
Chapter 7
Recent Developments in Video-Based
Face Recognition

Jingxiao Zheng, Vishal M. Patel and Rama Chellappa

Abstract Face recognition with its wide range of commercial and law enforcement

applications has been one of the most active areas of research in the field of computer

vision and pattern recognition. Personal identification systems based on faces have

the advantage that facial images can be obtained from a distance without requiring

cooperation of the subject, as compared to other biometrics such as fingerprint, iris,

etc. Face recognition is concerned with identifying or verifying one or more persons

from still images or video sequences using a stored database of faces. Depending on

the particular application, there can be different scenarios, ranging from controlled

still images to uncontrolled videos. Since face recognition is essentially the problem

of recognizing a 3D object from its 2D image or a video sequence, it has to deal

with significant appearance changes due to illumination and pose variations. Current

algorithms perform well in controlled scenarios, but their performance is far from

satisfactory in uncontrolled scenarios. Most of the current research in this area is

focused toward recognizing faces in uncontrolled scenarios. This chapter presents an

overview of recent video-based face recognition methods. In particular, recent sparse

coding-based, manifold-based, probabilistic, geometric model-based, and dynamic

model-based methods are reviewed.
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7.1 Introduction

Video-based face recognition has received a significant amount of attention in recent

years. This is mainly due to the fact that large amounts of video data are becoming

available everyday. Millions of cameras have been installed in buildings, streets, and

airports around the world, and people are using billions of handheld devices that

are capable of capturing videos. As a result, 350 million photos are uploaded to

Facebook every day and 100 h of video are uploaded to YouTube each minute.

For video-based face recognition problem, the identification and verification tasks

are all based on videos rather than still images compared to the classical image-

based face recognition problem. Approaches for video-based face recognition need

to identify a person in a video, given some possible candidates, or to decide whether

the two people in two different videos are the same person.

In most of the video-based face recognition methods, given video data, tracking

algorithms like [38] are first used to detect faces in the video frames. Then fiducial

extraction methods like [47] are applied to align the detected faces. After the align-

ment, traditional feature extraction techniques such as SIFT [30], HoG [14], LBP

[31] or the very popular DCNN features [26, 35, 36] are used to extract features for

matching.

In video-based face recognition, a key challenge is in exploiting the extra infor-

mation available in a video, e.g., face, body, and motion identity cues. In addition,

different video sequences of the same subject may contain variations in resolution,

illumination, pose, and facial expressions. These variations contribute to the chal-

lenges in designing an effective video-based face recognition algorithm. Whether

the temporal information is considered or not, most video-based face recognition

can be divided into sequence-based methods or set-based methods. Sequence-based

face recognition methods consider the video as a sequence of images and make use

of the temporal information for recognition. On the other hand, set-based face recog-

nition methods only consider the video as a set of images and ignore their order.

Besides using temporal information, video-based face recognition can also be

sorted by the techniques used to model the video. These include sparse coding-based

methods, manifold-based methods, probabilistic methods, geometrical model-based

methods, and dynamical model-based methods. In this chapter, we give an overview

of some of these modeling approaches.

7.2 Sparse Coding-Based Methods

For sparse coding-based methods, faces (or features extracted from faces) in videos

are modeled as dictionaries, which are overcomplete atoms learned from the training

data with sparsity constraints.

Given L video frames with faces of dimension M concatenated in a matrix

𝐘 =
[
𝐲1,… , 𝐲L

]
∈ ℝM×L

, the problem of learning a dictionary, which minimizes
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Fig. 7.1 Dictionary-based face recognition from video [12]

the representation error with a sparseness constraint is equivalent to solving the fol-

lowing optimization problem

min
𝐃,𝐗

‖𝐘 − 𝐃𝐗‖2F s.t ‖𝐱𝐢‖0 ≤ T , 𝐝Ti 𝐝i = 1 ∀i, (7.1)

where ‖ ⋅ ‖F is the Frobenius norm, ‖𝐱‖0 is the 𝓁0 norm of 𝐱 which counts the num-

ber of nonzero elements in 𝐱, 𝐃 =
[
𝐝1,… ,𝐝S

]
∈ ℝM×S

is the dictionary,

𝐗 =
[
𝐱1,… , 𝐱N

]
∈ ℝS×N

is the corresponding collection of sparse coefficients, S is

the number of atoms in the dictionary, and T is a sparsity parameter. Because of the

sparsity constraint, the learned dictionaries are robust to different kinds of variations

in video sequences.

