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Abstract The goal of this chapter is to review the process, issues, and challenges

of energy harvesting in nanonetworks, composed of nanonodes that are nano to

micro meters in size. A nanonode consisting of nan-memory, a nano-processor, nano-

harvesters, ultra nano-capacitor, and a nano-transceiver harvests the energy required

for its operations, such as processing and communication. The energy harvesting

process in nanonetworks differs from traditional networks (e.g. wireless sensor net-

works, RFID) due to their unique characteristics such as nanoscale, communication

model, and molecular operating environment. After reviewing the energy harvest-

ing process and sources, we introduce the communication model, which is the main

source of energy consumption for nanonodes. This is followed by a discussion on the

models for joint energy harvesting and consumption processes. Finally, we describe

approaches for optimizing the energy consumption process, which includes optimum

data packet design, optimal energy utilization, energy consumption scheduling, and

energy-harvesting-aware protocols.

1 Introduction

The advancement of nanotechnology promises to provide a significant rise in small

scale communication. Wireless nanonetworks [1, 2] are a next generation of net-
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works at nano scale. Nanonodes in such a network are composed of nano antennas,

nano-memory, nano-processor, nano-sensors, nano-sclae energy storage, and so on.

Each nanonode is in the range of nano to micro meters in size. The nanoscale property

of nanonodes opens the door for exciting new applications. For example, nanosensors

could detect chemical compounds at the molecular level or the presence of different

infectious agents, such as viruses or harmful bacteria [2]. Many other applications

can also be imagined in the biological, medical, chemical, environmental, military,

and industrial domain [2]. For example, nanosensors could be used to develop new

touch surfaces or be added to standard office products (e.g., pens, papers, etc.), thus

making the idea of smart offices a reality.

The functionalities of nanonodes are realized only through communication.

Nanosensors will collect useful information that must be sent outside of their sensing

environment for storage and additional processing. Nanonodes need to communicate

to control or actuate an action, or similarly monitor a phenomena. In other words,

they will need to communicate between themselves as well as with nodes in other

networks, e.g., local area network. Among all possible models of communication

in nanonodes (e.g. electrical, molecular, optical, or acoustic), studies [1] show that

electromagnetic communication in the 0.1–10.0 terahertz (THz) frequency band is

a promising approach for communication in nanonetworks. Therefore, we focus on

the THz communication mechanism, in which nanosensors can consume low energy

while having connectivity at the nano scale. The energy for communication is the

main part of energy consumption for nanonodes [23].

Due to the size limitation of nanonodes, only a limited energy storage can be con-

sidered, where a nanonode harvests and stores energy from ambient sources. Various

sources, e.g., vibration, heat, and light, exist for energy harvesting. The use of each

type of source corresponds to the particular environment or application. For exam-

ple, where light is not available, heat can be used as the source of energy. The energy

availability of most sources follows stochastic processes.

In addition to the size limitation of energy storage and the stochastic energy har-

vesting process, the harvester size also needs to be adapted to nanoscale for inte-

gration with nanonodes. For example, piezoelectric nanogenerators enable a high

energy harvesting rate through compress-release cycles of the nanowires on an ultra-

nanocapacitor [23]. Similarly, nano-carbon-based and nano-ceramics-based pho-

tovoltaics show promising light absorption properties and can be integrated with

nanonodes. The use of biofuel cells to harvest energy from various materials such as

blood sugar is another recent advancement in harvesters for nanonodes.

The new communication model, size limitation of nanonodes (which result in low

processing capabilities and low harvest rate), and stochastic properties of energy har-

vesting process create a paradigm of new challenges (in modeling and optimization

of energy consumption) to solve for the realization of nanonetworks. Because the

energy is expected to be renewed, it is important to achieve the maximum utilization

of this energy while keeping a nanonode operational. This differs from traditional

energy-saving models (e.g., duty cycles, balancing energy consumption among all

nodes, data compression, data aggregation, etc.) although some of these may still
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be applicable to nanonetworks. Because energy harvesting in nanonetworks is in its

early stage of research, we briefly study the energy harvesting in wireless sensor and

RFID networks with two goals: (I) introducing the ideas in these networks that may

be adapted for nanonetworks; and (II) highlighting both their limitations that prevent

them from being used in nanonetworks, and new approaches that could be taken.

Typically, communication is the most energy-consuming operation for nanon-

odes, implying that the models should focus on energy harvesting in combination

with energy consumption for communication. We introduce some methods for opti-

mizing the consumption of energy, including finding the optimum packet size, packet

scheduling, and energy harvesting-aware techniques in the realm of nanonetworks.

More importantly, the effect of optimizing energy consumption at each nanonode on

the overall performance of the nanonetwork should be evaluated. For example, while

a nanonode should not be a no-energy state in order to avoid unsuccessful transmis-

sion of packets, it should also not remain in a full energy state in order to ensure that

available energy is harvested and network utilization is maximized.

The remainder of this chapter is organized as follows. In Sect. 2, we give an

overview of the taxonomy and properties of energy harvesting. Moreover, we intro-

duce various sources of energy as well as nano scale harvesters for nanonodes.

Section 3 introduces the communication model between nanonodes. Section 4 dis-

cusses the techniques for modeling energy harvesting and consumption processes.

Section 5 analyzes the optimizing factors of energy consumption based on the prop-

erties of the pulse-based communication model. Finally, the chapter is concluded in

Sect. 6 with open research issues in the energy harvesting process for nanonetworks.

Particularly, open questions related to optimum energy consumption and energy

harvesting-aware protocols are discussed.

2 Energy Harvesting

Research in energy harvesting has attracted attention in recent years due to the avail-

ability of devices that can harvest solar energy. However, solar energy is limited to

specific times and locations. Therefore, researchers have investigated new methods

of energy harvesting such as ambient vibration or heat. Independent of the type of

source for energy harvesting, energy sources mainly share a common property: the

availability and quantity of energy follows a stochastic process.

Energy sources are categorized broadly into (I) ambient energy sources such as,

solar, wind, radio frequency (RF), and vibration; and (II) human power [56], which

in turn could be passive (i.e., uncontrollable) such as blood pressure, body heat,

heartbeat and breath, or active (i.e., controllable) such as finger motion, paddling,

and walking. In the following we present a taxonomy of energy harvesting.
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2.1 Taxonomy of Energy Harvesting

There are three main metrics for the evaluation of harvesting methods [4, 10, 56]:

∙ Conversion Efficiency: This is the amount of energy harvested as compared to the

amount of available energy.

∙ Energy Harvest Rate: This specifies how fast the energy can be harvested and

depends on the type of energy, among other factors. For example, in the case

of solar energy, the size of the solar panel or weather conditions (e.g., sunny or

cloudy) affect this parameter. On the other hand, in vibrant energy harvesting, the

rate of vibration affects the rate of energy harvesting.

