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Abstract The development and advancement of nanomedicine has opened up
many exciting, new applications of nanoparticles such as sensing, imaging, deliv-
ery, and therapy. However, their ability to readily enter cells and organelles that
allow these nanomedical applications also opens up the possibility of unintended
adverse nanotoxicity. The interaction between nanoparticles and biomolecules
results in biocorona formation on the nanoparticle surface that is very different from
adsorption of biomolecules on a flat surface. It remains a great challenge to
understand the applications and risks associated with nanoparticles being in contact
with biological systems beyond experimental methods that have limited resolution
of the interactions and conformational changes involved. Recently, biomolecule-
nanoparticle molecular dynamics (MD) simulations are becoming a viable approach
for a detailed view of biocorona formation. In this review, we present the advan-
tages and challenges of several MD simulation approaches for the study of
biomolecule-nanoparticle interactions. In particular, we argue for the development
of GPU-optimized MD simulations as a critical step in the study of biocorona
formation. We discuss recent successes on how integrated computational and
experimental studies are important to establish how the structure and functions of
biomolecules are affected by nanoparticle interactions with the biomolecules.

1 Biomolecule-Nanoparticle Interactions

The development of nanomaterials and the characterizations of their properties have
become a highly attractive subject that spans physics, chemistry, biology, and
engineering [1–3]. Nanoparticle properties have opened up industrial products

R. Li ⋅ S.S. Cho (✉)
Department of Physics, Wake Forest University, Winston-Salem, NC 27106, USA
e-mail: choss@wfu.edu

C.A. Stevens ⋅ S.S. Cho
Department of Computer Science, Wake Forest University, Winston-Salem,
NC 27106, USA

© Springer International Publishing AG 2017
J. Suzuki et al. (eds.), Modeling, Methodologies and Tools for Molecular
and Nano-scale Communications, Modeling and Optimization in Science
and Technologies 9, DOI 10.1007/978-3-319-50688-3_10

241



involving nanomaterials, and there is particular interest in the development of
biomedical applications involving nanoparticles due to their small size that allows
them to interact with cellular machinery that was previously thought to be inac-
cessible [4]. On the other hand, as nanoparticles become widely used in many
different industries, they also have the potential for unintended exposure to the
environment and living matter that could result in deleterious toxicological effects.
Their increased applications in daily life inevitably will lead to their accumulation
in the environment [5], and their subsequent entry into biological systems, raising
important questions about their nanotoxicity [6]. As such, there is a strong moti-
vation to develop safe nanomedical applications that limit their negative effects. To
understand the biological impact of nanoparticles, we must develop a molecular
level understanding for their interactions with biological media.

Nanoparticles have very different properties from bulk materials. Due to their
high surface area to volume ratio, nanoparticles have very active surface chem-
istry interactions with biological media that reduces their surface energy. As a
result, their surfaces end up being rapidly covered by a complex layer of bio-
molecules [5]. The absorption of biomolecules to surfaces confers a new “bio-
logical identity” that results in different cellular responses. Of particular interest in
recent studies is that formation of a “biological corona” on the nanoparticle
surface that is very different from when biomolecules adsorb to a flat surface [7].
The biocorona formation is a dynamic process by which proteins and other
biomolecules compete to interact with the nanoparticle surface. Recently, func-
tionalized molecules conjugated on nanoparticles were shown to lose their
function when placed in a biological medium presumably because protein corona
formation screened the molecules from interacting with their intended target [8].
Therefore, the safe development of nanomedicine requires the study of
nanoparticle interactions in the biological medium.

When biomolecules interact with nanoparticles, their structure, dynamics, and
function are expected to change, which could further impact recognition of the
biomolecules by their intended receptors. It is now well established that protein and
RNA fold into specific structures in the cell to perform their biological functions [9,
10]. The main forces that stabilize the protein structure, such as the hydrophobic,
electrostatic, van der Waals, and hydrogen bond interactions can also compete with
the nanoparticle surface. The competition results in a perturbation of the protein
structure such that it may not longer be able to perform its function.