[12] proposed a generative dictionary learning method for video-based face recog-

nition. The main idea of the method is to partition the video frames into clusters with

different poses and illuminations and learn a set of sub-dictionaries for each cluster.

Then the concatenation of the sub-dictionaries removes the temporal redundancy in

the videos and can handle large variations on poses and illumination variations. An

overview of this method is shown in Fig. 7.1.

For each frame in a video sequence, the face regions are first detected and cropped.

Then all the cropped face images are partitioned into K different partitions by a

K-means clustering type of algorithm. For each partition, a dictionary is learned

with the minimum representation error under a sparseness constraint using (7.1).



152 J. Zheng et al.

Thus, there will be K sub-dictionaries built to represent a video sequence. Then the

video sequence-specific dictionary is constructed by concatenating these partition-

level sub-dictionaries as𝐃p =
[
𝐃1

p,𝐃
2
p,… ,𝐃K

p
]
. Due to changes in pose and lighting

in a video sequence, the number of face images in a partition will vary. Those par-

titions with very few images will be augmented by synthesized face images. This is

done by creating horizontally, vertically, or diagonally position shifted face images,

or by in-plane rotated face images.

For identification task, testing videos are partitioned into K partitions as well.

Given a testing frame 𝐪l,k from the kth partition, the frame-level decision p̂l,k is the

sequence p with the minimum residual error from its projection onto the subspace

spaned by 𝐃p as

p̂l,k = argmin
p

‖𝐪l,k − 𝐃p𝐃†
p𝐪l,k‖2 (7.2)

The sequence-level decision p̂ is then the weighted sum of votes from K partitions

as

p̂ = argmax

i

K∑

k=1
wk

∑

l
𝟏{p̂l,k = i} (7.3)

For verification task, given a query video sequence m and gallery video sequence p
(with learned dictionary 𝐃p), the similarity score is

𝐑m,p = min
k

min
l

‖𝐪ml,k − 𝐃p𝐃†
p𝐪

m
l,k‖2. (7.4)

which is the minimum residual among all l and all k, between the frames from query

video sequence m and gallery dictionary 𝐃p.

[11] further introduced the joint sparsity constraints into their dictionary learning

algorithm. Given video frames sets {𝐘k}, instead of learning dictionaries from each

frame partition independently as

min
𝐃k

,𝐗k
‖𝐘k − 𝐃k𝐗k‖2F s.t ‖𝐱𝐤𝐢 ‖0 ≤ T , 𝐝kTi 𝐝

k
i = 1 ∀i (7.5)

based on the joint sparse constraints, the dictionaries are learned jointly as

min
{𝐃k},𝐗

1
2

K∑

k=1
‖𝐘k − 𝐃k𝐗k‖2F + 𝜆‖𝐗‖1,2 s.t 𝐝kTi 𝐝

k
i = 1 ∀i (7.6)

where ‖𝐗‖1,2 =
∑d

i=1 ‖𝐱i‖2 is the sparse constraint on𝐗 =
[
𝐗1

,… ,𝐗K]
. It enforces

the sparse pattern for each column of 𝐗 to be similar, which makes the learned dic-

tionaries more robust to noise and occlusion. [11] also introduced a kernel version

of their algorithm to deal with those non-linearly separable cases and improve the

performance.
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Fig. 7.2 Video-based face recognition using the intra/extrapersonal difference dictionary [16]

Du and Chellappa [16] proposed a video-based face recognition method based on

intra/extrapersonal difference dictionary. Since pose variations often cause within-

class variance to exceed between-class variance in face recognition, instead of learn-

ing dictionaries from the face features directly, pose-specific dictionaries are learned

from those intra/extrapersonal difference features. Also, instead of learning gener-

ative dictionaries by merely minimizing the reconstruction error, it jointly learns

dictionaries and discriminative projection matrices, which improves performance.