∙ Power Density: This indicates the amount of power (time rate of energy transfer)

per unit volume, measured in
Watt
m3 , that a device (harvester or battery) can offer.

The harvested energy is used in two ways:

∙ Harvest-Use: In this method when the energy is produced, it is used immediately.

An example of this method is pushing a key/button. Pushing produces some energy

that can be used to transfer an electronic signal.

∙ Harvest-Store-Use: In this method, energy is harvested whenever possible, and is

stored for future use. This method is more useful since there is always some energy

available if it is consumed wisely. The limitation comes only from the capacity of

storage. Most of the studies in the domain of networking use the harvest-store-

use method. In these situations, two approaches are taken: (I) finding the required

capacity of storage to meet the application requirements; and/or (II) trying to opti-

mize usage of this energy.

More detailed studies describing the energy harvesting taxonomy are available [4,

50, 56]. In the following, we focus on possible energy sources and models of energy

harvesting for nanonetowrks.

2.2 Sources of Energy for Nanonodes

Energy harvesting plays a major role in the realization of nanonetworks. Due to the

limited size of nanonodes as well as some of their applications in environments with

no light (e.g. inside body, in liquids), other energy sources are considered. Mechani-

cal energy (from vibration and motion) and chemical energy are the two main sources

of energy nanonodes, especially in biological environments. Thermal energy is not

efficient and has downsizing limitations. In the following, we discuss the state-of-art

in energy harvesting for nanonodes.
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2.2.1 Mechanical-Energy Harvesting

Vibration-based mechanical energy is ubiquitous in environments where solar and

thermal energy are not available or accessible. Mechanical vibrations exist in a wide

range of frequencies, from a few hertz to several kilohertz, which result in power

densities ranging from a few microwatts to milliwatts per cubic centimeter [49].

The harvesting of mechanical energy by piezoelectric materials is the main

approach to directly convert mechanical energy into electricity. Traditionally, lead

zirconate titanate, or PZT, has been the material mostly used for mechanical energy

harvesting. However, issues such as the reliability, durability, and safety of these

materials limit their usage for long-term operations. Recently, piezoelectric

nanowires (NWs) have shown promise in the harvesting of mechanical energy

at nanoscale [18].

Nano-generators (NGs) based on NWs can be fabricated on various substrates,

including polymers, semiconductors, and metals, and even on unconventional non-

planar substrates, such as fibers [58]. By weaving bundles of such fibers into fab-

rics, potential applications such as smart clothes can be imagined. Fiber NGs based

on similar configurations have been developed to harvest low-frequency vibrations

induced by air, liquid flow, exhalation and the heartbeat of a human body [32]. The

human body contains other significant mechanical energy induced by continuous

activities, such as breathing and the beating of the heart, and discontinuous motions,

such as walking and muscle stretching.

Mechanical energy from vibration and motion is available in many other envi-

ronments, which makes it an invaluable source of energy in many medical as well

as indoor industrial applications for nanonetworks. Table 1 represents some of the

potential sources for harvest energying from vibration.

Table 1 Peak frequency and acceleration amplitude for various vibration sources [11, 48, 51]

Vibration source Peak frequency (Hz) Acceleration

amplitude (
m
s2

)

Refrigerator 240 0.1

Car engine compartment 200 12

Door frame just after door closes 125 3

Kitchen blender casing 121 6.4

Clothes dryer machine 121 3.5

Small microwave oven 121 2.25

Washing machine 109 0.5

External windows next to a busy street 100 0.7

Second story of wood frame office building 100 0.2

HVAC in office buildings 60 0.2–1.5

Vehicles 5–2000 0.5–110

Person nervously tapping their heel 1 3
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Fig. 1 Energy harvesting

model [23]

New generations of piezoelectric-nanowire are sensitive to very low acceleration

[60]. Therefore, the main parameter that affects the amount of energy harvesting

is the frequency. This means that the variation in the vibration rate will result in a

stochastic model for available energy for a nanonode at different times and different

locations. Moreover, energy storage in ultra nano-capacitors is a non-linear process.

Therefore, the first issue is to understand and model the energy harvesting process

where the stochastic and nonlinear behavior of harvesting is included.

In [23], an energy harvesting model has been proposed for storing energy process

in an ultra-nanocapacitor by piezoelectric nanogenerators, as shown in Fig. 1. In

this model, energy is harvested through vibrations, which produce compress-release

cycles of the nanowires on a nano-capacitor. For a specific ultra nano-capacitor,

the stored energy is specified by the number of cycles. The energy-harvesting rate

(Joules/second) is defined as

𝜆(Ecur, 𝛥E) =
1

tcycle
⋅

𝛥E
ncycle(Ecur + 𝛥E) − ncycle(Ecur)

(1)

where tcycle is the time between cycles, ncycle(E) is the number of cycles required to

generate E Joules, Ecur is the current energy level, and 𝛥E is the amount of energy

increase. We note that if every vibration generates one cycle, then the inverse of tcycle
is the vibration rate.

The amount of power that can be harvested through vibration is compared with

other sources of energy in Table 2 in terms of power density. Power density is the

amount of power (energy transfer per unit time) per unit volume or surface. Depend-

ing on the power source, the power is measured [50] for volume or surface, respec-

tively called volume power density, which is expressed as W∕m3
, and surface power

density, which is expressed as W∕m2
.

As can be seen, piezoeletric nanowire provides a significant amount of power

density. The limitations in harvesting the energy comes from size limitations for

nanonodes (scale of nano to micro meters) as well as the availability of the vibra-

tion source. For example, as can be seen from arm motion, power density up to 330

µW∕cm3
can be extracted.
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Table 2 Comparison of power density for various harvesting sources and technologies [51, 60,

61], * = µW∕cm2

Source/technology Power density (µW∕cm3
)

Solar (outdoor) 15,000 direct sun, 150 cloudy day

Solar (indoor) 6 office desk

Vibration (piezoelectric conversion) 250

Vibration (electrostatic conversion) 50

Acoustic noise 0.003 at 75 dB, 0.96 at 100 dB

Temperature gradient 10–60*, depends on temperatures and

difference, known as Carnot efficiency

Shoe inserts (pizoelectric vibration) 330 [54, 55]

Vibration (small microwave oven) 116

Batteries (non-rechargeable lithium) 45

Batteries (rechargeable lithium) 7

Arm motion 330

Piezoelectric-nanowire [60] 2800

Running Max from kinetic 300 [39]

Walking Max from kinetic 30 [39]

Light Outdoor at night 25, indoor 100* [12]

RF 0.02–40*, depends on source and distance

2.2.2 Biofuel Cells (BFCs) for the Harvesting of Chemical
and Biochemical Energy

A fuel cell converts the chemical energy of a fuel, such as hydrogen or methanol, into

electricity through a chemical reaction with an oxidizing agent, such as oxygen or air

[16]. In contrast to batteries, in which chemical materials are used to store electrical

energy, fuel cells extract chemical energy from reactants and convert the extracted

chemical energy into electricity as long as the reactants are available. Although it is

a mature technology that has been used extensively at macroscale applications, con-

ventional fuel cell technology has several inherent disadvantages such as the mate-

rials used, the fabrication cost, and size restrictions, for the cost-effective solution at

the micro and nano scale applications such as implanted biomedical sensors. There-

fore, a biofuel cell (BFC) is introduced where it simply uses biological enzymatic

substances, rather than metals, to catalyze the anode and/or cathode reactions.

