample sizes. The result shows that TAR model can
be estimated well using PR-EM algorithm. For, N = 200, the estimated values of
the threshold is 0.3962, the lower regime coefficient are 0.910 and −0.3181 and the
upper regime coefficients are 0.2488 and 0.6442. These estimated parameters are
very close to the true values of 0.1 and −0.4 for lower regime and 0.2 and 0.6 for
upper regime. In addition, another 2 sets of sample size also present a closely value
of estimated parameters and true value. In this study, we also show the performance
of this estimation by comparing with other two methods namely, Conditional least
square (CLS) and Bayesian. The result show that the PR-EM algorithm is not the best
methodwhen compare with CLS and Bayesianmethods. Although, some of standard
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Fig. 1 Simulated path of the simulated data n = 200, 500, 1000

Table 1 The estimation result based on 200 sample sizes

Parameter True value Estimates
parameter

S.E. RMSE

PR-EM estimation

N = 200 β0 0.1 0.0910 0.1286 0.7911

β1 −0.4 −0.3181 0.2295

α0 0.2 0.2488 0.5644

α1 0.6 0.6442 0.1107

Threshold 0.3962

CLS estimation

β0 0.1 0.0750 0.1113 0.7793

β1 −0.4 −0.5526 0.1877

α0 0.2 0.1737 0.1445

α1 0.6 0.6212 0.1107

Threshold 0.2849

Bayesian estimation

β0 0.1 0.2096 0.1200 0.7841

β1 −0.4 −0.3786 0.2097

α0 0.2 0.1426 0.1496

α1 0.6 0.6424 0.1088

Threshold 0.4327

Source: Calculation
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Table 2 The estimation result based on 500 sample sizes

Parameter True value Estimates
parameter

S.E. RMSE

PR-EM estimation

N = 500 β0 0.1 0.1119 0.0742 0.7854

β1 −0.4 −0.2307 0.1038

α0 0.2 0.1783 0.093

α1 0.6 0.5969 0.0737

Threshold 0.3963

CLS estimation

β0 0.1 0.1439 0.0568 0.7823

β1 −0.4 −0.2733 0.0949

α0 0.2 0.2292 0.1143

α1 0.6 0.5623 0.0862

Threshold 0.4501

Bayesian estimation

β0 0.1 0.1353 0.0705 0.7825

β1 −0.4 −0.285 0.1184

α0 0.2 0.1961 0.0931

α1 0.6 0.5834 0.0712

Threshold 0.4476

Source: Calculation

error (S.E.) of estimated parameters from PR-RM algorithm are lower than other
methods. TheRootMeanSquare ofError (RMSE) of PR-EMalgorithm is a bit higher.
Interestingly, the PR-EM does not show evidence of completely competitive with
other methods. However, it is provide a good estimation and could be an alternative
estimation for TAR model. We expected that the assumption of normal distribution
on the error term in this simulation study may not give us the expected competitive
of PR-EM algorithm with other methods since these simulations are still assume
a normal error. Thus, we simulate the sample data with non-standard normal scale
mixture with respect to a uniform distribution which is illustrated in Fig. 2. We could
see that the semiparametric PR-EM algorithm present the lowest of S.E. and RMSE.
Therefore, we can conclude that if the error density function is non-normal, PR-EM
algorithm is outperform other two method (Table4).
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Table 3 The estimation result based on 1000 sample sizes

Parameter True value Estimates
parameter

S.E. RMSE

PR-EM estimation

N = 1000 β0 0.1 0.0541 0.0542 1.1525

β1 −0.4 −0.3144 0.0391

α0 0.2 0.1696 0.0700

α1 0.6 0.5885 0.0527

Threshold 0.3963

CLS estimation

β0 0.1 0.0801 0.0429 1.1482

β1 −0.4 −0.3572 0.0710

α0 0.2 0.2164 0.0802

α1 0.6 0.5571 0.0592

Threshold 0.4419

Bayesian estimation

β0 0.1 0.0806 0.0499 1.1501

β1 −0.4 −0.3558 0.0833

α0 0.2 0.1901 0.0722

α1 0.6 0.5733 0.0532

Threshold 0.4190

Source: Calculation

Fig. 2 Normal-Uniform
mixture density
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Table 4 The estimation result of TAR based mixture distribution

Parameter True value Estimates
parameter

S.E. RMSE

PR-EM estimation

N = 200 β0 0.1 0.6045 0.0749 0.4676

β1 −0.4 −0.1543 0.1527

α0 0.2 0.5873 0.0847

α1 0.6 0.5075 0.0660

Threshold 0.646

CLS estimation

β0 0.1 0.4662 0.0915 0.4687

β1 −0.4 −0.1598 0.1670

α0 0.2 0.5884 0.1305

α1 0.6 0.4687 0.1012

Threshold 0.6463

Bayesian estimation

β0 0.1 0.6148 0.1129 0.5132

β1 −0.4 −0.2035 0.1699

α0 0.2 0.5291 0.1610

α1 0.6 0.5070 0.1157

Threshold 0.4190

Source: Calculation

4 Application on Bangkok Stock Exchange
Index Forecasting

In this section apply the PR-EM to real data analysis which unknown any information
about error distribution.We demonstrate the use of PR-EM algorithm using Bangkok
Stock Exchange Index (SET). The data set is a daily time series data from January
2014 to October 2015 covering 443 observations (Fig. 3).

Fig. 3 Normal-Uniform mixture density
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In the estimation of TARmodel, it is important to find out an appropriate threshold
value in the data series. If the value of threshold is known, the estimation of TAR
model is surely available. Thus, with the unknown information the study proposed
a pooled AIC of Gonzalo and Pitarakis [6] for testing the threshold value in the data
series. Figure4 illustrates the grid search method and shows that the appropriate
autoregressive lag order for upper and lower regimes is lag 1 and the threshold value
takes place between 0.000 and −0.001, as presented by black dot plot. Thus, this
confirms that the data exhibit a non-linear trend.

According to the results of estimation presented in Table5, we observe that PR-
EM algorithm outperforms the CLS and Bayesian methods. The standard errors of
estimated parameters from PR-EM algorithm show the lowest value when compared
with the two parametric methods. Thus, we can conclude that PR-EM algorithm
can improve the estimation in TAR model. Moreover, we plot PR-EM weights (wi )
which are used for adjustment of the outlier data in Fig. 5b. The observationswith low
weights are presented as a low influence on the fitting of the regression. Conversely,
high weights are presented as a high influence. The PR-EM algorithm works well
with these weights. Figure5a also shows the histogram of residuals and we can
observe that the residuals have normal distribution. Surprisingly, the results seem to
be a bit different from simulation study with normal distribution case because the
standard error and RMSE for PR-EM algorithm are completely less than those from
CLS and Bayesian methods. We can say that though it is not the best performer in the
simulation study, it can be the alternative estimation for TAR model. Then, we plot

Fig. 4 Threshold value Pooled AIC
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Table 5 The estimation TAR result based on SET index

Parameter Estimates
parameter

S.E. RMSE

PR-EM estimation

β0 −0.0004 0.0001 0.0075

β1 −0.0707 0.0015

α0 0.0003 0.0001

α1 0.0615 0.0013

Threshold −0.0003

CLS estimation

β0 −0.0033 0.0568 0.0075

β1 −0.2787 0.0949

α0 0.0008 0.1143

α1 0.0046 0.0862

Threshold −0.0036

Bayesian estimation

β0 −0.0011 0.0014 0.0075

β1 −0.1203 0.1363

α0 0.0005 0.0008

α1 0.0396 0.0938

Threshold −0.001

Source: Calculation

Fig. 5 Histogram fromresiduals from TAR

the forecasts for SET index in Fig. 6 in order to evaluate the forecasting performance
of the estimation. The results show that the TAR model based PR-EM algorithm
produces a good forecast and it is competitive with other methods.
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Fig. 6 Forecasting SET index verses actual

5 Concluding Remarks

This paper proposes a flexible semiparametric estimation for Threshold autoregres-
sive model (TAR) where the error distribution is taken to be a general scale mixture
of normals with unknown mixing distribution. To estimate the parameters in the
TAR model, we maximize the PR-based likelihood function using hybrid PREM
algorithm which purposed by Martin and Han [9]. We conducted a simulation study
to evaluate the performance of the TARmodel base PR-EM algorithm and found that
it is not outperform in all cases, yet it is not dominated by other methods, namely
Conditional Least Square (CLS) and Bayesian. However, when we conduct another
simulated data based on Normal-Uniformmixture density, we found that the PR-EM
algorithm produce the best estimation in term of standard error and root mean square
error. In the last section, we apply the model to real data, Bangkok Stock Exchange
Index (SET). The result form this estimation is perform well.

For further study, in this study does not examine the PR-EM algorithm with other
mixing error distribution. We suggest to apply this estimation with other mixing
distribution. Furthermore, this estimation method can be apply to other model such
as a switching model, logit and probit regression model.

Acknowledgements The authors are grateful to Puay Ungphakorn Centre of Excellence in Econo-
metrics, Faculty of Economics, Chiang Mai University for the financial support.
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AMultivariate Generalized FGM Copulas
and Its Application to Multiple Regression

Zheng Wei, Daeyoung Kim, Tonghui Wang and Teerawut Teetranont

Abstract We introduce a class of multivariate non-exchangeable copulas which
generalizes many known bivariate FGM type copula families. The properties such
as moments, affiliation, association, and positive lower orthant dependent of the
proposed class of copula are studied. The simple-to-use multiple regression function
and multiple dependence measure formula for this new class of copulas are derived.
Several examples are given to illustrate the main results obtained in this paper.

1 Introduction

Copulas have been successfully applied tomany areas and becomemuchmorewidely
used in recent years. The study of copula functions has become a major phenomenon
in constructing joint distribution functions and modelling real multivariate data. In
particular, there is a great need in developing the multivariate nonexchangeable cop-
ulas in modeling the asymmetric and nonlinear dependence data. Several researchers
have put considerable efforts into developing multivariate asymmetric copulas [1, 2,
7, 9, 20, 23]. The purpose of this paper is to propose a class of non-exchangeable
multivariate copulas which generalizes many known copulas such as bivariate Farlie-
Gumbel-Morgenstern (FGM) family of copulas, the bivariate copulas proposed in
[19], the bivariate copulas with quadratic sections in [15] and with cubic sections in
[11], among others.
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Recently, the study of copula-based regression has drawn attention in different
fields. Sungur [17, 18] studied the directional dependence through the copula based
regression in bivariate case. In order to study the asymmetric dependence/interaction
between the variables of interest, the asymmetric copulas should be utilized. [14]
proposed the semiparametric estimation of the copula based regression. In non-
experimental field, the copula based regression has been applied in the research
context such as deficit hyperactivity disorder [4], gene expression network [3], and
the aggression in adolescence development analysis [5]. In this paper, we derive
the simple-to-use multiple regression formula based on the proposed class of non-
exchangeable multivariate copulas.

Copulas, multivariate distributions with standard uniform marginals, contain the
most information on the multivariate dependence structure independent of the mar-
ginals of the variables. References for a detailed overview of copula theory and
applications, see [2, 13, 21, 22, 24].

Definition 1.1 [13] A (k + 1)-dimensional copula is a function C : [0, 1]k+1 �→
[0, 1] satisfying following properties:

(a) C is grounded, i.e., if at least one ui = 0, C(u0, u1, . . . , uk) = 0;
(b) For every ui ∈ [0, 1], C(1, . . . , 1, ui , 1, . . . , 1) = ui ;
(c) C is (k + 1)-increasing in the sense that, for any J =

k∏
i=0

[ui , vi ] ⊆ [0, 1]k+1

with ui , vi ∈ [0, 1],

volC(J ) =
∑

a

sgn(a)C(a) ≥ 0,

where the summation is over all vertices a of J , and for a = (a0, a1, . . . , ak)T , with
(a0, a1, . . . , ak)T is the transpose of (a0, a1, . . . , ak)T , and ai = ui or vi ,

sgn(a) =
{
1, if ai = vi for an even number of i ′s,
−1, if ai = vi for an odd number of i ′s.

The exchangeability is a type of symmetric assumption commonly used in the
copula literatures [13].

Definition 1.2 [8] A (k + 1)-copula C is exchangeable if it is the distribu-
tion function of a (k + 1)-dimensional exchangeable uniform random vector U =
(U0,U1, . . . ,Uk)

T satisfying C(u0, u1, . . . , uk) = C(uσ(0), uσ(1), . . . , uσ(k)) for all
σ ∈ Γ , where Γ denotes the set of all permutations on the set {0, 1, . . . , k}.

2 The Family of Multivariate Generalized FGM Copulas

[19] describes a wide class of bivariate copulas depending on two univariate func-
tions of the following form, C(u, v) = uv + f (u)g(v). It generalizes many known
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bivariate families such as the Farlie-Gumbel-Morgenstern distributions. We propose
a multivariate non-exchangeable copula by extending the work of [19].

Proposition 2.1 Let fi , i = 0, 1, . . . , k, be (k + 1) non-zero real functions defined
on [0, 1]. Let C be the function on [0, 1]k+1 given by

C(u0, u1, . . . , uk) =
k∏

i=0

ui +
k∏

i=0

fi (ui ). (1)

Then C is a copula if and only if
(1) fi (0) = fi (1) = 0, i = 0, 1, . . . , k;
(2) fi is absolutely continuous, i = 0, 1, . . . , k; and

(3) min

{
k∏

i=0
f ′
i (ui )

}
≥ −1; i.e., min

�≤k:� is odd

{
Ki1 , Ki1,i2,i3 , . . . , Ki1,...,i�

} ≥ −1, where

Ki1,...,it = ∏
j∈{i1,...,it }

α j × ∏
j /∈{i1,...,it }

β j , t ≤ k is an odd number, αi = inf{ f ′
i (ui );

ui ∈ Ai }<0, and βi= sup
{
f ′
i (ui ); ui ∈ Ai

}
> 0, with Ai = {

ui ∈ I ; f ′
i (ui ) exists

}

and f ′
i (ui ) denotes the derivative of fi , for i = 0, 1, . . . , k. Furthermore, in such a

case, C in Eq. (1) is absolutely continuous.

Proof It is easy to say that the function given by Eq. (1) satisfies the boundary
conditions in definition of copula if and only if fi (0) = fi (1) = 0, i = 0, 1, . . . , k.
We will show that the copula C is (k + 1)-increasing if and only if (2) and (3) holds.
First, we assume the function C defined by Eq. (1) is an n-copula, and we want to
show (2) and (3) holds. Let Fi (x, y), i = 0, 1, . . . , k, denote the functions defined
on the set T = {

(x, y) ∈ [0, 1]2|x < y
}
by

Fi (x, y) = fi (y) − fi (x)

y − x
, for i = 0, 1, . . . , k.

Then, C is (k + 1)-increasing if and only if

− 1 ≤
n∏

i=1

Fi (ui , vi ). (2)

Hence, C is (k + 1)-increasing if and only if the following inequalities holds:

−1 ≤ Li1,−1 ≤ Li1i2i3 , . . . ,−1 ≤ Li1...i� ,

where Li1...it = ∏
j∈{i1,...,it }

γ j × ∏
j /∈{i1,...,it }

δ j , t ≤ n is an odd number, γi =
inf {Fi (ui , vi ) : ui<vi , fi (ui ) > fi (vi )} and δi = sup{Fi (ui , vi ) : ui < vi , fi (ui ) <

fi (vi )}, i = 0, 1, . . . , k. Since fi (0) = fi (1) = 0 and fi ’s are non-zero, the sets
above are non-empty. Also, since Eq. (2) holds for all (ui , vi ) ∈ T , we know that
Fi (ui , vi ) is bounded and therefore fi (ui ) is absolute continuous for i = 0, 1, . . . , k.
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Furthermore, we have

γi = inf{Fi (ui , vi ) : ui < vi , fi (ui ) > fi (ui )} = inf{Fi (ui , vi ) : ui < vi }
= inf{ f ′

i (u), u ∈ A} = αi < 0,

δi = sup{Fi (ui , vi ) : ui < vi , fi (ui ) < fi (ui )} = sup{Fi (ui , vi ) : ui < vi }
= sup{ f ′

i (u), u ∈ A} = βi > 0.

In summary, we have shown that if C is a copula, then (1), (2), and (3) are true.
Conversely, the proof follows the same steps backwards, which completes the proof.

Remark 2.1 The copula given in Eq. (1) is exchangeable if and only if there exists
constant Ki such that fi (u) ≡ Ki f0(u) for all u ∈ [0, 1], and i ∈ {1, . . . , k}.
In the following, the set of copulas characterized in Proposition 2.1 will be called
the multivariate non-exchangeable generalized FGM copula, denoted by C. The
following corollary, whose proof is straightforward, provides the multivariate non-
exchangeable FGM parametric copula.

Corollary 2.1 Let fi , i = 0, 1, . . . , k, be (k + 1) non-zero real functions defined on
[0, 1]. Let C be the function on [0, 1]k+1 given by

C(u0, u1, . . . , uk) =
k∏

i=0

ui + θ

k∏

i=0

fi (ui ). (3)

Then C is a copula if and only if

−1/max

{
k∏

i=0

f ′
i (ui )

}
≤ θ ≤ −1/min

{
k∏

i=0

f ′
i (ui )

}
.

In the following, we provide a trivariate non-exchangeable copula which extends
the Example 4.1. given in [19].

Example 1 Let C1(u0, u1, u2) = u0u1u2 + f0(u0) f1(u1) f2(u2), where fi (ui ) =
u pi
i (1 − ui )qi for i = 0, 1, 2. After some calculations, we get inf{ f ′

i (ui )} = αi , and
sup{ f ′

i (ui )} = βi , for i = 0, 1, 2, where

αi = −
(

pi
pi + qi

)pi−1 (
1 +

√
qi

pi (pi + qi − 1)

)pi−1 (
qi

pi + qi

)qi−1

×
(
1 −

√
pi

qi (pi + qi − 1)

)qi−1 √
piqi

pi + qi − 1
,

and
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βi =
(

pi
pi + qi

)pi−1 (
1 −

√
qi

pi (pi + qi − 1)

)pi−1 (
qi

pi + qi

)qi−1

×
(
1 +

√
pi

qi (pi + qi − 1)

)qi−1 √
piqi

pi + qi − 1
.

From Proposition 2.1, C1 is a copula if and only if pi ≥ 1, qi ≥ 1, for i = 0, 1, 2.
When the associated copula is givenbyC2(u0, u1, u2) = u0u1u2 + θ f0(u0) f1(u1) f2(u2),

where fi (ui ) = u pi
i (1 − ui )qi , pi ≥ 1, qi ≥ 1, by Corollary 2.1, C2 is a copula if

and only if −1/max

{
k∏

i=0
f ′
i (ui )

}
≤ θ ≤ −1/min

{
k∏

i=0
f ′
i (ui )

}
. For instance, let

f0(u0) = u0(1 − u0), f1(u1) = u21(1 − u1), and f2(u2) = u2(1 − u2)2. It is easy to

check min

{
k∏

i=0
f ′
i (ui )

}
= −1 and max

{
k∏

i=0
f ′
i (ui )

}
= 1. Therefore, in this case we

have θ ∈ [−1, 1].

3 Properties of the New Class of Multivariate Generalized
FGM Copulas

In this section, we study several properties of the multivariate generalized FGM
copula proposed in Eq. (1). The joint product moments and multivariate version of
association measures formulas are obtained. Furthermore, the multivariate depen-
dence properties are investigated, such as affiliation, left tail decreasing, right tail
increasing, stochastically increasing and positive lower orthant dependent.

First, the joint product moments below follows immediately from the definition
of the copulas in Eq. (1).

Theorem 3.1 Let U = (U0,U1, . . . ,Uk)
T be a random vector of (k + 1) uniform

random variables on [0, 1] with associated copula C ∈ C Eq. (1). Then, for any
ni ≥ 1,

E

(
k∏

i=0

Uni
i

)
=

k∏

i=0

1

ni + 1
+

k∏

i=0

ni

∫ 1

0
uni−1
i fi (ui )dui .

Continuence of Example 1 Consider the copula C(u0, u1, u2) = u0u1u2 + f0(u0)
f1(u1) f2(u2), where fi (ui ) = u pi

i (1 − ui )qi and pi ≥ 1, qi ≥ 1, for i = 0, 1, 2.
From Theorem 3.1, for any ni ≥ 1,

E
(
Un0

0 Un1
1 Un2

2

) =
2∏

i=0

1

ni + 1
+

2∏

i=0

ni Beta(ni + pi , qi + 1),

where Beta(a, b) = ∫ 1
0 ta−1(1 − t)b−1dt .
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The most common non-parametric measures of association between the compo-
nents of multivariate random vector are Kendall’s tau and Spearman’s rho. These
measures depend only on their associated copula. The population version of the
multivariate of Spearman’s rho ([16]) is

ρC = hρ(k + 1)

(
2k+1

∫

I n
C(u0, u1, . . . , uk)du0 . . . duk − 1

)
,

where hρ(n) = n+1
2n−(n+1) . Multivariate Kendalls tau has the form (see [12]),

τC = hτ (k + 1)

(∫

I n
C(u0, u1, . . . , uk)dC(u0, u1, . . . , uk) − 1

2k+1

)
,

where hτ (n) = 2n

2n−1−1 . The following theorem provides the expressions of multivari-
ate concordance measures for the proposed family of copulas in Eq. (1).

Theorem 3.2 Let U = (U0,U1, . . . ,Uk)
T be a random vector of (k + 1) uniform

random variables on [0, 1] with associated copula C ∈ C in Eq. (1). Then the val-
ues of multivariate Spearman’s rho and multivariate Kendall’s tau are respectively
given by,

ρC = hρ(k + 1)2k+1
k∏

i=0

∫ 1

0
fi (ui )dui ,

and

τC = hτ (k + 1)((−1)k+1 + 1)
k∏

i=0

∫ 1

0
fi (ui )dui .

Proof By the definition of Spearman’s rho,

ρC = hρ(k + 1)

(
2k+1

∫

I n
C(u0, u1, . . . , uk)du0 . . . duk − 1

)

= hρ(k + 1)2k+1

(
1

2k+1
+

k∏

i=0

∫ 1

0
fi (ui )dui − 1

)

= hρ(k + 1)2k+1
k∏

i=0

∫ 1

0
fi (ui )dui .

For multivariate Kendall’s tau, we observe that
∫ 1
0 fi (ui ) f ′

i (ui )dui = 0, then
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Table 1 Spearman’s rho ρ for p0 = q0 = 1.

p1, q1 p2, q2
1, 1 1, 1.5 1, 2 1.5, 1 1.5, 1.5 1.5, 2 2, 1 2, 1.5 2, 2

1, 1 .037 .025 .019 .025 .016 .011 .019 .011 .007

1, 1.5 .025 .017 .013 .017 .011 .008 .013 .008 .005

1, 2 .019 .013 .009 .013 .008 .006 .009 .006 .004

1.5, 1 .025 .017 .013 .017 .011 .008 .013 .008 .005

1.5, 1.5 .016 .011 .008 .011 .007 .005 .008 .005 .003

1.5, 2 .011 .008 .006 .008 .005 .003 .006 .003 .002

2, 1 .019 .013 .009 .013 .008 .006 .009 .006 .004

2, 1.5 .011 .008 .006 .008 .005 .003 .006 .003 .002

2, 2 .007 .005 .004 .005 .003 .002 .004 .002 .001

τC = hτ (k + 1)

(∫

I n
C(u0, u1, . . . , uk)dC(u0, u1, . . . , uk) − 1

2k+1

)

= hτ (k + 1)

(∫

I n
(

k∏

i=0

ui +
k∏

i=0

fi (ui ))(1 +
k∏

i=0

f ′
i (ui ))du0 . . . duk − 1

2k+1

)

= hτ (k + 1)((−1)k+1 + 1)
k∏

i=0

∫ 1

0
fi (ui )dui .

Continuence of Example 2 1 Consider the copula given in Example 1,

C(u0, u1, u2) = u0u1u2 + u p0
i (1 − u0)

q0u p1
1 (1 − u1)

q1u p2
2 (1 − u2)

q2 .

FromTheorem3.2,ρC = 8
2∏

i=0
Beta(pi + 1, qi + 1) and τC = 0,where Beta(a, b) =

∫ 1
0 ta−1(1 − t)b−1dt . Table1 shows the Spearman’s rho for various combinations of
pi and qi .

In the followings, we give the definitions of several well-known multivariate
dependence properties and study them for the proposed family of copulas in Eq. (1).

Definition 3.1 [13] A (k + 1)-copula C is said to be positive lower orthant

dependent (PLOD) ifC(u0, u1, · · · , uk) ≥
k∏

i=0
ui holds for all u = (u0, u1, . . . , uk)

∈ [0, 1]k+1. For the case of k = 1,C is calledpositivelyquadrantdependent (PQD).
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Theorem 3.3 Let U = (U0,U1, . . . ,Uk)
T be a random vector of (k + 1) uniform

random variables on [0, 1]with associated copula C ∈ C in Eq. (1). ThenU is PLOD

if and only if
k∏

i=0
fi (ui ) ≥ 0.

Note that the copula C1(u0, u1, u2) = u0u1u2 + u p0
i (1 − u0)q0u

p1
1 (1 − u1)q1u

p2
2

(1 − u2)q2 given in Example 1 is PLOD. Furthermore, the parametric copula C2(u0,
u1, u2) = u0u1u2 + θu p0

i (1 − u0)q0u
p1
1 (1 − u1)q1u

p2
2 (1 − u2)q2 given in Example 1

is PLOD if and only if θ ≥ 0.

Definition 3.2 [2] Let U = (U0,U1, . . . ,Uk)
T be a (k + 1)-dimensional random

vector and let the sets A and B be a partition of {0, 1, . . . , k}, U A = (Ui : i ∈ A)

and U B = (Ui : i ∈ B).

(1) U B is left tail decreasing in U A (denoted by LT D(U B |U A)) if P(U B ≤
uB |U A ≤ uA) is non-increasing in each component of uA for all uB .

(2) U B is right tail increasing in U A (denoted by RT I (U B |U A)) if P(U B >

uB |U A > uA) is non-decreasing in each component of uA for all uB .
(3) U B is stochastically increasing in U A (denoted by SI (U B |U A)) if P(U B ≤

uB |U A = uA) is non-decreasing in each component of uA for all uB .

The next result shows the multivariate positive dependence properties for the
proposed family of copulas in Eq. (1).

Theorem 3.4 Let U = (U0,U1, . . . ,Uk)
T be a random vector of (k + 1) uniform

random variables on [0, 1] with associated copula C ∈ C given in Eq. (1), where
fi (ui ), i = 0, 1, . . . , k, in C are assumed to be non-negative. Let the sets A and B
be a partition of {0, 1, . . . , k}, U A = (Ui : i ∈ A) and U B = (Ui : i ∈ B). Then,

(i) LT D(U B |U A) if and only if fi (ui ) ≥ ui f ′
i (ui ) for all ui ∈ [0, 1] and for every

i ∈ A.
(ii) RT I (U B |U A) if and only if fi (ui ) ≥ (ui − 1) f ′

i (ui ) for all ui ∈ [0, 1] and for
every i ∈ A.

(iii) S I (U B |U A) if and only if (−1)k+1 f ′′
i (ui )

∏
j∈A\{i}

f ′
j (u j ) ≥ 0, for all ui , u j ∈

[0, 1] and for every i ∈ A.

Proof (i) We observe that all the m-dimensional margins of the copula C2 are inde-
pendent copulas. We have

P(U B ≤ uB |U A ≤ uA) =
∏

i∈B
ui +

∏

i∈B
fi (ui )

∏

i∈A

[ fi (ui )/ui ].

For any j ∈ A,

∂P(U B ≤ uB |U A ≤ uA)

∂u j
=

∏

i∈B
fi (ui )

∏

i∈A\{ j}
[ fi (ui )/ui ]

(
f ′
j (u j )u j − f j (u j )

u2j

)
.
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Thus, f j (u j ) ≥ u j f ′
j (u j ) for all u j ∈ [0, 1] implies P(U B ≤ uB |U A ≤ uA) is non-

increasing in u j , which completes the proof for (i).
(ii) The survival function C̄ of U is P(U0 > u0,U1 > u1, . . . ,Uk > uk) =

k∏
i=0

(1 − ui ) + (−1)k+1 fi (ui ). We have,

P(U B > uB |U A > uA) =
∏

i∈B
(1 − ui ) +

(
∏

i∈B
fi (ui )

)⎛

⎝
∏

j∈A

f j (u j )

(1 − u j )

⎞

⎠ .

For any j ∈ A,

∂P(U B > uB |U A > uA)

∂u j
=

(
∏

i∈B
fi (ui )

) ⎛

⎝
∏

i∈A\{ j}

fi (ui )

1 − ui

⎞

⎠
(

f ′
j (u j )(1 − u j ) + f j (u j )

u2j

)
.

Thus, f j (u j ) ≥ (1 − u j ) f ′
j (u j ) for all u j ∈ [0, 1] implies P(U B > uB |U A > uA)

is non-decreasing in u j , which completes the proof for (ii).
(iii) Since the survival function C̄ of U is P(U0 > u0,U1 > u1, . . . ,Uk > uk) =

k∏
i=0

(1 − ui ) + (−1)k+1 fi (ui ), we have

P(U B > uB |U A = uA) =

(−1)|A| ∏

i∈B
(1 − ui ) + (−1)k+1

(
∏

i∈B
fi (ui )

)(
∏

i∈A

f ′
i (ui )

)
.

Thus, for any j ∈ A,

∂P(U B > uB |U A = uA)

∂u j
= (−1)k+1

(
∏

i∈B
fi (ui )

)
f ′′
j (u j )

⎛

⎝
∏

i∈A\{ j}
f ′
i (ui )

⎞

⎠

which completes the proof for (iii).

Continuence of Example 3 1 Consider the copulaC1(u0, u1, u2) = u0u1u2 + f0(u0)
f1(u1) f2(u2), where fi (ui ) = u pi

i (1 − ui )qi and pi ≥ 1, qi ≥ 1, for i = 0, 1, 2. Let
A = {1, 2} and B = {0}. From Theorem 3.4, it is easy to see that C is LT D(UB |UA)

if and only if p1 = p2 = 1, and C is RT I (UB |UA) if and only if q1 = q2 = 1.
Furthermore, f ′

i (ui ) = u pi−1
i (1 − ui )qi−1(pi − (pi + qi )ui ) could be negative or

positive for any pi and qi , therefore, C is not SI (U B |U A) for any pi ≥ 1 and
qi ≥ 1. The same results apply for the parametric copula proposed in Corollary 2.1,
C2(u0, u1, u2) = u0u1u2 + θu p0

i (1 − u0)q0u
p1
1 (1 − u1)q1u

p2
2 (1 − u2)q2 when θ ≥ 0.
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Note that the copulas C1 and C2 are exchangeable if and only if p0 = p1 = p2 and
q0 = q1 = q2.

In the following definition of affiliated copulas, for column vectors x = (x0,
. . ., xk)T , y = (y0, . . . , yk)T ∈ Rk+1, let x ∨ y = (max{x0, y0}, . . . ,max{xn, yn})T
and x ∧ y = (min{x0, y0}, . . . ,min{xk, yk})T . A function f : Rn → R is said to
be multivariate totally positive of order two(MTP2) if it satisfies f (x) f ( y) ≤
f (x ∨ y) f (x ∧ y), for x, y ∈ Rn . MTP2 is an interesting property studied by [6].
The importance of the affiliation properties in application of auction theory can be
found in [10]. It is true that the random vector X is affiliated if and only if its
corresponding copula is affiliated. The affiliation is a strong positive dependence
property among the elements of a random vector, a copula C is affiliated implies C
is associated and PLOD [22].

Definition 3.3 A copula C(u0, · · · , uk) is said to be affiliated if for all u =
(u0, . . . , uk)T and v = (v0, . . . , vk)

T in [0, 1]k+1,

c(u)c(v) ≤ c(u ∨ v)c(u ∧ v) (4)

holds where c(u0, · · · , uk) = ∂k+1C(u0,··· ,uk )
∂u0...∂uk

is the copula density function.

The following result gives a characterization of the affiliation property for the
proposed family of copulas in Eq. (1).

Theorem 3.5 Let U = (U0,U1, . . . ,Uk)
T be a random vector of (k + 1) uniform

random variables on [0, 1] with associated copula C ∈ C in Eq. (1), where fi (ui ),
i = 0, 1, . . . , k, in C are non-negative. Then, U is affiliated if and only if for any
partition A and B of {0, 1, . . . , k}, U A = (Ui : i ∈ A) and U B = (Ui : i ∈ B),

f ′′
i (ui )

∏

j∈A\{i}
f ′
j (u j ) and f ′′

i (ui )
∏

j∈B\{i}
f ′
j (u j )

are both positive or both negative for all ui , u j ∈ [0, 1] and for every i in A and B.

Proof Let u = (u0, . . . , uk)T and v = (v0, . . . , vk)
T in [0, 1]k+1. Let A = {i |max

(ui , vi ) = ui } and B = {i |max(ui , vi ) = vi } be the partition for {0, 1, . . . , k}. We
can rewrite the density functions as follows,

c(u ∨ v) = 1 +
∏

i∈A
j∈B

f ′
i (ui ) f

′
j (v j ) and c(u ∧ v) = 1 +

∏

i∈AC

j∈BC

f ′
i (ui ) f

′
j (v j ).

Thus,
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c(u ∨ v)c(u ∧ v) − c(u)c(v)

=
⎛

⎝1 +
∏

i∈A, j∈B
f ′
i (ui ) f

′
j (v j )

⎞

⎠

⎛

⎝1 +
∏

i∈AC , j∈BC

f ′
i (ui ) f

′
j (v j )

⎞

⎠

−
(
1 +

n∏

i=1

f ′
i (ui )

)(
1 +

n∏

i=1

f ′
i (vi )

)

=
⎛

⎝1 +
n∏

i=1

f ′
i (ui ) f

′
i (vi ) +

∏

i∈AC , j∈BC

f ′
i (ui ) f

′
j (u j ) +

∏

i∈A, j∈B
f ′
i (ui ) f

′
j (u j )

⎞

⎠

−
(
1 +

n∏

i=1

f ′
i (ui ) f

′
i (vi ) +

n∏

i=1

f ′
i (ui ) +

n∏

i=1

f ′
i (vi )

)

=
⎛

⎝
∏

i∈A, j∈B
f ′
i (ui ) f

′
j (v j ) +

∏

i∈AC , j∈BC

f ′
i (ui ) f

′
j (v j ) −

n∏

i=1

f ′
i (ui ) −

n∏

i=1

f ′
i (vi )

⎞

⎠

=
(

∏

i∈A

f ′
i (ui ) −

∏

i∈A

f ′
i (vi )

) ⎛

⎝
∏

j∈B
f ′
j (v j ) −

∏

j∈B
f ′
j (u j )

⎞

⎠

Thus, f ′′
i (ui )

∏
j∈A\{i}

f ′
j (u j ) and f ′′

i (ui )
∏

j∈B\{i}
f ′
j (u j ) are both positive or both

negative for all ui , u j ∈ [0, 1] and for every i in A and B if and only if c(u ∨
v)c(u ∧ v) − c(u)c(v) ≥ 0, which completes the proof.

Continuence of Example 4 1 Consider the copula C(u0, u1, u2) = u0u1u2 + f0(u0)
f1(u1) f2(u2), where fi (ui ) = u pi

i (1 − ui )qi and pi ≥ 1, qi ≥ 1, for i = 0, 1, 2. Let
A = {0} and B = {1, 2}. Note that the second derivative of fi (ui ) is
f ′′
i (ui ) = u pi−2

i (1 − u)qi−2{[(pi − 1) − (pi + qi − 2)ui ][pi − (pi + qi )ui ] − (pi +
qi )ui (1 − ui )}. It is easy to see if pi = qi = 1 for i = 1, 2, f ′′

1 (u1) f ′
2(u2) = −2(1 −

2u2) could be either positive or negative. Therefore, C is not affiliated in this case.
Also note that [(pi − 1) − (pi + qi − 2)ui ][pi − (pi + qi )ui ] − (pi + qi )ui (1 −
ui ) is a quadratic function of ui which could be either positive or negative for all cases
when pi > 1, qi > 1, pi = 1, qi > 1, and pi > 1, qi = 1. Thus, by Theorem 3.5, the
copula C is not affiliated for any pi ≥ 1 and qi ≥ 1.

The following Example is a trivariate extension of the Example 2.1 given in [19].

Example 2 Letm0,m1,m2 be positive real numbers such thatm0m1m2 > 1, and let

f0(u0) =
{
m0u0, 0 ≤ u0 ≤ 1

m0m1m2
,

1−u0
m1m2

, 1
m0m1m2

≤ u0 ≤ 1,
f1(u1) =

{
m1u1, 0 ≤ u1 ≤ 1

m0m1m2
,

1−u1
m0m2

, 1
m0m1m2

≤ u1 ≤ 1,



374 Z. Wei et al.

and

f2(u2) =
{
m2u2, 0 ≤ u2 ≤ 1

m0m1m2 ,
1−u2
m0m1

, 1
m0m1m2 ≤ u2 ≤ 1.

In this case, α0 = − 1
m1m2

, α1 = − 1
m0m2

, α2 = − 1
m0m1

, and βi = mi for i = 0, 1, 2.
By Proposition 2.1, we know that the function defined by C(u0, u1, u2) = u0u1u2 +
f0(u0) f1(u1) f2(u2) is a copula. Furthermore, by Theorem 3.5, we know that C is
affiliated.

4 Multiple Regression Using Non-exchangeable
Multivariate Copula

Sungur [17, 18] studied the directional dependence through the biavriate non-
exchangeable copula-based regression. However, the analysis of directional depen-
dence are often needed in the setting of multivariate data. This section shows how the
generalized multivariate FGM copulas can be used in multivariate regression setting
and proposes the simple-to-use multiple regression formulas based on the proposed
generalized multivariate FGM copulas.

We first define the copula-based multiple regression function. For a (k + 1)-
copula C(u0, u1, . . . , uk) of the (k + 1) uniform random variates U0 and U =
(U1, . . . ,Uk)

T , the copula-based multiple regression function of U0 on U = u
is defined by

rC
U0 |U (u) ≡ E(U0|U = u) =

∫ 1

0
u0

c(u0, u1, . . . , uk)

cU (u)
du0 (5)

= 1 − 1

cU (u)

∫ 1

0
CU0 |U (u0)du0,

where CU (u) = C(1, u1, . . . , uk) is the marginal distribution of U , and

c(u0, u1, . . . , uk) = ∂k+1C(u0, u1, . . . , uk)

∂u0∂u1 · · · ∂uk , cU (u) = ∂kCU (u)

∂u1 · · · ∂uk ,

CU0 |U (u0) = ∂kC(u0, u1, . . . , uk)

∂u1 · · · ∂uk
are the joint copula density of U0 and U , the marginal copula density of U and the
conditional distribution of U0 given U , respectively.

The following proposition gives a basic property of the copula-based multiple
regression function for uniform random variates.
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Proposition 4.1 [23] Let rC
U0 |U (u) be the copula-based multiple regression function

of U0 on U . Then

E[rC
U0 |U (U)] = 1

2
.

In order to quantitatively measure the directional dependence given the copula-
based multiple regression, say rC

U0 |U (ω), [23] proposed the following multiple depen-
dence measure,

ρ2
(U→U0)

=
Var(rC

U0 |U (U))

Var(U0)
=

E[(rC
U0 |U (U) − 1/2)2]

1/12
(6)

= 12E[(rC
U0 |U (U))2] − 3.

If U0,U1, . . . ,Uk are independent, then the copula-based multiple regression func-
tion in Eq. (5) is equal to 1/2 (e.g., rC

U0 |U (u) = 1/2) and so the corresponding depen-
dence measure in Eq. (6) is zero.

Using the proposed multivariate non-exchangeable copula in Eq. (1), the theorem
below gives the closed forms of copula-based regression functions.

Theorem 4.1 For the proposed copula C ∈ C given in Eq. (1), the copula regression
function is

rC
U0 |U (u) = 1

2
−

k∏

i=1

f ′
i (ui )

1∫

0

f0(u0)du0.

Proof For the generalized FGM copula C ∈ C family given in (1), we have

∂kC(u0, . . . , uk)

∂u1 . . . ∂uk
= ∂k

∂u1 . . . ∂uk

(
k∏

i=0

ui +
k∏

i=0

fi (ui )

)
= u0 + f0(u0)

k∏

i=1

f ′
i (ui ).

Note that themarginal copula density cU (u) = 1. Therefore, the copula based regres-
sion function is

rC
U0 |U (u1, . . . , uk) = 1 − 1

cU (u)

1∫

0

(
u0 + f0(u0)

k∏

i=1

f ′
i (ui )

)
du0

= 1

2
−

k∏

i=1

f ′
i (ui )

1∫

0

f0(u0)du0.
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Continuence of Example 5 1
Let fi (ui ) = u pi

i (1 − ui )qi , i = 0, 1, 2. Consider the copula C is given by

C(u0, u1, u2) = u0u1u2 + u p0
0 (1 − u0)

q0u p1
1 (1 − u1)

q1u p2
2 (1 − u2)

q2 .

From Theorem 4.1, the closed forms of the copula-based regression functions are

rC
U0 |U1 ,U2

(u1, u2) = 1

2
− Beta(p0 + 1, q0 + 1)

2∏

i=1

(1 − ui )
qi−1[pi − (pi + qi )ui ],

rC
U1 |U0 ,U2

(u0, u2) = 1

2
− Beta(p1 + 1, q1 + 1)

∏

i=0,2

(1 − ui )
qi−1[pi − (pi + qi )ui ],

rC
U2 |U0 ,U1

(u0, u1) = 1

2
− Beta(p2 + 1, q2 + 1)

1∏

i=0

(1 − ui )
qi−1[pi − (pi + qi )ui ].

We also obtain the closed-form formulas for the dependence measures in Eq. (6) for
the copula-based regression functions derived above,

ρ2
(U1 ,U2→U0)

= 12Beta(p0 + 1, q0 + 1)2g(p1, q1)g(p2, q2),

ρ2
(U0 ,U2→U1)

= 12Beta(p1 + 1, q1 + 1)2g(p0, q0)g(p2, q2),

ρ2
(U0 ,U1→U2)

= 12Beta(p2 + 1, q2 + 1)2g(p0, q0)g(p1, q1),

where g(p, q) = p2Beta(2p − 1, 2q + 1) − 2pqBeta(2p, 2q) + q2Beta(2p + 1,
2q − 1). Tables2 and 3 show the dependence measures of ρ2

(U1 ,U2→U0)
for various

pi and qi .

Table 2 ρ2
(U1,U2→U0)

for
p1 = q1 = p2 = q2 = 1.

q0 p0
1 1.5 2

1 0.037 0.017 0.009

1.5 0.017 0.007 0.003

2 0.009 0.003 0.002
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Table 3 ρ2
(U1,U2→U0)

for p0 = q0 = 1.

p1, q1 p2, q2
1, 1 1, 1.5 1, 2 1.5, 1 1.5, 1.5 1.5, 2 2, 1 2, 1.5 2, 2

1, 1 .037 .021 .015 .021 .008 .005 .015 .005 .002

1, 1.5 .021 .012 .008 .012 .005 .003 .008 .003 .001

1, 2 .015 .008 .006 .008 .003 .002 .006 .002 .001

1.5, 1 .021 .012 .008 .012 .005 .003 .008 .003 .001

1.5, 1.5 .008 .005 .003 .005 .002 .003 .003 .001 .001

1.5, 2 .005 .003 .002 .003 .001 .001 .002 .001 0

2, 1 .015 .008 .006 .008 .003 .002 .006 .002 .001

2, 1.5 .005 .003 .002 .003 .001 .001 .002 .001 0

2, 2 .002 .001 .001 .001 .001 0 .001 0 0
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Part III
Applications



Key Economic Sectors and Their Transitions:
Analysis of World Input-Output Network

T.K. Tran, H. Sato and A. Namatame

Abstract In the modern society, all major economic sectors have been connected
tightly in an extremely complicated global network. In this type of network, a small
shock occurred at certain point can be spread instantly through thewhole network and
may cause catastrophe. Production systems, traditionally analyzed as almost
independent national systems, are increasingly connectedonaglobal scale. Theworld
input-output database, only recently becoming available, is one of the first efforts to
construct the global and multi-regional input-output tables. The usual way of iden-
tifying key sectors in an economy in Input-output analysis is using Leontief inverse
matrix to measure the backward linkages and the forward linkages of each sector. In
other words, evaluating the role of sectors is performed by means of their centrality
assessment. Network analysis of the input-output tables can give valuable insights
into identifying the key industries in a world-wide economy. The world input-output
tables are viewed as complex networks where the nodes are the individual industries
in different economies and the edges are the monetary goods flows between indus-
tries. We characterize a certain aspect of centrality or status that is captured by the
network measure. We use an α-centrality modified method to the weighted directed
network. It is used to identify both how a sector could be affected by other sectors
and how it could infect the others in the whole economy. The data used is the world
input-output table, part of the world input-output database (WIOD) funded by Euro-
pean Commission from 1995 to 2011.We capture the transition of key industries over
years through the network measures. We argue that the network structure captured
from the input-output tables is a key in determiningwhether and howmicroeconomic
expansion or shocks propagate throughout the whole economy and shape aggregate
outcomes. Understanding the network structure of world input-output data can better
inform on how the world economy grows as well as how to prepare for and recover
from adverse shocks that disrupt the global production chains. Having analyzed these
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results, the trend of these sectors in that range of time will be used to reveal how the
world economy changed in the last decade.

Keywords Production network · α Centrality ·Amplification Index ·Vulnerability
Index · Key industrial sector ·World input output network

1 Introduction

In the modern society, all major economic sectors have been connected tightly in
an extremely complicated global network. In this type of network, a small shock
occurred at certain point can be spread instantly through the whole network and may
cause catastrophe. The usual way of identifying key sectors in an economy in Input-
output analysis is using Leontief inverse matrix to measure the backward linkages
and the forward linkages of each sector. The input-output table initially formalized by
Leontief [12] has been used extensively by economists, environmentalists, and policy
makers. By keeping track of the inter-industrial relationships, the input-output table
offers a reasonably accurate measurement of the response of any given economy in
the face of external shocks or policy interventions.

The fundamental underlying relationship of input-output analysis proposed by
Leontief is that the amount of a product (good or service) produced by a given sector
in the economy is determined by the amount of that product that is purchased by all the
users of the product. By its nature, input-output analysis encompasses all the formal
market place activity that occurs in an economy, including the service sector which is
frequently poorly represented. Consequently, input-output analysis frequently plays
a fundamental role in the construction of the national accounts. In effect, an input-
output model provides a snapshot of the complete economy and all of its industrial
interconnections at one time. The power of the model is that it can show the distribu-
tion of overall impacts. A column of the total requirements table indicates which sec-
tors in the region will be affected and by what magnitude. This can be used to make
important policy decisionswhen translated into income and employment effects. Pol-
icy makers can use the information derived from the model to identify an industrial
growth target and others.

Today input-output analysis has become important to all the highly-industrialized
countries in economicplanning anddecisionmakingbecauseof this flowofgoods and
services that it traces through and between different industries. Input-output analy-
sis is capable of simulating almost any conceivable economic impact. The nature of
input-output analysis makes it possible to analyze the economy as an interconnected
system of industries that directly and indirectly affect one another, tracing structural
changes back through industrial interconnections. This is especially important as pro-
duction processes become increasingly complex, requiring the interaction of many
different businesses at the various stages of a product’s processing. Input-output tech-
niques trace these linkages from the raw material stage to the sale of the product as a
final, finishedgood.This allows the decomposition analysis to account for the fact that



Key Economic Sectors and Their Transitions ... 383

a decline in domestic demand. In analyzing an economy’s reaction to changes in the
economicenvironment, theability tocapture the indirect effectsof achange is aunique
strength of input-output analysis. One of the interests in the field of input-output eco-
nomics lies with the fact that it is very concrete in its use of empirical data.

Alternatively, Acemoglu et al. [1] and Carvalho [10] argue that the structure of
the production network is a key in determining whether and how microeconomic
shocks propagate throughout the economy and shape aggregate outcomes. Therefore,
understanding the structure of the production network can better inform on the ori-
gins of aggregate fluctuations and policymakers on how to prepare for and recover
from adverse shocks that disrupt these production chains. The usual way of identi-
fying key sectors in an economy in Input-output analysis is using Leontief inverse
matrix to measure the backward linkages and the forward linkages of each sector.
Alternatively, they evaluate the role of sectors by means of network measures such
as degree centrality and α-centrality.

All changes in the endogenous sectors are results of changes in the exogenous sec-
tors.The input-output analysis alsoallowsadecompositionof structural changewhich
identifies the sources of change aswell as thedirection andmagnitudeof change.Most
importantly, an input-output based analysis of structural change allows the introduc-
tion of a variable which describes changes in producer’s recipes—that is, the way in
which industries are linked to one another, in input-output language, called the “tech-
nology” of the economy. It enables changes in output to be linked with underlying
changes in factors such as exports, imports, domestic final demand as well as tech-
nology. This permits a consistent estimation of the relative importance of these fac-
tors in generating output and employment growth. In a general sense, the input-output
technique allows insight into howmacroeconomic phenomena such as shifts in trade
or changes in domestic demand correspond to microeconomic changes as industries
respond to changing economic conditions.

Production systems, traditionally analyzed as almost independent national sys-
tems, are increasingly connected on a global scale. As the global economy becomes
increasingly integrated, an isolated view based on the national input-output table is
no longer sufficient to assess an individual economy’s strength and weakness, not
to mention finding solutions to global challenges such as climate change and finan-
cial crises. Hence, a global and multi-regional input-output data is needed to draw a
high-resolution representation of the global economy. Only recently becoming avail-
able, theWorld Input-Output Database (WIOD) is one of the first efforts to construct
the global multi-regional input-output (GMRIO) tables. By viewing the world input-
output system as an interdependent networkwhere the nodes are the individual indus-
tries in different economies and the edges are the monetary goods flows between
industries. Cerina et al. [11] analyzed the network properties of the so-called world
input-output network (WION) and investigate its evolution over time. At global level,
we find that the industries are highly but asymmetrically connected, which implies
that micro shocks can lead to macro fluctuations. We also propose the network-based
measures and these can give valuable insights into identifying the key industries.

In the modern economy, industry sectors have specific roles in an extremely com-
plicated linked network despite of their size or range of effect. Since the linkage struc-
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ture in the economy is considered to be dominated by a small group of sectors (key
sectors) that connect to other different sectors in different supply chains, even a small
shock originated from any firm could be conducted through the network and cause the
significant impacts to the whole economy. Hence, to identify the sectors that belong
to the such kind of hub group in the economy, it is not only based on the sector’s out-
put production or how much resource is used, but also its influence to all other nodes
throughout thewhole economynetwork, aswell as its ownexternal impact. These sec-
tors play very important role in the whole economy since knowing themwill help the
policymakers actively preparing for and recovering from the impact of them to the
economy. Traditionally, some network measurements are used to identified the key
sectors such as the high forward and backward linkages with the rest of the economy,
and most of these methodologies consider only the direct input or output coefficient
(weight) of the sectors as the basis to determine sector’s importance. There are two
examples that use these methods to identify the key sectors of the economy; one is
Alatriste-Contreras [2] used forward and backward to identify the major sectors of
EU economy; and the other is Botri [8] who identified the key sectors of the Croatian
economy.

In regard to key sectors, the first thought is that they are very important to the
whole economy. However, some sectors or firms will mostly influence to the other
sectors, and in the sameway some of themmight be themostly affected from the other
sectors. The economy is the very complicated linkages of different supply chains,
which involve companies, people, activities, information producing, handling and/or
distributing a specific product to the end users (customers). These supply chains are
being connected together by means of some very specific industries. That is, if there
is any economy shock originated from these key sectors, it will propagate through-
out the economy and influences to the production of all other firms [10]. These key
industries are also known as the hub sectors that shorten the distance between unre-
lated sectors in the economy. They provide the bridges for the separated parts which
do not have direct trade inputs entire the economy. Therefore, the aggregate perfor-
mance of the network also could be contributed by these kind of sectors as the shock
from anywhere in the network may be conducted via them.

This paper aims to provide the different methods to identify the key economic sec-
tors thatmost contribute to the economybased on the sector’s influence scores to other
nodes. These influence scores are calculated regarding the supply and consume from
the input-output network. These scores do not dependmuch on the economic sector’s
direct transactions, but its relationship with the others throughout the whole network
and its own external influence. In general, if there is any shock originating from one
of these key economy sectors, it will be propagated through the entire the economy
network via its links to the others whether its transaction is high or not. The intro-
duced methods are developed based on the measurement of α-centrality. Two types
ofmeasurement are proposed:Amplification Index (AI) andVulnerability Index (VI).
The AI score is a measurement of influence to others, that is, how each economic sec-
tor influences the other economic sectors. The VI score measures influences from the
other economic sectors, that is, it measures the impact that a sector receives from all
other sectors. These scores also vary according to the value of a specific parameter
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that is the capital coefficient. A dataset of theworld input-output network, which con-
ducted by a project of European Commission, were used to demonstrate these meth-
ods. This dataset is the collection of intermediate matrixes that contains relationships
between the industries in each economy and between the economies in the world in
17years. For each year data, AI and VI are calculated, and then from those scores, a
list of key economic sectors of the world economy is identified and their transitions
over years are also traced. These results are comparedwith the results fromotherwell-
known measurement such as eigenvector centrality.

2 AModel of Input-Output Network

Consider an economy where production takes place at N distinct nodes, each spe-
cializing in a different good. These goods can be used as an intermediate input to be
deployed in the production of other goods. A natural interpretation for these produc-
tion nodes is to equate them with the different sectors of an economy. They assume
that the production process at each of these sectors is well approximated by a Cobb-
Douglas technology with constant returns to scale, combining a primary factor—
which in this case is labor—and inter-mediate inputs. The output of sector i is then
given by: Let’s begin with the networks of input flows. In an economy, an industry’s
productionY is computed based on the investment in capitalK and laborL.TheCobb-
Douglas production is defined as

Y = F(L,K) = AKαLβ (1)

Where:

Y: total production (the real value of all goods produced in a year)
L: labor input (the total number of person-hours worked in a year)
K: capital input (the real value of all machinery, equipment, and buildings)
A: total factor productivity

α andβ are the output elasticity of capital (K) and labor (L), respectively. These values
are constants determined by available technology.

The basic input-output analysis assumes constant returns to scale, the change of
output subsequent to a proportional change in all inputs. The input-output model
assumes that the same relative mix of inputs will be used by an industry to create out-
put regardless of quantity. Therefore in this case,α + β = 1. The different values ofα
and A are selected depends on the specific economy and its current status. For exam-
ple, in 2014, in the top positions of businesses listed in Tokyo Stock Exchange, this
formula above was used in regard to about 1000 manufacturing industries, α is esti-
mated as 0.121 and A = 0.081 [3].

Acemoglu et al. [1] andCarvalho [10] develop a unified framework for the study of
hownetwork interactions can function as amechanism for propagation and amplifica-
tion of microeconomic shocks. The framework nests various classes of
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games over networks, models of macroeconomic risk originating from microeco-
nomic shocks, andmodels of financial interactions. Under the assumption that shocks
are small, they provide a fairly complete characterization of the structure of equilib-
rium, clarifying the role of network interactions in translatingmicroeconomic shocks
into macro-economic outcomes. Using Cobb-Douglas production function in Eq.1,
Acemoglu et al. [1] obtained the output of an economic sector i as:

xi = (zili)
1−α

⎛

⎝
N∏

j=1

x
ωji

ji

⎞

⎠
α

(2)

The first term in Eq.2 shows the contribution from primary factors to production.
The amount of labor hired by sector i is given by li, zi is a sector specific productivity
disturbance, and 1 − α is the share of labor in production and α is the share of capital.

These interconnections between production nodes come into play with the second
term of the production function, which reflects the contribution of intermediate inputs
from other sectors. Thus, the term xij denotes the amount of good j used in the pro-
duction of good i. The exponent ωij (≥ 0) in the production function gives the share
of good j in the total intermediate input used by sector i. For a given sector i, the asso-
ciated list of ωij’s thus encodes a sort of production recipe. Each nonzero element of
this list singles out a good that needs to be sourced in order to produce good i. When-
ever a ωij is zero, we are simply stating that sector i cannot usefully incorporate j as
input in production, no matter what input prices sector i is currently facing. Note fur-
ther that all production technologies are, deliberately, being kept largely symmetric:
all goods are equally valued by final consumers and all production technologies are
equally labor-intensive (specifically, they all share the same α). The only difference
across sectors then lies in the bundle of intermediate inputs specified by their produc-
tion recipe—that is, which goods are necessary as inputs in the production process of
other goods.

When we stack together all production recipes in the economy, we obtain a col-
lection of N lists, or rows, each row giving the particular list of ωij’s associated with
the production technology in sector i. This list-of-lists is nothing other than an input-
output matrix, W, summarizing the structure of intermediate input relations in this
economy. The production network,W,which is the central object of this paper, is then
defined by three elements: (i) a collection of N vertices or nodes, each vertex cor-
responding to one of the sectors in the economy; (ii) a collection of directed edges,
where an edge between any two vertices denotes an input-supplying relationship
between two sectors; and (iii) a collection ofweights, each ofwhich is associatedwith
a particular directed edge and given by the exponent ωij in the production function.

In this paper; we focus on this matrix to find out the list of what it is called the hub-
like unit or key economic sector.
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3 CentralityMeasures

One of the key concepts in network analysis is the notion of node centrality, which
defines as the importance of a node due to its structural position in the network as a
whole. Several centrality measures have been defined. Identifying the central input-
supplying technologies and ranking their roles in an economy requires applying an
appropriate measure of “node centrality” to the production network. While network
analysis has developed a variety of centrality measures, here we will focus on so-
called “influence measures” of centrality, where nodes are considered to be relatively
more central in the network if their neighbors are themselves well-connected nodes.

The best known of these recursively defined centrality measures is called “eigen-
vector centrality.” One of the best-known types of centrality is eigenvector centrality
[4]. The eigenvector captures a certain aspect of centrality or status that is not cap-
tured by other measures. The idea here is that a node that is connected to nodes that
are themselves well connected should be considered more central than a node that
is connected to an equal number of less connected nodes. For instance, consider two
firms, each with ten customers. Suppose industry A’s directly connected industries
have many direct connection industries of their own, and those industries have many
direct connection industries and so on. Economic sector A’s actions potentially affect
a great number of other industries downstream. In contrast, if industry B’s directly
connected industries do not have many direct connection industries of their own, B’s
actions could have much less effect on the economic system as a whole. Thus, the
eigenvector concept takes into account both direct and indirect influences. Variants
of eigenvector have been deployed in the sociology literature, notably Eigenvector
centrality [4] and Katz Centrality [9], in computer science with Google’s PageRank
algorithm [5]. Thus, as in the example above, an industry’s centrality need not be dic-
tated by its out-degree (or in-degree) alone, but will also be determined by its direct
connections’ out-degree.

Bonacich et al. [6] introduced α-centrality to address a problem of evaluating key
nodes using eigenvalue centrality with an asymmetric network. Unlike eigenvector
centrality, α centrality is also appropriated for certain classes of directed networks.
In this measure, each node is considered having its own exogenous source that does
not depend on other individual in the network. α-centrality expresses the centrality of
a node as the number of paths linking it to other nodes, exponentially attenuated by
their length. It is defined as Eq. (3) and matrix notation is given in Eq. (4).

xi = αATxi + e (3)

x = (I − αAT )−1e (4)

if node I does not have a tie to node j, node I still influence node j via other intermediate
nodes between them.Therefore,we can also rewrite this centrality as an accumulation
of its centrality along with time:
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x =
( ∞∑

i=0

αiATi

)
e = (1 + αAT + (αAT )2 + ... + (αAT )t + ...)e (5)

In these equations, xi is node’s α centrality or influence of node i. e is a vector of
exogenous source of information, AT is the transpose matrix. For example, (αAT )t

considers the direct influence vertices expanded through t steps. The parameter α has
2 different roles in this centrality measurement. First, it is an attenuation parameter
or a probability to influence others throughout the network. α-centrality measures the
relative influence of not only a node within its network but also a node through inter-
mediate paths of network. It also represents a trade-off between the exogenous source
and endogenous or the possibility that each node’s status may also depend on infor-
mation that comes from outside the network or that may regard solely the member.
Low value of α makes α-centrality probes only the local structure of the network and
a range of nodes contributes to the centrality score of a given node is increased with
the increase ofα. The rank obtained usingα-centrality can be considered as the steady
state distribution of information spread process on a network, with probability α to
transmit a message or influence along a link.

Based on the structure of the input-output network that we are considering
(weighted and directed network), when applying α-centrality measurement, we can
divide it into 2 different cases, Amplification Index (AI) andVulnerability Index (VI).
The idea of AI is to calculate the infection of a sector (or industry), or how the sec-
tor infects other nodes in the network. In the economy, the impact of an industry can
be measured by a transaction between it and other industries. We measure the total
influence (both directly and indirectly) that a sector gives to all other sectors.

xi = α
∑

j

ωijxj + ei (6)

wij represents theflow from the sector i to sector j, ei is the exogenous factor of sector i.
In the framework of the Cobb-Douglas production in Eq. (1) or (2), α is the output
elasticity of the capital or the share of capital. The vector of these measurements of
all sectors defined as the Amplification Index (AI), which is obtained

AI = (I − αW )−1e (7)

In some cases a sectormay not have any direct connection to other sectors in the econ-
omy, it still indirectly impact them via other intermediate sectors. This could be done
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if wemeasure its influence in a period of time. Hence, the formula (7) could be rewrit-
ten as an accumulative one

AI =
( ∞∑

i=0

αiW i

)
e = (I + αW + (αW )2 + · · · + (αW )t + · · · )e (8)

Another measurement is the total influence (both directly and indirectly) that a sector
receives from all other sectors, which is obtained as

xi = α
∑

j

ωjixj + ei (9)

The vector of these measurements of all sectors defined as the Vulnerability Index
(VI), which is obtained as

V I = (I − αWT )−1e (10)

Similarly to the accumulative AI, we represent the formula (10) as

V I =
( ∞∑

i=0

αiWTi

)
e = (I + αWT + (αWT )2 + ... + (αWT )t + ...)e (11)

In the next section, we will obtain AI and VI values using the input-output database
of the world economy and identify some key industries in the world economy.

4 Applying to theWorld EconomyData

Ever since Leontief formalized its structure, the input-output table has been used
extensively. By keeping track of the inter-industrial relationships, the input-output
table offers a reasonably accuratemeasurement of the response of any given economy
in the face of external shocks or policy interventions. However, as the global economy
becomes increasingly integrated, an isolated view based on the national input-output
table is no longer sufficient to assess an individual economy’s strength and weak-
ness, not tomention finding solutions to global challenges such as climate change and
financial crises. Hence, a global multi-regional input-output (GMRIO) framework is
needed to draw a high-resolution representation of the global economy.

Cerina et al. [11] constructed the WION based on the World Input-Output Data-
base (WIOD). The empirical counterpart to a network of production technologies
consisting of nodes that represent different sectors and directed flows these capture
input transactions between sectors is given by input-output data. To investigate the
network structure of sector-to-sector input flows, we use WIOD. At the time of writ-
ing, the WIOD input-output tables cover 35 industries for each of the 40 economies
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(27 EU countries and 13 major economies in other regions) plus the rest of the world
(RoW) and the years from 1995 to 2011. For each year, there is a harmonized global
level input-output table recording the input-output relationships between any pair of
industries in any pair of economies. The relationship can also be an industry to itself
and within the same economy. The numbers in the WIOD are in current basic (pro-
ducers’) prices and are expressed in millions of US dollars.

We will take as nodes in the sector input-network. Each nonzero (i, j) entry is a
directed edge of this network—that is, a flow of inputs from supplying sector j to cus-
tomer i. For some of the empirical analysis below, we will be focusing only on prop-
erties of the extensive margin of input trade across sectors. To do this, we use only the
binary information contained in this input-output data—that is, who sources inputs
from whom—and disregard the weights associated with such input linkages.

Recognizing a network structure or the complexity of a network can help us under-
standing more the world economic behaviors. The data we are trying to work around
is theworld input-output table (WIOT). This dataset is a part of theworld input-output
database (WIOD),whichwas funded by theEuropeanCommission.AlthoughWIOD
main data tables contains 4 different tables, namely, world input-output Tables,
National input-output tables,SocioEconomicAccounts andEnvironmentalAccounts,
we only take an advantage onWION since this table contains 40 countries’ economy
transaction value to find out which country’s industries are the most important to the
world economy. WIOT is provided in current prices, denoted in millions of dollars,
and covers 27 EU countries and 13 other major countries in the world, which con-
tains 35 main industries each. While the data is available from 1995 to 2011, we will
mainly focus on the latest year’s dataset (2011) andmake use of the others as an addi-
tion trend analysis. This table includes the flows between the industries of 40 coun-
tries and 1 group (Rest of theWorld).We considered only the transactions of those 40
major countries’ industries; hence we have 40*35 = 1,400 sectors as nodes in the sec-
torial input-output network. Let’s have a glance at some network’s characterization at
the regional level first. This world input-output network consists of 1,400 nodes with
about 908,587 nonzero edges out of possible 14002 edges; therefore, this network is
dense with the network density

ρ = m

n ∗ (n − 1)
= 908587

1400 ∗ 1399
= 0.46 (12)

Regarding the transaction volume, there were 52 sectors that had the total transac-
tions (both input and output transactions) larger than 500 billion dollars. In the top 10
highest total transaction sectors illustrated in Fig. 1, all of them were from China and
the USA.

All 27 EU countries plus 13 other major countries are divided into 4 main groups,
EuropeanUnion,NorthAmerica,LatinAmerica andAsia andPacificgroup, as shown
in Table1.
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Fig. 1 The world input-output network (year 2011). 52 sectors had total transaction greater than
500 billion dollars

Table 1 Major countries and their groups in WIOT

European Union

Austria Germany Netherlands Belgium Greece Poland Bulgaria Hungary

Portugal Cyprus Ireland Romania Czech Republic Italy Slovak Republic Denmark

Lavia Slovenia Estonia Lithuania Spain Finland Luxembourg Sweden France

Malta United Kingdom

North America

Canada United States

Latin America

Brazil Mexico

Asia and Pacific

China India Japan South Korea Australia Taiwan Turkey Indonesia Russia

We consider these groups as the sub-networks of the whole world economy net-
work. We calculate the network density of each sub-network (group), and compare
their economic connectivity. Each sub-networks (or groups), European Union (EU),
North America (NA), Latin America (LA), andAsia and Pacific (AP), has a very high
network density, 0.9, 0.95, 0.91, and 0.7 respectively. This fact indicates high linkage
among the countries within the same sub-network (group). It is also unsurprising that
the groupNorthAmerica, consists of the two strong economy countries, namelyUSA
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Table 2 Network parameters of 4 groups

Group Nodes Non-zero edges Density Average inner
transaction

European Union 945 808722 0.91 15685.28

North America 70 4635 0.96 169905.61

Latin America 70 4415 0.91 30522.54

Asia and Pacific 315 71056 0.72 84787.40

and Canada, has very high intra transactions, and leads this comparison list with the
total inner-transaction is about 170 billion dollars. The following position belongs to
Asia and Pacific group in the presence of China andRussia (about 87,787million dol-
lars). These values are summarized in Table2.

We now identify the key economic sectors (industries) among 40 best economies
of the world by obtaining their AI and VI from the world input-output table. Through
the lenses of our model, sectors such as real estate, management of companies and
enterprises, advertising, wholesale trade, telecommunications, iron and steel mills,
truck transportation, anddepository credit intermediation alongside avariety of energy-
related sectors—petroleum refineries, oil and gas extraction, and electric power gen-
eration and distribution—are seemingly key to U.S. aggregate volatility as they sit at
the center of the production network. When applying these equations in the real eco-
nomic input-output network (ION), we see that the intermediate table of this network
is a directed andweighted network. Each element of this intermediatematrix (W) rep-
resents the trade volume either between 2 commodities or a node itself, measured by
a unit of million dollars. Using two measurements from Eqs. (8) and (11), assuming
time is infinite, themeasurements’ resultswill be diverge if the values of each element
in the matrixW is larger than 1. Hence, to overcome this problem, each element ofW
is divided by the maximum value of the matrix element. We denote the normalized
input-output matrix as M =W/max(W), and we define VI as

V I = (I + (αMT ) + (αMT )2 + ... + (αMT )t + ...)e (13)

Similarly, AI matrix is defined as

AI = (I + (αM) + (αM)2 + ... + (αM)t + ...)e (14)

Table3 shows the top five economic sectors with the highest AI from the input-output
data in 2011 with the different α values. In most cases, the top economic sectors
were from China, which leading by the “Basic metals and fabricated metals” sector,
and “Electrical and optical equipment” with the high value of α. These sectors from
China were the greatest impact to the world economy in that period of time. How-
ever, if lower the range of sectors affected by a given sector, or reduce the value of
α, the U.S’ sector “Renting of M&Eq and Other Business Activities” replaced the
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Table 3 The top 5 economic sectors with high amplification index (AI) in 2011

α Rank Sector AI

1 1 (CHN) Basic metals and fabricated metal 0.233

1 2 (CHN) Electrical and optical equipment 0.090

1 3 (CHN) Mining and quarrying 0.068

1 4 (CHN) Electricity, gas and water supply 0.053

1 5 (CHN) Chemicals and chemical products 0.043

0.85 1 (CHN) Basic metals and fabricated metal 0.233

0.85 2 (CHN) Electrical and optical equipment 0.090

0.85 3 (CHN) Mining and quarrying 0.068

0.85 4 (CHN) Electricity, gas and water supply 0.053

0.85 5 (CHN) Chemicals and chemical products 0.043

0.5 1 (CHN) Basic metals and fabricated metal 0.004

0.5 2 (USA) Renting of M&Eq and other business activities 0.004

0.5 3 (USA) Financial intermediation 0.003

0.5 4 (CHN) Electrical and optical equipment 0.0026

0.5 5 (CHN) Chemicals and chemical products 0.0019

0.25 1 (USA) Renting of M&Eq and other business activities 0.0016

0.25 2 (CHN) Basic metals and fabricated metal 0.0015

0.25 3 (USA) Financial intermediation 0.0014

0.25 4 (CHN) Electrical and optical equipment 0.0013

0.25 5 (CHN) Chemicals and chemical products 0.0011

sector “Basic metals and Fabricated metals” of China to become the most influenced
industry. These results also indicate the evidence that USA and China enjoyed the
largest economy in the world in 2011.

Similarly, in the Table4 below, the top five economic sectors with the highest vul-
nerability index in the different cases of the value ofα in 2011 are pointed out. The top
most be influenced economic sectors were still belong to China, which leading by the
“Electrical and Optical Equipment” and “Basic metals and fabricated metals” sector,
despite of the change of the value of α. Even a small change of any other industries
may also lead to a fluctuation of this sector’s transaction.

Comparing to the result of World Input-Output network analysis by Federica
Cerina et al. [11] in 2011, the authors used4different parameters to evaluate the indus-
tries. The first calculation was produced by the Laumas method of backward link-
ages (w), next was the eigenvector method of backward linkages e, the third and the
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Table 4 The top 5 economic sectors with high vulnerability index (VI) in 2011

α Rank Sector AI

1 1 (CHN) Electrical and optical equipment 0.200

1 2 (CHN) Basic metals and fabricated metal 0.076

1 3 (CHN) Construction 0.075

1 4 (USA) Financial intermediation 0.055

1 5 (CHN) Machinery, nec 0.053

0.85 1 (CHN) Electrical and optical equipment 0.200

0.85 2 (CHN) Basic metals and fabricated metal 0.076

0.85 3 (CHN) Construction 0.075

0.85 4 (USA) Financial intermediation 0.055

0.85 5 (CHN) Machinery, nec 0.054

0.5 1 (CHN) Electrical and optical equipment 0.004

0.5 2 (CHN) Basic metals and fabricated metal 0.003

0.5 3 (CHN) Construction 0.003

0.5 4 (USA) Financial intermediation 0.002

0.5 5 (USA) Public admin and defence; compulsory social security 0.002

0.25 1 (CHN) Electrical and optical equipment 0.0014

0.25 2 (CHN) Construction 0.0013

0.25 3 (CHN) Basic metals and fabricated metal 0.0013

0.25 4 (USA) Financial intermediation 0.0011

0.25 5 (USA) Public admin and defence; compulsory social security 0.0011

fourth were PageRank centrality PR and the community coreness measure—dQ—
respectively. In the Table5, we compare the results (top 5 sectors) implemented by
Cerina et al. (2011) and our measurements with the different values of α. Accord-
ing to this table, the results got from backward linkages method (w) and Vulnerabil-
ity Index (with the different α values) are almost identical. That is, there is an exis-
tence of the same sectors from China and the USA in both methods such as China’s
Construction (CHN_Cst), “Public Admin and Defence; Compulsory Social Secu-
rity” from the USA (USA_Pub), etc. However, the results generated by Amplifica-
tion Index measurement are different to the other methods since an approach of this
implement is based on the outward link while the others use the inward link as main
factor to measure the centrality.
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Table 5 The comparison of results implemented by AI, VI and other methods conducted by Cerina
et al. [11]
Rank w e PR —dQ— AI(α:1) AI(α:0.5) AI(α:0.25) VI(α:1) VI(α:0.5) VI(α:0.25)

1 CHN-Cst CHN-Tpt GRB-Hth CHN-Cst CHN-
Met

CHN-
Met

USA-Obs CHN-Elc CHN-Elc CHN-Elc

2 USA-Pub CHN-Tex DEU-Tpt USA-Obs CHN-Elc USA-Obs CHN-
Met

CHN-
Met

CHN-
Met

CHN-Cst

3 USA-Hth CHN-Elc USA-Pub CHN-
Met

CHN-
Min

USA-Fin USA-Fin CHN-Cst CHN-Cst CHN-
Met

4 USA-Est CHN-
Rub

CHN-Elc USA-Pub CHN-Ele CHN-Elc CHN-Elc USA-Fin USA-Fin USA-Fin

5 CHN-Elc CHN-Lth USA-Hth USA-Est CHN-
Chm

CHN-
Chm

CHN-
Chm

CHN-
Mch

USA-Pub USA-Pub

Abbreviation

CHN: China USA: the USA

GRB: Great Britain DEU: Germany

Cst: Construction Tpt: Transport Equipment

Hth: Health and Social Work Met: Basic Metals and Fabricated Metal

Obs: Renting of M&Eq and Other Business Activities Elc: Electrical and Optical Equipment

Mch: Machinery, NEC Tex: Textiles and Textile Products

Min: Mining and Quarrying Fin: Financial Intermediation

Est: Real Estate Activities Rub: Rubber and Plastics

Chm: Chemicals and Chemical Products Pub: Public Admin and Defence; Compulsory Social Security

Ele: Electricity, Gas and Water Supply Lth: Leather, Leather and Footwear

5 Transitions of Important Industries

Bymixing the top 20 sectors of the highest AI and the top 20 sectors of the highest VI,
we get a list of 27 sectors sorted by AI value and VI. We will try to examine whether
or not the relationship between an AI and VI value of a sector and its input and output
strength in 2011, then take a deeper look at these differences throughout the period of
17years.

With α = 1, we pick out some sectors to analysis that have both high AI and VI
value such as “Basicmetals and FabricatedMetal” (CHN_Met), “Electrical andOpti-
cal Equipment” (CHN_Elc), “Mining and Quarrying” (CHN_Min) from China, the
two sectors “Financial Intermediation” (USA_Fin) and “Renting ofM&Eq andOther
Business Activities” (USA_Obs) from the US.