The overall algorithm is shown in Fig. 7.2.

In their algorithm, given a video 𝐕, faces are first detected and cropped from the

videos by using a tracking algorithm. Fiducial points are then detected by a struc-

tural SVM approach. These cropped faces are aligned and clustered by the K-means

algorithm into K clusters according to their poses. Then a given video can be char-

acterized by its K cluster centers {𝐯k, k = 1, 2,… ,K} considered as representative

images.

For the training videos, the intrapersonal difference features {𝐱In = 𝐯mi − 𝐯nj ,
ID(𝐕i) = ID(𝐕j)} and the extrapersonal ones {𝐱Ex = 𝐯mi − 𝐯nj , ID(𝐕i) ≠ ID(𝐕j)} are

employed to learn the dictionary 𝐃 and the projection matrix 𝐖 simultaneously for

each pair of poses by solving the following Label-Consistent K-SVD problem (LC-

K-SVD):

min
𝐃,𝐀

‖𝐗 − 𝐃𝐀‖22 + 𝜇‖𝐐 − 𝐁𝐀‖22 + 𝜎‖𝐅 −𝐖𝐀‖22 + 𝜆

∑

i
‖𝜶i‖1, (7.7)

where 𝐗 =
[
𝐗In 𝐗Ex

]
is the concatenation of intrapersonal and extrapersonal fea-

tures. The columns of 𝐅 ∈ ℝ2×N
are the corresponding labels (same or different),

represented using the 1-of-K coding scheme. It enforces𝐖 to encode discriminative

information from the sparse codes. 𝐁 ∈ ℝK×d
is a linear transformation that encour-

ages the samples from the same class to be reconstructed using the entries in the

sub-dictionary of that class. 𝐐 ∈ ℝK×N
has a block diagonal form: The c-th block

contains entry 𝐐ij, i ∈ vc, j ∈ hc, where vc are the indices of atoms from class c



154 J. Zheng et al.

(i.e., intrapersonal or extrapersonal) and hc are the indices of training instances from

class c. All the nonzero entries in 𝐐 are assigned with unit value. This problem can

be converted to a typical K-SVD [3] objective function and solved using the same

procedure.

At the testing stage, for every probe-gallery video pair {𝐕p,𝐕g}, feature differ-

ence vectors {𝐱m,np,g = 𝐯mp − 𝐯ng} from each pair of poses are calculated. The sparse

representation of 𝐱m,np,g is obtained by solving 𝜶
m,n
p,g = argmin

𝜶

N∑

i=1

1
2
‖𝐱m,np,g − 𝐃𝜶‖22 +

𝜆‖𝜶‖1 using the learned dictionary 𝐃 in the training stage. The similarity score for

this video pair is then calculated as

s(p, g) =
M∑

m=1

N∑

n=1
𝟏(𝐭1𝐖𝜶

m,n
p,g > 𝐭0𝐖𝜶

m,n
p,g )∕MN (7.8)

where 𝐭0 =
[
0, 1

]T
and 𝐭1 =

[
1, 0

]T
are the 1-of-K coding label for intrapersonal and

extrapersonal class, respectively. For video-based recognition, the decision is made

by ID(𝐕p) = argmax
g

s(p, g).

Some of the other sparse dictionary learning-based methods for video-based face

recognition include [18, 32].

7.3 Manifold-Based Methods

In manifold-based methods, videos are usually modeled as image sets. These image

sets are considered as the approximation of manifolds and the problem actually turns

into looking for a discriminant distance metric between manifolds. The basic idea is

shown in Fig. 7.3.

Fig. 7.3 Manifold-based face recognition [41]
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In [41], the image set classification problem is based on the computation of

manifold–manifold distance. It models the image sets cropped from videos as man-

ifolds which consist of component linear subspaces. Then the manifold-to-manifold

distance can be considered as the similarity between two videos.