BFCs can be classified into two categories: (I) microbial fuel cells (MFCs), where

the catalytic enzymes involved are in living cells; and (II) enzymatic BFCs, where

the catalytic enzymes involved are located outside of living cells [19]. MFCs demon-

strate unique features such as long-term stability and fuel efficiency. However, the

power densities associated with MFCs are typically lower than BFCs [19]. Thus, the

application of MFCs at the micro and nano scale is limited. On one hand, enzymatic

BFCs are biocompatible and can provide efficient power on order of sub-mWcm
−2

,
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Table 3 Comparison of energy-harvesting techniques for biological environments

Energy source Harvesting

principle

Power density Advantages Disadvantages

Mechanical Piezoelectric 1–10 mWcm
−2

Ubiquitous and

abundant

Low efficiency,

stochastic

availability

Biochemical chemical reactant 0.1–1 mWcm
−2

Biocompatible,

inexpensive,

abundant in

biological

environment

Low power

output, poor

reliability, limited

lifetime

which makes them applicable in micro and nanoscale applications such as in vivo

biochemical/biomedical applications through the harvesting of biochemical energy

directly from the human body. On the other hand, current enzymatic BFCs normally

suffer poor stability. Table 3 summarizes the two main approaches of energy harvest-

ing in biological environments.

2.2.3 Hybrid Cells for the Harvesting of Biomechanical
and Biochemical Energy

Most energy harvesting methods, e.g., biomechanical or biochemical, are developed

based on the existence of a certain type of energy source, while the other types of

energy were wasted. Moreover, as illustrated in Table 3, the properties of biome-

chanical and biochemical energy harvesting methods are complements of each other.

Therefore, new research directions try to develop innovative approaches for concur-

rent harvesting of energy from multiple types of sources through the use of integrated

structures/materials [58]. This will help the energy harvesting process because at

nano scale, the temporal/spatial distribution and availability of energy sources vary

drastically [58].

Mechanical and biochemical energy are abundant in the biological environment

due to body motion, muscle stretching, and metabolic processes. Therefore, hybrid

solutions of these two energy sources are emerging as a new approach for energy

supply in biological environments. A hybrid energy scavenger [15] was developed

recently, which consists of a piezoelectric nanofiber NG for harvesting mechani-

cal energy, such as from respiration and blood flow in the vessels, integrated with

a flexible enzymatic BFC for harvesting the biochemical energy from the chemi-

cal processes between glucose and O2 in biofluids. These two energy harvesting

approaches, integrated within one single device, can work individually as well. Stud-

ies [15, 44] have demonstrated the feasibility of applying these energy harvesters

in building self-powered nanodevices for in vivo biomedical applications to power

nanosensors.
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2.3 Future

More advancement in energy harvesting downscaling is required to integrate the

harvesters from sources such as solar, light and thermal into nanonodes. Currently,

energy harvesting from mechanical or biochemical sources are the main approaches

to supply energy for nanodevices. These are also applicable for in vivo medical

applications. New sources of energy for biochemical energy harvesting are emerging

every day. For example, energy harvesting from blood sugar by biofuel cells [37] or

from electrical differences in the inner ear [38] are new sources of energy. More-

over, advancements in nanodevices can be helpful in the production of nanoscale

RF energy harvesters. Currently, RF energy harvesters are widely used for wireless

sensor or RFID networks [45]. With the help of nanotechnology, this could be a sig-

nificant source of energy, which is also controllable. Moreover, inductive charging

[6], which is currently deployed for many medical applications in body area net-

works, could be investigated. Again, the size limitation is likely the main barrier for

its usage at nanoscale.

3 Communication

As the energy for communication is the main part of energy consumption for nanon-

odes, in this section, we briefly describe the communication model for nanonodes.

Two major possible mechanisms are envisioned [1] for communications among

nanonodes: molecular communication and electromagnetic communication. The

molecular communication is mainly based on the chemical and physical interac-

tions, which have different consumption models and are not yet known completely

[46]. Therefore, we focus only on the electromagnetic communication.

3.1 Electromagnetic Communication

Electromagnetic (EM) communication has been proposed [1, 2] as a communication

method for nanonetworks. More specifically, pulse based communication in the 0.1–

10 THz has been studied. There are several limitations in existing silicon-based man-

ufacturing techniques (e.g., silicon atom size, heating and current leakage) that make

the downscaling of existing EM transceivers infeasible [36]. Alternatively, nanoma-

terials are envisioned to solve part of building a new generation of electronic com-

ponents that overcome shortcomings of current technology [3]. Carbon Nanotubes

(CNTs) and Graphene Nanoribbons (GNRs) among other graphene based materi-

als are expected to be the silicon of the 21st century [30]. The EM properties on

these nanomaterials should be evaluated in terms of bandwidth for EM emission,

the time lag of the emission, and the magnitude of the emitted power for a given

input energy, among others. Ongoing research on the EM emission on graphene are
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Fig. 2 Frequency bands 0.1–10 THz is suggested for nanonetworks

Fig. 3 Path loss in terahertz

[21]

indicating the 0.1–10 Terahertz band (Fig. 2) as the expected frequency range of

operation of future nano EM transceivers [24, 52]. In particular, it is determined

that a 1µm long graphene-based nano-antenna can only efficiently radiate in the

Terahertz range. This matches the initial predictions for the operation frequency of

graphene-based RF transistors [33].

Communication in terahertz is very sensitive to communication distance. Figure 3

illustrates the path loss at various distances in the THz band. For distances larger

than one meter in a gaseous environment with 10% water vapor, path loss exceeds

100 dB. The path loss for 1 cm distance is around 50 dB. As can be seen, the path

loss depends significantly on both the distance and frequency. Therefore, the power

requirement for various distance and frequencies would vary significantly and should

be considered in any communication design scheme.