Firstly, we will examine the change of AI value of these sectors in the period from
1995 to 2011 (Fig. 2). It can be easily seen that the only two sectors from USA were
leading the remain with the fluctuation of their AI values in the first 16years before
dropping down and being replaced by sectors fromChina in the year 2011. In the first
16-year period, the USA’s sectors had very high values of AI compared to the ones
of China. The very important milestone, the financial crisis of 2007–2008 or global
financial crisis, caused by the collapse of Lehman Brothers, also affected to the AI
value of these two USA’s sectors. After 2008, their reactions to this event were quite
different. In this year, while theAI of the sector “Financial Intermediation” felt below
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Fig. 2 The transitions of the important sectors in terms of AI and VI (α = 1) in the periods 1995–
2011

the value of the other the U.S.’ sector before bouncing back to the higher value in
2009, the AI value of the sector “Financial Intermediation” of the United States had
increased gradually to reach a peak of 0.28 first time since 2000. As we are consid-
ering the influence of sector through the entire network of world economy (α is 1),
it seems that there was a prediction of this crisis from the reducing value of the sec-
tor “Financial Intermediation” since 2006. A year later, both of these sectors had the
sharp declines and bottom out around the AI value 0.03 in 2011, and were replaced
by the sectors from China. One thing to note is that, while in the previous 16 years,
the AI value of these top China’s sector were very small compared to other sectors, in
the last year of this period (2011), their AI value dramatically rose up to nearly 0.24
and 0.1 corresponding to the sector CHN_Met and CHN_Elec respectively. Similar
to the change of AI, the change of VI of these VI had the same trend. While almost
the highVI value are of the sectors from theU.S. in the first 16years, in the year 2011,
the sector CHN_Elec fromChina had a sudden leap to theVI value of 0.2 after having
a slight change from 0.002 in 2008 to 0.007 in 2010. However, these changes can be
seen considering the total degree of these sectors in the year 2011.

In the other hand, considering the sectors with the highest VI value in 2011, the
leading is the sector Electrical and Optical Equipment(CHN_Elc) of China, followed
by the sectorCHN_Met and the sectorConstruction (CHN_Cst).Basedon theWION,
we see that the sector CHN_Elc, itself consumed its products valued about 660 billion
dollars, had imported approximately 198 billion dollars mostly from the same indus-
try type of the foreign countries (mostly from Taiwan, Japan and Korea). In China’s
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Fig. 3 The transitions of the important sectors in terms of AI and VI (α = 0.25) in the periods
1995–2011

local market, products from the sector CHN_Met were mostly used (about 278 bil-
lion dollars), the sectors “Rubber and Plastics”, “Wholesale Trade and Commission
Trade, Except of Motor Vehicles and Motorcycles” and “Chemicals and Chemical
Products” were the three following sectors that provided much products to the sec-
tor CHN_Elc with 87, 70 and 61 billion dollars respectively. Moreover, these directly
supported sectors had a very high ranking of AI value in the top sectors with the high-
est AI value. This may be one possible explanation of this sector’s high VI value.

If we reduce the range of effect to the other sectors by reducing α value, it is
clearly seen that any sector had the more direct investment, the higher AI value it
got. Similarly, high volume transaction of direct supported sectors had more influ-
ence to the VI value of the target sector. For example, with α is 0.25 (Fig. 3), the sec-
tor “Renting ofM&Eq andOther Business Activities” (or USAObs) from the United
State of America became the top most AI value sector followed by the other sectors
from China and the U.S, namely “Basic metals and Fabricated Metal” and “Finan-
cial Intermediation” respectively. In 2011, this sector had the highest total-strength
and the highest Out-strength (with nearly 2,429 billion dollars), According to the
National Accounts Main Aggregates Database of United Nations Statistics Division,
the United States was the largest consumer market of the world. Hence, despite of the
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fact that this sector’s output mostly to theUSA’s local market, it still had the very high
AI value comparing to the other industries.

In terms of VI value, the sector CHN_Elc from China was still the most be influ-
enced sectors since it has the very high imported products from other industries of
both regional and foreign countries. However, the sector “Construction” of China
(CHN_Cst) consumedmore products that the sector CHN_Elc from the other China’s
industries. From the sector “Other Non-Metallic Mineral” of China, about 375 bil-
lion dollars was consumed by the sector CHN_Cst. The others were from the sec-
tor CHN_Met with 367 billion dollars and CHN_Elc with only 96 billion dollars.
Although the sector “Other Non-Metallic Mineral” did not have high AI, in this case
of small range of affect (α = 0.25), it still had enough influence to make the sector
CHN_Cst become more vulnerability than the other sectors.

To conclude this complicated relationship, it is very hard to decide which sectors
have high influence or most being affected if based only on their transaction. The use
of AI and VI with the varied value of α might make the keys sector evaluation more
precisely.

6 Conclusion

In the modern society, all major economic sectors have been connected tightly in
an extremely complicated global network. In this type of network, a small shock
occurred at certain point can be spread instantly through the whole network and may
cause catastrophe. Production systems, traditionally analyzed as almost independent
national systems, are increasingly connected on a global scale. Only recently becom-
ing available, theworld input-output database is one of the first efforts to construct the
global and multi-regional input-output tables. The network measures can give valu-
able insights into identifying the key industries. By viewing the world input-output
tables as complex networks where the nodes are the individual industries in different
economies and the edges are the monetary goods flows between industries, we char-
acterize a certain aspect of centrality or status that is captured by theα-centralitymea-
sure of the world input-output network.We also capture their evolution of over years.
We also argue that the network structure captured from the input-output data is key in
determining whether and howmicroeconomic impacts or shocks propagate through-
out the economy and shape aggregate outcomes.Understanding the network structure
ofworld input-output data can better informon how theworld economy grows aswell
as how to prepare for and recover from adverse shocks that disrupt the global produc-
tion chains.

The discussion in this paper has attempted to introduce another way to look for the
key sectors in the world economy. Applying the method based on the AI and VI, we
identified the sectors that could be considered as key, or the major, industries in the
world economy in the period from 1995 to 2011. In short, these measurements are
defined as:
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• Amplification Index, AI, is used to measure the total influence that a sector could
affect to other sectors in a long time.

• Vulnerability Index, VI, is, on the other hand, a cumulative impact that a sector
could receive from other sectors in a period of time.

Using of the two methods heavily depends on the value of the trade-off parameter α.
The value ofα determines how far influence could be spread through the network. The
higher value ofα, the further nodes that impact could reach to. Ifα is chosen correctly
according to the considering economy and the research scale of the economists, AI
and VI might be the useful measurements for the economist to evaluate the influence
of the key sectors in that economy.

Since there are some traditional ways to analyze key sectors in the economy such
as finding Forward links and Backward links, these introduced methods may be con-
tributed to the policy makers’ toolkit to help them in analyzing the economy easily,
and also preparing and recovering from adverse shocks that disrupt the production
chains.
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Natural Resources, Financial Development
and Sectoral Value Added in a Resource
Based Economy

Ramez Abubakr Badeeb and Hooi Hooi Lean

Abstract This chapter vestigates the effects of natural resource dependence and
financial development on the sectoral value added in a resource based economy,
Yemen. We allow the effect of these two factors to be different for the growth of
agricultural, manufacturing and service sectors respectively. We remark on one hand
that natural resource curse hypothesis is strongly supported. The agricultural and
manufacturing sectors are affected by this phenomenon which implies the existence
of Dutch disease symptoms in Yemen. On the other hand, financial sector develop-
ment does not play an important role in fostering real sectors activities. The service
sector is the only sector that benefit from the financial sector development in Yemen.
This finding opens up a new insight for Yemeni economy to sustain sectoral growth
by controlling the level of natural resource dependence and proactiveness sectoral
strategy for financial sector development.

Keywords Natural resource curse · Financial development · Sectoral value added· Republic of Yemen

1 Introduction

Natural resource dependence interacts with and alters various social, political and
economic factors; and thus slower the economic growth and development [17, 18, 21,
28, 36–38, 43]. This is called natural resource curse, a phenomenon of slow economic
growth that caused by a series of negative effects from the excessive dependence on
natural resources in a country [40].On the other hand, endogenous growth economists
claim that enhancement in productivity can lead to a faster pace of innovation and
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extra investment in human capital. Given that, financial intermediaries that promotes
and allocates resources to the development of new innovation may have a positive
role in fostering economic growth [22, 24]. What is unclear, however, is whether
these potential effects of natural resource dependence and financial development are
being reaped in the Yemeni economy, and how these factors can impact the sectoral
growth specifically.

Previous studies that related to the resource-growth nexus and finance-growth
nexus focus on the ultimate effect on aggregate growth and ignore the sectoral growth
in the economy. Therefore, one must dig much deeper to understand the processes
and its effects on different economic sectors. To this end, this study contributes
to the literature by investigating the impacts of financial development and natural
resource dependence on three main economic sectors i.e. agriculture, manufacturing
and service in Yemen.

We situate the study in Yemen because the country has a wide spectrum of eco-
nomic potential for a number of industries1 and shows a bright and promising future
for its agriculture and fishery sectors, besides the political chaotic and military con-
flicts.Yemenhas one of the best natural harbors in theworld that has a unique strategic
geographical location linking the East and the West [14]. Despite these potentials, it
has been widely observed that the economic performance of Yemen is accompanied
by a surge in dependence on oil, where the economy is dominated by the production
and export of oil, which generates around 70% (as an average in the 10years) of
government’s revenues, contributes about 80–90% of its exports, and is responsible
for building up most of the country’s foreign exchange reserves. Moreover, Yemen is
a suitable example of a country that has experienced early financial sector activities
relative to other developing countries.2

The rest of the paper is organized as follows: the literature review is presented in
Sect. 2. In Sect. 3, we overview the Yemeni economy. Section4 focuses on the data
and methodology, and the empirical results and discussion are presented in Sect. 5.
Finally, Sect. 6 concludes with policy implications.

2 Literature Review

In the last decades, economists observed that resource-rich countries, especiallymany
African, Latin American and Arab nations tend to grow at slower rates than countries
with fewer natural resources. These countries suffer from what economists call the
“resource curse” [7]. This situation usually led to two sorts of reversals, economic
and political reversals. The highly dependence on natural resources can hurt the
economic growth indirectly by releasing forces that hamper the development of

1Other regional countries such as Saudi Arabia, Oman and Kuwait do not have other important real
sectors in their economy besides oil
2The first bank was established in the north of Yemen in 1962
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national economy through theDutch disease,3 the price volatility of natural resources
and rent seeking, in addition to other economic and political reasons. The curse can
be exemplified by empirical findings that have been presented by many economists
like [6, 17, 21, 28, 30, 36–38, 43].4

Sachs and Warner [38] followed a large panel of natural resource economies
between 1970 and 1989 and found that natural resource dependence was negatively
correlated with economic growth. Following their influential studies, a large volume
of subsequent research has been inspired to examine the direct and indirect rela-
tionships between natural resource dependence and economic growth. Gylfason [17,
18], Mehlum et al. [28] have argued that since 1970, countries that have based their
economies on natural resources have tended to be examples of development failure.
For oil, in particular, [30] find that oil exporting countries have witnessed a fall of
average per capita income of 29% over the period 1975–2000. This compares to the
rest of the world whose average per capita income increased by 34% over the same
twenty-five year period. Finally Apergis and Payne [5] found a negative relationship
between oil rents and agriculture value added in the long run in oil-producing Mid-
dle East and North African (MENA) countries. The author attributed this result to a
resource movement effect from other economic sectors to the booming oil sector in
these countries.

Along the same line, the role of financial development in growth has also attracted
a widespread attention in the past decades and in particular since the emergence of
endogenous growth theory in 1980s [12, 26, 35].

The theoretical links between financial development and economic growth can be
traced back to Schumpeter [39] who was the earliest economist and highlighted the
importance of finance in the process of economic development. A lot of complemen-
tary propositions have been put forward to the positive role of financial development
on economic growth. The central idea of these studies is that financial development
can encourage economic growth by channeling resources to high productive invest-
ments [27, 32, 41]. Those studies asserted that the financial intermediation (banks)
has an important role in economy by raising saving and capital accumulation. This
idea has been supported with modern analysis. A large body of empirical evidences
supporting this “Schumpeterian” logic [13, 19, 22, 25, 31]. Robinson [34] in contrast
pointed out that the economic growth promotes financial development by creating
the demand for financial services, and the financial sector responds to this demand.
However, Abu-Bader and Abu-Qarn [1], Demetriades and Hussein [16], Singh [42]
argued that financial development and economic growth cause each other. Financial
development promotes growth by allowing a higher rate of return to be earned on
capital and economic growth, which in turn provides the means to implement well-
developed financial structures. Contrary to all previous perspectives, Lucas [26]

3The Dutch disease phenomena works when natural resources booms increase domestic income
and, consequently the demand for goods, which generate inflation and appreciation of the real
exchange rate making much of the manufacturing industry uncompetitive in the world market
4See [6, 9] for recent literature survey of the curse of natural resources
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claimed that the relationship between financial development and economic growth
does not exist and considered the role of the financial sector in economic growth to
be “over-stressed”.

These theoretical discussions reveal that there is not a consensus on the role of
natural resource dependence and financial development, on economic growth. How-
ever, the debate whether these factors lead sectoral growth has important policy
implications for both developed and developing countries. Thus, in contrast to previ-
ous studies, this paper provides evidence for Yemen where the effect of these factors
on sectoral growth has not been studied.

3 Yemen Economy Review

Yemen is one of the poorest countries in the Middle East and Arab region, where
nearly 40% of its population live below the poverty line [46]. The Republic of Yemen
was established in May 1990, after unification between the Yemen Arab Republic
(YAR) and the Marxist People’s Democratic Republic of Yemen (PDRY). In 1990,
the new country confronted a difficult task by unifying two countries with different
economic systems. During this period, however, the GDP growth averaged 6.2%
because of constantly increasing oil revenue. In 1995, Yemeni authorities initiated
an economic reform program to achieve two sets of goals: (1) stabilization to restore
macroeconomic balance and reduce the inflation rate, and (2) structural reform to
foster economic growth and thereby reduce the high poverty rates. Since initiating
this reform program Yemen has become one of the most open and trade-liberalized
economies in theMENA region United Nation Development Programme [44]. How-
ever, economic liberalization has not been transformed into tangible benefits for the
majority of the population. The economy remained vulnerable to price and demand
fluctuation of oil exports, which became the main GDP contributor and exceeded the
contribution of the agriculture sector.

The structure of the economy underwent fundamental changes, with the share of
key sectors changing substantially. Figure1 shows that the GDP shares (at current
prices) have increased for industry (including oil and gas) and services. For industry,
the fluctuations are strong, in part due to changing in oil world prices. Manufacturing
and agriculture have declined strongly. In addition to its increased relative impor-
tance, the nature of the service sector has changed from being mostly involved in
supporting agriculture and manufacturing in 1990 toward responding to demands
fuelled by oil revenues [2]. In general, since 1990, all sectors have increased their
real output, with the strongest increase for services; however, for industry, output has
declined strongly in recent years even though it remains higher than in 1990.5

As in the case of the most developed countries, the financial system in Yemen
is dominated by the banking sector, with no existence of a stock market, and

5Manufacturing is a subsector of industry sector; however, we focus on its separate contribution
due to its importance in our study
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Fig. 1 GDP share by sector at current prices

marginal roles for non-bank financial institutions such as insurance companies,
money-changers and pension funds.6 After achieving the unity in 1990 and the inte-
gration of the banking sector in both countries, several problems have appeared in the
financial sector, such as bad loans, loan and client concentration, lack of investment
opportunities, short-term contracts, and weak regulatory and institutional frame-
works [44]. Therefore, in line with the early mentioned economic reform program,
the Yemeni government elaborated a reform program focusing on the financial sec-
tor. Following this reform program, the total assets of commercial banks increased
from YR179 billion in 1996 (24% of GDP), to YR310 billion in 2000 and YR1323
billion in 2012 (30% of GDP). The deposits also witnessed a significant rise from
YR120 billion in 1996, to YR250 billion in 2000 (16% of GDP) and YR1799 billion
in 2012 (23% of GDP). However, the credit to the private sector represents only 29%
of these deposits and around only 5% of GDP.

4 Data, Model and Methodology

4.1 Measurement and Data Sources

Natural resource dependence refers to the degree that an economy relies on resource
revenues. Therefore, to gauge the reliance of the economy on natural resources,

6According to the Central Statistical Organization of Yemen, there were eighteen Yemeni and
international commercial and Islamic banks, thirty exchange companies, and nineteen insurance
corporations and pension funds operating in Yemen in 2012
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the ratio of natural resource export to GDP has been used widely in relevant liter-
ature since Sachs and Warner [38]. However, in Yemen, in addition to the export
of the government’s share of natural resources, natural resources revenue includes
other grants and taxes.7 Therefore, we use natural resource revenue (which includes
the components mentioned above) relative to GDP as a proxy for natural resource
dependence.

For the financial development measures, this study uses two indicators related to
financial intermediaries.8 These two proxies are, domestic credit to private sector as
share of GDP, and the size of the deposits relative to GDP. According toWurgler [47],
the most natural way to measure sector and industry growth is to use the sectoral
value added. Therefore, the value added output of each sector to GDP is used to
proxy for the sectoral value added.

The study employs data for Yemen over the period of 1980–2012.9 Following
Vetlov andWarmedinger [45] for the Germany case, we use Northern Yemen data for
the period prior to 1990 and united Yemen data after 1990, combined with a dummy
variable to account for the unification (see Badeeb and Lean [8]).10,11 Data are
sourced from International Financial Statistics (IFS), World Development Indicator
(WDI) for Republic of Yemen (1990–2012). The data of natural resources revenues
is sourced from the Yemeni Ministry of Finance and IMF country reports.

4.2 Models

Three models have been constructed to capture the effects of natural resource depen-
dence, and financial development on sectoral growth. The equations are inspired
from Apergis and Payne [5] after adding the control variables such as trade openness
and government expenditure:

7Oil revenues in Yemen include the concession commissions that the government receives from oil
production companies, tax charges on foreign oil companies that operate in Yemen, and grants that
the government receives from oil companies after signing contracts (Yemeni Ministry of Finance)
8We focus on financial intermediaries due to the absence of stock market in Yemen
9Yemeni unification took place on May 22, 1990, when the People’s Democratic Republic of
Yemen (also known as South Yemen) was united with the Yemen Arab Republic (also known as
North Yemen), forming the Republic of Yemen (known as simply Yemen)
10Angelini and Marcellino [4] argued that this simple treatment of the unification problem has been
used widely in empirical macroeconomic analyses in Europe. It is based on the economic reasoning
that East Germany’s economy represented very small portion of the unified Germany economy in
real GDP terms in 1991
11Evidence of the validity of this treatment comes from the fact that the economy of former Southern
Yemen accounted for only 17.3% of real GDP of united Yemen. Additionally, the economy of united
Yemen is largely based on the market system which was followed by the Northern part before
unification
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Model 1:

AGRt = δ0 + δ1NRt + δ2FDt + δ3TOt + δ4GOVt + δ5Dumt + Ψt (1)

Model 2:

MNFt = η0 + η1NRt + η2FDt + η3TOt + η4GOVt + η6Dumt + κt (2)

Model 3:

SRVt = ω0 + ω1NRt + ω2FDt + ω3TOt + ω4GOVt + ω6Dumt + ζt (3)

where AGR is agriculture value added of GDP measured in percentage, MNF is
manufacturing value added of GDP measured in percentage, SRV is service value
added of GDP measured in percentage, NR is natural resource dependence, FD is
financial development indicators proxy by credit to private sector and deposit, TO
is trade openness, the sum of exports and imports of GDP measured in percentage,
GOV is government expenditure of GDP measured in percentage; Ψ , κ and ζ are
error terms. All variables have been transformed into natural logarithm before the
estimation. Dum is the dummy variable for unification period; it will take 1 if the
observation is in the period of 1990–2012 and 0 if the observation is in the period of
1980–1989.

Including trade openness to the model because it is widely accepted that trade
openness is an important growth determinant (see Barro and Sala-i Martin [11],
Chang et al. [15]). It is also important because Yemen’s economy is well integrated
with the globe. Therefore, any change of trade openness is expected to affect the eco-
nomic sector’s performance. We also include government expenditure to the model
because of its important role in the natural resource-based economies [36].

4.3 Methodology

To test the long-term relation of the variables,we adopt the auto-regressive distributed
lag (ARDL) bound testing approach to cointegration by Pesaran et al. [33]. Most
recent studies indicated that an ARDL model is more preferable in estimating the
cointegration relation because it is reliable and applicable irrespective of whether
the underlying regressors are I(0) or I(1). In addition, this approach is better and
performs well for a small sample size.

To estimate the ARDL approach to cointegration, short-run dynamics are added
into the long run equation. The ARDL models in error correction form are written
as Eqs. (4)–(6) respectively.
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ΔAGRt = δ0 + δ1AGRt−1 + δ2NRt−1 + δ3FDt−1 + δ4TOt−1 + δ5GOVt−1

+∑0
i=1 δ6ΔAGRt−i + ∑p

i=0 δ7ΔNRt−i + ∑q
i=0 δ8ΔFDt−i

+∑r
i=0 δ9ΔTOt−i + ∑s

i=0 δ10ΔGOVt−i + δ11Dumt + εt (4)

ΔMNFt = η0 + η1MNFt−1 + η2NRt−1 + η3FDt−1 + η4TOt−1 + η5GOVt−1

+∑0
i=1 η6ΔMNFt−i + ∑p

i=0 η7ΔNRt−i + ∑q
i=0 η8ΔFDt−i

+∑r
i=0 η9ΔTOt−i + ∑s

i=0 η10ΔGOVt−i + η11Dumt + εt (5)

ΔSRVt = ω0 + ω1SRVt−1 + ω2NRt−1 + ω3FDt−1 + ω4TOt−1 + ω5GOVt−1

+∑0
i=1 ω6ΔSRVt−i + ∑p

i=0 ω7ΔNRt−i + ∑q
i=0 ω8ΔFDt−i

+∑r
i=0 ω9ΔTOt−i + ∑s

i=0 ω10ΔGOVt−i + ω11Dumt + εt (6)

The coefficients of the first portion of the model measure the long-term relation,
whereas the coefficients of the second portion that attach with

∑
represent the short-

term dynamics. The F-statistic is used to test the existence of a long-term relation
among the variables.We test the null hypothesis H0 : δ1 = δ2 = δ3 = δ4 = δ5 in (4)12

that there is no cointegration among the variables. The F-statistics is then compared
with the critical value provided by Narayan [29], which is more suitable for a small
sample. If the computed F-statistic is greater than the upper bound critical value,
we reject the null hypothesis of no cointegration and conclude that steady state
equilibrium exists among the variables. If the computed F-statistic is less than the
lower bound critical value, the null hypothesis of no cointegration cannot be rejected.
However, if the computed F-statistic lies between the lower and upper bounds’ critical
values, the result is inconclusive.

Finally, this study adopts two stages of robustness check. First, we use different
measure of financial development on the same estimation technique (i.e., ARDL).
In the second stage, we use new natural resource dependence and financial devel-
opment measures on the alternative estimation techniques (i.e., fully modified OLS
and dynamic OLS).

5 Empirical Findings and Discussion

To test the integration order of the variables, ADF and PP tests are employed. We do
not report the results in order to conserve space. Overall, the unit root tests suggest
that all variables are stationary in its first differences besides government expenditure.

The ARDL bounds testing approach starts with F-test to confirm the existence of
the cointegration between the variables in the model. Lags up to two years have been
imposed on the first difference of each variable. We use Schwarz Bayesian Criterion
(SBC) to suggest the optimum lag for our ARDLmodels. Given the sample size of 33
observations, the critical values of Narayan [29] for the bounds F-test are employed.
The result of ARDL bound test of cointegration is tabulated in Table1.

12The same approach is applied to Eqs. (5) and (6) respectively
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Table 1 Result from ARDL cointegration test

Sector Model Max. lag SBC optimum
lag

F-Statistic ECTt−1
(t-ratio)

Agriculture Credit 2 (1,1,0,0,0) 2.1475 –0.596
(–5.669)***

Deposit 2 (1,0,0,0,0) 4.1167* –0.435
(–4.709)***

Manufacturing Credit 2 (1,0,0,0,0) 5.1457** –0.2121
(3.098)***

Deposit 2 (1,0,0,0,0) 4.3123* –0.235
(–2.292)**

Service Credit 2 (1,0,0,1,0) 3.6777 –0.641
(–3.967)***

Deposit 2 (1,0,0,0,0) 3.7375 –0.727
(–4.943)***

Note ***, ** and * denotes the significance at 1, 5 and 10% levels respectively. Critical values
bounds are from [29] with unrestricted intercept and no trend (Case III)

The result of cointegration test in Table1 shows that the F-statistics is greater than
its upper bound critical value of 1% level in manufacturing sector models, indicat-
ing the existence of long run relationship. Moreover, the coefficient of lagged error
correction term (ECTt−1) is significant and negative which confirms the existence
of long run relationship. However, for the case of agriculture and service sectors,
the results are inconclusive. Therefore, we need to show the cointegration among
the variables by using the alternative way by testing the coefficient of ECTt−1 which
is considered by Kremers et al. [23] as a more efficient way of establishing cointe-
gration. Kremers et al. [23] argued that the significant and negative coefficient for
ECTt−1 will indicate the adjustment of the variables towards equilibrium hence the
cointegration. So, the cointegration of these two sectors was supported by significant
and negative coefficient for ECTt−1.

As there is cointegration among the variables, we can derive the long-term coeffi-
cient as the estimated coefficient of the one lagged level independent variable divided
by the estimated coefficient of the one lagged level dependent variable and multiply
it with a negative sign. Conversely, the short-term coefficients are calculated as the
sum of the lagged coefficient of the first differenced variables.

Table2 Panel A provides the long run estimation results for the three sectors which
will be discussed as follows:

Agriculture Sector

Ourfindings for agriculture sector reveal that there is no significant impact of financial
development on agricultural sector for the case deposit model. However, surprisingly,
the result reveals significant negative relationship between financial development and
agriculture value added for the case of credit to private sector. This negative result
is against expectation and could be linked with the fact that the agricultural shocks
i.e. drought, flooding and other hazards, negatively affect the ability of agricultural
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borrowers to repay their loans and advances which left farmers in dept trap. Addi-
tionally, the findings reveal the negative role of natural resource dependence on
agricultural value added for the both cases of financial development indicators. This

Table 2 Long run and short run analysis

Agriculture Manufacturing Service

FD FD FD

Credit Deposit Credit Deposit Credit Deposit

Panel A. Long run results

C 6.0414***
(10.1683)

5.7428
(0.9109)

2.9188
(0.9241)

3.9284
(0.7607)

1.9371**
(2.3091)

0.6927
(0.6597)

FD –0.4316***
(–0.1306)

–0.2436
(–0.9581)

0.8012
(0.6567)

1.9471
(1.6164)

0.3550**
(2.0537)

0.4737**
(2.6395)

NR –0.1306***
(–3.2748)

–0.1375**
(–2.1923)

–0.4873***
(–3.1570)

–0.3994*
(–1.7775)

–0.1257
(1.6173)

–0.1145
(–1.1921)

TO –0.5094***
(–3.6078)

–0.8115***
(–3.2571)

–0.3330***
(–3.0924)

–1.3837***
(–3.1832)

–0.0745
(–0.4462)

0.4771**
(2.6606)

GOV 0.0812
(0.4406)

0.3899
(1.3630)

–0.2480
(–0.2682)

–1.2876
(–1.2034)

0.3912
(1.5559)

–0.0097
(–0.0522)

Dum –0.4968***
(–3.2312)

–0.1806
(–0.9109)

1.3171
(0.8049)

1.1613
(1.5547)

0.5775**
(2.4374)

0.3851**
(2.7324)

Panel B. Short run results

Δ FD –0.1052
(–0.9422)

–0.1059
(–0.8766)

0.1699
(1.1260)

0.4583***
(3.1392)

0.2276**
(2.6089)

0.3445***
(3.1093)

Δ NR –0.0778***
(–2.7660)

–0.0597*
(–1.9686)

–0.1033**
(–2.4200)

0.0940**
(–2.5526)

–0.0806
(–1.5107)

–
0.08323**
(–2.7489)

Δ TO –0.3035***
(–3.8014)

–0.3526**
(–2.5016)

–0.0706
(–0.5160)

–0.3257*
(–1.8889)

0.1538
(1.2850)

0.3470**
(2.9869)

Δ GOV 0.04842
(0.4485)

0.1694
(1.3096)

–0.0525
(–0.2760)

–0.3031*
–(–1.7162)

0.2508*
(1.7621)

–0.0070
(–0.0522)

Dum –0.2960**
(–2.435)

–0.0785
(–0.8497)

0.2793
(1.5303)

0.2734**
(2.4306)

0.3703***
(2.8566)

0.2801***
(3.1292)

ECTt−1 –0.5959***
(–5.6696)

–0.4345***
(–4.7091)

–0.2121***
(–3.0985)

–0.2354**
(–2.2924)

–0.6412***
(–3.9674)

–
0.7272***
(–4.9427)

Panel C. Diagnostic test

Serial correlation 0.1043
(0.747)

0.1349
(0.713)

1.7017
(0.192)

2.3135
(0.128)

0.3553
(0.551)

0.73063
(0.393)

Functional form 2.267
(0.132)

1.5570
(0.137)

0.2983
(0.585)

0.6274
(0.428)

1.4708
(0.225)

1.1595
(0.282)

Normality 2.5871
(0.274)

3.0172
(0.221)

2.9999
(0.223)

0.9722
(0.615)

3.5715
(0.168)

9.0371
(0.011)

Heteroscedasticity 0.729
(0.393)

1.5264
(0.217)

0.0117
(0.914)

0.7415
(0.389)

0.2740
(0.601)

0.4158
(0.519)

Note ***,** and *denotes the significance at 1, 5 and 10% levels respectively. t statistics in paren-
thesis
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infers that natural resource dependence leads to a reallocation of resources from the
agricultural sector to other sectors i.e. natural resource sector. In fact, this result in
line with Apergis and Payne [5] and provides evidence of natural resource curse
hypothesis through Dutch disease mechanism. A clear manifestation of this was the
rural-urban migration in which resources were mopped-up from the rural areas in
Yemen and deposited in urban areas. Young graduates migrated to the cities in search
of jobs with associated abandonment of investment in agriculture.

Additionally, Dutch disease phenomenon works when natural resources booms
increase domestic income and, consequently the demand for goods, which gener-
ate inflation and appreciation of the real exchange rate. Hence, the relative price of
all non-natural resource commodities increases, so the exports become expensive
relative to world market prices and thereby decreases the competitiveness of these
commodities as well as investment in these sectors. Furthermore, the table reports
a negative and significant long-run relationship between trade openness and agri-
culture value added. This is so as the lower prices of imported agricultural products
could suppress the price of domestically produced products and discourage domestic
production. This mean trade openness in Yemen excreted competitive pressure on
the producers of agricultural goods. Especially, weakening the protection for agricul-
tural products such as the fruits and vegetable, has reduced its export, thus affected
negatively the welfare of those peasants who produce these goods.

Finally, the dummy variable of unification period inters the model significantly
negative. This sheds more light on the declining role of agriculture sector in recent
years in Yemen due to lack of resources over time, climate change, social conflicts,
and lack of security are also having a significant impact on the agriculture sector.

Manufacturing Sector

For the case of manufacturing sector the result reveal that there is no role of finan-
cial development on fostering manufacturing value added in Yemen. These results
are not surprising because many Yemeni small entrepreneurs that are unable to pro-
vide collateral have to create small plants that require minimal capital and rely on
family members and relatives. The main private clients of the banking system are
the large family-owned enterprises that dominate the formal business sector. Often
they are also the main bank shareholders. Banks are reluctant to lend outside of this
limited group of companies because of the difficulties they face in ensuring repay-
ment or exercising rights over collateral [44]. Likewise the role of natural resource
dependence on agriculture sector, the negative and significant role of natural resource
dependence on manufacturing sector has also appeared in the Table. A 10% increase
in natural resource dependence is expected to decrease manufacturing value added
by between 4 and 4.9%. Therefore, it is fair to say that Yemen experienced the same
kind of outcome of other natural resource dominated economies suffering from the
“Dutch disease”. The results of manufacturing sector model also revealed the neg-
ative role of trade openness on this which confirms the competitive pressure on the
producers of manufacturing goods. Intuitively, this result is not surprising as manu-
facturing sector in Yemen exhibits low-quality export basket. When countries have
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specialized in low-quality products they are more likely to experience negative trade
impact Huchet-Bourdon et al. [20].

Service Sector

Unlike the case of agriculture and manufacturing sectors, the service sector has
a different story. The table reports a positive and significant relationship between
financial development and service value added. A 10% increase in credit to private
sector is expected to increase service value added by 3.6% and a 10% increase in
the deposits is expected to increase service value added by 4.7%. This implies that
service sector growth in Yemen relies on the development of financial sector. These
findings confirm that financial sector in Yemen more involved in less risky modes
of investment in those sectors that less volatile than other such as service sector.
Furthermore, one of the main characteristics of this sector and have been revealed
also by the findings is the absence of significant negative effect of natural resource
dependence on this sector in the long-run which make the investment in this sector
less risky than agriculture and manufacturing sectors.

Finally, the significant positive sign of the dummy variable reflects the growing
importance of the service sector in Yemeni economy in recent years associated with
deteriorating of the importance of the agriculture and manufacturing sectors after
unification.

Short run estimation results in error-correction representation are provided in
Table2 Panel B. The table reveals the absence of any role of financial development
on agriculture and manufacturing sectors, whereas the positive role on service sector
is still exist. The negative effect of natural resource dependence on economic sectors
has appeared in the case of the agriculture and manufacturing sectors also which
confirm again the natural resource curse phenomenon in Yemeni economy through
Dutch disease mechanism. The short run analysis also reveals the negative role of
trade openness on agriculture sector. Furthermore, the significance coefficients of
the dummy variable come in line with our long run analysis.

Finally, the coefficient of the estimated error correction model is negative and
significant, this confirm the existence of long run relationship among our variables.
In addition, the coefficient suggests that a deviation from the long-run equilibrium
following a short-run shock is corrected by about 59 and 43% per year for agriculture
sector, 21 and 24% per year for manufacturing sector and 65 and 72% per year for
service sector.

Table2 Panel C tabulates the result of some major diagnostic statistics such as
the LM statistics which is test for serial correlation; the misspecification is checked
by Ramsey Reset test, Heteroscedasticity and normality tests. The stability of coeffi-
cients by testing the CUSUM and CUSUMQ test are also examined.13 Based on the
results the null hypothesis of normality of residuals, null hypothesis of no misspec-
ification of functional form null hypothesis of no first order serial correlation and
null hypothesis of no heteroscedasticity are accepted. Furthermore, stability of the
model was supported because the plots of both of both CUSUM and CUSUMQ fell

13Figures of CUSUM and CUSUMQ are available upon request
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inside the critical bounds of 5% significance level. Finally, the size of the adjusted
R2 indicated a good fit.

The natural resource dependence plays a significant negative effect on the growth
of agriculture and manufacturing sectors. These findings are clear manifestation
that natural resource curse in Yemen works through Dutch disease mechanism.14

Agriculture has declined in importance, from over 24% of GDP in 1990 to about
8% in 2012. Manufacturing has also shriveled, from about 19% to only about seven
per cent. A low-paid, low-skilled urban service sector, increasingly tied to natural
resource sector instead of agriculture and manufacturing, continues to account for
about 40% of GDP.

The result revealed that the service sector in Yemen is the only sector that benefit
from financial sector development, whereas agricultural and manufacturing sector
have different story. The study found that financial development in Yemen has a neg-
ative or no effect on agriculture sector. The reason behind this result can be attributed
to fact that farmers are very unlikely to borrow from the formal sector and thereby
around 80% of farmers have no outstanding loans [44]. Financial sector imposes
high interest rates on loans to farmers by virtue of sector having a longer produc-
tion period as compared with other sectors. Furthermore, the uncertain nature of
agricultural output whose risks include, uncertain prices, high input costs, climatic
conditions, affect the production of this sector and thereby the ability of farmers to
repay their loans. On the other hand the findings revealed that the manufacturing
sector is still far from being influenced by financial sector development due to dif-
ficulties in obtaining bank credit in high interest rate environment and high level of
collaterals.

Robustness Check

As a robustness check,we re-estimate themodels using alternative proxy for financial
development and also a new natural resource dependence proxy. In addition, we
utilize two other econometric approaches i.e. FMOLS and DOLS for estimation. In
general, our previous findings with the ARDL approach are robust.

The alternative financial development proxy is FDPCA. This is a new proxy con-
structed with the previous two financial development proxies and the M2 to GDP15

based on the Principal Components Analysis approach. This proxy is able to cap-
ture most of the information from the original dataset of these proxies (see Ang and
McKibbin [3]).

14A simple univariate regression applied by IMF (2013) of the real effective exchange rate on
real oil prices for the period 1995–2012 suggested that a 1% increase in oil prices leads to a real
appreciation of Yemeni Rial about 0.3%
15This measure is considered to be the broadest measure of financial intermediation and includes
three types of financial institutions: the central bank, deposit money banks and other financial
institutions. Although this measure does not represent the effectiveness of the financial system,
but by assuming that the size of the financial intermediary system is positively correlated with
the financial system activities, this can be used for constructing PCA as a measure of financial
development for robustness check
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Table 3 Robustness check

FMOLS DOLS

Agriculture Manufacturing Service Agriculture Manufacturing Service

C 5.7458***
(7.2668)

4.4533***
(5.9379)

2.7878***
(7.6423)

3.6730***
(3.7369)

4.1617***
(4.5688)

2.0357
(1.5421)

FDPCA –0.1578**
(–2.5683)

0.0016
(0.0268)

0.1135***
(4.0041)

–0.3104***
(–7.4820)

–0.0087
(–0.2251)

0.0517***
(3.9280)

NRdum –0.3924***
(–2.8252)

–0.0906***
(–3.2748)

–0.0972
(–1.5164)

–1.0634***
(–4.4108)

–0.4130***
(–2.8484)

–0.2663
(–0.8225)

TO –0.3030
(–1.3404)

–0.5506**
(–2.5675)

0.2105*
(2.0181)

–0.2324
(–0.5694)

–0.8365*
(–2.2118)

–0.1347
(–0.2457)

GOV –0.2361
(–0.9199)

–0.0291
(–0.1195)

–0.0011
(–0.0092)

0.3382
(0.9207)

0.3468
(1.0189)

0.5973
(1.2110)

Dum –0.8872***
(–4.07530)

0.0221
(0.1072)

0.3671***
(3.6552)

–0.7004***
(–4.6420)

0.4239**
(3.0311)

0.5522**
(2.7250)

Note ***,** and *denotes the significance at 1%, 5% and 10% levels respectively. t statistics in
parenthesis

Additionally, we followBadeeb et al. [10] by using an alternative proxy for natural
resource dependence. This proxy is a dummy variable for the number of years where
the oil rent is greater than 10%ofGDP. The results of our robustness check, which are
tabulated in Table3, are in line and in agreement with our main models that confirm
our stated argument and conclusion.

6 Conclusion

This paper empirically examines the impact of natural resource dependence, financial
development and trade openness on Yemeni sectoral growth. The paper found that
the natural resource dependence plays a significant negative effect on the growth of
agriculture and manufacturing sectors. These findings are clear manifestation that
natural resource curse in Yemen works through Dutch disease mechanism. These
results provide evidence on how economic structure in resource based countries
is shaped by natural resource dependence. Also, the results revealed how financial
sector in these countries tend to involve in less risky activities in those sectors that
less volatile than other such as service sector.

This findings offer several policy implication in Yemen. On one hand, since nat-
ural resource dependence is a key obstacle to the development of sectoral growth, the
country needs to rebalance its economy away from natural resource sector in order
to reduce the level of natural resource dependence. The government should try to
promote the service sectors where it enjoys a potential comparative advantage for
example, in tourism and sea transport. The infrastructure for both services remains
weak. On the other hand, strengthening the role of the financial sector in financial
intermediary through accelerating the establishment of a stock market and boosting



Natural Resources, Financial Development and Sectoral Value Added … 415

the confidence in the banking system and reforms is important step toward more
economic diversification. Government should play a more proactive role in encour-
aging credit to enable financial sector to play a more efficient intermediary role in
mobilizing domestic savings and channeling them to private productive investment
across economic sectors.
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Can Bagging Improve the Forecasting
Performance of Tourism Demand Models?

Haiyan Song, Stephen F. Witt and Richard T. Qiu

Abstract This studyexamines the forecastingperformanceof thegeneral-to-specific
(GETS)models developed for Hong Kong through the bootstrap aggregating method
(knownasbagging).Although the literature inother researchareas shows that bagging
can improve the forecasting performance of GETS models, the empirical analysis in
this study does not confirm this conclusion. This study is the first attempt to apply bag-
ging to tourismforecasting,but additional effort isneeded toexamine theeffectiveness
of bagging in tourism forecasting by extending themodels to cover more destination-
source markets related to destinations other than Hong Kong.

Keywords Bagging ·General-to-specificmodeling ·Tourismdemand ·HongKong
1 Introduction

Tourism demand modeling and forecasting plays a crucial role in the process of
decision making among tourism stakeholders in both the public and private sector.
As policy makers and private practitioners base their decisions largely on tourism
demand forecasts, efforts to improve the accuracy of tourism demand forecasts are
ongoing.
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In the field of tourism demand forecasting, the general-to-specific (GETS) mod-
eling procedure has proved an effective tool due to its ease of specification and
robustness in model estimation [23]. In contrast to its counterpart, the specific-to-
general approach, the GETS procedure starts with a general model that contains all
possible influencing factors, and reduces the model to its final form by eliminating
insignificant factors recursively using t-statistics [4, 11, 21, 22]. However, as it suf-
fers from an unstable decision rule (the rule for eliminating insignificant factors using
t-statistics) in the model reduction process, the final forecasts may not be “optimal”.

One possible way to overcome this “unstable decision rule” problem is the boot-
strap aggregating (bagging) method proposed by Breiman [2] and Bühlmann and Yu
[3]. Inoue and Kilian [9] and Rapach and Strauss [15, 16] demonstrated its effective-
ness using estimations of U.S. inflation and U.S. national and regional employment
growth, respectively. In this paper, we try to apply the bagging procedure to GETS
forecasting based on Hong Kong tourism data to investigate whether GETS-bagging
can overcome the “unstable decision rule” problem in demand forecasting for the
Hong Kong tourism industry.

The rest of the paper is structured as follows. Section2 briefly introduces the
literature related to Hong Kong tourism demand forecasting, GETS, and the GETS-
bagging procedure. Section2 discusses the GETS-bagging method and the dataset
used in the study, Sect. 4 shows the results of the forecasting exercise, and Sect. 5
concludes.

2 Literature Review

Hong Kong is one of the world’s most popular tourist destinations. According to
the Hong Kong Tourism Board [8], Hong Kong received 59.3million visitors in
2015, putting it among the most popular tourist destinations in the world. Tourism
has been and remains the second largest source of foreign currency in Hong Kong,
and the income generated has contributed around 6% of Hong Kong’s GDP over
the last decade. Many businesses such as retailing, catering, accommodation, and
entertainment are directly and indirectly influenced by the growth of tourism in
Hong Kong.

Over the past two decades, growing research attention has been drawn to the mod-
eling and forecasting ofHongKong’s tourism demand.A few studies have focused on
modeling the trends and business cycles of tourism demand in Hong Kong based on
time-series forecasting techniques [31]. Among others, Hiemstra and Wong [6] and
Song andWong [25] identified the key factors affectingHongKong’s tourismdemand
and analyzed the demand elasticity based on econometricmodels. Song et al. [20] and
[19] investigated the forecasting performance of alternative time-series and econo-
metric forecasting techniques, while Song et al. [26] predicted the future growth of
Hong Kong’s tourism demand from key source markets. Song et al. [18, 24] devel-
oped a system to generate reliable forecasts of Hong Kong’s tourism demand.
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In the last category, the authors developed a web-based system called the Hong
Kong TourismDemand Forecasting System (HKTDFS) which uses the GETS proce-
dure. The factors considered in theHKTDFS include the income level of tourists from
the source markets, the prices of tourism products/services in Hong Kong (measured
by Hong Kong’s CPI relative to that of the source markets adjusted by the exchange
rate between the Hong Kong dollar and the source market currencies), the prices of
substitute destinations (also adjusted by the relevant exchange rates), the marketing
expenditure of such destinations, and so on [23]. The system starts with an autore-
gressive distributed lag model (ADLM) incorporating all possible factors that may
affect the demand for Hong Kong tourism together with their lagged values (four-
period lagged values for each variable as the system uses quarterly data) and dummy
variables (including seasonal dummies and one-off event dummies). This model is
then estimated using the OLS method. The insignificant variable with the largest
p-value is eliminated, and the OLS estimation process repeated until all variables
left in the model are both statistically and economically significant (that is, the coef-
ficients of the variables have the correct signs according to economic theory). Song
et al. [17] showed that the ADLM used in the HKTDFS produces relatively accurate
forecasts. However, they also mentioned that the model can generate relatively large
forecasting errors for volatile markets such as mainland China and Taiwan (with a
mean absolute percentage error greater than 10%). Furthermore, using t-statistics as
a decision rule to eliminate variables can be problematic as the explanatory variables
are correlated [2]. This “unstable decision rule” also prevents the forecasting system
from being fully automated. The investigation in this paper can therefore be consid-
ered an extension of the HKTDFS, as it explores an alternative way to reduce the
forecasting error and automate the forecasting process.

The term “bagging” was introduced by Breiman [2] to stand for “bootstrap
aggregating”. It is an ensemble method combining multiple predictors. To improve
the accuracy of the model, it trains multiple models on different samples (data splits)
and averages their predictions. A large number (e.g. B) of bootstrap samples are
first drawn,B predictions are then generated by applying the model to these samples,
and the bagging predictor is finally calculated by averaging these predictions. This
is based on the concept that the “averaging of misclassification errors on different
data splits gives a better estimate of the predictive ability of a learning method”
[32]. Experiments show that the bagging predictor works well for unstable learning
algorithms, and a reduction of 21 to 46% can be made in mean squared errors (MSE)
when bagging is applied to the regression tree [2].

3 The Model and Data

The GETS procedure was used in the web-based HKTDFS by Song et al. [24]. As a
potential extension of that study, the same procedure is adopted in this investigation.
The model starts with a general ADLM in the form of
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qhi,t+h = αi +
k∑

j=1

βi,jXi,j,t + εhi,t+h, (1)

where qhi,t+h is the demand for HongKong tourism (measured by total tourist arrivals)
among residents in country i at time t + h, t is the time index with a maximum of T,
h is the forecast horizon, Xi,j,t are the vectors of k explanatory variables, including
the lagged values of the independent and dummy variables, εhi,t+h is the error term,
and α and βs are the parameters to be estimated.

Due to the data requirements for the bagging procedure, monthly data is used in
this investigation instead of the quarterly data used in the HKTDFS. For the same
reason, only relative price, substitute price, and GDP per capita (together with their
lagged values) are considered as independent variables in this study. These variables
are proven to be the most important factors determining tourism demand [10, 29].
Thus, the GETS procedure in this investigation is more of a “lag selector” than a
“variable selector” in the HKTDFS. The model then becomes

qhi,t+h = αi +
12∑

j=0

βi,jRPi,t−j +
12∑

m=0

γi,mSPi,t−m +
12∑

n=0

ϕi,nGDPi,t−n

+
12∑

k=2

dsi,kDSk +
x∑

p=1

dei,pDEp + εhi,t+h, (2)

where RPi,t are the relative prices, SPi,t are the substitute prices,GDPi,t are the GDP
per capita in particular source markets,DSks are the seasonal dummies (with the first
dummy for January being omitted to avoid collinearity), DEps are x one-off event
dummies, and α, β, γ, ϕ, ds, and de are the parameters to be estimated.

To carry out the GETS procedure, this general model is then estimated using
OLS. The estimates for all of the coefficients are then sorted by their t-statistics in
ascending order. The variable associated with the first coefficient (the coefficient
with the smallest t-statistics or largest p-value) is eliminated from the model if it is
statistically insignificant. Here, the elimination of insignificant variables is done in
a recursive manner instead of as a one-off act, as suggested by Song et al. [23]. The
above procedure is repeated until all variables left in the model are significant (or
all variables are dropped). The treatment of seasonal dummies is worth mentioning:
as seasonality always has a considerable influence on tourism demand, all seasonal
dummies are excluded from the variable elimination procedure. The GETS forecasts
are calculated as
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q̂h,GETSi,t+h =α̂i +
12∑

j=0

β̂i,jIi,jRPi,t−j +
12∑

m=0

γ̂i,mIi,mSPi,t−m

+
12∑

n=0

ϕ̂i,nIi,nGDPi,t−n +
12∑

k=2

d̂si,kDSk +
x∑

p=1

d̂ei,pIi,pDEp, (3)

where Ii,j, Ii,m, Ii,n, and Ii,p are relevant dummies that take the value of one if the
associated coefficient is significant, and zero otherwise, and α̂i, β̂i,j, γ̂i,m, ϕ̂i,n, d̂si,k ,
and d̂ei,p are the OLS estimators of the model.

In the bagging procedure, a large number (B = 100 in this investigation) of boot-
strap samples are generated from the original dataset. As the dataset contains time-
series data, the moving-block bootstrap is used to maintain the structure of the data.
For each draw, a block of 12 observations (as monthly data is used) is picked from the
dataset (with replacement). After �T12� draws, a sample of (�T12� × 12) observa-
tions is generated, and the first T observations from this sample are used as one boot-
strap sample. For each bootstrap sample (indexed by b), a series of GETS forecasts
can be calculated using Eq. (3). The GETS-bagging forecasts can then be calculated
as the average of these GETS forecasts,

q̂h,GBi,t+h = 1

B

B∑

b=1

q̂h,GBi,t+h,b, (4)

where q̂h,GBi,t+h,b is the GETS forecast for bootstrap sample b and q̂h,GBi,t+h is the GETS-
bagging forecast for the total number of arrivals of tourists from country i at time
t+h.

The data used for this investigation include the total arrivals in Hong Kong (qi,t)
from three source markets, namely mainland China, the U.S., and the U.K., where
mainland China represents a short-haul market and the U.S. and U.K. represent long-
haul markets. Australia was considered a long-haul sample from Oceania but was
later excluded due to data availability. These data are obtained from statistical reports
of the Hong Kong Tourism Board [7].

The relative price is the price of Hong Kong tourism relative to that of the source
markets (RPi,t), it is defined as

RPi,t = CPIHK,t/EXHK,t

CPIi,t/EXi,t
, (5)

where CPIi,t is the consumer price index for Hong Kong (or the origin country i),
and EXi,t is the exchange rate between the Hong Kong dollar (or currency of origin
country i) and the U.S. dollar.

The substitute price is the price of tourism in substitute destinations relative to
Hong Kong (SPi,t), and is defined as
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SPi,t =
J∑

j=1

CPIj,t
EXj,t

wi,j,t, (6)

where J = 6, representing the 6 substitute destinations including mainland China,
Taiwan, Singapore, Thailand, Korea, and Japan [25], and wi,j,t is the share of inter-
national tourist arrivals at region j, calculated as

wi,j,t = qi,j,t
J∑

j=1

qi,j,t

. (7)

where qi,j,t is the total number of arrivals of tourists from country i to country j at
time t. Notice that when mainland China is the origin country under examination, it
is excluded from the calculation of the substitute price (J = 5 in this case).

The CPIs of mainland China, Korea, Japan, the U.K., and the U.S. are obtained
from the OECD database [14], the CPI of Hong Kong is obtained from the Census
and Statistics Department of the Hong Kong SAR Government [5], the CPI of Tai-
wan is obtained from National Statistics, Republic of China (Taiwan) [12], the CPI
of Singapore is obtained from Statistics Singapore [27], and the CPI of Thailand
is obtained from the Bank of Thailand [1]. The exchange rate data for all coun-
tries/regions above are obtained from OANDA fxTradeTM [13]. The data on tourists
arrivals are retrieved from UNWTO [28].

The model includes three one-off event dummies. The first represents the effect
of the 9/11 attack, which takes the value of one from September, 2001 to December,
2001 and zero otherwise. The second represents the effect of the Beijing Olympics
in 2008, which takes the value of one from July, 2008 to December, 2008 and zero
otherwise. The third represents the effect of the subprime mortgage crisis starting
from 2008, which takes the value of one from January, 2008 to December, 2010 and
zero otherwise.

4 The Forecasting Results

The GETS-bagging forecasts are generated using Eqs. (3) and (4) and the data
described in Sect. 3. To compare the forecast accuracy of the GETS-bagging pro-
cedure with that of the pure GETS procedure, a series of GETS forecasts are also
generated using Eq. (3) and the original dataset.

Figure1 shows the results for the 1-period-ahead (h = 1) total arrival forecasts of
all three countries. The results for h = 2 to 12 are available up request.

From Fig. 1, we can see that the forecasts of both procedures work similarly, with
the GETS-bagging procedure responds more to variations in the explanatory vari-
ables. This “overreaction” problem downgrades the performance of the GETS-
bagging procedure. Both procedures work poorly in the early stage of the forecasts,
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Fig. 1 1-period-ahead forecasts

caused by significant changes in the explanatory variables after 2008 due to the sub-
prime mortgage crisis, although it is already controlled by the dummy. This phenom-
enon is more significant in the case of the U.S., which suffered the most during the
crisis.

In the case of the U.K., a spike is forecast by both procedures around September,
2009.This is causedby a significant increase in the exchange rate of the pound sterling
(GBP) against the U.S. Dollar (USD), which increased from 0.589 USD/GBP in
October, 2008 to a peak of 0.704 USD/GBP in March, 2009, and recovered to 0.604
USD/GBP in August, 2009. The GETS-bagging procedure responds more to this
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shock and generates less accurate forecasts than does the GETS procedure. This
spike in the forecasts becomes smaller as the forecast horizon increases (results
are available from the authors upon request), but the improvement is smaller in the
GETS-bagging procedure than in the GETS procedure.

In the case ofmainlandChina, the forecasts become less accuratewhen the forecast
horizon increases, whereas the opposite occurs in the case of the U.K. The forecast
accuracy improves as h increases from1 to 6 butworsens afterwards for theU.S. Thus
it seems that the performance of both procedures has little to do with the forecast
horizon. This phenomenon is also identifiable in the forecasting accuracy in later
sections. In general, the GETS-bagging procedure does not outperform the GETS
procedure as expected; therefore improving the HKTDFS by switching from the
GETS to the GETS-bagging procedure is not an option.

Four measures of forecasting accuracy, namely the root mean squared error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and mean absolute scaled error (MASE), are calculated to compare the forecasts of
the two procedures.

RMSE is a quadratic scoring rule which measures the average magnitude of the
forecasting errors. It is calculated by

RMSEh
i =

√√√√√√

T∑

t=1

(q̂h,GBi,t+h − qhi,t+h)
2

T
. (8)

MAE is the average magnitude of the forecasting errors without considering their
direction. It is calculated by

MAEh
i = 1

T

T∑

t=1

∣∣∣q̂h,GBi,t+h − qhi,t+h

∣∣∣. (9)

As errors are squared before being averaged in the RMSE, this gives a relatively
high weight to large forecasting errors whereas the MAE gives equal weight to all
forecasting errors. Together, the difference between RMSE and MAE can be used to
diagnose the variation in the forecasting errors of both the GETS-bagging and GETS
procedures.

The MAPE and MASE are measures of forecasting accuracy at the percentage
level. They are calculated by

MAPEh
i = 1

T

T∑

t=1

∣∣∣∣∣
q̂h,GBi,t+h − qhi,t+h

qhi,t+h

∣∣∣∣∣, (10)

and
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MASEh
i =

T∑

t=1

∣∣∣q̂h,GBi,t+h − qhi,t+h

∣∣∣

T

T − 1

T∑

t=2

∣∣qhi,t+h − qhi,t+h−1

∣∣
, (11)

respectively. As these two measures are scale-free error metrics, they can be used not
only to compare the GETS-bagging and GETS procedures in this investigation, but
also to compare these two procedures with other procedures in future investigations.

Table1 shows theRMSEof the twoprocedures for all three countries. Thenumbers
in parentheses for the RMSE of the GETS-bagging procedure are the percentages of
the RMSE of the GETS-bagging procedure relative to that of the GETS procedure.
Thus, an improvement in the GETS-bagging procedure is shown if the number is
below100%.However, all these numbers are above 100%.Thismeans that, according
to the RMSE in this investigation, the GETS-bagging procedure is outperformed by
the GETS procedure. The same conclusion can be drawn from the MAE, MAPE,
and MASE comparisons (see Appendix).

As mentioned above, the difference between the RMSE and MAE can be used to
diagnose the variation in the forecasting errors. The percentage of this difference is
calculated by

Δ% = RMSE − MAE

MAE
. (12)

Table2 compares this difference for both procedures for all countries.
Among the 36 groups of comparisons, 12 show the GETS-bagging differences

to be smaller than the GETS differences. That is, in these 12 groups, the GETS-
bagging procedure generates less variation in forecasting errors. Interestingly, of
these 12 groups, 7 are forecasts for mainland China, the most volatile source market
among the three. In these cases, the GETS-bagging procedure does serve to reduce
the variance in forecasting error. However, the increase in bias spoils the forecasts
so that the GETS-bagging procedure is outperformed by the GETS procedure. The
variance reduction becomes more obvious when the source market is volatile. It is
possible that, with a highly volatile source market, the reduction in variance exceeds
the effects of increased bias, and the GETS-bagging procedure may then outperform
the GETS procedure.

5 Concluding Remarks

The GETS-bagging procedure did not yield the expected results in our investigation.
Although it reduced the variance in forecasting error to some extent in the case of
mainland China, the forecasting error itself was increased compared with the GETS
procedure. Furthermore, the interpretable structure is also lost in the process of bag-
ging. However, the failure of the GETS-bagging procedure in this investigation does
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not imply a general failure of the procedure in tourism demand forecasting. As men-
tioned in Song et al. [17], the HKTDFS generates considerably accurate forecasts,
and Breiman [2] indicated that “bagging can improve only if the unbagged is not
optimal”. This may be one of the reasons the GETS-bagging procedure was outper-
formed by the GETS procedure in the HKTDFS. Also, the linear regression using
all variables is a fairly stable procedure, but the stability may decrease as the number
of variables used in the predictor decreases. While the GETS-bagging procedure did
not improve the HKTDFS, improvements in other aspects remain possible. As the
model reduction process is sensitive to the sequence of removing insignificant vari-
ables, the process can vary from researcher to researcher. The final model may thus
not be the “optimal” one due to this subjective influence. Judgmental adjustments
with input from experts proposed by Song et al. [18] were able to reduce the fore-
casting error. However, these adjustments prevent the model from being automated.

Table 1 The RMSE of both procedures for all three countries

h Mainland China U.K. U.S.

GETS GETS-
bagging

GETS GETS-
bagging

GETS GETS-
bagging

1 316992.29 347383.78 9401.16 13944.74 11836.58 21395.19

(109.6%) (148.3%) (180.8%)

2 342914.17 365484.59 6026.12 15518.18 11997.23 21530.27

(106.6%) (257.5%) (179.5%)

3 370967.52 382118.47 6063.99 15194 12187.47 20762.62

(103.0%) (250.6%) (170.4%)

4 363281.29 409763.51 6166.34 14072.01 13308.6 20842.35

(112.8%) (228.2%) (156.6%)

5 360874.27 429463.34 5941.2 11482.92 11069.28 20177.43

(119.0%) (193.3%) (182.3%)

6 408599.73 481190.18 6196.81 10049.01 11974.54 18972.67

(117.8%) (162.2%) (158.4%)

7 452876.15 579940.73 5718.32 7830.49 11974.12 21652.69

(128.1%) (136.9%) (180.8%)

8 424726.69 561524.24 5706.74 7899.73 12046.05 24285.48

(132.2%) (138.4%) (201.6%)

9 431886.14 530321.82 7140.06 8432.27 11011.98 25755.24

(122.8%) (118.1%) (233.9%)

10 398612.85 519010.39 7593.48 8484.53 14024.57 27406.42

(130.2%) (111.7%) (195.4%)

11 425273.43 482090.82 6620.05 8537.44 10757.54 33441.7

(113.4%) (129.0%) (310.9%)

12 458713.61 472027.7 6951.79 8804.68 11120.63 37875.14

(102.9%) (126.7%) (340.6%)
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Table 2 The RMSE exceeds the MAE in percentages

h Mainland China U.K. U.S.

GETS (%) GETS-
bagging
(%)

GETS (%) GETS-
bagging
(%)

GETS (%) GETS-
bagging
(%)

1 127.6 125.6 178.9 149.2 124.3 129.6

(98.5) (83.4) (104.3)

2 121.6 119.3 128.9 144.8 135.6 133.0

(98.1) (112.4) (98.1)

3 122.8 124.1 126.5 144.7 127.6 133.7

(101.1) (114.4) (104.8)

4 119.7 124.0 130.7 149.6 124.4 126.9

(103.6) (114.5) (102.0)

5 120.6 124.3 117.1 143.8 122.9 127.9

(103.0) (122.9) (104.1)

6 122.2 118.4 120.2 137.6 123.2 127.1

(96.9) (114.4) (103.2)

7 121.9 113.4 122.3 126.1 122.6 132.4

(93.0) (103.2) (108.0)

8 126.9 118.0 125.0 128.1 126.6 128.8

(93.0) (102.4) (101.7)

9 116.1 121.6 122.0 127.6 124.3 129.8

(104.8) (104.6) (104.4)

10 113.9 117.0 119.5 124.7 118.7 129.7

(102.8) (104.4) (109.2)

11 125.5 122.2 122.3 126.1 122.0 119.6

(97.4) (103.1) (98.1)

12 125.3 120.9 126.0 125.0 124.4 113.9

(96.5) (99.1) (91.5)

Another alternative is to reconsider the dropped variables each time an insignifi-
cant variable is dropped. In the GETS process, whenever an insignificant variable is
dropped, the already dropped variables can be reintroduced into the model to seek
forecasting error reduction. This extra step can, to some extent, correct the “bad”
drops. More importantly, it can be automated by computer. A Bayesian estimation
is also an alternative. Wong et al. [30] showed that imposing this prior to the VAR
model can improve model performance and reduce the forecasting error. Given that
the t-statistics used in the GETS procedure can be problematic due to serial correla-
tion among the explanatory variables, using Bayesian factors instead may improve
the forecasting results.
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Appendix: Tables of the MAE, MAPE, and MASE of Both
Procedures for all Three Countries

See Appendix Tables3, 4, 5.

Table 3 MAE of both procedures for all three countries

h Mainland China U.K. U.S.

GETS GETS-
bagging

GETS GETS-
bagging

GETS GETS-
bagging

1 248514.61 276615.46 5253.77 9345.38 9520.478 16505.54

(111.3%) (177.9%) (173.4%)

2 282037.25 306362.47 4676.06 10714.25 8845.252 16186.01

(108.6%) (229.1%) (183.0%)

3 302180.56 307888.23 4795.33 10498.54 9551.193 15530.67

(101.9%) (218.9%) (162.6%)

4 303385.15 330366.69 4717.01 9403.36 10694.32 16419.15

(108.9%) (199.3%) (153.5%)

5 299147.38 345496.76 5075.21 7982.88 9004.759 15774.76

(115.5%) (157.3%) (175.2%)

6 334481.12 406464.95 5154.13 7302.96 9720.252 14929.27

(121.5%) (141.7%) (153.6%)

7 371528.4 511454.96 4676.93 6208.69 9766.333 16353.55

(137.7%) (132.8%) (167.4%)

8 334608.97 475861.52 4563.59 6168.62 9515.025 18855.38

(142.2%) (135.2%) (198.2%)

9 372134.15 436171.47 5850.82 6608.72 8858.444 19840.88

(117.2%) (113.0%) (224.0%)

10 350112.39 443452.18 6356.59 6805.44 11813.87 21133.23

(126.7%) (107.1%) (178.9%)

11 338785.28 394423.24 5412.29 6770.56 8819.396 27954.85

(116.4%) (125.1%) (317.0%)

12 366183.62 390310.34 5515.32 7046.35 8939.031 33260.36

(106.6%) (127.8%) (372.1%)
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Table 4 MAPE of both procedures for all three countries

h Mainland China U.K. U.S.

GETS (%) GETS-
bagging
(%)

GETS (%) GETS-
bagging
(%)

GETS (%) GETS-
bagging
(%)

1 13 15 12 21 10 17

(115.2) (181.4) (176.1)

2 15 17 11 24 9 17

(110.8) (228.3) (185.2)

3 16 17 11 24 10 16

(102.8) (218.2) (165.1)

4 16 17 11 21 11 17

(106.3) (197.0) (155.9)

5 14 17 12 18 9 17

(115.9) (154.3) (175.8)

6 17 19 12 17 10 17

(114.2) (138.7) (156.6)

7 18 25 11 15 10 17

(137.3) (130.3) (167.1)

8 16 22 11 14 10 19

(136.6) (131.3) (195.0)

9 18 19 13 15 9 20

(108.3) (113.7) (217.2)

10 16 19 14 15 12 22

(115.9) (107.0) (175.1)

11 15 16 12 15 9 29

(109.0) (124.1) (303.6)

12 16 16 12 16 9 34

(96.9) (127.5) (363.1)
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Table 5 MASE of both procedures for all three countries

h Mainland China U.K. U.S.

GETS (%) GETS-
bagging
(%)

GETS (%) GETS-
bagging
(%)

GETS (%) GETS-
bagging
(%)

1 84 93 71 126 79 137

(111.3) (177.9) (172.2)

2 95 103 63 144 74 134

(108.6) (229.1) (180.9)

3 102 104 65 141 80 129

(101.9) (218.9) (162.2)

4 102 111 63 127 89 133

(108.9) (199.3) (148.9)

5 101 116 68 107 75 121

(115.5) (157.3) (160.5)

6 113 137 69 98 81 114

(121.5) (141.7) (140.7)

7 125 172 63 84 82 129

(137.7) (132.8) (157.6)

8 113 160 61 83 79 149

(142.2) (135.2) (187.0)

9 125 147 79 89 74 159

(117.2) (113.0) (214.7)

10 118 149 86 92 99 165

(126.7) (107.1) (167.4)

11 114 133 73 91 74 228

(116.4) (125.1) (309.4)

12 123 131 74 95 75 278

(106.6) (127.8) (371.9)
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The Role of Asian Credit Default Swap Index
in Portfolio Risk Management

Jianxu Liu, Chatchai Khiewngamdee and Songsak Sriboonchitta

Abstract This paper aims at evaluating the performance of Asian Credit Default
Swap (CDS) index in risk measurement and portfolio optimization by using several
multivariate copulas-GARCHmodelswith Expected Shortfall and Sharpe ratio.Mul-
tivariate copula-GARCH models consider the volatility and dependence structures
of financial assets so that they are conductive to accurately predict risk and optimal
portfolio. We find that vine copulas have better performance than other multivariate
copulas in model estimation, while the multivariate T copulas have better perfor-
mance than other kinds of copulas in risk measurement and portfolio optimization.
Therefore, the model estimation, risk measurement, and portfolio optimization in
empirical study should use different copula models. More importantly, the empirical
results give evidences that Asian CDS index can reduce risk.

Keywords Gold · Crude oil · Bond · Expected shortfall · Copula · Sharpe ratio

1 Introduction

Since the global financial crisis in 2008, most countries around the world still have
suffered from the economic slowdown. Therefore, policymakers have tried to stim-
ulate their own economy by using economic stimulus packages, the so called Quan-
titative Easing. These packages, however, have caused the global financial market to
get more volatile as the policies were changed more often and hence created more
uncertainty. It also created higher risks in stock, commodities and bonds markets.
Thus, it is more difficult for investors and corporates to manage their risks from
market volatility.

Investors are now seeking ways to reduce the risks of the portfolios as they
normally position their portfolio into asset class—equities, fixed-income, cash and
commodities—because asset class is more liquid than other assets, for example real
estate. This causes investors to face greater risks of their portfolios. Fortunately,
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credit default swap (CDS) provides very effective hedging strategies and has been
widely used for risk management in terms of reducing risk exposure. It also has
proved itself to be a helpful tool to manage the risk of the portfolio. Compared to
American and European markets, CDS index spreads in Asia yield a higher average
return after the crisis. Moreover, CDS index in Asia has grown rapidly over the last
decade as investors have moved their investment to emerging markets in Asia.

The risk measurement of the CDS has been widely studied in several papers.
For instance, Amato [1] estimated CDS risk premia and default risk aversion. Oh
and Patton [2] modeled the systemic risk of CDS measurement. Additionally, there
also are studies that analyze the risk of the portfolio consisting CDS. For example,
Schönbucher [3], Kiesel and Scherer [4] and Kim et al. [5] measured the valuation
losses on CDS portfolio. Pedersen [6] also evaluated the valuation and risk of CDS
option portfolio. Furthermore, Bo andCapponi [7] considered the optimal investment
in CDS portfolio under contagion risk. However, only a few studies, for example
Raunig and Scheicher [8], have compared the risk between investing in CDS and
other assets. In this paper, we bridge this gap by analyzing the risk of the CDS
portfolio compared with another portfolio excluding CDS. In order to measure the
risk of the portfolio, we introduce copula-based volatility models which take into
account the joint dependence between asset returns.

Copula concept recently has been used to improve the accuracy of the risk mea-
surement in finance such as Value at Risk (VaR) and Expected Shortfall (ES). Many
studies applied copula based GARCH model and found that these copulas based
models are more reliable than thus superior to ordinary GARCH model. For exam-
ple, Hürlimann [9], Wei and Zhang [10], He and Gong [11] and Wang et al. [12]
employed multivariate copula based GARCHmodels to evaluate the risk of the port-
folio using VaR and ES. Their results show that copula based GARCH model is
practicable and more effective in capturing the dependence structure between asset
returns and hence accurately measure the risks.

Furthermore, other studies relaxed standard copula assumptions by applying vine
copulas which allow different dependency structures between variables and more
flexible in high dimensional data. For instance, Emmanouil and Nikos [13], Weiß
and Supper [14], Sriboonchitta et al. [15] and Zhang et al. [16] estimated VaR and
ES by using vine copulas based GARCH models and found that vine copula based
models accurately forecast risk and return of the portfolios. Hence, vine copulas
become a useful tool to estimate risks (Guegan and Maugis [17]; Low et al. [18]).

In this paper, we are interested in examining the effect of Asian CDS index on
portfolio risk and return. In other words, we investigate whether including Asian
CDS index to portfolio can reduce the risk or increase the return of the portfolio. In
order to capture the main asset classes, we conduct our portfolio consisting of stock,
commodities, and bond as they are traded widely in global market. We employ
copula based GARCH models and Expected Shortfall to evaluate the risk and return
of the portfolio. Firstly, we filter the data by using GARCH model and employ our
copulas approach to estimate the dependence parameters between asset returns. We
apply both standard and high dimensional copula based volatility models, namely
multivariate copula, C-vine and D-vine copulas. Then, we estimate the risk of the
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equally weighted portfolio by applying the Expected Shortfall concept. We also
construct another identical portfolio but includes Asian CDS index and re-estimate
the risk of this portfolio. Finally, by the best fitting copula model, we compare the
risk and return of these two portfolios using Sharpe ratio and confirm our result by
employing robustness test.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
dataset. Section3 presents the methodologies used in this study. Section4 provides
the empirical results and final section gives conclusions.

2 Data

In this paper, we use iTraxx Asia ex-Japan CDS index, Hang Seng future Index,
10-year US government bond, gold future price, and Brent crude oil future price
to measure risk and return in financial market. Our sample covers the period from
April 1st, 2011, to March 31st, 2016, with 1186 daily observations totally. All data
are obtained from Thomson Reuter Database. We partition the data into two parts:
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Fig. 1 Daily returns of Asian CDS indexwith 10-year US government Bond, Brent Crude oil future
price, Gold future price and Hang Seng future index. We can find that CDS has stronger volatility
than others, and all assets show phenomenon of volatility clustering, thereby implying that using
GARCH model is appropriate in our study
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Table 1 The estimate results of Kendall’s tau

Kendall’s tau CDS HSF Bond Crude oil Gold

CDS 1 −0.3553*** 0.1915*** −0.1215*** −0.03502***

HSF −0.3553*** 1 −0.0919*** 0.0903*** 0.0129

Bond 0.1915*** −0.0919*** 1 −0.1751*** 0.0761***

Crude oil −0.1215*** 0.0903*** −0.1751*** 1 0.1089***

Gold −0.0350* 0.0129 0.0761*** 0.1089*** 1

*, **, and *** denote rejection of the null hypothesis at the 10%, 5%, and 1% significance levels,
respectively

in sample and out of sample. The in-sample data from April 1st, 2011 to March
31st, 2015, with 710 observations is used to estimate the parameters of the copula-
based GARCH models. Thereafter, the 250 observations in the out of sample are
used to forecasts the optimal portfolios and ES by using the principle of the daily
rollingwindow forecasting, and to perform robust checkwhether the ESwith copula-
based GARCHmodels being used in our paper are adequate. To answer the question
whether Asian CDS index can reduce risk or make more profit for portfolio or not.
We divide the assets into two portfolios. The first portfolio includes 4 assets: bond,
crude oil, gold, and Hang Seng index, we name it non-CDS portfolio. The second
portfolio we include Asian CDS index to those 4 assets, this portfolio is called CDS
portfolio. The risk measurement and portfolio optimization of two portfolios can be
used to answer this question (Fig. 1).

Table1 reports the estimate results of Kendall’s tau. Firstly, we find that the
Kendall’s tau for the most of pairs are statistically significant at 5% level except
Gold and HSF. It implies that gold and HSF are unrelated in terms of rank corre-
lation, while other pairs have certain relationship. Secondly, there exists negative
correlation between CDS and HSF, CDS and crude oil, CDS and gold, which means
CDS probably can reduce risk for diversified portfolio.

3 Methodology

This study combines copula functions and GARCH model to capture volatility and
dependence structure between asset returns. In other words, GARCH model reflects
volatility of asset returns, while copula functions are used to describe dependence
between asset returns. In general, considering the volatility anddependence structures
of financial assets are conductive to accurately predict risk and optimal portfolio.
The specification of marginal models, multivariate copulas, Expected Shortfall and
robustness check are introduced in the following sub-sections, respectively.
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3.1 Specification for Marginal Models

According to Bollerslev [19], the basic GARCH (1,1) model can be expressed as

rt = σt zt , (1)

σ 2
t = ω + αε2t−1 + βσ 2

t−1, (2)

where rt is the return of time series r at time t , zt is the standardized residual which
can be assume as any distribution. σ 2

t is the conditional variance of rt , which depends
on the previous value of squared error term and the previous value of the conditional
variance. In order to capture the characteristics of heavy tail and asymmetry for
the marginal Von Rohr and Hoeschele [20], we assume that the distribution for the
standardized residual, zt , follows a skewed Student-t distribution:

fskt (zt |υ, γ ) = 2

γ + γ −1

(
fυ(

zt
γ

)I[0,∞)(zt ) + fυ(γ zt )I(−∞,o)(zt )

)
, (3)

where fυ(·) is the density of the Student-t distribution with υ degrees of freedom, is
the indicator function to capture the asymmetry effect of the bull and bear markets,
and γ is the skewness parameter ranging from 0 to ∞. If γ > 1, the distribution is
skewed to the right; if γ = 1, it is symmetric; and if 0 < γ < 1, the distribution is
skewed to the left.

3.2 Specification for Multivariate Copulas

The essential characteristic of copula model is that any multivariate distribution
function can be decomposed into the marginal distributions, which describe the
return pattern of each asset individually, such as peak kurtosis and heavy tail, etc., and
the copula, which fully captures the dependence between the asset returns Wu et al.
[21]. In multivariate copulas, multivariate Gaussian and T copulas are generally used
to analyze financial risk because of their easy implementation. Three-dimensional
multivariate Gaussian and T copulas can be expressed as

cGau(u1, u2, u3|R) = ΦR(Φ−1(u1),Φ
−1(u2),Φ

−1(u3)), (4)

cT (u1, u2, u3|R, ν) = TR(T−1
ν (u1), T

−1
ν (u2), T

−1
ν (u3)), (5)

respectively, where Φ−1 represents an inverse standard normal distribution func-
tion. Obviously, ui is the values of the marginal probability distribution functions,
i = 1, 2, 3. T−1

ν is an inverse student-t distribution with degree of freedom ν. R is a
correlation matrix, and there are several forms, exchangeable (ex), Toeplitz (toep),
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and unstructured (un), which are commonly used to describe dependence structures

as follows:

⎛

⎝
1 ρ ρ

ρ 1 ρ

ρ ρ 1

⎞

⎠,

⎛

⎝
1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

⎞

⎠ and

⎛

⎝
1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

⎞

⎠.