For example, enzymes catalyze reaction in a well-defined, specific active site,
but their structure may be destabilized such that the active site is significantly
changed or completely lost upon interaction with the surface of a nanoparticle
(Fig. 1a). Even if the active site were to be preserved, the substrate entrance or exit
may be obstructed or destabilized. The end result is a loss of catalytic activity due to
the presence of nanoparticles. The adsorption of lysozyme on a negatively charged
silica nanoparticles resulted in 70% loss of α-helical structure, which accompanied
40% loss of catalytic activity [11].

242 R. Li et al.



A well known issue with protein folding is that some amyloidogenic proteins
midfold and aggregate to form fibrils, which are thought to play important roles in
neurodegenerative diseases such as Alzheimer’s Parkinson’s, and Huntington’s
diseases [12]. The introduction of nanoparticles may induce amyloidogenic pep-
tides to form β-sheet structures [13] (Fig. 1b), which are the hallmark of fibril
formation that lead to diseases.

The competition of native protein interactions with nanoparticles can also have a
beneficial result too. Ikeda et al. showed that cholesterol-bearing pullulan nanogels
inhibit protein aggregation in the case of Aβ peptides. The natively coiled Aβ
peptides associated into protofibrils with a β-sheet structure that can act as nucle-
ation centers for fibril formation. However, in the presence of hydrophilic nanogel
particles, the β-sheet formation and therefore fibril nucleation was inhibited, pre-
sumably by competing with the hydrogen bonds that stabilize the β-sheet structure
[14] (Fig. 1c).

Fig. 1 Modes of biomolecular structural changes upon interaction with nanoparticles (solid blue
circles). a A biomolecule can undergo structural changes upon binding to the nanoparticle surface,
which can diminish or abolish their original biological function or introduce an unintended cellular
response. b Biomolecular interaction with nanoparticles can induce fibril formation for peptides
that would otherwise be unstructured. c Nanoparticle interaction can disrupt the formation of
amyloid fibrils
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2 Biomolecular MD Simulations Overview

Due to limitations of experimental instrument resolution, the molecular details of
the protein-nanoparticle interactions and the formation of their biocorona remains
poorly understood. A well-established approach for characterizing the molecular
details of biological systems is molecular dynamics (MD) simulations, and they
have recently been applied to protein-nanoparticle systems. In MD simulations,
biomolecular systems are represented as sets of spherical beads that interact with
one another and move in successive timesteps to result in a trajectory of its motion.
Biomolecular dynamics, folding, and assembly mechanisms have been extensively
studied using MD simulations (Fig. 2a). The physical description of a biomolecular
system is determined by a potential energy function for the interactions.

The MD simulation algorithm then consists of two main portions: (1) computing
the forces, based on the potential energy function, between interacting particles, and
(2) updating of the position and velocities of the particles for the next timestep. The
process is repeated over and over until the end of the MD simulation. In each
timestep, a “snapshot” of the biomolecule’s positions is obtained, and all of the

Fig. 2 Biomolecular folding mechanisms and MD simulations of their folding. a A schematic of a
funneled energy landscape for folding where many possible unfolded states are directed towards a
single, well-defined folded structure that corresponds to a function. For each protein structure from
a coarse-grained Go-type MD simulation shown, the degree of local native structure formed is
colored according to whether it is partially folded (blue) or unfolded (orange). b Representative
structures from an MD simulation trajectory are shown
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snapshots can be stitched together into a “movie” to result in a trajectory of the
biomolecule’s motion that is based on the potential energy function (Fig. 2b).

MD simulations are commonly implemented with an empirical force field. In
this approach, a biomolecular system is described at atomistic resolution by an
energy function that consists of bonds, angles, dihedral, electrostatic, and van der
Waals interactions. The parameters for the energy function are derived from
quantum mechanical calculations of model compounds or empirical data when
reliable measurements are available. Popular atomistic empirical force field based
MD simulation programs include CHARMM [15], AMBER [16], and NAMD [17],
and the force field parameter sets are available for proteins [18], nucleic acids [19],
and other biological systems.

In general, there are two main computational challenges for MD simulations of
biomolecular systems to observe biologically relevant functional events (Fig. 3).
The first is the system size because a large number of proteins interact with the
nanoparticle. The second is the timescale required for the proteins to encounter the
nanoparticle and interact with it. Large structural rearrangements or unfolding
events are considered very challenging, even for relatively small systems (∼100
residues) or small timescales (∼μs-ms). Advanced sampling methods such as
replica exchange can increase computational sampling by minimizing the time
spent in trapped states, but the kinetic information is lost [20]. Others use advanced
computing infrastructures such as the distributed computing Folding@Home
approach [21] or the Anton supercomputer [22].