3.2 Pulse-Based Communication Model for Nanonetworks

Pulse-based communication [8] is a known method in Ultra-Wide-Band (UWB)

networks as Impulse Radio Ultra-Wide-Band (IR-UWB) systems. The pulse-based

communication model for nanonodes, based on the model proposed in [2, 23], oper-
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Fig. 4 RD TS-OOK modulation for transfer of 1011

ates in the 0.1–10 THz frequency band, which results in a micro to millimeter com-

munication range [2, 20]. The main reason for this frequency selection is due to the

limitation in antenna size that a nanonode can afford, e.g., 1µm. Communication

in the THz band presents new channel properties: molecular absorption, thermal

effects, and so on [20].

Nanonodes use the pulse-based communication and Rate Division Time Spread

On-Off Keying (RD TS-OOK) [25] as the modulation mechanism (Fig. 4). A log-

ical 1 is transmitted as a femto-second long pulse, and a logical 0 is transmitted

as silence. RD TS-OOK is a simple modulations, but it is envisioned because more

complex modulation (e.g., pulse amplitude, pulse width, pulse rate) used in IR-UWB

are not applicable in nanonodes due to the capabilities limitations of nanonodes [25].

The duration of each pulse is Tp and the time between two symbols is Ts, pro-

ducing a symbol rate of 𝛽 = Ts
Tp

. The selection of optimal 𝛽 is still an open question.

It certainly will depend on the hardware capabilities of the transmitter and receiver.

Assuming there is no limitation in hardware capabilities, the existence of several

flows of symbols from neighbor nanonodes will result in the collision of symbols.

Moreover, energy availability is another factor that can affect the design of 𝛽. Cur-

rently, it is assumed that 𝛽 takes values on the order of thousands.

In OOK modulation, since silence does not consume energy, any scheme that

could produce fewer 1s is preferred. For example, using code weight [22] has been

proposed [23] to reduce energy consumption. The code weight basically reduces

the number of 1s by adding extra bits so that data is coded in a way that a fewer

number of 1s are present in the coded bits. This results in less energy in transmission

and higher energy in reception. Reception of either a 0 or 1 costs the same energy,

so sending more bits results in higher energy consumption for the receiver. Energy

savings could happen only if the energy for reception is lower than transmission,

which is the typical case in wireless transmission and has been shown in [23, 25].

Moreover, the code weight will not necessarily save energy in broadcast or multicast

scenarios. Not only should the optimum value for this trade-off be identified, but

other methods of coding information regarding the limitation of nanonodes are also

of interest.

Since the transmission of 0s in RD TS-OOK pulse-based modulation is equal to

silences which do not consume energy, the lower code weight can reduce the energy
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Table 4 Code weight example

Information value Coding with 2 bits

(weight = 0.5)

Coding with 3 bits

(weight = 0.25)

0 00 000

1 01 001

2 10 010

3 11 100

consumption. Moreover, the code weight can lower the collisions since fewer 1s,

which are the only pulses that can face collision, are transmitted. A code weight of

0.5 means that, on average, there are an equal number of 1s and 0s in the packets. A

lower weight, such as 0.4, means that there are fewer 1s. However, it also means that

more bits should be used to send the same of amount of information. For example,

Table 4 shows how the number of 1s for sending two bits of information could be

reduced by using three bits. The code weight in this example is decreased from 0.5
to 0.25.

As a more realistic example, for sending n = 64 bits of information with a code

weight of 0.4, at least a = 6 more bits will be added to each packet. In this case, the

total number of encoded bits would be m = 70 and the number of 1s, denoted as u,

is less than or equal to 28.

To make sure that, for a target code weight, there are at most u 1s independent of

the original bit values, for n bits of information, the
m!

(m−u)!u!
≥ 2n condition must be

satisfied [22], where m is the total number of bits, a is the number of additional bits,

and m = n + a.

The method to determine the additional number of required bits is as follows.

First, for a specific code weight W, u is specified as

u = ⌈W ⋅ m⌉, (2)

and the following condition must be satisfied with the minimum a, where m = n + a.

m!
(m − u)!u!

≥ 2n (3)

Note that sending fewer 1s consumes less energy in the sender while it consumes

more energy in the receiver. Energy is consumed when receiving any bit, 0s or 1s.

Decreasing the code weight necessarily increases the packet size, increasing the cost

to the receiver. Depending on the packet length and the ratio of energy required for

reception to that for transmission of a pulse, named as 𝛼, the code weight may or may

not save energy in total. Here, the assumption is that 𝛼 is small, say 0.1; therefore,

the aim is to find the optimum values for packet length and code weight, which we

address in Sect. 5.
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The probability of collision between symbols is extremely low due to the fact that

there can be no collisions for 0 symbols (silences) and that the length of Ts is much

longer than Tp (typically 1000 times larger). However, unlike other frequency ranges

of electromagnetic signals, there is molecular absorption noise, for example 10−4
bit error rate (BER) for 10% water vapor. To mitigate the effect of these problems,

repetition and code weight techniques have been proposed in [22, 23].

Repetition is a simple mechanism for error detection and correction. In this

method, the sender simply repeats the symbol several times, typically 1 to 9 times.

For example, in 3-repetition, a 1 would be transmitted as 111. In this case, if one or

two of these 1s were not received, the problem could be detected at the receiver, and

the information (i.e., a bit of 1) would still be received. Although it is not the most

efficient method, it is the simplest. Other methods for coding and error detection and

correction are being investigated [5, 31].

4 Modeling of Energy Harvesting and Consumption

Modeling of energy harvesting and consumption has been the topic of research in

other networks such as sensor and RFID networks. In this section, we first give

an overview of existing models. Then we discuss the lack of models for nanonet-

works. A recent model for nanonetworks that incorporates some of the properties of

nanonetworks is introduced at the end of this section.

4.1 Models for Other Networks

There has been much previous works on modeling energy harvesting (see for exam-

ple [12, 53]). In [53], energy harvesting and energy consumption is modeled as a

queuing system, and based on stationary analysis, a transmission strategy is proposed

to optimize the throughput of a sensor node. This model considers only one node and

the energy required for transmission. It also assumes that the data buffer and energy

storage are infinite, which may not be the case in many situations such as nanoscale

nodes. In [12], the best spending rate of energy consumption for a node/link is

derived through optimization and lexicographic frameworks. The authors developed

an algorithm for predictable energy inputs as well as stochastic models. The model

has been evaluated in a network of RFID active tags.