Vine copulas are a kind ofmultivariate copulas which use bivariate copulas to con-
struct multivariate distributions, and specify the dependence and conditional depen-
dence of selected pairs of random variables and all marginal distribution functions.
A d−dimensional vine copula is decomposed into d(d − 1)/2 pair-copulas, and the
densities of multivariate vine copulas can be factorized in terms of pair-copulas and
margins. Bedford and Cooke [22, 23] proposed two subclasses of pair-copula con-
structions (PCC), which are called as C-vine andD-vine copulas. FollowingAas et al.
[24], the densities of C-vines and D-vines are, respectively,

f (x1, x2, ..., xd ) =
d∏

k=1

f (xk) ×
d−1∏

j=1

d− j∏

i=1

c j,i+ j |1,..., j−1(F(x j |x1: j−1), F(xi+ j |xi+ j |1: j−1)), (6)

f (x1, x2, ..., xd ) =
d∏

k=1

f (xk)

×
d−1∏

j=1

d− j∏

i=1

c j,i+ j |i+1,...,i+ j−1(F(xi |xi+1:i+ j−1), F(xi+ j |xi+1|i+1:i+ j−1)),

(7)

where F(·|·) is the conditional distribution which can be got from the first deviation
of copulas, for example,

F(x1|x2) = ∂Cx1,x2(F(x1), F(x2))

∂F(x2)
, (8)

is the conditional distribution, given one variable. The marginal conditional distrib-
utions of given multivariate variables can be expressed by the form F(x |v),

F(x |v) = ∂Cx,v j |v− j (F(x |v− j ), F(v j |v− j ))

∂F(v j |v− j )
, (9)

where v stands for all the conditional variables. The copula family used in our work
includes Gaussian copula, T copula, Clayton copula, Gumbel copula, Frank copula,
BB1, BB7, BB8, and rotate copulas. If we select different copulas for all pairs in
C-vine or D-vine copula, then this kind of C-vine or D-vine copula is called mixed
C-vine or D-vine copula. Different copulas have different characteristics. In order to
accurately capture the dependency,we apply copulas asmuch as possible. In addition,
there are few studies that used vine copula with only Clayton or T copula to optimize
portfolio strategies and measure risk. For example, Low et al. [18] employed the C-
vine copula with only Clayton copula to examine several portfolio strategies, while
only Brechmann et al. [25] used the vine copula with only T copula to measure the
performance of several VaRs. Therefore, we also applies vine copulas with Clayton
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and T copulas models in this study thereby comparing them with mixed C-vine and
D-vine copulas in terms of risk measurement and portfolio return.

Moreover, we use two-stage estimation method to estimate multivariate copula-
based GARCHmodel. This method is well known as inference functions for margins
(IFM). At first stage, we use maximum likelihood method to estimate GARCH with
skewed student-t distribution model, and then we substitute marginals into multivari-
ate copula functions, and estimate dependence parameters by maximum likelihood
estimation method. Estimators by IFM are close to and asymptotically efficient to
the maximum likelihood estimator under some regularity conditions (Joe [26]).

3.3 Expected Shortfall and Robustness Check

ES satisfies the property of subadditivity and provides a more conservative measure
of losses relative to VaR which is a quantile. Following Rockafellar and Uryasev
[27], the equation of ES can be expressed as

ESβ(r |w, β) = α + 1

q(1 − β)

q∑

k=1

[−wT rk − α]+, (10)

where q represents the number of samples generated by Monte Carlo simulation, α
represents VaR. β represents the threshold value usually set at 97.5% as suggested
in the revised version of Basel III in 2013, and rk is the kth vector of simulated
returns. In this study, we simulate 5,000 possible return values at t + 1 period for
each variable. The process ofMonte Carlo simulationwithmultivariate copula-based
GARCH model is explained by several studies, Liu et al. [28] and Aas et al. [24],
etc.

In order to evaluate the performance of all multivariate copula-based models, the
Percentage of Failure Likelihood Ratio (PoFLR) is used to test the model is accurate
or not. The PoFLR is a widely known test based on failure rates and VaR has been
suggested by Kupiec [29]. Under the null hypothesis of the model being correct,
large PoFLR value is indicative that the proposed model systematically understates
or overstates the underlying level of risk. Since PoFLR is based on VaR model,
while VaR model does not consider the size of the expected loss. So, a test with ES
should be used to test the robustness of the copula-based models. Therefore, mean
predictive squared error (MPSE) is employed to robustness check for all multivariate
copula-based GARCH models. The MPSE is given as

M = 1

N

N∑

t=1

1 + (ESt+i − Rt+i )
2, (11)
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where M represents MPSE that implies the average loss. R denotes the equally
weighted return. N is the number of out-of-sample. The more robust model is the
less value of M .

4 Empirical Results

In this section, we first filter all assets series by using GARCHwith skewed-student-t
distribution model. We find that skewed student-t distribution fits very well. Asian
CDS index is skewed to right, leptokurtic, and fat-tailed. Hang Seng future index
and bond seemingly are symmetric. Crude oil and gold future price are skewed to
left (as shown in Fig. 2).

Table2 reports the values of AIC of multivariate Gaussian and T copulas, and
C-vine and D-vine copulas. The results present that a mixed D-vine copula has a
better performance than others for CDS portfolio, while, for non-CDS portfolio, a
mixed C-vine copula is selected in terms of AIC. Moreover, C-vine and D-vine with
only T copula also report a good performance as well as the unstructuredmultivariate
Gaussian and T copulas due to the very small values of AIC compared to other cop-
ulas. Nevertheless, the Exchangeable and Toeplitz forms of Gaussian and T copulas
underperform others for both CDS and non-CDS portfolios. Since most of multi-
variate copulas have a good performance except Gaussian and T with exchangeable
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Table 2 The values of AIC of multivariate copulas

Copulas CDS Portfolio Non-CDS Portfolio

Number of
parameter

AIC Number of
parameter

AIC

Gaussian(ex) 1 −12.9923 1 −0.385

Gaussian(toep) 4 −118.544 3 −40.696

Gaussian(un) 10 −389.484 6 −141.563

T(ex) 2 −110.646 2 −56.619

T(toep) 5 −188.339 3 −84.350

T(un) 11 −428.753 7 −168.495

Mixed C-vine 14 −443.797 9 −179.046

T C-vine 20 −431.515 12 −172.395

Mixed D-vine 15 −449.574 10 −178.320

T D-vine 20 −434.200 12 −170.008

Table 3 The results of PoFLR and MPSE

Copulas Number of
violation

Expected number
of violation

PoFLR MPSE

CDS Portfolio

Gaussian(un) 3 6 2.1393 1.000007

T(un) 4 6 0.9504 1.000004

Mixed C-vine 1 6 6.9471*** 1.000011

T C-vine 1 6 6.9471*** 1.000011

Mixed D-vine 4 6 0.9504 1.000004

T D-vine 3 6 2.1393 1.000005

Non-CDS Portfolio

Gaussian(un) 6 6 0.0103 1.000122

T(un) 6 6 0.0103 1.000124

Mixed C-vine 6 6 0.0103 1.000138

T C-vine 6 6 0.0103 1.000137

Mixed D-vine 6 6 0.0103 1.000119

T D-vine 6 6 0.0103 1.000115

*, **, and *** denote rejection of the null hypothesis at the 10%, 5%, and 1% significance levels,
respectively
Note T C-vine or T D-vine copula represents C-vine or D-vine with only T copulas

and Toeplitz forms, so we use them to calculate VaR and ES for an equally weighted
portfolio, and then use PoFLR and MPSE to evaluate the risk for all models.

Table3 presents the numbers of violation, and the results of PoFLR and MPSE.
We find that, for CDS portfolio, the numbers of violation in mixed C-vine and T
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Fig. 3 ES of equally weighted portfolio for both CDS and non-CDS portfolios. It shows that the
shapes of ES for these two portfolios are similar, which implies both portfolios face the same risk.
Furthermore, the curve of ES for CDS portfolio is above the curve of ES for non-CDS portfolio. It
implies that Asian CDS index reduces the risk of the portfolio, which is the reason that why CDS
is the most widely used type of credit derivative

C-vine copula models equal to 1, and the PoFLR tests of both mixed C-vine and T
C-vine models reject null hypothesis, which means the mixed C-vine and T C-vine
copula models underestimate risk. The outperforming models are the unstructured
multivariate T and mixed D-vine copulas which report the least violation from the
expected violation number. Interestingly, for non-CDS portfolio, the expected vio-
lation is equal to the actual numbers of violation in all models, and the PoFLR test
also accepts null hypothesis, which implies all multivariate copula models have good
performance for forecasting VaR in terms of PoFLR test.

In addition, the results of MPSE show that unstructured multivariate T and mixed
D-vine copulas are more robust than others due to the minimum MPSE value for
CDS portfolio, while T D-vine and mixed D-vine copulas show more robust results
than others for non-CDS portfolio. Therefore, we can conclude that the multivariate
T copula and the mix D-vine copula models for CDS portfolio, and T D-vine copula
and mixed D-vine copula model for non-CDS portfolio can predict ES accurately
(Fig. 3).

Now we turn to portfolio optimization of CDS and non-CDS portfolio. We use
maximum Sharpe ratio method to get optimal portfolio allocation, and calculate
cumulative returns of these two portfolios. The Sharpe ratio measures the tradeoff
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Table 4 The results of return based on maximum Sharpe ratio portfolio

Copulas CDS Portfolio Non-CDS Portfolio

Mean S.D. Cumulative
return

Mean S.D. Cumulative
return

Gaussian(un) −0.0004 0.0104 0.8979 0.0003 0.0181 1.0395

T(un) 0.0006 0.0125 1.1554 −0.0004 0.0174 0.8542

Mixed
C-vine

−0.0002 0.0121 0.9323 0.0003 0.0136 1.0519

T C-vine 0.0001 0.0141 1.0079 0.0012 0.0155 1.3016

Mixed
D-vine

0.0001 0.0119 1.0062 −0.0002 0.0134 0.9227

T D-vine −0.0002 0.0108 0.9442 0.0007 0.0157 1.1665

between risk and return for each portfolio. Since the earlier results show that Asian
CDS index can reduce the risk for the portfolio, can Asian CDS index increase the
portfolio returns? By employing maximum Sharpe ratio method, we can find out a
portfolio on efficient frontier and hence investigate the effect of Asian CDS index in
portfolio returns by comparing the return of CDS and non-CDS portfolios.

Table4 presents the results of cumulative returns based on multivariate copula
models for CDS and non-CDS portfolios. The results show that CDS portfolio has
the maximum cumulative return of 15% which is obtained by unstructured T copula.
Surprisingly, themixedD-vine copula, which is the best performance copula in terms
of AIC and MPSE, does not achieve good profit. For non-CDS portfolio, we obtain
the maximum return of 30%, by using T C-vine copula model. This is much higher
than the use of the mixed C-vine copula model which is the best one in terms of AIC,
and the T D-vine copula model which is the best performance according to PoFLR
and MPSE.

There are two critical conclusions that we can gain. First and foremost, Asian
CDS index achieves risk reduction of the portfolio, however, it also reduces the
portfolio returns. Second, if multivariate copulas have similar performance in model
estimation in terms of AIC, we should use all of them to calculate VaR, ES, and
portfolio optimization due to the uncertain performances among them.

5 Conclusion

Volatility and dependence structures of financial assets play a critical role in risk
measurement and portfolio allocation. Negative correlation between financial assets
also is deemed to serve as useful tools for strategic asset allocation and risk manage-
ment. For these reasons, multivariate copula-GARCH models have attracted much
attention among academics and institutional investors. In this study, themain purpose
of using multivariate copula-GARCH models is to point out the role of Asian Credit
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Default Swap (CDS) index in risk measurement and portfolio optimization of finan-
cial assets. To achieve the purpose, we calculate ES of equally weighted CDS and
non-CDS portfolios corresponding to the best copula models, and then we calculate
the cumulative returns of optimal portfolios using maximum Sharpe ratio method.

Our empirical results show that the performance of the multivariate copula-
GARCH models are not consistent in model estimation, VaR, ES, and portfolio
optimization. In model estimation, the mixed C-vine copula for non-CDS portfolio
andmixed D-vine copula for CDS portfolio are selected in terms of AIC. In riskmea-
surement, the unstructured multivariate T and the mixed D-vine copulas are more
robust than others due to the minimum MPSE value for CDS portfolio, while T D-
vine and mixed D-vine copulas are more robust than others for non-CDS portfolio.
In portfolio optimization, the unstructured T copula and T C-vine copula show the
highest cumulative returns for the portfolios of CDS and non-CDS portfolio, respec-
tively. Therefore, in order to more accurately predict risk and portfolio allocations,
most of multivariate copulas should be applied in empirical study. The most impor-
tant finding is that Asian CDS index can reduce risk in investors’ portfolio. However,
from the maximum Sharpe ratio result, it also decreases the cumulative return of the
portfolio. Therefore, risk-averse investors are willing to buy Asian CDS index for
risk reduction while gain lower return.
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Destinations: A Study of Political Events
and Holiday Impacts
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Abstract This chapter investigates the effects of Thailand’s political turmoil and
the Chinese Spring Festival on the dynamic dependence between the Chinese out-
bound tourismdemand for Singapore,Malaysia andThailand (SMT) using the bivari-
ate and multivariate dynamic copula-based ARMAX-APARCH model with skewed
Student’s t-distribution and normal inverse Gaussian marginals. We selected polit-
ical events and the Chinese Spring Festival as the forcing variables to explain the
time-varying dependences, and also proposed a dynamic multivariate Gaussian cop-
ula to capture the dependence between the Chinese outbound tourism demand for
Singapore, Malaysia and Thailand. The main empirical results show that Thailand’s
political turmoil and theChinese Spring Festival, respectively, have negative and pos-
itive effects on Chinese tourist arrivals to SMT. Also, there does exist a high degree
of persistence pertaining to the dependence structure among SMT. In addition, both
the lagged one period of Thailand’s political turmoil and the Chinese Spring Festival
are found to have a positive influence on time-varying dependences. Lastly, we found
that substitute effects exist between Thailand and Malaysia, while complementary
effects prevail between Thailand and Singapore, and Singapore and Malaysia. The
findings of this study have important implications for destinationmanagers and travel
agents as they help them to understand the impact of political events and holidays on
China outbound tourism demand and provide them with a complementary academic
approach on evaluating the role of dependencies in the international tourism demand
model.
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1 Introduction

Since 2012, China’s position as the largest outbound tourism market and the high-
est outbound tourism spender has been further consolidated. In 2013, 98.19 million
Chinese traveled abroad, with the outbound expenditure reaching 128.7 billion USD,
according to the China Tourism Academy. This figure is the greatest in the world in
this regard. In this year 2013, Thailand, Singapore and Malaysia are the top three
outbound destinations for Chinese tourists in the ASEAN region. In Asia, they are
ranked first, third and fourth. The combination of the three countries—Singapore,
Malaysia and Thailand (SMT)—is one of the most popular tour packages for the
Chinese tourist. China has become the major tourism source market for SMT, as
well. China has become the second largest tourists source country for Singapore, only
behind Indonesia, since 2011; China is Malaysia’s third largest source of tourists,
following Indonesia and Singapore in the same year; for Thailand, China has been
the largest passenger source market since 2012. The Chinese tourist arrivals to Sin-
gapore, Malaysia and Thailand totaled 4.71 million, 2.27 million and 1.79 million,
respectively, in 2013. Thus, it can be seen that Thailand occupies the leading position
among SMT. In addition, Chang et al. [2], Liu and Sriboonchitta [20] and Liu et al.
[11] found that there exists a significant interdependence between SMT.

However, there is ongoing political turmoil in Thailand. Political shocks in
Thailand are bound to have an impact on its economic development. Therefore,
it might be that negative events can also affect the tourism economy by keeping
Chinese tourists away from Thailand, thereby having a potential impact on the
Chinese tourist arrivals in Singapore and Malaysia. Thus, one of the purposes of
this paper is to investigate whether political turmoil in Thailand has an influence on
the tourism demand for Thailand from China, besides examining whether there exist
any potential spillover effects on tourism in Singapore andMalaysia. The second pur-
pose is to estimate the extent of impact of political shocks on the dependence structure
of SMT. Also, this paper attempts to investigate whether the Chinese Spring Festival
can determine the tourism demand and the dependence structure of SMT. In addition,
we attempt to answer the following questions: (1) Is the relationship between SMT as
regards tourism demand constant or time-varying? (2) What kind of spillover effects
do the negative shocks of Thailand have on Singapore and Malaysia: substitution
effects or complementary effects?

The contributions of this article are threefold. Firstly, we propose the copula-based
ARMAX-APARCH models to elastically describe the political turmoil effect, and
holiday effect, volatility, leverage effect of SMT countries, as well as the depen-
dence structure of tourism demand for Singapore andMalaysia (SM), Singapore and
Thailand (ST), and Malaysia and Thailand (MT). We found that political events and
holidays have negative and positive effects on tourist arrivals from China to SMT.
The correlations between SM, ST and MT are not invariant, and political events
and the Chinese Spring Festival do have an impact on the time-varying dependences
of each pair. Secondly, we invented a time-varying multivariate Gaussian copula to
capture the dynamic dependence of tourism demand for SMT and investigated the
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effects of political turmoil and the Chinese Spring Festival on their time-varying
dependence. We observed that both the lagged one period of political events and
the Chinese Spring Festival have significantly positive impact on the time-varying
dependences between SMT. Lastly, some policy planningmethods are recommended
for the consideration of governments and travel agencies of SMT.

This study is organised as follows. Section2 presents literature review. Section3
reviews the data andmethodology, including themarginal specification, the static and
time-varying copulas, and the goodness of fit. The empirical findings are presented in
Sect. 4. Policy planning is discussed in Sect. 5. Some concluding remarks are given
in Sect. 6.

2 Literature Review

Several studies have been conducted to investigate the effects of political shocks on
tourism demand [6, 13, 15, 19]. They all showed that political instability can hinder
tourism development and damage economic growth. However, just a few papers
used econometric models to investigate the effects of political instability on tourism
demand, such as Neumayer [13] and Saha and Yap [15], using a panel data model.
We conclude that most of the scholars just studied this problem in terms of qualitative
analysis or macroeconomics.

In addition, there have been a few studies that focused on tourism demand by
applying various econometric models to analyse the interdependencies of interna-
tional tourism demand between destinations, such as Chan et al. [1], Shareef and
McAleer [17], Seo et al. [16] and Chang et al. [2]. Chan et al. [1] investigated
the interdependencies between major tourism source countries to Australia, namely
Japan, NewZealand, theUKand theUSA, using the symmetric Constant Conditional
Correlation-Multivariate Generalised Autoregression Conditional Heteroscedastic-
ity (CCC-MGARCH) model. Shareef and McAleer [17] studied the uncertainty of
monthly international tourist arrivals from the eight major tourist source countries to
the Maldives by using the symmetric CCC-MGARCH model as well. Seo et al. [16]
employed the MGARCH model with the dynamic conditional correlation (DCC)
specification to estimate the conditional correlation between the Korean tourism
demand for Jeju Island, Thailand, Singapore and the Philippines, and the results
showed that the conditional correlations are not constant but time-varying. Chang
et al. [2] applied several models, such as VARMA-GARCH, VARMA-AGARCH
and CCC models, to investigate the interdependence of the four leading destinations
in the ASEAN region.

Nevertheless, the CCC-MGARCH, the DCC-MGARCH and the Vector Auto
Regression Moving Average (VARMA)-GARCH were assumed to have a linear
relationship with a multivariate Student’s t or normal distribution [20, 23]. In many
cases, however, these assumptions do not conform to the data because the distrib-
utions of the data are usually skewed (asymmetric), heavily tailed and leptokurtic,
with different marginal distributions (Sriboonchitta et al. [20]). To deal with these
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drawbacks, this study applies the copula-based APARCH model, one of the most
frequently used methods to estimate static or time-varying dependence, to analyse
the time-varying relationships of tourism demand among SMT, and to estimate the
impact of political turmoil and the Chinese Spring Festival on the dependencies
between SMT. The copula-based GARCHmodels allow for better flexibility in joint
distributions than bivariate normal or Students t-distributions. Patton [14] and Jon-
deau and Rockinger [10] independently proposed the copula-based GARCH model
to analyse the dependencies of the exchange rate market, and an international stock
market, respectively. Thereafter, the copula-based GARCH model has been widely
used and developed. For example, Zhang and Guégan [24] proposed the GARCH
processeswith the time-varying copulamodel for option pricing; Huang et al. [5] pre-
sented an application of the copula-GARCH model in the estimation of a portfolios
value at risk; Wu et al. [22, 23] proposed the dynamic copula-based GARCH model
to describe the dependence structures of stock and bond returns, the oil price and
the US dollar exchange rate; and Tang et al. [21] modeled the dependence between
tourism demand and exchange rate using the copula-based GARCH model.

Based on previous research, this paper improves the copula-basedGARCHmodel,
for example, by substituting the ARMAX-APARCH model for the GARCH model,
adding political events and the Chinese Spring Festival as the forcing variables in the
time-varying equation, putting time-varying properties into multivariate Gaussian
copulas etc. This study is applicable for destination competitive strategies and policy
development.

3 Data and Methodology

3.1 Data

Our data set consists of Thailand political events, the Chinese Spring Festival and
the number of tourist arrivals from China to SMT, where the Chinese Spring Festival
and political events are dummy variables. The sample period covers January 1999 to
September 2013. A total of 177 monthly observations for each country are obtained
from EcoWin database. Our data set includes 15 observations for the Chinese Spring
Festival, and8political events ofThailand.The8political events ofThailand are those
that happened on December 2005, September 2006, October 2006, September 2008,
December 2008,May2009,April 2010 andMay2010. Figure1 showspolitical events
in Thailand, theChinese Spring Festival and the number of tourist arrivals fromChina
to SMT. The figure demonstrates that tourist arrivals from China to SMT increase
over time, in general, and that there obviously exists non-linear correlation between
SMT.We also can find that the number of tourist arrivals from China to SMT reaches
the peak value at the Chinese Spring Festival, while the tourist volume becomes a
trough at the time of Thailand political events. Obviously, Thailand political events
and the Chinese Spring Festival have an influence on the tourist flow. Since the peak
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Fig. 1 Political event of
Thailand, the Chinese Spring
festival, and the number of
tourist arrivals from China to
SMT

and the trough of tourist flow for SMT are concordant, Thailand’s political events and
the Chinese Spring Festival might have an impact on the dependence between SMT.
We used a logarithmic transformation of the data to stabilize the increase in their
volatility over time. Thereafter, this paper uses ri,t = ln(Yi,t/Yi,t−1) to measure the
growth rates of the monthly tourist arrivals from China, where i = 1, 2, 3 represents
the countries of SMT.

3.2 Methodology

3.2.1 Marginal Specifications

Ding et al. [3] proposed theAsymmetric Power ARCH (APARCH)model that allows
for leverage and Taylor effects, and this model also nests several ARCH-typemodels,
such as GARCH, GJR-GARCH and nonlinear ARCH etc. The ARMAX-APARCH
model is given by

rt = c +
p∑

i=1

ARirt−i +
q∑

i=1

MAiεt−i

k∑

i=1

ϕi Xit + εt , (1)

σδ
t = ω +

Q∑

j=1

α j (|εt− j | − λ jεt− j )
δ +

P∑

j=1

β jσ
δ
t− j , (2)

εt = σtηt , (3)
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ω > 0, δ > 0,αi ≥ 0,−1 < λi < 1,βi ≥ 0.

where αi and βi are the standard ARCH and GARCH parameters, λi is the leverage
parameter and δ the parameter for the power term. A positive λi implies negative
information has stronger impact than the positive information on the volatility. In this
study, we select Normal Inverse Gaussian [7, 12] and skewed Student’s t-distribution
[4] as marginals in ARMAX-APARCHmodel, namely, η ∼ N IG(0, 1, a, b) or η ∼
SST D(0, 1, υ, γ). The standard probability density function ofNIGcanbe expressed
as

fN IG(η; 0, 1, a, b) = a

π
exp

(√
a2 − b2 + bη

) K1

(
a
√
1+η2

)

√
1+η2

, (4)

wherea > 0 and |b|/a < 1;we define ς = √
a2 − b2 and ξ = b

a , the ς and ξ are called
the parameters of shape and skewness, respectively. Noted that K1 is a modified
Bessel function of the third kind with index 1. The standard probability density
function of SST is given as

fSST D(η |0, 1, υ, γ ) = 2

γ + γ−1

{
fυ

(
η

γ

)
I[0,∞)(η) + fυ(γη)I(−∞,0)(η)

}
, (5)

where υ determines the shape, and γ determines the skewness. fυ is standard Stu-
dent’s t density function. It is remarkable that normal-inverse Gaussian and skewed
student’s t-distribution are able to portray stochastic phenomena that have heavy tails
and strongly skewed.

3.2.2 Static and Time-Varying Copulas

Copula methods have long been recognized and developed in various fields like
econometrics, economics, financials, etc. Sklar [18] was the first person to give a
definition of copula. If x = (x1, x2, . . . , xn) is a random vector with joint distribution
function H and marginal distribution F1, F2, . . . , Fn , then there exists a function C
called copula, which can be defined as

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)). (6)

In the light of formula (6), the copula function can be expressed as

C(u1,u2, . . . ,un) =F(F−1
1 (u1),F

−1
2 (u2), . . . ,F

−1
n (un)). (7)

If Fi is an absolutely continuous distribution which is strictly increasing, we have
the density function as
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f (x1, · · · · · · xn) = ∂F(x1,······ ,xn)
∂x1···∂xn

= ∂C(u1··· ,un)
∂u1···∂un × ∏ ∂F(xi )

∂xi

= c(u1 · · · , un) × ∏
fi (xi ),

(8)

where small letter c represents the density function of copula. An important feature
of this result is that the marginal distributions do not need to be in any way similar
to each other, nor is the choice of copula constrained by the choice of marginal
distributions.

In this study, the bivariate copulas, such as Gaussian, T, Clayton, Frank, Gumbel,
Joe, BB1, BB6, BB7, BB8 and survival copula, are considered for the analysis of
the dependence structure. Also, the multivariate Gaussian, T, Clayton, Gumbel and
Frank copulas are employed to studymultivariate correlation. In addition, the Akaike
InformationCriteria (AIC) is used to select the preferable copula family. The bivariate
Gaussian copula has the following form:

CGa(u1, u2|ρ) = ∫ Φ−1(u1)
−∞

∫ Φ−1(u2)
−∞

1

2π
√

1−ρ2
exp

(
− x21−2ρx1x2+x22

2(1−ρ2)

)
dx1dx2

= Φρ

(
Φ−1(u1),Φ−1(u2)

)
,

(9)

where the ρ is the Pearson correlation belonging to (−1, 1), both u1 and u2, which
are the cumulative distribution functions (CDFs) of the standardized residuals from
the marginal specifications, are uniformly distributed. Φ−1 is the inverse CDF of a
standard normal and Φρ is the CDF of the bivariate normal distribution with zero
mean; the correlation equals to ρ. For a three-dimensional Gaussian copula, we have
the form

CGau(u1, u2, u3|R) = ΦR(Φ−1(u1),Φ
−1(u2),Φ

−1(u3)), (10)

where R is the correlation matrix, and equals to

⎛

⎝
1 ρ ρ
ρ 1 ρ
ρ ρ 1

⎞

⎠. Most dependence struc-

tures for time series are, basically, not time-invariant. Time-varying copulas might be
considered as the dynamic generalizations of a Pearson correlation or a Kendall’s tau.
However, it is still difficult to find causal variables to explain such dynamic char-
acteristics. On the one hand, we consider the time-varying dependence structures
between the growth rates of tourism demand of Singapore, Malaysia and Thailand.
Simultaneously, we also guess that political instability in Thailand and the Chinese
Spring Festival holidays might have an influence on the time-varying dependencies.
Therefore, the time-varying bivariate Gaussian copula is constructed as follows;

ρt
∗ = w + φ · ρ∗

t−1 + δ · |ui,t−1 − u j,t−1| + β1x1,t−1 + β2x2,t−1, (11)
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where i, j = 1, 2, 3, i �= j , represent different countries; ρ∗
t = − ln[(1 − ρt )/(1 +

ρt )], which is used to ensure the correlation fall within (–1, 1). The x1 and x2 in
the equation are dummy variables which represent the Chinese Spring Festivals
and Thailand’s political events, respectively. The time-varying three-dimensional
Gaussian copula is expressed as

ρt
∗ = w + φ · ρ∗

t−1 + δ

2
(|uthai,t−1 − usin g,t−1| + |uthai,t−1 − umalay,t−1|)
+β1x1,t−1 + β2x2,t−1.

(12)

SinceThailand occupies the leading position amongSMT,we consider the average
differences between Thailand and the other countries to be causal variable. The
method of inference function for margins (IFM) is used to estimate the parameters of
the copula-based APARCHmodels. Joe [8, 9] andWu et al. [22, 23] showed that this
estimator is close to and asymptotically efficient as themaximum likelihood estimator
under some regularity conditions. The procedure of IFM can be described as having
two steps: We firstly estimate the corresponding ARMAX-APARCH models using
the maximum likelihood method, and then estimate the copula functions, given the
parameters of the marginals.

3.2.3 Goodness of Fit

After we calculate the parameters for each family of copulas using IFM, the primary
task becomes how to choose the most appropriate copula family. In this study, we
use AIC as the criterion. The AIC is given by

AIC := −2
T∑

t=1

ln[c(ût ;Θ)] + 2k, (13)

where k = 1 for one-parameter copulas; k = 2 for two-parameter copulas, such as t ,
BBX copulas, etc.; and k = 5 for time-varying copulas. ût represents the matrix of
marginal distributions, andΘ represents the vector of static or time-varying copulas.
Excepting AIC, we also perform the likelihood ratio (LR) test to compare static
copulas with the time-varying copulas. The likelihood ratio can be expressed as

LR = −2 · [log c(ût ; ρ) − log c(ût ;ω,α, γ,β1,β2)], (14)

where LR is a chi-Square distribution with four degrees of freedom. If we reject the
null hypothesis, it implies that the time-varying copula gives better performance than
static copula.
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4 Empirical Results

4.1 Preliminary Study

Table1 provides the descriptive statistics for this data. It shows that all data exhibit
strongly positive skewness and excess kurtosis, which implies all series are heavy-
tailed and right-skewed. Moreover, the Jarque-Bera test results show that the dis-
tribution of all the series strongly rejects the assumption of normality. Therefore,
none of the series is normal distributed, implying the skewed Student’s t-distribution
and normal-inverse Gaussian distributions should be more appropriate than normal
distribution in our study.

4.2 Estimation of Marginal Model

Table2 presents the results of the ARMAX-APARCH model with different assump-
tions of marginal distribution for SMT. To investigate the political effects, holiday
effects, volatility and leverage effects of the China outbound tourist demand to SMT,
we employed ARMAX(12,4)–APARCH (1,1) with NIG distribution for Singapore,
ARMAX (6,9)–APARCH (1,1) with SST distribution for Malaysia, and ARMAX
(12,4)–APARCH (1,1) with NIG distribution for Thailand. The parameters of skew-
ness and shape are significant at a 95% confidence level for all marginals, and none
of the LM test were able to reject the hypothesis, which demonstrates that our mod-
els are appropriate. Firstly, the results show that all the estimated parameters of
political turmoil and holiday effects were statistically significant with negative and
positive effects, respectively, on tourism arrivals. Political turmoil in Thailand not
only had an influence on itself but could also impact the tourism demand of Singa-
pore and Malaysia. The holiday effect impact on Singapore was the greatest, while
the holiday effect impact on Malaysia was the smallest. Secondly, the leverage para-
meter λ was positive and statistically significant, which implies that negative shocks

Table 1 Data description and
statistics

Singapore Malaysia Thailand

Mean 0.0591 0.0719 0.0640

Maximum 1.5183 1.6126 1.4524

Minimum −0.8263 −0.7963 −0.7224

Std. Dev. 0.3297 0.366 0.3374

Skewness 1.1470 1.1277 0.9034

Kurtosis 6.5119 5.2741 5.5368

Jarque-Bera 129.0432 75.2348 71.1362

Probability 0 0 0
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Table 2 Results of ARMAX-APARCH Model

Singapore Malaysia Thailand

Constant 0.0018*** Constant 0.0472*** Constant 0.0245***

(0.0000) (0.0071) (0.0018)

Ar1 −0.0670*** Ar1 −0.9828*** Ar1 1.8619
***

(0.0000) (0.0001) (0.0002)

Ar2 −0.2784*** Ar2 0.1303*** Ar2 −1.9388***

(0.0000) (0.0002) (0.0002)

Ar3 0.1274*** Ar3 0.5631*** Ar3 2.0428***

(0.0001) (0.0001) (0.0001)

Ar4 −0.1064*** Ar4 0.0733*** Ar4 −1.3725***

(0.0000) (0.0001) (0.0001)

Ar5 −0.0749*** Ar5 −1.0405*** Ar5 0.5834***

(0.0000) (0.0001) (0.0001)

Ar6 −0.1872*** Ar6 −0.6768*** Ar6 −0.3931
***

(0.0003) (0.0000) (0.0001)

Ar7 −0.0760*** Ma1 0.8967*** Ar7 0.0935***

(0.0001) (0.0001) (0.0008)

Ar8 0.0339*** Ma2 −0.2786*** Ar8 0.1154
***

(0.0001) (0.0001) (0.0013)

Ar9 0.0677*** Ma3 −0.7923*** Ar9 −0.1669

(0.0001) (0.0001) (0.0007)

Ar10 −0.0924*** Ma4 −0.2416*** Ar10 −0.0018
***

(0.0000) (0.0000) (0.0002)

Ar11 −0.0613*** Ma5 1.2602*** Ar11 0.1337
***

(0.0000) (0.0001) (0.0047)

Ar12 0.5845*** Ma6 0.7698*** Ar12 −0.0865
***

(0.0002) (0.0000) (0.0032)

Ma1 −0.2683*** Ma7 −0.3117*** Ma1 −2.0585
***

(0.0000) (0.0000) (0.0003)

Ma2 0.0777*** Ma8 −0.3161*** Ma2 2.0906
***

(0.0000) (0.0000) (0.0003)

Ma3 −0.2841*** Ma9 −0.1031*** Ma3 −1.9767
***

(0.0001) (0.0001) (0.0002)

(continued)
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Table 2 (continued)

Singapore Malaysia Thailand

Ma4 0.2429*** Holiday
effect

0.1663*** Ma4 1.0563
***

(0.0001) (0.0002) (0.0002)

Holiday
effect

0.5319*** Political
effect

−0.1511*** Holiday
effect

0.4306***

(0.0001) (0.0409) (0.0025)

Political
effect

−0.0237*** ω 0.0003* Political
effect

−0.1914***

(0.0003) (0.0001) (0.0670)

ω 0.2588*** α 0.1641*** ω 0.0069
***

(0.0675) (0.0459) (0.0054)

α 0.7458*** β 0.5683*** α 0.1800
***

(0.1007) (0.1128) (0.0596)

β 0 ψ 0.3506** β 0.6779
***

(0.0064) (0.1219) (0.1112)

ψ −0.3286** υ 3.8194*** ψ 0.4696***

(0.1100) (0.0855) (0.2778)

λ 0.2185* υ 9.4759** λ 2.0679***

(0.0903) (2.9894) (0.6176)

ς −0.2717* γ 2.0486*** ς −0.2870
***

(0.1059) (0.2347) (0.1202)

ξ 0.7197* — — ξ 0.5366
***

(0.3034) (0.1914)

LM-test 0.9855 LM-test 0.7221 LM-test 0.9453

P value P value P value

LogL 63.8159 LogL 7.3100 LogL 23.9031

AIC −0.4297 AIC 0.2010 AIC 0.0238

BIC 0.0386 BIC 0.6513 BIC 0.4921

Note Significant code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

have stronger impact than positive information on volatility for SMT. Since α is the
ARCH parameter associated with ε2t−1 and β is the GARCH parameter associated
with the volatility spillover effect from ht−1, significantly positive estimates of both
α and β imply that there exist both short-run and long-run persistence of shocks for
Malaysia and Thailand. At the same time, the estimated parameter of β for Singapore
tourism demand equals zero. This implies no long-run persistence of shocks for
Singapore. In addition, the sum of the estimates of α and β equal 0.75, 0.72 and 0.86
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Table 3 KS Test for Uniformity and Box-Ljung Test for Autocorrelation

KS Test of Three Margins for Uniformity

Statistic P value Hypothesis

u1,t 0.0529 0.7085 0 (acceptance)

u2,t 0.0460 0.8510 0 (acceptance)

u3,t 0.0597 0.5571 0 (acceptance)

Box-Ljung Test of Margins for Autocorrelation

Chi-squared P value

u1,t First moment 2.9177 0.9833

Second moment 8.1753 0.6117

Third moment 5.2056 0.8770

Fourth moment 10.8725 0.3675

u2,t First moment 9.6388 0.4727

Second moment 7.6270 0.6652

Third moment 5.3204 0.8688

Fourth moment 9.8930 0.4499

u3,t First moment 10.9961 0.3578

Second moment 12.2648 0.2677

Third moment 10.7407 0.3781

Fourth moment 14.9657 0.1333

Note u1,t = Fnig(xthai,t ), u2,t = Fnig(xsing,t ), and u3,t = Fskt (xmalay,t )

for Singapore, Malaysia and Thailand, respectively. This implies that the impact of
unexpected shock of Thailand as regards volatility has longer duration than in the
case of the other two countries. Thirdly, the skewness parameters in the NIG and
SST distributions are greater than zero, which implies that all the series are skewed
to the right.

Before we conducted copula analysis, we had to test whether the marginal distrib-
ution for each series satisfied the serial independence assumption and the assumption
that it is distributed as uniformly (0, 1). If any of these two assumptions is rejected,
then the misspecification of the marginal distribution may cause incorrect-fit to the
copulas. Thus, testing these two assumptions for the marginal distribution model
specification is a critical step in constructing multivariate distribution models using
copulas [14]. We employed the Box-Ljung statistic to test whether the marginal dis-
tribution for each series satisfied the serial independence assumption and adopted
the Kolmogorov-Smirnov (KS) statistic to test whether it was distributed as uni-
form (0, 1). We report the results in Table3. For the Box-Ljung test, we regressed
(uit − ūi )k on 10 lags of each variable, for each series i, and for k = 1, 2, 3, 4. The
LM test was of no autocorrelation under the null hypothesis. Table3 shows that the
probability values for both Box-Ljung and KS tests were greater than 10%, implying
that the margins satisfy the assumptions of iid and uniform distribution, which, in
turn, implies that our use of the ARMAX-APARCH with specified distributions to
fit the margins is appropriate, as well.
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4.3 Estimation of Copula Model

The 17 static bivariate copulas were firstly estimated by maximum likelihood esti-
mation method, and AIC was used to select the preferable copula. Thereafter, the
corresponding time-varying copula was estimated by ML as well. Figures2, 3 and
4 show the AICs of static copulas between the growth rates of SM, ST and MT,
respectively. Figures2, 3 and 4 prove that the Gaussian copula had the best perfor-
mance for each pair of tourism demand in terms of AIC values. This implies that
there does not exist tail dependence, such as left tail dependence, right tail depen-
dence or both sides, even if all the marginals were skewed to right. For SMT, we
used the multivariate Gaussian, T, Frank, Gumbel and Clayton copulas to fit their
joint distribution. Figure5 demonstrates the AIC values of all the candidate copulas.
According to AIC, the multivariate Gaussian copula exhibits the best performance.
Therefore, the tourism demand of SMT also did not have tail dependence. These
findings imply that extreme movements of tourism demand of Singapore, Malaysia
and Thailand are not consistent with each other. These results also imply that intro-
ducing tail dependences between SMT does not add much to the explanatory ability
of the models.

Table4 shows the estimated results of static and dynamic Gaussian copulas with
their comparison by LR test. Panel A of Table4 shows the parameter estimates for
the static Gaussian copula function. We can see that all the parameter estimates are
statistically significant at the 0.1% confidence level. So, the tourism demands for
SMT from China are related to each other, and these three countries also have some
relationship on the whole. In addition, the Gaussian dependence structure between
Singapore and Thailand demonstrates the biggest correlation. Panel B and Panel C
of Table4 present the parameter estimates for the dynamic Gaussian copula function

Fig. 2 The AIC values of
static copulas between the
growth rates of Thailand and
Singapore. Note Note
that,‘1’, ‘6’, ‘7’, and ‘8’
represent BB1, BB6, BB7
and BB8 copulas,
respectively; ‘R1’, ‘R6’,
‘R7’, and ‘R8’ represent the
corresponding rotated BBX
copulas by 180 degrees;
‘Gau’, ‘T’, ‘Frk’, ‘Cl’, ‘G’,
and ‘Joe’ are Gaussian,
student-t, Frank, Clayton,
Gumbel and Joe copulas,
respectively. While ‘RCl’,
‘RG’, and ‘RJ’ represent
their rotated copulas by 180
degrees as well. Figures3
and 4 have the same
notation.
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Fig. 3 The AIC values of
static copulas between the
growth rates of Thailand and
Malaysia

Fig. 4 The AIC values of
static copulas between the
growth rates of Singapore
and Malaysia

and the LR test for comparing the static copulas with the dynamic copulas. The
AIC values in Panel B are smaller than the AIC values in Panel A, implying that
the dynamic dependencies perform better than the invariant dependencies. Also, in
Panel C, it can be observed that the LR tests do reject the null hypothesis, thereby
implying that time-varying Gaussian copulas have better explanatory ability than
static Gaussian copulas. Overall, it can be concluded that the dependencies between
the tourism demands of SM, ST, MT and SMT are not constant but time-varying in
terms of the AIC and the LR test.

We proceed to explain the estimate results of the time-varying Gaussian copula in
Panel B of Table4. First, we can observe that the autoregressive parameter φ is close
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Fig. 5 The AIC values of
static multivariate copulas
between the growth rates of
SMT

to 1, implying a high degree of persistence pertaining to the dependence structure
between all the pairs, namelySM,STandMT, aswell as betweenSMT.Theparameter
δ also is significant for each time-varying Gaussian copula, which displays that the
last period information is ameaningfulmeasure. Second, the parameterβ1 for holiday
effect is statistically significant and positive, and so the parameter β2 for political
events is the same. These results reflect that both the prior period to the Chinese
Spring Festival and Thailand’s political turmoil enlarge the interdependence of each
pair. The estimated value of the parameter β1 is greater than that of β2, implying
that holiday effects have a greater contribution to the dependence of each pair. Thus,
Thailand’s political events have a stronger effect on the dependences of ST and
MT than the others; meanwhile, the estimates are also more significant. To sum
up, political turmoil in Thailand and the Chinese Spring Festival not only impact
the tourism demand for SMT from China, but also have a positive effect on the
dependence structure between the pairs SM, ST and MT, as well as between SMT.

Figures6, 7, 8 and 9 show the time-varying correlation between the SMT desti-
nations for Chinese tourists. Firstly, we can observe that the correlations between
the tourist arrivals to the different destination countries all have large fluctuation,
and that the correlations are obviously different, with the no time variation in the
Gaussian copula. The large fluctuation in the correlations reveals the instable rela-
tionship of tourism demand in SMT. This finding may serve as an indicator towards
the need to strengthen cooperation and commutation between SMT, thereby improv-
ing relationship to achieve a win-win situation for all. Secondly, we observe that
most of the correlations drop to minimum values during the Chinese Spring Festival.
This may be because Chinese tourists prefer free-walking tours and not package
tours of SMT during the Chinese Spring Festival. Maybe, we can ascribe this phe-
nomenon to the exorbitant costs of package tours to SMT during the time of the
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Table 4 The results of static and dynamic Gaussian copulas

CTS CTM CSM CSMT

Panel A: Static

ρ̂ 0.4824*** 0.2427*** 0.2818*** 0.3261***

(0.0491) (0.0617) (0.0574) (0.0394)

Kendalls tau 0.3204 0.1561 0.1819 —

LogL 27.3387 6.7922 6.5837 32.8600

AIC −52.6775 −11.5845 −11.1675 −63.7200

Panel B: Dynamic

W −0.2722 *** −0.4179*** −0.1768*** −0.2003*

(0.0365) (0.1178) (0.0303) (0.0849)

φ 0.9899 *** 0.9406*** 0.9899*** 0.9580***

(0.0007) (0.0423) (0.1737) (0.0447)

δ 0.7832 *** 1.0891** 0.4257* 0.4256.

(0.2197) (0.3435) (0.1771) (0.2218)

β1 0.9938 *** 1.1731** 0.6239* 1.0716***

(0.2980) (0.4348) (0.2838) (0.2990)

β2 0.3138 *** 0.5165** 0.1912* 0.2859*

(0.0948) (0.1782) (0.0887) (0.1288)

LogL 34.7947 15.1255 15.1234 42.3327

AIC −59.5893 −20.2511 −20.2468 −74.6654

Panel C: LR test

Statistics 14.9120 16.6670 17.0790 18.9450

Degree of free-
dom

4 4 4 4

Probability 0.0049** 0.0022** 0.0019** 0.0008***

Note Significant. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.
The numbers in the parentheses are the standard deviations

Chinese Spring Festival. The typical cost of a package tour of SMT in the time of
the Chinese Spring Festival is about 11,000 RMB, whereas it costs only 6,000 RMB
at other times of the year. As a result, the correlations become much stronger after
the Chinese Spring Festival, which is caused by the low prices of package tours to
SMT. Thirdly, the correlations are also found to be around minimum values during
political events. On the one hand, Chinese tourists give up the classical package
tour of SMT, while choosing to travel in Singapore and/or Malaysia, thereby giving
rise to substitute effects. At the same time, these very Chinese tourists may cancel
trips to Thailand and also give up the trip to Singapore and Malaysia, and choose to
visit Japan, Korea, Vietnam or other destinations, or choose to not go on a trip. For
example, in Fig. 7, the negative correlation between Thailand and Malaysia could be
recognised as the ‘substitute effect’ during the political turmoil and during some
Chinese holiday; whatever the reason—whether the Chinese Spring Festival or
Thailand political turmoil—the correlations as regards tourism demand between
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Fig. 6 The correlations
between the growth rates of
Thailand and Singapore

Fig. 7 The correlations
between the growth rates of
Thailand and Malaysia

Thailand and Singapore are always positive, as demonstrated in Fig. 6. Therefore,
we conclude that there exist complementary effects in Singapore and Thailand. In
addition, Fig. 9 illustrates the correlations regarding the tourism demand of SMT.
Political events and the Chinese Spring Festival prompt the correlations between
SMT to become weak, which also demonstrates that the Chinese tourist prefers
free-walking tours of one or two countries and not package tours of SMT due to
the exorbitantly high costs of package tours. Lastly, the time-varying correlations
between Singapore and Malaysia are illustrated in Fig. 8. It can be observed that
Thailand political events also have an impact on the correlations between Singapore
and Malaysia, and cause Chinese tourists to choose just one destination for travel.
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Fig. 8 The correlations
between the growth rates of
Singapore and Malaysia

Fig. 9 The correlations
among the growth rates of
Thailand, Singapore and
Malaysia

5 Policy Planning

The empirical findings of this study reveal that negative shocks to the tourism sector in
Thailand have statistically significant negative impact on tourist arrivals in Singapore
and Malaysia. At the same time, the Chinese Spring Festival reveals a positive effect
on tourist arrivals in SMT. The results also indicate that the last period of the Chinese
Spring Festival and Thailand’s political events are able to explain the correlations of
Chinese outbound tourism demand for SMT. On the one hand, some Chinese tourists
may choose Malaysia as their destination instead of Thailand due to the high cost
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of the trip for holidaying or due to Thailand’s political instability, which results in
substitution effects. On the other hand, some Chinese tourists may cancel trips to
Thailand, and also give up the trips to Singapore or SMT package tours because of
Thailand’s political instability. According to the empirical findings, policy planning
is recommended for the pairs of SMT as well as for the three countries (SMT)
investigated in this study, which is given as follows:

1. Singapore. Since the Chinese Spring Festival has a positive effect on tourist
arrivals in SMT, Singapore should consider moderate adjustment in the airline
fare by introducing competition mechanisms during the Chinese Spring Festival.
Cheaper airline fare would provide more opportunities for Chinese tourists to
make trips, thereby realising the scale effects and the probit maximum for the
tourism industry. Also, we suggest that Singapore combine with Malaysia and
Thailand,marketing special tour packages for holidaying for Chinese tourists. For
reducing the negative effects of Thailand’s political events, the tour administration
department of Singapore should strengthen communication with tour agencies or
firms. Policy makers should provide some favourable policies, such as free visa
or waiver of fees and more economy tour packages, to maintain the normal level
of tourist arrivals if and when political unrest breaks out in Thailand.

2. Malaysia. Malaysia and Thailand share a competitive relationship at the time of
the Chinese Spring Festival. First, Malaysia should reduce trip costs by intro-
ducing low-cost carriers, as well as provide visa fee relief, thereby improving
the countrys competitive ability. Malaysia should also consider cooperating with
Thailand and Singapore in terms of introducing new tour package plans, afford-
able tour packages, quicker visa processing, etc., to change the competitive rela-
tionship into a win-win relationship.

3. Thailand. Thailand offers a variety of landscapes, low-cost trips, traditional Bud-
dhist culture and ‘service with a smile’ to the Chinese tourists. Thailand has the
core status in SMT. In view of the negative effects of political turmoil, the gov-
ernment of Thailand should positively report physical truth regarding political
events so as to reduce the negative effects of political instability. In terms of
Thailand’s political events, most of the political events break out only in Bangkok,
so they have a minimal impact on popular tourist destinations such as Phuket,
Chiang Mai, Chiang Rai etc. We suggest that the government disseminate this
information to Chinese tourists, thereby encouraging and attracting them to visit
Thailand. Travel agencies should introduce some special group packages (not
including Bangkok) and low-cost trips to reduce the probability of the Chinese
tourist not visiting Thailand. During the Chinese Spring Festival, travel agencies
and airline companies should offer various travel package plans, such as honey-
moon packages, winter vacation packages, visiting university packages etc.

In addition,we suggest that theSMTestablish a department that focuses ondealing
with political turmoil, formulating new tour packages, advertising the culture of SMT
etc. Thus, tour operators and national tourism promotion authorities of SMT should
collaborate closely in marketing and promoting joint tourism ventures and products.
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6 Conclusion

This paper brings the bivariate and multivariate copula-based ARMAX-APARCH
model into studying the SMT tourism demand. The copula-based models are used
to investigate the effects of political events and holidays, describe the volatility and
leverage effects, capture static and time-varying dependences, judgewhether political
events and holidays impact the dependencies or not, and scrutinise the relationship
between two countries of SMT in order to ascertain whether there exist substitu-
tion effects or complementary effects. We found that the copula-based ARMAX-
APARCH model is a complementary academic approach to analysing the spillover
effects of political events in the international tourism demand model. Based on the
method,wefirstly found that Thailand political turmoil has a negative effect on tourist
arrivals to SMT from China, while the Chinese Spring Festival has a positive effect.
Secondly, there does not exist tail dependence for all the pairs of SMT, as well as for
SMT, implying that the extreme movements of the Chinese tourist demand to SMT
do not happen together. Thirdly, Thailand’s political events and the Chinese Spring
Festival are suitable for explaining the dynamic dependencies between SMT. This
finding suggests that forcing variables of dynamic dependences should be specified
according to the actual research problem. Also, there is a pair of countries, Malaysia
and Thailand, which appears to have substitution effects. On the contrary, Malaysia
and Singapore, and Singapore and Thailand have complementary effects. Lastly,
we recommend some policies for each country of SMT. We always maintain that a
competitive advantage can be developed for these three destinations for attracting
Chinese outbound tourists if these three countries form a strategic partnership in
developing tourism products and furthering cooperative destination promotion.
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18. Sklar M (1959) Fonctions de ŕ epartition àn dimensions et leurs marges. Publ Inst Stat 8:229–
231

19. SönmezSF (1998) Tourism, terrorism and political instability.AnnTourismRes 25(2):416–456
20. Sriboonchitta S, Nguyen HT, Wiboonpongse A, Liu J (2013) Modeling volatility and depen-

dency of agricultural price and production indices of Thailand: static versus time-varying
copulas. Int J approximate reasoning 54:793–808

21. Tang JC, Sriboonchitta S, Ramos V,WongWK (2014)Modelling dependence between tourism
demand and exchange rate using copula-based GARCH model. Current issues in method and
practice (in press)

22. Wu CC, Liang SS (2011) The economic value of range-based covariance between stock and
bond returns with dynamic copulas. J Empir Finan 18:711–727

23. Wu CC, Chung H, Chang YH (2012) Economic value of co-movement between oil price and
exchange rate using copula-based GARCH models. Energy Econ 34(1):270–282

24. Zhang J, Guégan D (2008) Pricing bivariate option under GARCH processes with time-varying
copula. Insur Math Econ 42:1095–1103



Forecasting Asian Credit Default Swap
Spreads: A Comparison of Multi-regime
Models

Chatchai Khiewngamdee, Woraphon Yamaka and Songsak Sriboonchitta

Abstract This paper aims to explore the best forecasting model for predicting the
Credit Default Swap (CDS) index spreads in emerging markets Asia by comparing
the forecasting performance between the multi-regime models. We apply threshold,
Markov switching, Markov switching GARCH and simple least squares for struc-
tural and autoregressive modeling. Both in- and out-of-sample forecasts are con-
ducted to compare the forecasting performance between models. The results suggest
that Markov switching GARCH(1,1) structural model presents the best performance
in predicting Asian Credit Default Swap (CDS) index spreads. We also check the
preciseness of our selected model by employing the robustness test.

Keywords Credit default swaps · Threshold · Markov switching · Robustness

1 Introduction

Credit default swaps (CDS) contract, the most popular and powerful credit derivative
in the world financial market, was first invented in 1994 by JPMorgan for the purpose
of protecting its credit lending to Exxon. This contract is a tool for transferring the
credit risk from credit owner to the CDS issuer. In other words, it is like an insurance
since the buyer of CDS contract, who is a credit owner, will gain protection against
the default of credit. The seller, on the other hand, will assume the credit risk by
delivering principle and interest payments to the owner once the reference credit
defaults in exchange for a protection fee or the so called spread. If there is no default
event occurs, the seller of CDS contract can enjoy the profit from receiving the
periodical payment fee from the buyer.

In order to simplify trading on CDS contracts, CDS contracts were initially devel-
oped into aCDS index contract in 2001, namelyMarkitCDX inNorthAmerica. Then,
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three years later, CDS index contracts trading spread into Europe and Asia, so-called
Markit iTraxx. This development of CDS also brought greater liquidity, transparency
and acceptance to the CDS market. As a result, CDS market has become more pop-
ular and grown rapidly since then. By the year 2004, the notional amount of the
credit derivative market was totally $4.5 trillion. These CDS indexes are used by
many licensed market makers including the world class investment banks such as
Goldman Sachs, Citigroup, Deutsche Bank and UBS since it provides a very efficient
way to take a view on the reference entity credit [1]. In fact, speculation has become
a common function for CDS contracts as the value of CDS market is greater than the
bonds and loans that the contracts reference.

Recently, as theworld economy has not fully recovered from the crisis andmost of
themarkets are still bearish, investors have been seeking for high return investment as
well as hedging their risk exposures. Although government bonds seem to be the best
investment asset during the economic turmoil, CDS contracts surprisingly provide a
higher return andmore efficiency than bonds.According toBloomberg, trading bonds
in huge volumes has become more difficult and more expensive but trading CDS in
large scale has potentially increased the return by deploying leverage. Additionally,
CDSmarket has higher liquidity than the associated bond market and hence specula-
tors usually take advantage by using shorter trading horizons [2, 3]. Hence, CDSmar-
kets have returned to attract investors’ attention once again. Particularly, CDSmarket
in Asia with the exception of Japan has grown radically after the crisis which is much
higher than CDS market in US, Europe and Japan (as shown in Fig. 1).

Predicting the trend of CDS spread changes if of interest to investors, financial
institutions including policymakers since it provides the information on the future
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credit performance in the market. A precise forecasting model will be extremely
helpful to investors and financial institutions to make decisions on their hedging
or trading strategy as well as the policymakers to foresee the future CDS spreads
in order to apply an appropriate policy to stabilize the financial market and the
economy. Moreover, since CDS market in Asia is still in its infancy, with the size
of the markets quite small and trading in the markets not so liquid, there are still
so much rooms to grow for Asian CDS market. Besides, policymakers in Asian
countries practically focus on development of the local bond market and derivatives
market. [4, 5]. Therefore, it leads to a rapid growth in CDS market in Asia.

While most of the CDS studies focused on forecasting CDS spreads only in US
and EU markets, this paper aims to widen those studies by investigating the fore-
casting performance on the CDS index in emerging markets Asia by using advanced
econometric models. In particular, we apply both linear and non-linear versions of
autoregressive model and structural model. These models include simple model,
threshold model, Markov switching model andMarkov switching GARCH.We ana-
lyze both in- and out-of-sample forecasts for eachmodel and compare the forecasting
performance using root mean square forecast error (RMSE) and mean absolute error
(MAE).Additionally,weperforma robustness test to check the validity of the selected
model.

The remainder of the paper is organized as follows; Sect. 2 reviews the literature,
Sect. 3 describes and analyzes the sample dataset, Sect. 4 presents the forecasting
models used in this study, Sect. 5 provides empirical results, Sect. 6 discusses and
compares the forecasting performance between the models and robustness test and
Sect. 7 contains the conclusions of the paper.

2 Literature Review

For the past two decades, as an innovative financial instrument, CDS has drawn
attention from many researchers who study the characteristics of CDS. Most of the
studies focused on CDS forecasting and determinants of CDS. For example, Avino
and Nneji [6] found that there are some evidences that iTraxx Europe CDS spreads
can be predictable. They conducted the forecast by employing both linear and non-
linear models. The results show that, in the out-of-sample forecast, the linear models
are superior to non-linear Markov switching models.

Byström [7] and Alexander and Kaeck [8] studied first-order serial correlation
(AR(1)) in iTraxx CDS spreads. They found that, during 2004–2006, the change of
CDS spread shows a significantly positive sign in the first lagged correlation. More-
over, Byström [7] applied using a simple trading rule for his in-sample forecast and
the result shows that it generates positive profits before transaction costs. Alexander
and Kaeck [8] investigated the determinants of CDS spread in different regimes of
the economy by using a Markov switching regression model. They found that, in a
volatile regime, implied volatility for option is a main determinant of CDS spreads
change.Nevertheless, in stable regime, stockmarket returns playmore important role.
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Collin-Dufresne et al. [9], Campbell and Taksler [10] and Cremers et al. [11]
examined the determinants of credit spreads by using financial variables and found
that there are limited explanatory power among those variables. However, Galil et
al. [12] found that those financial market variables, especially stock returns, change
in the volatility of stock return and change in CDS spread, can determine the CDS
spread after controlling for firm-specific variables. They also suggested that adding
financial market variables can improve the performance of the models to explain
spread changes. Furthermore, Zhang et al. [13] and Ericsson et al. [14] found that,
by employing a structural model, the structural variables have explanatory power for
the determination of CDS spreads.

Several papers have used linear models, namely simple autoregressive or struc-
tural model, in order to forecast CDS spread changes. Thus, it raised a question
whether advanced non-linear models can perform better in order to forecast CDS
spread changes. In fact, there are several studies applied advanced non-linear mod-
els, namely threshold autoregressive (TAR) model, Markov switching model and
Markov switching GARCH model, to forecast various financial assets. For instance,
Domian et al. [15] employed threshold autoregressive (TAR) model to find the rela-
tion between stock returns and real economic activity. They found that positive stock
returns slightly increase real economic activity, while negative stock returns radically
decrease the growth of industrial production. Posedel and Tica [16] investigated the
effect of exchange rate pass-through to inflation inCroatia by usingTARmodel. They
found that, above the threshold, change in nominal exchange rate strongly affects
inflation. On the contrary, below the threshold, nominal exchange rate has no effect
on inflation. In addition, Nampoothiri and Balakrishna [17] suggested that TAR is a
preferred model to estimate coconut oil prices at Cochin market, compared with a
simple AR model.

Ailliot andMonbet [18] employed non-homogeneous Markov Switching Autore-
gressive (MS-AR) models to describe the changes of the wind speed in different
weather types. They found that these models can provide good interpretations for the
important properties of the changes of wind speed, for instance, the marginal distri-
bution and the length of stormy and calm periods. Likewise, Piplack [19] suggested
that a Markov switching model offers better interpretability than a linear model in
forecasting the volatility of the S&P500 stock market index during 1962–2007. It
also has less forecasting errors than linear model. However, Engel [20] argued that
a Markov switching model performs worse than a random walk model in out-of-
sample forecasting of exchange rates. He also suggested Markov switching model
may perform better if it is allowed more than 2 regimes.

Erlwein andMuller [21] developed aMarkov switching model by using a filtered-
based EM-algorithm and hidden information from the Markov chain to optimize
the parameter estimation of hedge fund returns. Their results show that the model
becomes more flexible, since the parameters are updated everytime the market situ-
ation changed, and hence a forecasting performance of this model is more reliable.

A more advanced non-linear model, Markov switching GARCH, was proposed
by combining Markov switching concept with GARCHmodel. This model has been
used widely in the past decade. For instance, Brunetti et al. [22] employed a Markov
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switching GARCH model, consist of both the conditional mean and the conditional
variance, to analyze Southeast Asia exchange rate turbulences. The results suggest
that stockmarket returns, banking stock returns,money supply relative to reserve, real
effective exchange rates and volatility are significant factors to describe exchange
rate turbulences. Chitsazan and Keimasi [23] applied Markov switching GARCH
model to investigate the volatility states of gold futures in Iran. They found that there
ismuch volatility in gold futuremarket and their volatility regimes change very often.

Several researches claimed Markov switching GARCHmodel is better than ordi-
naryGARCHmodels. For example, Klaassen [24] showed that usingGARCHmodel
leads to the overestimation of US dollar exchange rate volatility in volatile period.
Thus, in order to fix this problem, he proposed Markov switching GARCH model
which is more flexible than ordinary GARCHmodel. The results show that, by using
Markov switching GARCH, the problem has been solved and it also presents better
out-of-sample forecasts.

Marcucci [25] compared out-of-sample prediction performance between a set of
standard GARCH models, namely GARCH(1,1), EGARCH(1,1) and GJR(1,1), and
Markov Switching GARCH models in order to forecast US stock market volatility.
The results show that, under shorter horizons, Markov Switching GARCH models
outperformall standardGARCHmodelswhile standard asymmetricGARCHmodels
perform best under longer one. Similarly, Tang and Yin [26] compared the ability
to forecast aluminium and copper prices between using a set of standard GARCH
models and Markov switching GARCH model cover the period from 1993 to 2009.
They found that a Markov switching GARCH model fits the data better than other
standard GARCH models. It also outperforms standard GARCH models in out-of-
sample forecasting.

3 Data and Data Analysis

The dataset used for this study were collected from Thomson Reuters database. The
sample used is daily data which goes from April 1st, 2011 to March 31st, 2016 for a
total of 1186 observations. The data variables consist of iTraxx Asia ex-Japan CDS
Spreads, Hang Seng Future Index, 10-year US government bond yield and CBOE
Market Volatility Index.

Table1 reports the descriptive statistics for the variables, namely the changes in
CDS spread, returns on Hang Seng Future index, changes in bond yield and changes
in VIX index. According to the Jarque-Bera test, all variables are not normally
distributed. It also shows, confirmedby theAugmentedDickeyFuller (ADF) statistic,
that all variables are stationary. Besides, only the changes in CDS spread variable
shows a positive mean value and it is the most volatile variable according to the
standard deviation.
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Table 1 Descriptive statistics

ΔCDSt %ΔHSt ΔBondt ΔV I Xt

Mean 0.031197 (−0.002039) (−0.00142) (−0.003196)

Median (−0.25) 0.02593 (−0.005) (−0.08)

Maximum 31.25 5.85594 0.238 16

Minimum (−30.83) (−7.38861) (−0.247) (−12.94)

Std. dev. 4.688441 1.286005 0.053608 1.677486

Skewness 1.06774 (−0.155716) 0.0629 1.381229

Kurtosis 11.75315 5.891173 4.60257 19.22469

Jarque-Bera 4011.538c 417.9612c 127.6954c 13385.58c

ADF-stat −33.5525c −34.0693c −36.7771c −23.6903c

a,b,cindicate rejection of the null hypothesis at 10, 5 and 1%, respectively

4 The Forecasting Models

This study aims to investigate the performance of the forecasting linear and non-linear
models for Asian CDS spreads. Since we are interested in whether CDS spreads can
predict its own future. Hence, we use lagged CDS spreads to forecast future CDS
spreads. Following Avino and Nneji [6], the simple AR(1) model is employed and
suggested to investigate the CDS forecasting. Furthermore, we also use structural
model in order to investigate whether macroeconomic and financial variables can
predict the changes of Asian CDS spreads. We apply both linear and non-linear
versions of these models namely simple model, threshold model, Markov switching
model and Markov switching GARCH.

4.1 Autoregressive Model and Structural Regression Model

The simple AR(1) is expressed as follows:

yt = α + β1yt−1 + εt , (1)

where yt and yt−1 are the observed data and its lag, α and β are the estimated
parameters of the model, and εt is assumed to be i.i.d. and normally distributed. For
the structural model, the other explanatory variables are formed into the model in
order to evaluate the forecasting ability of these variables in predicting future credit
spreads. Thus the regression structural model can be expressed as

yt = α + β1yt−1 + φi X
′
t + εt , (2)
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where X ′
t is k × nmatrix of explanatory variables andφi is 1 × k unknown parameter

vector.

4.2 Threshold Autoregressive Model and Threshold
Structural Regression Model

Since the introduction of Threshold model of Tong [27], the model has become
popular in both statistics and econometrics and been employed in many application
studies. The simple TAR(1) model with two regimes is considered for the study and
it could be defined as follows

yt = α1 + β1yt−1 + ε1,t , yt−1 ≤ γ,

yt = α2 + β2yt−1 + ε2,t , yt−1 > γ,
(3)

where γ is a threshold value and the threshold variable is set to be yt−1 in this case.
The threshold process divides one dimensional Euclidean space into 2 regimes, with
a linear AR(1) in each regime. For Threshold structural regression model, according
to Yu [28], the general setup of threshold regression models (T-reg) is

yt = α1 + β1yt−1 + φi X
′
t + ε1,t , w ≤ γ,

yt = α2 + β2yt−1 + θi X
′
t + ε2,t , w > γ,

(4)

where w is the threshold variable used to split the sample, γ is the threshold point.

4.3 Markov Switching Autoregressive Model and Markov
Switching Structural Regression Model

Consider the followingGaussianMarkov SwitchingAutoregressivemodel of Hamil-
ton [29], the simple MS-AR(1) can be defined as

yt = αs(t) + β1,s(t)yt−1 + εt,s(t), (5)

where εs(t) ∼ i.i.d.N (0, σ 2
s(t)), yt is dependent variable. s(t) = i , i = 1, ..., h. αs(t)

and β1,s(t) are state dependent estimated parameters. However, in this study we focus
on two regimes for being the most popular application in many works. For Markov
Switching regression (MS-reg), we can extend Eq. (5) in the simplest form as

yt = αs(t) + β1,s(t)yt−1 + φi Xt + εt,s(t), (6)
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where yt is a dependent variable and Xt is a matrix of explanatory variables. The
model is postulated that the transition matrix (Q) is governed by a first order Markov
chain, thus

p(st = j |st−1 = i) = pi j ,
h∑

j=1

pi j = 1, i = 1, ..., h. (7)

In this study, we consider only 2-regime Markov switching model, thus, the first
order Markov process could be written as:

p(st = 1|st−1 = 1) = p11
p(st = 1|st−1 = 2) = p12
p(st = 2|st−1 = 1) = p21
p(st = 2|st−1 = 2) = p22

(8)

where pi j are the transition probabilities from state j to state h.

4.4 Markov Switching Structural GARCH and Markov
Switching Autoregressive GARCH

Bollerslev [30] noted that time series data generally exhibit variable volatility over
time, thus tending to show GARCH (Generalized Autoregressive Conditionally Het-
eroscedastic) effects in the mean equation. As also snoted by Arango et al. [31] about
the high-frequency financial series data, the assumption that the error sequence gen-
erated by the non-linear model for the conditional mean has a constant conditional
variance is not realistic to explain the volatility in the data. Thus, we expect the
GARCH effect in the model and extend Eq. (5) to be MS-AR(1)-GARCH(1,1) as

yt = αs(t) + β1,s(t)yt−1 + εt,s(t), (9)

h2s(t) = μs(t) + δs(t)ε
2
t−1,s(t) + κs(t)h

2
t−1,s(t), (10)

where Eqs. (9) and (10) are the mean and variance equations, respectively, and they
are allowed to switch across regime. h2s(t) is the state dependent conditional variance
andμs(t), δs(t), and κs(t) are state dependent estimated parameters which are restricted
to be larger than zero. In this varianceGARCH(1,1) specification, the state dependent
unconditional variance can be computed by μs(t)/(1 − δs(t) − κs(t)). Consider MS-
reg-GARCH(1,1), we can extend Eqs. (9) and (10) to be

yt = αs(t) + β1,s(t)yt−1 + φi Xt + εt,s(t),

εt,s(t) = h2s(t)vs(t),
(11)
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h2s(t) = μs(t) + δs(t)ε
2
t−1,s(t) + κs(t)h

2
t−1,s(t), (12)

where vs(t) is a standardized residual. In this study, we proposed six different dis-
tributions of vs(t) consisting of normal, student-t, generalized error distribution
(GED), skewed GED, skewed normal, and skewed student-t distributions. For select-
ing the best distribution, the lowest Akaiki Information criterion (AIC) is pre-
ferred. The probabilistic structure of the switching regime is defined as a first-order
Markov process with constant transition probabilities pi j governing the latent state
variable s(t):

To estimate the parameter set in both MS-AR(1) and MS-AR(1)-GARCH(1,1),
a maximum likelihood procedure is used to estimate the Markov switching model.
The general form of the MS-AR(1) likelihood can be defined as

f (yt |yt−1, αs(t), β1,s(t), σ
2
s(t), pi j ) = f (yt |yt−1, αs(t=1), β1,s(t=1), σ

2
s(t=1), pi j )

× f (yt |yt−1, αs(t=2), β1,s(t=2), σ
2
s(t=2), pi j ), (13)

while the MS-AR(1)-GARCH(1,1) likelihood can be defined as

f (yt |yt−1, αs(t), β1,s(t), σ
2
s(t),pi j , Φ) = f (yt |yt−1, αs(t=1), β1,s(t=1), σ

2
s(t=1), pi j , Φ)

× f (yt |yt−1, αs(t=2), β1,s(t=2), σ
2
s(t=2), pi j , Φ), (14)

where Φ is a skew or degree of freedom parameter when the distribution of the stan-
dardized residuals is not normal. For MS-reg andMS-reg-GARCH(1,1), an explana-
tory variable (Xt ) is taken into account in the likelihood function Eqs. (13) and (14).

5 Estimation Results

In this section,we analyze the estimation results of theCDS spread changes fromboth
structural and AR(1) models. We employ simple linear model and three non-linear
models namely, threshold model, Markov switching model and Markov switching
GARCH. For non-linear models, we divide the estimated parameters into 2 regimes
namely high market volatility regime and low market volatility regime. In other
words, for threshold model, we divide by threshold into 2 regimes which are bull
market regime and bear market regime. A bull market implies low market volatility
and a bear market implies high market volatility [32, 33]. For regime switching
models, we estimate the impact of selected explanatory variables which depend on
whether the CDS market is in a high volatility or low volatility scenario. We also
report log-likelihood and Akaike information criterion (AIC) values.

Under the error distributions assumption in GARCH model, namely, Normal
Distribution, Student-t Distribution, Generalized Error Distribution (GED) and their
skewed version, we consider Akaike information criterion(AIC) values in order to
determine the best distribution that suits Markov switching-GARCHmodels. Table2
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Table 2 Markov switching
GARCH(1,1) model selection

Distribution Structural model AR(1) model

AIC AIC

Normal 5851.309 6312.021

Student-T 5843.770 6333.789

Skewed normal 5841.275 6295.586

Skewed student-T 5833.899 6299.210

GED 5860.279 6310.076

Skewed GED 5850.157 6299.591

compares the Akaike information criterion(AIC) values of the Markov switching-
GARCH models estimated from different error distributions. The result shows that,
according to the lowest AIC value, Skewed Student-t Distribution fits the data best
in Markov switching regression-GARCH(1,1) model and Skewed Normal is the best
suitable distribution for Markov switching AR(1)-GARCH(1,1) model.

Table3 shows the parameter estimation for structural models. In eachmodel, most
of the estimated parameters are significant and have the signs as we expected. Hang
Seng Future index return and the changes in bond yield, for instance, show a negative
impact on CDS spread changes. Since CDS is a substitution investment asset, when
stock return or bond yield declines, investors tend to move their investment into the
CDS market and hence increase in the changes of the CDS spread, and vice versa.
Market Volatility Index (VIX) positively affects the changes of the CDS spread as
when the market is more volatile, investors will hedge their risks by buying CDS
contracts. For the lagged CDS spreads, it shows a negative effect on CDS spreads
which means the changes of the CDS spread are not persistent.

For threshold regression model, the lagged CDS spreads, Hang Seng Futures
return, bond yield and market volatility index significantly affect the change of CDS
spread in low volatility regime. In high volatility regime, however, there is only
market volatility index that has a significant effect on CDS spread change and the
magnitude of the effect is higher than in low volatility regime. The performance
of Markov switching regression model is more superior since all of the explanatory
variables significantly affect the change of CDS spread in both low and high volatility
regimes. The results also show that the impacts of all explanatory variables are
much higher in high volatility period. Moreover, this Markov switching model has
the lowest value of AIC compare to other models. Likewise, in Markov switching
GARCH model with skewed Student t-distribution, explanatory variables all have a
significant impact on CDS spread change but the size of impacts are smaller than in
a Markov switching model. Nevertheless, bond yield shows no significant effect on
the change of CDS spread in low volatility regime.

Table4 presents the parameter estimation for AR(1) model. Interestingly, the
results are mixed among models. In threshold model, the lag variable significantly
affects the CDS spread change only in high volatility regime. On the contrary, the
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Fig. 2 Time series of regime probabilities for Asian CDS index. This figure shows the filtered
probability of being in the high volatile regime estimated from Markov switching and Markov
switching GARCH(1,1) models both in structural and AR(1) model

impact of the lag variable on the CDS spread change is significant only in low
volatility regime for Markov switching model. Additionally, for simple AR(1) and
Markov switching GARCHmodel with skewedNormal distribution, the lagged CDS
spread change shows no significant effect on the change of CDS spread. Unlike the
structural models, the AR(1) models suggest that the changes of the CDS spread
are persistent since the lagged CDS spread change shows a positive effect on CDS
spread change (Fig. 2).

6 In- and Out-of-Sample Forecasting Performance of the
Models and Robustness Test

Economic forecasting typically differs from the actual outcome reflecting forecast
uncertainty. In order to evaluate the forecasting accuracy, many studies employed a
root mean square error (RMSE) and mean square error (MAE). They both combine
the bias and the variance of the forecast inherently in its structure and simplify into the
forecast error standard deviation and mean in the case of unbiased forecast (Stovicek
[34]). In this section, the four types of model obtained from the previous section are
investigated for the forecasting performance for both structural and AR(1) model.
We compare the accuracy of these models by applying RMSE and MAE for both in-
and out-of-sample forecast. The RMSE and MAE formulas are as follows:
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Table 5 In-sample forecasting performance of the models

Model Structural model AR(1) model

RMSE MAE RMSE MAE

Least square 3.7532 2.4768 4.6862 3.0245

Threshold 4.7765 3.1765 4.683 3.0175

Markov
switching

3.4434 2.2334 4.6893 3.0202

Markov
switching
GARCH(1,1)

6.7791 4.2117 4.7946 3.1078

RMSE =
√√√√ 1

N

N∑

j=1

e2j (15)

MAE = 1

N

N∑

j=1

|e j | (16)

The in-sample performance of the forecasting models (as shown in Table5) indi-
cates that, based on theMRSE andMAE values, theMarkov switchingmodel clearly
outperforms other models in structural type. Nevertheless, the results suggest that
the Markov switching GARCH(1,1) model with skewed Student t-distribution is the
worst performingmodel since its RMSE andMAE values are much higher than other
models. For AR(1) forecastingmodels, the RMSE andMAEvalues are quit notmuch
different among the models. The threshold model shows the best performance over
the other models in forecasting the first order autoregressive process. Interestingly,
Markov switching GARCH(1,1) model (with skewed Normal distribution) remains
an underperforming model in this forecasting method.