Fig. 3 Length- and time-scales of MD simulations and biological functions. a A graph of the
approximate size of the system versus the length of time one can simulate using MD simulations
using current computing standards using quantum mechanical, atomistic empirical force field, and
coarse-grained Go-type MD simulations. b Some characteristic biological functions and the
approximate corresponding timescales that can be observed in MD simulations
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To increase the size and the timescales of the system one can simulate, some
researchers use coarse-grained MD simulations where the residues or nucleic acids
are represented as a single bead. A coarse-grained MD simulation approach that has
been developed and rigorously tested is the Go-type model, which is defined by an
energy function such that the long-range interactions are globally attracted to the
native basin [23]. Based on the Funneled Energy Landscape Theory of biomolec-
ular folding [10], the Go-type model MD simulation potential energy function
consists of bonds, angles, dihedral, and Lennard-Jones terms whose global mini-
mum corresponds to the folded state. For proteins, Go-type model MD simulations
typically represent protein or RNA as a one bead per residue or nucleotide repre-
sentation [24–26], but different degrees of coarse-graining such as a two bead per
residue (backbone and sidechain) [27], three bead per nucleotide (base, sugar, and
phosphate) [28–30], or even atomistic representations have been developed
[31–33]. Although the size of the system and timescale one can simulate varies with
the complexity of the Go-type model, researchers can readily perform MD simu-
lations of 100–1,000s of residues, and the timescales are sufficiently large that one
can observe multiple folding and unfolding events in a single trajectory.

Another simplification of MD simulations is to use discrete square-well poten-
tials instead of a continuous potential for interactions between particles. In this
discrete molecular dynamics (DMD) approach [34, 35], collision events determine
the movement of the particles. A local search algorithm identifies particles that
could possibly participate in a collision and only those particles are required to
update their positions if a collision occurs. The fewer calculations required allows
greater sampling at the expense of some accuracy.

To date, atomistic empirical force field MD simulations, coarse-grained Go-type
model, and coarse-grained DMD simulations have been performed for protein-
nanoparticle interactions.

3 MD Simulations of Protein-Nanoparticle Interactions

Silver nanoparticles (AgNPs) are widely produced commercially for antibacterial
and antifungal applications and generating surface plasmon resonance for optical
detecting and sensing [36, 37]. However, their cytotoxicity has been linked to their
physical adsorption to cell membranes [38]. As such, the interactions of
cytoskeletal proteins and other proteins in the cell with AgNP can significantly
impact the cellular environment. Wen et al. performed dynamic light scattering,
UV-Vis spectroscopy, and circular dichroism spectroscopy, hyperspectral imaging,
and transmission electron microscopy on the cytoskeletal proteins actin and tubulin.
In both cases, the cytoskeletal proteins readily interacted with citrate coated AgNPs,
and they observed conformational changes of a decrease in α-helical content and an
increase in β-sheet content upon binding to AgNPs. They suggested that the
electrostatic, van der Waals, and hydrophobic interactions between the two species
were the dominant interactions [39].
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DMD simulations have been performed for a number of proteins interacting with
a AgNP to characterize the consequence of biocorona formation. Ding et al.
recently showed that for ubiquitin, interaction with AgNP results in a decrease in
α-helical content and an increase in β-sheet too, and they observed a stretched
exponential binding kinetics [40]. Interestingly, the secondary structure was only
marginally affected in both experiments and simulation by interacting with AgNP
for the firefly luciferase protein [41].

Auer et al. performed DMD simulations of peptides interacting with a
nanoparticle [42]. They observe highly ordered β-sheet structure that eventually
forms fibrils. Therefore, the presence of the nanoparticle catalyzes fibril formation
by increasing the rate of peptide aggregate formation, and they attribute fibril
formation enhancement to the increase in local concentration of the peptides upon
interacting with the nanoparticle.