Given face image setX = {𝐱1, 𝐱2,… , 𝐱N} from a video, it is partitioned into a col-

lection of disjoint Maximal Linear Patches {Ci}. Each video is considered as a man-

ifold consisting of these local linear patches which can be obtained by Algorithm 1.

Algorithm 1 Local model construction.

1. Initialize that i = 1, Ci = ∅, XT = ∅, XR = X.

2. While(XR ≠ ∅)

2.1 Randomly select a seed point from XR as 𝐱(i)1 , update Ci = {𝐱(i)1 }, XR = XR − {𝐱(i)1 }.

2.2 For (∀𝐱(i)m ∈ Ci)

Identify each of its k-NNs 𝐱c as candidate. If 𝐱c satisfies simultaneously 𝐱c ∈ XR and

DG(𝐱c, 𝐱(i)n )∕DE(𝐱c, 𝐱(i)n ) < 𝜃, ∀𝐱(i)n ∈ Ci (7.9)
then update Ci = Ci ∪ {𝐱c}, XR = XR − {𝐱c}, until no candidate point can be added into

Ci.

2.3 XT = ∪i
j=1Cj, XR = X − XT , i = i + 1, Ci = ∅.

Here, DE(⋅) denotes the Euclidean distance and DG(⋅) denotes the geodesic dis-

tance. Their ratio reflects the linear deviation of the local linear subspace. Threshold

𝜃 controls the degree of linear deviation. Thus larger 𝜃 implies fewer local structures

but large linear deviation in each structure. After obtaining the local linear subspaces

for each video, the manifold-manifold distance between two video manifolds M1 and

M2 can be computed as

d(M1,M2) = min
Ci∈M1

min
Cj∈M2

d(Ci,Cj) (7.10)

which is the distance between the closest local subspace pair.

Suppose 𝐞i, 𝐞j and 𝐏i ∈ ℝD×d1 , 𝐏j ∈ ℝD×d2 are the exemplars (means) and ortho-

normal bases of two subspaces Ci and Cj. r = min(di, dj). The SVD of 𝐏T
1𝐏2 is

𝐏T
1𝐏2 = 𝐐12𝚲𝐐T

21 and 𝚲 = diag(𝜎1,… , 𝜎r). The distance between two local sub-

space is defined as

d(Ci,Cj) = (1 − 𝛼)dE(Ci,Cj) + 𝛼dV (Ci,Cj). (7.11)

Here, dE(Ci,Cj) = ‖𝐞i‖‖𝐞j‖∕𝐞Ti 𝐞j is called the exemplar distance measure, which

measures how similar the two sets are. dV (Ci,Cj) = r∕
∑r

k=1 𝜎k is called the

variation distance measure which measures how close the common variation modes

of the two sets. By fusing these distance measures, the overall manifold–manifold
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Fig. 7.4 Manifold discriminant analysis [39]

distance captures the difference of both average appearance and variation informa-

tion between two sets.

Finally, for verification task, the similarity score between any gallery and probe

video pair is the manifold–manifold distance between their corresponding manifolds.

For identification task, decision is made by finding the video with the minimum

manifold–manifold distance.

A manifold-based discriminative learning method called Manifold Discriminant

Analysis for image set classification was proposed in [39]. It learns an embedding

space where manifolds with different class labels are better separated and local data

compactness within each manifold is enhanced. An overview of this method is shown

in Fig. 7.4.

Like [41], given image sets considered as manifolds, local linear models are first

extracted as Mi = {Ci,k}. The learning method is formulated as:

1. Two graphs are constructed, which are intrinsic graph G and penalty graph G′
. In

both graphs, nodes are all the images in the training set𝐗 = {𝐱m}. In G, nodes 𝐱m
and 𝐱n are connected if 𝐱m ∈ Ci,k, 𝐱n ∈ Cj,l, i = j and k = l, which means only the

nodes come from the same local linear model are connected. In G′
, nodes 𝐱m and

𝐱n are connected if their class labels are different and Ci,k is among the k′-nearest

between-class neighbors of Cj,l.