For out-of-sampleforecast, we calculated a multi-step-ahead forecast, which is
from March 1st, 2016 to March 31st, 2016, and compared our forecasting values
with the real data. Then, we analyzed the out-of-sample forecasting performance of
the proposed 4 different models both in structural and AR(1) model. According to
Table5, the results from the in-sample forecast indicated that the Markov switching
model performs better than other models in structural model, while the threshold
model shows the best forecasting performance in AR(1) model. However, consider
the out-of-sample forecasting performance as shown in Table6, the results show that
Markov switching GARCH(1,1) model becomes an outperforming model over other
models for structural models based on the RMSE and MAE criteria. Besides, for
AR(1) models, Markov switching model becomes a superior model to forecast the
change of CDS spread.

In addition, the robustness test is performed to evaluate the predictive performance
and compare the out-of-sample predictive ability of our forecasting models. We



Forecasting Asian CDS Spreads: A Comparison of Multi-regime Models 485

Table 6 Out-of-sample forecasting performance of the models

Model Structural model AR(1) model

RMSE MAE RMSE MAE

Least square 5.8744 3.8182 5.8689 3.9702

Threshold 5.9275 3.8277 5.8814 4.0264

Markov
switching

5.9176 3.8261 5.8567 3.8743

Markov
switching
GARCH(1,1)

5.7475 3.6602 6.4304 4.8271

conducted the conditional predictive ability test called GW-test which is proposed
by Giacomini and White [35]. The approach is based on inference about conditional
expectations of forecasts and forecast errors and it is valid under heterogeneity rather
than stationarity data. The null hypothesis is H0 : Loss(Ma) − Loss(Mb) = 0which
mean that two forecast models are equally accurate on average. The proposed test
statistic for the GW-test can be calculated as:

GW = T

(
T−1

T−τ∑

t=1

πt d
i
t+τ

)′
Ω−1

t+τ

(
T−1

T−τ∑

t=1

πt d
i
t+τ

)
, (17)

where πt are all information set available at time t , Ω−1
t+τ is the inverse covariance

matrix which is a consistent HAC estimator for the asymptotic variance of πt di
t+τ .

The significant testing of the test statistic follows a chi-squared distribution. The
interpretation of the result can be explained by the sign of the test-statistic which
indicates the superior forecasting model. In other words, a positive test-statistic indi-
cates thatMa forecast produces larger average loss than theMb forecast (Mb performs
better than Ma), while a negative sign indicates the opposite interpretation.

Table7 reports the results of the robustness test analysis by applying GW test. The
estimated results are robust and consistent with the out-of-sample statistical perfor-
mance of the forecasting models in previous section. In other words, for structural
models, we can interpret that Markov switching GARCH(1,1) model slightly outper-
forms other models in out-of-sample forecast since the GW statistics of least square
model, threshold model and Markov switching model against Markov switching
GARCH(1,1) model are positive although they are not significant. The results also
suggest that least square model obviously dominates threshold model and Markov
switching model in out-of-sample forecast. The robustness test for AR(1) models
presents much more apparent results. It clearly indicates that Markov switching
model dominates all othermodels, followed by simpleAR(1)model, thresholdmodel
and Markov switching GARCH(1,1), respectively, as the sign of GW statistics and
they are all significant. Finally, in order to determine the best predictive model, we
chose a dominant model from both structural and AR(1) models and compared these
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Table 7 GW robustness test of forecasting performance for out-of-sample forecasts

GW tests for structural
models

Test-statistic GW tests for AR(1)
models

Test-statistic

Least square against
threshold

11.01c

(-)
AR(1) against threshold 22.00c

(-)

Least square against
Markov switching

12.06c

(-)
AR(1) against Markov
switching

18.59c

(+)

Least square against
Markov switching
GARCH(1,1)

2.67
(+)

AR(1) against Markov
switching GARCH(1,1)

14.43c

(-)

Threshold against
Markov switching

0.91
(+)

Threshold against
Markov switching

5.99c

(+)

Threshold against
Markov switching
GARCH(1,1)

0.53
(+)

Threshold against
Markov switching
GARCH(1,1)

13.10c

(-)

Markov switching
against Markov
switching GARCH(1,1)

0.58
(+)

Markov switching
against Markov
switching GARCH(1,1)

15.85c

(-)

GW test between the best of Structural model and AR(1) model Test-statistic

Markov switching AR(1) against Markov switching GARCH(1,1) structural 0.28
(+)

a,b,cindicate rejection of the null hypothesis at 10, 5 and 1%, respectively

two models. We find that Markov switching GARCH(1,1) structural model slightly
outperformsMarkov switching AR(1) model which is consistent with the RMSE and
MAE results.

7 Conclusion

This paper aims to investigate the forecasting performance on the CDS index in
emerging markets Asia by using advanced econometric models. In particular, we
apply ordinary least square model, threshold model, Markov switching model and
Markov switching-GARCH model and the first lagged autoregressive (AR(1)) ver-
sion of these models. We collect all the dataset from Thomson Reuters database. The
variables consist of iTraxx Asia ex-Japan CDS Spreads, Hang Seng Futures Index,
10-year US government bond yield and CBOEMarket Volatility Index. We consider
daily data which goes from April 1st, 2011 to March 31st, 2016 for a total of 1186
observations.

We initially estimate the parameters of the models. The empirical results show
that, for structural models, Hang Seng Futures index return and the changes in bond
yield have a negative impact on the change of CDS spread since the CDS contracts
are viewed as the substitution investment asset. Market Volatility Index (VIX), on the
other hand, shows a positive effect on the CDS spread change as the CDS contracts
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are tools for hedging the risks. Furthermore, the lagged CDS spreads presents a
negative effect on CDS spreads which implies that the changes of the CDS spread
are not persistent. In addition, for 2-regime structural models, namely threshold
model, Markov switching and Markov switching GARCH model, the impact size of
those explanatory variables is higher in high volatility period. Interestingly, unlike
structural models, the AR(1) models present that the changes of the CDS spread
are persistent since the lagged CDS spread change shows a positive effect on CDS
spread change and the estimated results are mixed among models.

The in- and out-of- sample forecasts are conducted to compare the forecasting
performance of the proposed models both in structural model and AR(1) model
using RMSE and MAE criteria. For in-sample forecasting performance, we find that
Markov switching model outperforms other models in structural type, while thresh-
old model performs better than other models in AR(1) variant. Moreover, Markov
switching GARCH(1,1) model presents the worst performance in both structural and
AR(1) models. However, the out-of-sample forecast demonstrates different results,
that is, Markov switching GARCH(1,1) and Markov switching model become a
superior model to forecast the change of CDS spread for structural model and AR(1)
model, respectively. Additionally, we employ a robustness test called GW test to
check the preciseness of the selected model. The results remain suggesting that
Markov switching GARCH(1,1) and Markov switching model dominate other mod-
els in structural model and AR(1) model, respectively. Finally, we compare these two
dominant models in order to determine the best predictive model. The result shows
that Markov switching GARCH(1,1) structural model slightly outperforms Markov
switching AR(1) model.
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Effect of Helmet Use on Severity of Head
Injuries Using Doubly Robust Estimators

Jirakom Sirisrisakulchai and Songsak Sriboonchitta

Abstract Causal inference based on observational data can be formulated as a miss-
ing outcome imputation and an adjustment for covariate imbalance models. Doubly
robust estimators–a combination of imputation-based and inverse probabilityweight-
ing estimators–offer some protection against some particular misspecified assump-
tions. When at least one of the two models is correctly specified, doubly robust
estimators are asymptotically unbiased and consistent. We reviewed and applied the
doubly robust estimators for estimating causal effect of helmet use on the severity of
head injury from observational data. We found that helmet usage has a small effect
on the severity of head injury.

Keywords Causal effect · Missing outcome imputation · Propensity score match-
ing · Doubly robust estimators

1 Introduction

Motorcyclists and passengers are characterized as unprotected road users. Helmets
are widely used to protect motorcyclists and passengers from fatal accidents and
serious head injuries. To promote proper helmet usage policies, practitioners need to
be able to measure the causal effect of helmet use on severity of head injury. The first
objective of this paper is to reinvestigate the causal effect of helmet use on severity of
head injuries by using doubly robust estimators. We consider the potential outcomes
framework as an appropriate tool in addressing the causal effect estimation. The
second objective the key contribution of this paper is to review and apply the doubly
robust estimators, which are new to the economic literature.
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Table 1 Causal effect in the potential outcome framework

Unit Potential outcomes Covariate Treatment
assignment

Unit-level
causal effect

Treatment Control

Y1 Y0 Xi Ti

1 Ymis
1 = Y11 Yobs

1 = Y01 X1 0 Y11 − Y01
2 Ymis

2 = Y12 Yobs
2 = Y02 X2 0 Y12 − Y02

3 Yobs
3 = Y13 Ymis

3 = Y03 X3 1 Y13 − Y03
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

i Yobs
i = Y1i Y mis

i = Y0i Xi 1 Y1i − Y0i
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

n Ymis
n = Y1n Y obs

n = Y0n Xn 0 Y1n − Y0n

The fundamental problem of causal effect estimation is the lack of observa-
tion/data of one of the potential outcomes. This can be viewed as a missing data
problem. Suppose that researchers observe a random sample of unit i = 1, 2, . . . , n
from a population. The outcome of interest is Yi for each unit i . Let Ti be the assign-
ment indicator for each unit i , so that Ti = 1 if unit i is assigned to a treatment group
and Ti = 0 if unit i is assigned to a control group. There is a pair of potential outcomes
associated with unit i : the potential outcome Y1i that is realized if Ti = 1 and another
potential outcome Y0i that is realized if Ti = 0. For each unit i , we also observe the
m-dimensional vector of covariates Xi for unit i . Let Y obs

i be the observed potential
outcome for unit i and Ymis

i be the missing or the unobserved potential outcome for
unit i . Thus, we have

Y obs
i = Ti · Y1i + (1 − Ti ) · Y0i (1)

and
Ymis
i = (1 − Ti ) · Y1i + Ti · Y0i . (2)

According to the potential outcomes framework [12], we can define a causal effect of
the treatment on unit i as Y1i − Y0i . However, this effect is unobservable because we
cannot observe the same unit at the same time in both the treatment and the control
regimes. Table1 summarizes the causal effect in the potential outcome framework.
Notice that potential outcomes notation in randomized experiments was introduced
by [6] and by [10] in non-randomized settings.

To handle the unobserved (missing) potential outcomes in randomized experi-
ments, researchers usually model the relationship between all observed covariates
and observed outcomes and use these models to predict the missing outcomes. As a
result of this modelling, complete data table can be obtained and also the unit-level
causal effects can be estimated.



Doubly Robust Estimators of Causal Effect 493

In randomized experiments, a well-defined treatment is randomly assigned to a
group of units, but it is not the case in non-randomized experiments or observational
studies. Observational data is common and serves as the basis for economic and
social science research. The causal effect obtained from observational data could be
biased because of self-selection problems or some systematic judgement of treatment
assignment mechanism by researchers. The difficulty arises because the treatment
assignment mechanism and the outcome of interest may be related through some
attributes. These correlations lead to an imbalance of treatment and control groups
in those attributes.

Propensity score-matching methods are commonly used to adjust for covariate
imbalance in observational data. Rosenbaum and Rubin [9] discussed the essential
role of propensity score in correcting bias due to all observed covariates. In ran-
domized experiments, we can directly compare the treatment and control groups
because their units are likely to have the same characteristics. However, in obser-
vational data, the direct comparisons may be biased because the units exposed to
treatment generally have different characteristics from the control units. Under the
strong ignorability assumption, Pr(T |Y1,Y0, X) = Pr(T |X,Y obs), and overlapping
assumption, 0 < Pr(T = 1|X,Y obs) < 1, [9] showed that this bias can be corrected
by propensity score. The strong ignorability assumption implies that there is no
confounding variable and all observed covariates contain all selection-bias informa-
tion. The last assumption ensures the presence of bias-correction across the entire
domain of X .

However, propensity score methods sometimes fail to correct this imbalance if the
researchers misspecify the propensity score models. To cope with this problem, the
researchers usually increase the complexity of themodels until they find a sufficiently
balanced solution.

To estimate causal effect of treatment from observational data, researchers have to
simultaneously consider amissing outcome imputation and an adjustment for covari-
ate imbalance. If researchers cannot specify two correct models, these misspecifica-
tions will lead to unbiased estimators of the causal effect of treatment. Over the last
decade, doubly robust estimators have been developed in incomplete data analysis.
These estimators can be viewed as a combination of imputation-based and inverse
probability weighting estimators. When at least one of the two models is correctly
specified, doubly robust estimators are asymptotically unbiased and consistent [13].

In this paper,weuse the doubly robust procedures,which apply both the propensity
score and the outcomes models simultaneously to produce a consistent estimate of
causal effect. The additional protection provided by doubly robust estimators gives
us much more confidence on our causal effect estimations. The paper proceeds as
follows. In Sect. 2, we discuss the propensity score estimation. Then the doubly
robust estimators are discussed in Sect. 3. Finally, we describe the data and causal
effect estimations in Sects. 4 and 5.
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2 Propensity Score Estimation

In this paper, we will assume the strong ignorability assumption. This assumption
implies that the treatment assignment mechanism is unconfounded in the sense that
Yi and Ti are conditionally independent given the vector of covariate Xi [9]. Thus,
the joint distribution of the complete data is

Pr(Y, T, X) =
∏

i

{Pr(Yi |Xi ) × Pr(Ti |Xi ) × Pr(Xi )} (3)

The propensity score is the conditional probability of assignment to a treatment
given a vector of the observed covariates [9]. The propensity score can be written as

e(Xi ) = Pr(Ti = 1|Xi ) = πi . (4)

By conditioning on observable covariates, this assignment mechanism can be taken
as if it were random. Thus, by comparing two units with the same characteristics but
different only in that one of whomwas treated and another was not, is like comparing
those two units in a randomized experiment [11].

To estimate the propensity score, discrete choice models, such as logit or probit
models, can be used. The logit model is commonly used in application for the ease
of estimation. The logit formula is

Pr(Ti = 1|Xi ) = eβXi

1 + eβXi
, (5)

where Xi is a vector of covariates and β is a vector of parameters.

3 Doubly Robust Estimators

In this paper, we consider average treatment effect as a causal estimand or target
parameter to be estimated. The average treatment effects can be expressed in two
forms: the population average treatment effect (PATE) and the population average
treatment effect on the treated (PATT). The PATE can be written as

τ = E[Y1|X ] − E[Y0|X ], (6)

and the PATT can be written as

γ = E[Y1|X, T = 1] − E[Y0|X, T = 1]. (7)
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Let us define the regressionmodels E[Y1|X ] = g1(X) and E[Y0|X ] = g0(X). Robins
et al. [7] described the doubly robust estimation framework for regression with some
missing regressors. The applications of this framework for missing potential out-
comes and subsequent literature are referred to the following articles and references
therein: [1, 5, 8]. As we mentioned earlier, the doubly robust estimators apply both
the propensity score and outcomes regressionmodels to create the consistent estimate
of parameters; thus, the estimate procedure consists of three components.

The first component is called inverse-probability weighting (IPW). Suppose that
researchers have an estimate of propensity score π̂i . The IPW estimators can be
written as follows:

τ̂ I PW =
∑

Ti=1

π̂i
−1

∑
Ti=1 π̂i

−1 Yi −
∑

Ti=0

(1 − π̂i
−1

)∑
Ti=0(1 − π̂i )−1

Yi (8)

and

γ̂ I PW =
∑

Ti=1

1∑
Ti=1 Ti

Yi −
∑

Ti=0

π̂i (1 − π̂i
−1

)∑
Ti=0 π̂i (1 − π̂i )−1

Yi . (9)

The second component is just an outcomes regression model. Let ĝ0(Xi ) and ĝ1(Xi )

be the estimates of the mean potential outcomes. Thus the ordinary least square
(OLS) estimators for PATE and PATT are as follows:

τ̂ OLS = 1

n

n∑

i=1

(ĝ1(Xi ) − ĝ0(Xi )) (10)

and

γ̂ OLS = 1∑
Ti=1 Ti

n∑

i=1

(Yi − ĝ0(Xi )). (11)

Finally, a doubly robust estimator can be obtained by combining the two estimators
as follows [14]:

τ̂ DR = τ̂ OLS+
∑

Ti=1

π̂i
−1

∑
Ti=1 π̂i

−1 (Yi − ĝ1(Xi ))−
∑

Ti=0

(1 − π̂i
−1

)∑
Ti=0(1 − π̂i )−1

(Yi−ĝ0(Xi ))

(12)
and

γ̂ DR = γ̂ OLS −
∑

Ti=0

π̂i (1 − π̂i
−1

)∑
Ti=0 π̂i (1 − π̂i )−1

(Yi − ĝ0(Xi )). (13)
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The residual bias correction term is just the replacement of Yi in the IPW estimators
with the regression residual. The above DR estimators were first proposed by [2] and
generalized by [7]. The DR estimator has the so-called double robustness property.
If either the propensity score model or outcome regression model is correctly speci-
fied, then PATE and PATT are consistent [5].

Focusing on the estimation of PATT, [4] constructed doubly robust weighted
least square estimators of PATT using entropy. This procedure is called the entropy
balancing approach. Entropy balancing is performed by optimizing a set of weights
over the control units and fixed equal weights for the treated units. [4] minimized
the following problem to find the optimal weights (wi ):

min
w

∑

Ti=0

wi logwi , (14)

subject to

∑

Ti=0

wi = 1, wi > 0 ∀i, (15a)

∑

Ti=0

wi c j (Xi ) = c1 j , j = 1, 2, ...,m, (15b)

where c j (Xi ) denotes the moment function of the m-dimensional covariates. In prac-
tice, the balancing targets c1 j are set as

c1 j = 1∑
Ti=1 Ti

∑

Ti=1

c j (Xi ). (16)

These weights wEB
i can be used to estimate E[Y0|T = 1] = ∑

Ti=0 wEB
i Yi . Thus,

the entropy balancing estimator of PATT is

γ̂ EB =
∑

Ti=1

Yi∑
Ti=1 Ti

−
∑

Ti=0

wEB
i Yi . (17)

Zhao and Percival [14] showed that γ̂ EB is a consistent estimator of PATT if the
control outcome is linear in the same covariate moment constrained by the entropy
balancing optimization.

Finally, we can combine entropy balancing with the outcome regression to get the
doubly robust estimators. By replacing the IPW by wEB

i , a doubly robust estimator
of PATT can be obtained as follows:

γ̂ EB−DR =
∑

Ti=1

Yi − ĝ0(Xi )∑
Ti=1 Ti

−
∑

Ti=0

wEB
i (Yi − ĝ0(Xi )). (18)
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Zhao and Percival [14] also showed that γ̂ EB−DR is the same as γ̂ EB if ĝ0(Xi ) is a
linear model on the moments c j (Xi ).

4 Data

The data used in this paper are the injury surveillance (IS) data of the accident victims
who were sent to Vachira Phuket Hospital, Thailand. The data set was screened to
select only the motorcycle accident victims with head injuries and those who were
killed as a result of head injuries. The data consisted of a sample of 1,751 motorcycle
accident victims involved in traffic crashes during the period from 2008 to 2012. The
severity of head injuries was based on the abbreviated injury scale (AIS) criterion.
TheAIS criterion is awidely used clinical classification inwhich the severity of injury
for each accident victim is classified by body region. There are 6 scores ranging from
AIS-1 to AIS-6, where the highest level indicates the most serious injury (Hobbs and
Hobbs, 1979).

About 18% of the victims were classified as helmet-wearing riders and 82% are
classified as non-helmet riders. The averageAIS score was about 2.25 for non-helmet
users, and 2.18 for helmet-wearing riders. The description of the variables used in
this paper and the main statistics are shown in Table2. Figure1 plots the histogram
of severity of head injury.

Table 2 Description of variables and statistics

Variable Description Mean SD

Helmet use 1 if victim had been wearing helmet; 0 otherwise 0.181 0.385

Severity of head injury 1 to 6 where 6 is the most serious injury 2.215 0.636

Age Age of the victim 30.145 14.339

Male 1 if the victim is male; 0 otherwise 0.660 0.474

Passenger 1 if the victim was a passenger; 0 otherwise 0.173 0.378

M-crash 1 if the crash type is between motorcycle and
another motorcycle; 0 otherwise

0.224 0.417

Night 1 if the accident occurred during 8.01 pm–6.00 am;
0 otherwise

0.482 0.500
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Fig. 1 Histogram of severity of head injury

5 Results and Discussion

In this section, we explore an application to estimating effect of helmet use to severity
of head injury. The propensity scores were estimated using logit model as described
in Sect. 2. The covariates included in the propensity score model consisted of Age,
Male, Passenger, and Night. These characteristics can be used to explain the decision
to wear helmets for each rider. Helmet use rate of males was lower than that of
females. There is a linear relationship between age and the propensity toward helmet
wearing. The older motorcyclists were more likely to wear a helmet when compared
with the younger motorcyclists. Helmet use for passengers was significantly lower
than for the rider position. During the night time, helmet use rate was lower than the
rate during the day. Figure2 visualizes the histogram of estimated propensity scores
for helmet and non-helmet uses. The propensity score distributions indicate a bit of
imbalance between the two groups.

For outcome regressionmodels,we addedonemore variable (i.e.,M-crash),which
is the indicator for crash type. From the propensity score and outcome regression
models, we estimated γ̂ I PW , γ̂ OLS , γ̂ DR , and γ̂ EB . These estimated results are sum-
marized in Table3. All estimators are very similar. The standard error of γ̂ DR is the
smallest (in five-digit precision) in our case study. Notice that if a propensity score
is modelled correctly then γ̂ DR will have smaller variance than γ̂ I PW . However, if
the outcome regression is modelled correctly, γ̂ DR may have larger standard error
than γ̂ OLS [3].
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Table 3 Population average treatment effect on the treated

PATT Estimate Sd. error

IPW −0.07324 0.04223

OLS −0.07904 0.04238

DR −0.07313 0.04222

EB −0.07026 0.04320

The use of motorcycle helmets had a small effect on the severity of head injury.
The possible reasons why there was a small effect of helmet use on the severity of
head injury is that we used the injury data from the Phuket city area in which the
commuters use low speed of travel. This (surprising) result may also be due to the
fact that many motorcyclists in Thailand wear cheap, low-quality helmets that do
not protect the wearers’ faces. Moreover, the Thai motorcyclists may not have used
the helmets properly; for example, they might not have secured the chin strap, which
could cause the helmet to fly off on impact.

The main concern and possible limitation in this study is the inability to control
for all observed confounding variables. The obvious factors are the intrinsic motor-
cycle factors such as the size and type of motorcycle. The injury surveillance (IS)
data did not include such variables. We believe that these factors would be related
to the severity of head injury but not related to the helmet use. Thus the doubly
robust estimators could give some protection against the misspecified model in our
case. However, as pointed out by [5], the doubly robust estimators based on two



500 J. Sirisrisakulchai and S. Sriboonchitta

misspecified models performed worse than IPW estimators based on incorrect
propensity score models and OLS estimators based on misspecified models.
Researchers have to be aware that two wrong models are not necessarily better than
one [1].

Finally, one may ask why researchers have to estimate causal effect of helmet use
on severity of head injury because physics and common sense generally indicate that
helmets must provide some protection. Thus, even if the degree of that protection
can be disputed, we still recommend that motorcyclists should wear helmets every
time they ride.
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Forecasting Cash Holding with Cash Deposit
Using Time Series Approaches

Kobpongkit Navapan, Jianxu Liu and Songsak Sriboonchitta

Abstract The levels of cash holding and cash deposit for Thai banks have signifi-
cantly increased over the past 10years. This paper aims to forecast cash holding by
using cash deposit. For banks, cash holding partially is from the cash deposited. In
addition, accurate prediction on the cash holding would provide valuable informa-
tion and indicators supervising bankers to control the levels of both cash holding
and cash deposit effectively. In addition, the empirical relevance of cash holding and
cash deposit is examined with three different models; linear model, ARIMA model
and state space model. Experimental results with real data sets illustrate that state
space model tends be the most accurate model compared to the other two models for
prediction.

Keywords Cash holding · Cash deposit · Linear model · ARIMA model · State
space model

1 Introduction

The amounts of cash holding and cash deposit always play a crucial role in cash
management for banks. This is because the cost of raising external funds which is
significantly higher than the internal funds [9]. Another crucial point lays on the
issue that banks receive cash from their depositors. Thus, cash holding partially is
from the cash deposited. Obviously the level of cash holding and the level of cash
deposited are correlated. However, in the real practice cash holding can come from
many financial resources like money invested by investors, financial profits from
previous years, tax refunds, etc.
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Since the time series data sets used in this study are shown in a sequence of points
over time, it is appropriate to focus on traditional regression models, namely Linear
model, Autoregressive integrated moving average model (ARIMA), and State Space
for predictions. When using these three models in time series data, it is necessary
to assume that all errors are not identical and independent distributed which can be
referred to serial correlation or auto correlation. As a result, these first two models
cannot fit the data leading to biased results and inaccurate predictions [15].Moreover,
it is found that State Spacemodel provides more less error for prediction compared to
ARIMA model. Some examples supporting this finding are the study of forecasting
sale performance of retail sales ofwomen footwear byRamos et al. [13], and the study
of forecasting the monthly commercial banks interest rate in Nigeria by Ologunde
et al. [11].

This study aims to forecast cash holding with cash deposits for Thai banks. It
provides a clearer picture to our understanding of these two variables on how they are
relevant to each other. Then, accurate prediction on the cash holding would provide
valuable information and indicators supervising bankers to control the levels of both
cash holding and cash deposit effectively.

There has been so many great works of literature on cash holding but mainly
focusing on theoretical issues. It would be appropriate to discuss theoretical issues
first then follow with discussions of some works with respect to the mentioned
models.

Bank as a financial intermediary has an important role in creating money in econ-
omy and establishing a connection between our lives and financial activities. The
more money banks hold is the more money banks can lend in economy. In general,
A central bank uses the monetary policy as a tool in order to control the amount of
cash in the economy through interest rate or purchasing assets or quantitative easing
(QE) [8]. Klein [7] also supported this point because the limitation on competitive
behavior controlled by interest rate regulation can cause an effect on the level of cash
holding.

Moreover, the degree of tightening of monetary policy can lever the level of cash
holding. The tighter the monetary policy, the higher cash holding will be because
of more constraints of external financing [6]. Ferreira and Vilela [4] introduced
another different point. They concluded that the higher opportunity of investment
is relatively connected with the higher amount of cash holding because of trade off
model. It shows that the changing level of cash holding is considered by weighting
the marginal cost and marginal benefits of holding cash. In addition, the main reason
that banks have to be regulated and monitored closely by the central bank is that
banking stability is subject to public confidence. Loss of confidence caused by one
bank can extent to other banks causing financial instability to the entire economy
[14]. Their study explained that banks and other depository institutions offer deposit
and saving accounts to individuals and firms which they can be withdrawn at any
time. Thus, they share liquidity risk together. At the level of withdrawals exceeding
the amount of new deposits, they will go into liquidity trouble. Cash holding might
not be a crucial issue to some firms as there are a number of ways to raise cash
holding. For instance, by selling assets, raising funds in the capital market, limiting
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dividends and investment, and refinancing debt contracts [12]. On the contrary, a
firm tends to hold cash because the cost of raising external funds is much higher than
internal funds [9].

In another way Barclay and Smith [1] introduced scale economies showing that
large firms seem to have a better scale economic. In the market large firms can raise
money at the lower cost compared to small firms. Consequently, small firms tend
to have more cash in order to avoid the cost. Meanwhile Bates et al. [2] focused on
dividend payments. Firms with dividend payments would have better access to the
capital markets, causing their levels of cash holding relatively low. Agency cost is
also another factor. However, it can be reduced through bank loan [3].

With a different point of view, Gatev et al. [5] showed that transaction deposits
can provide a great benefit to the bank in order to hedge liquidity risk from unused
loan commitments. Furthermore, Naceur and Goaied [10] supported that a high level
of deposit account relating to assets can be used as a determinant to measuring bank
performance.

Up to this time, the next content focuses on some experimental predictions with
three different models, linear model, ARIMA model and State Space model. Zhang
[15] suggested that the first step for prediction is to follow the rule of thumb which
focuses on the size of the sample. The minimum of the sample size at least should be
equal to or larger than 104. They also found that it is impossible to avoid historical
features of trend component, cyclical component and irregular component in financial
data when traditional regression models are applied. As a result, ARIMA model is
more fitted compared to linear model.

In addition, Ramos et al. [13] found that ARIMA model provide less accurate
prediction compared to State Space model in their experiment. They illustrated that
in one-step forecasts the RMSE and MAPE values of State Space model are smaller
compared to those values of ARIMA. This shows that State Space predicts more cor-
rectly. These previous experiments are taken into account when designing method-
ologies used in the area of the study. Since commonly traditional regression models
are cointegrating regression and ARIMA regression, this study places emphasis on
State Space model in the methodology section.

The remainder of this paper is organized into five sections: Sect. 2 outlines state
space methodology. Section3 discusses data. Empirical results are presented in
Sects. 4 and 5 concludes the paper.

2 Methodology

2.1 State Space Model

In linear analysis, the coefficient parameter is approximately constant over time,
meanwhile most of time series data is varying over time. Dynamic linear model with
state space approach is more flexible because it allows the coefficients are moving
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over time. It is more suitable to analysis time series data, and it assumes that their
system properties vary over time. Additionally, it uses unobservable state variables
to model the processes that drives the variation of observed data.

In general, the dynamic model consists of two parts, the first part consisting of
State Space which represents of the data, and the second part representing the state
of system. The sequence of the process has conditional dependence with only the
previous step. The Kalman filter formulas help to estimate the state which is given
by the data. General dynamic linear model can be written with a help of observation
equation and state equation. That is,

Yt = Ft Xt + Vt , Vt ∼ N (0, Vt ) (1)

Xt = Gt Xt−1 + Wt ,Wt ∼ N (0,Wt ), (2)

where Yt are the observations at time t, with t = 1, 2, . . . , n. Vector Xt of length
m contains the unobserved states of the system that are assumed to evolve in time
according to a linear system operator Gt (a m×mmatrix). In time series settings Xt

will have elements corresponding to various components of the time series process,
like trend, seasonality, etc. We observe a linear combination of the states with noise
and matrix Ft (mp) is the observation operator that transforms the model states into
observations. Both observations end system equations can have additive Gaussian
errors with covariance σ 2

v and matrices σ 2
w.

2.2 Checking for Robustness of Predicted Ability

In order to check the robustness of predicted ability, we employ two benchmarks
which are Mean absolute percentage error (MAPE) and Root mean square error
(RMSE). MAPE measures accuracy as a percentage which can be expressed as

MAPE = 1

n

n∑

t=1

∣∣∣∣∣
Yt − Yt

′

Yt

∣∣∣∣∣, (3)

where, Ft is the predicted value, and At is the actual value. This measure tends to
be biased when comparing the accuracy of prediction methods. The model with the
lowest value of MAPE will be selected.

RMSE benchmark is used to measure the sample standard deviation, the differ-
ences between actual values and predicted values. RMSE is given as follows:

RMSE =
√√√√1

n

n∑

i=1

(Yt − Y
′
t )

2
. (4)
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RMSE is a good benchmark when only compare predicting error of the different
models for specific variables. Compared with MAPE, RMSE has some disciplines
due to large error.

3 Data

Cash holding and cash deposit data sets, 120 observations in each, are from the
Bank of Thailand Statistic Database. The total amount of cash holding consists
of cash in local currency and in foreign currencies held by Thai banks, whereas
the total amount of cash deposits is cash from three different types of accounts,
current, saving and fixed accounts held by them. The data is originally collected
from all registered commercial banks (excluding their branches in other countries),
all branches of foreign commercial bank and banks international banking facilities
(BIBF) in Thailand. The data is also in the term of monthly basis, covering from
January 2006 to December 2015.

After plotting the original data of both cash holding and cash deposit, it is found
that there is an upward trend for both cash holding and cash deposit during the period
of 2006–2016 as illustrated in Fig. 1. The graphical result of cash deposit also shows
a rapid increase during 2011–2013. Moreover, after year 2013 it shows a slight drop
before continuing to increase in later year.

This characteristic of data, monthly time series, can be adjusted by using the X12
procedure to remove seasonality. The procedure makes additive or multiplicative
adjustments and creates an output data set containing the adjusted time series and
intermediate calculations.

However, regarding to checking for robustness of predicted ability with MAPE
and RMSE the data is organized as the followings. The data is divided into two parts,
in sample and out of sample. The first 96 observations contained in sample are for
the period January, 2006–December, 2013. The remained observations out of sample
are from the period January, 2014 to December, 2015. The in sample observations
are carefully used in the prediction calculation through MAPE and RMSE methods.

Fig. 1 The graph of series of cash holding (on the left) and cash deposit (on the right)
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Then they are compared with the out of sample observations to find out the most
accurate model for prediction.

4 Empirical Results

In this study, we can express the observation equation as follows:

Log(Cashholdingt ) = Ct + β1t Log(Cashdeposi tt ) + β2t Log(Cashdeposi tt−1) + Vit ,
Vit ∼ N (0, σ 2

t ),

(5)

Then followed by state equation as follows:

Ct = Ct−1 + W1t ,W1t ∼ N
(
0, σ 2

W1

)
(6)

β1t = β1t−1 + W2t ,W2t ∼ N
(
0, σ 2

W2

)
(7)

β2t = β2t−1 + W3t ,W3t ∼ N
(
0, σ 2

W3

)
(8)

Figure2 illustrates an upward trend in the relationship of log cash holding and
log cash deposit. Then we implement unit root test in order to check if stationary of
cash holding and cash deposit exists. The results of unit root test are demonstrated in
Table1 showing that both cash holding and cash deposit are nonstationary according
to the figures with test different ways of testing, for a unit root, for a unit root with
drift, and for a unit root with drift and deterministic time trend.

Fig. 2 The relationship between log cash holding and log cash deposits

Table 1 Unit root test

Log(cash
holding)

�Log(cash
holding)

Log(cash
deposit)

�Log(cash
deposit)

ADF 5.9919 –17.67101*** 3.861144 –3.569143***

PP 2.3587 –14.19103*** 3.30591 –9.831593***

*** significant at 1% level (p < 0.01)
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Table 2 Estimated parameters of the models

Parameters Linear ARIMA State space

Constant (β0) –0.2137 – 3.4634

–0.1669 – –4.0026

Cashdeposi tt (β1) 0.02689 0.0614 0.5808

–0.0141 –0.1653 –0.2453

Cashdeposi tt−1(β2) 0.9936 –0.6419 –0.0488

–0.0169 –0.1266 –0.1021

All the previous findings can conclude that the time series data sets are not sta-
tionary in mean value. The results from unit root test also confirm this behavior. We
then correct through appropriate differencing of the data. In this case, we applied
ARIMA (1, 1, 0) model. Model parameter of linear model and ARIMA model are
shown in Table2.

After we run linear regression, we also consider whether there is a long run
relationship between them or not. Therefore, the next step is test error of regression
for a unit root. The result shows that the error contains a unit root indicating that they
are cointegration which can be referred to the long-run relationship.

In order to compare Linear regression with ARIMA, we can see that
Cashdeposi tst (β1) are positively related to cash holdings in both model. For
Cashdeposi tst−1(β2) or cash deposits at time t – 1, it has a negative relationship
with cash holding. On the other hand, Cashdeposi tst−1(β2) is positively related to
cash holdings. For the State Space model, the coefficients from Table2 can be used
as final state which is 12th month 2012. The results show that Cashdeposi tst (β1)

positively impacts on cash holdings.Meanwhile,Cashdeposi tst−1(β2) is negatively
correlated to cash holdings.

After using Kalman smoothing of their coefficient parameters, the result shows
that only their intercepts are varying over time. The rests are quite time-invariant
coefficients, in other words they are not affected by time. Therefore, we will show
only the varying-intercept that demonstrates a dynamic trend as illustrated in Fig. 3.
Therefore, we can say that the relationship between cash deposits and cash in hand
is quite stable. So the majority change in cash holding comes from intercept.

The next step is to use three models, linear, ARIMA, and state space models to
forecast cash holding with cash deposit with respect to data divided into in sample
and out of sample. The results in Table3 show that state space model has the lowest
errors in bothMAPE andRMSE followed byARIMAand linearmodels respectively.

The result also shows that the MAPE and RMSE values of all three models are
significant different. The MAPE and RMSE values of state space model are 0.007–
0.106 smallest respectively. The highest MAPE and RMSE values consisting of
0.360–4.592 belong to linear model compared to the values of ARIMA, 0.028–0.394
in that order.
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Fig. 3 Smoothing estimates of intercept (on the right)

Table 3 Forecasting criteria for the three models

Three models Linear ARIMA (1, 1, 0) State space

MAPE 0.360 0.028 0.007***

RMSE 4.592 0.394 0.106***

Note *** lowest values compared to the other models

Fig. 4 Plotting actual variables with predicted values of all the models (on the right)

Overall state space model produces more accuracy for forecasting than the other
models. As expected, the result has similarity to the finding of Ramos et al. [13].
Smallest differences from the calculation can refer to the model as the best model
with smallest errors in prediction.

As shown in Fig. 4, it is obvious that the line generated by the predicted values of
state space minus by the actual values moves almost the same pattern with the actual
values of out of sample. This result is also supported by the results in Table3. In
addition, all the graphs also show some useful information. By using linear model,
the line is lowest compared to the other lines, illustrating that the results generated
by the model is underestimated.
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However, state space model also produces the same, but its line is much closer
to the actual line. The line generated by ARIMA model shows the different result.
The line moves in the upper part of out of sample and then it dramatically drops and
moves in the lower part for the rest.

5 Conclusions

In order to forecast cash holding with cash deposit for banks in Thailand with three
different models linear model, ARIMA model and state space model, the empirical
results show that the state spacemodel tends to be themost accuratemodel for predic-
tion, followed by the ARIMAmodel and the linear model respectively. The predicted
values of the linear model at the beginning of time are very far from the actual values
in the out of sample values. However, it might be an interesting issue if we fore-
cast with longer period of time. Overall, this would be advantageous to bankers who
need to monitor the level of cash holding and cash deposit because selecting the most
appropriate model would help them manage cash holding effectively and efficiently.

For further study, as shown in Fig. 3 that the upward trend of the intercept from
the state space analysis shows a peak in 2011. During that time, there was worst
flooding in Thailand affecting all industrial sector and society. It has been claimed
that this crisis covers about 90 billion square kilometers of land, accounted more
two-thirds of the country. Focusing on more variables during the time with more
advance econometric methods would provide more useful explanations with respect
to this crisis effecting cash holding to bankers.
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Forecasting GDP Growth in Thailand
with Different Leading Indicators
Using MIDAS Regression Models

Natthaphat Kingnetr, Tanaporn Tungtrakul and Songsak Sriboonchitta

Abstract In this study, we compare the performance between three leading indi-
cators, namely, export, unemployment rate, and SET index in forecasting QGDP
growth in Thailand using the mixed-frequency data sampling (MIDAS) approach.
The MIDAS approach allows us to use monthly information of leading indicators
to forecast QGDP growth without transforming them into quarterly frequency. The
basic MIDAS model and the U-MIDAS model are considered. Our findings show
that unemployment rate is the best leading indicator for forecastingQGDPgrowth for
both MIDAS settings. In addition, we investigate the forecast performance between
the basic MIDAS model and the U-MIDAS model. The results suggest that the
U-MIDAS model can outperform the basic MIDAS model regardless of leading
indicators considered in this study.

1 Introduction

Governments, financial institutions, and private sectors have put great attentions on
economic time series for decades to anticipate future states of economy. An accurate
prediction would help policy makers, economists, and investors determine appropri-
ate policies and financial strategies. It is no doubt that the gross domestic product
(GDP) is one of the most important economic variables that contain information
about the state of economy. Therefore, numerous investigations have been done to
forecast GDP.

In macroeconomic theory, the important factors of GDP growth are consumption,
investment, government expenditure, export and import. According to the World
Bank [15], Thailand’s export is themain factor driving the country’s economy and the
proportion of Thailand’s export to GDP has been more than 60% since 2,000. Many
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studies suggested that export has effect on GDP growth [14, 16]. Moreover, Hsiao
and Hsiao [12] found that there exists bidirectional causality between exports and
GDP for the selected eight rapidly developing Asian countries including Thailand.

In addition, there is a huge body of literature including Estrella et al. [4] for
the United States and Bellégo and Ferrara [1] for Euro area that uses the financial
variables as leading indicators of GDP growth. Ferrara and Marsilli [5] concluded
that the stock index could improve forecasting accuracy on GDP growth. Moreover,
unemployment is also important variable which reflect the condition of ongoing
economy and corresponds to output change [8]. Therefore, we consider these three
variables such as export, stock index, and unemployment rate as leading indicators.

However, GDP is available quarterly, while other macroeconomic variables, such
as export and unemployment rate, are recorded monthly. Moreover, other economic
variables, stock price index for instance, are available at higher frequency as daily
or even real time. The traditional GDP forecasting approaches assumed that all vari-
ables in a model of interest are sampled at the same frequency. Thus, they restricts
specification of forecasting model to quarterly data. In most empirical works, the
higher frequency is converted to the lower frequency by averaging [2]. This solution
is not appealing because information of the monthly indicators have not been fully
exploit for the prediction of GDP.

To enable the use of high frequency indicators to forecast low frequency variable,
Ghysels et al. [9] proposed Mixed Data Sampling (MIDAS) model. The MIDAS
model has been applied in various fields such as financial economics [11] and
macroeconomics [2, 3, 13] to forecast GDP. Additionally, Clements and Galvão [3]
concluded that the predictive ability of the indicators in comparison with an autore-
gression is stronger. It also allows the dependent variable and explanatory variables
to be sampled at different frequencies and be in a parsimonious way of allowing lags
of explanatory variables. Foroni et al. [7] employed MIDAS regression with unre-
stricted linear lag polynomials (U-MIDAS) model in macroeconomic applications
and also showed that U-MIDAS is better than MIDAS model when the frequency
mismatch is small. Therefore, it is interesting to see whether these results hold in the
case of Thailand.

The objective of this paper to use the important leading indicators that are export,
stock index, and unemployment rate to forecast the GDP growth. In addition to
the forecasting performance of the selected indicators, we compare the forecasting
performance between twoMIDASmodels. The result of study will be useful for gov-
ernment for imposing policies and strategies for stabilising the country’s economy.

The organization of this paper is as follows. Section2 describes the scope of the
data used in this study. Section3 provides the methodology of this study. Section4
discusses the empirical results. Finally, conclusion and of this study is drawn in
Sect. 5.
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2 Data Analysis

In order to forecast the GDP growth rate using MIDAS models using export growth,
unemployment rate, and stock index, the data during the period of 2001Q1–2016Q1
are obtained from different sources. Starting with low frequency series, the nominal
GDP growth rate is measured quarterly and obtained from the Bank of Thailand. For
the high frequency series, the monthly unemployment rate and Thailand’s export are
obtained from the Bank of Thailand. The Stock Exchange of Thailand (SET) index
is used as the stock index series and obtained from the Stock Exchange of Thailand.
Then, export and stock index are transformed into export growth rate and SET return
respectively.

Figure1 illustrates the plot of series used in this study. It can be noticed the negative
shock in export growth rate and SET return, and positive shock in unemployment
rate in response to economic downturn after the end of 2008Q1. In addition, there
has been relatively high fluctuation in both the export growth rate and SET return,
whereas unemployment rate has gradually declined as theGDPgrowth ratemaintains
positive most of the time.

We provide descriptive statistics for each variable in the study as shown in Table1.
According to skewness and kurtosis, it is possible to conclude that themonthly export
growth data are normally distributed. In addition, the positive skewness can be seen
with quarterly GDP and unemployment exhibiting right tail distribution.Meanwhile,
SET return has a negative skewness meaning that it has left tail distribution
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Fig. 1 Plots of series in this study during 2001Q1–2016Q1
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Table 1 Descriptive statistics

QGDP growth Export growth Unemployment
rate

SET return

Mean 1.013 0.936 1.485 1.121

Median 1.128 0.610 1.220 1.381

Maximum 9.543 24.378 5.730 23.619

Minimum −6.314 −22.040 0.390 −30.176

Std.Dev. 1.881 9.121 0.891 6.471

Skewness 0.312 0.130 1.666 −0.472

Kurtosis 11.865 2.893 6.368 6.093

Period 2001Q1–2016Q1 2001M1–2016M3

3 Methodology

In this section, we explore the forecasting approaches that can take mixed-frequency
data into account. We first discuss the basic version of Mixed Data Sampling
(MIDAS) model introduced by Ghysels et al. [9] and the unrestricted version
proposed by Foroni and Marcellino [6]. However, we consider the case of single
high-frequency indicator for each regression in this study to reduce the curse of
dimensionality and to avoid the estimation issues in the MIDAS framework [9].

3.1 The Basic MIDAS Model

Ghysels et al. [9] proposed a Mixed Data Sampling (MIDAS) approach to deal with
various frequencies in univariate model. Particularly, a MIDAS regression tries to
deal with a low-frequency variable by using higher frequency explanatory variables
as a parsimonious distributed lag. Moreover, the MIDAS model also does not use
any aggregation procedure and allow the use of long lags of explanatory variable
with only small number of parameters that have to estimated. This can be achieved
because the coefficient for each lagof explanatoryvariable ismodelled as a distributed
lag function instead [3]. Furthermore, Foroni and Marcellino [6] asserts that the
parametrisation of the lagged coefficient in the parsimonious way is one of the key
features of MIDAS approach.

Suppose that a low-frequency variable ismeasured quarterly and a high-frequency
explanatory variable is measured monthly, the basic MIDAS model for h-step fore-
casting is then given by

yt = β0 + β1

⎛

⎝
K∑

j=1

B ( j; θ) x (m)

t−h−( j−1)/m

⎞

⎠ + εt (1)
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where yt is a quarterly variable, x (m)

t−h−( j−1)/m is a monthly indicator measured at
j − 1 months prior to the last month of quarter t − h, h is the forcasting step, m is
a frequency ratio, which is 3 in this case since a quarter consists of three months, K
is a number of monthly data used to predict yt , and B ( j; θ) is weighting function.

In this study, we choose the normalized exponential Almon lag polynomial
weighting function proposed by Ghysels et al. [10] that can be specified as

B ( j; θ) = exp(θ1 j + θ2 j2)
K∑
i=1

exp(θ1i + θ2i2)

(2)

where the parameters θ1, θ2 are also part of the estimation problem and can be influ-
enced by the last K values of x (m)

t . This weight specification gives more weight to
the most recent observed period and is attractive due to its weight restriction that
weights are non-negative and sum up to one. Additionally, it has been widely used
in MIDAS literature.

To have a better view of how the basic MIDAS model with exponential Almon
weight scheme are specified,we consider the case that K = 3 and h = 1. TheMIDAS
model can then be written as

yt=β0+β1

⎛

⎜⎝ exp(θ1+θ2)
K∑

i=1
exp(θ1 i+θ2 i

2)

(
x (3)
t−1

)
+ exp(2θ1+4θ2)

K∑

i=1
exp(θ1 i+θ2 i

2)

(
x (3)
t−1−1/3

)
+ exp(3θ1+9θ2)

K∑

i=1
exp(θ1 i+θ2 i

2)

(
x (3)
t−1−2/3

)
⎞

⎟⎠+εt (3)

If yt is the GDP growth for the first quarter of 2015, then x (3)
t−1 is a value of an

indicator from December 2014, x (3)
t−1−1/3 is from November 2014, and x (3)

t−1−2/3 is
from October 2014. β0, β1, θ1, and θ2 are parameters to be estimated through max-
imum likelihood (ML) or non-linear least squares (NLS). In addition, the number
of estimated parameters are not influenced by the amount of lags in the regression
model. Thus, the weighting function allows us to incorporate long historical data of
the indicator while maintains parsimonious parameter estimation, hence, one of the
key features of the MIDAS approach [9].

3.2 The Unrestricted MIDAS Model

Even though the basic MIDAS model can significantly reduce the coefficients via
a specific weighting scheme, the strong assumption on the dynamics of the data or
its process is needed. To overcome this issue, Foroni and Marcellino [6] proposed
the unrestricted MIDAS (U-MIDAS) model. Suppose that low frequency data is
measured quarterly, while the high frequency is measured monthly, the U-MIDAS
model for h-step forecasting can be specified as
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yt = β0 +
K∑

j=1

β j x
(m)

t−h−( j−1)/m + εt (4)

where yt is a quarterly variable, x (m)

t−h−( j−1)/m is a monthly indicator measured at
j − 1 months prior to the last month of the quarter t − h, h is the forecasting step,
m is a frequency ratio, which is 3 in our case, K is a number of monthly data used to
predict yt .

For demonstration purpose, consider the case that K = 9 and h = 2, then the
U-MIDAS model can be specified as

yt = β0 + β1x
(3)
t−2 + β2x

(3)
t−2−1/3 + β3x

(3)
t−2−2/3 + β4x

(3)
t−3 + β5x

(3)
t−3−1/3

+ β6x
(3)
t−3−2/3 + β7x

(3)
t−4 + β8x

(3)
t−4−1/3 + β9x

(3)
t−4−2/3 + εt

(5)

If yt is the GDP growth for the first quarter of 2015, then x (3)
t−2 is a value of an

indicator from September 2014, x (3)
t−2−1/3 is from August 2014, x (3)

t−2−2/3 is from July

2014, x (3)
t−3 is from June 2014 and so on.

It can be seen that theU-MIDASapproach is simply adding individual components
of the higher frequency data to the linear regression, which allows one to find a sep-
arate coefficient for each high frequency component. This simplicity brings advan-
tages of using the U-MIDAS model over the basic MIDAS model. The U-MIDAS
model does not require functional distributed lag polynomials and can include the
autoregressive term without common factor restriction. Additionally, one can use
ordinary least squares (OLS) to estimates the individual coefficients unconstrained.
Moreover, the basic MIDAS model with normalised exponential Almon weight may
not lead to desirable outcome when the differences in sampling frequencies between
variables in the study are small, quarterly-and-monthly data for instance. Lastly, the
exponential Almon weight specification may not be general enough [7].

4 Empirical Results

In this section, we provide the results of forecasting performance between the basic
MIDAS model and the U-MIDAS model. The data sample during the period of
2002Q1–2015Q1 is used formodel specification andestimation,while the data during
the period of 2015Q2–2016Q1 is used for forecast evaluation. For theMIDASmodel
specification, we allow themaximumpossible data points ofmonthly indicators up to
K = 24 (i.e., values of high frequency series from current period and from its lag
up to 23 periods). This means the model can incorporate up to the last two years of
monthly data for predicting theQGDPgrowth. The optimal specifications forMIDAS
and U-MIDAS model are based on the Akaike’s information criterion (AIC).
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Fig. 2 Plots of actual and forecast values of QGDP 2015Q2–2016Q1

Table 2 Out-of-sample QGDP growth forecast of selected original MIDAS models

Leading indicator Forcasting period Selected lag
for MIDAS
model

2015Q2 2015Q3 2015Q4 2016Q1

Export growth 0.853 1.509 0.311 2.723 3

Unemployment
rate

0.409 0.728 0.615 0.566 21

SET return 0.895 0.351 −0.102 0.759 5

Actual value 0.414 0.988 0.844 0.930

Figure2 gives us a simple comparison in forecasting performance for each leading
indicator. We can see that forecast results using unemployment rate are closer to the
actual value than the ones from export growth and SET return. In addition, it seems
that the U-MIDAS model could perform better than the basic MIDAS model for this
study since the plots of forecasts are nearer to the actual line compared to the basic
MIDAS model for all three leading indicators.

We also provide the results of model selection and forecast in more detail. Table2
shows that the optimal lag selection for export growth, unemployment rate, and SET
return in the basicMIDASmodel are 3, 21, and 5 respectively.Aswehave already dis-
cussed, the inclusion of high lag length without losing parsimonious parametrisation
can not be done in the U-MIDAS framework. Thus, using the basic MIDAS model
specification allows us to reach the lag length of 21 in the case of unemployment rate.
On the other hand, Table3 shows that the optimal lag selections in U-MIDAS model
are 6, 4, and 3 for export growth, unemployment rate and SET return respectively. It
can be seen that the selected lag length in the U-MIDAS approach is not as large as
the one in the basic MIDAS approach.

Next, we calculate the out-of-sample root mean square error (RMSE) for each
leading indicator. The results are shown in Table4. Starting with export growth, it
can be seen that the indicator exhibits the highest error among all indicators when
considering 4 forecasting periods. According to macroeconomic theory, there are
many factors that contribute to QGDP growth such as consumption, investment,
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Table 3 Out-of-sample QGDP growth forecast of selected U-MIDAS models

Leading indicator Forcasting period Selected lag
for
U-MIDAS
model

2015Q2 2015Q3 2015Q4 2016Q1

Export growth 0.779 1.415 0.366 2.083 6

Unemployment
rate

0.451 0.795 0.875 0.629 4

SET return 0.539 0.353 0.558 0.925 3

Actual value 0.414 0.988 0.844 0.930

Table 4 Out-of-sample forecast evaluation

Forecasting period RMSE RMSE ratio (r)

MIDAS U-MIDAS

Panel I: Export growth

1 0.438 0.365 0.832

2 0.482 0.397 0.824

3 0.499 0.426 0.852

4 0.996 0.684 0.687

Panel II: Unemployment rate

1 0.005 0.037 7.343

2 0.184 0.139 0.756

3 0.200 0.115 0.575

4 0.251 0.180 0.718

Panel III: SET return

1 0.480 0.124 0.259

2 0.564 0.458 0.811

3 0.714 0.408 0.572

4 0.625 0.354 0.566

Note:
1. r < 1 means the U-MIDAS model performing better than the basic MIDAS model.
2. The lower RMSE values are in bold.

government expenditure, and import. Hence, the information from export growth
alone is not adequate to explain the QGDP growth.

In the case of unemployment rate, it is the best leading indicator based on RMSE.
The reason is that unemployment rate is the main factor of GDP growth, thus it
could reflect the QGDP growth directly. Moreover, it has a link with many factors
particularly other macroeconomic factors. For instance, increase in export growth
means that people are employed to produce goods for export and consequently,
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unemployment rate decreases. Therefore, we can conclude that unemployment rate
is very important factor for forecasting QGDP growth.

The return of SET index as leading indicator does not explain the QGDP growth
as well because Thailand’s investment is very sensitive to the world economy. So, it
does not reflect only the country’s economy. Hence, unemployment rate contributes
the most for forecasting QGDP growth regardless of the approaches in this study.
Nevertheless, the results from both approaches confirm that the unemployment rate
is the best leading indicator for predicting QGDP growth.

Thus, using export growth and SET price as leading indicators exhibits wider fore-
casting error. This indicates that using the proper leading indicators is very important
for forecasting. In our case, the unemployment rate is the best leading indicator for
forecasting GDPGrowth because it reflects to current economic condition and corre-
sponds to output change. Additionally, the RMSE is monotonically increasing with
respect to the number of forecasting periods.

Lastly, we calculate the ratios of RMSEs of export growth rate between the basic
MIDAS model and the U-MIDAS model for each leading indicator to see how much
they differ in forecasting performance. The RMSE ratio (r ) can be specified as

r = RMSEU−MIDAS

RMSEMIDAS

when the ratio r is lower than one, it indicates that the selected U-MIDAS model
could outperform the selected basic MIDAS model.

The results in Table4 show that the U-MIDAS regression models provide
better forecast accuracy than the basic MIDAS model as most of RMSE ratios
are less than 1. In the case of unemployment rate, it can be seen that the basic
MIDAS model can only outperform the U-MIDAS for the first period, while the
U-MIDASmodel dominates the rest. In the case of Export growth and SET return, the
U-MIDAS model improves the forecasting performance for every period. Although
the improvement seems to bemoderate, theU-MIDASmodel still can improveoverall
forecasting accuracy. These results confirm the superiority in forecast performance
of U-MIDAS when the difference in frequency sampling between variables is small.
Another reason could be that the normalised exponential Almon weight specifica-
tion in the basic MIDAS model is not appropriate choice to forecast QGDP growth
given the indicators, resulting in imprecise forecasting performance. Therefore, it is
possible to conclude that the U-MIDASmodel could provide us a greater forecasting
precision than basic MIDAS model.

5 Conclusion

In this paper, we compared the forecasting performance between different leading
indicators namely, Export growth, unemployment rate, and, SET return for forecast-
ing quarterly GDP growth in Thailand. The MIDAS model allow us to use monthly
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information of leading indicators directly to forecast without transforming it into
quarterly frequency. Two types of MIDAS model are employed in the study, the
basic MIDAS model and the U-MIDAS model. The period of data in this study is
2001Q1–2016Q1 where the data during 2015Q2–2016Q1 were left out for forecast
evaluation. Our results showed that unemployment rate is the best leading indicator
for forecasting GDP Growth because it reflects to current economic condition and
corresponds to output change. Additionally, we investigated the forecasting perfor-
mancebetweenMIDASandU-MIDASmodel. In this particular setting,we found that
the U-MIDASmodel could outperform the basicMIDASmodel. However, this study
focused on four-period forecasting with only three leading indicators and two types
of MIDAS model, the basic MIDAS model and the U-MIDAS model. Therefore,
the recommendation for the future research would be the consideration of additional
leading indicators and types of MIDAS model. In addition, one may be interested
in investigating the performance of MIDAS approach in longer forecasting horizon
which is remained to be seen in the context of macroeconomic variables in Thailand.
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Testing the Validity of Economic Growth
Theories Using Copula-Based Seemingly
Unrelated Quantile Kink Regression

Pathairat Pastpipatkul, Paravee Maneejuk and Songsak Sriboonchitta

Abstract The distinct points of view about factors driving economic growth are
introduced all the time in which some effectively useful suggestions then become the
growth theories, which in turn lead to various researches on economic growth. This
paper aims to examine the joint validity of the growth theories using our introduced
model named copula based seemingly unrelated quantile kink regression as a key tool
in this work. We concentrate exclusively on the experience of Thailand and found
that the growth models can prove their validities for the Thai economy through this
experiment.

Keywords Economic growth · Threshold effect · Nonlinear regression · Copulas

1 Introduction

Economic growth has been a critical issue in macroeconomics over several decades,
whereas the sources of economic growth also have vexed economists for a long
time. It is not easy to define the best measures stimulating the economy; therefore
the vast amounts of researches have been conducted for the solutions and some
accepted hypothesis, then, become the theories of economic growth. There are three
main economic growth theories in the history the classical, neoclassical, and the new
growth theories trying to explain the same thing, economic growth, using different
exogenous variables. All the points of view about the growth are valuable in their
own ways; but in some sense, we believe that these three theories may be related
nontrivially. Therefore this research is conducted to examine a joint validity among
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these three theories as suggested by Sumer [16]. But, before we investigate the
validity among these growth theories, we had better give a brief history and idea of
each growth theory.

The first era of growth theory called ‘the classical theory’ was proposed by clas-
sical economists, such as Adam Smith, David Ricardo, and Thomas Malthus, in the
eighteenth and early nineteenth centuries. The classical theory provides many of the
basic ingredients for economic growth and also points out the existence of a steady
state. The classical economists seem to concentrate much more on the steady state
and the deviation from that state, than a variety of factors influencing the growth.
However, this theory is still important since it is a good starting point for various
extensions and spills over empirical researches.

The second growth theory is called ‘the neoclassical theory’. It began in the mid
nineteenth century.Within the framework of neoclassic theory, one economist named
Robert Solowmakes the important contribution to the growth theory which is known
as the Solow model [3]. The key property of the Solow model is the neoclassical
production function which focuses on two factors, capital and labor, and assumes
constant returns to scale and diminishingmarginal returns for each factor. Thismodel
tries to explain the growth via the factors of production, capital and labor, and it turns
out to be useful for the nation to find the level of exact inputs (labor and capital) that
can maintain the steady state. However, prior to the Solowmodel, there was the most
common growth theory built on the model called the Harrod-Domar model. It was
introduced independently by Roy Harrod in 1939 and Evsey Domar in 1946. This
model concentrates especially on the role of capital; more capital accumulation can
raise economic growth. However, the Harrod-Domar model does not concern the
role of labor which in turn makes this model unrealistic. This point turns out to be a
weakness of the pre-neoclassical growth model like Harrod-Domar model, and leads
to a great opportunity for Solow to develop this model [1].

The third growth theory is called ‘the new growth theory’. This theory points out
the results of the driving force behind economic growth called endogenous factors
such as research and development, human capital, innovation, and education that can
generate the long-run economic growth. Paul Romer is the one of growth theorists
who first omits the old growth theory; instead, he constructs a model that allows
the endogenous factors to spill over into the economy [10]. Romer’s most impor-
tant work published in 1986 [14] suggested considering the impact of investment in
human capital on economic growth since he experimentally found that the growth
could be increasing over time due to the greater accumulation of knowledge and new
researches. Many studies are generated after the discovery of Romer; however the
results tend to be not very different from what Romer has suggested previously [10].
The new growth theory comes alive following another discovery of Robert Barro in
1990. His empirical study found that the public investment or government spend-
ing is the importantly supporting force in which the productive public investment,
such as infrastructure and property right, is positively related to long-run economic
growth [3].
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2 Econometric Framework

To investigate the validity of the economic growth theories, we follow the study of
Sumer [16] using four different economic growth models to stand for those three
growth theories. The four growth models are shown as in the equations that follow in
which the first equation is theHarrod-Domarmodel representing the pre-neoclassical
economic growth theory. This model defines the role of capital as the driver of
economic growth. The authors have shown that the growth of GDP is proportional to
the change in investment. The second equation representing the neoclassical growth
theory is the Solow model. As Solow argues with the Harrod-Domar model that the
growth cannot be achieved through capital alone, he suggests considering both labor
and capital as the forefronts of economic growth. Next, we consider the original work
of endogenous growth theory, the Romer model, to illustrate the new growth theory.
Romer indicates that investment in human capital, such as research and development
(R&D) expenditures, is the key element behind the growth that we should take
into account, and hence the Romer model is represented by the third equation. In
addition, as the suggestion of Sumer [16], we can see that the Barro model also
provides another effective way to explain the endogenous growth theory using the
government expenditures which, in turn, is illustrated by the fourth equation. These
four economic growth models can be formed as a system of equations below.

ln(GDPt ) = α1 + α11 ln(Investmentt ) + u1 (1)

ln(GDPt ) = α2 + α21 ln(Kt ) + α22 ln(Lt ) + u2 (2)

ln(GDPt ) = α3 + α31 ln(R& Dt ) + u3 (3)

ln(GDPt ) = α4 + α41 ln(Govt ) + u4 (4)

In addition, technically, Sumer [16] uses a well-known model for the system of
equations called Seemingly Unrelated Regression (SUR) to examine the validity of
growth theories. Why do we view the growth theories as an equation system? It is
because we have many theorists that try to explain the same endogenous variable
namely economic growth, but they have their own view about the sources of growth.
Therefore, the different factors being economic growth in the model are set up for
each theory, and then bring on the system of equations.

What is the SUR model? In brief, it is a system of equations that comprises several
linear regressions. Each equation in the SURmodel contains only exogenous regres-
sors and this property makes the SUR model different from a simultaneous equation
system. The key point of the SUR model is the disturbances which are assumed to
correlate across equations, and hence we are able to estimate all equations jointly.
(More details about the SUR model will be discussed later in the next section).

What is new in this paper? The empirical analysis in this paper still gains effi-
ciency from the SUR model in which those four equations of the growth theories
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are estimated simultaneously. However, the SUR model here is different from what
Sumer [16] used to find the validity of growth theories in 2012. Our previous work
Pastpipatkul et al. [12] just found that the SUR model has a strong assumption of
normally distributed residuals which in turn makes the model unrealistic; therefore
we suggest using the Copulas which provides a joint cumulative distribution function
for different marginal distributions to relax this normality assumption. This means
each equation in the SUR model is allowed to have different marginal distributions
of residuals which are also not necessary to be normally distributed. Then, Copulas
can play a role as a joint distribution linking these marginal distributions together.

In addition, but importantly, we realize that we are dealing with the real economy
which has complex processes. It is often that economists use the statistical inferences
based on the conditional mean, but not always that the mean is a good representation
for the whole economic processes. Therefore, following the studies of Chen et al. [4]
and Jun and Pinkse [8], we decide to apply a quantile approach into the Copula based
SUR model to capture the unequal impacts of the exogenous variables on economic
growth across different quantiles. Furthermore, it is not only the quantile; empirical
works in economic growth also suggest that the growth is a nonlinear process [5]. For
example, in the growth path of any economy, if it has stagnation as an initial phase,
then it will be followed by a take-off in which the growth rates are increasing, and
eventually the economy will recover. This event implies that economy has different
growth regimes; therefore the Kink regression approach with unknown threshold as
introduced in Hansen [6] is applied to our base model to capture this consideration.
Hence, we have the Seemingly Unrelated Quantile Kink Regression (SUQKR) as an
econometric model for this work.

2.1 Modeling the Seemingly Unrelated Quantile Kink
Regression

The base model here is the seemingly unrelated regression (SUR) which is proposed
by Zellner [19]. The SUR model is a system of equations consisting of several
linear regressions. The important assumption of the SUR model which let it gain
the efficiency of estimation is that the error terms are assumed to correlate across
equations. Thus, all equations are estimated jointly. The dependency of error terms
will be thoroughly described in the next section. Suppose we have m regression
equations where the term yi,t denotes dependent variable and xi j,t denotes kvector of
independent variable at timet , where i = 1, . . . ,m and j = 1, . . . , k. As we apply
the idea of quantile into the SUR model, the term ετ

i,t is m-dimensional unobserved
error terms whose distributions depend on a quantile level, τ ∈ (0, 1), and these error
terms are assumed to correlate across equations due to the property of SUR model.
Hence, the structure of the system is given by



Testing the Validity of Economic Growth Theories … 527

y1,t = βτ−
11 (x11,t < γ11) + βτ+

11 (x11,t > γ τ
11) + · · ·

+ βτ−
k1 (x11,t < γ τ

k1) + βτ+
k1 (xk1,t > γ τ

k1) + ετ
1,t

...

ym,t = βτ−
1m (x1m,t < γ τ

1m) + βτ+
1m (x1m,t > γ τ

1m) + · · ·
+ βτ−

km (x1m,t < γ τ
km) + βτ+

km (xkm,t > γ τ
km) + ετ

m,t .

(5)

As illustrated above, the system is consisting of m equations in which each equation
contains the m × k matrix of regression parameters denoted by βτ−

i j and βτ+
i j . As

we can see that the matrices of regression parameters are split into two different
parts depending on a certain level of the parameter γ τ

i j which is called a kink point
(a threshold). The coefficient matrix βτ−

i j is for any values of xi j,t less than γ τ
i j and

the matrix βτ+
i j is for any values of xi j,t greater than γ τ

i j . We consider the idea of
the kink point as introduced by Hansen [6] due to its capability to separate each
independent variable into different regimes which may capture a non-linear process
of economy. In addition, the work of Koenker and Bassett [9], who first mention
about the concept of regression quantiles, also points out that estimated parameters
βτ−
i j , βτ+

i j and γ τ
i j depending on the quantile level τ are useful for analysing the

extremes value distribution, i.e. the tail behaviour of the distribution. Together, this
system then can be viewed as the structure of the seemingly unrelated quantile kink
regression or SUQKR model which is our proposed model for this work.

2.2 Dependence Measure

As we mentioned previously that the important assumption of the SUQKR model is
that the error terms are assumed to correlate across equations; therefore, at this stage,
we employ a well-known joint distribution named Copula to construct a dependence
structure for the SQUKR model.

What is the Copula? It is a multivariate dependence function which is used to join
two (or more) marginal distributions of random variables. In practice, we refer to the
Sklar’s theorem and assume that the terms x1, ....xn are continuous random variables
with marginal Fi , where i = 1, 2, . . . n. Therefore, the n-dimension joint distribution
F(x1, . . . , xn) or copula C exists such that for all x1, ....xn ∈ R2 is given by

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (6)

C(u1, . . . , un) = C(F−1
1 (u1), . . . , F

−1
n (un)), (7)

where u1, . . . , un are n-dimensional cumulative distribution function of standardize
residuals which have a uniform [0, 1]. Moreover, the paper considers two classes of
copula namely Elliptical and Archimedean copulas to model the dependency among
the error terms ετ

i,t in which the elliptical copula consists of Gaussian and Student-t
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copulas. The Archimedean copula consists of the four, well-known, families namely
Gumbel, Joe, Frank, and Clayton copulas.

2.3 Estimation Technique

As we consider four economic growth models to illustrate three growth theories,
the multivariate Copula is used to find the joint distribution among the continuous
marginal distributions of residuals which will be described in this estimation part.
Prior to the model estimation, the Augmented Dickey-Fuller test is conducted to
check the stationaries of the data. Then, the Maximum likelihood estimation (MLE)
is employed to estimate the unknown parameters. To illustrate the likelihood function
of our model, we let the termΘτ = {ψτ , θτ }, whereψτ denotes the set of parameters
in the SUQKR model and θτ denotes the copula dependence parameter. Then, we
can derive the likelihood function for the multivariate Copula based SUQKR model
as

L(Θτ
∣∣yi,t , xi j,t ) =

T∏

t=1

4∏

i=1

f (ψτ
∣∣yi,t , xi j,t ) · f (θτ , F τ (uτ

1,t , u
τ
2,t , u

τ
3,t , u

τ
4,t )). (8)

As illustrated above, the likelihood function of the model contains two density
functions shown in the right hand side of the likelihood inwhich the first density func-

tion,
4∏

i=1
f (ψτ

∣∣yi,t , xi j,t ), is the Asymmetric Laplace density of the four economic

growth equations which takes a form as

4∏

i=1

f (ψτ
∣∣yi,t , xi j,t )

=
4∏

i=1

αn(1 − α)n

σ 2
× exp

(
T∑

t=1

(1 − α)(yi,t − φα,i )

σ 2

)
if yi,t < φα,i

4∏

i=1

αn(1 − α)n

σ 2
× exp

(
T∑

t=1

(−α)(yi,t − φα,i )

σ 2

)
if yi,t ≥ φα,i ,

(9)

where φα,i is the mean of each equation which is given by

φα,i = βτ−
1i (x1i,t < γ τ

1i ) + βτ+
1i (x1i,t > γ τ

1i ) + · · · + βτ−
ki (x1i,t < γ τ

ki ) + βτ+
ki (xki,t > γ τ

ki ).

The second density function, f (θτ , F τ (uτ
1, u

τ
2, u

τ
3, u

τ
4)), is the copula density that

can be any families of the copula, i.e. Gaussian, Student’s t, Joe, Clayton, Gumbel and
Frank. The terms uτ

1, u
τ
2, u

τ
3 and uτ

4 represent uniform marginal distributions trans-
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formed from the probability of Asymmetric Laplace distribution function (ALD).
The copula density functions are derived as follows: Hofert [7] and Wand [17]

(1) Following Patton’s formula [13], the multivariate Gaussian copula density is
given by

c(θτ
G, uτ

1, u
τ
2, u

τ
3, u

τ
4) = (

√
det θ

τ
)
−1·

exp

⎛

⎜⎜⎝
1

2

(
Φ−1

1 (uτ
1),Φ

−1
2 (uτ

2),Φ
−1
3 (uτ

3),Φ
−1
4 (uτ

4)
) · (θτ−1

G − I )

⎛

⎜⎜⎝

Φ−1
1 (uτ

1)

Φ−1
2 (uτ

2)

Φ−1
3 (uτ

3)

Φ−1
4 (uτ

4)

⎞

⎟⎟⎠

⎞

⎟⎟⎠

(10)
where Φi is standard normal cumulative distribution at quantile, θτ

G is a depen-
dence of Gaussian copula at quantile τ with [–1, 1] interval.

(2) The multivariate Student-t copula density is given by

c(θτ
T , uτ

1, u
τ
2, u

τ
3, u

τ
4)

=
∣∣θτ

T

∣∣−1/2
Γ

(
v+2
2

)
Γ

(
v
2

)
(
Γ

(
v+2
2

))2
⎛

⎜⎜⎝1 +

⎛

⎜⎜⎝

(t−1
v (uτ

1)

(t−1
v (uτ

2)

(t−1
v (uτ

3)

(t−1
v (uτ

4)

⎞

⎟⎟⎠ θτ
T

(
(t−1

v (uτ
1), t

−1
v (uτ

2), (t
−1
v (uτ

3), t
−1
v (uτ

4)
)
/v

⎞

⎟⎟⎠

−v+2
2

(11)

where Γ is a gamma function, t−1
v is the quantile function of a standard univari-

ate Student-t distribution with degree of freedom v and θτ
T is a dependence of

Student-T copula at quantile τ with [–1, 1] interval.
(3) The multivariate Frank copula density is given by

c(θτ
F , uτ

1, u
τ
2, u

τ
3, u

τ
4) =(

θτ
F

1 − exp(−θτ
F )

)
4−1

Li−(4)(hF,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4))

exp(−θτ
FΣ4

j=1u
τ
i )

hF,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4)

(12)

where hF,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4) = (1 − e−θτ

F )
1−4 4∏

j=1

{
1 − exp(−θτ

Fu
τ
j )

}
and Li de-

notes the polylogarithm.
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(4) The multivariate Clayton copula density is shown by

c(θτ
C , uτ

1, u
τ
2, u

τ
3, u

τ
4)

=
4−1∏

k=0

(θτ
Ck + 1)(

4∏

j=1

uτ
j )

−(1+θτ
C )(1 + tθτ

C
(uτ

1, u
τ
2, u

τ
3, u

τ
4))

−4(4+1/θτ
C ) (13)

(5) The multivariate Gumbel copula density is shown by

c(θτ
Gu, u

τ
1, u

τ
2, u

τ
3, u

τ
4) = (

θτ
Gu

)4
CGu,θ (u

τ
1, u

τ
2, u

τ
3, u

τ
4)

4∏
j=1

(− log uτ
j )

θτ
Gu−1

tGu,θ ((u
τ
1, u

τ
2, u

τ
3, u

τ
4)

4∏
j=1

uτ
j

PG,n(tGu,θ ((u
τ
1, u

τ
2, u

τ
3, u

τ
4)

1/θτ
Gu ) (14)

where PG,n(x) = Σ4
k=1κ

G
2k(α)xk .

(6) The multivariate Joe copula density is shown by

c(θτ
J , u

τ
1, u

τ
2, u

τ
3, u

τ
4) = (

θτ
J

)
4∏
j=1

(1 − uτ
j )

θJ−1

hJ,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4)

(1 − hJ,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4))

υ P J
n,υ(

hJ,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4)

1 − hJ,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4)

) (15)

where hJ,θ (u
τ
1, u

τ
2, u

τ
3, u

τ
4) =

4∏
j=1

(1 − (1 − uτ
j )

θτ
J )and P J

n,κ (x) = κ J
2k(α)xk ,α =

1/θτ
J . Note that the dependence parameters are restricted by [0, +∞) for Clay-

ton, [1, +∞) for Gumbel and Joe, and [0, +∞) for Frank. Then, we employ
the maximum likelihood estimator (MLE) to maximize the multivariate Copula
based SUQKR likelihood function Eq. (8) in order to obtain the final estimation
results.

3 Simulation Study

A simulation study was conducted to evaluate performance and accuracy of the Cop-
ula based SUQKR model. We simulated the data from the bivariate Copula-based
SUQKRmodel and employed theMonte Carlo method to simulate cumulative distri-
bution function of standardized residuals u1 and u2 from the dependence parameter
of Copula families, i.e. Gaussian, Student-t, Clayton, Frank, Joe and Gumbel. We
set the true values of parameters and copula which are shown in Tables1, 2 and
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3. To model the error term ετ
i,t of two equations, the quantile function of asym-

metric Laplace distribution (ALD) was used to convert the simulated uniform u1
and u2 into the term ετ

i,t , where ετ
i,t˜ALD(0, 1) for three different quantile levels

τ = (0.1, 0.5, 0.9). Finally, we constructed the Copula based SUQKR model using
the specified parameter from Tables1, 2 and 3 and obtained the simulated dependent
and independent variables for our model at the specified quantile levels. Hence, the
simulation model takes the following form:

y1,t = ατ
1 + βτ−

11 (x11,t < γ11) + βτ+
11 (x11,t > γ τ

11) + ετ
1,t

y2,t = ατ
2 + βτ−

12 (x12,t < γ τ
12) + βτ+

12 (x12,t > γ τ
12) + ετ

2,t .
(16)

In this experiment, we simulated the independent variables x1 j,t where j = 1, 2 from
N (μ, 10) in which the mean μ is equal to the values of kink points. We set the value
of the kink point γ τ

11 equal to 8 and γ τ
12 equal to 12. The values for intercept terms

ατ
1 and ατ

2 are equal to 1 and for the coefficients βτ−
11 , β

τ+
11 , β

τ−
12 , and βτ+

12 are equal
to −4, 0.5,−2 and 1, respectively.