4 GPU-Optimized MD Simulations

Graphics Processing Units (GPUs) are becoming a widely accessible and mature
computational architecture for performing MD simulations, and many studies have
recently shown that MD simulations on GPUs can have a significant performance
increase over the traditional CPU-only approach. Note there are other review
articles on the development of GPU and can be found elsewhere [43–45], and we
will briefly review the background here. Since the GPU architecture is significantly
different from the CPU, implementing programs on the GPU often requires sub-
stantial changes in the implementation and the development of new algorithms that
are optimized for the GPU architecture.

GPUs were originally designed for rendering computer graphics to offload and
alleviate the computational burden of CPUs. The GPU is essentially an accelerator
that is optimized for performing parallel floating-point calculations across indi-
vidual geometric primitives due to the independent nature of rendering graphical
images. As such, a standard GPU contains a few hundreds to thousands of inde-
pendent cores that can work in parallel. This is in contrast to CPUs, which typically
contain around 1–16 processors. The GPU processors are significantly slower than
on a CPU, but there are so many of them so the overall floating point operation rate
is higher. Therefore, the GPU architecture is ideally suited for parallel algorithms.

In order to utilize the resources found on the GPU to implemented general
purpose parallel algorithms, NIVIDIA has developed their own programming
language known as the Compute Unified Device Architecture (CUDA) so that
software can be developed, compiled, and executed on NVIDIA GPUs. CUDA as a
programming language is an extension of the C language with features that allow
the program to execute code on both the CPU and GPU. The software instructions
on the GPU architecture follow the Single Instruction Multiple Data (SIMD)
paradigm where a kernel instruction performs the same instruction on different data
(Fig. 4a). The GPU is able to execute code through the use of kernel calls that are
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equivelant to functions for the CPU. When a kernel call is made on the CPU, the
GPU allocates a certain number of threads that will each execute the kernel function
in parallel. These threads are arranged in a grid system containing blocks of threads
with each thread containing its own unique thread id. Threads are executed con-
currently in warps where each thread executes all code within the kernel call.
Before kernel calls are executed, all data that is used during parallel computation
must be transferred to the GPU from the CPU. Similarly, all data that was generated
by the GPU must be transferred back to the CPU once a kernel call is finished.

The MD simulation algorithm is well-suited for implementing on the GPU
architecture. The calculation of the forces between interacting particles in a bio-
molecule is the most computationally demanding portion of the algorithm because

Fig. 4 Schematic of the GPU programming paradigm for MD simulations. a In a heterogeneous
CPU-GPU architecture, a CUDA program executes on a CPU as a serial code. For portions of the
code that is parallelizable, the program will transfer information to the GPU device and perform
kernel operations (single instruction) in parallel on the (multiple) data using many independent
threads. The data is then transferred back to the CPU. The MD simulation algorithm is
parallelizable because the interactions in a single timestep are independent. b Representative
α-helical (top) and β-sheet (middle) proteins and an RNA with their interactions shown with lines.
These interactions are independent so the forces due to these interactions can be computed
independently in a parallel algorithm
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it considers all possible pairs of interacting beads, a O(N2) computation. The main
advantage of performing MD simulations on the GPU is that the calculation of the
forces between interacting particles is a parallelizable algorithm because those
interactions are independent within a single timestep such that those calculations
can be distributed among the different processors (p) of the GPU: O(N2)/p ∼ O(N).
Furthermore, cutoff methods that first evaluate whether an interaction is significant
before actually computing the force, such as the well known Verlet neighbor list
algorithm [46] or the cell list algorithm [47], can also improve performance without
sacrificing accuracy if they can also be implemented on the GPU, as we will discuss
below.

While there may be many benefits of performing simulations using CUDA on
GPUs, these approaches also have their issues. The data transfer between the CPU
and GPU use the PCI Express Bus, which is one of the main performance bottle-
necks of any GPU program. Ideally, programs written for the GPU should minimize
data transfer to avoid the performance cost. Another significant issue of
GPU-optimized programs is the limited amount of memory available on the GPUs.
The latest in GPUs offered by NVIDIA, the Titan X, is able to support 12 gigabytes
of memory while most NVIDIA GPU models can only support 1-6 gigabytes of
memory. If the problem size grows past the hardware memory limit, it is necessary
to partition the data and (1) perform the calculation sequentially for every partition,
(2) perform the calculation while other data is being transferred so that the GPU is
performing calculations while the data transfer is occurring to hide the latency, or
(3) use multiple GPU with OpenMP or MPI to perform the calculations, although a
multi-GPU approach has its own issues because the information transfer across
GPUs also is a performance bottleneck. There are now several atomistic empirical
force field and coarse-grained Go-type or general MD simulation packages that are
now available including ACEMD, AMBER, HOOMD-Blue, LAAMPS, NAMD,
and SOP-GPU. Here, we will briefly review our own in-house coarse-grained
Go-type (SOP model) MD simulation software for the GPU [48–50], but our dis-
cussion is general and applicable to all MD simulation codes for the GPU archi-
tecture (Fig. 5).