Models and algorithms for energy harvesting and consumption could be catego-

rized in various aspects as follows [12]:

∙ energy model profile: Several parameters such as energy source (e.g., solar, vibra-

tion, RF) and environment (e.g., indoor/outdoor, vibration rate, temperature) can

produce different energy model profiles. Predictable, partially predictable, sto-
chastic, and model free are known categories that have been identified and studied

[4, 56].
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∙ ratio of energy storage capacity to energy harvested: This parameter specifies how

fast the energy storage is filled. It depends both on the capacity of energy storage

and the availability of energy. In other words, it connects the energy harvesting
rate to power density.

∙ time granularity: This specifies the timescale of decision making and design

schemes, algorithms, and protocols. The timescale can be in the range of sec-

onds to days. It is related to the storage-harvesting ratio as well as the energy
profile model. The higher the time granularity, the more accuracy is required of

a design. This is important in applications where there are QoS requirements for

data transfer.

∙ problem size: When solving any problem for efficient energy harvesting, the design

can be evaluated in the domain of a node, pairwise nodes (link), or network wide

(e.g., routing).

In the following, we describe some literature that model the energy harvesting

process. Table 5 compares the works based on various design aspects. These models

can be categorized into two general types: lexicographic and stochastic.

Lexicographic1
: In [12] a solar power model for active tag RFID nodes is pro-

posed, which operates based on various time fair energy allocations for both pre-

dictable energy inputs as well as stochastic inputs. Here, the authors provide some

real environment measurements, and develop a prediction model for energy arrival.

Next, they use the lexicographic maximization and utility maximization framework

for modeling the energy spending rate, and achieve fair allocation of resources among

nodes over a one day duration. Considering a stochastic energy arrival, the authors

claim that, based on a developed Markov Decision Process, an optimal energy spend-

ing policy can be achieved for a single node or link. In [34], a fair and high throughput

data extraction as well as a routing path solution among all nodes is designed, where

the energy model is developed for solar power. They develop a centralized solution

and two distributed solutions. The main idea is to adapt the extraction rate (sensing

and sending rate of information) based on the available energy. A rate assignment for

data transfer is found through lexicographical optimization. Even though the strength

of the scheme is that it is independent of the energy arrival profile, the optimization

solution works only on a large time scale, i.e., a day.

Stochastic: The energy arrival and consumption as a G/G/1 queue is modeled in

[53]. After finding the stationary state of the model in some specific conditions, this

model attempts to find the optimum throughput (largest possible data rate of packets)

based on energy management policy, and also minimizes the delay of packets in

the buffer. The optimization model is called 𝛼-discount optimal and is developed

based on the stationary state of Markov model. The main weakness of this model

1
Lexicographic optimization is a form of multi-criteria (multi-objective) optimization in which the

various objectives under consideration cannot be quantitatively traded off between each other, at

least not in a meaningful and numerically tractable way. The lexicographic method assumes that the

objectives can be ranked in the order of importance. It can be assumed, without loss of generality,

that the k objective functions are in the order of importance so that f1 is the most important and

fk the least important to the decision maker. Then, the lexicographic method consists of solving a

sequence of single objective optimization problems [47].
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Table 5 Comparison of energy harvesting and consumption modeling

References Energy model

profile

Time

granularity

Problem

size

Solution method Network Energy

source

[12] Predictable and

stochastic

Day Node, link Lexicographical RFID Light

[34] Almost

independent

Day Node,

network

Lexicographical Sensor

network

Solar

[53] Independent

(general arrival)

Seconds-

minutes

Node,

partially

network

Queueing Sensor

network

Any

[29] Almost

independent

(general arrival)

Seconds-

minutes

Node,

network

Time discrete Sensor

network

Any

[59] Independent Seconds Network Stochastic network

calculus

N/A N/A

is that it assumes that the energy buffer and the data buffer are infinite. The goal

of the scheme developed in [29] is to achieve the highest data rate that results in

a long term optimal solution. The advantage of the scheme is that it requires no

explicit knowledge of the energy harvesting profile or traffic generation process. In

fact, it is a learning system that adapts itself based on the environment (i.e., available

energy) and network circumstances. This scheme works at the node level as well as

at the network layer. This work is limited to analysis, with no simulation or test-

bed results. In [35], on the other hand, an optimized training model is developed

for a transmission policy that specifies the energy spending based on channel state

information (CSI). This model also assumes an infinite buffer level. Finally, in [59],

a model is proposed for evaluating the stochastic properties of energy harvesting

while evaluating the network performance, such as satisfying a soft QoS. However,

it is not clear how efficient the model would be.

There is additional works in the literature involving stochastic modeling of energy

consumption that focus on other aspects of energy harvesting. For example, a sto-

chastic optimization framework is proposed in [9] for modeling the stochastic behav-

ior of the channel while achieving the best policy on transmission and energy

consumption. In [28] the duty cycle of sensor nodes is modeled, assuming that

nodes cannot harvest energy and communicate simultaneously. Therefore, nodes are

switched between active and passive states. The goal is to optimize the timing of

sleep/awake to maximize a utility function, such as throughput.

4.2 Model for Nanonetworks

As discussed in Sect. 4.1, many models have been developed for energy harvesting

and consumption in other networks. However, there are special characteristics of



334 S. Mohrehkesh et al.

Time to harvest a couple of energy units 
(on the order of seconds)

time
Time to transmit or receive a packet (on the order of picoseconds)

Energy 
units

Energy 
harvested

Fig. 5 Comparison of timescales between harvesting and consumption of energy

nanonetworks that necessitate the development of new models for the evaluation of

energy consumption and harvesting processes. More specifically, unlike other net-

works, the granularity of the energy harvesting rate in nanonetworks is slower than

the energy consumption rate (Fig. 5). In other words, it means that the energy that

it takes a couple of seconds to harvest can be consumed in a couple of picosconds.

For example, it can take up to 5 min to harvest energy to transmit only a small packet

[23]. Moreover, new harvester elements such as nanowires present different behav-

iors than previously studied models, such as photovoltaic or electrostatic cells. In

addition, new sources of energy are emerging. For example, energy harvesting from

blood sugar by biofuel cells [37] or from electrical difference in the inner ear [38] are

new sources of energy with unique properties. Furthermore, nanocapacitors repre-

sent a nonlinear behavior as compared to most battery-based models. All such prop-

erties mandate the need for novel models of energy harvesting and consumption for

nanonodes.

A model for the joint evaluation of energy consumption and harvesting in nanonet-

works has been proposed in [23]. The model can be used to determine the energy

status of nanonodes, and consequently, to evaluate the performance of nanonetworks.