Tables1, 2 and 3 show the results of the Monte Carlo simulation investigating
the maximum likelihood estimation of the Copula based SUQKR model. We found
that our proposed model can perform well through this simulation study. The overall
meanparameters at different quantile levels are somewhat close to the true valueswith
acceptable standard errors. For instance, Table1 shows the results of the estimated
parameters of the multivariate Copula based SUQKR model at quantile level 0.1.
It is found that the mean value of the coefficient ατ

1 is 1.03 with a standard error
equal to 0.0537 while the true value is 1. The estimate of the same parameter ατ

1 at
quantile level 0.5 is equal to 0.82with standard error equal to 0.0676 and equal to 1.05
with standard error equal to 0.1774 at quantile level 0.9. Overall, the Monte Carlo
simulation suggests that our introduced model Copula based SUQKR is reasonably
accurate.

4 Robustness Checks by Kullback-Leibler Divergence

The previous part shows the accuracy of our proposed model, the seemingly unre-
lated quantile kink regression (SUQKR), through theMonte Carlo simulation andwe
found that the SUQKRmodel is reasonably precise. However, how precise the result
is must depend on the copula we choose as well, because we need the appropriate
copula function to join the error terms in SUQKRmodel. If the true copula is known,
the proposed model or even the estimator will be accurate. But in the case of copula
misspecification as pointed out by Noh et al. [11]; the selection of wrong copula
function will bring about a bias in the estimation of the model. Therefore, we em-
ployed the Kullback-Leibler divergence (KLD) which is a measure of the distance
between two probability distributions, i.e. the true distribution and the alternative
distribution, to test the robustness of the model.
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Table 1 Results of multivariate Copula based SUQKR with τ = 0.1
Copula Parameter True Estimate S.E. Copula Parameter True Estimate S.E.

Gaussian ατ
1 1 1.03 0.05 Student-t ατ

1 1 1.21 0.01

βτ−
11 –4 –4.01 0.01 βτ−

11 –4 –4.11 0.08

βτ+
11 0.5 0.37 0.26 βτ+

11 0.5 0.62 0.01

σ1. 1 1.08 0.11 σ1. 1 1.04 0.11

ατ
2 1 0.47 0.06 ατ

2 1 1.00 0.18

βτ−
12 –2 –2.06 0.00 βτ−

12 –2 –1.85 0.01

βτ+
12 1 0.97 0.01 βτ+

12 1 1.17 0.38

σ2 1 1.15 0.11 σ2 1 0.92 0.09

γ τ
11 8 7.65 0.44 γ τ

11 8 8.17 0.03

γ τ
12 12 11.84 0.05 γ τ

12 12 12.77 0.96

θτ 0.5 0.51 0.07 θτ 0.5 0.32 0.09

Joe ατ
1 1 0.71 0.09 Clayton ατ

1 1 1.01 0.07

βτ−
11 –4 –3.89 0.03 βτ−

11 –4 –3.96 0.02

βτ+
11 0.5 0.50 0.01 βτ+

11 0.5 0.62 0.01

σ1. 1 0.98 0.09 σ1. 1 1.01 0.08

ατ
2 1 0.36 0.33 ατ

2 1 0.38 0.11

βτ−
12 –2 –1.99 0.02 βτ−

12 –2 –2.00 0.02

βτ+
12 1 1.22 0.03 βτ+

12 1 1.05 0.02

σ2 1 1.04 0.10 σ2 1 1.14 0.10

γ τ
11 8 8.54 0.03 γ τ

11 8 8.35 0.02

γ τ
12 12 12.23 0.06 γ τ

12 12 12.11 0.08

θτ 2 2.17 0.26 θτ 3 3.59 0.43

Gumbel ατ
1 1 1.05 0.17 Frank ατ

1 1 0.89 0.08

βτ−
11 –4 –4.08 0.12 βτ−

11 –4 –3.96 0.05

βτ+
11 0.5 0.44 0.06 βτ+

11 0.5 0.14 0.71

σ1. 1 1.02 0.10 σ1. 1 1.13 0.13

ατ
2 1 1.19 0.05 ατ

2 1 0.53 0.04

βτ−
12 –2 –2.17 0.01 βτ−

12 –2 –2.16 0.01

βτ+
12 1 0.93 0.09 βτ+

12 1 0.89 0.01

σ2 1 1.02 0.09 σ2 1 0.80 0.06

γ τ
11 8 7.51 0.32 γ τ

11 8 7.37 2.16

γ τ
12 12 11.37 0.04 γ τ

12 12 11.90 0.03

θτ 3 2.99 0.35 θτ 2 2.38 0.66

Source Calculation

To illustrate the Kullback-Leibler divergence, we denote F as the true distribution

and
�

F as the alternative distribution. The KLD then is employed to measure the
distance between these two distributions using the following formula

D(F,
�

F) =
∫ ∞

−∞
f (x) log

f (x)
�

f (x)
dx (17)
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Table 2 Results of multivariate Copula based SUQKR with τ = 0.5
Copula Parameter True Estimate S.E. Copula Parameter True Estimate S.E.

Gaussian ατ
1 1 0.82 0.06 Student-t ατ

1 1 0.77 0.05

βτ−
11 –4 –3.96 0.01 βτ−

11 –4 –3.96 0.01

βτ+
11 0.5 0.51 0.01 βτ+

11 0.5 0.45 0.00

σ1. 1 1.01 0.10 σ1. 1 0.99 0.09

ατ
2 1 1.14 0.03 ατ

2 1 0.73 0.11

βτ−
12 –2 –2.12 0.00 βτ−

12 –2 –1.98 0.02

βτ+
12 1 0.98 0.01 βτ+

12 1 1.07 0.01

σ2 1 1.15 0.11 σ2 1 0.87 0.08

γ τ
11 8 7.96 0.04 γ τ

11 8 8.07 0.02

γ τ
12 12 11.59 0.15 γ τ

12 12 12.20 0.09

θτ 0.5 0.48 0.07 θτ 0.5 0.41 0.08

Joe ατ
1 1 0.90 0.02 Clayton ατ

1 1 0.42 0.11

βτ−
11 –4 –3.98 0.01 βτ−

11 –4 –3.98 0.01

βτ+
11 0.5 0.61 0.03 βτ+

11 0.5 0.50 0.00

σ1. 1 0.85 0.07 σ1. 1 1.04 0.09

ατ
2 1 0.94 0.08 ατ

2 1 1.11 0.24

βτ−
12 –2 –1.97 0.01 βτ−

12 –2 –1.97 0.02

βτ+
12 1 1.01 0.01 βτ+

12 1 1.05 0.03

σ2 1 1.00 0.09 σ2 1 1.13 0.09

γ τ
11 8 8.31 0.02 γ τ

11 8 7.99 0.06

γ τ
12 12 12.15 0.04 γ τ

12 12 12.11 0.16

θτ 2 2.25 0.26 θτ 3 3.31 0.48

Gumbel ατ
1 1 1.08 0.26 Frank ατ

1 1 0.48 0.07

βτ−
11 –4 –4.01 0.03 βτ−

11 –4 –3.96 0.02

βτ+
11 0.5 0.46 0.02 βτ+

11 0.5 0.51 0.02

σ1. 1 0.99 0.09 σ1. 1 1.10 0.11

ατ
2 1 1.55 0.05 ατ

2 1 0.41 0.04

βτ−
12 –2 –2.00 0.01 βτ−

12 –2 –2.06 0.01

βτ+
12 1 0.97 0.01 βτ+

12 1 0.99 0.00

σ2 1 0.93 0.09 σ2 1 0.99 0.09

γ τ
11 8 7.94 0.09 γ τ

11 8 8.08 0.06

γ τ
12 12 11.86 0.02 γ τ

12 12 11.85 0.04

θτ 3 3.08 0.33 θτ 2 2.07 0.63

Source Calculation

where
�

f is a likelihood density function of
�

F and f is a likelihood density function of
the true distribution F in which all parameters are known. By using this formula, we
are able to calculate the distance between the true function and the approximation.
This study conducts an experimental study and selects the true function from Joe,
Student-t and Clayton copulas for quantile level 0.1, 0.5, and 0.9, respectively.

The result shown in Fig. 1 illustrates three panels of each quantile level. We can
see that the approximations of Joe, Student-t and Clayton copulas based on the
SUQKR model achieve their minimum and close to their true function lines (dashed
lines). In addition, we also compared the performance of our purposed model with
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Table 3 Results of multivariate Copula based SUQKR with τ = 0.9
Copula Parameter True Estimate S.E. Copula Parameter True Estimate S.E.

Gaussian ατ
1 1 1.05 0.17 Student-t ατ

1 1 0.98 0.40

βτ−
11 –4 –3.90 0.19 βτ−

11 –4 –4.00 0.01

βτ+
11 0.5 0.52 0.12 βτ+

11 0.5 0.46 0.05

σ1. 1 0.85 0.08 σ1. 1 0.86 0.08

ατ
2 1 1.81 0.23 ατ

2 1 1.08 0.07

βτ−
12 –2 –2.06 0.02 βτ−

12 –2 –2.10 0.00

βτ+
12 1 0.94 0.01 βτ+

12 1 1.33 0.12

σ2 1 0.95 0.10 σ2 1 0.83 0.08

γ τ
11 8 7.97 0.65 γ τ

11 8 7.98 0.09

γ τ
12 12 11.90 0.24 γ τ

12 12 12.25 0.06

θτ 0.5 0.48 0.08 θτ 0.5 0.40 0.08

Joe ατ
1 1 0.86 0.21 Clayton ατ

1 1 0.40 0.08

βτ−
11 –4 –3.92 0.06 βτ−

11 –4 –3.90 0.01

βτ+
11 0.5 0.64 0.03 βτ+

11 0.5 0.55 0.10

σ1. 1 0.83 0.07 σ1. 1 0.99 0.09

ατ
2 1 0.94 0.08 ατ

2 1 0.96 0.18

βτ−
12 –2 –1.99 0.03 βτ−

12 –2 –1.84 0.09

βτ+
12 1 0.96 0.04 βτ+

12 1 0.87 0.00

σ2 1 0.97 0.09 σ2 1 0.95 0.09

γ τ
11 8 8.45 0.11 γ τ

11 8 8.36 0.01

γ τ
12 12 12.11 0.05 γ τ

12 12 12.12 0.13

θτ 2 2.47 0.31 θτ 3 2.68 0.43

Gumbel ατ
1 1 0.97 0.06 Frank ατ

1 1 0.73 0.03

βτ−
11 –4 –3.99 0.03 βτ−

11 –4 –3.94 0.02

βτ+
11 0.5 0.47 0.02 βτ+

11 0.5 0.53 0.00

σ1. 1 0.81 0.07 σ1. 1 1.01 0.09

ατ
2 1 1.06 0.17 ατ

2 1 1.65 0.05

βτ−
12 –2 –2.05 0.06 βτ−

12 –2 –2.05 0.01

βτ+
12 1 0.99 0.01 βτ+

12 1 0.82 0.01

σ2 1 0.78 0.07 σ2 1 1.17 0.11

γ τ
11 8 7.91 0.05 γ τ

11 8 8.12 0.02

γ τ
12 12 11.88 0.16 γ τ

12 12 11.31 0.00

θτ 3 2.98 0.26 θτ 2 2.19 0.64

Source Calculation

the independence copula based SUQKR function denoted by M0 (independent error
term), and then we found that our purposed model performs better than the indepen-
dence copula SUQKRmodel since the distance of our proposedmodel is less than the
modelwith independent error terms for all cases, i.e. D( fTrue, f Joe) < D( fTrue, fM0),
D( fTrue, fStudent−t ) < D( fTrue, fM0), and D( fTrue, fClayton) < D( fTrue, fM0). In the
case of misspecified copula function, we can see from the result that the misspecifi-
cation brings a larger deviation of the approximated SUQKR function from the true
one. Therefore, these all results allow us to indicate that our proposed model is more



Testing the Validity of Economic Growth Theories … 535

Fig. 1 The performance of Copula based SUQKR at different quantile levels

robust than the alternativemodel through this simulated data and themisspecification
copula function will lead to the low accuracy of the model.

5 Application to Thailand’s Economy

In this part,we aim to test a joint validity of economic growth theories by analysing the
case of Thailand.Our reasoning for choosingThailand as a case study is that Thailand
provides a sufficiently long series of macroeconomic data and, most importantly,
there is meager research done on the economic growth of Thailand. To the best of
our knowledge, no research has been done to test the correctness of growth theories
for the Thai economy while a large number of Thai economists usually follow the
ideas of these four growth theories, i.e. Harrod-Domar, Solow, Romer, and Barro
models, and use them to explain Thailand’s economy. We think that this will be a
good opportunity to conduct a research testing the validity of the growth theories for
the Thai economy.
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5.1 Variables and Data Sources

To investigate the validity of economic growth theories for Thailand, we used a
quarterly data set related to those four growth models, specifically gross domestic
product or GDP as a response variable for all growth theories and the covariate vari-
ables consisting of level of capital, labor force, investment, government expenditure,
and research and development expenditure, spanning from 1996:Q1 to 2015:Q3. We
derived the data from Thomson-Reuter DataStream, Financial Investment Center
(FIC), Faculty of Economics, Chiang Mai University.

5.2 Model Selection

This section is constructed to choose the best model among the candidates using
classical criteria for selecting model namely the Akaike Information Criterion (AIC)
and also theBayesian InformationCriterion (BIC) to strengthen the result.Weapplied
the well-known copula families from both Elliptical and Archimedean classes, i.e.
Gaussian, Student t, Clayton, Gumbel, Frank, and Joe, as described in Sect. 2.2,

Table 4 Model selection

Two regimes (Kink effect)

AIC/BIC Gaussian Student-t Clayton Gumbel Joe Frank

τ = 0.10 –2511.7 –2144.6 –1969.3 1906.5 –1553.1 –1394.2

–2470.6 –2045.9 –1878.2 1997.6 –1462.1 –1303.1

τ = 0.50 –2652.3 –1710.2 –2093.2 2259.1 –2040.1 –1775.3

–2561.2 –1611.5 –2002.1 2350.2 –1948.9 –1684.1

τ = 0.70 –2538.4 –2059.8 –1964.1 2411.6 2270.7 –1764.6

–2447.3 –1961.1 –1873.1 2502.7 2361.8 –1673.5

τ = 0.90 –2322.6 –2076.5 –1718.2 2222.4 –2062.9 –1574.9

–2231.5 –1977.8 –1627.1 2313.5 –1971.8 –1483.8

One regime (No kink effect)

AIC/BIC Gaussian Student-t Clayton Gumbel Joe Frank

τ = 0.10 –2460.2 –1302.2 –1525.1 –879.1 –649.2 –1302.2

–2407.1 –1249.1 –1471.9 –825.9 –596.1 –1249.1

τ = 0.50 –2571.6 –1510.9 –1320.8 –1244.3 181.6 –1650.9

–2518.5 –1507.1 –1267.7 –1191.2 234.7 –1597.9

τ = 0.70 –2220.4 –2116.9 –1909.8 –53.2 –1307.2 –114.2

–2167.3 –2113.1 –1856.7 –0.1 –1254.1 –61.06

τ = 0.90 –2303.6 –1718.5 375.5 –973.6 –1183.2 297.5

–2250.5 –1714.7 428.7 –920.5 –1129.9 350.6

Source Calculation
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to model a dependence structure of our SUQKR model at different quantile levels.
Herewe assume 4 different levels for quantile denoted by τ = 0.10, 0.50, 0.70, 0.90,
in which each quantile level is suspected to have the kink (threshold) effect on a
relationship between response variable and its covariate. In this part, we are not only
choosing the best-fit copula for the data, but also verifying whether or not the kink
effect exists with respect to our model.

Table4 shows the values of AIC andBIC of all candidatemodels in which the bold
numbers display the lowest values ofAIC andBIC at different quantile levels. Among
the trial runs of several alternative copula functions, we found that Gaussian presents
the lowest AIC and BIC for all considered quantile levels 0.10, 0.50, 0.70, and 0.90.
Moreover, we also compared the two-regime SUQKRmodels with the single-regime
counterpart (no kink effect) where the results are also shown in Table4. It is found
that the values of AIC and BIC of two-regime quantile model are lower than those of
the single-regime quantile model, meaning that the SUQKRmodel with two regimes
is favourable based on the AIC and BIC criteria.

5.3 Estimates of the SUQKR Model

To test the validity of the growth models, the Copula based SUQKR as chosen from
the previous section was estimated by the maximum likelihood estimator (MLE)
and the results are then reported in the Table5. We found that the parameters are
statistically significant at the 5% significance level with low and acceptable standard
errors. The results show that the four growth models, namely Harrod-Domar, Solow,
Romer, and Barro, can prove their validities for the Thai economy but themagnitudes
of effects are different across the quantiles and regimes. This paper assumes four
different quantile levels denoted by τ to be the 0.1, 0.5, 0.7, and 0.9 quantiles. The
estimated results of the SUQKR model corresponding to those four growth models
will be discussed respectively, but again those four growth models were estimated
simultaneously.

Thefirst equation is theHarrod-Domarmodelwhich takes the formas ln(GDPt ) =
ατ
1 + βτ−

11 ln (Investmentt )
− + βτ+

11 ln (Investmentt )
+ + σ1u1. We found that the re-

lationship between Thailand’s GDP growth and investment is split into two regimes
based on the significant kink points γ τ which are different across quantile levels.
In the lower regime denoted by (.)−, it is found that the changes in investment lead
to contrary impacts on the GDP growth for all quantiles, except the 0.1 quantile
which is found that the higher investment the more economic growth. Conversely, in
the upper regime denoted by (.)+, there exists a positive relationship between GDP
growth and investment in which the size of the effect is different across quantile
levels, except the 0.1 quantile which is found to have a negative relationship among
those variables.

Similarly, the second equation is the Solow growth model which takes the form as
ln(GDPt ) = ατ

2 + βτ−
21 ln (Kt )

− + βτ+
21 ln (Kt )

+ + βτ−
22 ln (Lt )

− + βτ+
22 ln (Lt )

+ +
σ2u2. The results shown in Table5 prove that the variables: capital and labor as
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Table 5 Estimated results of the SUQKR model
Parameter\Quantile τ = 0.10 τ = 0.50 τ = 0.70 τ = 0.90

The Harrod-Domar model

ατ
1 0.0060 0.0152a 0.0115a 0.0136a

(0.0011) (0.0015) (0.0005) (0.0012)

βτ−
11 (I−) 0.0003a –0.0001a –0.0007a –0.0001

(0.0001) (0.0000) (0.0000) (0.0001)

βτ+
11 (I+) –0.0002a 0.0001a 0.0006a 0.0001

(0.0001) (0.0000) (0.0000) (0.0001)

γ τ
11 12.7538a 12.7339a 12.7197a 12.7253a

(0.041) (2.3242) (4.5655) (0.0007)

σ1 0.0039a 0.0076a 0.0079a 0.0101a

(0.0003) (0.0002) (0.0002) (0.0075)

The Solow model

ατ
2 0.0038a 0.0154a 0.0130a 0.0176a

(0.0013) (0.0016) (0.0006) (0.0016)

βτ−
21 (K−) –0.0024a –0.0030a 0.0024a 0.0063a

(0.0006) (0.0009) (0.0009) (0.0020)

βτ+
21 (K+) 0.0005a 0.0003 –0.0005a 0.0001a

(0.0003) (0.0003) (0.0002) (0.0004)

βτ−
22 (L−) 0.001 0.0001 –0.0003 0.0008

(0.0004) (0.0003) (0.0004) (0.0004)

βτ+
22 (L+) –0.0001 –0.0009a –0.0004 –0.0013a

(0.0003) (0.0004) (0.0005) (0.0007)

γ τ
21 0.9643a 0.9690a 0.9683 0.9578a

(0.4671) (0.1582) (0.8222) (0.4107)

γ τ
22 0.2684a 0.2809a 0.2794 0.2722

(0.0813) (0.1719) (0.2788) (0.2374)

σ3 0.0047a 0.0060a 0.0079a 0.0097a

(0.0005) (0.0002) (0.0002) (0.0006)

The Romer model

ατ
3 0.0054a 0.0161a 0.0123a 0.0155a

(0.0008) (0.0019) (0.0006) (0.0015)

βτ−
31 (RD−) 0.0036 0.0214a 0.0382a 0.0399a

(0.0632) (0.0047) (0.0021) (0.0029)

βτ+
31 (RD+) 0.0043 0.0017 0.0182a 0.0131a

(0.041) (0.0004) (0.0034) (0.0051)

γ τ
31 0.0081 0.0062 0.0074 0.0062

(0.0339) (0.0192) (0.0067) (0.0082)

σ3 0.0041a 0.0074a 0.0078a 0.0100a

(0.0003) (0.0001) (0.0002) (0.0007)

(continued)
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Table 5 (continued)
Parameter\Quantile τ = 0.10 τ = 0.50 τ = 0.70 τ = 0.90

The Barro model

ατ
4 0.0035a 0.0146a 0.0107a 0.0127a

(0.0001) (0.0015) (0.0009) (0.0015)

βτ−
41 (G−) –0.0191a –0.0123a –0.0043a 0.0028

(0.0063) (0.0063) (0.0021) (0.0024)

βτ+
41 (G+) –0.0761 0.0049a 0.0142 0.0280a

(0.0034) (0.0022) (0.008) (0.0034)

γ τ
41 0.2991a 0.0333 0.0354a 0.0364

(0.0192) (0.0714) (0.0091) (0.0271)

σ4 0.0044a 0.0075a 0.0079a 0.0104a

(0.0004) (0.0002) (0.0002) (0.0008)

θτ
G 0.9900a 0.910a 0.9511a 0.9940a

(0.0021) (0.0009) (0.0016) (0.0011)

Source Calculation
Note adenotes the 5% significance level. The value in parenthesis is standard deviation

introduced in the Solow model are statistically significant but their effects in terms
of coefficients are different across quantiles and regimes based on the kink points.
For example, in the upper regime, Thailands GDP growth depends negatively on the
labor variable but the size of the effect is different across quantiles. For example, the
economic growth in the 0.9 quantile is found to be most negatively sensitive to the
change in labor.

The third equation is the Romer model which is used to represent the new
growth theory. This model can be formed as ln(GDPt ) = ατ

3 + βτ−
31 ln (RDt )

− +
βτ+
31 ln (RDt )

+ + σ3u3. We can see that the kink points split the effect of R&D ex-
penditure on Thailands GDP growth into two regimes. In the lower regime, GDP
growth is much more positively sensitive to the change in R&D expenditure than
in the upper regime, except the result in the 0.1 quantile which is not very different
across regimes. Furthermore, we also observed that the impact of R&D expenditure
on GDP growth grew quite dramatically as we move up through the conditional
distribution of R&D expenditure.

The last equation is the Barro model which takes the form as ln(GDPt ) =
ατ
4 + βτ−

41 ln (Govt )
− + βτ+

41 ln (Govt )
+ + σ4u4. The result demonstrates the unequal

impacts of government expenditure on Thailands GDP growth which are split into
two regimes based on kink points. In the lower regime, an increase in government
expenditure causes the GDP growth to decline but the level of negative impact is
somehow reducing as the level of quantile is moved up. On the contrary, in the upper
regime it is found that if the government spending increases, then the GDP growth
rises and the impacts are found to be different significantly across quantiles.
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6 Conclusions

This paper attempts to test the joint validity of economic growth theories with spe-
cial focus on the experience of Thailand since many works on economic growth in
Thailand have been found to follow the idea of conventional growth theories with-
out testing their correctness for the Thai economy. Motivated by this reasoning, we
consider three main economic growth theories namely the classical, neoclassical,
and the new growth theories and employ some important growth models that are
the Harrod-Domar, Solow, Romer, and Barro models to represent the three eras of
growth theory.

To investigate the validity of the growth theories, we introduce Copula based
seemingly unrelated quantile kink regression (SUQKR) as a key tool in this work.
Evidences from this study show that the four growthmodels can prove their validities
for the Thai economy through the data set. We found that the investment variable of
the Harrod-Domar model, the capital and labor variables of the Solow model, the
R&D expenditure of the Romer model, and the government expenditure of the Barro
model are statistically significant.

Furthermore, as a specific capability of our method, we are allowed to preserve
the unequal and nonlinear impacts of those variables of interest on Thailand’s GDP
growth. That is the impacts are different across quantiles; some estimated coefficients
dramatically increase as the level of quantile moves up, or have both positive and
negative effects on the growth. Moreover, we also found that the impacts of those
variables are nonlinear; they are split into two regimes i.e. the lower and upper
regimes due to the kink effect. That is, for example, an increase in government
spending tends to create a negative impact on the growth, but in the upper regime
government spending is necessary to propel the Thai economy.
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Analysis of Global Competitiveness
Using Copula-Based Stochastic
Frontier Kink Model

Paravee Maneejuk, Woraphon Yamaka and Songsak Sriboonchitta

Abstract The competitiveness is a considerable issue for nations who rely on the
international trade and hence leads to the competitiveness evaluation. This paper sug-
gests considering a country’s productive efficiency to reflect the competitive ability.
We introduce the copula-based nonlinear stochastic frontier model as a contribution
to the competitiveness evaluation due to a special concern about the difference among
countries in terms of size and structure of the economies. As a specific capability
of this proposed model, we are able to find the different impact of inputs on output
from the group of small countries to the group of large countries. Finally, this paper
provides the efficiency scores according to our analysis and the overall ranking of
global competitiveness.

Keywords Technical efficiency · Competitiveness · Nonlinear stochastic frontier ·
Kink regression · Copula

1 Introduction

The competitive ability is crucial for any economy or nation that relies on the in-
ternational trade and is relevant to the modern economy since it is considered to be
a key criterion for assessing the success of country. The competitiveness evaluation
deserves this special attention because countries need to know their competitive pow-
ers, as well as the ability of other countries in the international market, to formulate
the proper structural reforms to move their economy forward.
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Because of the importance of competitiveness in contributing to the world econ-
omy, a variety of institutions take interests in the global competitiveness, trying to
measure and make the rankings of countries based on their performances in the eco-
nomic sphere. On the one hand, World Economic Forum (WEF) defines the term
competitiveness as the ability to produce goods and services or the productivity of
a country which is determined by twelve pillars namely institutions, infrastructure,
macroeconomic environment, health and primary education, higher education and
training, goods market efficiency, labor market efficiency, financial market develop-
ment, technological readiness, market size, business sophistication, and innovation
[13]. On the other hand, one section of International Institute forManagement Devel-
opment (IMD) namedWorld Competitiveness Center also focuses on the competitive
ability and explains that the competitiveness determines how country manages its
competency to achieve a long-term growth or how much the country success in the
international market [6]. The rankings of global competitiveness suggested by IMD
are determined by the set of economic performance, government efficiency, business
efficiency, and infrastructure of a country.

These two institutions, WEF and IMD, have been suggesting the use of the com-
prehensive reports which help appropriately policymakers and business leadersmake
long term decision. However, as there is no certain technique for measuring the com-
petitive ability and no unique consensus on its definition has been reached yet, this
paper intends to introduce an alternative way of the evaluation of the global compet-
itiveness which is relevant to a country’s productive efficiency. We aim to compare
the competitive ability of countries through the levels of technical efficiency. That
is, we will identify the performance (efficiency) of a country and then make the
rankings based on their levels of efficiency. We deal with some specific indicators
as suggested by Furkov and Surmanov [5] to represent the basic performance of
the national economy with respect to the competitiveness definition, additionally,
with special concern about income distribution of nations. Note that all economic
indicators will be discussed later in the part of model specification.

The next section will explain about the methodology we use to evaluate the
global competitiveness including the basic idea regarding technical efficiency (TE).
In Sect. 3 we will do some Monte Carlo experiments and report the Robustness
Checks by Kullback-Leibler Divergence. Section4 explains the data and the model
specification. Section5 reports the empirical estimate of global competitiveness
through the efficiency frontier and the competitiveness rankings. Section6 contains
the conclusions.

2 Methodology: An Introduction to the Nonlinear
Stochastic Frontier Model

To evaluate a country’s efficiency, we consider the idea of Stochastic Frontier Model
(SFM) which is used generally to assess technical efficiency of production units and
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measure the impact of input on output. The SFM was first introduced by Aigner
et al. [1] applied in the context of cross-sectional data. The use of SFM which is
helpful for efficiency evaluation is for the separation of the inefficiency effect from
the statistical noise (or normal error term). Technically, the original SFM can be
viewed as a linear regression where its error term is composed of two uncorrelated
terms, saying that the first term represents the statistical noise and the second term
represents the inefficiency relative to the frontier.

Based on the idea of the conventional SFM, the output depends linearly on in-
puts with two independent error components. However, as in the literature of global
competitiveness, we realize that the global production function may have nonlinear
behaviors and processes [10]. Importantly, we use the term production function be-
cause, in this paper, we define the concept of global competitiveness in the context of
growth theory in which the output is presented by the growth of GDP. Then, the level
of countrys competitiveness is analyzed by some specific indicators that evaluate the
performance of the countrys growth strategies. And, as countries have different size
(in terms of GDP) and structure of the economies, we doubt that the relationship
between output and inputs may differ across countries. For this reason, the originally
linear SFM seems to no longer be appropriate for evaluation of the global competi-
tiveness. Therefore, this paper proposes the nonlinear SFM as an innovational tool.
To the best of our knowledge, the nonlinear SFM has not yet been explored and if
our proposal worked, it would be useful for many applications of stochastic frontier
analysis with structural change. To construct the nonlinear SFM, we apply the idea
of the kink regression as introduced by Card et al. [3] and Hansen [8] to the con-
ventional SFM. And hence, our paper proposes the stochastic frontier kink model.
This model will be explained thoroughly in the following part, however, in brief, it
is split into two (or more) parts based on a kink point. This specific ability allows
the disparate impact of input on the output across countries which is so-called the
nonlinear relationship.

2.1 Modelling the Stochastic Frontier Kink Model

The structure of the stochastic frontier kink model can simply take the form as the
following equation. Suppose we have T different countries, the independent variable
of each country is denoted by Yt where t = 1, . . . , T . The term x ′

t is a matrix (T × k)
of k regressors or input variables of country t where the coefficients are presented by
a matrix β with dimension (T × k × 2) for the case of two different regimes.

Yt = β−
1 (x ′

1,t − γ1)− + β+
1 (x ′

1,t − γ1)+ + · · · (1)

. . . + β−
k (x ′

k,t − γk)− + β+
k (x ′

k,t − γk)+ + εt

Following the original work of kink regression, Hansen [9], we use (x ′
k,t )− =

min[x ′
k,t , 0] and (x ′

k,t )+ = max[x ′
k,t , 0] to separate x ′

k,t into two regimes. The term
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regime often refers to the state of the economy, but in this study, it refers to the
different size and structure of economy i.e. regime 1 refers to a small country and
regime 2 refers to a large country. As we can see, Eq. (1) shows that the slope with
respect to variable x ′

k,t or the estimated parameters β are split into two groups, for
two regimes, in which (β−

1 , . . . , β−
k ) present the parameters in the lower regime and

(β+
1 , . . . , β+

k ) present the parameters in the upper regime. The slope is equal to β−
k

for any value of x ′
k,t < γk and β+

k is for the case of x ′
k,t > γk where the term γk is

called a kink point. According to this specific characteristic, Eq. (1) is said to be
the stochastic frontier kink model since the relationship between the independent
variable and its covariates has the kink effect at x ′

k,t = γk and the error term of the
model εt consists of the two independent error terms expressed as εt = Vt − Wt .
Again, the error term Vt which represents the statistical noise, is assumed to follow
normal distribution while the term Wt representing the inefficiency is assumed to
have non-negative distribution. Note that we assume a truncated normal distribution
for Wt .

2.2 A Copula-Based Stochastic Frontier Kink Model

Apart from the advantage of the SFM, the assumption of independence between two
error components of the conventional SFM is considered to be weak. It is argued
that the inefficiency term at the present time may depend on the noise at the previous
time [4]. Therefore, many researchers have worked on this problem in which one
of the most influential works is the study of Smith [15]. He suggests allowing the
two error components to be related by using a copula to fit the joint distribution.
This suggestion has spread various extensions in which some can prove that the
copula-based SFM perform better than the conventional one [17]. Thus, we decide
to take the advantage of copula joining the two error components to relax this weak
assumption, and propose the copula-based stochastic frontier kink model to evaluate
a countrys efficiency.

According to the Sklar’s theorem (See Nelsen [11]), let H be a joint distribution
of Wt and Vt , a two dimensional distribution with marginals F1(Wt ) and F2(Vt ).
Then, there exists a bivariate copula C such that

H(Wt , Vt ) = C(F1(Wt ), F2(Vt )). (2)

The term C is bivariate copula distribution function of the two error components.
Furthermore, if themarginals are continuous, then the copulaC is unique. Otherwise,
C is uniquely determined on R(F1) × R(F2) where R(F1) and R(F2) denote the
range of the marginal F1 and F2, respectively. However, if F1 and F2 are univariate
distribution, then the function H : R̄n → [0, 1] as defined in Eq. (2) is a joint distrib-
ution function of marginal distributions F1 and F2. If we have a continuous marginal
distribution, saying that F1(Wt ) = wt and F2(Vt ) = vt , the copula is determined by
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C(wt , vt ) = C(F−1
1 (Wt ), F

−1
2 (Vt )), (3)

where F−1
i is the quantile functions of marginal i = 1, 2; and wt , vt are uniform [0,

1]. The termC is copula distribution function of n dimensional random variable with
uniform margin on [0, 1]. Using the chain-rule from calculus, the copula density c
is obtained by differentiating Eq. (1); thus, we get probability distribution function
(pdf) of Wt and Vt as shown below.

∂2

∂Wt∂vt
H(Wt , Vt ) = ∂2

∂Wt∂Vt
C(F1(Wt ), F2(Vt ))

= f1(Wt ) f2(Vt )c(F1(Wt ), F2(Vt ))

(4)

The function fi is the density function of each marginal distribution and c is the
copula density. To extend copula to the SFM, the component error cannot be obtained
directly from Eq. (1), thus we transform (Wt , Vt ) to be (Wt , εt ) where εt = Vt − Wt .
Therefore, we can rewrite Eq. (4) as

f (Wt , εt ) = f1(Wt ) f2(Wt + εt )c(F1(Wt ), F2(Wt + εt )). (5)

According to the work of Smith [15], who first introduced the copula-based SFM,
the pdf of εt is given by

f (εt ) =
∞∫

0

f (wt , εt )dwt

= EWt ( f2(Wt + εt )c(F1(Wt ), F2(Wt + εt ) |θC ))

(6)

where EWt is the expectation with respect to Wt and θC is the dependence
parameter. We can see that Eq. (6) comprises two densities, i.e. f (Wt + εt ) and
c(F1(Wt ), F2(Wt + εt )). Therefore, we can construct the likelihood function of the
copula-based stochastic frontier kinkmodel by deriving those two densities. The first
density is given by

Yt = β−
1 (x ′

1,t − γ1)− + β+
1 (x ′

1,t − γ1)+ + . . . + β−
k (x ′

k,t − γk)− + β+
k (x ′

k,t − γk)+ + εt

Yt = Ω + εt

Yt = Ω + Vt − Wt ; εt = Vt − Wt

Yt − Ω = Vt − Wt

(7)

Since Vt is assumed to have normal distribution thus the density function of Vt is
given by

f (Vt ) = f (εt + Wt ) = 1√
2πσ 2

V

exp

{
(εt + Wt )

2

2σ 2
V

}
(8)
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where W is simulated from the positive truncated normal distribution with mean
μ = 0 and variance σ 2

W . Consider the second density, the bivariate copula density for
Wt + εt and Wt is constructed by either Elliptical copulas or Archimedean copulas.
In this study, we consider six well-known copula families namely Normal copula,
Student-t copula, Frank copula, Clayton copula, Gumbel copula, and Joe copula (See
Nelson [11]). Note that the joint distribution through the copula function needs the
uniform marginal thus the simulated Wt + εt and Wt are transformed by cumulative
normal distribution and cumulative truncated normal distribution.

As discussed in Smith [15] and Wibiinpongse et al. [17], it is not easy to estimate
themodel directly from themaximum likelihood estimation since it has a closed-form
expression. To overcome this problem, the Monte Carlo simulation is conducted to
simulate the error εt and Wt . The expected log-likelihood function is obtained from
Eq. (6) then yields

L(β−
k , β+

k , σV , σW , θC) =
T∑

t=1

log

(
1

M

M∑

i=1

f (Wit + εi t )c(wi t , (wi t + εi t ) |θC )

)
.

(9)
The log likelihood function in Eq. (9) can then be maximized using the maximum

simulated likelihood method (See Greene [7] and Wiboonpongse et al. [17]).
The main contribution of the stochastic frontier model is the technical efficiency

(TE) which is the effectiveness with a given set of inputs used to produce an output.
The technical efficiency is generally defined by the ratio of the observed output to the
corresponding frontier output conditional on the levels of inputs used by a country.
Then, a country is said to have technical efficiency if it can produce maximum output
by using minimum amounts of inputs. Following Battese and Coelli [2], TE can be
defined through Eq. (10) in which W is the inefficiency term. We can specify TE
equation by using Monte Carlo simulation as

T E = E(exp(−W ) |ξ = εt )

=

M∑
i=1

exp(−Wit ) f (Wit + εt )c(F1(Wit ), F2(Wit+εt ) |θC )

M∑
i=1

f (Wit + εt )c(F1(Wit ), F2(Wit+εt ) |θC)

.
(10)

3 Simulation Study

The Monte Carlo simulation study is conducted to explore the performance and ac-
curacy of our proposed model copula-based stochastic frontier kink. This simulation
study consists of two sub-sections. First, we evaluate the performance of our model
using the Bias andMean Squared Error (MSE). Second, the Kullback–Leibler Diver-
gence (KLD) is employed to measure the distance between the true model and alter-
native model to examine the effect of misspecified copula function.
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3.1 General Specifications

The simulation model takes the form as the following equation where we set the
true value for parameters α, β−

1 , and β+
1 equal to 1, 0.5, and −2, respectively. Then,

we simulate the variable x ′
1,t on the standard normal distribution with zero mean

and variance equal to 1. The kink parameter γ1 is equal to 6. The error term εt =
Vt − Wt is assumed to follow a normal distributionwith Vt˜N (0, σV ) and half-normal
distribution with Wt˜N+(0, σW ), where σV = 1 and σW = 1, respectively.

Yt = α + β−
1 (x ′

1,t − γ1)− + β+
1 (x ′

1,t − γ1)+ + εt

For the joint distribution of the two error components, we apply the six copula
families consisting of Gaussian, Student-t, Gumbel, Clayton, Joe and Frank copulas
tomodel the nonlinear dependence structure between Vt andWt .We set the true value
for the dependence parameter θc equal to 0.5 for Gaussian, Student-t, and Clayton
copulas, additionally; the degree of freedom for Student-t copula is set to be 4. For
the case of Gumbel and Frank copulas, the dependence parameter θc is equal to 2
and 3 for Joe copula. We also vary the sample size to strengthen the accuracy of
our model by generating N=100, 200, and 300. For each data set, we obtain 100
bootstrap samples through a parametric resampling. Additionally, the Mean Squared
Error (MSE) which is the difference between the estimator and the estimated value
is computed for each parameter using the following formula:

MSE = M−1
M∑

r=1

(φ̃r−φr )
2

whereM is the number of bootstrapping. The terms φ̃r and φr represent the estimated
parameter and the unknown parameter, respectively.

Table1 shows the result of theMonte Carlo simulation investigating themaximum
likelihood estimation of the copula-based stochastic frontier kink model. We explore
six simulation experiments based on the different copula functions. As shown in this
table, most of the mean parameters are very close to their true values and the MSE
values of all parameters are low and gradually decrease as the sample size increases.
Our model can perform well through the simulation study. Therefore, overall, the
Monte Carlo simulation suggests that our proposed Copula-based stochastic frontier
kink model is reasonably precise.

3.2 Robustness Checks by Kullback–Leibler Divergence

The previous part shows the accuracy of our proposedmodel, copula-based stochastic
frontier kink model, through the Monte Carlo simulation. However, how precise
the result is must depend on the copula we choose as well, because we need the
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Table 1 Simulation study
Copula Gaussian Student-t

Estimated parameter MSE Estimated parameter MSE

N 100 200 300 100 200 300 100 200 300 100 200 300

α 1.266 0.621 0.683 0.361 0.196 0.245 1.078 0.995 0.886 0.295 0.514 1.065

β−
1 0.484 0.479 0.49 0.012 0.002 0.036 0.488 0.484 0.498 0.047 0.003 0.151

β+
1 −2.035 −1.949 −2.005 0.041 0.038 0.559 −1.965 −2.018 −2.011 0.635 0.022 0.24

γ1 6.157 6.028 6.065 0.159 0.672 0.616 5.904 6.109 6.065 0.684 0.948 0.922

σu 1.045 1.077 1.004 0.362 0.139 0.233 0.774 1.191 1.34 0.29 0.176 0.105

σv 0.755 0.758 0.587 0.716 0.38 0.558 1.063 1.035 1.056 0.619 0.481 0.105

θc 0.295 0.608 0.718 0.335 0.418 0.139 0.472 0.602 0.803 0.365 0.21 0.171

d f 4.1 5.289 4.539 0.255 0.296 0.111

Copula Clayton Gumbel

Estimated parameter MSE Estimated parameter MSE

N 100 200 300 100 200 300 100 200 300 100 200 300

α 1.269 1.122 0.873 0.158 0.272 0.248 1.435 1.198 0.85 0.669 0.794 0.251

β−
1 0.346 0.57 0.495 0.003 0.002 0.001 0.486 0.075 0.468 0.004 0.003 0.001

β+
1 −1.809 −2.022 −2.015 0.096 0.025 0.009 −2.008 −1.358 −2.144 0.064 0.027 0.009

γ1 5.672 5.771 6.098 0.262 0.842 0.302 6.152 4.641 6.768 0.23 0.905 0.118

σu 0.845 0.921 1.036 0.16 0.147 0.356 1.104 1.0001 0.5 0.706 0.426 0.175

σv 0.933 1.029 0.8 0.351 0.454 0.412 1.163 1.763 1.208 1.401 1.641 0.481

θc 0.501 0.524 0.63 1.007 2.763 0.264 2.645 1.413 2.288 0.556 0.585 0.324

Copula Frank Joe

Estimated parameter MSE Estimated parameter MSE

N 100 200 300 100 200 300 100 200 300 100 200 300

α 0.819 1.165 1.138 0.605 0.532 0.206 0.91 1.296 1.19 0.273 1.032 0.296

β−
1 0.491 0.727 0.511 0.003 0.022 0.001 0.481 0.4789 0.499 0.923 0.003 0.027

β+
1 −2.02 −1.846 −1.998 0.083 0.027 0.018 −2.012 −1.989 −1.979 1.159 0.023 0.412

γ1 6.093 4.689 6.004 0.195 1.143 0.121 6.094 6.09 5.913 0.196 1.016 0.523

σu 1.187 1 1.423 0.314 0.512 0.155 1.642 1.183 0.424 5.53 0.285 0.221

σv 0.853 1.527 1.117 1.183 0.798 0.335 1.606 1.307 1.212 1.102 0.185 0.609

θc 2.759 2.587 2.406 1.051 0.265 0.817 3.218 2.794 1.694 0.255 0.306 1.379

Source Calculation

appropriate copula function to join the two error components Vt andWt . Selecting the
proper copula is a crucial step since the inappropriate copula functionwill bring about
a bias in the estimation [12]. Therefore, in this part, we employ the Kullback–Leibler
divergence (KLD)—which is a measure of the distance between two probability
distributions—to strengthen the model.

We do two experiment tests in which the true copula functions are set to be
Student-t and Clayton copulas. The simulation procedure is based on the sample
size of N=100. Then, simulated data are estimated by the copula-based stochastic
frontier kink model with six different copula functions namely Gaussian, Student-t,
Gumbel, Clayton, Joe and Frank copulas. The distance between the true function and
the alternative one is computed using the following formula of the KLD. Moreover,
we not only examine the selection of appropriate copula; but also consider specially
the selection of the right structure. That is, we are going to compare the copula-based
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Fig. 1 The Kullback–Leibler Divergence: distance measurements

nonlinear SFM -or the copula-based stochastic frontier kinkmodel that we proposed-
, with the copula-based linear SFM. Given the same true model, we decide to use
the same simulated data, which has a structure change, to observe the performance
of our model when the data exists with nonlinear structure.

For the true distributions denoted by P and the alternative distribution denoted
by Q of a continuous random variable, the Kullback–Leibler divergence is defined
to be the integral:

D(P, Q) =
∫ ∞

−∞
p(x) log

p(x)

q(x)
dx (11)

The term p(x) is a true likelihood density function of P where all parameters
are known and q(x) is an alternative likelihood density function of Q. According to
this KLD formula, we are able to calculate the distance between the true functions
i.e. Student-t and Clayton copulas based stochastic frontier kink model, and the
approximation of alternative models. The results are shown in Fig. 1.

Figure1 shows the two panels of the KLD results. We can see from the Fig. 1
that the approximations of the Student-t and Clayton based stochastic frontier kink
models provide the minimum distances which are closest to their true function lines
(dashed lines). Considering the case of misspecified copulas, we see that the wrong
specification brings the larger deviation from the true one. In addition, as we aim to
compare the performance of our model to the copula-based linear SFM, we construct
the Student-t based linear SFM denoted by L1 and the Clayton based linear SFM
denoted by L2. The results show that our model performs much better than the
copula-based linear SFM; our model is much closer to the true probability density in
both two experiments. Overall, the KLD suggests that our proposed Copula-based
nonlinear SFM is more accurate than the alternative models through this simulated
data, and the misspecification of copula will lead to low accuracy.
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4 Data and Model Specification

The cross-sectional data are derived fromWorldBankdatabase in year 2014, covering
134 countries including 34 Asian countries, 6 North American countries, 10 South
American countries, 52 European countries, and 32 African countries. Note that the
data are not available for some countries in that year; therefore, we decide to use the
nearest year available instead.

We define the specific factors representing the basic performance of national
economy with respect to the definition of competitiveness by following the study of
Furkov and Surmanov [5]. Together with a special concern about income distribution
of nations, we speculate that income distribution is somehow necessary for the com-
petitiveness evaluation. That is because; the competitive ability sometimes requires
tapping from the inequality in which unequal distribution of income may provide
an incentive for individual to work harder or for entrepreneur to expand a business,
which in turn, increase a countrys competitive power. Therefore, the inequality is
measured using the best known index called Gini and the copula-based stochastic
frontier kink model in the context of global competitiveness is given by

ln(GDPt ) = α + β1 ln(Capitalt ) + β2 ln(Labourt ) + β3 ln(Consumpt )

+ β4 ln(Ginit ) + Vt − Wt
(12)

The independent variables consist of capital, labour, consumption, and the Gini
coefficient. The variable Capitalt refers to the ability of the country t to transform
capital for further development measured by the gross fixed capital formation (USD
millions). The variable Labourt refers to the number of people employed in various
sectors (in thousands) and Consum pt represents the household final consumption
of the country t (in USD millions). This variable implies the purchasing power of
the country t which directly relates to the competitiveness. The dependent variable
is real GDP measured in million USD.

5 Empirical Results

Prior to evaluating the global competitiveness, we begin with an experimental test to
verify a kink effect or the nonlinear structure. We employ the Likelihood ratio test
(LR-test) to verify which model between the linear model and the nonlinear model
is best-fit for the data [8]. Technically, we let the linear model be a null hypothesis
and the kink (nonlinear) model is an alternative one. In this LR-test, we select a
Gaussian copula function for the production estimate and present in this analysis.
More specifically, the LR-test is defined by

LR − test = 2[log max Lik(Ha) − log max Lik(H0)].
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Table 2 Results of likelihood ratio test

lnL (linear SFM) lnL (kink SFM) LR

Capital −36.03 −29.47 13.12**

Labour −251.58 −247.4 8.25*

Consumption −59.85 −151.22 −182.74

Gini −292.3 −305.18 −25.79

Source Calculation
Note *, and **, denote rejections of the null hypothesis at the 10% and 5% significance levels,
respectively

This test expresses howmany times the data aremore likely to be under onemodel
than another. Therefore, the model is considered to have the kink effect if the null
hypothesis based on LR statistic is rejected. The probability distribution for this test
statistic is chi-squared distribution with degrees of freedom equal to the difference
of the number of parameters of the two models. The kink effect on a relationship
between response variable and its covariate is examined as a pair test. This algorithm
is kept using for each pair of the covariate and response variable and the result is
shown in Table2.

Table2 shows the result of testing for the kink effect with respect to our model.
We found that the null hypothesis of linearity based on the LR-test is rejected with
a significance level at 5 and 10% for the pairs of labour and capital against GDP,
respectively, whereas the null hypothesis is held for the cases of consumption and
the Gini coefficient. This means only the relationship between capital and labour
with GDP are in favor of the kink model. And hence, we can define the model with
specified kink effect as in the following:

ln(GDPt ) = α + β−
1 (ln(Capitalt ) − γ1)− + β+

1 (ln(Capitalt t ) − γ1)

+ β−
2 (ln(Labourt ) − γ2)− + β+

2 (ln(Labourt ) − γ2)+
+ β3 ln(Consum pt ) + β4 ln(Ginit ) + Vt − Wt .

(13)

The model is set similarly to Eq. (12), but the coefficient terms β−
i and β+

i ,
i = 1, 2, represent the coefficients of regime 1 and regime 2, respectively. Here we
treat the parameters γ1 and γ2 as the kink points which need to be estimated.

5.1 Selection of Copula

This part is about selecting a Copula that is best-fit for the data. Given a set of
Copulas, Table3 shows the values of AIC and BIC for each copula-based stochastic
frontier kink model. According to both criteria, the best model is the one based on
the Gumbel copula. It has the minimum values of AIC and BIC which are −48.84
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Table 3 AIC and BIC criteria for each copula-based stochastic frontier kink model

Copula Gaussian Student-t Clayton Gumbel Frank Joe SFM0

AIC 346.04 353.91 −15.56 −48.84 −24.12 −22.32 −19.4

BIC 349.52 357.68 29.99 −3.29 21.44 23.23 26.15

Source Calculation
Note SFM0 is the is the conventional Stochastic frontier model [2]

and−3.29 (bold numbers), respectively, whereas the conventional stochastic frontier
model (SFM0) is not chosen for this data set.

5.2 Estimates of Gumbel Copula-Based Stochastic Frontier
Kink Model

The estimated parameters of the Gumbel copula-based stochastic frontier kinkmodel
are displayed in Table4. We found that the model can perform well across the data
sets in which most of the parameters are rightly signed and statistically significant.
This model can capture a nonlinear effect of some variables, meaning that it can
prove our hypothesis: the relationship between output and inputs may differ across
countries depending on the size (in terms of GDP) and structure of the economy.

Table4 displays the estimated parameters corresponding to Eq. (13), including
the dependence parameters of copula and variances. As shown in Table4, all the
parameters are significant except the coefficient of labour in regime 1 (β−

2 ). The
parameters of capital and labour are split into two regimes based on the kink points
and mildly different from one regime to the other. The first regime (β−

i , i = 1, 2)
refers to a group of small countries while the second regime (β+

i ) refers to a group
of large countries.

The impact of capital on the output or GDP is more intense in the group of
large countries such as US, UK, and China where success depends much on the
physical capital. Their coefficients are approximately equal to 1.01, meaning that an
additional 1% of capital leads to 1.01% increase in GDP. But, beyond the significant

Table 4 Estimated results

Parameter α β−
1 β+

1 β−
2 β+

2 β3

Estimate 8.30*** 0.37*** 1.01*** −0.41 0.93*** 0.54***

S.E. 0.42 0.08 0.04 0.28 0.32 0.04

Parameter β4 γ1 γ2 σv σw θc

Estimate −0.17*** 11.08*** 7.89*** 0.33*** 0.46*** 2.75***

S.E. 0.07 0.76 0.73 0.05 0.01 0.46

Source Calculation
Note ***, denotes rejections of the null hypothesis at the 1% significance levels
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Fig. 2 Plot of the data fitting to lines estimated by Gumbel copula-based SF kink model

kink point (γ1) around 11.08, there is a place of the small countries such as Liberia
and Ivory in which the additional 1% of capital leads to just 0.37% increase in GDP.
On the other hand, we failed to find the impact of labour on GDP of the small
countries, only the parameters in regime 2 are statistically significant. It is found
that an increase by 1% of labour tends to get 0.93% increase in GDP for the group
of large countries. Additionally, the estimated parameter β3 corresponding to the
household final consumption variable has positive sign, meaning that this variable
creates the positive impact on countrys competitiveness. Nevertheless, the estimated
Gini coefficient surprisingly has negative sign. Evidence from this data set suggests
that an increase in the Gini coefficient would reduce the countrys competitive ability
rather than propel the economy.Additionally, technically, we found that the estimated
parameter of the Gumbel copula is significant and equal to 2.75. This result confirms
the dependence between two error components and justifies the use of the copula-
based stochastic frontier kink model.

Figure2 is generated corresponding to the estimated parameters shown in Table4,
to illustrate the position of each country, especially when we separate all countries
into two groups based on the kink point. We plot the data of each input, i.e. capital
(top left), labour (top right), consumption (bottom left), and Gini coefficient (bottom
right), against the level of GDP. Note that the data are log-transformed. The lines are
estimated from the copula-based stochastic frontier kink model.
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5.3 Estimate of Technical Efficiency

This section provides the efficiency estimates and clustering of 134 countries based
on the efficiency score. We calculate the technical efficiency (TE) using Eq. (10)
where the TE value would be between 0 and 1. TE=1 means perfectly efficient
country whereas TE=0 means perfectly inefficient country. Therefore, the more
efficiency implies the more competitiveness.

Figure3 displays the TE values of 134 countries. The efficiency score obtained
from our model (denoted by Cop-SFK) varies between 0.932 and 0.995, while the
average score is approximately 0.976. About half of the observations (66 countries)
can produce at efficiency level above the mean while the remainders are below the
mean. Additionally, we employ the conventional evaluation method namely Data
Envelopment Analysis (DEA) which is a method that uses a linear programming to
calculate the technical efficiency by measuring a country’s efficiency compared with
a reference performance. To calculate TE from DEA, we use the R-package ‘rDEA’
provided by Simm et al. [14]. We found that the range of efficiency score obtained
from DEA is almost the same as our model that is 0.937–1.00, while the average
score is 0.977. These identical results can help prove that the TE value obtained from
our model is not overestimated.

Finally, the cluster analysis is employed to classify all counties based on their
competitive abilities or TE scores. More technically, we conduct a dynamic pro-
gramming algorithm for optimal one-dimensional clustering provided by Wang and
Song [16].We define the k-means problem, that is, the values of TE obtained from the
previous experiment are separated into k groups so that the sum of squared within-
cluster distances to each group mean is minimized. In this study, we assign k=2,

Fig. 3 Technical efficiency
plot
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Fig. 4 Clustering of the
efficiency scores

which are the first cluster for low TE value (low competitive ability) and the second
cluster for high TE value (high competitive ability).

Figure4 displays two clusters which are indicated using red and black circles
with the two horizontal dashed lines representing the mean of each cluster. There
are 69 countries form 134 countries are classified in the cluster 1 in which the
five highest competitive countries according to our analysis are Ireland (0.9945),
Madagascar (0.9942), Germany (0.9934), the Netherlands (0.9932), and Mexico
(0.9925), respectively. The mean score of this cluster is 0.9861. On the other hand,
the five lowest competitive countries are Australia (0.9325), UK (0.9479), Uruguay
(0.9490), Pakistan (0.9551), and Kenya (0.9574), respectively, while the mean score
of this cluster is 0.9665.We should notice that this clustering is based on the TE value
measured by some specific factors i.e. capital, labour, consumption, and the Gini
coefficient which are the basic factors reflecting a countrys economic performance.
The efficiency score in this paper actually refers to the efficient use of inputs, which
are those four factors, to produce the maximum possible level of output (GDP).
Therefore, the lowest competitiveness here does not mean that the country is really
weak; the efficiency is actually caused by various factors which should be addressed
further.

6 Conclusion

Since competitive ability is important for every country relying on international
trade, the competitiveness evaluation becomes a crucial problem for nations. This
paper suggests considering a countrys productive efficiency in terms of TE to reflect
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the competitiveness. To measure the TE value, this paper introduces the copula-
based nonlinear stochastic frontier model as a contribution to the competitiveness
evaluation since we realize that the difference among countries such as size and
structure of the economy may lead to the unequal impact of inputs on output across
countries. Therefore, we apply the kink regression which is a nonlinear approach to
the conventional SFM, and hence, we come up with an innovative tool called the
copula-based stochastic frontier kink model.

Prior to the estimation of TE,we explore the performance of ourmodel through the
Monte Carlo simulation study and the Kullback–Leibler Divergence and we found
that our model is reasonably accurate. Then, this model is applied to estimate the
production function in which we found a kink effect on the relationship between
GDP and capital. The result shows that capital creates a larger positive impact on
GDP in the group of large countries such as US, UK, and China than the small
countries. Additionally, we also found the kink effect on the relationship between
labour and GDP but we failed to find the significant impact of labour on the GDP
of the small countries. The variable consumption is found to have a positive impact
on GDP whereas the impact of Gini coefficient is surprisingly negative. Finally, the
estimate of TE value shows that the efficiency score varies between 0.932 and 0.995
where the most competitive country is Ireland with score 0.9945. It is necessary to
note that these rankings and TE scores are true based on some specific factors with
respect to the competitiveness definition. The result would not be the same if the
data sets changed. However, this result should at least be useful for country leader,
policymakers, and domestic businesses to know their competitive ability and position
on the globe, to formulate the proper strategies and structural reforms to move their
economy forward.
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Gravity Model of Trade with Linear
Quantile Mixed Models Approach

Pathairat Pastpipatkul, Petchaluck Boonyakunakorn
and Songsak Sriboonchitta

Abstract The Thai economy has mostly depended on exports, which has signifi-
cantly declined in recent years. Hence, this paper is to investigate the determinants
affecting Thailands exports with its top ten trading partners by using gravity model
approach along with panel data. In panel data, there are different characteristics
between entities that account for unobserved individual effects. Previous studies
have only focused on estimating mean effect. Mixed models are relatively selected
as additional approach for panel data that accounts for individual heterogeneity in
terms of variance components. Another advantage is that they are suitable for depen-
dent data which are likely to be similar as collected repeatedly on the same country.
We also take an interest in studying different magnitudes and directions of the effects
of determinants on different parts of the distribution of export values. Meanwhile,
Quantile regression (QR) allows study of different quantiles of the conditional dis-
tribution. In this study we combine the benefits of both mixed effects and quantile
estimator to study Thai exports and employ linear quantile mixed models (LQMMs)
with gravity model.

Keywords Mixed-models · Quantile regression · Heterogeneity · Gravity model

1 Introduction

Thai economyhas been growing through exportswhich account formore than 60%of
Thailands GDP. However, Thailands export has declined in recent years. In January
2016, Thai exports values was 15.71 billion USD, decreasing by 8.91% compared
to the same month of the previous year. It was the lowest since November 2011
according to the statistics of the Ministry of Commerce of Thailand. The global
economy also plays a crucial role in Thai export contraction. Key trading markets
to Thailand, such as, the U.S., China, the EU, Japan as well as ASEAN have been
gaining more importance in recent years. Exports to China, as one of Thailand’s
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largest trading partners, accounted for 11% of total export in 2014, followed by
United States, the European Union, and Japan respectively.

In addition, there are many factors playing a vital role in Thai exports. For exam-
ples, according to Tulasombat et al. [19] exchange rate is the first factor followed by
wage. If there is a depreciation in the value of a currency, it will make exports cheaper,
meanwhile an increase in wages leads to higher cost in production, especially for
small and medium sized industries. Thailand has consequently lost its competitive
advantage of export. Moreover, import tariff can also have negative impacts on Thai
exports. Thus, this paper is to study the determinants of Thailand’s exports to its top
ten trading partners by using gravity approach.

The majority of the empirical literatures on the gravity model are based on panel
methods with fixed effects (FE) approach. FE treats heterogeneity only overall mean
effects which can lead to an over-fitting of the results. Furthermore, there is depen-
dence in panel data that violates the dependence assumption of FE model (Gibbons
[10]). Mixed models are another approach for panel data which treat individual het-
erogeneity in terms of variance components. Moreover, Geraci and Bottai [8] pro-
posed that random structure allows us to consider between individual heterogeneity
to be correlated to explanatory variables. Therefore, mixed effects models are more
flexible than FE approach.

In this study, we are also interested in studying different magnitudes and direc-
tions of the effects of determinants on different parts of the distribution. The standard
approach considers only the conditional mean of the dependent variable, meanwhile
Quantile regression (QR) allows study of different quantiles of the conditional distrib-
ution. It is selected and employed to investigate on how the impact of the determinants
on the Thailand’s exports varies with the conditional distribution of Thai exports. We
combine the benefits of both mixed effects and quantile estimator in order to study
Thai exports. Therefore, we relatively apply linear quantile mixed models (LQMMs)
with gravity model.

To our best knowledge, this is the first gravity model applied with LQMMs. Our
panel data set contains data of Thai exports and top ten largest trading partners, which
account for over 70% of total trade value, based on the recorded value of theMinistry
of Commerce of Thailand in 2014. These partners are China, Japan, Hong Kong,
Malaysia, Australia, Vietnam, Singapore, Indonesia, the Philippines and the United
States. This paper is divided into 5 sections as follows. Section2 outlines relevant
methods and methodology. Section3 presents estimating the model. Section4 shows
the empirical results of gravity model. Conclusion will be in the final section.

2 Model and Methodology

2.1 Gravity Model

Gravity model has become one of the most popular approaches in economics in order
to study the relationship of international trade. Tinbergen [18] firstly introduced the
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gravity model for international trade. Gravity model comes from a physics model
based on the law of gravitation. This gravity law focuses on the relationship between
two objects in proportional to their masses and inversely correlated to their distance,
and consists of trade flows (Ti j ) from country i to country j . It is proportional to
the national income denoted by Yi and Y j , and inversely relative to their geographic
distance (Di j ). Gravity model for international trade can be expressed as

Ti j = α0Y
α1
i Y α2

j Dα3
i j , (1)

where α0, α1, α2, and α3 are unknown parameters.
In order to simplify the application, Eq. (1) is transformed by taking the logarith-

mic. In the first place, estimation of gravity model with ordinary least squares (OLS)
can be written as

ln Ti j = ln α0 + α1 ln Yi + α2 ln Y j + α3 ln Di j + εi j . (2)

2.2 Gravity Model with Panel Data Approach

Recently, panel data has been increased in its importance in the economic field as it
provides a greater number of observations that lead to more information. therefore,
it improves the quality of the estimates. Gravity model is generally applied with
panel data. This is a result of having different characteristics in panel data, which
can generate different effects on their imports. However, we cannot observe country
heterogeneity.

Gravitymodel has been commonly estimatedwith fixed effects (FE) approach. FE
model treats heterogeneity only overall mean effects (Bell and Jones [2]). This can
lead to weak results since FE is not appropriate for specifying heterogeneity. Cheng
andWall [4] also proposed that if the estimator is not taken into account heterogeneity,
this causes misleading interpretation because of the parameter estimates being bias.
Moreover, FE approach has some drawbacks, such as, losing a lot of degree of
freedom (Chan et al. [3]). Furthermore, data in panel data are dependent. For instance,
observations collected many times from the same country tend to be more similar in
many characteristics than other observations from other different countries (Geraci
and Bottai [8]). Therefore, it violates the independence assumption of FE model
(Gibbons [10]).

Another way for panel data is to apply with mixed models, as the individual
effects can be conceptualized as a linear combination of FE and random effects
(RE) (Pinheiro [16], Richardson [17]). It treats individual heterogeneity in terms of
variance components. According to (Hedeker and Mermelstein [6]), they stated that
the variance components describe the structure of the correlation in panel data. It
allows correlation of errors which has more flexibility in modeling the error covari-
ance structure. Moreover, mixed models also consider data that has more complex
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dependence structures, as it considers the within-subject dependence of samples as
a random effect.

2.3 Quantiles

Since we consider the heterogeneity and dependent data of panel data, we apply
gravity model with mixed effects. Additionally, we take more interest in the left
and right tails of the distribution indicating low and high values of exports. While
standard regression models are linear mean regression model Y = θX + ε where,
E (Y |X ) = θX . It studies the effect of the covariate X on the mean of Y . While
quantiles can investigate on how X affects the small or large value of Y . Therefore,
we use QR with mixed effect panel data.

2.3.1 Quantile Regression (QR) for Independent Data

Suppose that Xi = (
Xi1, . . . , Xip

)
is a p-dimensional vector of covariates, countries

at i = 1, . . . , n, where y1, . . . , yn is a dependent variable and identically distrib-
uted random variable with conditional cumulative distribution function (CDF). Fyi |xi
which is assumed to be unknown. QR function can be defined as its inverse: Qyi |xi ≡
F−1
yi |xi , where τ, 0 < τ < 1. The linear quantile regression can be expressed as

Qτ (yi |β, xi ) = x
′
iβτ , (3)

where βτ ∈ Rp is denoted as a vector of unknown fixed parameter with length p,
whereas τ is denoted for the level of quantile.

2.3.2 Quantile Regression (QR) for Panel Data

As data is collected several times on a sample of individuals across time, this invalids
the independent assumption.We consider a conditional model to deal with dependent
data. In order to account for the dependence between panel data the approach should
be based on the inclusion in the predictor of sources of unobserved heterogeneity.
For a given τ ∈ (0, 1), a conditional QR can be defined by

Qτ (yit |bi , β, xit ) = bi + x
′
iβτ , (4)

which can be expressed as

yit = bi + x
′
i tβτ + εi t , (5)
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where εi t refers to an error term, Qτ (εi t |bi , β, xit ) = 0,βτ concludes the correlation
between the determinants X and the τ − th response quantile for an individual with
its level that is equivalent to bi . As the regression shares the same bi , there is no
longer independent.

According to Geraci and Bottai [9], for conditional QR, there are two approaches
involved which are defined as distribution free and likelihood based methods. For
the first approach, fixed individual intercepts are considered as pure location shift
parameters common to all conditional quantiles. Initially, Koenker [13] proposed
fixed effect quantile regression for panel data, followed byHarding and Lamarche [5]
who expanded fixed effect to be more flexible for endogenous independent variables.
Meanwhile, for the likelihood based methods, individual parameters are assumed to
be independent and identical distributed random variables. Hence, differences can
be explained in term of the response quantiles across entities (Geraci and Bottai [8]).

2.4 Mixed Models (MM)

Consider panel data in the form (yi j , z
′
i j , x

′
i j ), for j = 1, .., n, and i = 1, . . . , M ,

where yi j is the j th observation of the response variable in the i th subject x
′
i j is a

row of a known ni × p matrix Xi , z
′
i j is a row of a known ni × q matrix Zi .

A linear mixed effects function of response yi j can be expressed as

yi j = x
′
i jβτ + z

′
i j ui + εi j , (6)

where β and uiare fixed and random effects respectively. yi is assumed multivariate
normal distribution; The random effects ui help reduce the dependence among the
observations within i th subject. It is shared by all observations within the same sub-
ject. The random effects and the within-subject errors are assumed to be independent
for different subjects (Pinheiro and Bates [16]).

2.4.1 Linear Quantile Mixed Models (LQMMs) with Panel Data

At this stage, it is to assume that the yi = (y11, . . . , y1n1)
′
for i = 1, . . . , M , condi-

tionally on a vector random effects (ui ), are independent distribution with respect
to a joint asymmetric Laplace (AL) with location and scale parameters given by σ τ

and μ
(τ)
i = xiθ(τ)

x + Ziui , where θ(τ)
x ∈ Rp is a vector of unknown fixed effects.

Suppose that u = (u
′
1, . . . , u

′
M)

′
, y = (y

′
1, . . . , y

′
M)

′
, X = [X ′

1], . . . , [X ′
M ]′

, and
Z = ⊕M

i=1Zi , u(τ ) = Xθ(τ)
x + Zu, the joint density of (y, u) depends on M subjects

for the LQMM is written as
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where Ψ (τ) ∈ Sq++, S
q
++ is the set of real symmetric positive-definite q × q matri-

ces. Later on LQMM is developed by Geraci and Bottai [8] in order to obtain i th
contribution to the marginal likelihood by mixing the random effects, which is

Li (θx , σ, Ψ |yi ) = ∫
Rq p(yi , ui , |θx , σ, Ψ )dui , (8)

where Rq represents the q-dimension Euclidean space. The marginal log-likelihood
is written as li (θx , σ, Ψ |y) = log Li (θx , σ, Ψ |y), i = 1, .., M .

2.5 Estimation

In order to estimate the interested parameter, to deal with unobserved random effects
is processed by using Gaussian quadrature (Geraci and Bottai [7]). The interested
integral for estimating for the marginal distribution of yi in model (8) is expressed as

py (yi |θx , σ, Ψ ) = σni (τ )
∫
Rq exp

{− 1
σ
ρτ (yi − ui )

}
p (ui |Ψ ) dui , (9)

To choose a proper distribution for the random effects can be difficult. As robustness
refers to the error model in general, at this stage it is used to refer to the random
effects. Geraci and Bottai [8] suggested that apply of the symmetric Laplace is the
robust alternative to the Gaussian choice. Hence, we emphasis on two types of the
distribution of random effects, which are Gaussian and Laplacian. This is equivalent
to apply a Gauss-Hermite and a Gauss–Laguerre quadrature to the integral in (9).
The Gauss-Hermite quadrature is considered as normal random effects meanwhile,
the Gauss–Laguerre quadrature is considered as robust random effects. The Gauss–
Laguerre quadrature can be applied because in this each one-dimensional integral in
(9). Therefore, we select normal an robust for random effects as the argument types
of quadrature.

For the argument covariance, we consider three types of argument covariance.
The first one is multiple of an identity (pdIdent), which has equal covariance. The
second one is compound symmetry structure (pdCompSymm), that all the variances
are the same and all the covariances are the same. These allow random effects to
be correlated. The last one is diagonal structure (pdDiag), that variances are equal
and covariances of zero assuming no correlation between the random effects (Geraci
[7]). Kincaid [11] proposed that there still remains a question of how to choose
the good covariance structure. This paper will be applied with the lqmm (Linear
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Table 1 Summary table of the covariance structures and type of quadrature

Covariance
matrix

Argument
covariance

var(ui ) cov(ul , ul ) m Argument
type

Multiple of
an identify

pdIdent ψ2
u 0 1 Normal or

robust

Compound
symmetry

pdComp-Symm ψ2
u φ 1=(q =1) or

2(q>1)
Normal

Diagonal pdDiag ψ2
l 0 q Normal or

robust

Quantile Mixed Model) package in R, which is implemented by Marco Geraci [7]
(Table1).

3 Estimating the Model

3.1 Model Specification

Based on the convention of gravity model, the bilateral trade flow is determined
by size of economy (measured by GDP), population, and the distance between
two countries. More macroeconomic variables are added in order to provide more
explanation of the exports flows between Thailand and its trading partners. These
variables are exchange rate, wage, and import tariff rate. Gravity model of trade is
written as

lnEX PORT i j,t = αi j + β1lnGDPi,t + β2lnGDP j,t + β3lnPOPULATIONi,t (10)
+ β4lnPOPULATION j,t + β5lnEXCH ANGEi j,t + β6lnWAGEi,t

+ β7lnDISTANCEi j,t + β8lnTARIFF j,t + ui j,t ,

for i = 1, . . . ., N where i refers to Thailand, j = 1, . . . , N where j refers to partner
countries, i j = 1, . . . , N where i j refers to between two countries, t = 1, . . . ., T ,
where EXPORTi j,t corresponds to the value of Thai exports goods and services
to top 10 trading partners at year t. The explanatory variables are defined as fol-
lows: GDPi,t and GDPj,t denote the nominal income of Thailand and partner coun-
tries respectively. It represents the economic size of country, POPULATIONi,t and
POPULATIONj,t correspond to number of population in Thailand and partner coun-
tries at time t respectively, EXCHANGEi j,t denotes the exchange rates between two
countries at time t ,WAGEi,t denotes the Thai average wage at time t , DISTANCEi j,t

is measured the distance between Thailand and partner countries, and TARIFFj,t cor-
responds to an average tax rate imposed on the import of goods applied by country
j at time t .
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3.2 The Covariance Structures and Type of Quadrature

We consider three types of argument covariance; pdIdent, pdCompSymm, and
pdDiag with two argument types of quadrature; normal and robust (Geraci [7]).
These three covariance structures are employed with two argument types together
resulting in the total number of five models. The Model 1; pdIdent covariance with
normal type, Model2; pdIdent covariance with robust type, Model 3; pdCompSymm
covariance with normal type, Model 4; pdDiag covariance with normal type, and
Model 5; pdDiag covariance with robust type. Then, the most appropriate model
based on AIC criterion is selected.

3.3 Data

Panel data is applied in order to provide more meaningful information of Thailands
export with data of top 10 trading partners. The period of the data is at the range
of 2002–2014. These top ten trading partners selected with respect to their amounts
recorded in 2014 contain China, Japan, Hong Kong, Malaysia, Australia, Vietnam,
Singapore, Indonesia, the Philippines and the United States. The panel data produces
130 observations with no missing data. In addition, the data come from several
sources. Thai exports data are from Foreign Trade Statistics of Thailand, whereas
GDP and population data are from the World Bank database. The data of distances
between Thailand to the other trading partners are obtained from the data base for
the CEPII Geodist dyadic dataset (Mayer and Zignago [15]). Exchange rate and
wage data are from Bank of Thailand (BOT) and tariff rates are from the World
Banks WITS.