Fig. 5 A table of MD simulation software available for the GPU architecture
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We recently implemented our own version of a Go-type (SOP model) MD
simulation software, and we introduced two novel GPU-optimized MD simulation
algorithms, while inspired by CPU versions, is specifically optimized for the GPU
architecture: (1) Parallel Verlet Neighbor List [48] and (2) Parallel Hybrid
Neighbor/Cell List [50] Algorithms. In the original Verlet neighbor list algorithm,
distance cutoffs were used to determine whether two particles were sufficiently
close enough to have a significant interaction. Two lists were maintained, an outer
“skin” layer that was updated every n timesteps and an inner “cutoff” layer such that
the forces of only pairs of particles within the inner distance cutoff would be
calculated. The distance cutoffs were chosen such that pairs of particles beyond the
distance cutoff had forces that were essentially zero and no particle could leave the
cutoff layer and move beyond the skin layer within the n timesteps.

When we compared our performance to a CPU version of the same MD sim-
ulation code, we observed an N-dependent speedup with about 30 × speedup for
the largest system we simulated (∼10,000 beads). For the smallest system we
simulated, we actually observed a speed-down such that it took longer to perform
the MD simulation on the GPU than on the CPU only. The performance gain from
running the MD simulation on the GPU does not outweigh the cost of transferring
the information to the GPU. We also developed a related Parallel Hybrid
Neighbor/Cell List algorithm, and we observed about 10% speedup over the Parallel
Verlet Neighbor List algorithm [50].

The Verlet neighbor list algorithm has been a staple of MD simulations for a
very long time, but it is inherently serial because generating a subset list requires
copying those pairs of interactions from the list of all pairs to an iteration dependent
location in the subset list of pairs. We instead performed a parallel key-value sort of
all pairs of interactions and placed all pairs of interactions to be copied to the subset
list at the top. We then copied those pairs of interactions at the top in parallel over to
the subset list. While the parallel version of the algorithm requires more steps, they
can be performed entirely on the GPU in parallel.

Another significant issue of implementing software on the GPU involves
accuracy of the floating point operations. Since the original purpose of the GPU is
the rendering of graphical images, the floating point operations on older model
GPUs did not need to be IEEE compliant like CPUs. In some implementations of
MD simulations using early NVIDIA Tesla model GPUs, researchers observed an
“energy drift” indicating that detailed balance was not being preserved due to errors
in the calculations [51]. More recent models of GPUs are now IEEE compliant so
this is no longer an issue. A related issue also exists where a large performance
difference results between single and double precision calculations. MD simulations
on CPUs have traditionally used double precision calculations because the per-
formance difference was very minor. As such, there can be a performance gain if
one chooses to implement MD simulations using single precision operations only.

We must note that the choice of double precision calculations over single pre-
cision calculations for MD simulations is arbitrary, and we are unaware of a sig-
nificant reason for the choice. We therefore implemented our MD simulation code
using single precision calculations only and double precision calculations only by
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starting off with the same exact positions and velocities. Even though the initial
conditions were identical, we do not expect the same results even if we ran two
trajectories with double precision calculations because the order of the floating
point operations would be different in two executions. We therefore used that
situation as a control and compared differences to single versus double precision
only MD simulations. To quantify our MD simulations, we computed order
parameters that could be directly compared to experiments, specifically the radius
of gyration that is measured in SAXS experiments and end-to-end distances that is
measured in single molecule FRET experiments. We observed minimal differences
between the single and double precision only MD simulations for our
coarse-grained model [48]. Walker and coworkers introduced a mix single-double
precision method for a GPU-optimized version of AMBER. They observed mini-
mal energy drift and minimal differences with respect to RMSD and RMSF while
preserving a performance that is similar to single precision only calculations [52].