A continuous time Markov process, as illustrated in Fig. 6, is developed, where states

represent the level of energy, 𝜆is represent the harvesting rates, and 𝜇is represent the

consumption rates. In the first state, the nanonode does not have any energy to receive

or transmit a packet, and in the last state, the nanonode’s energy storage is full. The

model considers Poisson models for the energy arrival and consumption. Energy is

harvested by a nanogenerator through the vibrations of nanowires and is stored in an

ultra nano-capacitor with a nonlinear storage behavior.

The nanonodes are assumed to be in a grid, and transmit the received packets

from their neighbors in addition to their own generated packets. The authors model

the joint process as a continuous time Markov process, where the steady states of the

system represent the energy level probability distribution of each nanonode. This

metric is later used to evaluate the delay, throughput, and the probability of success-

ful delivery of packets. However, this model does not evaluate the effect of various

parameters to find the optimal performance. To be specific, several parameters are

introduced in the modeling of energy harvesting and consumption that can affect
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Fig. 6 Markov model for the joint process of energy harvesting and consumption

the optimum energy utilization of a nanonode. The authors in [23] argue that using

code weight can save energy in transmission since the lower the code weight, the

lower the energy for transmission. However, a deeper look shows that the selection

of optimal code weight depends on the energy ratio of reception to transmission of

pulses as well as topology (i.e., number of neighbors). Moreover, the optimum packet

size is dependent on code weight. Finally, the effect of code weight and repetition

on communication reliability in combination with energy consumption needs to be

considered. Section 5 shows how to find an optimum combination of these variables

through solving an optimization problem. Moreover, the scheduling of packet trans-

mission, which is assumed to be Poisson, can be modified to utilize the energy more

efficiently. We describe this in more detail in Sect. 6.

4.3 Summary

To summarize, most energy harvesting models, developed so far in other domains

such as sensor networks, are not applicable for many reasons. First of all, each of the

stochastic-based models has assumptions such as unlimited energy buffer that can-

not be used in nanonetwork scenarios. Second, they mainly assume a linear model

for charging their energy storage, while energy storage for nanonodes follows non-

linear models. Third, new energy sources such as ambient vibration are less stud-

ied. Also, models that are independent of energy sources are not applicable due to

their very generic modeling. Moreover, most models do not include consumption

and harvesting at the same time. Even if they do, they are not built on pulse-based

communication characteristics. Therefore, it is not possible to evaluate the model for

different parameters such as packet length, traffic model, etc. Table 6 summarizes the

differences between previous work and the two models for nanonetworks [23, 41].

As can be viewed, the model in [23] has many limitations in the stochastic energy

arrival model and network traffic model, among others. The model in [41] is a more

general model and addresses optimization issues also. This model will be discussed

in more details in Sect. 6.
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Table 6 Comparison of energy harvesting and consumption models—Y = Yes, N = No

Paper Stochastic

energy

arrival

model

Energy

source

Nonlinear

energy

storage

Network

traffic model

Pulse based

communica-

tion

Optimum

packet

design

[34] N Solar N Y N N

[12] N Light Y N Y N

[53] Y-generic General N N Y N

[59] Y-generic General N Y N N

[23] Only Poisson Vibration Y Partially Y Partially

[41] Y-generic General Y Y Y Y

5 Optimizing Energy Consumption Factors

As described in Sect. 4, various parameters can affect the model of energy harvesting

and consumption. Particularly, the packet size, code weight, and repetition can affect

the amount of energy consumed. Repetition and code weight should be selected in a

way that provides an efficient bit rate. Therefore, finding the optimum design point

between the energy usage efficiency and bit rate efficiency is the challenge that is

addressed in this section. We first provide an overview of a model, previously devel-

oped in [40], that can find the best combination of these parameters. Then, we show

how the best answer could be selected among a list of candidates when traffic load

and utilization are taken into account. More details about the model and results can

be found in [40].

5.1 Optimization Model

Multi-Objective Combinatorial Optimization (MOCO) is a special form of Multi-

Objective Optimization (MOP) [7], where variables can take discrete values. In a

MOP/MOCO problem, several functions need to be optimized at the same time. In

our problem, the functions to be optimized at the same time for the packet size (N),

repetition (R), and code weight (W) variables are defined as follows.

Minv [f1(v), f2(v), f3(v), f4(v), f5(v)]
s.t.
g1(v) ≤ 0,
g2(v) ≤ 0,
v = [N,R,W],
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W ∈ (0.15 ∶ 0.05 ∶ 0.5),
R ∈ (1, 3, 5),
1 ≤ N ≤ 2500 .

The first function is energy consumption, that is, the energy consumed for trans-

mission (Epacket−tx) plus reception of a packet (Epacket−rx) by all the G neighbors with

N bits data.

f1 =
Epacket−tx + G ⋅ Epacket−rx

N
. (4)

The energy required for the transmission and reception of a packet can be com-

puted as follows [23]. For a packet of size N bits, the energy consumed when trans-

mitting and receiving a packet with code weight W are respectively given by

Epacket−tx = N ⋅W ⋅ Epulse−tx, (5)

Epacket−rx = N ⋅ Epulse−rx, (6)

where Epulse−tx and Epulse−rx are the energy consumed in the transmission and in the

reception of a pulse, respectively.

After substituting (5) and (6) in (4), we can write:

f1 =
Epacket−tx + G ⋅ Epacket−rx

N
=

m′ ⋅W ⋅ Epulse−tx + G ⋅ m′ ⋅ 𝛼 ⋅ Epulse−tx

N

=
m′ ⋅ Epulse−tx

N
⋅ (W + G ⋅ 𝛼),

where 𝛼 is the ratio of energy for pulse reception to transmission, G is the number

of neighbors, W is the code weigh. The value of m′
is equal to N + a, where a is the

number of additional bits added to N that enables coding with code weight W.

The value of Epulse−tx is set to 1 picoJoule (pJ). We developed the model in the

general form that there are G neighbors. Therefore, it would cover most unicast or

broadcast scenarios where the packet will be received by one, some, or all of the

neighbors. Moreover, a preamble or handshake method could be deployed to avoid

reception of packets by all neighbors when it is not targeted for them. This objective

function is set to be minimized, which means that the total energy that is consumed

for transmission and reception per bit of information should be minimized.

The second objective function concerns delay. Since N is larger than the informa-

tion generation rate, the packet would contain several pieces of information together

to avoid the overhead of packet transmission. However, this increases the delay in

transmission of information. For example, if information is generated at 10 bits per
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second and the packet size is 1000 bits, it means that it will take 100 seconds to pre-

pare a packet. This may be acceptable for non-real time applications, or when the rest

of the packet can be filled with neighbors’ forwarding data, or can just be left empty.

However, in our model, we are assuming that packets only contain information gen-

erated from one node. The simplest way to define the delay function is to model it

in a linear relation with packet length, N. However, if delay has higher importance,

the function could be modeled as a higher degree polynomial function of N.

f2 = N . (7)

This function is set to be minimized.