4 Empirical Results

4.1 Model Selection

In order to choose themost appropriate model for interpretation from fivemodels, we
use Akaikes information criterion (AIC). According to the types of argument, robust
and normal, the results in Table2 can be categorized into 2 groups. The first group
consists of AIC model 2 and 5 with the type of robust. The second group contains
the rest of the models with the type of normal. The first group illustrates lower
AICs compared to the second group at all selected quantiles except 95th quantile.
Moreover, the AIC difference between two groups is less than 3. Meanwhile, the
second group of model 1, 3, and 4 shows the lower standard errors (SE) of Thai
population and tariff rate variables at 95th quantile compared to SEs of the models
in the first group. However, the SEs of the other variables in the first group are lower
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Table 2 Reports the impact of each covariate on Thailands exports at different quantiles for Model
1 to Model 3

5th 25th 50th 75th 95th

Model 1 covariance=“pdIdent” type=“normal”

(Intercept) −83.72 −83.745 −83.745 −83.745 −82.663

(−21.710) (−21.723) (−21.724) (−21.765) (−21.85)

lnGDPi 0.297 0.385 0.691 0.385 0.27

(−0.223) (−0.176) (−0.122) (−0.19) (−0.217)

lnGDPj 0.738 0.691 0.691 0.691 0.655

(−0.153) (−0.122) (−1.918) (−0.116) (−0.140)

lnPOPULATIONi 9.079 9.103 9.103 9.103 9.091

(−1.936) (−1.912) (−1.918) (−1.914) (−1.939)

lnPOPULATIONj −0.19 −0.177 0.177 −0.177 −0.195

(−0.152) (−0.119) (−0.120) (−0.119) (−0.156)

lnEXCHANGEij −0.029 −0.003 −0.003 −0.003 0.012

(−0.092) (−0.066) (−0.065) (−0.065) (−0.088)

lnWAGEi −0.427 −0.541 −0.541 −0.541 −0.474

(−0.247) (−0.13) (−0.128) (−0.146) (−0.241)

lnDISTANCEij −0.762 −0.712 −0.712 −0.712 −0.652

(−0.344) (−0.349) (−0.342) (−0.346) (−0.374)

lnTARIFFj −3.439 −3.546 −3.546 −3.546 −3.17

(−3.058) (−3.036) (−3.041) (−2.943) (−2.874)

Log-likelihood 322.3 263.3 300.3 191 271.3

AIC 11.52 19.69 −55.11 19.69 −62.78

Model2 covariance=“pdIdent” type=“robust”

(Intercept) −83.676 −83.75 −83.745 −83.745 −83.611

(−22.508) (−22.504) (−22.491) (−22.509) (−22.481)

lnGDPi 0.444 0.385 0.385 0.385 0.264

(−0.184) (−0.150) (−0.148) (−0.143) (−0.157)

lnGDPj 0.638 0.691 0.691 0.691 0.651

(−0.114) (−0.083) (−0.084) (−0.088) (−0.100)

lnPOPULATIONi 8.963 9.103 9.103 9.103 9.204

(−2.036) (−1.989) (−1.979) (−1.980) (−1.980)

lnPOPULATIONj −0.141 −0.177 −0.177 −0.177 −0.191

(−0.095) (−0.070) (−0.067) (−0.068) (−0.090)

lnEXCHANGEij −0.014 −0.003 −0.003 −0.003 0.013

(−0.054) (−0.039) (−0.032) (−0.030) (−0.041)

lnWAGEi −0.509 −0.541 −0.541 −0.541 −0.471

(−0.134) (−0.118) (−0.115) (−0.118) (−0.180)

lnDISTANCEij −0.621 −0.712 −0.712 −0.712 −0.649

(−0.196) (−0.139) (−0.138) (−0.140) (−0.161)

(continued)
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Table 2 (continued)

5th 25th 50th 75th 95th

lnTARIFFj −3.625 −3.546 −3.546 −3.546 −3.445

(−3.447) (−3.274) (−3.276) (−3.276) (−3.302)

Log-likelihood 390.7 346.2 348 280.6 257.6

AIC −50.96 −57.2 −96.99 −63.72 −59.86

Model 3 covariance=“pdCompSymm” type=“normal”

(Intercept) −83.72 −83.75 −83.745 −83.745 −82.663

(−18.695) (−18.62) (−18.633) (−18.557) (−18.596)

lnGDPi 0.297 0.385 0.385 0.385 0.27

(−0.215) (−0.124) (−0.127) (−0.128) (−0.207)

lnGDPj 0.738 0.691 0.691 0.691 0.655

(−0.122) (−0.122) (−0.117) (−0.117) (−0.160)

lnPOPULATIONi 9.079 9.103 9.103 9.103 9.091

(−1.686) (−1.678) (−1.678) (−1.669) (−1.649)

lnPOPULATIONj −0.19 −0.177 −0.177 −0.177 −0.195

(−0.104) (−0.097) (−0.091) (−0.087) (−0.110)

lnEXCHANGEij −0.029 −0.003 −0.003 −0.003 0.012

(−0.099) (−0.072) (−0.069) (−0.066) (−0.084)

lnWAGEi −0.427 −0.541 −0.541 −0.541 −0.652

(−0.234) (−0.138) (−0.128) (−0.137) (−0.195)

lnDIATANCEij −0.762 −0.712 −0.712 −0.712 −0.652

(−0.230) (−0.152) (−0.149) (−0.150) (−0.195)

lnTARIFFj −3.439 −3.546 −3.546 −3.546 −3.17

(−2.684) (−2.684) (−2.687) (−2.574) (−3.023)

Log-likelihood 322.3 263.3 300.3 191 271.3

AIC 11.52 19.69 −55.11 19.69 −62.78

Note The numbers in the parentheses are the standard errors(SE)

than the variables in the second group. As a result, models 2 and 5 (robust type) are
selected to present the relationship between Thai exports and covariates (Table3).

4.2 Interpretation

Table2 demonstrates coefficient estimates of all variables at theve different quantiles,
5th, 25th, 50th, 75th, and 95th quantiles, representing the different sizes of export
flows. The extremely low of export flow is at 5th and followed by low, average,
high export, and extremely high of export flows with 25th, 50th, 75th, and 95th
respectively.

Firstly, we will consider the positive effect of the relationship between all covari-
ates with Thai exports. The effects of Thailands GDP, partners GDPs and Thai
population are positive at all different quantiles. The study of Anderson [1] also
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Table 3 Reports the impact of each covariate on Thailand’s exports at different quantiles forModel
4 and Model 5

5th 25th 50th 75th 95th

Model 4 covariance=“pdDiag” type=“normal”

(Intercept) −83.720 −83.745 −83.745 −83.745 −82.663

(−20.423) (−18.620) (−20.483) (−20.579) (−20.614)

lnGDPi 0.297 0.385 0.385 0.385 0.270

(−0.274) (−0.189) (−0.211) (−0.222) (−0.227)

lnGDPj 0.738 0.691 0.691 0.691 0.655

(−0.157) (−0.120) (−0.133) (−0.130) (−0.125)

lnPOPULATIONi 9.079 9.103 9.103 0.691 9.091

(−1.812) (−1.789) (−1.782) (−0.130) (−1.811)

lnPOPULATIONj −0.190 −0.177 −0.177 −0.177 −0.195

(−0.151) (−0.094) (−0.093) (−0.095) (−0.108)

lnEXCHANGEij −0.029 −0.003 −0.003 −0.003 0.012

(−0.115) (−0.076) (−0.083) (−0.071) (−0.185)

lnWAGEi −0.427 −0.541 −0.003 −0.541 −0.474

(−0.254) (−0.140) (−0.083) (−0.142) (−0.220)

lnDISTANCEij −0.762 −0.712 −0.712 −0.712 −0.652

(−0.258) (−0.194) (−0.185) (−0.178) (−0.197)

lnTARIFFj −3.439 −3.546 −3.546 −3.546 −3.17

(−3.410) (−3.423) (−3.456) (−3.413) (−3.392)

Log-likelihood 322.3 263.3 300.3 191 271.3

AIC 11.52 19.69 −55.11 19.69 −62.78

Model 5 covariance=“pdDiag” type=“robust”

(Intercept) −83.676 −83.745 −83.745 −83.745 −83.611

(−18.966) (−18.955) (−18.951) (−18.951) (−18.953)

lnGDPi 0.444 0.385 0.385 0.385 0.264

(−0.162) (−0.145) (−0.127) (−0.126) (−0.139)

lnGDPj 0.638 0.691 0.691 0.691 0.651

(−0.118) (−0.095) (−0.100) (−0.112) (−0.122)

lnPOPULATIONi 8.963 9.103 9.103 9.103 9.204

(−1.682) (−1.706) (−1.698) (−1.695) (−1.692)

lnPOPULATIONj −0.141 −0.177 −0.177 −0.177 −0.191

(−0.094) (−0.076) (−7.690) (−1.695) (−0.083)

lnEXCHANGEij −0.014 −0.003 −0.003 −0.003 0.013

(−0.067) (−0.053) (−0.051) (−0.053) (−0.057)

lnWAGEi −0.509 −0.541 −0.541 −0.541 −0.471

(−0.145) (−0.110) (−0.113) (−0.127) (−0.184)

lnDISTANCEij −0.621 −0.712 −0.712 −0.712 −0.649

(−0.236) (−0.190) (−0.186) (−0.194) (−0.201)

lnTariffj −3.625 −3.546 −3.546 −3.546 −3.445

(−3.470) (−3.529) (−3.479) (−3.484) (−3.485)

Log-likelihood 390.7 346.2 348 280.6 257.6

AIC −50.96 −57.20 −96.99 −63.72 −59.86

Note The numbers in the parentheses are the standard error
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provided a strong support that the bilateral trade rises when the GDPs of both coun-
tries increase.

The effect of Thai GDP is stronger at the 5th quantile than the other quantiles,
implying that it is a major determinant in explaining at extremely low export. In
addition, the effect of low Thai GDP at the 5th quantile is significantly different,
compared to the one at the 95th quantile. It indicates that the effect of Thai GDP,
when the export flow is extremely low, is much higher than the one, when the export
flow is extremely high. As partner GDP effect is positively stronger at the 25th, 50th,
and 75th quantiles compared to the other quantiles, it implies that it is a key factor in
explaining at low, average, and high exports. On the other hand, for Thai population
effect, it is stronger at the 95th than at the others. This indicates that in order to
explain at extremely high export Thai population is a major factor. The study of
Koh [14] provided support to this result because more population tends to increase
ability to create a wider variety of products which leads to have more opportunities
to exports.

Secondly,we take another interest on the negative effect of the relation. The effects
of partners population, Thai wage, distance, and partners tariff rates are negative at
thewhole selected quantiles.Meanwhile, exchange rate is the only one that is positive
at extremely high quantile (95th) but negative at the other quantiles. This implies that
exchange rate has a positive related to Thai export only extremely high exports.

The effect of partners population is stronger at the 95th quantile than the other
quantiles, implying that it tends to be a major factor in explaining at extremely high
export. At low, average, high Thai exports (25th, 50th, and 75th quantiles respec-
tively) it shows that Thai wage has the higher effects than at extremely low and high
exports. It implies that Thai wage is a key element in explaining at low and aver-
age, high exports. Partners tariff effects are stronger at the 5th than at other selected
quantiles. This indicates that the impacts of tariff rates peak at very low exports and
then begin to steadily decline when the exports increase, therefore partners tariff is
a key factor to explain at extremely low export.

Overall, Thai population also has the positive highest effect at extremely high trade
flow among other determinants. It implies that Thai exports are mostly influenced by
Thai population at extremely high exports. Moreover, the effect of Thai population,
when the export flow is extremely high, is much higher than the one, when the export
flow is extremely low. For extremely exports, the partners tariff tends to the major
determinants compared to the others as it has the highest negative impact on Thai
exports. A possible explanation is that the partners tariff produces a negative effect
to exports due to losing competitive advantages in price as demonstrated by Koczan
and Plekhanov [12].

5 Conclusion

The objective of this paper is to study the determinants of Thailands exports to its
trading partners by using gravity model. Linear quantile mixed models (LQMMs) is
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relatively employed because of the heterogeneous individuals, and complex depen-
dence structures. To be more explainable for Thailands exports, more determinants,
exchange rate, wage, and import tariff rate are added into the gravity model.

The models with the robust argument type are selected to present the results, as
they provide the lower AICs compared to normal one at all selected quantiles except
at 95th quantile. Thailands GDP, partners GDPs, and Thai population have positive
impacts on Thai exports. In contrast, partners population, Thai wage, distance, and
partners tariff rates have negative impacts onThai exports. In themeantime, exchange
rate effects are negative related to exports except at 95th quantile.

Considering at the extremely low Thai exports, the positive effect of Thai GDP on
the exports appears the highest and begins to decline while the exports increase. At
the same time, the negative effects of exchange rate and tariff rate peak at extremely
low Thai exports and their effects are weaker as Thailands exports increase.

Moreover, at extremely high Thai exports, the effect of Thai population and part-
ners population are stronger than at lower value of exports. It implies that the impact of
themdecreases as Thailands exports decrease.At low, average, and highThai exports,
partners GDP, Thai wage, and distance have the higher effects than at extremely low
and high exports. Overall, Thai population has the highest impact on Thai exports
compared to partners tariff which has the highest negative impact on exports.

Policy suggestions based on the empirical results are given as follows; the major
issue places emphasis on tariff rate, which can be contributed by more cooperation
between Thailand andmajor trading partners in order to relax tariff rates. In addition,
exchange rate requires an appropriate maintenance at competitive levels, especially
when Thai exports are very low. Meanwhile, Thai GDP is also important at the
very low level of export because it can increase significant supply to boost export.
Wage is another determinant that requires special attention when Thai exports are
relatively low.
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Stochastic Frontier Model in Financial
Econometrics: A Copula-Based Approach

P. Tibprasorn, K. Autchariyapanitkul and S. Sriboonchitta

Abstract This study applies the principle of stochastic frontier model (SFM) to
calculate the optimal frontier of the stock prices in a stock market. We use copula to
measure dependence between the error terms in SFM by examining several stocks
in Down Jones industrial. The results show that our modified stochastic frontier
model is more applicable for financial econometrics. Finally, we use AIC for model
selection.

Keywords Copulas · Gaussian quadrature rule · Optimization method · Price effi-
ciency · Stochastic frontier model

1 Introduction

The production frontier is originally used in production analysis to estimate the
efficient frontier. The idea behind this method is that the observed production of
a single unit cannot exceed the production frontier. Such that, we can define the
most efficient production process as set. According to Koopmans [1, 2] and Färe and
Shawna [3], the production set is explained by a set of inputs used to generate an
output which is described as the set of (x, y) given the following

Ψ = {(x, y)|x → y} (1)

P. Tibprasorn · S. Sriboonchitta
Faculty of Economics, Chiang Mai University, Chiang Mai 52000, Thailand
e-mail: phachongchit_t@cmu.ac.th

S. Sriboonchitta
e-mail: songsakecon@gmail.com

K. Autchariyapanitkul (B)
Faculty of Economics, Maejo University, Chiang Mai 50290, Thailand
e-mail: Kittawit_a@mju.ac.th

© Springer International Publishing AG 2017
V. Kreinovich et al. (eds.), Robustness in Econometrics,
Studies in Computational Intelligence 692, DOI 10.1007/978-3-319-50742-2_35

575



576 P. Tibprasorn et al.

where Ψ is the production frontier, y is an output from using inputs x . The efficient
output function can be written as ∂Y (x) = max Y (x) where Y (x) is a function of
output Y in term of inputs x. Different other assumptions can be imposed on Ψ (see,
Aragon et al. [4]).

There are two different methods have been developed in this area: the first one is
the classical frontier model; given this model, all the data points in Xn are under Ψ .
The second is the stochastic frontier model where random error allows some data
points to be out of Ψ .

There are many studies on stochastic frontier model (SFM) and the reader can
refer to the studies of Azadeh et al. [5], Greene [6, 7], Filippini et al. [8], Stevenson
[9] and Wang et al. [10]. In their studies, they specified a model with a restrictive
distributional structure for the error term, i.e. the non-negative error term. Generally,
the distance between the frontier curve and the observation indicates an inefficiency.
Then, the distance is given by the error components (see, Tibprasorn et al. [13],
Kuosmanen et al. [11] and Sanzidur et al. [12]). The technique assumes that the non-
negative error term and symmetric error term are i.i.d. Moreover, the non-negative
error term is forced to be a half-normal distribution whilst a normal distribution is
imposed for the symmetric error term.

The main concept of this paper is to estimate the efficient frontier of stock price
which exhibits the highest possible price a stock can reach. It is noted that the present
prices under the frontier curve show the inefficiency of the price in stock market.
We can use the result as a strategy to manage the stock in the portfolio. Moreover,
we can show the significance of a historical price and volume of the stock related
to predicted stock prices. We indicate that the modified stochastic frontier model is
more reasonable for financial analysis.

In applying the technical efficiency (TE) in financial context, Tibprasorn et al. [13]
estimated the TE of several stocks in the Stock Exchange of Thailand (SET). In their
study, they assumed normal and half-normal distributions in the model. Hasan et al.
[14] used a stochastic frontier model to estimate the TE of Dhaka Stock Exchange
and again, they assumed independence for the error components. Thus, we relaxed
this assumption using copula to estimate the dependency between the error com-
ponents (see, Tibprasorn et al. [13], Carta and Steel [15], Lai and Cliff [16] and
Wiboonpongse et al. [17]). For the setting of the error components, we assumed an
exponential distribution for the non-negative error term while a normal distribution
is assumed for the symmetric error term.

We used the likelihood function to obtain the unknown parameters (see, Burns
[18] and Green [19]). Additionally, in this study, we approximated an integral by
using the Gaussian quadrature rule, and then, the optimization method was used to
get these parameters.

The paper unfolds as follows. Section2 lays out the concept of copula and sto-
chastic frontier model with correlated errors. Section3 presents the implementation
to stock market. Section4 shows the empirical results, and the final section draws
the conclusion.
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2 Copula and Stochastic Frontier Model

2.1 Copula

Suppose X and Y are two real valued random variables. The joint distribution of
(X,Y ) is denoted as, for x, y ∈ R,

H(x, y) = p(X � x,Y � y) (2)

The marginal distributions of the components X,Y are denoted, respectively, as

F(x) = P(X � x) = lim
y→∞ H(x, y) = H(x,∞) (3a)

G(x) = P(Y � y) = lim
y→∞ H(x, y) = H(∞, y) (3b)

Thus, the marginals can be obtained from the joint. Since F and G are non-
decreasing functions and continuous, the random variables F(X) = U1,G(Y ) = U2

are uniformly distributed on the unit interval [0, 1]. Thus,

H(x, y) = P(U1 � F(x),U2 � G(y)) (4)

Then, the joint distribution of (U1,U2) is computed at the values F(x),G(y) ∈
[0, 1]. Thus, if we denote the joint distribution of (U1,U2) as C(U1,U2), then

H(x, y) = C(F(x),G(y)) (5)

In the above equation, the C is a copula function of two marginals F(x), and
G(y). Let H be a bi-variate distribution with continuous marginals F and G. Then,
the unique copula C is determined by

C(u1, u2) = H(F−1(u1),G
−1(u2)) (6)

where F−1(u1),G−1(u2) are quantile functions defined as F−1 : [0, 1] → R where
F−1(α) = in f {x ∈ R : F(x) � α} (in fact, the infimum here is a minimum).

2.2 Stochastic Frontier Model with Correlated Errors

The classical SFM is given as

Y = f (X;β) + (W −U ), (7)
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where Y is an output given set of inputs X ; β is the set of parameters; W represents
the symmetric error term andU represents the non-negative error term.W andU are
assumed to be uncorrelated. Following the above equation, the technical efficiency
(T E) can be written as

T E = exp(−U ). (8)

In this study, we modified the classical SFM to allow the error terms to be cor-
related, and we assumed an exponential distribution for the error term U while a
normal distribution is assumed for the error term W . Thus, by Sklar’s Theorem, the
joint cumulative distribution function (cdf) of (U,W ) is

H(u, w) = Pr(U � u,W � w) (9a)

= Cθ (FU (u), FW (w)), (9b)

where Cθ (·, ·) is denoted as the bi-variate copula with unknown parameter θ . Fol-
lowing Smith [20], transforming (U,W ) to (U, ξ) as the probability density function
(pdf) of (U, ξ) then we get

h(u, ε) = fU (u) fW (u + ε)cθ (FU (u), FW (u + ε)), (10)

where fU (u) and fW (w) are the marginal density of H(u, w), the composite error
ξ = ε(−∞ < ε < ∞),w = u + ε and cθ (·, ·) is the copula density ofCθ (·, ·). Thus,
the pdf of ε is obtained by

hθ (ε) =
∞∫

0

h(u, ε)du (11a)

=
∞∫

0

fU (u) fW (u + ε)cθ (FU (u), FW (u + ε))du. (11b)

Smith [20] argued that it is very difficult to find the closed-form expression for
finding the pdf of ε because there are very few densities of ε for estimating the
maximum likelihood. Thus, we employ the Gaussian quadrature rule mentioned in
Tibprasorn et al. [13] to approximate integral of hθ (ε). According to the Gaussian
quadrature rule, this technique is designed to yield an exact result by a suitable choice
of the points r j and weight s j for j = 1, ..., J where J is the number of nodes for
approximating. Let u = 0.5 + r/(1 − r), where r ∈ (−1, 1), we get

1∫

−1

fU (a) fW (a + ε) cθ (FU (a) , FW ((a + ε))) dr =
1∫

−1

g (r, ε)dr, (12)
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where a = 0.5 + r/(1 − r). Thus, the pdf of ε approximated by theGaussian quadra-
ture rule can be obtained by

hθ (ε) =
1∫

−1

g (r, ε)dr ≈
J∑

j=1

s j g
(
r j , ε

)
(13)

The likelihoodfunctionforcopula-basedstochastic frontiermodel is representedby

L(β, σw, λ, θ) =
N∏

i=1

hθ (yi − x
′
iβ) =

N∏

i=1

hθ (εi ), (14)

where σw and λ are the scale parameters of marginal distribution of W and U , θ is
the parameter of copula and i = 1, ..., N is the number of observations.

Taking a natural logarithm, the log-likelihood function becomes

ln L(β, σw, λ, θ) =
N∑

i=1

ln hθ (εi ) ≈
N∑

i=1

ln
J∑

j=1

s j g
(
r j , εi

)
. (15)

Following Battese and Coelli [21], the technical efficiency of each copula (T Eθ )
can be computed by

T Eθ = E[exp(−U )|ε] (16a)

= 1

hθ (ε)

∞∫

0

exp(−u)h(u, ε)du (16b)

=
∫ ∞
0 exp(−u) fU (u) fW (u + ε)cθ (FU (u), FW (u + ε))du

∫ ∞
0 fU (u) fW (u + ε)cθ (FU (u), FW (u + ε))du

. (16c)

and using Monte Carlo integration. Thus, we obtain

T Eθ =
∑N

i=1 exp(−ui ) fU (ui ) fW (ui + εi )cθ (FU (ui ), FW (ui + εi ))du∑N
i=1 fU (ui ) fW (ui + εi )cθ (FU (ui ), FW (ui + εi ))du

. (17)

Note that, in this paper, ui follows the cumulative distribution of U assumed to
be exponentially distributed. Since U � 0, the density function is given by

fU (u; λ) = λe−λU ,U ≥ 0, λ > 0. (18)

And wi follows the distribution of W assumed to be distributed as normal. Then,
the density function follows
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fW (w; σw) = 1√
2πσ 2

w

exp

{
− w2

2σ 2
w

}
. (19)

3 Model Implementation

This paper proposes the technical inefficiency to captures the deviation of actual
price from the efficient frontier a stock can reach by applying the stochastic frontier
approach with the form of the compound interest. Given Eq. (7), the modification of
SFM can be shown as:

Pi,t = f (Pi,t−i ; Vi,t−i , β0, β1, β2) + Wi,t −Ui,t (20a)

Pi,t = Pi,t−1 exp
{
β0 + β1ln

( Pi,t−1

Pi,t−2

) + β2 ln
(Vi,t−1

Vi,t−2

)} + Wi,t −Ui,t (20b)

ln
( Pi,t
Pi,t−1

)
= β0 + β1 ln

( Pi,t−1

Pi,t−2

)
+ β2 ln

(Vi,t−1

Vi,t−2

)
+ Wi,t −Ui,t , (20c)

where i = 1, 2, ..., N ; Pi,t represents the adjusted closing price of each stock at
week t ; Vi,t exhibits the actual trade volume of each stock at week t ; Wi,t is the
stochastic noise capturing measurement error of each stock at week t and Ui,t is
non-negative error capturing the inefficiency of each stock at week t . The value of
inefficiency is defined in terms of price inefficiency which explains the failure of
actual stock price to achieve the efficient price due to some uncontrollable events,
and it shows the level of efficiency that stock price can reflect all information in
market.

Copulas used in this study include Gumbel, Gaussian, Clayton, t and Frank copu-
las.We obtained all parameters using a likelihood function, and theGaussianQuadra-
ture algorithm is applied for themaximization process. Therefore, the price efficiency
of each stock at week t for each copula ((PEθ )i,t ) can be written as

(PEθ )i,t = E[exp(−Ui,t )|ε]. (21)

4 Empirical Results

We examined several stocks in Dow Jones industrial, namely, Microsoft Corporation
(MSFT), Wal-Mart Stores Inc. (WMT), GNC Holdings Inc. (GNC), Helix Energy
SolutionsGroup Inc. (HLX), FluidigmCorporation (FLDM)andSciQuest Inc. (SQI).
All the weekly observations are obtained from 2011 until 2015. Tables1, 2, 3, 4, 5,
6 and 7 shows descriptive statistics of the variables.

Based on the AIC, the best choices of copula in this study are the one based on
the Frank 2 copula with θ < 0 for the case of SQI, and Clayton copula for the cases
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Table 1 Descriptive statistics

MSFT WMT FLDM

Price Volume Price Volume Price Volume

No. Obs. 252 252 252 252 246 246

mean 0.0031 −0.0027 0.0008 −0.0008 −0.0011 −0.0006

SD 0.001 0.1033 0.0005 0.1067 0.0057 0.3164

max 0.1399 1.0901 0.0518 1.6152 0.306 1.6522

min −0.1551 −0.9763 −0.1244 −1.2165 −0.4439 −2.5587

skewness −0.2898 0.3022 −1.0931 0.6056 −1.0299 0.1617

kurtosis 7.044 3.9957 6.4971 6.4219 9.9282 4.698

SQI HLX GNC

Price Volume Price Volume Price Volume

No. Obs. 252 252 252 252 240 240

mean −0.0003 0.0069 −0.0024 −0.0017 0.003 −0.0066

SD 0.0034 0.4482 0.0045 0.1243 0.0024 0.3061

max 0.1806 3.7777 0.1887 1.1437 0.1396 1.5519

min −0.2395 −1.9605 −0.2643 −0.8392 −0.2059 −2.8595

skewness −0.358 0.754 −0.6419 0.4744 −0.4107 −0.2001

kurtosis 4.9116 6.9486 5.4207 3.428 4.7745 5.5409
∗All values are the growth rate of price and volume

Table 2 MFST’s parameters estimation

Parameter IID Frank 1 Frank 2 Gaussian T cop Gumbel Clayton

β0 0.0201 0.0201 0.0361 0.0359 0.0395 0.0461 0.0371

(0.0036) (274.7127) (0.0061) (0.0068) (0.0150) (0.0071) (0.0090)

β1 −0.1095 −0.1095 −0.0950 −0.1047 −0.0934 −0.1090 −0.0916

(0.0607) (32.2757) (0.0613) (0.0603) (1.2760) (0.0630) (0.0484)

β2 −0.0049 −0.0049 −0.0026 −0.0046 −0.0020 −0.0040 0.0012

(0.0058) (230.8108) (0.0053) (0.0140) (0.0061) (0.0057) (0.0057)

σV 0.0267 0.0267 0.0408 0.0351 0.0408 0.0425 0.0428

(0.0018) (0.2824) (0.0091) (0.0032) (0.0307) (0.0071) (0.0019)

λ 59.9791 59.9885 29.4483 30.8432 26.7258 22.8419 29.6819

(12.2448) (68.7530) (5.7384) (3.0281) (11.0441) (3.5626) (5.4195)

θ −0.0001 7.6739 0.6291 0.7623 2.2565 5.0156

(0.0980) (3.7548) (0.0811) (0.7757) (0.5791) (0.6929)

df(T cop) 2.0000

(3.1666)

Lo gL 512.61 512.61 523.28 514.68 525.01 516.13 526.92

AIC −1,015.22 −1,013.22 −1,034.57 −1,017.36 −1,036.02 −1,020.27 −1,041.84
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Table 3 WMT’s parameters estimation

Parameter IID Frank 1 Frank 2 Gaussian T cop Gumbel Clayton

β0 0.0175 0.0175 0.0187 0.0339 0.0338 0.0315 0.0190

(0.0043) (0.0033) (0.0032) (0.0448) (1.4783) (0.4218) (0.0100)

β1 −0.0055 −0.0055 −0.0079 −0.0054 −0.0054 −0.0140 −0.0045

(1.5631) (0.1596) (0.6139) (0.0553) (0.1209) (0.0625) (0.5402)

β2 −0.0032 −0.0032 −0.0036 −0.0034 −0.0034 −0.0041 −0.0034

(0.0234) (0.0315) (0.1821) (0.0038) (0.1705) (0.0320) (0.0316)

σV 0.0152 0.0152 0.0160 0.0286 0.0286 0.0240 0.0158

(0.0058) (0.0011) (0.0589) (0.0559) (0.0948) (0.0026) (0.0105)

λ 59.7189 59.7225 55.5525 30.1561 30.1736 32.4815 54.7416

(5.6130) (7.8743) (27.1714) (40.9690) (7.0163) (3.4267) (9.5915)

θ −0.0006 0.7841 0.8090 0.8086 1.9767 0.2335

(0.0086) (3.3267) (0.9055) (0.2646) (0.2692) (0.2298)

df(T cop) 4929.46

(6.9264)

Lo gL 605.71 605.71 605.81 606.33 606.33 606.07 605.92

AIC −1,201.41 −1,199.41 −1,199.61 −1,200.65 −1,198.65 −1,200.15 −1,199.84

Table 4 GNC’s parameters estimation

Parameter IID Frank 1 Frank 2 Gaussian T cop Gumbel Clayton

β0 0.0308 0.0308 0.0493 0.0556 0.0403 0.0621 0.0542

(0.0076) (4.4000) (0.0088) (0.0194) (0.0055) (0.0814) (0.0206)

β1 −0.1040 −0.1040 −0.1158 −0.1118 −0.1242 −0.1097 −0.1084

(0.3865) (7.8969) (0.3259) (0.0684) (0.1094) (0.5189) (0.0317)

β2 0.0048 0.0048 0.0075 0.0051 0.0073 0.0064 0.0057

(0.0528) (0.9897) (0.0222) (0.0051) (0.0066) (0.0189) (0.0436)

σV 0.0396 0.0396 0.0551 0.0539 0.0480 0.0577 0.0578

(0.0032) (0.0631) (0.0219) (0.0281) (0.0068) (0.0171) (0.0220)

λ 36.1204 36.1195 21.3638 19.0663 26.3939 16.7120 19.6570

(20.6323) (189.7732) (4.1584) (5.6967) (6.4038) (25.9514) (1.2023)

θ −0.0001 5.3075 0.6483 0.4169 1.9019 2.8334

(0.3279) (1.9538) (0.2121) (0.1542) (2.1392) (0.3374)

df(T cop) 2.0001

(0.7608)

Lo gL 387.11 387.11 391.28 388.48 391.92 388.44 391.76

AIC −764.22 −762.22 −770.57 −764.97 −769.85 −764.88 −771.51
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Table 5 HLX’s parameters estimation

Parameter IID Frank 1 Frank 2 Gaussian T cop Gumbel Clayton

β0 0.0384 0.0384 0.0715 0.0733 0.0665 0.0908 0.0677

(0.0046) (0.0494) (0.0145) (0.0092) (0.1731) (0.3361) (0.0073)

β1 −0.0592 −0.0592 −0.0383 −0.0549 −0.0328 −0.0522 −0.0305

(0.0784) (0.2637) (0.0582) (0.1641) (2.2720) (0.0839) (0.0620)

β2 −0.0195 −0.0195 −0.0252 −0.0195 −0.0248 −0.0215 −0.0217

(0.0121) (0.1895) (0.0108) (0.0113) (0.1416) (0.0328) (0.0102)

σV 0.0500 0.0500 0.0769 0.0690 0.0635 0.0821 0.0644

(0.0032) (0.0363) (0.0154) (0.0091) (0.0075) (0.0210) (0.0055)

λ 24.3222 24.3224 13.2318 13.1631 14.2751 10.5283 14.1912

(1.9554) (8.6335) (2.8112) (1.6205) (50.1502) (1.8228) (1.4151)

θ −0.0001 6.7352 0.6603 0.5803 2.2871 1.9660

(0.0048) (2.5802) (0.0851) (1.6144) (0.7162) (0.2380)

df(T cop) 2.0001

(0.4279)

Lo gL 334.53 334.53 342.40 336.52 343.68 337.71 342.76

AIC −659.07 −657.07 −672.81 −661.03 −673.35 −663.41 −673.51

Table 6 FLDM’s parameters estimation

Parameter IID Frank 1 Frank 2 Gaussian T cop Gumbel Clayton

β0 0.0434 0.0434 0.0831 0.0863 0.0856 0.1063 0.0828

(0.0850) (0.0055) (0.0125) (0.0131) (9.5038) (0.0123) (0.0040)

β1 0.0131 0.0131 0.0415 0.0146 0.0501 0.0209 0.0400

(0.0451) (0.0360) (0.0496) (0.0462) (1.1175) (0.0506) (0.0378)

β2 −0.0127 −0.0127 −0.0085 −0.0122 −0.0086 −0.0101 −0.0107

(0.1002) (0.0129) (0.0068) (0.0061) (24.0378) (0.0072) (0.0076)

σV 0.0555 0.0555 0.0923 0.0819 0.0845 0.0957 0.0862

(0.0070) (0.0063) (0.0056) (0.0104) (8.4114) (0.0089) (0.0045)

λ 22.4195 22.4199 11.5208 11.4629 11.3324 9.1053 11.9070

(2.4534) (0.1199) (1.8978) (1.5219) (944.8902) (1.1263) (0.6049)

θ −0.0001 8.3491 0.7133 0.7505 2.5149 3.7889

(0.0330) (0.6944) (0.0665) (10.6989) (0.3301) (0.0401)

df(T cop) 2.0000

(140.16)

Lo gL 302.40 302.40 315.49 305.90 317.41 308.11 318.19

AIC −594.81 −592.81 −618.98 −599.81 −620.82 −604.23 −624.39
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Table 7 SQI’s parameters estimation

Parameter IID Frank 1 Frank 2 Gaussian T cop Gumbel Clayton

β0 0.0333 0.0333 0.0601 0.0617 0.0533 0.0752 0.0596

(0.0069) (2.5076) (2.6309) (1.5965) (0.0580) (0.0112) (0.3010)

β1 −0.0982 −0.0981 −0.0505 −0.1015 −0.0559 −0.0872 −0.0711

(0.0288) (0.9401) (5.1181) (0.2816) (0.1712) (0.6299) (0.2176)

β2 −0.0008 −0.0008 0.0000 −0.0005 0.0006 −0.0004 0.0009

(0.0247) (0.5601) (1.2231) (0.4138) (0.0152) (0.0124) (0.0120)

σV 0.0466 0.0466 0.0727 0.0619 0.0589 0.0728 0.0619

(0.0047) (0.0117) (2.5735) (0.0123) (0.0373) (0.0327) (0.1476)

λ 29.4236 29.4242 16.2544 16.0476 18.2917 13.0092 16.6509

(2.2857) (5.5058) (33.5619) (5.9284) (19.8508) (2.3613) (2.5362)

θ −0.0001 6.9277 0.6239 0.5238 2.0899 2.1066

(0.0027) (49.5111) (0.1906) (1.5295) (0.3856) (0.5823)

df(T cop) 2.0000

(4.5061)

Lo gL 362.60 362.60 367.85 363.73 368.32 364.50 367.69

AIC −715.20 −713.20 −723.70 −715.45 −722.64 −716.99 −723.37

(a) MSFT (b) HLX (c) FLDM

(d) GNC (e) SQI (f) WMT

Fig. 1 Price efficiencies forClayton copula a,b, c,d, Flank copulawith θ < 0 e and the independent
copula f based models

of MFST, HLX, FLDM and GNC. The independence copula (IID) is more suitable
for WMT whereas Frank1 copula with θ > 0 is the worst result for MFST, HLX,
FLDM,GNCandSQI. T-copula performs theworst result forWMT.Figure1 presents
the price efficiencies using the best models based on Frank 2 copula with θ < 0,
Clayton and the independence copula based model. The price efficiency range will
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vary depending on individual stock. According to the results, the price efficiencies
are 0.60–0.99 (average 0.80), 0.45–0.99 (average 0.70), 0.49–0.95 (average 0.70),
0.6–0.99 (average 0.80), 0.54–0.96 (average 0.75) and 0.54–0.96 (average 0.75) for
MFST, HLX, FLDM, GNC, SQI and WMT, respectively. This finding can be used
strategically to choose stock into the portfolio. We can conclude that increasing
in positive dependence between the error components can increase more the price
efficiency. On the contrary, the large negative value between the error components
can reduce the price efficiency.

5 Conclusions

This paper modified the stochastic frontier model that is usually used for production
efficiency analysis in agricultural science problems. Its additions to the conventional
SFM include (1) the substitution of PE equation in a production function with the
compound interest equation for financial analysis. The strong assumption of classical
SFM is relaxed by using copula approach to present the dependence structure of error
components, w and u. (2) the use of Gaussian quadrature rule to approximate the
probability distribution function (pdf ) of composite error. (3) the model selection
by using AIC and that it is also used to show the dependence between the random
variable and inefficiency of stock price. The copulas such as t, Gaussian, Gumbel,
Frank, and Clayton are applied to combine with a stochastic frontier model. In this
study, the marginal distributions of the error components were assigned to be normal
and exponential, but different distributions could be examined as well, and checked
jointly with the copulas.

Finally, we investigated the prices of several stocks inDow Jones industrialmarket
by using SFM and copula. The choice of copulas was chosen using the AIC, and
the results indicated Frank 2 copula with θ < 0 for the case of SQI, Clayton copula
for the cases of MFST, HLX, FLDM and GNC. The independence copula (iid) is
more suitable for WMT whereas Frank1 copula with θ > 0 is the worst result for
MFST,HLX,FLDM,GNCandSQI.T-copula performs theworst result forWMT.We
considered the prices of the selected stocks to be not underestimated or overestimated
in terms of pricing efficiency.
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Quantile Forecasting of PM10 Data in Korea
Based on Time Series Models

Yingshi Xu and Sangyeol Lee

Abstract In this chapter, we analyze the particulate matter PM10 data in Korea
using time series models. For this task, we use the log-transformed data of the daily
averages of the PM10 values collected from Korea Meteorological Administration
and obtain an optimal ARMA model. We then conduct the entropy-based goodness
of fit test for the obtained residuals to check the departure from the normal and skew-
t distributions. Based on the selected skew-t ARMA model, we obtain conditional
quantile forecasts using the parametric andquantile regressionmethods. Theobtained
result has a potential usage as a guideline for the patients with some respiratory
disease to pay more attention to health care when the conditional quantile forecast
is beyond the limit values of severe health hazards.

Keywords ARMA model · Goodness of fit test · PM10 · Quantile regression· Quantile forecasting · Value-at-risk

1 Introduction

The air pollution, especially, the particulate matter (PM) has been a critical social
issue in recent years. PM stands for a complex mixture of extremely small solid
particles and liquid droplets found in the air, which can be only detected using an
electronicmicroscope. These particles form as a result of complex reactions of chem-
icals such as sulfur dioxide, emitted from power plants, industries and automobiles,
and once inhaled, can get into the heart, lungs and bloodstream and cause serious
health problems (https://www.epa.gov).

It was first demonstrated in the early 1970s thatmany of deaths and health diseases
are associated with the PM pollution. Thereafter, it has been reported that particulate
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matter smaller than about 10µm (PM10) has serious effects on lung cancer [14],
cardiovascular disease [4], etc. The IRAQ and WHO designated PM a Group 1
carcinogen. In 2013, the ESCAPE study showed that for every increase of 10µg/m3

in PM10, the lung cancer rate rises by 22% [14]. People with heart or lung diseases,
children, and seniors are the most likely to be affected by particle pollution exposure
(https://www.epa.gov), and thereby, most governments have created regulations for
the particulate concentration. Korean government also set up the limits for particulate
in the air: the annual average of PM10 should not exceed 50µg/m3 and the daily
average should not exceed 100µg/m3 (http://www.airkorea.or.kr).

Owing to its importance, the task of predicting the amount of particulate in the air
has been a core issue among researchers and practitioners. Many statistical models
have been developed in the literature in order to cope with this issue. For example,
multivariate linear regression (MLR) is widely used for PM10 forecasting [16], and
artificial neural networks (ANNs) are also used for daily forecasting, often showing
better results than theMLR [2, 10]. Besides these, ARIMA (autoregressive integrated
moving average) models [1], CART (classification and regression trees) [17], GAM
(generalized additive model) [12], and SVM (support vector machine) methods [15]
are used for the purpose of PM10 forecasting.

All those methods are mainly designed to forecast the daily or monthly averages
of PM10 levels. However, the average forecasting may lack information useful for
certain group of people. For example, the patients with lung disease, who are much
more sensitive to the variations of PM10 concentration, might need information on
its upper quantiles rather than averages, because if the upper quantile forecasting
value appears to exceed the limit values of PM10 concentration, it can trigger a
signal to take more careful actions. Motivated by this, we study the conditional
quantile forecasting method for PM10 concentration based on time series models.
Among the estimatingmethods, we adopt the parametricmethod based on time series
models, wherein the error distribution is assumed to belong to a specific distribution
family, and the semiparametric method based on the quantile regression: see [5, 13]
who consider the quantile regression method for financial time series. The quantile
regressionmethod is broadly appreciated as a functional device to estimate the value-
at-risk (VaR), which is the most popular risk measurement for asset processes, and
is particularly well known to be robust against outliers and a model bias: see [11].

This paper is organized as follows. Section2 introduces the PM10 data and se-
lects the optimalARMAmodel for the log-transformedPM10data.An entropy-based
goodness of fit test is also conducted to identify the underlying distribution family of
error terms. Section3 presents the conditional quantile forecasting methods taking
the aforementioned parametric and semiparametric approaches. Their performance
is compared through some back-testing methods. Section4 provides concluding re-
marks.

https://www.epa.gov
http://www.airkorea.or.kr
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2 Data Description and Model Building

In this section, we describe the PM10 data collected in Seoul, Korea, from January
1, 2012 to December 31, 2015, consisting of 1461 observations. The data is obtained
from Korea Meteorological Administration (http://data.kma.go.kr), which provides
hourly mean concentration data of PM10 obtained from 28 monitoring stations in
Korea including Seoul. In our analysis, we use the mean of the hourly data PM10
values to obtain the daily mean concentration PM10 data. In this procedure, missing
values of hourly data are imputed with the daily averages of the data. Moreover,
the two missing daily averages are imputed with the averages of the previous and
following days’ data values.

2.1 ARMA Model Fitting for the PM10 Data

Figure1 plots the daily average PM10 concentration, denoted by Xt at time t ,
from January 1, 2012 to December 31, 2015. Since the data shows some spikes
and fluctuations, we apply the log-transformation to the data. Figure2 shows the
plot of log-transformed PM10 concentration time series data, denoted by Yt . The
plot shows a pattern seemingly stationary: the Dicky-Fuller test suggests that the
log-transformed time series have no unit roots. Then, comparing the AIC values,
we obtain ARMA(1,3) model as the most appropriate, which is confirmed by the
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Fig. 1 The time series plot of the PM10 data
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Fig. 2 The time series plot of the log-transformed PM10 data

Portmanteu test. Our analysis shows that the estimated ARMA(1,3) model for the
log-transformed PM10 data, Yt , is given as follows:

Yt = 0.0647 + 0.9824 Yt−1 + εt − 0.3359 εt−1 − 0.4254 εt−2 − 0.1041 εt−3. (1)

Based on this model, one can also obtain the one-step-ahead forecasts, that is,

Ŷt+1 = δ̂ + φ̂1Yt + θ̂1ε̂t−1 + θ̂2ε̂t−2 + θ̂3ε̂t−3, (2)

where φ̂1, θ̂i , ε̂t−i are obtained using 1000day moving window from September 27,
2014 to December 31, 2015. The results can be used to check whether or not the
PM10 concentration would exceed the preassigned limits in the next day.

2.2 Entropy-Based Goodness of Fit Test for Residuals

In this section, we carry out the entropy-based goodness of fit test of [7] to identify
the error distribution of the underlying model. The information on error distributions
helps improve the accuracy of the quantile forecasting. Here, we particularly focus
on the normal and skew-t distribution families.

To check the departure from the distribution family {Fθ}, we set up the null and
alternative hypotheses:

H0 : F ∈ {Fθ : θ ∈ Θd} versus H1 : not H0. (3)
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Suppose that X1, . . . , Xn are observed. To implement the test, we check whether the
transformed random variable Ût = Fθ̂n

(Xt ) follows a uniform distribution on [0, 1],
say, U [0, 1], where θ̂n is an estimate of θ. We set F̂n(r) = 1

n

∑n
i=1 I (Fθ̂n

(Xi ) ≤ r),

0 ≤ r ≤ 1, where θ̂n is any consistent estimator of true parameter θ0 under the null,
for example, the maximum likelihood estimator (MLE).

As in [9], we generate independent and identically distributed (i.i.d.) random
variables wi j , j = 1, · · · , J , from U [0, 1], where J is a large integer, say, 1,000,
such that w̃i j = wi j

w1 j+···+wmj
and si = i/m, i = 1, · · · ,m, and use the test:

T̂n = √
n max
1≤ j≤J

∣∣∣
m∑

i=1

w̃i j

(
F̂n

( i

m

)
− F̂n

( i − 1

m

))
× logm

(
F̂n

( i

m

)
− F̂n

( i − 1

m

))∣∣∣,(4)

whereinm = n1/3 is used because this choice consistently produces reasonably good
results as seen in [9]. Since the entropy test has a limiting distribution depending upon
the choice of θ̂n , we obtain the critical values through Monte Carlo simulations (i.e.
the bootstrap method) as follows:

(i) From the data X1, . . . , Xn , obtain the MLE θ̂n .
(ii) Generate X∗

1, . . . , X
∗
n from Fθ̂n

(·) to obtain T̂n , denoted by T̂ ∗
n , with the pre-

assigned m in (4) based on these random variables. Here, for the empirical
distribution, we use F∗

n (r) = 1
n

∑n
i=1 I (Fθ̂n

(X∗
i ) ≤ r), where θ̂∗

n is the estima-
tor obtained from the bootstrap sample.

(iii) Repeat the above procedure B times, and for a preassigned 0 < p < 1, calculate
the 100(1 − p)% percentile from the obtained B number of T̂ ∗

n values.
(iv) Reject H0 if the value of T̂n obtained from the original observations is larger

than the 100(1 − p)% percentile obtained in (iii).

According to [9], the bootstrap entropy test is ‘weakly consistent’, which justifies
its usage in practice. Applying the test to the residuals ε̂t , we implement a goodness
of fit test for the normal and skew-t distributions: the latter has the density function
of the form [6]:

p(y|μ, σ, ν, γ) = 2

γ + 1
γ

Γ ( ν+1
2 )

Γ ( ν
2 )(πν)1/2

σ−1 ×
[
1 + (y − μ)2

νσ2

{
1

γ2
I[0,∞)(y − μ) + γ2 I(−∞,0)(y − μ)

}]−(ν+1)/2

with location parameter μ = −0.003, scale parameter σ = 0.406, shape parameter
ν = 7.1, and skewness parameter γ = 0.882.

The entropy test rejects the null hypothesis of the normal distribution and to accept
the skew-t distribution at the nominal level of 0.05. Figure3 shows the histogram of
the residuals and corresponding theoretical normal and skew-t densities. Apparently,
the skew-t is a better fit to the residuals. Figure4 shows the Q-Q plot of the residual
quantiles and fitted skew-t quantiles. These two coincide except for some extreme
cases, which are speculated to affect the quantile forecasting as seen below.
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3 Conditional Quantile Forecasting

3.1 Parametric Method

Since the log-transformed PM10 data follows ARMA(1,3) model and the residuals
follow a skew-t distribution, we use the parametric approach to obtain conditional
quantile forecasts [5]. Since Yt follows an ARMA(1,3) model:

Yt = δ + φ1 Yt−1 + εt − θ1 εt−1 − θ2εt−2 − θ3 εt−3, (5)

where εt are i.i.d. skew-t random variables, the one-step-ahead conditional quantile
forecast based on the information up to time t is given by:

V̂ aRt = δ̂ + φ̂1 Yt−1 + Qτ (ε) − θ̂1ε̂t−1 − θ̂2 ε̂t−2 − θ̂3ε̂t−3, (6)

where Qτ (ε) denotes the τ -th quantile of the skew-t distribution. Here, notation VaR
is used because this conventionally indicates the value-at-risk in the financial time
series context.

Based on this, we obtain the one-step-ahead conditional quantile forecasts using
a moving window of size 1000. For example, we estimate the parameters using the
1000days’ log-transformed PM10 data from January 1, 2012 to September 26, 2014
in order to get the one-step-ahead conditional quantile for September 27, 2014. We
repeat this procedure until December 31, 2015. Figure5 shows the one-step-ahead
conditional quantile forecasts at the level of 0.9.

3.2 Quantile Regression Method

In this subsection, we use the quantile regression method to get the conditional quan-
tile forecasts [13]. Based on the ARMA(1,3) model, we express the τ -th conditional
quantile function of Yt given past information Ft−1 as follows:

qt (θ) = φ1 Yt−1 + ξ(τ ) − θ1 εt−1 − θ2 εt−2 − θ3 εt−3, 1 ≤ t ≤ n, (7)

where the ξ(τ ) = δ + F−1
ε (τ ) (Fε denotes the distribution of εt ) emerges as a new

parameter. In this case, the parameter vector is denoted by β = (ξ,φ1, θ1, θ2, θ3)
T ,

and then, the τ -th quantile regression estimator of true parameter is defined by:

β̂n(τ ) = arg min
β∈B

1

n

n∑

t=1

ρτ (Yt − qt (τ )), (8)
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Fig. 5 The PM10 conditional quantile forecasts based on the parametric method
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Fig. 6 The PM10 conditional quantile forecasts based on the quantile regression method
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where B ⊂ R
5 is the parameter space, ρτ (u) = u(τ − I (u < 0)), and I (·) denotes

an indicator function. However, since εt−1, εt−2, εt−3 are unknown, we introduce the
objective function:

β̂n(τ ) = arg min
β∈B

1

n

n∑

t=1

ρτ (Yt − q̂t (τ )), (9)

where q̂t (τ ) = φ1 Yt−1 + ξ(τ ) − θ1 ε̂t−1 − θ2 ε̂t−2 − θ3 ε̂t−3 with initial values Yt =
εt = 0 when t ≤ 0, and the residuals are obtained from the whole observations. The
one-step-ahead conditional quantile forecasts are then given by:

V̂ aRt (τ ) = φ̂1n Yt−1 + ξ̂n − θ̂1n ε̂t−1 − θ̂2n ε̂t−2 − θ̂3n ε̂t−3. (10)

As in the previous case, we forecast the one-step-ahead conditional quantile using a
movingwindow of size 1000. Figure6 shows the one-step-ahead conditional quantile
forecasts at the level of 0.9.

3.3 Evaluation

In order to evaluate the quantile forecasting methods, we conduct the unconditional
coverage (UC) test of [8] and the conditional coverage (CC) test of [3]. Table1
lists the p values of the UC and CC tests and the proportions of the Yt ’s below the
estimated one-step-ahead quantile. The result indicates that the two methods all pass
the UC and CC tests, and the quantile regression method produces larger p values
than the parametric method. We reason that the outliers in the tail part (Fig. 3) affect
the performance of the parametric method in a negative way. The quantile regression
method is well known to be robust against outliers or amodel bias than the parametric
method.

Table 1 The evaluation of quantile estimates of log-transformed PM10 concentrate: the figures
denote the p values of the UC and CC tests and the proportion of the log-transformed PM10
concentrates below the estimated one-step-ahead quantile

Method 0.75 0.90

Parametric model UC 0.570 0.334

CC 0.296 0.399

Proportion 0.761 0.913

Quantile regression UC 0.726 0.889

CC 0.647 0.885

Proportion 0.757 0.898
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4 Concluding Remarks

In this study,we analyzed thePM10dataset basedon anARMAmodel anddiscovered
that the best fit is the ARMA(1,3) model with skew-t errors. The conditional quantile
forecasting is conducted at the levels of τ = 0.75 and 0.9, which revealed that the
quantile regression method slightly outperforms the parametric method based on
the MLE. Our quantile forecasting procedure can be potentially used to alarm a
group of people, sensitive to the air pollution, to pay more attention to their health
treatment. Although not handled in this study, one may consider clinical experiments
to determine a proper quantile τ that can be used as a guideline for a group of
people or patients who should mandatorily avoid the exposure to high degree PM10
concentration. The forecasting value can be used as a warning signal particularly
when it exceeds the preassigned limit values. For the ordinary people, τ = 0.5 may
be good enough for such a purpose, whereas higher τ ’s would be appropriate for
some patients at a high risk. In general, the air pollution problem is strongly linked
with health economics that aims to understand the behavior of the individuals, health
care providers, hospitals, health organizations, and governments in decision-making,
and to evaluatemarket failure and improper allocation of resources. Economic cost of
the health impact of air pollution is one of the important issues in health economics.
We leave all the relevant issues as our future project.
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Do We Have Robust GARCHModels Under
Different Mean Equations: Evidence
from Exchange Rates of Thailand?

Tanaporn Tungtrakul, Natthaphat Kingnetr and Songsak Sriboonchitta

Abstract This study investigates the exchange rate volatility of Thai baht using
GARCH, TGARCH, EGARCH and PGARCH models and examines the robustness
of these models under different mean equation specifications. The data consisted of
monthly exchange rate of Thai baht with five currencies of leading trade partners
during January 2002–March 2016. The results show that the GARCHmodel is well-
fitted for Chinese yuan and US dollar exchange rate, while TGARCH model is
suitable to be selected for Japanese yen, Malaysian ringgit and Singapore dollar.
For the model sensitivity, the findings indicate that the GARCH model is robust for
the cases of Chinese yuan and US dollar, while TGARCH model is robust only for
Malaysian ringgit. Therefore, We conclude that the selection of GARCH models is
sensitive to mean equation specification. This confirms that researchers should pay
attention to mean equation specifications when it comes to volatility modelling.

Keywords Robust ·GARCH ·EGARCH ·TGARCH ·PGARCH ·Exchange rate ·
Thailand

1 Introduction

Since the introduction of theAutoregressiveConditional Heteroskedasticity (ARCH)
model [13] and the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model [6], a large number of volatility models have been developed to
estimate the conditional volatility of stock return, one of the important factors in
financial investment [27]. Application of volatility models has been extended to in-
ternational economics for modelling and forecasting volatility of macroeconomic
factors involved in international trade [21, 24]. Trade is one of important factors
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contributing to economic development [28]. Studying the characteristics of its deter-
minants would not only help to understand how economic fluctuation occurs through
trade but also contribute to several implications such as trade forecasting for investors,
long and short-run policy making, and international policy coordination [22]. As far
as determinant of trade is concerned, Auboin and Ruta [5] pointed out that exchange
rate and its volatility play an important role in fluctuations in international trade
across countries around the world.

According to theObservatory ofEconomicComplexity (OEC), Thailand is among
the top 30 exporters and importers in the world [25]. The crucial partners of Thailand
are China, Japan, United States, Malaysia, and Singapore, which were the top five
trade partners in 2012–2015 [9]. After the Asian financial crisis in July 1997, Bank
of Thailand decided to change the exchange rate system from fixed exchange scheme
to managed floating exchange rate scheme, causing the exchange rate of Thai baht
to fluctuate since then.

Many studies focusedon the impact of exchange rate volatility on tradeflows.They
used different econometric models to measure exchange rate volatility. Rahmatsyah
et al. [23] studied the effect of exchange rate volatility on the bilateral trade of
Thailand with the US by using the Moving Average Standard Deviation (MASD)
and the GARCHmodels to estimate Thailands exchange rate volatility. Their results
indicate that there exists a negative effect from the exchange rate volatility on both
export and import under the MASD framework, whereas only negative effect on
import was found for the case of the GARCH model. Hooy and Baharumshah [16]
also studied exchange rate volatility in six selected East Asian countries, including
Thailand, trading with the US by employing the EGARCH model. In the case of
Thailand, they found that the exchange rate volatility has only positive effect on
Thailands imports; however, evidence for impact on export could not be found.
From these studies, it can be seen that employing different volatility models leads to
completely different results.

The conflicting predictions from the theoreticalmodels and the failure of empirical
studies on the effects of exchange rate volatility on trade have led to the develop-
ment of various kinds of volatility model to facilitate as many situations as possible
[26]. Engle [13] was the first to develop such a model, the so-called ARCH model.
Later on, Bollerslev [6] generalized the ARCHmodel into the GARCHmodel. Even
though these models were developed decades ago, they still have a great influence on
the volatility literature nowadays. However, both the models require the assumption
that effects of positive and negative shocks are symmetric. To relax this assump-
tion, Nelson [18] developed the Exponential GeneralizedAutoregressiveConditional
Heteroskedasticity (EGARCH) model. Glosten et al. [14] and Zakoian [30] pro-
posed the Threshold Generalized Autoregressive Conditional Heteroskedasticity
(TGARCH) as an alternative approach. These twomodels are superior to the original
GARCH model because the asymmetric effects of shock can now be captured with
these two models.
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Lee [17] concluded that the performance of volatility models depends on the
information criteria for model selection. Pilbeam and Langeland [20] suggested de-
termining the efficiency of the exchange rate volatility model by comparing the
forecasts from different volatility models. Bollerslev [6] found that the GARCH
model outperforms the ARCH model. Hansen and Lunde [15] showed that there
are no models in the GARCH family capturing asymmetric shock effects, that can
outperform the original GARCHmodel. Donaldson and Kamstra [12] found that the
simple GARCH is the best for predicting stock return volatility. However, Brownlees
and Gallo [7] found that the EGARCH model has better forecast precision. Ali [2]
concluded that the TGARCHmodel outperforms other GARCHmodels under wider
tail distribution. However, asymmetric ARCH models have been successfully fitted
for the exchange rate data [8, 29].

Nevertheless, many researchers in volatility literature have overlooked the im-
portance of mean equation specification. Asteriou and Hall [4] pointed out these
volatility models may be sensitive to mean equation specification such that it could
lead to undetermined or misleading results. Using an inappropriate GARCH model
could cause wrong estimates of exchange rate volatility which world then be used to
investigate the determinants of international trade, resulting inmisleading conclusion
and policy implication.

Therefore, there are two objectives in this study, Firstly, we examine the exchange
rate volatility in Thailand in relation to leading trade partners, using different univari-
ate symmetric and asymmetric GARCH models. The Akaike information criterion
(AIC) is employed for model selection in this study. Secondly, we investigate the
robustness of themodel in terms of how responsive the GARCHmodel selection is to
mean equation specification. The analysis of volatility in exchange rate is useful not
only for policy makers to understand Thailands exchange rate volatility behaviour
and movement, but also to international traders and investors that require the fitted
volatility model in order to make appropriate decisions.

The organization of this paper is as follows. The data analysis andmodel specifica-
tion used in this study are presented in Sect. 2. In Sect. 3, we provide themethodology
employed in this study. Section4 shows the empirical results, followed by the robust-
ness checks of the GARCH models in Sect. 5. Finally, the conclusion of this study
is drawn in Sect. 6.

2 Data Analysis

To investigate the volatility models of the exchange rate of Thai baht, the monthly
of the exchange rates of Thai baht over the period from January 2002 to March 2016
collected from Bank of Thailand are employed. Five different currency exchanges
are considered in the study, based on the currencies of the top five trade partners of
Thailand, and these currencies are, Chinese yuan (CHY), Japanese yen (JPY), US
dollar (USD), Malaysian ringgit (MYR), and Singapore dollar (SGD). All exchange
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rates are measured as Thai baht per 1 unit of the respective currency and transformed
into growth rate (as a percentage change) using the following formula:

gi,t = ei,t − ei,t−1

ei,t−1
× 100, (1)

where gi,t is the growth rate of the exchange rate of Thai baht with currency i at
time t; ei,t and ei,t−1 are the exchange rate of Thai baht with currency i in the current
month and the previous month, respectively.

The periods prior to 2002 are not considered in this study since Thailand was
using a fixed exchange rate scheme, causing the rate to be almost fixed during that
time. Therefore, only the period from 2002 to 2016 is of concern. Figure1 shows the
growth rate of the exchange rates during the period of study. It can be seen that the
series has been fluctuating over time.

Fig. 1 Plots of monthly exchange rate during the period from January 2002 to March 2016

Table 1 Descriptive statistics of growth rate of exchange rates

Currency THB–CHY THB–JPY THB–USD THB–MYR THB–SGD

Mean 0.0198 –0.0101 –0.1208 –0.1594 0.0473

Median –0.0628 –0.1349 –0.1993 –0.1668 –0.0291

Maximum 4.4461 7.3836 3.5171 3.7487 4.1996

Minimum –3.0407 –7.5639 –3.5487 –4.1218 –2.7289

Std. dev. 1.3514 2.2894 1.3811 1.4018 1.1389

Skewness 0.3431 0.2252 0.1597 0.1167 0.4410

Kurtosis 3.2255 4.2146 3.0766 3.6453 3.7658

Jarque-Bera
test

3.6952 11.888 0.7641 3.3354 9.6656
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The descriptive statistics for each exchange rate is provided in Table1.We can see
that the growth rates of THB–JPY and THB–SGD exhibit positive skewness, which
may imply right-tail distribution. The other three cases suggest normal distribution
since the levels of skewness are moderate and the kurtosis values are close to three.

3 Methodology

In this section, we describe the brief information regarding the unit roots tests and the
volatility models for the exchange rate. Four univariate conditional volatility models
are considered in this study, namely GARCH(1,1), EGARCH(1,1), TGARCH(1,1),
and PGARCH(1,1).

3.1 Stationarity Testing

When it comes to modelling time series data, one of the necessary steps is to check
whether the series is stationary. This studywill employ theAugmentedDickey-Fuller
(ADF) test [10], with the following model specification:

Δyt = α0 + α1yt−1 +
p∑

i=1

α2iΔyt−i + εt (2)

where yt is the time series being tested and εt stands for residuals. The hypothesis
testing can be specified as H0 : α = 0 for non-stationary against H1 : |α| < 1 for
stationary. Nimanussornkul et al. [19] pointed out that the variance will become
infinitely large if the series is non-stationary. However, the conclusion made from
the conventional ADF test is based on the use of p-value and test statistic. However,
there have been arguments recently that it may not be appropriate to use p-value for
making conclusion. Therefore, this study employed the ADF test through the use
of the Akaike information criterion (AIC) which was introduced by Anderson et al.
[3]. The idea is to convert the null hypothesis testing problem of the ADF test into
a model selection problem. Thereafter, we obtain the Akaike weight based on AIC
and calculate the probability for each hypothesis as

Prob(Hi |data) = exp(− 1
2Δi )

exp(− 1
2Δ0) + exp(− 1

2Δa)
(3)

where i = 0 for H0, i = a for Ha and Δi = AICi − min AIC . The hypothesis with
higher probability will be chosen.
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3.2 GARCH(1,1) Model

To specify the appropriate equations. If the mean equation follows Autoregressive
moving averagewith p autoregressive terms and qmoving average termsARMA(p,q)
model can be written as

yt = c +
p∑

i=1

ϕi yt−i +
q∑

i=1

θiμt−i (4)

For variance equation, theAutoregressiveConditionalHeteroscedasticity (ARCH)
model introduced by Engle [13] assumes that positive and negative shocks affect the
volatility equally. Bollerslev [6] extended ARCH into the GARCHmodel which can
be specified as

σ 2
t = γ + ασ 2

t−1 + βu2t−1 (5)

where γ represents the predicted variance by the weighted average of a long term
average;α represents the forecast variance from the previous period (GARCHeffect);
and β represents the information regarding the observed volatility in the previous
period (ARCH effect). For ensuring that the conditional variance (σ 2

t ) is greater
than zero, γ > 0, α ≥ 0, and β ≥ 0 are required. The GARCH(1,1) model shows
that volatility is affected by previous shocks and its own past. The assumption of
this model is that positive shocks (ut > 0) and negative shocks (ut < 0) exhibit
the same impact on the conditional variance (σ 2

t ). The general specification of the
GARCH(m,n) model is

σ 2
t = γ +

m∑

i=1

αiσ
2
t−i +

n∑

j=1

β j u
2
t− j (6)

where m is the number of lagged σ 2
t terms and n is the number of lagged u2t terms.

3.3 EGARCH(1,1) Model

The exponential GARCH(EGARCH) model was introduced by Nelson [18]. This
model allow the impact of positive shocks and negative shocks to be asymmetric.
Additionally, this approach ensures that the conditional variance remains positive.
According to Asteriou and Hall [4], the EGARCH(1,1) model can be written as

log(σ 2
t ) = γ + α log(σ 2

t−1) + β

∣∣∣∣
ut−1

σt−1

∣∣∣∣ + δ
ut−1

σt−1
, (7)
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where the leverage parameter (δ) reflects the symmetry effect of the shocks. If δ =
0, then the effect is symmetric. When δ < 0, it implies that the negative shocks
have a greater contribution to volatility than the positive shocks. In macroeconomic
analysis, negative shocks usually imply bad news that leads to more uncertain and
unpredictable future [1]. The logarithm of conditional volatility in EGARCH model
allow the estimates of the conditional variance to remain positive. For the general
case, the EGARCH(m,n) is specified as follows:

log(σ 2
t ) = γ +

m∑

i=1

αi log(σ
2
t−i ) +

n∑

j=1

β j

∣∣∣∣
ut− j

σt− j

∣∣∣∣ +
n∑

j

δ
ut− j

σt− j
(8)

3.4 TGARCH(1,1) Model

The threshold GARCH (TGARCH) model, proposed by Glosten et al. [14] and
Zakoian [30], can take the leverage effect into account. For the TGARCH(1,1)model,
the specification1 of the conditional variance is

σ 2
t = γ + ασ 2

t−1 + βu2t−1 + δu2t−1dt−1 (9)

where dt is the dummy variable taking value as follows:

dt−1 =
{
1 if ut−1 < 0 (bad news)
0 if ut−1 > 0 (good news).

From the model, we can see that the good news shocks have the impact of β while
the bad news shocks have the impact of β + δ. The asymmetry of the shock effects
can be trivially checked. When δ = 0, the model reduces to the simple GARCH(1,1)
model and both the news will have symmetric effects, whereas δ > 0 implies asym-
metry in which the negative shocks have a greater effect on σ 2

t than positive shocks
and vice versa. In the general TGARCH(m,n) model, the conditional variance equa-
tion is given by

σ 2
t = γ +

m∑

i=1

αiσ
2
t−i

n∑

j=1

(β j + δ j dt− j )u
2
t− j , (10)

where γ , αi , and β j are non-negative parameters that satisfy similar conditions as
the GARCH model.

1We use the model specification given by Asteriou and Hall [4], which is also known as the GJR
model [14]. The original TGARCH model was introduced by Zakoian [30], and it considers condi-
tional standard deviation instead of conditional variance.
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3.5 PGARCH(1,1) Model

The power GARCH (PGARCH) model was introduced by Ding et al. [11]. Unlike
previous GARCH models, the conditional variance is replaced by the conditional
standard deviation to measure volatility. The PGARCH(1,1) model is given by:

σ k
t = γ + ασ k

t−1 + β(|μt−1| − δμt−1)
k (11)

For the general case, the equation of the PGARCH(m,n) model is given by

σ k
t = γ +

m∑

i=1

αiσ
k
t−i +

n∑

j=1

β j
(∣∣μt− j

∣∣ − δ jμt− j
)k

(12)

where αi denotes the GARCH parameters; β j denotes the ARCH parameters; δ j

denotes the leverage parameters; k is the power parameter with k > 0 and
∣∣δ j

∣∣ ≤ 1.
It can be seen that if δ j = 0, the effects of the shocks are symmetric; otherwise,
the effects of the shocks are asymmetric. Moreover, the PGARCH model is rather
flexible compared to previous GARCH models. It can be seen that when k = 2,
the PGARCH(m,n) model specification reduces to the conventional GARCH(m,n)
model. But if k = 1, unlike the GARCH(m,n) model, the conditional standard devi-
ation will be estimated instead of the conditional variance. Hence, it is possible to
say that the GARCH model is a special case of PGARCH model.

4 Empirical Results

The results of the ADF unit root test from both the conventional approach and alter-
native approach using the AIC are shown in Table2. It can be seen that they reach
the same conclusion. Therefore, we could say that series for each of the currencies
is stationary and is appropriate to be used for our investigation.

Table3 shows the selected ARMAmodels for the conditional mean in the growth
rate of the exchange rates for each currency according to the AIC from the set of
ARMA(0,0), ARMA(1,0), ARMA(0,1) and ARMA(1,1) models. We can see that
the best-fitting model for THB–CHY, THB–USD, and THB–MYR is ARMA(0,1);
the best-fitting model for THB-JPY is ARMA(1,0) and the best-fitting model for
THB–SGD is ARMA(1,1).

Given the selected mean equations, the different GARCH models are estimated.
The results of the GARCH model selection are shown in Table4. For the cases
of THB–CHY and THB–USD, the symmetric GARCH(1,1) model with normal
error distribution gives a better fit than the other GARCH models. In the cases of
THB–JPY and THB–MYR, the asymmetric TGARCH(1,1) model with normal error
distribution is chosen. Finally, the asymmetric TGARCH(1,1) with generalized error
distribution (GED) is selected for the case of THB–SGD. After finding out which
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Table 2 Unit root test results

Models ADF test (original) ADF test (AIC approach)

Lag length ADF test
statistic

Inference AIC Akaike
weight

Inference

THB–CHY 0 –8.525*** Stationary 3.281 0.545 Stationary

THB–JPY 0 –9.592*** Stationary 4.415 0.553 Stationary

THB–USD 0 –8.598*** Stationary 3.340 0.545 Stationary

THB–MYR 0 –9.958*** Stationary 3.471 0.558 Stationary

THB–SGD 0 –9.308*** Stationary 3.007 0.552 Stationary

Note
1. Lag length selection is based on the Akaike information criterion (AIC)
2. If the Akaike weight is greater than 0.5, the stationary model is preferred
3. *** indicates 99% levels of confidence

Table 3 ARMA model selection for mean equation

Case Model

ARMA(0,0) ARMA(1,0) ARMA(0,1) ARMA(1,1)

THB–CHY 3.489 3.288 3.285 3.289

THB–JPY 4.500 4.423 4.442 4.427

THB–USD 3.490 3.348 3.342 3.349

THB–MYR 3.519 3.478 3.474 3.485

THB–SGD 3.104 3.014 2.993 2.991

models to be selected, we now discuss the ARCH, GARCH, and leverage effects for
each case.

The empirical results of the selected models are given in Table5. For the cases
of THB–CHY and THB–USD, the GARCH(1,1) model is selected, and a similar
conclusion is reached. The ARCH and the GARCH terms indicate that the lagged
conditional variance and disturbance affect the conditional variance. The sum of the
ARCH and the GARCH terms (persistence term) is less than one, which means that
the shocks are not persistent to the conditional variance. However, the leverage effect
could not be found as it is not considered in the GARCH(1,1) model.

In the case of THB–JPY, THB–MYR, and THB–SGD, the TGARCH(1,1) model
is selected. For all of these cases, the sum of the ARCH and the GARCH terms is less
than one, indicating that the variance process is mean reverting. The leverage effect
exhibits a positive sign, implying the existence of asymmetric effect. This means
there is a greater impact from negative shock than the one from positive shock on
the volatility, provided that changes in negative and positive shocks are the same.
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Table 6 Comparison of ARMA-GARCH models

Mean equation Variance equation

GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1)

CASE: THB–CHY

ARMA(0,0) 3.452 3.458 3.461 3.468

ARMA(1,0) 3.275 3.319 3.286 3.288

ARMA(0,1)
(selected)

3.283 3.305 3.293 3.297

ARMA(1,1) 3.248 3.314 3.294 3.298

CASE: THB–JPY

ARMA(0,0) 4.387 4.367 4.362 4.374

ARMA(1,0)
(selected)

4.386 4.348 4.346 4.350

ARMA(0,1) 4.383 4.349 4.347 4.345

ARMA(1,1) 4.398 4.358 4.357 4.361

CASE: THB–USD

ARMA(0,0) 3.509 3.518 3.521 3.531

ARMA(1,0) 3.352 3.380 3.359 3.355

ARMA(0,1)
(selected)

3.351 3.364 3.359 3.356

ARMA(1,1) 3.360 3.375 3.367 3.362

CASE: THB–MYR

ARMA(0,0) 3.534 3.541 3.410 3.500

ARMA(1,0) 3.481 3.500 3.413 3.467

ARMA(0,1)
(selected)

3.465 3.491 3.384 3.445

ARMA(1,1) 3.485 3.507 3.350 3.462

CASE: THB–SGD

ARMA(0,0) 3.119 3.147 3.101 3.114

ARMA(1,0) 3.024 3.029 3.031 3.022

ARMA(0,1) 2.984 3.002 2.990 2.976

ARMA(1,1)
(selected)

2.977 2.978 2.922 2.967

Note
1. Residual distributions are considered as normal for all cases, except for THB–SGD which is a
GED distribution
2. Numbers in bold indicate the most appropriate GARCH model for a given mean equation based
on the AIC
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5 Robustness: Sensitivity to Mean Equation

In this section, we investigate how the selection of the GARCH-family models re-
sponds to the change in the mean equation. As seen in many research studies in the
volatility literature, the mean equations vary from the simple mean equation (i.e. re-
gression with a constant term or ARMA(0,0), while some employ ARMA(p,q)). We
believe that the mean equation specification plays an important role in the GARCH
model selection. Asteriou and Hall [4] asserted that GARCHmodel may be sensitive
to mean equation specification such that it could lead to undetermined or misleading
results, and that researchers should exercise much caution when selecting the mean
equation for a GARCH model. Therefore, by conducting all possible combinations
of the ARMA-GARCH model, and together with Akaike Information Criteria, the
robustness of the GARCH models under various mean equations could be found.

According to Table6, it is evident that the optimal GARCH models are not stable
for the cases of THB–JPY and THB–SGD. A shift from the selected mean equation
leads to a different selected GARCH model. However, for the cases of THB–CHY
and THB–USD the AIC suggests that GARCH(1,1) is the most suitable model for
volatility modelling, regardless of the mean equation considered in this study. Addi-
tionally, TGARCH(1,1) is robust to mean equations misspecification in the case of
THB–MYR. Nevertheless, considering all the cases, it is possible to conclude that
GARCHmodel selection is still sensitive to the selection ofmean equation; hence, all
considered GARCHmodels in this study still suffer from the risk of misspecification
in the mean equations.

6 Conclusion

In this paper, we investigated the GARCH models under different mean equations
for the exchange rates of Thai baht. The monthly of the exchange rates of Thai
baht over the period of January 2002 to March 2016 were employed. Five different
currency exchanges were considered in the study based on the currencies of five top
trade partners of Thailand, and these currencies are China yuan (CHY), Japanese yen
(JPY), US dollar (USD), Malaysian ringgit (MYR), and Singapore dollar (SGD).

The results showed that the GARCH(1,1) model with normal error distribution is
preferable in comparison with other models in the cases of THB–CHY and THB–
USD. As for the cases of THB–JPY and THB–MYR, TGARCH(1,1) with normal
error distribution is preferred, while TGARCH(1,1) with generalised error distribu-
tion fits the data better for THB–SGD.

In addition,we also investigated themean equation sensitivity check to see how the
GARCH model responds to changes in the mean equation which plays an important
role in the selection of the GARCH model. We found that the optimal GARCH
models are not stable for the cases of THB–JPY and THB–SGD. However, for the
cases of THB–CHY and THB–USD, the GARCH(1,1) model is selected regardless
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of the mean equation considered in this study, whereas the TGARCH(1,1) model is
found to be robust for THB–MYR.

Nevertheless, considering all the cases, it is possible to conclude that GARCH
model selection is sensitive to the selection of themean equation. Hence, theGARCH
models in this study still suffer from the risk of having misspecification in the mean
equations. The findings of this study, as we expected, confirm that researchers should
pay attention to mean equation specification when it comes to volatility modelling.
Moreover, further investigation in developing robust volatility modelling together
with different diagnostic tools and alternative volatility models could enable us to
have a closer look at volatility.
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Abstract Globalization andmodernization have generated the newopportunities for
Multinational Enterprises (MNEs) to invest in foreign countries. Especially, many
emerging and developing countries aremaking efforts actively to attract foreign direct
investment (FDI) inflow in the purpose of boosting economic growth and develop-
ment. This paper investigates the determinants of Cambodia’s inward FDI within the
time interval from 1995 to 2014. Panel co-integration approach, namely Full Modi-
fied Ordinary Least Square (FMOLS) and Dynamic Ordinary Least Square (DOLS)
are proposed to estimate the long run coefficients. Our analysis shows thatmost of the
variables are statistically significant except for population growth rate. Market size
and financial development are, as expected, positively correlated whereas macroeco-
nomic instability and cost of living are negatively associated but poor institution is,
as unexpected, positively associated to inward FDI. The sign of ECT (t − 1) coeffi-
cient from panel causality analysis is significantly negative for GDP to FDI equation.
It is indicated that economic growth and FDI is bidirectional causal relationship in
the short run and the long run. The result from measurement predictive accuracy
obtained from out of sample ex-post forecasting (2013–2014) confirmed that panel
DOLS has a good predictive power to apply the long run ex-ante forecasting of
Cambodia’s inward FDI. Thus, our findings suggest that improving macroeconomic
indicators, administrative barrier and financial instrument and development are the
crucial policies to attract more inward FDI in the upcoming period.