5 GPU-Optimized MD Simulations of Biocorona
Formation

We developed a novel GPU-optimized MD simulation approach for studying
biocorona formation. Specifically, we simulated the interaction of a silver
nanoparticle with apolipoprotein A-1, which is the main component of a high-
density lipoprotein. In a CD spectroscopy experiment, with AgNP/apolipoprotein
molar ratios of 1:300 and 1:600, the spectra reveals that the presence of AgNP
reduces the ratio of α-helical content as compared to when there is no AgNP in the
solution [53].

We developed a new computational model of nanoparticle interactions with
proteins for the purpose of performing MD simulations of biocorona formation
[53]. The model consists of 1 Ag nanoparticle (AgNP) and 15 apolipoproteins. We
model the citrate-coated AgNP using 500 individual negatively charged spherical
beads randomly distributed 10 nm from the center. And for the 243-residue
apolipproteins, we developed a coarse-grained MD simulation based on
well-established Go-type models of protein folding [23, 54].

In addition, we modeled the interactions between the AgNP and proteins by
introducing two sets of terms: [1] excluded volume and [2] electrostatic
interactions.

The excluded volume forbids the proteins getting too close and overlapping with
the AgNP surface, and we modeled it using a hard sphere potential:

HEV = ∑
protein−NP

i, j

σ

rij

� �12
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where rij is the distance between two interacting beads and σ is set to 3.8 Å. We
also modeled the electrostatic interaction between the negatively charged AgNP and
positive amino-acid residues with the Debye-Huckel potential:

Helec = ∑
protein−NP

i, j

zizje2

4πϵ0ϵrr
e− r l̸D

where zi and zj are the charges of the interacting protein and nanoparticle beads and
r is the distance between them. lD is the Debye length, which can be tuned by the
ion-concentration of 0.02 M [Na+]. In our simulation, we used a relatively low
ion-concentration for stronger attraction. We performed Langevin MD simulations
in the underdamped limit (i.e., low friction coefficient) for effective sampling at
300 K (Fig. 6).

Fig. 6 MD simulations of biocorona formation on a GPU. a A ribbon diagram of apolipoprotein
A-1. b The starting coordinates for coarse-grained MD simulations of 15 apolipoproteins around a
negatively charged spherical model of AgNP composed of 500 beads. c A snapshot from
GPU-optimized coarse-grained MD simulations of the AgNP-apolipoprotein biocorona. d A graph
of the percent helicity of the apolipoprotein over a representative MD simulation trajectory. We
observe a decrease in the helical content upon binding to the AgNP
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The resulting system is comprised of 500 beads for the AgNP, and 3,645 beads
(=243 residues/protein × 15 proteins) for the 15 apolipoproteins, which is com-
putationally demanding even with a coarse-grained MD simulation approach. We
therefore implemented our MD simulation model on a GPU-optimized parallel
GPU code to improve the performance.

To quantify the secondary structure change during the biocorona formation, we
monitored the torsional angles formed among the four successive beads in helical
region, and we define an α-helical angle to be between 45°–60°. In our MD
simulations, we observe a decrease in the percentage of the α-alpha helical angles
from 65 to 45%, which is similar to experimentally observed values from CD
spectra [53].

6 Conclusions

The development of nanomedicine and the widespread use of nanoparticles for
industrial use have opened up new advances but it is also pressing to evaluate their
biological exposure to determine how unintentional accumulation and exposure to
nanoparticles could lead to toxicological effects due to their interaction with bio-
logical systems. Experiments have shown that nanoparticles readily interact with
the biological medium to form a biocorona that assumes a new biological identity.
To understand the consequences, we must evaluate nanoparticle interactions with
biomolecules using an interdisciplinary approach that spans physics, chemistry,
biology, engineering, and computer science.

The relatively large size of the biocorona requires new and advanced approaches
for the study of their formation from MD simulations. Coarse-grained MD simu-
lations are powerful tools that can access the timescales necessary to study these
events while still reproducing experimental observables. More detailed description
of the phenomenon requires advanced computing power, and the GPU architecture
has already demonstrated to be a valuable tool for the study of biocorona formation
that can reproduce experimental observables and provide new insight at a molecular
resolution. These computational advances can give much needed biophysical
insight into our understanding of biological and environment consequences of
nanomaterial interactions.
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