The third objective function associates the chance of bit error rate with code

weight. A lower code weight means the transmission of fewer 1s, which results in a

lower probability of absorption as well as collision between 1s.

f3 = W . (8)

This function is set to be minimized.

The optimization problem can be formulated with only the f1, f2 and f3 functions,

if repetition is not required to be considered as a variable. This could be the case if

it is known that the environment would not affect the pulses significantly and it is

better to repeat the entire packet in case of error rather than consume energy with

the repetition of symbols. However, we define two objective functions for repetition

in order to have a comprehensive model.

The following function shows the effect of repetition. The higher the repetition,

the higher the chance of error detection and recovery.

f4 = ⌊

R−1
2
R

⌋ . (9)

On the other hand, lower repetition means fewer bits and less energy consumption.

f5 =
N
R
. (10)

The function f5 shows the efficient bit rate when repetition is used, and it should

be maximized.

The constraint functions would be

g1 = m′ ⋅W ⋅ Epulse−tx − Emax ≤ 0 ,
g2 = m′ ⋅ Epulse−rx − Emax ≤ 0.

This means that the energy for transmission or reception of one packet cannot exceed

the maximum energy capacity of the node, Emax.
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As stated earlier, the bounds on the variables of the problem are defined as fol-

lows:

W ∈ (0.15 ∶ 0.05 ∶ 0.5) ,
R ∈ (1, 3, 5) and

1 ≤ N ≤ 2500 .

Since this is a combinatorial problem, the bounds are actually the set of valid values

that can be assigned to variables, i.e., W and R. For N, in addition to the bounds, the

values should be discrete.

The output of a MOCO would be a set of Pareto optimal points. Typically, the

selection of one point depends on the application and context that a decision maker

is facing.

5.2 Simulation

We solved the above MOCO problem with the optimization toolbox of MATLAB.

We ran the optimization with different values for 𝛼, G and repetition to show the

effect of these parameters on the points that are selected as optimum. The results for

two scenarios are presented in the following subsections. The results of additional

scenarios can be found in [40]. Note that Pareto optimal points are not unique and

can even be different in several runs. However, the results that are presented here

have a similar pattern for all runs, and different runs give only non-significant bit

differences in packet size.

5.3 Scenario 1 (G= 1, 𝜶 = 𝟎.𝟏, Repetition= 1)

In this scenario, we set G to 1 and use no repetition. This scenario will evaluate the

case of transmission between two adjacent nodes when broadcast will result only in

reception by one neighbor. The value of 𝛼 is set to 0.1, based on the numerical values

in [25] and modeling in [23].

Figure 7 shows the Pareto optimal points that are selected. This scatter plot repre-

sents the value of first and second objective functions for each of the Pareto points.

The code weight and the packet length for each of the points is presented in the leg-

end. Recall that the first objective function tries to minimize the amount of consumed

energy per bit, and, the second function, minimizing delay, is related to the packet

length. Each of these points dominates another in one of the two objective func-

tions. Therefore, depending on design priority, any of these points can be selected as

the optimal solution. For example, if the priority is energy consumption, one of the
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Fig. 7 Pareto point and

function values for scenario
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points in lower-right of the chart could be selected. If delay has priority, one of the

points in the left side of the chart would be the choice.

Figure 7 illustrates that various packet lengths are selected. A deeper look at the

selected code weight for these points shows that all of them are equal to 0.15, which

is the minimum code weight. It means that with this setting for G and 𝛼, it is better

to choose the minimum code weight that is available.

Figure 7 also shows that the difference in terms of efficient energy per actual infor-

mation bit, f1, is not significantly different among all the optimal points. This obser-

vation can be confirmed by the fact that for a selected code weight, usually the ratio

of additional bit rate to actual bits, i.e.
a
N

, illustrated in Fig. 8, is almost the same for

each code weight independent of N.

Figure 8 also shows that the overhead from code weight generally does not depend

on the length of data. The figure illustrates data lengths that are in the range [1..1000]
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Fig. 9 Pareto point and

function values for scenario
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bits. Outliers occur when the number of original bits are very small, i.e., less than

10 bits, but these short data lengths are not applicable for packet transmission.

5.4 Scenario 2 (G= 4, 𝜶 = 𝟎.𝟏, Repetition= 5)

This scenario evaluates the effect of repetition in combination with a higher number

of neighbors (from one to four). The maximum repetition and 𝛼 are set to 5 and 0.1,

respectively. In this scenario, the optimal points, as illustrated in Fig. 9, are selected

from almost all ranges of code weight and repetition. However, packet length values

are mainly chosen from very short or very large packet sizes. The reason is that

when a short packet size is selected, the energy bit efficiency and delay will be the

dominant functions. On the other hand, for large packet sizes, code weight will be

the dominant factor that leads to lower average energy per bit.

6 Open Issues and Challenges

As the harvester’s size is reduced, and possibly energy is harvested from new sources,

there are other issues and challenges to be investigated in the domain of energy

harvesting for nanonetworks. First of all, as shown in Sect. 4, there is a need for

new models of energy harvesting and consumption, based on the characteristics of

nanonetworks. In addition, the optimization of energy consumption remains an open

issue in several aspects. Furthermore, protocol design in an energy harvesting con-

text and with nano scale properties is an open question. We describe these issues in

the following subsections.
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6.1 Optimization of Energy Consumption

The optimum usage of harvested energy is a main challenge to be addressed in

nanonetworks. The optimum usage of energy can be related to increasing the through-

put, decreasing delay, or increasing reliability.

The goal of optimization is to develop energy-harvesting-aware [17] rather than

energy-efficient methods. We should emphasize that energy harvesting-aware is dif-

ferent from energy-efficient. In energy-efficient methods, the energy budget is lim-

ited and the available energy over the total period of problem modeling should be

optimized. However, in energy harvesting-aware methods, the decision about the sit-

uation depends on the amount of available energy at the moment, and the prediction

of energy arrival. Therefore, the optimum use of energy needs a different model.

In an initial effort on optimization of harvested energy in wireless sensor net-

works, Energy-Neutral Operation (ENO) [17, 27] is defined as how to operate such

that the amount of energy used is always less than the amount of energy harvested.

This concept estimates battery size based on an average approach for the rates of

energy harvesting and consumption, where energy storage is not 100% efficient and

there is energy leakage. Also a power management system is developed to optimize

the harvested energy. An exponentially weighted moving-average (EWMA) filter is

used to predict the arrival of energy at each time slot based on previous time slots,

and then compute the consumption rate based on the prediction. In the next time slot,

the prediction is adjusted based on real values.