Keywords Panel co-integration approach · Out of sample ex-post forecasting ·
Diebold and Mariano Test · Foreign direct investment · Cambodia

T. Chhorn (B) · J. Sirisrisakulchai · C. Chaiboonsri · J. Liu
Faculty of Economics, Chiang Mai University, Chiang Mai, Thailand
e-mail: chhorntheara91@gmail.com

© Springer International Publishing AG 2017
V. Kreinovich et al. (eds.), Robustness in Econometrics,
Studies in Computational Intelligence 692, DOI 10.1007/978-3-319-50742-2_38

615



616 T. Chhorn et al.

1 Introduction

Since the Eclectic Paradigm or OLI theory of [21] has developed to explain the
phenomenon of foreign direct investment (FDI) theory through three approaches
namely Ownership, Location and International Advantages, the assumption of FDI
seems to be plainly comprehensive. Still, the context of FDI becomes an enlargeable
concerning channel for researchers and as well as investors to study and conduct the
research studies. Correspondingly, it is quietly important for developing countries
and Least Developing Countries (LDCs) to enhance their economic performances,
financial systems and policies to attract more inward FDI.

In the theoretical frameworks, FDI approach always comes up with the question
why Multinational Enterprises (MNEs) have encouraged investing and establish-
ing the entity facilitates in the host countries rather than staying in the domestic
market. That’s because they searched thereby the opportunities to benefit from inno-
vation and/or technological development and the new market shares to operate their
investments. More precisely, what is strongly attracted them is due to political and
economic stability, policy certainty for investors and elevated geopolitical risks, nat-
ural resource abundant, tax burden or trade barrier, favorably of market and regional
and international integration, open economy to the global market would be consid-
ered as the main factors to attract foreign entities and MNEs since generally foreign
investors always want to invest in which uncertainty expectation is comparatively
low, [17], [29] and [48]. On the other hand, in the empirical analysis, FDI approach
accounts to investigate either in term of partial or general equilibrium frameworks. In
the partial equilibrium framework, FDI was irritable with the firm’s decision making
and other specific variables while in the general equilibrium’s one, [35] proposed
Knowledge-Capital model to unify both horizontal and vertical motivation of FDI
decision.

FDI was connected with employment creation, technological transfer and growth
spillover, rising income and consumer expenditure, enhanced international trade
performance and also a broadened tax base. Beside the realization of those advance-
ments, many governments of the world economy, either developing or developed
countries, are traversing in ever-increasing competitiveness of the country to attract
and sustain FDI inwards as the manner unprecedented in the history of economic
development (Lall 1998). In the context of Cambodia, after recovering from the dete-
rioration and international isolation and due to social stability, political liberation,
regional and global integration, favorable economic conditions and especially the
presence of United Nations Transitional Authority in Cambodia (UNTAC) in 1992,
the country has developed and improved remarkably to the new era of transitional
and fresh development nation and become one of the most attracting destination
for investment. Nearly the last two decades indicated that the average annual growth
rate of Cambodia’s gross demotic product (GDP) is approximately over 7.3% (World
Bank Database 2015). Accordingly, Cambodia was ranked among the fast-growing
regions in the world. The growth rate of GDP has achieved from the potential sectors
such tourism, service-banking, agriculture, textiles, and especially FDI in small and
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medium enterprises (SMEs). FDI has come up to get widely concerning channel from
the Royal Government of Cambodia (RGC) as a major potential contribution factor
in boosting economic growth and increase household income nearly two decades
up to present.

Cambodia’s inward FDI has been augmented dramatically alongside with many
political-economic reasons. For instant, in 1994 and 2005, the law on investment
was created and Cambodia’s Special Economic Zones (CSEZs) was constructed
respectively. These were making FDI inflow raised considerably and approximately
almost USD 1.7 billion (World Bank 2014) contributed to national economic. This
among was received from China’s investment as the premier, followed by Korea,
ASEANmemberships, EuropeanUnion (EU) andUnited Stated of American (USA).
FDI inflow as percentage of GDP from 1993 to 2015 was averagely accounted 5.7%
and approximated almost USD 10.9 billion (World Bank Database 2015).

The RGC has recognized many important factors to make out the facilitative con-
dition for investment climate to encourage both domestic and foreign investment flow,
to challenge with others nearby countries and as well as lead country into the interna-
tional economy system. Beside this renovation, Cambodia has attracted more inward
FDI, trade partnership that jointly assist to facilitate technological transformations,
create new jobs, new business ideas and systems as an international standard and inte-
grate her economy into theworld. Accordingly, that would be an effectivemechanism
to robust economic growth, poverty reduction and sustainable development.

FDI based on approved investments in 2015 was approximately almost USD 1610
million (CDC2015). Garment and textile industries are themain sources of FDI since
investors are enjoyedwith low cost and tax incentive, better investment climate, duty-
quota free access to EU andUSmarket since 2001 up to presence, the development of
banking system and as well as macroeconomic stability (Chanthol 2015). Although,
the growth rate ofCambodia’s inward FDI has increased dramatically and contributed
to the national economy inmany sectors, the analysis of economic factors whichmay
influence to this expansion is not yet well-understood empirically. Correspondingly,
the main contribution of the study is to investigate the direction of foreign direct
investment (FDI) and economic growth (GDP), the vital of economic factors influ-
encing and driving the growth rate of FDI inflow in Cambodia from 1995 to 2014
and as well as to adopt an out of sample forecasting from 2013 to 2014.

As the result, the structural designed of the study is followed: Sect. 2 is to present
some empirical literature reviews whereas Sect. 3 aims to explain the methodology
using in the study and Sect. 4 is to interpret the empirical outcomes. Finally, the
conclusion remarks will be stated combining together with some policy implications.

2 Data Collection and Sources

The selected variables using in the estimated regression are extracted annually from
different sources. FDI inflow measuring in million dollars divided by Cambodia’s
gross domestic product (at 2000 prices) is extracted from UNCTAD and CEIC data
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manager from by Chiang Mai university (CMU). The gross domestic product (GDP)
growth rate and per capita, population growth rate, inflation rate, exchange rate and
interest rate are extracted from World Development Indicator (WDI), Asia Devel-
opment Bank (ADB). The degree of control of corruption index is imported from
World Governance Indicator (WGI), World Bank.

3 Empirical Literature Reviews

In the recent literature reviews, market size adopting as the proxy of GDP growth
rate and per capital, GNP growth rate and per capital and also population growth
rate etc. was considered as an essential factor in analyzing the movement of FDI
inflow. Simply, the large market size indicated the large size of customers and large
potential demand in the country. It is also one of the most necessary condition to
search for economic of scales and efficient utilization. In the theoretical point of
views, investors who are market seeking-FDI is always aimed to exploit the possibil-
ities of the new market particularly market growth [22]. Mall [34], Bilgili et al. [8],
Cuyvers et al. [14] showed that market size is significantly impacted to FDI inflow.
Macroeconomic instability, is another crucial factor, using as the proxy of exchange
rate and inflation rate, is caused foreign investors considering whether to seek their
market in the host country or stay domestically. In the empirical research indicated
that, the magnitude of an influence of exchange rate on FDI is ambiguous and signif-
icantly positive impacted to FDI, Phillips [44], Solomon [47]. Narayanamurthy [49]
indicated an influence of inflation rate of the host country may be delayed the for-
eign entities to consider investing. Financial development knowing as an emerging of
banking system and instrument, using as the proxy of interest rate for the determined
variable, is also a crucial factor among others. The development of banking sectors is
indicated the rehabilitative or facilitative of capital movement and funds transferring
from the host country to the home country or in the host country alone. Hira Aijaz
Ahmed [46] indicated that interest rate is positively related to FDI while Cuyvers
et al. [14] found there is insignificantly between interest rate and FDI. Another essen-
tial variable, institutional factor is one of the most concerning channel to explain the
movement of FDI inflow. In the theoretical framework, [1] indicated that foreign
investors are mostly paying attention by the better environment of politics in which
corruption tends to be relatively low while in the empirical researches, Arbatli [5]
and Cuyvers et al. [14] denoted that the country risk variable or socio-economic
instability is highly significant to determine FDI inflow.

4 Methodology

This research study employs a panel co-integration approach, namely FMOLS and
DOLS to estimate the long run coefficients of the determinants of Cambodia’s FDI
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inflow from 1995 to 2014. The diagnostic tests such panel unit root tests, panel cross-
sectional dependency tests and panel co-integration tests are primitively validated
to detect the stationary, correlation dependency and long run equilibrium of the
observations using in the model.

4.1 Specification of the Function: Cambodia’s Foreign
Direct Investment Inflow

Cambodia’s FDI inflow has been attracted mostly from ASEAN region, developed
east Asia and industry countries, the empirical study which seeks to identify the
economic factors influencing to inward FDI, is not yet done in the recent period.
Therefore, Cambodia’s inward FDI would be modeled by a simple equation as
follows:

FDIit =

⎛

⎜⎜⎝

Market Size
Macroeconomic Instability
Financial Development
Institutional Factor

⎞

⎟⎟⎠

it

(1)

Market size refers to any economic factors that used ad the proxy of gross domestic
product (GDP) either per capita and growth rate or population growth etc., macro-
economic instability considers to an uncertainty of exchange rate, inflation rate and
price level whereas financial development adopts as a proxy of interest rate and lastly,
institutional factor applies as a proxy of degree of control of corruption index which
may affect to investment decision whether are willing to invest and/or start up the
firms entities in the host country. The choice of selected variables are considered in
reviewing many comparative theories and empirical research studies as presented in
the preceding section. As the result, the Eq. (1) can be rewritten to the regression
equation following the methodology of Cuyvers et al. [14] and Dauti [15] to adopt
the pragmatic approach as follows:

�FDIit = αi + β1GDPGRit + β2GDPPCit + β3POPUit + β4INTERit + β5INFLAit

+ β6EXRit + β7CORUPit + β8CLit + εit,

(2)
where

• αi and εit are a constant term and an idiosyncratic error term respectively
• FDIit is the foreign direct investment inflowbyhome countries j to the host country
i at time t divided by real GDP at 2000 prices

• GDPGRit is the difference between the gross domestic product (GDP) growth rate
of the host country i to home countries j at time t

• GDPPCit is the relative radio of gross domestic product (GDP) per capita of the
host country i to home countries j at time t
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• POPUit is the relative radio of population growth rate of the host country i to home
countries j at time t

• INTERit is the relative radio of lending interest rate of the host country i to home
countries j at time t

• INFLAit is the difference between inflation rate of the host country i to home
countries j at time t

• EXRit is the relative radio of official exchange rate of the host country i to home
countries j at time t

• CORUPit is the proxy of the relative radio of level of corruption index of the host
country i to home countries j at time t

• CLit is the proxy of relative cost of living index, follows the methodology ofWong
et al. [52] as follows: CLit = ln[ CPIit/CPIjt

EXRit/EXRjt
].

4.2 Estimating Cambodia’s Foreign Direct Investment Inflow
via Panel Co-integration Model

PanelFMOLS,Pedroni et al. [39, 40]andDOLS,KaoandChiang [28, 29]andPedroni
[40] are efficient techniques to eliminate serial correlation and endogeneity and were
asymptotically normal distribution. Using thesemodels are facilitated to establish the
regression without requirement of taking the difference of integrated variables. The
regression equation of panel data would be modeled as follows:

Yit = αi + βi X
′
it + εit, (3)

where

• i is the number of cross-sectional data with N and t is time dimension with T
number

• βi and εit are the coefficient and error term respectively
• αi is an unknown intercept for each entity (n entity-specific intercepts) and i =
1, 2, . . . , n

• Yit is an explained variable where i is entity and t is time
• X

′
it is the explanatory variables.

4.3 Fully Modified Ordinary Least Square
(FMOLS) Estimator

FMOLS was firstly proposed by Pesaran et al. [42] and developed by Pedroni [40] as
a non-parametric adjustment for endogeneity and serial correlation. It is consistency
and asymptotically unbiased in heterogeneous panel model to allow an analyzing for
the superior flexibility in the existence of heterogeneous in co-integration, Breitung
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andPesaran [9, 42]. Therefore, the non-parametric coefficient of FMOLSwas derived
from OLS’s to robust the result is:

β̂OLS = [
N∑

i=1

T∑

t=1

(Xit − X̄1)
2]−1

N∑

i=1

T∑

t=1

(Xit − X̄1)(Yit − Ȳ1), (4)

To correct for endogeneity and serial correlation, Pedroni [39, 40] has suggested
thegroup-meansFMOLSestimator that incorporates [43] semi-parametric correction
to OLS estimator in adjusting for the heterogeneity that is presented in the dynamics
underlying X and Y. Therefore, getting the non-parametric coefficient of FMOLS
converged to normal distribution as follows:

β̂FMOLS = β̂OLS − β = [
N∑

i=1

T∑

t=1

(Xit − X̄1)
2]−1

N∑

i=1

T∑

t=1

(Xit − X̄1)(Y
∗
it − T γ n

T ),

(5)
where

• Xit is the explanatory variables and X̄1 is the mean of explanatory variables
• Y ∗

it is regressand adjustment of the error term and explained variable
• T γ n

T is constant term and β̂FMOLS is fully modified OLS estimator.

4.4 Dynamic Ordinary Least Square (DOLS) Estimator

Conversely, given the efficiency outcomes in both homogeneous and heterogeneous
in panel co-integration model and opposing to panel FMOLS, panel DOLS is the
fully parametric adjustment for endogeneity and serial correlation and it is the long
run coefficient by taking into account the lead and lag values of variables [28, 29,
39]. The general regression equation of DOLS replaced from (3) is as follows:

Yit = αi + βi X
′
it +

q∑

j=−q

Ci jΔXit+ j + Vit, (6)

where

• αi is a constant term and Yit is an explained variable
• X

′
it is the explanatory variables at time t
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• q and −q are lead and lag value respectively
• βi is DOLS coefficient estimator obtained from i th unit in panel
• Xit+ j is the explanatory variables using lead and lag dynamic in DOLS
• V ∗

it = ∑q
j=−q Ci jΔXit+ j + Vit and ΔXit+ j is differential term of X

′
it

So, getting the coefficient of DOLS estimator:

β̂DOLS = N−1[
N∑

i=1

(

T∑

t=1

zitz
′
it)

−1(

T∑

t=1

zit ȳit)], (7)

where

• β̂DOLS is a dynamic OLS estimator
• zit is the vector regressand in 2(p + 1) × 1 dimension and
• zit = (xit − x̄1,Δxit−p, . . . , Δxit+p).

4.5 Panel Granger Causality in Bi-variate Based VEC Model

Panel Granger-Causality developed by [23] based Error Correction Terms (ECT)will
be modeled to identify whether there exists short and long run bidirectional causality
between FDI and economic growth in subject to the regression equation as follows:

�(1 − L)

[
GDPit

FDIit

]
= (1 − L)

[
αi,GDP

αi,FDI

]
+

p∑

i=1

(1 − L)

[
ϕ11i p ϕ12i p

ϕ21i p ϕ22i p

] [
GDPit−p

FDIit−p

]

+
[
βGDPi

βFDIi

]
ECTt−1 +

[
ε1t
ε2t

]
,

(8)
The Eq. (8) can be derived into Eqs. (9) and (10) as follows:

ΔFDIit = α0 +
m∑

i=1

ϕ11ΔFDI j,t−1 +
n∑

i=1

ϕ12ΔGDPj,t−1 + β1ECTt−1 + ε1t , (9)

ΔGDPit = α0 +
m∑

i=1

ϕ21ΔGDPj,t−1 +
n∑

i=1

ϕ22ΔFDI j,t−1 + β2ECTt−1 + ε2t ,

(10)
where ECTt−1 is the error correction term to determine the long run coefficient, p
denote the lag and length, (1 − L) is the first difference operation, εit is the error
term, ϕik denote the parameter indicating the speed of adjustment to the equilibrium
level after the shock and βi ,ϕik and α0 denoted the estimated parameter to be found.
Thus, from Eqs. (9) and (10), the long run Granger causality was tested under the
null hypothesis as follows:
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• H0: β1 = β2 = 0 for all i and k dimension

The strong granger causality will be tested by:

• H0: ϕ12 = β1 = 0 and ϕ22 = β2 = 0 for all i and k dimension.

4.6 Out of Sample Ex-post Forecasting of Cambodia’s
Foreign Direct Investment Inflow

Adjacent to estimate the long run coefficient of the determinants of Cambodia’s FDI
inflow, the study aims continually to adopt in sample estimating from panel DOLS
and panel Autoregressive-Distributed Lag (ARDL) so-called Pooled Mean Group
PMG) estimation and out of sample ex-post forecasting to examine whether panel
DOLS is the best model to adopt the long run ex-ante forecasting. Accordingly,
the ex-post estimating uses in-sample observation from 1995 to 2012 and out of
sample forecasting from2013 to 2014 as an one step-ahead to check themeasurement
predictive accuracy. Still, Diebold and Mariano [19] test will be validated to test the
equality of two predictive accuracy in order to compare two of out of sample ex-post
forecasting equations.

To get the measurement predictive accuracy, let ȳit be the forecast of variable i
for period t , and let yit be the actual value. ȳit can be a prediction for one period
ahead. Assuming that observations on ȳit and yit are available for t = 1, 2, . . . , T .
Correspondingly, the four most common measures of forecasting accuracy that have
been used to evaluate ex-post forecasts are:

RMSE =
√√√√ 1

T

T∑

t=1

(yit − ȳit)2, (11)

MAE = 1

T

T∑

t=1

|yit − ȳit|, (12)

MAPE = 1

n

n∑

t=1

yit − ȳit
|yit| × 100, (13)

U =
√

1
T

∑T
t=1(yit − ȳit)2

√
1
T

∑T
t=1(Δyit)2

, (14)

Diebold and Mariano Test
Diebold-Mariano (D-M) test is a statistical econometric method developed by
Diebold and Mariano [19] which is asymptotically normal distribution, N (0, 1).
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It is used to compare between two predictive models and not proposed to compare
the estimated models. D-M test is equated as follows:

S = d̄√
V̂
d̄

× T
, where (15)

V̂

d̄
= γ̂0 + 2

h−1∑

j=1

γ̂ j , (16)

γ̂ j = cov(dt , dt− j ) denoted a consistent estimate of the asymptotic variance of
√

T
d̄

d̄ = 1
n2

∑T
i=t1

dt and t = t1, . . . T is the ex-post forecasting period with the total of
n2 forecasting and the lost differential between two forecasting accuracy is:

dt = g(e1t ) − g(e2t ), (17)

where eit denoted the forecasting error and g(eit) denoted the square (squared error
loss) or the absolute value of eit. The null hypothesis of the test is: H0 : E(dt ) = 0∀t ,
meaning that two competing predictive accuracy is equaled, while the alternative one
is, Ha : E(dt ) �= 0∀t , meaning that two competing predictive accuracy is unequaled.

5 Results and Discussion

5.1 Panel Unit Root Tests

Panel unit root tests, [4, 24, 25, 32] and [33], were adopted to detect the stationary
of the variables under the null hypothesis of having a common unit root across the
country groups. Therefore, Table1 reported that few tests could not reject the null
hypothesis at level. Otherwise, the results are fairly enabling in conclusive that these
series are non-stationary for few tests and they were become stationary after taking
the first difference, I(1).

5.2 Panel Cross-Sectional Dependency Tests

Panel cross-sectional dependency tests developed by [10, 41] scaled LM and CD and
[7] bias-corrected scaled LM, had introduced four statistics to test the null hypothesis
of absence of cross-sectional dependency in panel data analysis will be used. Since
the observation contains number of the cross-sectional, N=12 and time, T=19, that
is suitable to apply the CD and LM statistic. Consequently, Table2 identified that
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Table 1 Panel unit root tests

Series Individual unit roots Common unit roots Heteroscadastic

IPS Fisher-
ADF

Fisher-
PP

LLC Breitung Hadri Z-stat. Con.
Z-stat.

FDI –0.50* 117.83* 213.7* –15.99* –6.45* 5.36* 13.4*

GDPGR –5.65* 74.09* 204.36* –3.62* –8.42* 4.75* 8.09*

GDPPC –3.52* 50.63* 67.54* –4.5* –4.61* 2.14* 8.62*

POPU –4.97* 83.7* 128.35* –3.72* 1.45 35.4* 15.48*

INTER –8.37* 106.32* 235.42* –4.12* –4.43* –1.3 23.9*

INFLA –12.24* 150.78* 245.61* –13.1* –10.87* 18.2* 21.6*

EXR –4.03* 56.54* 58.39* –7.22* –6.17* 6.07* 4.74*

CORUP –5.23* 71.3* 98.26* –8.34* 0.55 35.9* 34.5*

CL –8.22* 103.88* 228.49* –8.78* –6.28* 8.01* 20.27*

The sign * denote the rejection of null hypothesis at 1 and 5% level respectively
Note The optimal length and lag was selected based on the SIC criterion. All tests are assumed
asymptotic normality and taken individual effects, individual linear trends

Table 2 Panel cross-sectional dependency tests

Stat.
series

FDI stat. GDPGR
stat.

GDPPC
stat.

POPU
stat.

INTER
stat.

INFLA
stat.

EXR
stat.

CORUP
stat.

CDLM1 214.39* 459.48* 1247.27* 229.52* 876.73* 694.01* 787.45* 854.84*

CDLM2 11.87* 33.20* 101.77* 13.19* 69.52* 53.62* 61.75* 67.62*

CDLM3 11.554* 32.89* 101.46* 12.87* 69.21* 53.3* 61.43* 67.22*

CD 7.445* 19.66* 23.82* 4.56* 29.22* 25.51* 27.35* 28.71*

Note The sign * denote the rejection of null hypothesis at 1% level of significant
• Panel cross-sectional dependency tests take 66 degree of freedom for all observations
• The CD statistic is distributed as a two-tailed standard normal distribution and LM statistic as a
χ2
N (N+1) distribution

p-value can be rejected at 1% level for all statistics, meaning that there is no correla-
tion within the cross-sectional group and all variables are dependency in difference
shocked in which they are exposed to.

5.3 Panel Co-integration Tests

To identify co-integrated among the variables, [26, 27], Error Correction (EC) panel
based co-integration [50] and Pedroni (1999) co-integration tests will be employed
with the respect to heterogeneous panel techniques. Firstly, Pedroni co-integration
test introduced seven panel group such panel v-Statistic, panel rho-Statistic, panel PP-
Statistic and panel ADF-Statistic, rho-Statistic,group PP-Statistic and group ADF-
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Statistic, assuming asymptotically normal distributed tests. Accordingly, Table3
reported that most of the statistics have p-value less than 5%. By looking to model 1
and model 2 are indicated 5 statistics can be rejected the null hypothesis of absence
of co-integration at 1% level and 1 statistic was rejected at 10% level. Thus, the
result strongly implied that the long run equilibrium was presented in the subject to
Pedroni co-integration test.

Secondly, Fisher-Johansen co-integration tests introduced trace and max-eigen
statistic based Fisher method. Therefore, according to Table4 indicated that both
trace and max-eigen test have p-value less than 5% from none to at most 4 level.
Those outcomes implied that the long run equilibrium is strongly existed among
the selected variables. The null hypothesis that each series have unit root and no
co-integration among them (r=0) can be rejected at 1% level in conclusive toλtrace(r)

and λmax(r,r+1) values for all models.
Panel co-integration test based Kao residual was assuming pooled and LLC tech-

nique. As the result, Table5 reported that p-value is less than 5% for ADF; that’s
implied that it can be rejected the null hypothesis at 1% level. Thus, the long run
equilibrium among the variables was strongly exited. Yet, taking into consideration
another test, EC panel co-integration test [50] introduced four statistics to test the
hypothesis of co-integration idea. Accordingly, Table5 summarized that three tests
among four can be rejected the null hypothesis at 1% level, meaning that there is
also co-integrated based EC panel co-integration test.

Shortly, from four different panel co-integration tests, the study found that there
strongly existed the long run equilibrium among the selected variables. Thus, in

Table 3 Pedroni based co-integration test (1999)

Within-dimension

Panel group statistics Model 1 Model 2

t-statistic Weighted
t-statistic

t-statistic Weighted
t-statistic

Panel v-Statistic 9.7427* –3.0737 19.7* –1.0962

Panel rho-Statistic 1.2424 0.9875 –1.2406* –0.6947

Panel PP-Statistic 4.0757 –6.8366* 2.6939 –7.7654*

Panel ADF-Statistic 4.1246 –6.8825* 2.7006 –7.4239*

Between-dimension

Model 1 Model 2

t-statistic t-statistic

Group rho-Statistic 2.2478*** 0.4573

Group PP-Statistic –6.664* –13.0894*

Group ADF-Statistic –8.5054* –14.31*

Note The sign * and *** denoted the significant level of 1 and 10% respectively
• Model 1 and model 2 are referring to a regression without deterministic intercept or trend and
with deterministic intercept and trend, respectively
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Table 4 Johansen-Fisher based co-integration test

Co-integration (r) λtrace(r) λmax (r, r + 1)

Null hypothesis Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

r = 0 84.77* 13.86 135.9* 84.77* 540.6* 135.9*

r ≤ 1 507.9* 204.0* 546.9* 361.1* 204.0* 367.6*

r ≤ 2 283.5* 426.7* 377.1* 176.8* 376.0* 209.7*

r ≤ 3 144.4* 215.1* 202.9* 115.6* 141.6* 140.4*

r ≤ 4 56.00* 98.67* 88.95* 53.65* 76.81* 62.99*

r ≤ 5 30.83 45.81* 55.27* 30.83 45.81* 55.27*

The sign * denoted the significant level of 1 and 5% respectively
NoteModel 1, model 2 and model 3 referred to a regression which takes linear deterministic trend,
linear deterministic trend (restricted) and no deterministic trend respectively

Table 5 Kao based residual and error correction panel co-integration tests

Kao based residual co-integration test

Series t-statistic

ADF –37.24*

Residual 0.003

HAC variance 0.002

EC panel based co-integration test

Series Value Z-value

Gt –7.346 –17.527*

Ga –45.903 –15.419*

Pt –3.957 2.095

Pa –33.409 –11.054*

Note The sign * denoted the significant level of 1 and 5% respectively

addition to those results, panel FMOLS and DOLS estimator shall be adopted to
estimate the long run coefficients in the next section.

5.4 Long Run Coefficient from Panel Co-integration Models

Taking into account the long run coefficient obtaining from panel FMOLS estimator
identified that most of explanatory variables are statistically significant except for
EXR and POPU. Panel FMOLS estimator is adopted 95 and 99% of coefficient of
confidential interval (CCI) to check the long run coefficients at difference level was
indicated in Table6 as follows:

Market size, adopted as the proxy of GDPGR, GDPPC and POPU, is positively
associated to FDI inflow except for POPU is negatively impacted but insignificant.
The result suggests that once economic growth rate and per capita in the host country
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is remain high, foreign investor as the market and resource seeking-FDI is likely to
invest due to the fact of rising incomeper capita of domestic household.Yet, according
to World Bank stated that Cambodia approved from the lower income country (LIC)
status to the middle lower income, 2016. Cambodia’s household income (GDP per
capita) was increased regressively from 781.91$ to 1168.04$ per year from 2010 to
2015 respectively (Statista 2016). Noteworthy, the large market size also expressed
the emerging of regionalization and economic of scale in the host country. By looking
into POPU variable, is negatively influenced to FDI but insignificant. In facts, it is
quite important to notify that is because most population in Cambodia are farmer
and unskilled with lack of education and another reason is that so far Cambodia is an
emerging and new market for foreign investors, population may not effect strongly
to their investment decision. On the reflected to the study of Akin [2], in terms of
cohort size, old and young age cohorts weaken FDI inflow.

Macroeconom instability applied as the proxy of inflation rate and exchange rate,
INFLA and EXR, is negatively influenced to FDI inflow but EXR is insignificant.
From the theoretical point of views, Dixit-Pindyck [20] notified that high level
of inflation and exchange rate could signal macroeconomic instability resulted in
decreasing inward FDI to the host country. Thus, foreign investors will probably
change from market seeking-FDI to export-substituting FDI in addition to the exis-
tence of uncertainty with the regard to present net value (PNV) and future net value
(FNV) of investment. Accordingly, they will build the plant in the home country
instead. Furthermore, this finding is due to the facts that Cambodia’s currency is
highly dollarized and in the estimated regression, the study applied the radio of
home country currency over US’s per dollar against the host country. Hence, the
depreciation of US’s currency will delay market-seeking FDI into the host country.
Yet, consistent to most of the study in developing countries by Arbatli [5] found that
the effective exchange rate is negatively associated to FDI and the depreciation in
host country currency is negatively influenced to inward FDI to that country.

Financial development, applied as the proxy of INTER, is negatively associated
to FDI inflow. The long run coefficient indicated that it is −0.0375 in the overall

Table 6 Long run coefficient from panel FMOLS estimator

FDI is an explained variable Coefficient 95% of CCI 99% of CCI

Low High Low High

Market size GDPGR 0.0200* 0.0164 0.0238 0.0152 0.0250

GDPPC 12.0831* 14.0935 10.0728 14.7438 9.4225

POPU –0.0002 –0.0003 –0.0002 –0.0003 –0.0001

Financial development INTER –0.0375* –0.0548 –0.0200 –0.0605 –0.0145

Macroeconomic instability INFLA –0.0064* –0.0089 –0.0038 –0.0097 –0.0030

EXR –0.6192 –0.7409 –0.4975 –0.7802 –0.4581

Institutional factor CORUP 0.0008* 0.0002 0.0014 0.0009 0.0016

Note The sign * denoted the significant level of 1 and 5% respectively
• Panel FMOLS applied pooled estimation using full sample from 1995–2014
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of CCI. This is opposite to the outcomes from panel DOLS estimator, which is
positively influenced to FDI inflow. The negative sign is also identified that the
foreign investors whom come to invest in Cambodia mostly have enough capital to
set up their business without requirement the pre-funds from government as pre-
capital operation. Moreover, investors may consider saving interest rate rather than
lending or loaning interest rate.

Another one, institutional factor, adopted as the proxy of degree of control of
corruption index, CORUP, is positively influenced to inward FDI. This is likely due
to the facts that corruption is affected directly and indirectly to some specific location
firms in the host country. Accordingly, foreign investors may know rationally how
to deal with the high level of corruption country resulted in why it may not affect
strongly to investment decision. Still, this result is also consistent to most of the study
of Azam [6] found that political risk has positively significant impacted to FDI in
LDCs. Noteworthy, since China is the highest investor in Cambodia, this finding is
reflected to the study of Buckley [11] and Kolstad [31] showed that poor institution,
high degree of corruption and lack of rule of law mostly attracted China investors.

Meanwhile panel DOLS estimator uses to examine an out of sample ex-post
forecasting (2013–2014), the study used in sample observation from 1995 to 2012
whereas dropping some variables such INFLA and EXR and adding CL instead.
Similarly to panel FMOLS, panel DOLS estimator result was indicated in Table7
as follows. Accordingly, with the respect to GDPGR, GDPPC, INTER and CL are
statistically significant meanwhile POPU is showed the insignificant relationship.
Market size is positively affected to FDI inflow excepts for POPU is negatively
significant at 10% level.

Conversely to panel FMOLS, panelDOLSestimator indicated that financial devel-
opment is positively affected to FDI inflow. This finding is likely due to the facts
that, since the late 1997 after Asia Crisis was eliminated, banking sector started to be
involved crucially and potentially in economic transaction and system in Cambodia.
Presently, there are 36 commercial banks, 11 specialized banks, 40 licensed micro-
finance institutions and 33 registered-micro finance operators have operated in the
financial sectors in Cambodia. Similarly, Desbordes [18] and Choong [13] found

Table 7 Long run coefficient from panel DOLS estimator

FDI is an explained variable Coefficient 95% of CCI 99% of CCI

Low High Low High

Market size GDPGR 0.0023* 0.0013 0.0034 0.0008 0.0038

GDPPC 0.047* 0.0418 0.0527 0.0392 0.0549

POPU –0.00001 –0.0001 0.0001 –0.0001 0.0001

Financial development INTER 0.0067* 0.0054 0.0081 0.0049 0.0087

Relative cost of living CL –0.0009* –0.0010 –0.0006 –0.0014 –0.0004

Note The sign * denoted the significant level of 1 and 5% respectively
• Panel DOLS used lead and lag 1 of heterogeneous in the long run and adopted pooled estimation
of in-sample observation from 1995 to 2012
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that the development of the domestic financial system is an important prerequisite
for FDI inflow.

The last one, relative cost of living index, CL, is negatively influenced to FDI
inflow. It was strongly implied that if the relative living cost of the host country
comparing to the home country is higher, foreign investor is differ or inhibit to
invest since they will produce with high input prices. The result is likely due to the
consideration that if the price in the host country is velocity rapidly, investors could
not guarantee to adopt the price of their products in the market.

5.5 Panel Granger Causality in Bi-variate Based VEC Model

By looking into the residuals of the short and long run equilibrium frompanelGranger
causality based VEC model, employing to investigate the directional causality of
FDI and economic growth. As is apparent in Table8 indicated that the long run
coefficient of ECT(t − 1) of FDI equation is negatively insignificant and conversely
forGDP equation is negatively significant (ECT equaled to−0.49 forGDP),meaning
that there existed the long run relationship from GDP to FDI equation or there is
bidirectional causality between economic growth and FDI. The short run coefficient
of GDP equation is 54.74 and significant, meaning that there is short run Granger
causality from economic growth to FDI. Reflecting from FDI to GDP equation in the
short run indicated positively coefficient, 0.0084 but insignificant. The result implied
that there is no directional causality in the bi-variate model from FDI to economic
growth equation.

5.6 In Sample Estimating and Out of Sample Ex-post
Forecasting

The empirical result from ex-post forecasting is estimated based in-sample obser-
vation from 1995 to 2012 and performed out of sample forecasting from 2013 to

Table 8 Long and short run coefficient from panel Granger-causality analysis

Dependent
Variables

Short run causality Long run
causality

Joint causality
F-test

DGDPGR(−1) DFDI(−1) ECT(t − 1)

ΔFDI 0.0084 –0.1755 –0.1284 0.0048

(0.0572) (–0.0378) (–0.0408) (7.1442)

ΔGDPGR –0.0791 54.7409** –0.4909*** 36.5568***

(–1.0348) (2.2777) (–6.3481) (3.2340)

Note The sign *** and ** denoted the significant level of 1, 5 and 10% respectively
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Table 9 Out of sample Ex-post Forecasting from 2013 to 2014

Panel Estimator RMSE MAE MAPE U DM Test

DOLS 1.6193 0.3411 1167 0.9915 1.3052

ARDL 1.6208 0.3382 2119 0.9860 (0.3005)

Note The value insights the parenthesis indicated p-value

2014 as an one step-ahead forecasting in order to obtain the measurement predictive
accuracy such RMSE, MAE, MAPE and U. D-M test is calculated based on two
predictive equations from panel DOLS and panel ARDL estimator. Table9 reported
that the measurement predictive accuracy such RMSE or MAE obtained from panel
DOLS estimator is produced smaller error rather than panel ARDL. Still, D-M test
cannot reject the null hypothesis at 5% level. Therefore, based on the result from the
measurement error was indicated that panel DOLS is the best efficiency estimator to
adopt the long run ex-ante forecasting.

6 Concluding Remarks

The panel econometric models of the heterogeneous had given the suitable and favor-
able benefits to examine the economic characteristic of Cambodia’s inward FDI that
leaded to investigate the determinants in the purpose of policy implications and
approach within the international facilities. The study uses cross-sectional data from
12 home countries during the time interval of 1995 to 2014 and applies a panel
co-integration approach to estimate the long run coefficients and several diagnos-
tic tests are used to detect the stationary, correlation dependency and co-integrated
among the variables.

The result from panel Granger causality based VEC model signified that there is
bidirectional causality from economic growth to FDI equation in the short and long
run and un-bidirectional causality from FDI to economic growth equation. In fact,
thanks to economic growth which has played an essential role in encouraging inward
FDI, remaining stable and approximating averagely 7% per year, foreign investors
will consider in setting up business in terms of both realized and approved FDI in
the short and the long run.

The outcomes from the measurement predictive accuracy such RMSE, MAE,
MAPE and U obtaining from in sample estimating (1995–2012) and out of sample
ex-post forecasting (2013–2014), indicated that panel DOLS is the efficiency model
in applying the long run ex-ante forecasting of Cambodia’s FDI inflow in the upcom-
ing period.

With the respect to panel FMOLS and DOLS estimator indicated that market
size, financial development and poor institution are positively associated to inward
FDI. This is likely appreciated for Cambodia’s government due to the facts that
Cambodia has enjoyed nearly the last two decades from economic growth rate, it
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has been alerting the significant signal for both domestic and international investors,
althoughmost of Cambodia population, joining in the labor market are less educative
or unskilled and some are decided to be immigration in other developed country such
Thailand, Malaysia and Korea.

Although the global financial crisis during the period of 2008 and 2009 was
impacted a little bit to financial sector particularly banking sector, NBC has tried
hardly and technically to sustain financial institution and management meanwhile
Cambodia’s financial sector has being inserted into the era of specialization with the
development of financial institutions and instrument, emerging of security markets
in the early 2012 which will be continually prioritized to launch the government
securities in the upcoming years. It could be identified the sensible signal to both
domestic and foreign investors who are interested to invest not only direct investment
but also an opportunity to gather the stock market.

Such the worthy notice, macroeconomic instability and cost of living index were
discovered negatively influencing to inward FDI. Although, inflation and exchange
rate are economically stable after the global financial crisis was eliminated and recov-
ery in 2009, NBC has technically tried to adoptmonetary policy either contractionary
or expansionary to promote de-dollarization, maintain the domestic price and as
well as sustain the financial development. Especially, since Cambodia’s currency
was pegged to USA’s currency, they also irritated to encourage Khmer Riel cur-
rency being circulated strongly and confidentially in the domestic market and to
keep exchange rate stable otherwise their intervention has decelerated the decline
in 2012. Yet, exchange rate is likely to depreciate due to the reduction in exports
and lower inward FDI. However, the high degree of dollarization that has been cir-
culated almost 90% of the total transaction inside Cambodia’s economy system,
implying the signal of movement in which will be moderately impacted to economy
and investment climate in both the short run and the long run.

With the regard to institutional factor, the study found that high degree of control of
corruption is positively related to inwardFDI.However, that’s still not implied apretty
signal forCambodia in the long run, especially to catch up ethical investors from those
who are escaped investing where corruption or central government are exceptionally
existed and hardly to be eliminated. In Cambodia, corruption was ranked 156th in
the status of corruption perception index (TI 2014). As a helping-hand effect, it was
considered undoubtedly one of the biggest challenges and frontiers harming socio-
economic development and investment climate. Domestically, where it has been
occurred nearly the overall level of society affecting business efficiency resulted
in raising the production cost and capital requirement to startup the business, the
household incomes might probably not distribute equally to all levels of economics
resulted in income inequality in the society. As the result of rising corruption, an
implementation of various legislatures in curbing corruption and anti-corruption
mechanism are taking hand in removing. Accordingly, in 2006, RGC established
the Anti-Corruption Unit (ACU) to put in place. More notices, with this respect,
those who are responsible in charge of One-stop-Service in facilitating an approved
and realized investment should pay more attention to eliminate these dirty issues to



Joint Determinants of Foreign Direct Investment (FDI) Inflow in Cambodia … 633

assemble the technical and standard business from the ethic countries such Japan and
EU etc. meanwhile they are not yet ready to invest highly capital into Cambodia.
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The Visitors’ Attitudes and Perceived Value
Toward Rural Regeneration Community
Development of Taiwan

Wan-Tran Huang, Chung-Te Ting, Yu-Sheng Huang and Cheng-Han Chuang

Abstract The purpose of the rural regeneration plan carried out for years is mainly
for rural sustainable development, which makes communities change and indirectly
attracts many tourists. Especially the rural experience tourism emerged recently
drives the rural economy grow entirely, enriches the rural environment and style,
and also increases many job opportunities and accelerates the prosperity of local
communities. Although the booming tourism increases the number of travelers and
facilitates the local development, it has the cognitive deficiency in the aspect of ecol-
ogy maintenance. As a result, the conservation and the economic development fail
to reach a balance.

In this study, we will take the Wu Mi Le community of Tainan as an example to
analyze the cognitive elements of the rural regeneration, and use the cluster analysis
to discuss the preference of difference groups to travel experience. In addition, we
will further use the contingent valuation method (CVM) to measure the willingness
to pay (WTP) of tourists to the rural maintenance and the tourist activities in this
study.

The research results are summarized as below: 1. The environment conservations
cognition is firstly considered for tourists to the rural regeneration communities; 2.
Themulti-existence group has a higher contribution in rural development; 3. Tourists
think the maintained value is higher than the recreation value.
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1 Introduction

1.1 Motivation

The rural regeneration plan carried out by the Taiwanese government is mainly for
promoting the rural sustainable development, including activation and regenerationof
the rural area, improvement of community infrastructure, beautification of ecological
environment, and reinforcement of resident consensus. In recent years, the rural
development of Taiwan has been mainly based on “Production, Life and Ecology”,
and expanded to recreation, and improvement of peasants’ social welfare. Lots of
researches indicate that the rural regeneration not only remarkably improves the rural
planning, but also facilitates the rural tourism benefit and brings elements important
to rural economic development [1–5]. Although the rural tourism facilitates the rural
economic development, tourists know little about the rural ecology maintenance. As
a result, the rural conservation and the economic development fail to reach a balance
[1, 5, 6].

Therefore, this study will discuss cognitive elements of tourists about the rural
regeneration plan, evaluate the difference of different cognitive groups to WTP of
the rural regeneration, and then evaluates the maintained value and the recreation
value for increasing the rural regeneration, which will be helpful to interested parties
to understand the benefit of carrying out the rural regeneration plan.

1.2 Wu Mi Le Community, Houbi Township in Tainan

In the study, the Wu Mi Le Community, Houbi Township in Tainan is taken as the
object of study. Houbi Township is an important granary production area. The Wu
Mi Le is on the Northwest side of the Houbi Township. Wu Mi Le actually means
“Let It Be” to describes how a group of Taiwan peasants continue rice farming in the
case that the external environment becomes extremely difficult. In recent years, as
the introduction of tourist activities, the Wu Mi Le community has become widely
well known. Moreover, the Let It Be community is one of pilot areas carried out
the rural regeneration plan by the Taiwanese government, and also is the important
development area among the 4,232 rural communities in Taiwan.

In conclusion, this study will discuss tourists’ cognition of the rural regenera-
tion communities, analyze tourists’ WTP of the rural regeneration communities, and
evaluate the economic benefit from the rural regeneration plan. In the past, litera-
tures about the rural regeneration mostly investigate the benefit to rural areas and
communities brought by the rural regeneration through literature review and depth
interview.

Researches focus on physical facilities (infrastructures, communities and transfer
systems, cultural relics and farmhouse repair), environmental facilities (beautifica-
tion of overall community environment, and improvement of soil, water resources
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and ecological environment), life improvement (residents’ inhabiting quality, resi-
dents’ additional income), and effects on improvement of health care, education and
more budget subsidy. Therefore, this study will measure the benefit of tourists to
rural tourism through questionnaire survey, analyze preferences of different tourists
through cluster analysis, and evaluate WTP of the rural regeneration development
through CVM.

2 Application of Methodology and Questionnaire

2.1 Methodology

The study uses the contingent valuation method (CVM) to evaluate the benefit of
people after receiving food and farming education. CVM sets a hypothetical ques-
tion through questionnaires, simulates various market situations, and changes the
quantity or quality of people to environment into the willingness-to-pay (WTP) or
the willingness-to-accept (WTA), and evaluates changes in consumers’ utility level
through model deduction.

The study evaluatesWTP about promotion of food and farming education through
CVM.After people receive food and farming education, i.e., improve people’s cogni-
tion to foodmaterials sources (e.g.,whenpeople know that restaurants’ foodmaterials
are from local production, it can let people understand the cognitive level of food
materials.), people are asked if they are willing to pay more money to support the
promotion of the government in food and farming education. The expression is listed
as below.

WT Pi = f (xi ) + εi

where WT Pi represents the cost that people are willing to pay, εi is the residual and
meets the assumption of N (0, 2), and xi is the explanatory variable vector of the ith
respondents.

In addition, the study uses the double-bounded dichotomous choice to estimate
people’s WTP about promotion of food and farming education by the government
through CVM inquiry. This not only can reduce respondents’ pressure and avoid
starting point bias or range deviation, but also can deliver more messages [7–9]. The
inquiry of the double-bounded dichotomous choice uses the first minimum payment
cost as criterion (e.g., T). When people said they are willing to pay for the first time,
it shall inquire the WTP cost for the second time. The WTP cost of the second time
is twice of that of the first time (2T). If people said they are not willing to pay, the
WTP cost of the second time is half of that of the first time (0.5T) (Fig. 1).
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Fig. 1 An example of
double-bounded
dichotomous
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2.2 Questionnaire Design

The questionnaire is issued to tourists of Wu Mi Le community of Houbi Township
in Tainan. The pretesting questionnaire are total of 50, and the formal questionnaire
are total of 462. Total of 416 questionnaires are returned. The questionnaire content
consists of 3 parts such as personal information, travelling experience, rural regen-
eration cognition and rural regeneration WTP price. There are totally 3 questions as
below:

♦ Question 1: Did you participate in activities held in rural communities?
♦ Question 2: How much would you like to pay for the free experience activities

provided by communities in order to maintain recreation resources?
♦ Question 3: How much would you like to pay in order to maintain these cultural

heritages with historical significance?

3 Results

3.1 Analysis of Rural Regeneration Cognition

The questionnaire is based on questionnaires designed by [4, 10], and issued to
tourists to Wu Mi Le communities. In the study, KMO and Bartlett of the rural
regeneration cognition are tested. As shown in Table1, KMO value is 0.711 > 0.6,
indicating the common factor of the factor analysis and extraction is significant in
effect. Bartlett test value is 1170.67 and P = 0.000 < α = 0.01, so it is of signifi-
cance. As for the factory analysis result of the rural regeneration cognition, it uses
the principal component analysis to extract 3 factors and rename “environment con-
servation”, “cultural heritages”, “economic value”.
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Table 1 KMO and Bartlett test

Kaiser-Meyer-Olkin 0.711

Bartlett test Similar to chi-square
distribution

1170.67

Df 136

Significance 0.000∗∗∗

Note *** indicates significant level of 1% respectively

3.2 Cognitive Differences of Rural Regeneration

The previous analyses show 3 factor dimensions, which are respectively “environ-
ment conservation”, “cultural heritages”, “economic value”. This study further uses
the cluster analysis to divide it into two clusters according to different characteristics.
Details are as follows:

(1) Cluster 1: in this cluster, there are totally 242 tourists (66.7%). The level
of agreement is the maximum in both “environment conservation” and “economic
value”. In the “cultural heritages”, the level of agreement is higher than the 2nd

cluster, showing this group of interviewees attaches great importance to every aspect.
In addition to the economic benefit brought by policy, themain consideration is in the
hope that the rural environment and the cultural assets can be carefully maintained.
Therefore, the cluster is named “multi-existence”.

(2) Cluster 2: in this cluster, there are totally 121 tourists (33.3%). The level of
agreement is the maximum in the “cultural heritages”, followed by the “environ-
ment conservation” and the “economic value”, showing this group of interviewees
hopes the rural regeneration should focus on the overall rural landscape and earnings
brought. Therefore, this cluster is named “value recreation”.

This study will investigate tourists economic backgrounds and travelling charac-
teristics on the basis of value-recreation and multi-existence. It finds that the multi-
existence cluster is mainly female, and the value-recreation is mainly male. As for
the monthly income, the multi-existence cluster is higher than the value-recreation
cluster in average monthly income. The multi-existence cluster accounts for more
than 90% in the revisit willing and also is the highest in the personal spending and
the participation of rural activities.

4 The WTP of Rural Regeneration

In this study, it will use questionnaire to further investigate tourists to Let It Be com-
munities, and use the double-bounded dichotomous choice to establish a positivism
model for evaluation of the rural regeneration through CVMs situational design.

CVM has long been one of the important methods used for a wide range of natural
resource and environmental assessments. With the assumption of a virtual market, it
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reflects the measurement of natural resources and environment where market prices
do not exist. In addition, an appropriate form of price inquiry method is used for
a questionnaire survey to understand peoples preferences for natural resources and
environment, and then estimate the amount the respondent is willing to pay or the
compensation amount the respondent is willing to accept. The study uses a single-
bound dichotomous choice model of the close-ended bidding method and a double-
bound dichotomous choice model to estimate the value people are willing to pay
for improvement of rural regeneration, with a reference to the theoretical model of
[7, 11]. The structure is described as follows.

ln Ls(θ) =
N∑

i=1

{dY
i ln πY (Bs

i ) + dN
i ln π N (Bs

i )}

=
N∑

i=1

{dY
i ln[1 − G(Bi ; θ)] + dN

i lnG(Bi , θ)}

The log-likelihood function of respondent (N) and the given price (Bi , BU
i , BD

i )

is as follows:

ln LD(θ) =
N∑

i=1

(dYY
i ln πYY (Bi , B

U
i ) + dNN

i ln π NN (Bi , B
D
i )

+ dY N
i ln πY N (Bi , B

U
i ) + dNY

i ln π NY (Bi , B
D
i ))

4.1 Model Variable Setting

When the positivism model is set in this study, it respectively takes the tourism value
and the maintenance value into consideration. Three variables such as income, times
and stay are selected. The positivism model of the rural regeneration WTP price is
as below.

lnWTP1 =
∫

(income, T I MES, ST AY, d1, d2, f ac1, f ac2, f ac3)

lnWTP2 =
∫

(income, T I MES, ST AY, d1, d2, f ac1, f ac2, f ac3)

where, InWTP1 is theWTPamount of the tourismvalue; InWTP2 is theWTPamount
of the maintenance value; ( f ac1) is the environment conservation factor; ( f ac2) is
the cultural heritage factor; ( f ac3) is the economic value factor; (d1) is the virtual
variable of the community activity where 1 means participated, and 0 means not
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participated; (d2) is the cluster’s virtual variable where 1 means the first group, and
2 means the second group.

4.2 Rural Regeneration Value Assessment

Under the hypothesis of Log-normal distribution, Weibull distribution and Gamma
distribution, this study assesses the positivism model and deletes controversial sam-
ples, uses the survival regression analysis to obtain the estimated parameter of the
explanatory variable and the functional parameter so as to investigate factors affecting
the rural regeneration WTP price. Details are listed in Tables2 and 3.

4.2.1 Estimated Result of Tourism Value

The estimated result of tourism value (Table4) shows that in the three distributions
of the evaluation function the income of the social economy is plus, and its value t is
remarkable respectively under 1, 5 and 10% significant levels; the times is minus, and
its value t is remarkable respectively under 1, 5 and 10% significant levels; the stay is
plus, and its value t is remarkable forWeibull distribution under 10% significant level
and for Gamma distribution under 5 and 10% except for Log-normal distribution.
The variable (1) participating social activities is plus, and its value t is remarkable
respectively under 1, 5 and 10% significant levels. The economic value (3) of the
rural regeneration cognition is plus, and its value t is remarkable for Log-normal
distribution and Weibull distribution under 5 and 10% significant levels, and for
Gamma distribution under 10% significant level.

4.2.2 Estimated Result of Maintenance Value

The estimated result of tourism value (Table4) shows that in the three distributions
of the evaluation function the income of the social economy is plus, and its value t is
remarkable for Log-normal distribution and Weibull distribution respectively under

Table 2 One-way analysis of variance

Factor dimension Multi-existence
n= 242

Value-recreation
n= 121

F-value

Environment
conservation

4.56 3.97 301.992∗∗∗

Cultural heritage 4.35 4.02 101.374∗∗∗

Economic value 4.46 3.84 190.44∗∗∗

Note *** indicates significant level of 1% respectively
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Table 3 Estimated result of tourism values evaluation function

Variable Evaluation function’s probability distribution

Log-normal
distribution

Weibull distribution Gamma distribution

Intercept 0.062 −0.316 0.513

−0.001 −0.042 −0.093

Social economy variables

INCOME 0.308 0.364 0.258

(12.83)*** (19.812)*** (7.759)***

TIMES −0.176 −0.174 −0.178

(8.609)*** (9.238)*** (8.563)***

STAY 0.167 0.145 0.174

(−3.982) (3.244)* (4.292)**

Participate community activities or not

d1 0.441 0.472 0.417

(13.265)*** (16.327)*** (12.141)***

Cluster

d2 0.024 0.078 −0.006

(−0.011) (−0.129) (−0.001)

Rural regeneration cognition

fac1 0.183 0.133 0.18

(−0.604) (−0.309) (−0.638)

fac2 −0.162 −0.099 −0.179

(−0.741) (−0.315) (−0.929)

fac3 0.247 0.277 0.236

(4.027)** (5.552)** (3.689)*

Log-likelihood −339.246 −349.401 −337.934

Restricted −360.674 −372.316 −358.418

Log-likelihood

Log-likelihood ratio 42.856 45.83 40.968

N 363

Note *, ** and *** indicate significant levels of 10, 5 and 1% respectively

1, 5 and 10% significant levels, and for Gamma distribution respectively under 5 and
10% significant levels; times is minus; stay is plus. The variable (1) participating
social activities is plus, and its value t is remarkable respectively under 1, 5 and 10%
significant levels. The economic value (3) of the rural regeneration cognition is plus,
and its value t is remarkable for Weibull distribution under 10% significant level.
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Table 4 Estimated result of maintenance value’s evaluation function

Evaluation function’s probability distribution

Log-normal
distribution

Weibull distribution Gamma distribution

Intercept 0.927 0.53 1.064

−0.304 −0.119 −0.38

Social economy

INCOME 0.238 0.291 0.224

(7.03)*** (12.077)*** (5.397)**

TIMES −0.104 −0.098 −0.105

(−2.554) (−2.556) (−2.54)

STAY 0.111 0.095 0.112

(−1.591) (−1.363) (−1.572)

Participate community activities or not

d1 0.451 0.446 0.45

(12.714)*** (14.215)*** (12.622)***

Cluster

d2 0.034 0.113 0.171

(−0.021) (−0.253) (−0.005)

Rural regeneration cognition

fac1 0.206 0.122 0.213

(−0.681) (−0.246) (−0.737)

fac2 −0.068 −0.001 −0.077

(−0.122) 0 (−0.152)

fac3 0.148 0.207 0.14

(−1.346) (2.976)* (−1.152)

Log-likelihood −242.736 −247.533 −242.642

Restricted −255.492 −262.307 −255.014

Log-likelihood

Log-likelihood ratio 25.512 29.548 24.744

N 363

Note *, ** and *** respectively indicate they are remarkable under 1, 5 and 10% significant levels

4.2.3 Result of Rural Regeneration WTP

After both the tourism value and the maintenance value are estimated by the WTP
value evaluationmodel, the result obtained is further used for investigating themoney
value of each rural regeneration function. Through [12] the use of median will not be
easily affected by the extreme value when evaluating the confidence interval between
the mean value and the median of the WTP price. Therefore, this study will estimate
the result according to each rural regeneration WTP value.
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The total of 363 questionnaires collected for interviewees in the WTP price show
that tourists’ WTP amount is higher than that of the tourism value compared to
the maintenance value, indicating tourists are willing to pay a greater amount of
money to maintain the overall environment and landscape of the rural regeneration
communities and do not want these buildings and environments with long history to
perish because of disrepair and not being carefully maintained.

Item Mean (NTD/person) 95% confidence interval (NTD/person)
Recreation value 153 (111,211)
Maintained value 177 128,246)

5 Conclusion

(1) Rural regeneration cognition: it can investigate from three dimensions, including
“environment conservation”, “cultural heritage” and “economic value”. Although
our body and mind can be relaxed through rural tourism and landscape appreciation,
we do not want the increased number of tourists to destroy the environment. Build-
ings and landscapes conserved in early stage can be presented to tourists through
implementation of the rural regeneration plan. Besides activating rural economy and
reducing urban-rural gap, the government endows rural areas with another value
through the rural regeneration plan.

(2) Analysis of group cognitive differences: it mainly consists of the “multi-
existence” attaching importance to all functions, and the “value recreation” attaching
more importance to rural cultural heritage. Generally speaking, the “multi-existence”
group prefers the average monthly income, stay, revisit willing, personal spending
and participation of rural activities.

(3) Evaluation of rural regeneration WTP value: the evaluation function’s esti-
mated result shows that other results are similar to the estimated result of the tourism
value except for the non-significant times and stay as for the maintenance values
evaluation result. It is explained as below: the income of social economy is plus and
significant, indicating the higher the income, and higher the WTP value will be; the
times is minus and significant, indicating the higher the number of travelling to rural
areas, the lower the WTP price will be, and the maintenance value is not significant;
the stay is plus and significant, indicating the longer you stay in a community, the
higher the WTP price will be, and the maintenance value is not significant; the par-
ticipation of community activities is plus and significant, indicating the higher you
are willing to participate in community activities, the higher the WTP price will be;
the economic value of the rural regeneration cognition is plus and significant, indi-
cating tourists mainly take the rural macroeconomic value into consideration as for
the rural regeneration policy, and hope that they can directly be helpful to peasants.
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In addition, the “maintained value” is higher than the “recreation value” for tourists,
and it also can reflect tourists’ cognition of rural regeneration functions. The cogni-
tion level of the “environment conservation” is higher, so we can estimate that the
reason why its WTP price is higher.
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Analyzing the Contribution of ASEAN Stock
Markets to Systemic Risk

Roengchai Tansuchat, Woraphon Yamaka, Kritsana Khemawanit
and Songsak Sriboonchitta

Abstract In this paper, seven stock markets from six countries (Thailand, Malaysia,
Indonesia, Vietnam, the Philippines, and Singapore) and their risk contribution to
ASEAN stock system are investigated using the Component Expected Shortfall
approach. Prior to computing this systemic risk measure, we need to compute a
dynamic correlation, thus the study proposes a Markov Switching copula with time
varying parameter to measure the dynamic correlation between each pair of stock
market index and ASEAN stock system. The empirical results show that Philippines
stock index contributed the highest risk to the ASEAN stock system.

Keywords Markov switching model copula · Time varying dependence · CES ·
ASEAN stock markets

1 Introduction

Although economic growth in ASEAN countries has been quite favorable in general,
it can be disrupted or even reversed by various factors aswe havewitnessed from such
situation as the financial crisis in 2008–2009 in Thailand or the political disorders
elsewhere. These situations can be referred as a risk that might occur in the future.

After the establishment of the Association of Southeast Asian Nations (ASEAN),
it is crucial to observe the roles and impacts of the seven leading ASEAN financial
markets which consist of the Stock Exchange of Thailand, Bursa Malaysia, Ho Chi
Minh Exchange, Hanoi Stock Exchange, the Philippine Stock Exchange, Singapore
Stock Exchange, and Indonesia Stock Exchange. These stockmarkets can potentially
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stimulate the ASEAN economic growth for functioning as the large source of capital
investment. After the formal establishment of the ASEAN Community in 2015,
ASEANcountries becomemore integrated and thereby leading to fewer trade barriers
andmore collaboration among the various stockmarkets ofASEAN.Although cross-
border collaboration of ASEAN countries can promote ASEAN stock markets and
offer more opportunities to investors across the region, it can also bring a large
financial risk to a country as well as across the ASEAN countries. Therefore, it will
be a great benefit to the ASEAN if we can quantify the contribution of each stock
market to the overall risk of the ASEAN stock system. To achieve our goal, this study
considers Component Expected Shortfall (CES) concept proposed by Banulescu and
Dumitrescu [1]. This new approach provides several advantages like that it can be
used to assess the contribution of each stock market to the overall risk of the system
at a precise date. In the real application, the study of Liu et al. [9] examined the
volatility and dependence for systemic risk measurement using copula model with
CES. Their work found that CES can explain the financial crisis risk in 2009 and that
the risk contribution was lower in pre-crisis period when compared to the post crisis
time. Hence, we expect that CES becomes a good candidate tool for policy makers to
select which stock markets to monitor, with a view to discourage the accumulation
of systemic risk.

Prior to measuring one-period-ahead, the time-varying correlations of ASEAN
and individual stock market need to be computed. Banulescu and Dumitrescu [1] and
Liu et al. [9] proposed a Dynamic conditional correlation (DDC) GJR-GARCH(1,1)
model to compute conditional volatility, standardized residuals for the ASEAN and
each country. However, the linear correlation and normality assumption of the model
might not be appropriate and accurate for measuring the correlation between two
financial markets. In reality, finance asset return has the presence of heavy tails and
asymmetry correlation thus implementing DCC-GJR-GARCH may lead to inade-
quateCES estimation. To overcome these problems, the study proposed an alternative
model, a Markov Switching dynamic copula as advanced by Silva Filho et al. [4] to
compute the dynamic correlation of market pair. This model takes an advantage of
the copula approach of Sklar theorem to construct the joint distribution of the differ-
ent marginal distribution with different copula structure. Hence, the model becomes
more flexible to capture both linear and nonlinear and both symmetric and asymmet-
ric correlation between ASEAN and individual stock market. In addition, we also
take into account the non-linearity and asymmetric dependence of the financial data
since financial markets are likely to be more dependent in market downturn than in
market upturn, see Chokethaworn et al. [3], Fei et al. [5], Filho and Ziegelmann [6],
Pathairat et al. [12].

The rest of this paper is organized as follows: Sects. 1, 2 and 3 present the
approaches that we employ in this study. In Sect. 4, we explain the data and the
empirical results and Sect. 5 provides a conclusion of this study.
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2 Methodology

2.1 ARMA-GARCH Model

The log-difference of each stock index (yt ) is modeled by univariate ARMA(p, q)

with GARCH(1, 1). This study used GARCH(1, 1) since it is able to reproduce
the volatility dynamics of financial data, while leading to no autocorrelation in the
ARMA process. In our case, the ARMA(p, q) − GARCH(1, 1) (where p is the
order of AR and q is the order of MA) is given by

yt = μ +
p∑

i=1

φi yt−i +
q∑

i=1

ψiεt−i + εt (1)

εt = ht zt (2)

h2t = � + α1ε
2
t−1 + β1h

2
t−1 (3)

where μ, φi , ψi , � , α1 and β1 are the unknown parameters of the model, εt is the
white noise process at time t , h2t is the variance of error at time t , zt is standardized
residuals and it must satisfy the condition of being independently and identically
distributed. We also assume that εt has a student-t distribution with mean 0, variance
σ 2, and degree of freedom ν, i.e., εt ∼ t (0, σ 2, ν). Some standard restrictions on the
GARCH parameters are given such that � > 0, α1 > 0, β1 > 0 and α1 + β1 < 1.

2.2 Conditional Copula Model

Sklar theorem showed a way to construct a joint distribution function using cop-
ula approach. By the theorem, let H be the joint distribution of random variable
(x1, x2, ..., xn) with marginals F1(x1), F2(x2), ..., Fn(xn), then the joint cumulative
distribution function (cdf) can be represented according to

H(x1, x2, ..., xn) = C(F(x1), F2(x2), ..., Fn(xn)) (4)

when Fi (x) are continuous functions, then Eq. (1) provides a unique representation
of cdf for any random variables or Copula is unique. In this study, we aim to analyze
the dynamic dependence of two dimension copula, therefore, according to Pattan
(2006), we can rewrite (Eq.4) in the form of conditional copula such that

H(x1, x2 |ω) = C(F1(x1 |ω) , F2(x2 |ω)) (5)
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where ω is a 1 dimension conditioning variable of x1 or x2 and F1 and F2 become
the conditional distribution of x1 |ω and x2 |ω , respectively. Thus, we can obtain the
conditional density function by differentiating (Eq.5) with respect to x1 and x2.

h(x1, x2 |ω) = ∂2H(x1, x2 |ω)

∂x1, x2

= ∂F1(x1 |ω)

∂x1
· ∂F2(x2 |ω)

∂x2
· ∂2C(F1(x1 |ω), F2(x2 |ω) |ω)

∂u1∂u2
= f1(x1 |ω) · f2(x2 |ω) · c(u1, u2 |ω)

(6)

where u1 = F1(x1 |ω) and u2 = F2(x2 |ω) and these marginal distributions (u1, u2)
are uniform in the [0, 1]. In this dynamic case, Patton (2006) suggested allowing the
dependence parameter (θt ) to vary over time in the ARMA (1,10) process, as follows:

θt = Λ(a + bθt−1 + ϕΓt ) (7)

where Λ(·) is the logistic transformation for each copula function, a is the intercept
term, b is the estimated coefficient of AR and Γt is the forcing variable which is
defined as

Γt =
{

1
10

∑10
j=1 F

−1
1 (u1,t− j )F

−1
2 (u2,t− j ) elli ptical

1
10

∑10
j=1

∣∣u1,t− j − u2,t− j

∣∣ Archimedean

In the Copula model, there are two main classes of the copulas namely, Elliptical
class and Archimedean class. Both classes contain copula families that are used to
join themarginal distribution. In the case of Elliptical copula, there are two symmetric
copula families consisting Gaussian and the Student-t copulas. Both families have a
similar structure except for their tail dependence. The Student-t copula has shown
to be generally superior to the Normal copula since it has tail dependence. As for
the Archimedean case, it is an alternative class of copulas with asymmetric tail
dependence, meaning that dependence in lower tail can be larger than dependence
in upper tail and vice-versa.

In the most recent development, there are many copula functions being proposed
to join the marginal distribution; see, e.g., [2, 8]. In this study, we consider 5 condi-
tional copula families consisting Gaussian copula, Student-t copula, Gumbel copula,
Clayton copula, and Symmetrized JoeClayton (SJC) copula to analyze the struc-
ture of dependence between each stock market and ASEAN market (see the copula
functions in Tofoli et al. [15].
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2.3 Regime-Switching Copula

There are many evidences regarding financial returns tending to exhibit different
patterns of dependence such as those from the works of Silva Filho et al. [4], Tofoli
et al. [15], and Pastpipatkul et al. [12]. These studies arrived at similar conclusion
that stock markets exhibit the different degree of dependence over time and Tofoli
et al. [15] specifically mentioned that stock returns tend to be more dependent during
crisis period or high volatility period while likely to be less dependent in the market
upturn or low volatility period. For these reasons, the dependence structure of the
variables may be determined by a hidden Markov chain with two states (Tofoli
et al. [15]). Hence, in this study, it is reasonable to extend the time varying copula of
Patton [14] to the Markov Switching of Hamilton [7] and thus we have a Markov-
switching copula with time-varying dependence (MS-Cop) to model dependence
parameter (θt ). The study allows the (θt ) to vary across the economic regime, say the
upturn market (regime 1) and downturn market (regime 2). Thus, θt is assumed to
be governed by an unobserved variable (St ).

θt = θt (St=1) + θt (St=2) (8)

where θt (St=1) and θt (St=2) are time varying dependence parameter for regime 1 and
regime 2, respectively. Thus, when the regime switching is taken into account in
dependence parameter, then we can rewrite the dynamic function with ARMA(1,10)
process Eq. (7) for two regimes as

θ(St=1),t = Λ(a(St=1) + bθ(St=1),t−1 + ϕΓt )

θ(St=2),t = Λ(a(St=2) + bθ(St=2),t−1 + ϕΓt )
(9)

where there is only intercept term of time varying (Eq.9) a(St=i), i = 1, 2, that is
governed by state. In this study, the unobservable regime (St = 2) is governed by the
first order Markov chain, meaning that the probability of this time t is governed by
t − 1, hence, we can write the following transition probabilities (P):

pi j = Pr(St = j |St−1 = i) and
2∑

j=1

pi j = 1 i, j = 1, 2 (10)

where pi j is the probability of switching from regime i to regime j , and these
transition probabilities can be formed in a transition matrix P , as follows:

P =
[

p11 p12 = 1 − p11
p21 = 1 − p22 p22

]
(11)
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2.4 Copula Likelihood Estimation

Since the computation of theML estimatemay be difficult to find the optimal solution
for a large number of unknown parameters, the two-stage maximum likelihood (ML)
approach, as proposedbyPatton [14] andTofoli et al. [15], is conducted in this study to
estimate theMS-Copmodel. In the first step, we estimate and select the parameters of
the best fit marginal distributions for individual variables fromARMA(p,q)-GARCH
process. In the second step, we estimate the dependence structure of the MS-Cop.
According to (Eq.6), let Θ = {ω1, ω2, θt } we can derive the likelihood function of a
single regime conditional copula as

L(Θ |x1, x2) = f1(x1 |ω1) · f2(x2 |ω2) · c(u1, u1 |θt )

where f1(x1 |ω1) and f2(x2 |ω2) are the density function of the marginal distribution
which are assumed to be fixed obtaining from ARMA(p,q)-GARCH process in the
first step. c(u1, u2 |θt ) is the density function of the conditional copula. Note that
the study is considering two-regime MS-Cop, thus we can rewrite the single regime
conditional copula to be two-regime MS-Cop as:

L(ΘSt |x1, x2 )

=
T∑

t=1

log

⎡

⎣
2∑

St=1

[ f1(x1 |ω1 ) · f2(x2 |ω2 ) · c(u1, u2
∣∣θ(St=i),t )] · Pr(St = i |ξt−1 )

⎤

⎦

(12)
where Pr(St = i |ξt−1) is the filtered probabilities and ξt−1 is the all information
up to time t − 1,ΦSt ,t−1, x1,t−1, x2,t−1. To compute the Pr(St = i |ξt−1), we employ
a Kims filter as described in Kim and Nelson [11]. The estimation in this second step
is performed by maximizing the copula log-likelihood Eq. (12).

3 Component Expected Shortfall

In this section, we introduce a Component Expected Shortfall (CES) which is pro-
posed in Banulescu and Dumitrescu (2012). We apply the MS-Cop to CES in order
to assess the contribution of an individual stock in ASEAN to the risk of the ASEAN
stock system at a precise date. Let rit denote the return of stock index i at time t and
rmt denote the aggregate return of the ASEAN stock index at time t .

rmt =
n∑

i=1

wi t · rit (13)
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where wi t is an individual weight the value-weighted of stock index i , i = 1, ..., n,
at each date under analysis. These weights are given by the relative of stock index i
capitalization to ASEAN stock system. And CES is defined as the part of Expected
Shortfall (ES) of the ASEAN stock index due to ith stock index

CESit = wi t∂ESm,t−1(C)

∂wi t

= −wi t Et−1(rit |rmt < C)

(14)

where Et−1(rit |rmt < C) = ∂ESm,t−1(C)/∂wi t is the Marginal Expected Shortfall
(MES) which measures the marginal contribution of individual stock index to the
risk of the ASEAN stock index.

MESmt =
[
hit · κi t

∑T
t=1 ϒmtΦ(C−ϒmt

hmt
)

∑T
t=1 Φ(C−ϒmt

hmt
)

]

+
[
hit · √

1 − κi t

∑T
t=1 eitΦ(C−ϒmt

hmt
)

∑T
t=1 Φ(C−ϒmt

hmt
)

] (15)

where ϒmt = rmt/hmt and eit = (rit/hit ) − κi t are standardized ASEAN market
return and stock index i , which hmt and hit are the variance of error at time t.
C = 1/hmt is the threshold value which is assumed to depend on the distribution of
the rmt . Φ is the cumulative normal distribution function and κi t is the time varying
Kendall s tau which can be tranformed from the expected dependence parameter
(Eκt ),

Eκt =
∑2

j=1
[κ(St= j),t ] · [Pr(St = j |ξt−1) × P]

However, our study aims to assess the contribution of risk of each stock market to
theASEANstock system, thus it is better tomeasure the risk in terms of percentage by

CESit% = (CESit/
∑n

i=1
CESit ) × 100

4 Data and Empirical Results

In this study, we use the data set comprising the Stock Exchange of Thailand index
(SET), Indonesia Stock Exchange index (IDX), the Philippine Stock Exchange
(PSE), Bursa Saham Kuala Lumpur Stock Exchange (BURSA), Straits Times stock
index (STI),HoChiMinhStock Index (HOC) andHanoi StockExchange index(HN).
The data set consists of weekly frequency collected from the period of January 1,
2009 to June 8, 2016, covering 388 observations. All the series have been trans-
formed into the difference of the logarithm. And the ASEAN market index is based



656 R. Tansuchat et al.

Table 1 Descriptive statistics on ASEAN index
SUM
ASEAN

SET IDX BURSA STI HOC HN PSEI

Mean 0.0029 0.0032 0.0035 0.0016 0.0015 0.0025 0.0026 0.0037

Med 0.004 0.0059 0.004 0.002 0.0024 0.0022 0.0034 0.0047

Max 0.0975 0.0994 0.099 0.0568 0.1639 0.1202 0.1066 0.0913

Min −0.0738 −0.1 −0.108 −0.0694 −0.104 −0.1633 −0.1498 −0.1287

Std. 0.0189 0.025 0.0238 0.015 0.0228 0.0335 0.0322 0.0251

Skew −0.0991 −0.3708 −0.2792 −0.3585 0.6942 −0.1913 −0.1327 −0.5563

Kurtosis 6.3125 4.7446 5.9074 5.3807 10.8985 5.1584 5.0532 6.0172

JB 174.360* 56.895* 138.774* 97.8811* 1018.303* 76.082* 67.861* 163.742*

ADF-test

None −17.561∗ −19.097∗ −19.446∗ −19.042∗ −18.391∗ −17.837∗ −17.780∗ −20.475∗
Intercept −17.935∗ −19.396∗ −19.854∗ −19.261∗ −18.456∗ −17.904∗ −17.867∗ −20.927∗
Intercept
and Trend

−18.331∗ −19.742∗ −20.403∗ −19.738∗ −18.782∗ −17.943∗ −17.924∗ −21.135∗

Source Calculation
Note: * is significant at 1% level

on the stocks in only the seven stock markets of our interest. The computation of this
index is defined as the value-weighted average of all stock index returns.

4.1 Modeling Marginal Distributions

For the first state, we use each ASEAN indexes prices to calculate the natural log
returns defined as ri,t = ln(Pi,t ) − ln(Pi,t−1) where Pi,t is the ith index price at time
t , and ri,t is the ith log return index price at time t . The descriptive statistics ofASEAN
returns are shown in Table1 which is clear that mean of each ASEAN variable is
positive with the highest mean returns being PSEI (0.0037), the lowest mean return
being STI (0.0015), and that the standard deviation in HOC is the highest (0.0335)
and that in BURSA the lowest (0.0150). In terms of skewness and kurtosis, the values
of skewness are small but the values of kurtosis are large. So these mean that the
distributions of ASEAN returns have fatter tail instead of normal distribution and
Jaque-Bera test rejected the null hypothesis, thus the return series has non-normal
distribution.

Moreover, in order to check unit roots in the series, the Augmented Dickey-
Fuller (ADF) tests are applied. The test results at 0.01 statistical significance level
0.01 indicated that all series of ASEAN returns are stationary. Table2 presents the
coefficient for the ARMA(p,q)-GARCH(1,1) with student-t distribution for each
ASEAN return series. The optimum lag for ARMA(p,q)-GARCH(1,1) is selected
by the minimum Akaike information criterion (AIC) and Bayesian information cri-
terion (BIC) value. The estimated equations of SUM ASEAN, SET, and IDX are
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ARMA(3,3)-GARCH(1,1), BURSA and STI are ARMA(2,2)-GARCH(1,1), VI and
VAI are ARMA(1,1)-GARCH(1,1), and PSEI is ARMA(2,1)-GARCH(1,1). Fur-
thermore, the coefficient of each equation is statistically significant at 1% in most
cases which means that the t distribution assumption for ARMA-GARCH model is
reasonable.

In addition, the autocorrelation test (LjungBox test) and the KolmogorovSmirnov
test (KS-test) are also shown in this table. The p-value of the KS-test suggests that
the probabilities of the integral transform of the standardized residuals are uniform in
the [0, 1] interval. Additionally, the p-value of the LjungBox-test of autocorrelation
on standardized residuals with 10 lags, Q2(10), confirms that we cannot reject the
5% significance level; thus, there is no autocorrelation in any of the series.

4.2 Model Fit

MS-Cop models are estimated by different copula functions, and selection of the
most appropriate structure dependence between each pair in this section is based on
the lowest Akaiki information criterion (AIC) and Bayesian information criterion
(BIC). Table3 presents various copula functions of MS-Cop model. It contains the
AIC and BIC for each copula model. These are evaluated at the highest value of
copula log likelihood. The result showed that Clayton copula yields the lowest AIC
and BIC for IDX-ASEAN pair, STI pair, and PHI-pair; while for SET-ASEAN,
BURSA-ASEAN, HOC-ASEAN, and HN-ASEAN pairs, Gumbel copula provides
the best structural fit.

Table 3 Family selection of each pair copula

AIC BIC SET
ASEAN

IDX
ASEAN

BURSA
ASEAN

STI
ASEAN

HOC
ASEAN

HN
ASEAN

PHI
ASEAN

Gaussian 225.2815 374.7991 212.0398 313.8305 56.7444 53.3816 536.4979

248.8749 398.3925 235.6333 337.424 80.3379 76.9751 560.0914

Student- t 236.8088 382.0257 218.9943 336.3531 56.6692 56.6692 542.4576

268.2667 413.4837 250.4523 367.811 88.1271 88.1271 573.9156

Clayton 211.3228 305.5207 187.2049 282.9581 46.2591 45.8371 439.9532

234.9163 329.1142 210.7983 306.5516 69.8526 69.4306 463.5466

Gumbel 192.52 333.1427 180.1803 297.4253 51.0105 45.0553 447.7723

216.1134 356.7362 203.7738 321.0088 74.604 68.6487 471.3658

SJC 255.0907 381.9507 226.8514 342.2112 69.2851 63.4991 527.4651

294.4132 421.2731 266.1739 381.5336 108.6076 102.8216 566.7876

Source Calculation
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4.3 Results of Estimated Parameters

Table4 reports the estimated parameters of the MS-Cop for seven pairs of market
returns. The models present a dynamic copula equation and the result showed that all
stock pairs provide an evidence of the lower value of intercept coefficient in regime
1, a(St=1), than the value of the regime intercept coefficient in regime 2 a(St=2). Thus,
we can interpret regime 1 as the low dependence regime, while regime 2 as the high
dependence regime.Moreover,many recent studies, such as the studies byTofoli et al.
[15] andKarimalis andNimokis [10], suggested that the degree of dependence during
market upturns is less than that during market downturns. Thus, we will indicate the
high dependence regime as the market downturn regime and the low dependence
regime as the market upturn regime. Furthermore, we take into consideration the
estimated coefficient, b, which is related to the autoregressive parameter component
in the dynamic equation. Different results have been obtained from these coefficients.
We found that the autoregressive parameter components of cset,Asean , cbursa,Asean ,
choc,Asean , chn,Asean , and cpsi,Asean have a negative sign, indicating that those pair
relations are persistent over time, while the autoregressive parameter components
of cidx,Asean and csti,Asean have a positive sign, indicating that those pair relations
are not persistent over time. As for the distance from the perfect correlation in the
dependence dynamics co-movement, ϕ, the results also provide a different sign for
each pair return. We found that the ϕ of cset,Asean , cidx,Asean , cbursa,Asean , csti,Asean ,
and cpsi,Asean has a negative sign, indicating that the greater distance from the perfect
correlation can decrease their dependence, while the ϕ of choc,Asean and chn,Asean has
a positive sign, indicating that the greater distance from the perfect correlation can
increase their dependence.

In addition, the transition probabilities p11 and p22 of all pair dependences are also
reported in Table4. We denote the probabilities p11 and p22 as the probabilities of

Table 4 Estimated parameters from Markov-switching dynamic copula

cset,Asean cidx,Asean cbursa,Asean csti,Asean choc,Asean chn,Asean cpsi,Asean

a(St=1) 1.7228 1.5386 1.599 1.282 0.2374 0.4255 1.8777

(−0.0673) (−0.4746) (−0.0698) (−0.0737) (−0.4384) (−0.0539) (−0.583)

a(St=2) 4.53 2.6278 4.9678 3.3328 6.801 10.6893 6.0509

(−0.0001) (−0.9729) (−0.0002) (−2.769) (−22.582) (−0.0001) (−6.7414)

b −0.3592 0.047 −0.3904 0.0773 −0.1345 −0.0857 −0.0289

(−0.0001) (−0.1854) (−0.0001) (−0.0826) (−0.4144) (−0.0041) (−0.1807)

ϕ −1.2757 −1.8663 −0.5262 −0.7013 0.1472 0.5014 −1.4553

(−0.0001) (−0.4534) (−0.0045) (−0.8727) (−0.9533) (−0.4512) (−0.1541)

Transitionprobabilities

p11 0.9992 0.9999 0.9799 0.9999 0.9999 0.9999 0.9999

p22 0.9987 0.9999 0.9984 0.9999 0.9999 0.9999 0.9999

Source Calculation
Note: In the bracket is standard error
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staying in their own regime. We can observe that both regimes are persistent because
of the high values obtained for the probabilities p11 and p22.

4.4 Risk Measure

To achieve our goal of study, in this section, we extend our results obtained from
the MS-Cop to assess the contribution of individual stock market to systemic risk at
time. The study employed CES approach as a tool to assess the percentage of each
stock markets contribution to the risk of the ASEAN stock system. The analysis is
performed for almost eight years of samples from 2009 to 2016, coinciding with the
period of Hamburger crisis of the United States of America (USA) (2009) and Euro-
pean debt crisis (2002-present). The study of Pastpipatkul et al. [13] investigated and
found the effect of these crises on some countries in the ASEAN. Therefore, it is
reasonable to measure the contribution of risk under these periods in order to check
whether CES can identify the systemic financial risk or not.

As we mentioned in the introduction, the main purpose of the study is to access
to contribution of each stock index to the ASEAN stock system. We also aim to
identify the riskiest of the seven stock markets in the ASEAN by directly ranking the
markets according to their CES%. According to Figs. 1, 2, 3, 4, 5, 6 and 7, these fig-
ures display the expected dependence (measured by Kendall tau) between individual
stock index and the ASEAN stock system (upper panel); and the percentage of each

Fig. 1 CES SET
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Fig. 2 CES IDX

Fig. 3 CES BURSA

individual stock index in the risk of the ASEAN market system (measured by CES).
Let consider the upper panel of all pairs, the results show that the expected dependen-
cies are varying over time and provide an evidence of positive dependence. These
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Fig. 4 CES STI

Fig. 5 CES HOC

indicate that ASEAN stock markets have the same movement direction through-
out the sampling period. However, we can obviously notice that the time varying
Kendalls tau, which was obtained from the estimated bivariate time varying depen-
dence copula parameters, shows different results regarding correlation. The results of
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Fig. 6 CES HN

ASEAN-SET, ASEAN-BURSA, ASEAN-HOC, and ASEAN-HN pairs illustrate a
highly fluctuating correlation over time where the values vary between 0.1–1, except
for the ASEAN-HN where the value of time varying Kendalls tau varies between
0.5–1. Meanwhile ASEAN-IDX, ASEAN-STI, and ASEAN-PHI seem to have a
lower fluctuating correlation where the values vary between 0.2–0.6, 0.93–0.96, and
0.2–0.5 for ASEAN-IDX, ASEAN-STI, and ASEAN-PHI, respectively. These evi-
dences can be explained in various ways. Firstly, our results confirm that there exists
a different degree of dependence between individual stock index and ASEAN stock
system over time. Secondly, there is a positive co-movement between individual
stock index and ASEAN stock system.

Then, let consider the lower panel of Figs. 1, 2, 3, 4, 5, 6 and 7 which presents
the total loss of ASEAN stock system attributable to the seven stock markets for
the period 2009–2016. There are several interesting findings that can be observed
when we focus on the individual stock market results. We can observe that during
2008–2009 ASEAN-BURSA, ASEAN-STI, ASEAN-HOC, and ASEAN-HN seem
to contribute a higher risk to ASEAN stock systemwhen compared with their overall
usual risk. This period coincides with the time of Hamburger financial crisis in USA.
During 2009–2016, many emerging stock markets including ASEAN stock markets
have experienced great growth after the crisis in 2008 since the Federal Reserve
of USA introduced an unconventional Quantitative easing (QE) policy that led to
a capital outflow from USA to the emerging markets. However, this large capital
brought somewhat unwelcome pressure on stock price and a high volatility in the
markets as well. In addition, we observe that CES% is also high in the periods of
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Fig. 7 CES PSI

2012 and 2014 in the cases of SET, IDX, PHI, and STI market indexes. We found
that those two sub-periods are corresponding to the European debt crisis in 2012 and
QE tapering in 2014. If we consider the amplitude of CES% in these two periods;
in the first sub-period, we can see that PSI and IDX contribute the highest risk to
the overall ASEAN stock system while HOC and HN contribute the lowest risk
to ASEAN. In the second sub-period, we also observe that PSI is the highest risk
contributor to the ASEAN stock system with the value of CES% more than 50%.
The further interesting results of HOC and HN are also obtained. The evolution of
CES% in these two markets perform similar level of contribution to the ASEAN
financial risk. This can indicate that Vietnam stock markets seemed not affected by
external factors or they had low interaction with global financial market as well as
the ASEAN. Moreover, we notice that the evolution of CES% of these two countries
took place very often and exhibited very high fluctuation. Consequently, decision
about Vietnams stock regulations has to be made very often.

5 Conclusion

This study aims to assess the risk contribution of seven ASEAN stock markets to the
aggregate ASEAN stock system. It is very important to analyze this issue because
it may have significant implications for the development of ASEAN stock market
and the regulation of the markets and their mechanisms. Thus, the study employed a
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Component Expected Shortfall (CES) measure proposed by Banulescu and
Dumitrescu [1] as a tool for assessing the contribution of each stock market to
the overall risk of the ASEAN stock system. Instead of using the DCC-GARCH
model to measure the dynamic correlation, the present study aims to relax the strong
assumption of linear and normal correlation by using the copula approach. Thus, the
study proposed to employ a Markov Switching copula with time varying parameter
as a tool to measure the dependence between individual stock index and ASEAN
stock system and the obtained best fit dependence parameters are used to compute
the time varying correlation Kendall’s tau.

Our findings on the degree of dependence are in line with previous findings in the
literature. However, we clearly show that the degree of dependence can vary over
time and the regime switching needs to be taken into account. In addition, the time
varying risk contribution is considered here. We found that the Philippines stock
index contributed the highest risk to the ASEAN stock system. Our results are very
important to the policy makers or the regulators of each stock market since they can
impose a specific policy to stabilize their stock markets when the financial risk is
likely to occur. Moreover, our result will give a benefit to the investors by helping
them to invest their money in the appropriate stock market.
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Estimating Efficiency of Stock Return
with Interval Data

Phachongchit Tibprasorn, Chatchai Khiewngamdee,
Woraphon Yamaka and Songsak Sriboonchitta

Abstract Existing studies on capital asset pricing model (CAPM) have basically
focused on point data which may not concern about the variability and uncertainty in
the data. Hence, this paper suggests the approach that gains more efficiency, that is,
the interval data in CAPM analysis. The interval data is applied to the copula-based
stochastic frontier model to obtain the return efficiency. This approach has proved its
efficiency through application in three stock prices: Apple, Facebook and Google.

Keywords Capital asset pricing model · Stochastic frontier · Copula · Interval data
1 Introduction

“If there is only information of the quantities of input and output, and there is no
information on input or output prices, then the type of efficiency that can bemeasured
is technical efficiency (TE)” [1]. In the production analysis, TE is a measure of the
effectiveness, that is, a given set of inputs is used to produce an output. A firm
exists technically efficient if it produces the maximum output with the minimum
quantity of inputs such as labour, capital and technology. To measure TE, stochastic
frontier approach is considered. It is applied in many studies, in particular the area
of the production of agriculture and industry as well as the macroeconomic fields.
However, recently, there is a work of Hasan et al. [2] applying the stochastic frontier
model (SFM) to the financial area, that is, a stock market. He investigated the TE of
selected companies of Bangladesh stockmarket in the Dhaka Stock Exchange (DSE)
market in which the technical inefficiency effects are defined by one of two error
component, say Truncated normal or half-normal errors. However, the assumption of
the multivariate normal distribution on the joint between the two error components,
of the conventional model, is the strong assumption that need to relax. Therefore,
the copula function is employed to join the two errors of the financial returns as
presented in Tibprasorn et al. [3]. In their work, they employed a copula function
to join two error components in the SFM and they found that the price of stocks
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is not over or underestimated in terms of pricing efficiency (measured by technical
efficiency). Hence, in this study, we aim to measure the efficiency from the financial
market through the capital asset pricing model (CAPM) of Sharpe [4]. The model
becomes one of the fundamental tenants in financial theory, and then is applied in
various studies to analyze the performance of mutual funds, individual stock returns
and other portfolios.

The technique of CAPM is to compare the historical risk-adjusted stock returns
(return of stock minus the return of risk-free) with the risk-adjusted market return,
and then use a linear regression to fit a straight line. Each point in the line can be
represented as the risk-adjusted return of the stock and that of the market return
over one time period in the past. Typically, the data used in the CAPM is a single
point data, mostly a closing price. However, Neto and Carvalho [5, 6] argued that
the implementation of single point data is too restrictive to represent complex data
in the real world since it does not take into account the variability and uncertainty
inherent to the data. We found that the stock data varies over time and presents in
high fluctuation in every single day. Then, there exists the highest and lowest values
or the boundary values of an interval [7]. To overcome this problem, the interval data
is considered for this study to capture all information set at each time point. The
minimum and maximum recorded values will offer a more complete insight about
the phenomenon than the point data, i.e. closing price.

In recent years, time-series models such as linear regression, quantile regression,
andMarkov switching model has been applied to the CAPM to quantify the relation-
ship between the beta risk of stock return and market return. However, few studies
have been reported concerning the CAPM using interval data. For instance, the study
carried out by Piamsuwannakit et al. [8] applied the concept of the interval-valued
data to the CAPM. They found that interval-valued data is more reasonable than
the single point through the application of CAPM. Thus, we are going to apply the
CAPM in copula based stochastic frontier model to quantify the beta risk and the
efficiency of the stock. To the best of our knowledge, the estimation of copula based
stochastic frontier model has not been considered yet. This fact becomes one of
motivations for this paper.

This paper is structured as follows: the next section introduces the copula-based
stochastic frontier model with interval data. Section3 explains about the estimation
of CAPM with copula-based stochastic frontier. The estimation results is presented
in Sect. 4 while the conclusion is given in the last section.

2 The Copula-Based Stochastic Frontier Model
with Interval Data

In this section, we establish the copula-based stochastic frontier model with interval
data by employing the powerful method dealing with the interval data, namely the
center method proposed by Billard and Diday [9, 10], to estimate this model.
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2.1 Interval Data

In many studies in financial econometrics, they usually use the closing price of a
stock one day which is denoted as Xc in order to take into account the estimated
results. But in the stock market, stock price is moving vary within the High-low
price during the day. Absolutely, the closing price is contained in the range of daily
interval stock prices, Pi = [XL , . . . , Xc, . . . , XH ]. The closing price could be either
the lower or upper bound price. To find the more appropriate value than the closing
price to present the best value in the range of Pi , we employ the center method which
proposed by Billard and Diday [9, 10] to enhance our estimation and prediction.

According to Billard and Diday [9, 10], the interval-valued data is considered as
Symbolic Data Analysis (SDA) which is the extension of classical exploratory data
analysis and statistical methods. This type of data appears when the observed values
are intervals, namely highest and lowest value, of the set of real number. Thus, this
kind of data can be used to explain the uncertainty or variability presented in the
data.

2.2 The Model with the Center Method

The stochastic frontier model (SFM) proposted by Aigner et al. [11] is given by

Y = f (X;β) + (V −U ), (1)

where Y is an output given set of inputs X ; β is a vector of unknown parameters
to be estimated; the stochastic noise, V , is the symmetric error and the technical
inefficiency, U , is the non-negative error. We assume these two error components to
be independent.

Following the center method proposed by Billard and Diday [9, 10], we can write
the SFM with interval data as

Y L = f (XL;βL) + (V L −UL) (2)

Y H = f (XH ;βH ) + (V H −UH ), (3)

where Y = [
Y L ,Y H

]
, X = [

XL , XH
]
, V = [

V L , V H
]
and U = [

UL ,UH
]
. Thus,

the vector of parameters based on the center method is following

Y c = f (Xc;βc) + (V c −Uc), (4)

where Y c = (
Y L + Y H

)
/2, Xc = (

XL + XH
)
/2 and superscript c denotes the mid-

point value. βc and the two error components (V c and Uc) are obtained from the
center method.
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Following Eq.4, the technical efficiency based on the center method (T Ec) is
estimated by

T Ec = exp(−Uc). (5)

However, there may exist the dependency between Uc and V c. Thus, by Sklar’s
Theorem, the joint of cumulative distribution function (cdf) of Uc and V c is

H(uc, vc) = Prob(Uc � uc, V c � vc) (6a)

= Cθ (FUc(uc), FVc(vc)), (6b)

whereCθ (·, ·) is denoted as the bi-variate copula with unknown parameter θ . Follow-
ing Smith [12], transforming (Uc, V c) to (Uc, ξ c) as the probability density function
(pdf) of (Uc, ξ c) then we get

h(uc, εc) = fUc(uc) fV c(uc + εc)cθ (FUc(uc), FVc(uc + εc)), (7)

where fUc(uc) and fV c(vc) are themarginal density of H(uc, vc), the composite error
ξ c = εc(−∞ < εc < ∞), vc = uc + εc and cθ (·, ·) is the copula density of Cθ (·, ·).
Thus, the pdf of εc is obtained by

hθ (ε
c) =

∫ ∞

0
h(uc, εc)duc (8a)

=
∫ ∞

0
fUc(uc) fV c(uc + εc)cθ (FUc(uc), FVc(uc + εc))duc. (8b)

In this study, we employ the maximum simulated likelihood (MSL) technique
mentioned in Wiboonpongse [13] to approximate integral of hθ (ε

c). Thus, the pdf
of εc is given by

hθ (ε
c) ≈ 1

J

J∑

j=1

h(ucj , ε
c
i )

f (ucj )
, (9)

where f (ucj ) is the pdf of u
c
j and j = 1, . . . , J is a sequence of random drawn from

the distribution of ucj .
Therefore, the likelihood function for copula-based stochastic frontier model is

defined by

L(βc, σvc , σuc , θ
c) =

N∏

i=1

hθ (y
c
i − xci

′
βc) =

N∏

i=1

hθ (ε
c
i ), (10)

where σvc and σuc are the scale parameters of marginal distribution of V c andUc, θ c

is the parameter of copula and i = 1, . . . , N is the number of observations.
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Taking a natural logarithm, the log-likelihood function for copula-based stochastic
frontier model becomes

ln L(βc, σvc , σuc , θ
c) =

N∑

i=1

ln hθ (ε
c
i ) ≈

N∑

i=1

ln
1

J

J∑

j=1

h(ucj , ε
c
i )

f (ucj )
. (11)

Following Battese and Coelli [14], the technical efficiency of each copula (T Eθ )
can be computed by

T Eθ = E[exp(−Uc)|εc] (12a)

= 1

hθ (εc)

∫ ∞

0
exp(−uc)h(uc, εc)duc (12b)

=
∫ ∞
0 exp(−uc) fUc(uc) fV c(uc + εc)cθ (FUc(uc), FVc(uc + εc))duc

∫ ∞
0 fUc(uc) fV c(uc + εc)cθ (FUc(uc), FVc(uc + εc))duc

. (12c)

and using Monte Carlo integration. Thus, we obtain

T Eθ =
∑N

i=1 exp(−uci ) fUc(uci ) fV c(uci + εci )cθ (FUc(uci ), FVc(uci + εci ))∑N
i=1 fUc(uci ) fV c(uci + εci )cθ (FUc(uci ), FVc(uci + εci ))

. (13)

Note that uci follows the cumulative distribution of Uc which is assumed to be
distributed as HN (0, σuc). The density function follows

fUc(uc; σuc) = 2√
2πσ 2

uc
exp{− (uc)2

2σ 2
uc

}. (14)

And vc
i follows the distribution of V c which is assumed to be distributed as

N (0, σ 2
vc ). The density can be written as following

fV c(vc; σvc) = 1√
2πσ 2

vc

exp{− (vc)2

2σ 2
vc

}. (15)

3 Estimation of CAPM with Copula-Based Stochastic
Frontier

To compare the return efficiencies across individual stocks, we start with the CAPM
suggested by Jensen [15] as a benchmark for presenting the relationship between
the expected excess return (risk premium) and its systematic risk (market risk).
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This relationship claims that the expected excess return on any stock is directly
proportional to its systematic risk, β. For any stock s the β is calculated by

E(Rs) = βs E(Rm), (16)

where E(Rs) is the expected excess return on stock s, βs is its systematic risk and
E(Rm) is the expected excess return on market.

In this study, the copula-based stochastic frontier model is proposed to capture
the deviation of interval-stock return from its efficient frontier. According to Eq.4,
the model can be represented as

E
(
Rc
s,t

) = βc
0,s + βc

1,s E
(
Rc
m,t

) + V c
s,t −Uc

s,t , (17)

where E
(
Rc
s,t

)
is the midpoint value of the expected excess return on stock s at time

t ; E
(
Rc
m,t

)
is the midpoint value of the expected return on market at time t . In this

model, the estimation of intercept and beta risk, βc
0,s and βc

1,s , are based only on the
midpoint value of the interval-stock data; V c

s,t reflects the stochastic nature of the
frontier itself at time t (e.g., measurement error of stock s) and Uc

s,t reflects return
inefficiency resulting in a non-negative error term at time t . This value of inefficiency
can be defined as return inefficiency which shows the failure to achieve the efficient
return as a result of uncontrollable events, such as an asymmetric information.

Ten copulas, consistingGaussian, Student-t, Clayton, Gumbel, Frank, Joe, rotated
Clayton, rotated Gumbel, rotated Joe, and Independence, are considered to capture
a degree of the dependence between V c

s,t and U
c
s,t . We then, maximize the simulated

likelihood function (Eq.11) to obtain all parameters of the model. Therefore, the
return efficiency (or RE) of stock s at time t for our model is given by

REc
s,t = E[exp(−Uc

s,t )|εc]. (18)

4 Empirical Results

The data contains the prices of Apple Inc. (AAPL), Facebook Inc. (FB) and Alphabet
Inc. (GOOGL) in the NASDAQ Stock Market, and we provide the NASDAQ index
as a benchmark. The interval-stock return and interval-market return are computed
using the weekly high/low price of stock. United States Government 10-Year Bond
Yield is used as a risk free rate. The data are weekly data taken from May 2012 to
March 2016, and collected by Thomson Reuters. Figure1 and Table1 display the
summary statistics for the variables.

By applying the model in Sect. 3, the return efficiency of each stock (REc
s,t ) is

estimated, and the empirical results are shown in Fig. 2 and Table2. According to
the lowest AIC, the best model is the one based on Joe copula for the case of AAPL,
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Fig. 1 The weekly
high/low returns of AAPL,
FB, GOOGL and NASDAQ
index

AAPL

FB

GOOGL

NASDAQ index
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Table 1 Descriptive statistics

AAPL FB GOOGL NASDAQ

High Low High Low High Low High Low

Mean 0.0485 −0.0319 0.0440 −0.0317 0.0341 −0.0310 0.0249 −0.0221

Median 0.0436 −0.0195 0.0351 −0.0213 0.0295 −0.0218 0.0215 −0.0135

Maximum 0.2483 0.0673 0.3318 0.1224 0.1648 0.0727 0.1160 0.0442

Minimum −0.0908 −0.2809 −0.1166 −0.2545 −0.0668 −0.2298 −0.0745 −0.2313

Std. dev. 0.0482 0.0569 0.0569 0.0518 0.0397 0.0457 0.0261 0.0358

Skewness 0.4315 −1.5357 1.4497 −1.2913 0.5799 −1.2441 0.4824 −2.0841

Kurtosis 3.9144 6.3449 7.5281 6.7120 3.7086 5.5226 4.8992 10.1115

No. obs. 200 200 200 200 200 200 200 200

2012 2013 2014 2015

2012 2013 2014 2015

2012 2013 2014 2015
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Fig. 2 Return efficiencies of each stock

rotated Joe copula for the case of FB and Clayton copula for the case of GOOGL.
Figure2 shows the estimation of return efficiencies of AAPL, FB andGOOGL stocks
using interval data and point data. We attempt to compare the performances between
these two models. We find that the movement of return efficiencies using interval
data tends to have a similar pattern with the return efficiencies using point data based
on this data set. However, the return efficiencies of these three stocks estimated
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Table 2 Parameter estimations

Parameter AAPL FB GOOGL

βc
o 0.0575 0.0793 0.0336

(0.0045) (0.0043) (0.0021)

βc
1 1.0830 1.2266 0.9716

(0.0856) (0.1254) (0.0756)

σ c
v 0.0382 0.0634 0.0322

(0.0855) (0.0052) (0.0029)

σ c
u 0.0736 0.0980 0.0410

(0.0051) (0.0050) (0.0021)

θc 5.1092 5.1587 5.1244

(0.8590) (0.9008) (1.2398)

Min REc
s,t 0.8675 0.7320 0.9126

Max REc
s,t 0.9907 0.9452 0.9768

Mean REc
s,t 0.9432 0.9255 0.9683

Name of Copula Joe Rotated Joe Clayton

Log L 474.2569 355.2151 519.6174

AIC −938.5137 −700.4302 −1029.2350

from interval data are higher than point data, meaning that they can reflect more
information in the market. Thus, these results lead to the conclusion that the return
efficiencies estimated by the model based on the interval data are mostly higher than
the one based on point data. We also conclude that interval data can be used as an
alternative data to measure the return efficiency.

According to values as shown in Table2, the interval-return efficiencies of each
stock are 0.8675–0.9907 (average 0.9432), 0.7320–0.9452 (average 0.9255) and
0.9126–0.9768 (average 0.9683) for AAPL, FB and GOOGL, respectively. These
suggest that all of three stock returns are quite efficient. We can imply that the stock
price nearly reflect all relevant information in themarket. However, we find that when
the interval return is wider, the return efficiency becomes lower. In other words, the
return efficiency tends to be low when the market exists high fluctuation return.

Following the CAPM approach, the stock whose beta less than one is called
defensive stock and it is called aggressive stock when the beta is greater than one.
Table2 shows that only the beta of GOOGL is less than one, while the others are
greater than one. Thus, only GOOGL is considered to be the defensive stock, but the
aggressive stock for AAPL and FB. Clearly, these empirical results suggest that our
model can be used as an alternative strategy for selecting stocks into the portfolio.
However, we should consider both beta risk and return efficiency in order to select
the appropriate stocks.
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Fig. 3 Security market line obtained using both interval and point data

Additionally, we consider the security market line (SML) as in Fig. 3. The upper
line is obtained from the estimationwith point data and the lower line is obtained from
the estimation with interval data. From these pictures, we observe that the SML from
interval data is fitter with the samples than the SML from point data. Therefore, we
can conclude that the beta risk (βc

1) estimated using interval data reflects information
in the market better than βc

1 estimated using point data.

5 Conclusions

In the production analysis, technical efficiency (TE) is the effectiveness which a
given set of inputs is used to produce an output. The efficiency is obtained if a firm
can produce the maximum quantity of output with the minimum of inputs. In this
study, the concept of TE is applied to the financial analysis through the capital asset
pricing model (CAPM). The study aims to quantify the return efficiency (RE) of the
individual stock using TE value in order to assess the efficiency of stock price. To
calculate the TE, this paper concerns the uses of interval data rather than the classical
type of data, i.e. the point data. We employ the center method of Billard and Diday
to find the best value in the range of interval data.
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The contribution of this research is twofold. First, the estimation of frontier and
efficiency is applied to the CAPM to obtain the beta risk and RE (measured by TE).
Second, the interval data is conducted here to capture the variability and uncertainty
in the data. Empirical study is also conducted in this paper. Our results show that
AAPL, FB and GOOGL stocks are quite efficiency and almost reflect all relevant
information in the market. In addition, we observe that when the interval return is
wider, the RE becomes lower. In other words, the RE tends to be low when the
market exists high fluctuation return. Thus, the investors should take into account
the interval range of stock return prior to the selection of appropriate stock for their
portfolios.

Finally, to assess the performance of interval data in our CAPM analysis, we
conduct the interval data to measure the beta risk (β) and RE. Then, we compare it
with the β and the RE obtained from the model based on point data. The results lead
to the conclusion that the β obtained from interval data is more likely to represent
information, in terms ofmaximum andminimum price at each time point. The results
also illustrate that the RE obtained from the interval data is higher than the one that
obtained from point data. Additionally, the security market line (SML) shows that
the line from interval data is fitter with the samples than the line from point data, and
hence, the RE obtained from point data is less accurate.
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The Impact of Extreme Events on Portfolio
in Financial Risk Management

K. Chuangchid, K. Autchariyapanitkul and S. Sriboonchitta

Abstract We use the concept of copula and extreme value theory to evaluate the
impact of extreme events such as flooding, nuclear disaster, etc. on the industry index
portfolio. A t copulas based on GARCH model is applied to explain a portfolio
risk management with high-dimensional asset allocation. Finally, we calculate the
conditionValue-at-Risk (CVaR)with the hypothesis of t joint distribution to construct
the potential frontier of the portfolio during the times of crisis.

Keywords Extreme value theory · GARCH · Multivariate t copula · CVaR ·
Expected shortfall

1 Introduction

Large and unpredictable financial fluctuation associated risk for investment. The
credit crisis and natural disasters cause massive losses for investors. For example,
Insurance company have to reserve enough of money for their claims when the
catastrophically large losses occur. The problem of understanding economic fluctua-
tions is essential. The economic theorieswhich treat “bubbles and crashes” as outliers
to described variations which do not agree with existing theories. There are no out-
liers; there is a power law! The power law can model enormous and unpredictable
changes in financial markets.

The main issue in portfolio optimization where the asset allocation is described
by random variables. In this case, the choices of the potential portfolio rely on the
underlying assumption on a behavior of the asset and the selection of the measure of
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risk. However, the correlation between asset returns is entirely explained by the linear
equation, and the efficient portfolios are usually described by the conventional mean
and variance model as we can found in Markowitz [1]. In particular, a correlation
provides a knowledge of dependence structure of random variables in the linear situ-
ation, but it may be inappropriate for the financial analysis (see, Autchariyapanitkul
et al. [2–4]). The dependency between the main factors in the portfolio has to be con-
sidered. An incorrect model may cause the loss on portfolio and miss-specification
to evaluate the liability. There are many papers showed the superiority of copula to
model dependence. The reason they are not comfortable to use correlation approach
because of its failure to capture the tails dependency (see, Artzner et al. [9] and
Szegö [10]) and extreme events (see, Longin and Solnik [11], Hartmann et al. [12]).
Copulas can be easily showmultivariate distributions and offer muchmore flexibility
than the conventional one (see, Autchariyapanitkul et al. [2, 3], Kiatmanaroch [5],
Kreinovich [6, 7], Sirisrisakulchai [8]).

Based on the studied from Harvey and Siddique [13], considered multivariate
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model with
skewness. The same as in Chiang et al. [14], created a dynamic portfolio of crude oil,
soybean, and corn by ARJI and GARCH models to calculate the value at risk(VaR).
This model is used to explain the time-varying conditional correlation, but they
can not perform asymmetry in asymptotic tail dependence. Thus, we introduce an
optional method to formulate the relationship between a multivariate data, beyond
assuming any restriction in marginal distributions by using a copula theory.

The need of extreme value theory (EVT) was introduced in this study to analyze
the impact of the extreme events. (i.e., Global financial crisis in 2007–2008, Flooding
in Thailand 2011, Fukushima Daiichi nuclear disaster in 2011, Quantitative Easing
(QE) in 2013, etc.) On the portfolio, asset returns over the past years. Our primary
concerns were the appearance of significant large values of X in data sets. These large
values are called extremes (or extreme events) which appear “under of the tail” of
the distribution F of X . Thus, we are concerned mainly with modeling the tail of F ,
and not the whole distribution F . For example, Wang et al. [15] applied the method
of GRACH-EVT-Copula model to studied the risk of foreign exchange portfolio, the
results suggested that t copula and Claton copula are well explained for the structural
relations among the portfolios. The same way as in Singh et al. [16] and Allen et al.
[17] used EVT to measure the market risk in the S&P500 and ASX-All Ordinaries
stock markets.

In this article, we are using a multivariate t copula which is applied to portfolio
optimization in financial risk management. In general, multivariate t copula is the
widely applied in the context of modeling multivariate financial analysis, and show
the superior to the normal copula (see, Romano [18], Chan and Kroese [19]). Simi-
larly, the works from Kole et al. [20] provided the test of fit to a selection of the right
copula for an asset portfolio, the results clearly showed that t copulas are better than
Gumbel and Gaussian copulas. Thus, t copulas may be considered for measuring the
risk of portfolio investment.

This study focused on industry index of the Stock Exchange of Thailand (SET ).
We used the concept of EVT and copula to measure the risk of multi-dimensional
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industry index portfolios. Thus, the contributes to this study can be summarized in
two folds. First,we emphasize that themultivariate t copula illustrates the asymmetric
dependence structure and evaluates the complex nonlinear relations among financial
portfolios. Second, we use the n-dimensional of industry index with the EVT to show
the significant impact of shocks to the returns of the portfolio.

The remainder of this article is arranged according to the following topic: Sect. 2
gives the theoretical background of GARCH model and extreme value theory, while
the empirical results in Sect. 3 and the final section gives concluding remarks.

2 Theoretical Background

2.1 GARCH

GARCHmodel was introduced by Bollerslev (1986), which can relax an assumption
that volatility is a constant over time because GARCH can be captured the character-
istics of financial time series data (heteroscedasticity and volatility). If the data has a
skewness or heavy tail, We can choose an innovation that supports this information.
Then, ARMA(p,q) and GARCH(k,l) are defined by

rt = μ +
p∑

i=1

φi rt−i +
q∑

i=1

ψiεt−i + εt

εt = σt · νt

σ 2
t = ω +

k∑

i=1

αiε
2
i−t +

l∑

i=1

βiσ
2
t−i

where
n∑

i=1

φi < 1, ω > 0, αi , ωi ≥ 0 and
k∑

i=1

αi +
l∑

i=1

βi ≤ 1, νt is an standardized

residual of a chosen innovation. In this case, we used t distribution because the data
was considered as a heavy tail distribution, which well defined for the financial time
series data.

2.2 Extreme Value Theory (EVT)

The methods of EVT including Block Maxima model and Peaks over Thresh-
old model (POT). Suppose we use POT approach to modeling extremes, namely
regarding as extremes those observations which are above some high threshold u.
Then we will use the parametric form of Pareto distribution for tail estimation. We
take those which are above u. Note that, while “high” threshold level u makes the
approximation of Fu by a generalized Pareto distribution (GPD) more reasonable, it
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will make estimators more volatile since there will be fewer observations among the
i.i.d. Sample X1, . . . , Xn drawn from X to use.

Here we fit the Pareto model (with support 1 + γ x

β
> 0)

Pγ,β(x) = 1 − (1 + γ x

β
)
− 1

γ , f or γ > 0 (1)

using the sample Y j = Xi j − u, where Xi j > u, j = 1, 2, . . . , k(u). The
log-likelihood is

log L(γ, β) = −k(u) logβ − (1 + 1

γ
)

k∑

i=1

(u) log(1 + γYi
β

), (2)

From which MLE (γ, β) of (γ, β) can be obtained.
Our distribution F is heave-tailed, i.e. F̄(x) = L(x)x− 1

γ . Not only γ is estimated,
we can also estimate the “tail” of F , i.e., F̄(x) for x > u (considered as “where the
tail begins”). Indeed, from

Fu(y) = (F(u + y) − F(u))/(1 − F(u)) (3)

we set x = u + y > u, then

1 − Fu(x − u) = F̄u(x − u) = 1 − (F(x) − F(u))/(1 − F(u)) (4a)

= (1 − F(x))/(1 − F(u)) = F̄(x)/F̄(u) (4b)

so that
F̄(x) = F̄(u)(x − u) (5)

and we estimate F̄(x) by the estimates of F̄(u) and F̄u(x − u) as follows. Since u is

taken larege enough, Fu(x − u) is approximate by 1 − (1 + γ (x − u)

β
)
− 1

γ , so that

an estimate of F̄u(x − u) is (1 + γ̂ (x−u)

β̂
)
− 1

γ̂ . On the other hand, F̄(u) is estimates by

1

n

n∑
j=1

1(X j>u). Thus, for x > u, F̄(x) is estimated by

[1
n

n∑

j=1

1(X j>u)][(1 + γ̂ (x − u)

β̂
)
− 1

γ̂ ] (6)

or approximately, for x > u

F(x) = 1 − [1
n

n∑

j=1

1(X j>u)][(1 + γ̂ (x − u)

β̂
)
− 1

γ̂ ] (7)
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from which we can extrapolate beyond the available data, i.e. estimate P(X > x)
for x greater than the maximum order statistic x(n) in the data set, namely using

[
1

n

n∑

j=1

1(X j>u)

][(
1 + γ̂ (x − u)

β̂

)− 1
γ̂
]

(8)

Considering x > x(n) means that we would like to know whether X > x in the
future. Nowwe cannot estimate P(X > x) correctly when x > x(n) (x is out of range
of the data). Thus,we canuse the empirical distribution Fn of F , according to the order
statistics X(1)≤X(2)···≤X(n)

, since P(X > x)will be estimated by 1 − Fn(x) = 0. Using
the above estimation procedure for heavy-tailed distributions, we can, therefore, deal
with potentially catastrophic events which have not yet occurred.

On the estimation of VaRp(X), here is what we could do. From the estimated
distribution of F for x > u,

F(x) = 1 −
[
1

n

n∑

j=1

1(X j>u)

][(
1 + γ̂ (x − u)

β̂

)− 1
γ
]

(9)

We estimate is large quantiles p (i.e., for p > F(u)) by inverting it (solving
F(VaRp(X)) = p), yielding

VaRp(X) = u + β̂

γ̂

(
[ n∑n

j=1 1(X j>u)

(1 − p)]−γ − 1

)
(10)

2.3 GARCH-EVT Model

To eliminate heteroskedasticity, first, we fit the historical index returns by using
GRACH(1,1) and obtained the innovations of the process. Usually, these innovations
are assumed to be a normal distribution. However, these errors tend to be a heavier
tail rather than the normal one. Then, we used the GPD assumption to described
the innovation behavior, let zi represent residual in the upper or lower tail and the
empirical distribution. Thus, the marginal distribution of error is

F(zi ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nuL
i

n

(
1 + γ L

i

uL
i − zi
βL
i

)− 1
γ L
i : zi < uL

i

ϕ(zi ) : uL
i < zi < uR

i

1 − nuR
i

n

(
1 + γ R

i

zi − uR
i

βR
i

)− 1
γ R
i : zi > uR

i ,

(11)
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where β is scale parameter, γ is shape parameter and uL
i , uR

i are lower and upper
threshold respectively. ϕ(zi ) is the empirical distribution, n is the number of zi .
While, nuL

i
is the number of innovations with the value less than uL

i and nuR
i
is the

number of innovations with the value greater than uR
i .

An appropriate choice for u could be selected by using the mean excess function
e(u) = E(X − u|X > u). indeed, for u sufficiently large, Fu(x) is approximately

the generalized Pareto distribution (GPD)Pγ,β(x) = 1 − (1 + γ x
β

)
− 1

γ . Now, if X is
distributed as Pγ,β(x), then for u < xF ,

e(u) = β + γ u

1 − γ
, (12)

for β + γ u > 0. Note that we need γ < 1, i.e., the heavy-tailed distribution must
have at least a finite mean.

The above linearity of the mean excess function forms the basis for deciding the
threshold based on its empirical counter-part en(u), where

en(u) =
n∑

i=1

(Xi − u)1(Xi>u)/

n∑

i=1

1(Xi>u) (13)

Suppose the observations support a GPD model over a high threshold then the
plot u, en(u) should become increasingly linear for higher values of u. We plot u
against en(u) and pick out u where there is linearity.

3 Applications to the Real World Data

In this study, The data attain of 2421 daily logarithm returns during 2004–2013 are
obtained from DataStream. There are Agro & Food Industry (AGRO), Consumer
Products (CONS), Financials (FIN), Industrials (INDUS), Property & Construction
(PROP), Resources (RESO), Services (SERV), and Technology (TECH). Table1
gives a summary statistics.

Formulating the tails of a distribution with GPD needs the data to be i.i.d. For
example, the sample auto-correlation function (ACF) of the industry index returns
related with the AGRO index reveal some weak serial correlation. However, the
ACF of the squared returns shows the degree of persistence in variance and suggests
that GARCH modeling may vary significantly in the tail. We use AGRO index as a
sample, the results are as the following (Fig. 1).
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Table 1 Summary statistics

AGRO CONS FIN INDUS PROP RESO SERV TECH

Mean 0.0005 0.0001 0.0002 0.0001 0.0001 0.0002 0.0004 0.0002

Median 0.0008 0.0003 .0001 0.0003 0.0005 0.0002 0.0004 0.0004

Max. 0.063 0.068 0.107 0.082 0.100 0.126 0.081 0.129

Min. −0.094 −0.066 −0.193 −0.128 −0.155 −0.172 −0.112 −0.208

SD. 0.0111 0.0069 0.0171 0.0165 0.0150 0.0179 0.0118 0.0168

Skew. −0.596 −0.659 −0.760 −0.412 −0.702 −0.477 −0.957 −0.713

Kurt. 8.704 18.187 14.475 8.266 11.348 11.516 11.843 15.911

Obs. 2421 2421 2421 2421 2421 2421 2421 2421

All values are the log returns

Fig. 1 ACF of returns and ACF of squared returns

Moreover, the standardized residuals of each industry index are modeled as a
standardized t-distribution to satisfy for the fat tails often related to index returns.
For AGRO index, the lower graph clearly exhibits the heteroskedasticity present in
the filtered residuals. These figures show the underlying zero mean, unit variance
and i.i.d (Fig. 2).

Comparing the auto-correlation function of standardized residuals (ACFs) to the
squaredACFs of the index returns exhibits that the standardized residuals are approx-
imately i.i.d as show in the lower graphs (Fig. 3).

We calculate the empirical CDF of each industry index by using Gaussian kernel.
We obtain the distribution by applying EVT to residuals in each tail. Then, we use
the maximum likelihood to estimate a parametric GDP for those extreme residuals
which exceed the threshold. The Figures4 and 5 show the empirical CDF and upper
tail of standardized residuals, respectively, these are useful to investigate the GPD
fit in more detail. So, the GPD model is a good fit to the data (Table2).
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Fig. 2 Filtered residuals and filtered conditional standard deviations

Fig. 3 ACFs of residuals and the squared ACFs

Table3 shows the multivariate t copula parameters. We can construct efficient
portfolio by using this matrix.

Resulting in the t copulas parameters, given the equallyweight the Table4 exhibits
the value ofVaR andCVaR at levels of 10, 5 and 1%.We emphasize that the estimated
CVaR converges to,−0.1406,−0.0976 and−0.0788 at 1, 5 and 10% levels in period
t + 1, respectively (Fig. 6).
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Fig. 4 The empirical CDF

Fig. 5 Upper tail of standardized residuals
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Table 2 Estimations of AR-GARCH parameters
AGRO CONS FIN INDUS PROP RESO SERV TECH

C 0.0007 0.0003 0.0003 0.0004 0.0006 0.0004 0.0010 0.0004

(0.0002) (0.0001) (0.0003) (0.0003) (0.0003) (0.0002) (0.0001) (0.0002)

AR(1) 0.0358 0.0001 0.0514 0.0664 0.0800 0.0271 0.0580 0.0037

(0.0210) (0.0209) (0.0212) (0.0210) (0.0213) (0.0211) (0.0213) (0.0211)

K 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0010 0.0001

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

GARCH(1) 0.8306 0.7008 0.8469 0.8458 0.8332 0.8455 0.8143 0.7035

(0.0202) (0.0380) (0.0208) (0.0173) (0.0191) (0.0194) (0.0222) (0.0463)

ARCH(1) 0.0982 0.1495 0.0457 0.0970 0.0707 0.0850 0.0848 0.0638

(0.0220) (0.0378) (0.0151) (0.0189) (0.0186) (0.0197) (0.0232) (0.0269)

Leverage(1) 0.0842 0.0768 0.1264 0.0732 0.1145 0.0836 0.0952 0.1535

(0.0294) (0.0454) (0.0275) (0.0247) (0.0256) (0.0275) (0.0275) (0.0411)

DoF 5.2104 3.8256 7.2344 6.6058 7.1788 7.0096 6.4982 6.1534

(0.4876) (0.2898) (0.6636) (0.6904) (0.6791) (0.6579) (0.6387) (0.5603)

LL 6725.9574 7814.3908 6758.9113 6840.9501 7115.0829 6676.7602 7723.2792 6725.9574

() standard error is in parenthesis, C and K are constant terms

Table 3 Correlation matrix of t copula

AGRO CONS FIN INDUS PROP RESO SERV TECH

AGRO 1 0.0258 0.0067 0.0395 0.0109 0.0036 0.0664 0.0174

CONS 0.0258 1 0.2569 0.1985 0.0335 0.2039 0.2397 0.1148

FIN 0.0067 0.2569 1 0.4483 0.0476 0.6603 0.4917 0.2075

INDUS 0.0395 0.1985 0.4483 1 0.0433 0.4652 0.4394 0.1760

PROP 0.0109 0.0335 0.0476 0.0433 1 0.0306 0.2483 0.2329

RESO 0.0036 0.2039 0.6603 0.4652 0.0306 1 0.4334 0.1602

SERV 0.0664 0.2397 0.4917 0.4394 0.2483 0.4334 1 0.1741

TECH 0.0174 0.1148 0.2075 0.1760 0.2329 0.1602 0.1741 1

DoF = 13.9664

Table 4 Expected shortfall
of asset returns for an equal
weight

Level of
significant

Expected
returns

VaR CVaR

10% 0.2164 −0.0501 −0.0788

5% 0.2164 −0.0693 −0.0976

1% 0.2164 −0.1108 −0.1406
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Fig. 6 A CDF of simulated
22 trading days portflolio
returns

Another scenario illustrates theMonte Carlo simulation to generate a set of 20,000
samples. Given the level of significant, at 5%, we are using the mean-CVaR to
obtained the efficient frontier and the optimal weight of the assets in portfolio given
the ES. Finally, we obtained the simulated returns of each industry index, report of
21.6436 maximum gain and 20.4451 maximum loss, as well with the VaR and CVaR
at various confidence levels.

4 Concluding Remarks

In this article, we illustrate the complexity of extreme value theory and t copulas to
construct the efficient portfolio in the situation of extreme events have occurred. We
are using CVaR andmean-CVaR to attain the effect of extreme events on the portfolio
management. We applied the multivariate t copula to formulated the relationship
between industry index of Stock Exchange of Thailand.We can summarize our study
in two folds. First, given the extreme value and t- copulas methods to modeling the
dependence between tails of distributions and to estimating CVaR. Second, eight
different industry index n-dimensional portfolio have been examined. The results
show that filtered historical simulation, extreme value, and t-copulas approaches are
the most appropriate for risk-management techniques in the times of crisis.

Acknowledgements We are grateful to Prof. Dr. Hung T. Nguyen for his constructive comments
and suggestions.
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Foreign Direct Investment, Exports
and Economic Growth in ASEAN Region:
Empirical Analysis from Panel Data

Pheara Pheang, Jianxu Liu, Jirakom Sirisrisakulchai,
Chukiat Chaiboonsri and Songsak Sriboonchitta

Abstract Themajor purpose of this research study is twofold. Firstly, to examine the
causal relationship among foreign direct investment (FDI), exports, and economic
growth ofASEANeconomy comprisingCambodia, LaoPDR,Malaysia, Philippines,
Singapore, Thailand, and Vietnam, by using panel VECM covering from 2000 to
2014. Secondly, to estimate the impact of FDI and exports on ASEAN economy.
The dummy variable representing the financial crisis in 2008 is used to see the real
effect in this study. The empirical results indicate that bidirectional causal relation
between economic growth and exports is found inASEANassociationwhile there are
two unidirectional causal linkages between FDI-economic growth and FDI-exports
as the causal direction running from FDI to economic growth and running from FDI
to exports in ASEAN economy. Based on the findings from panel dynamic ordinary
least square (DOLS) and fully modified ordinary least square (FMOLS)methods, the
elasticity of GDP with respect to FDI is 0.048 and 0.044% and respect to exports is
0.547 and 0.578%. Therefore, it can be concluded that FDI and exports are significant
aspects which positively impact on ASEAN economic development.

Keywords FDI · Exports · Economic growth · VECM · Panel data

1 Introduction

In recent decades of ASEAN, foreign direct investment (FDI) and international trade
(importantly exports) seem to correspond progressively to the regional development
since ASEAN was created and integration policies were formed. Possibly, this cre-
ation and policies make the ASEAN region become broader liberalization through
tariff reduction policies, trade facilitation programs, and greater business opportu-
nities, etc. However, these judgments were not proved evidently whether and how
these three economic terms of ASEAN region relate with each other. In ASEAN
region, each country has a distinctive history of policy formation appearing to have
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different system in economic practice. Following the diversion, all members seem
to involve in the liberalization structure, and this ASEAN cooperation creates the
opportunities to lure the FDI with the good options for multinational companies to
take advantages. The cooperation of country developmental diversity not only attract
FDI, but it also enhances the integration of production network and trade within the
region. Also, it facilitates technology transfer to face the challenge and integration
with the global economy through trade liberalization. In 1997, ASEAN was effected
by Asian crisis but had rebounded later. Unfortunately, the financial crisis took place
again in 2008 but ASEAN can be recuperated and grew rapidly after this critical era.

Furthermore, the agreement at Bali ASEAN summit enhances the outward ori-
entation for productivity growth and technology transfer, and this orientation is also
appealed via the promotion of FDI. Related to the challenges, ASEAN Economic
Community (AEC) Blueprint prescribes many implementations of trade facilitation
programs and agreements to satisfy the standardize trade. Due to these implemen-
tations, ASEAN has liberalized the trade and alters the economic structure to adapt
with ASEAN’s aim of purposes. Most of investors in the greater economy countries
of ASEAN may consider to locate new production entities in ASEAN nearby lower
economy countries according to lower labor costs and opportunities to expand the
new markets and production networks. These can be a factor of investment growth
in ASEAN and also increasing in export flows to supply more to the world. In last
decades, the rapid growth of foreign trade in ASEAN is noted as the exports has risen
from $750.9 billion in 2006 to $1,292.4 billion in 2014 even facing of the financial
crisis in 2008, and it seems less suffered of the crisis on ASEAN’s exports [1]. Com-
paring to the exports of other regions such as United State, China, Europe and Japan,
ASEAN ranked in the top among the regions while ASEAN reached $55.15 billion
in 2015.

Based on the above description, it is intuitively sure that FDI and exports relate
strongly with the economic growth of ASEAN and there are many facilitation poli-
cies to stimulate these economic terms. With the developing momentum of ASEAN
currently, it seems to be almost no confirmation concerning the relations among
these major economic terms in the ASEAN. Hence, the purpose of this research is
to examine the relationship among FDI, exports, and economic growth in ASEAN
region over 2000–2014 with the panel data approach.

This research will contribute to two aspects for scholars and policy makers: First,
as most of the previous research studies discovered only the bivariate relationship
among FDI, exports, and economic growth. This study is vital to understand the
channeling effects of the three variables via panel data approach. Second, this paper
focuses on the ASEAN region – region of emerging economy. Also, no previous
empirical analysis studied on the causal and impact relationship among FDI, exports,
and economic growth in ASEAN region. Thus, this research can be used to fill the
gaps. The results of this paper are useful for researchers and policymakers ofASEAN
to identify the major economic matters for development effectively and efficiently,
and design the correct principles to enlarge the economic size of ASEAN.Moreover,
the findings can be used as the based figures for comparing the development change
in the next 10 or 15years after AEC launching at the end of 2015.
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The rest of the paper is organized as follows. Section2 provides a brief review of
the empirical literature on the relationship among FDI, exports and economic growth.
Section3 presents the data source and description. Section4 reports the methodology
and empirical results. Section5 gives the concluding remarks.

2 Literature Review

In the recent literature, many researchers chose to work on FDI, exports, and eco-
nomic growth on their studies while the three variables are being the most inter-
esting economic terms for development. Yet, those studies are mostly examined in
bi-variate relationship. Few studies were conducted by using the multivariate rela-
tionship among the three variables, and fewer were done in panel analysis.

In the study of FDI and economic growth linkage, Abbes et al. [2] found that FDI
had a unidirectional causality on economic growth for 65 countries during 1980–
2010. Similarly, Pegka [3] publicized that the hypothesis of long run association
between FDI and economic growth in Eurozone countries during 2002–2012 was
supported.Aswell as a study ofGui-Diby [4] displayed that FDI inflowwas definitely
a significant impact of economic growth in the African during 1980–1994 with the
addition that the impact of FDI on economic growth was negative in the period
1980–1994 but the impact was positive for 1995–2009.

In the exports and economic growth nexus, Shihab et al. [5] defined that the
causal effect was obtained from GDP to exports in Jordan over 2000–2012. Mehdi
and Zaroki [6] presented that the export increment delivered the positive effect on
the growth of Irans economy for 1961–2006. Abbas [7] revealed only production
growth was able to magnify the export size in Pakistan during 1975–2010.

In the FDI and exports nexus, the findings of Sultan [8] stipulated that the long
run dynamic relation of FDI and exports was found with one-way granger causal-
ity direction running from exports to FDI in India covering 1980–2010. Rahmaddi
and Ichihashi [9] elucidated that FDI inflow significantly completed the exports of
manufacturing sectors in Indonesia during 1990–2008, but all manufacturing sec-
tors were obtained FDI - exports complementary, the FDI effects on exports varied
between sectors based on the effect of other related aspects. Dritsaki andDritsaki [10]
concluded that there was the presence of cointegration and dual directional granger
causal relation among FDI and exports for EU members during 1995–2010.

Moreover, there are several papers performed the relationof themulti-variables but
those studies only identified on one way direction or one endogenous variable while
other papers proposed only time series approach. There was hardly ever analyzed
papers using panel approach. Those papers of the trivariate relationship in time
series method are raised in the review. Obviously, Szkorupov [11] illustrated that
there were the findings of causal connection among GDP, exports, and FDI while
the exports and FDI increment positively impacted the economic size in Slovakia
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over 2001–2010. Keho [12] presented the conclusion with the mixed results of the
study as bidirectional and unidirectional causation was found in various countries
in African area for the period of 1970–2013. Saba-Sabir [13] found dual directional
causal linkage between FDI and exports, and unilateral causality direction running
from GDP to FDI and exports without causal relation from FDI or exports to GDP
in Pakistan over 1970–2012.

The few studies of multivariate relationship in panel data approach in recent
literature are also described in the reviews. Likewise, Sothan [14] concluded that the
hypothesis of bidirectional causality between FDI and economic growth and between
exports and economic growth was accepted in 21 Asian countries during 1980–2013.
Mehrara et al. [15] concluded the study on the developing country during 1980–2008
into three parts such as (1) the presence of bidirectional causation between FDI and
GDP was found. (2) the presence of unidirectional causation between exports and
GDP with the direction from exports to GDP. (3) no any granger causality running
from FDI or GDP to exports in both short and long run. Moreover, Stamatiou and
Dritsakis [16] confirmed the presence of the bilateral causality between exports and
GDP and the presences of unilateral causality from GDP to employment and from
exports to FDI for new EU members over 1995–2013.

As above description, it can be informed that least papers conducted researched
studies on the tri-variate relationship among FDI, exports, and economic growth in
panel data approach in the recent literature. Also, there is almost never a study of
these selected variables in ASEAN region. Most of their analyses indicate that FDI
and exports have positive effects on economic growth and the causality analyses
reveal varied results: univariate, bivariate, or no causal relation. The different results
may depend on the different methodology, different treatment of variables (real or
nominal), different studied period, country, and presence of other related variables.

3 Data Source and Description

The annual data of FDI, exports, and economic growth ofASEAN-7 countries namely
Cambodia, Lao PDR, Malaysia, Philippines, Singapore, Thailand and Vietnam dur-
ing 2000–2014 are used in US million dollars and obtained from World Indicators
(WDI) published online by the World Bank. The description for the three variables
of ASEAN economy are summarized in the scatter graph of Fig. 1.

Through the scatter graph of ASEAN-7 countries, it reports that the trend of FDI
and exports respected to economic growth are upward, then it means that both FDI
and exports have positive relationships with economic growth of ASEAN.Moreover,
themoving trend of exports looks higher than the trend of FDI, thus the gradual rising
of economic growth via the larger exports is greater than the larger FDI.
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Fig. 1 Descriptive Scatter Graph of ASEAN-7 countries (in US $Million)

4 Methodology and Empirical Results

To reach the objective of the study on the relationship among FDI, exports, and eco-
nomic growth in ASEAN, it is required to satisfy the four main stages of econometric
approach.

4.1 Panel Unit Root Test

First, panel unit root test is used to verify the property of the data and verify the
integration order to avoid spurious estimation. There are two main processes of
panel unit root test: Common unit root processes and Individual unit root processes.
To measure the stationarity of the series precisely, the panel unit root method is
going to be conducted by using one common unit root test method (Levin-Lin-Chu
(LLC)) and one individual unit root test (Im, Pesaran, Shin (IPS)) which both are the
latest developed methods among each process. LLC test is based on the ADF test
by assuming homogeneity in the dynamics of the autoregressive coefficient for all
the time series across the cross section units [17]. IPS test basically follows the ADF
test by allowing the heterogeneity in the dynamic of the autoregressive coefficient
for all the time series across the cross section units [18].

Based on the Schwarz Info Criterion (SIC), the stationary test of LLC and IPS
with the existence of intercept and trend in the equation are presented in Table1.
The results are shown in the test of both the level series and first difference series.
Both LLC and IPS display different diagnostic results among LGDP, LFDI, LXPT
as there are mixed results of LGDP in both test types, stationary in LLC test but
non-stationary in IPS test. Yet, both tests provide the same results of LFDI and
LXPT cases, as LFDI in both tests are stationary at the 1% level and LXPT are non-
stationary. Further, all series of both tests result all stationary at the 1% significant
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Table 1 Panel unit root test results

Variables Level series First difference series

LLC IPS LLC IPS

LGDP −2.824∗∗∗ −0.381 −6.358∗∗∗ −3.225∗∗∗

(0.0024) (0.3512) (0.0000) (0.0006)

LFDI −5.108∗∗∗ −4.148∗∗∗ −10.863∗∗∗ −7.494∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)

LXPT −0.562 0.182 −6.307∗∗∗ −4.187∗∗∗

(0.286) (0.572) (0.0000) (0.0000)

Notes:
• The null Hypothesis: Series has a unit root
• The values in parentheses refer to p. value
• (*, **, and ***) denote rejection of the null hypothesis at the 1%, 5%, and 10% level of significance,
respectively.

level in the first difference. Hence, it indicates that the series are non-stationary and
not cointegrated at I (0), but the series are stationary at I (1) in the panel ASEAN-7.

4.2 Panel Johansen Co-integration Test

While the variables are stationary at I (1), these series are probably cointegrated in
order I (1) and the cointegration among FDI, exports, and economic growth are pos-
sibly found. Then, the panel cointegration test is also used to confirm the presence
of the cointegration of the three variables. Johansen Fisher panel cointegration test
proposed by Madala and Wu (1999) is applied to test the null hypothesis of no long
run relationship among variables. This test is based on the unrestricted cointegration
rank test (trace and maximum eigenvalue) [19]. Table2 presents the results of panel
cointegration test. The cointegrating relations are significant in both trace and max-
imum eigenvalue methods. The presence of long run cointegration is found at the
5% significant level even using with only intercept or with both intercept and trend
in the equation. Therefore, this panel cointegration test concludes that there exists 3
cointegration vectors among the triple variables in the sample of ASEAN-7.

4.3 Panel Long Run Elasticity Test

As the cointegrated variables are given, the impact study of FDI and exports on
economic growth is added to examine the long run elasticity in ASEAN-7 economy.
The OLS is the most biased and inconsistent analysis for pertaining the panel cointe-
gration method [3]. Then, panel dynamic ordinary least square methods (DOLS) by
Kao and Chiang (1999) and fully modified ordinary least square methods (FMOLS)
by Pedroni (2000) are the better methods to mitigate the faintness. The DOLS is a
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Table 2 Panel Co-integration Test

Johansen-Fisher panel Co-integration test

Individual intercepts

Variables Trace test P.value Max-Eigenvalue
test

P.value

None 83.810∗∗∗ (0.0000) 61.720∗∗∗ (0.0000)

At most 1 37.690∗∗∗ (0.0006) 27.600∗∗ (0.0161)

At most 2 33.060∗∗∗ (0.0028) 33.060∗∗∗ (0.0028)

Individual intercepts

Variables Trace test P.value Max-Eigenvalue
test

P.value

None 115.500∗∗∗ (0.0000) 98.660∗∗∗ (0.0000)

At most 1 37.990∗∗∗ (0.0005) 23.290∗ (0.0558)

At most 2 26.900∗∗ (0.0199) 26.900∗∗ (0.0199)

Notes:
• The null Hypothesis: There is no co-integration among the variables
• The values in parentheses refer to p. value
• (∗∗∗, ∗∗, and ∗) denote rejection of the null hypothesis at the 1%, 5%, and 10% level of significance,
respectively.

Table 3 Panel DOLS and FMOLS estimates

Dependent variable: LGDP DOLS FMOLS

Independent variables Coef. Coef.

LFDI 0.048∗∗ 0.044∗∗

(0.0141) (0.0151)

LXPT 0.547∗∗ 0.578∗∗

(0.0314) (0.0434)

Adjusted R-squared 0.9987 0.9981

S.E of Regression 0.0607 0.0707

Notes:
• The null hypothesis: There is no long run equilibrium co-integration within the variables
• The values in parentheses refer to standard error
• (∗∗∗, ∗∗, and ∗) denote rejection of the null hypothesis at the 1%, 5%, and 10% level of significance,
respectively.

parametric normal distribution estimation augmented by particular lead and lag of
explanatory term to remove the endogenous effects and serial correlation and the
FMOLS is a non-parametric normal distribution process which is capable to deal
with serial correlation problems [20].

From Table3 presenting the panel DOLS and FMOLS estimates, it can be sum-
marized that the coefficients of inward FDI and exports in the long run are positively
and statistically significant at most 5% level.

In the DOLS, the long run elasticity of inward FDI and exports on GDP are found
0.048 and 0.547, respectively. This indicates that one percent increases in FDI will
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enhance economic development for panel of ASEAN-7 countries by about 0.048%,
and one percent grows in exports will boost the economic growth for panel data of
ASEAN-7 countries by about 0.547%. Similarly, through the FMOLS, the elastic-
ity of FDI inflow and exports with respect to GDP are respectively resulted 0.044
and 0.578. It represents that one percent increases in FDI will foster the economic
advancement for the panel of ASEAN-7 countries by about 0.044%, and one per-
cent increases in exports will induce economic progress for the panel of ASEAN-7
countries by 0.578%. Hence, the findings illustrate that both FDI and exports are
significantly crucial for the development of ASEAN economy, and the findings also
confirm that the impact of FDI and exports on the economic growth via the DOLS
and FMOLS are not far different in the studied period.

4.4 Panel Estimation

Also, panel estimation conducted with fixed effects and random effects is taken into
account. This panel estimationwill allow the readers to discern the impact comparison
between the fixed effects and random effects method and which method is the most
fitted estimation in this study. The equation of panel estimation with both effects
methods can be written as below:

LGDPi,t = β0 + β1LFDIi,t + β2LX PTi,t + γi + λt + εi,t , (1)

where β0 is a constant intercept. β1 and β2 are constant slope coefficients of FDI
and exports respectively, γi is the country specific effect. λt represents time specific
effect, εi,t is residual terms.

Fixed effects method assumes that the certain unobserved variables of each spe-
cific country (country specific effect) are fixed over time andmay affect the economic
growth by correlating with the exogenous variables in the equation [21]. with the
existence of time specific effect, the country specific effect in fixed effects method
may provide the coefficients unbiased and consistent estimations. Random effects
method assumes that the country specific effect is random and not correlated with the
exogenous variables in the equation. Then, all the country specific intercept terms
are random across the cross section units. For finding the most fitted estimation, the
correlated random effects method – Hausman test – is used to answer this enquiry.
Two specifications are arranged in this study, specification 1 involves the estimations
without including the dummy variable, and the specification 2 involves the estima-
tion taken with the dummy variable. Both specifications and methods are estimated
consistently as the estimation are corrected for both cross sectional heteroskedastic-
ity and serial correlation (cross sectional clustered) by robust coefficient covariance
method:White period [22]. Table4 reports the results of panel estimation using fixed
effects and random effects method.

Referring to the specification 1, theHausman test statistic is not significant enough
to reject the null hypothesis of no correlation between individual effects and other
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Table 4 Panel estimation with robustness standard error using fixed and random effects

Dependent
variable: LGDP

Specification 1 Specification 2

Fixed effects Random effects Fixed effects Random effects

C 5.722∗∗∗ 5.563∗∗∗ 6.542∗∗∗ 6.295∗∗∗

(0.5200) (0.6782) (0.4503) (0.6999)∗∗∗

LFDI 0.031∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.027∗∗∗

(0.0083) (0.0074) (0.0049) (0.0045)

LXPT 0.463∗∗∗ 0.479∗∗∗ 0.378∗∗∗ 0.403∗∗∗

(0.0485) (0.0511) (0.0417) (0.0472)

DUM 0.186∗∗∗ 0.174∗∗∗

(0.0368) (0.0361)

Hausman test

Chi-Sq. 0.0000 Random 57.2290 Fixed

P.value 1.0000 Effects 0.0000 Effects

Adjusted
R-Squared

0.9983 0.7963 0.9991 0.9011

S.E of regression 0.0639 0.0584 0.0473 0.0501

Notes:
• The null hypothesis: There is no long run equilibrium co-integration with the variables
• The values in parentheses refer to standard error
• Robustness Coefficient Co-variance: White Period
• (∗∗∗, ∗∗, and ∗) denote rejection of the null hypothesis at the 1%, 5%, and 10% level of significance,
respectively.

regressors at the 10% level. Then, it defines that random effects method is more
appropriate in this impact study, and the outcomes of the Hausman test indicate that
the long run coefficients of all ASEAN-7 countries are not equaled or heterogeneous.
Through the results, FDI and exports are significant at the 5% level in both methods
and contain positive effects supporting to the theory. This means that both FDI and
exports positively impact the economic growth of ASEAN. The impact coefficient
of FDI and exports on economic growth are found 0.029 and 0.479, respectively.
It represents that an increasing 1% in FDI makes the economic growth of ASEAN
by about 0.029% while an increasing 1% in exports fosters the economic growth of
ASEANby about 0.479%. For specification 2which includes the presence of dummy
variable, fixed effectsmethod seems to becomemore appropriate than random effects
as the statistic of Hausman test is significantly rejected the null hypothesis at the 1%
level, and the coefficient of FDI and exports of specification 2 found 0.028% and
0.378%, respectively are lower than specification 1, but the significant level looks
more robust. Moreover, coefficient of dummy variable is oddly found positive num-
ber, this reveals that dummy variable seems to provide better condition for economic
development of ASEAN. The coefficient is about 0.18 in both methods and sig-
nificant at the 1% level. It shows that the world financial crisis in 2008 does not
affect negatively to the ASEAN region, as some of ASEAN countries, especially the
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least developing countries may find more opportunities to improve their economic
conditions. Then, the post world financial crisis results average increase of ASEAN
economic growth by 0.18%. Probably, it seems that the destination for FDI is trans-
ferred to emerging regions and leads the growth of FDI magnitude in ASEAN while
the economic situation in the European Union (EU) is not convenient for investors
since the financial crisis. During the financial crisis, the decline in the share of FDI
might result from the lack of confidence of EU investors in their own regional mar-
ket and transfer from EU countries to the world outside EU (European commission,
2012). According to Dr. Sandra Seno-Alday, a researcher at the Sydney Southeast
Asia Centre (SSEAC), the behavior of the Southeast Asian region following the 2008
crisis was opposite to what it was in Asian crisis in internet bubble in 1997 and 2000.
After 2008, the rest of the world faced serious economic recession while Southeast
Asia’s regional economy grew slowly but notably did not decline. The reason of this
positive effects of the crisis is revealed that Southeast Asia region has a strong export
orientation. Therefore, fostering closer international trade involves the advance of
flexible, internationally-oriented industries and greater robustness against the shock.
Totally, the results provide a supporting to the theoretical enlightenment mentioning
FDI and exports are crucial components of economic development, and respect to
the previous research literature.

4.5 VECM Granger Causality Test

The above tests confirm the long run cointegration among the variables, but the
existence of cointegration does not illustrate the direction of causality, then granger
causality analysis is used to examine the causal direction of the triple variables.
This granger causality may require employing panel vector error correction model
(VECM)(Granger 1988) to recognize the cointegration equations and the estimated
coefficients in the long run and short run causality. In VECM, the long run dynamic
relations will be revised by short run relations which is obscured by the disturbances
in long run equilibrium. The VECM equation of the study is specified as follows:

�LGDPi,t = α1i + β1i ECTi,t−1 +
q∑

k=1

δ1i,k�LGDPi,t−k +
q∑

k=1

γ1i,k�LFDIi,t−k

+
q∑

k=1

θ1i,k�LX PTi,t−k + ε1i,t , (2)

�LFDIi,t = α2i + β2i ECTi,t−1 +
q∑

k=1

δ2i,k�LFDIi,t−k +
q∑

k=1

γ2i,k�LGDPi,t−k

+
q∑

k=1

θ2i,k�LX PTi,t−k + ε2i,t , (3)
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�LX PTi,t = α3i + β3i ECTi,t−1 +
q∑

k=1

δ3i,k�LX PTi,t−k +
q∑

k=1

γ3i,k�LGDPi,t−k

+
q∑

k=1

θ3i,k�LFDIi,t−k + ε3i,t , (4)

where �LGDPi,t ,�LFDIi,t ,�LX PTi,t are the first difference of natural loga-
rithmic gross domestic product (GDP), foreign direct investment (FDI, and exports
(XPT), respectively. αni (n = 1, 2, 3) is cross country effect. k (k = 1, 2, ...q)) is
the optimal lag order determined by the Schwarz Information Criterion (SIC). βni

(n = 1, 2, 3) is the coefficient of variables in one period lagged (speed of adjust-
ment). ECTi,t−1 is the estimated Error Correction Term (ECT) in one lag period
generated from the long run cointegration form. εni,t (n = 1, 2, 3) is the error term
with zero mean.

To proceed VECM, ECT stationarity and lag length order are needed to check
[23]. The results of ECT stationary test illustrate that all ECTs are stationary at the
1% significant level in every method. Next, the lag order selection is conducted via
VARmodel to find the optimal lag length in the estimation. The selection is explored
with the maximum lag 4. Based on the results of lag order selection in Table5, the
results confirm lag order 1 and 2 are the optimal lag lengths for granger causality
of ASEAN. Nonetheless, three of six lag selection methods (LR, FPE, and AIC)
confirm lag 2 while LogL method is unavailable within maximum lag 4, then the
granger causality estimated in this study is determined by optimal lag length p = 2.

Subsequently, VECM for causality analysis is officially tested. In the estimating
process of VECM (2), the dummy variable of the financial crisis effect during 2008
is involved by setting 0 for the period of 2000–2007 and 1 for 2008–2014. Table6
reports the findings of both long run and short run granger causality. The long run
granger causality is shown by the significant t-statistic of lagged ECT, and the short
run granger causal direction is expressed by wald coefficient test. The results provide
the similar causality relations among variables in short run and long run. For long

Table 5 Lag order selection

Lags LogL LR FPE AIC SC HQ

1 190.127 NA 1.82E-06 –4.705 –4.431∗ –4.595∗

2 201.141 20.311∗ 1.73E-06∗ –4.757∗ –4.209 –4.538

3 209.628 14.990 1.75E-06 –4.744 –3.922 –4.415

4 214.836 8.792 1.94E-06 –4.645 –3.549 –4.207

Notes:
* indicates lag order selected by the criterion
LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion
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Table 6 Panel granger causality - VECM (2, Dummy)

Dependent
variables

Independent variables (Sources of causation)

Long run Short run Crisis

ECTt−1 �LGDP �LFDI �LXPT Dummy

�LGDP -0.002∗∗∗ 4.6987∗ 4.2972w -0.024∗∗∗

(0.0037) (0.0954) (0.1166) (0.0002)

�LFDI 0.024 0.5185 3.1127 -0.195

(0.2791) (0.7716) (0.1948) (0.3621)

�LXPT -0.007∗∗∗ 4.6235∗ 11.4426∗∗∗ -0.078∗∗∗

(0.0009) (0.0991) (0.0033) (0.0001)

Notes:
• Wald statistic reports with short run changes in the independent variables
• T-statistic of lagged ECT reports long run relations
• The values in parentheses refer to p-value
• (∗∗∗, ∗∗, ∗, and w) denote rejection of the null hypothesis at the 1%, 5%, 10% and 15% level of
significance, respectively.

run, there exists bilateral causality between exports and economic growth, and also
two unilateral causality running in the direction from FDI to economic growth and
exports. Evidently, these long run causal relationships are found at the 1% level
of significance. For the short run relationship (see Fig. 2), exports and economic
growth have an interacting causal relation with each other as the findings in the
study confirm the presence of bidirectional causal relationship between exports and
GDP which is significant at most 15% level. On the other hand, FDI has causal
connections at the 5% and 10% level of significance with economic growth and
exports respectively as only the unidirectional causality running from FDI to GDP
and from FDI to exports are found. This evidence reveals that FDI and exports
play an important role in economic booster of ASEAN. However, FDI is the major
economic term to be more concentrated as FDI is not only an element of promoting
ASEAN’s economic development directly but also diffusely via the growth of export
volumes. Additionally, the growth of domestic products and the larger amount of
foreign capital are the two major factors in enhancing export volumes of ASEAN.
Not to mention, the coefficients of dummy variable are shown in negative values
and significant at the 1% level, excluding only FDI which is displayed in negative
value but insignificant. These values prove that the financial crisis in 2008 may affect
negatively on the causation of the economic growth and exports in ASEAN region.

Through the reinforcing effects of FDI inflow, the policy for economic develop-
ment in open economy should put priority on FDI as FDI is the crucial source for
economic and export growth. Then, ASEAN countries should improve the infrastruc-
ture, human capital and technology progress to attract investors and exist higher
productions to enlarge export volume and use exports and FDI to induce the growth.
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Fig. 2 Granger causality relation of ASEAN regions

5 Concluding Remarks

The objective of this paper is to discover the multivariate relationship between FDI,
exports, and economic growth in ASEAN region. To reach the objective, the diag-
nostic check for variable stationarity is conducted via LLC and IPS tests. Then, panel
cointegration test based on trace and maximum eigenvalue is used to examine the
long run cointegrating relationship among the variables. Lately, the VECM granger
causality test is applied to determine the causal direction in ASEAN region.

The empirical findings illustrate that all variable series are cointegrated at I (1)
confirmed by LLC and IPS tests and lead the three variables to be cointegrated,
then VECM condition is fulfilled to use for causality study through the results of
panel Johansen cointegration test and error correction term. Following the existence
of cointegration of FDI, exports, and economic growth, the DOLS and FMOLS
estimation methods result positive impact of FDI and exports on economic growth
by 0.048% and 0.547%, respectively in the DOLS and by 0.044% and 0.578%,
correspondingly in the FMOLS.Moreover, the comparing between fixed and random
effects for the best fitted method is performed with the presence of financial crisis,
and fixed effects method is reported as the suitable method for this study.

For the empirical results of granger causality analysis, the causal relations of
triple variables are displayed in both short run and long run. In long run, it is found
that both FDI and exports generate the economic advancement while FDI and GDP
also enhance the exports. Through the short run causality results, the reinforcing
effect of FDI spillovers should be concentrated on. For our policy recommenda-
tion, we suggest a policy design for luring FDI which may induce the growth in
economy and complement export orientation as the exports at least jointly promote
economic growth at the weak 15% level. Exports can be an economic term to impact
stronger on economic development and to prevent the ASEAN from the crises as
seen in the previous history of the financial crisis in 2008. Probably, the technological
progress, human capital, financial development, and structural change should also be
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considered, as these components are vital sources for FDI advancement and the devel-
opment for developing countries of ASEAN. In conclusion, the causality relationship
studied by combining data for the 7 countries illustrates an interesting and reasonable
causality connections among FDI, exports, and economic growth of ASEAN region
and can be used as a general rule of economic policy for ASEAN. Finally, the future
research studies can be focused on the development change of ASEAN economy
with these major economic terms or included other effecting factors in the next 10
or 15years because there can be a big change after launching AEC process.
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