Additional literature in wireless sensor networks and RFID networks (e.g., [12,

13, 34, 43]) follow the idea that the optimization of energy consumption in perpet-

ual networks is different from typical battery-based networks. However, they do not

address the problem in a way that is suitable for nanonetworks. In [34], the authors

focus on consumption for data collection, not energy consumption for communi-

cation. In [43] the problem of optimization is described, when energy arrivals are

stochastic. However, the authors develop their solution based on a historical predic-

tion model of energy arrival, not an exact probability distribution function. In [12,

13], a stochastic model is considered which maximizes the data rate and smoothing

consumption for a discrete distribution of energy arrival. Moreover, the model does

not behave based on the stochastic arrival of energy. Therefore, nodes can be out of

energy for unknown amount of time. Therefore, these methods are not applicable for

nanonetworks.

A model for optimum energy consumption for nanonetworks has been proposed

in [41]. Knowing the model for energy harvesting, the problem of finding the optimal

usage of the harvested energy can be investigated. In fact, with optimum rates, a bet-

ter data rate can be achieved as compared to fixed consumption rates. Intuitively, it is

better to consume more if more energy is harvested and vice versa. Energy should be

always available in order to avoid node failure and consequently lack of communica-

tion. In this case, the question is: what are the optimal rates of energy consumption?

If the harvested energy is not consumed optimally, a node will miss some energy

that it could have harvested. This, for example, can occur if a conservative policy
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(i.e., minimum consumption rate) is used. On the other hand, an aggressive strategy

will create nodes with low energy levels which will lead to many failures in packet

transmission. A comparison of various strategies can be found in [41]. Moreover, an

optimal model is defined. The current amount of energy and the harvesting model

determine the optimal energy consumption policy. It is a challenging problem since

energy arrival follows a stochastic process. Moreover, finding the packet size and/or

the feasible transmission rates to satisfy the optimal rates make the problem more

difficult. Using a variable packet size, which has some overhead, is another option

that can be investigated.

An optimal energy allocation policy should consider these requirements. First,

the energy that is consumed cannot be more than the harvested energy. Since the

amount of harvested energy follows a stochastic process, the consumption process

should consider it when the optimal policy is designed. Second, a conservative policy

is not an optimal policy since it is not acceptable to have energy harvested that cannot

be stored due to a full battery. Therefore, it is more important to make the best use

of harvested energy rather than to minimize the energy consumption.

In the current state-of-the-art for energy harvesting at nanoscale, the rate of energy

consumption is much higher than the rate of energy harvesting. Moreover, limited

energy storage (ultra-nanocapacitor/nanobattery) capacity as well as limited queu-

ing space for packets makes the problem more challenging. Thus, these constraints

should be taken into account for modeling and optimization of the energy harvesting

processes.

Given that nanonodes may be in unknown environments, at least in terms of avail-

able energy for harvesting, they need to understand their environment. Moreover,

optimization models to maximize the utilization of harvested energy typically result

in computationally expensive schemes. Since the processing and memory resources

are limited at nanonodes, the optimum solutions should be designed as offline solu-

tions. Another approach to consider is to develop light-weight heuristic methods with

near-optimal performance [41].

6.2 Energy Harvesting-Aware Protocols

After the optimum energy consumption design, energy harvesting-aware protocols

need to be developed. Medium access design is the main issue that needs to be

addressed. Not only do the MAC protocols for nanonodes need to be harvesting-

aware, but they also have to be designed based on other characteristics of nanon-

odes, e.g., limited capabilities, pulse-based communication, and the large scale of

the nanonetwork. Some pulse-based MAC protocols have been developed for UWB

networks [14] that may have the potential to be used in nanonetworks. However,

characteristics of the THz band, as well as the limited processing capabilities of nan-

odevices, are the major factors that can lead to the need for the redesign of protocols

for the networking of nanonodes.
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Similar to reasoning about the need for new models of energy harvesting in

nanonetworks, energy harvesting-aware protocols need to be customized and may

even be newly created. Pulse-based communication in the THz band, the unique

properties of energy harvesting and consumption for nanonodes, and the capability

limitations due to size constraints are the main factors that mandate the development

of novel energy harvesting-aware protocols.

Recently, some energy harvesting-aware MAC protocols have been proposed for

nanonetworks. One such proposal [26] exploits the benefits of novel low-weight cod-

ing and chooses the optimal value of code weight and repetition. The performance of

the proposed protocol is analytically studied in terms of energy consumption, delay,

and achievable throughput, using models of the Terahertz channel (path-loss and

molecular absorption noise) and interference. However, the feasibility of the proto-

col implementation and an energy efficiency evaluation of the method are still open

issues. Later, in [57] an energy harvesting-aware and light-weight MAC protocol

has been proposed. The aim of the protocol is to achieve fair throughput and opti-

mal channel access among nanosensors which are controlled by a nano-controller.

Towards this end, the critical packet transmission ratio is defined, which is the max-

imum allowable ratio between the transmission time and the energy harvesting time,

below which a nanosensor can harvest more energy. However, the focus of the work

is on the scheduling of packet transmissions by the nanocontroller, rather than energy

aspects.

An energy harvesting-aware MAC protocol (RIH-MAC) is proposed in [42],

where nanonodes communicate based on a receiver-initiated mechanism. The advan-

tage of the protocol is that through a receiver-initiated mechanism, harvested energy

is utilized more efficiently because the transmitter and receiver spend their energy

wisely to maximize the probability that both the transmitter and receiver will have

energy for communication. RIH-MAC can be used either in a centralized network

topology or in an ad hoc formation of nanonodes, i.e., a distributed network topology.

Distributed RIH-MAC protocol exploits a distributed edge-graph coloring scheme

to facilitate a coordination among nanonodes to access the medium. Furthermore,

RIH-MAC adapts to various energy harvesting rates. These protocols are the first

steps towards energy harvesting-aware protocols for nanonetworks. More protocols

for the MAC layer as well as upper layers remain open for further investigation.

7 Summary

In this chapter, we introduced a taxonomy of energy harvesting. Recent advances in

nanomaterials have enabled the development of nanoscale harvesters such as nano-

generators. Nanonodes are expected to harvest their required energy mainly from

mechanical and chemical sources. Harvested energy is consumed for communication

in the THz band among nanonodes. Modeling the joint process of energy harvesting

and energy consumption is required to understand the special characteristics of this

process due to the nanoscale properties of harvesting process, a new communication
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model, and limited energy storage. Next, the optimization of the consumption of the

harvested energy needs to be studied. Development of energy harvesting-aware pro-

tocols and maximizing the utilization of energy are the main approaches to optimize

energy consumption.
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