2. The weight matrix 𝐖 = {wmn} for G is computed as

wmn =

{
1 if 𝐱m and 𝐱n are connected

0 otherwise
(7.12)

𝐖′
forG′

is computed in the same way.𝐃 and𝐃′
are diagonal matrices with diag-

onal elements dmm =
∑

n wmn and d′mm =
∑

n w′
mn. 𝐋w = 𝐃 −𝐖 and

𝐋b = 𝐃′ −𝐖′
are their Laplacian matrices, respectively.
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3. A linear embedding 𝐳 = 𝐕T𝐱 based on linear projection is learned, where 𝐕 ∈
ℝd×l

with l ≪ d. For each column of 𝐕, learning is fulfilled by maximizing the

between-class scatter Sb =
∑

m,n ‖𝐯T𝐱m − 𝐯T𝐱n‖2w′
m,n = 2𝐯T𝐗𝐋b𝐗T𝐯 and mini-

mizing the within-class scatter Sw =
∑

m,n ‖𝐯T𝐱m − 𝐯T𝐱n‖2wm,n = 2𝐯T𝐗𝐋w𝐗T𝐯.

This is equivalent to solving the optimization problem:

maximize
𝐯

=
Sb
Sw

=
𝐯T𝐗𝐋b𝐗T𝐯
𝐯T𝐗𝐋w𝐗T𝐯

(7.13)

The columns of the optimal 𝐕 are the generalized eigenvectors corresponding to

the l largest eigenvalues in

𝐗𝐋b𝐗T𝐯 = 𝜆𝐗𝐋w𝐗T𝐯. (7.14)

Finally, for verification task, given two manifolds Mk and Ml, their distance

is calculated as d(Mk,Ml) = mini,j d(Ci,k,Cj,l), which is same as the manifold-to-

manifold distance proposed in [41]. d(Ci,k,Cj,l) = ‖𝐞i,k − 𝐞j,l‖ is the empirical dis-
tance between each pair of local linear models, where 𝐞i,k =

1
Ni,k

∑Ni,k
n=1 𝐕

T𝐱ni,k is the

sample mean of Ci,k and 𝐞j,l =
1
Nj,l

∑Nj,l

n=1𝐕
T𝐱nj,l is the sample mean of Cj,l, both in the

learned embedding space.

Similarly, Wang et al. [40] proposed a discriminative learning approach for image

set classification by modeling the image set using its covariance matrix. The concep-

tual illustration of this method is shown in Fig. 7.5.

Given face images from a video, 𝐒 =
[
𝐬1, 𝐬2,… 𝐬n

]
, the samples covariance of this

image set is

𝐂 = 1
n − 1

n∑

i=1
(𝐬i − �̄�)(𝐬i − �̄�)T (7.15)

where �̄� is the sample mean. The video is thus characterized by its covariance

matrix 𝐂. Since 𝐂 is an SPD matrix, it lies on a Riemannian manifold. It is not

easy to train a classifier on the manifold because most of the classic classifiers are

Fig. 7.5 Covariance discriminative learning [40]
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designed for Euclidean metrics. In the paper, a distance metric, Log-Euclidean dis-

tance (LED) is introduced as dLED(𝐂1,𝐂2) = ‖log(𝐂1) − log(𝐂2)‖F where log(⋅)
here is the ordinary matrix logarithm operator. If 𝐂 = 𝐔𝚺𝐔T

is an SPD matrix,

log(𝐂) = 𝐔log(𝚺)𝐔T
.

Given training videos {𝐒tri } from C different classes, first the covariance matrices

{𝐂tr
i } are calculated. Then, two different learning methods are used:

1. Kernel LDA

The KLDA optimization problem is:

𝜶opt = argmax
𝜶

𝜶
T𝐊𝐖𝐊𝜶
𝜶
T𝐊𝐊𝜶

, (7.16)

where 𝐊ij = k(𝐒tri ,𝐒
tr
j ) = dLED(𝐂tr

i ,𝐂
tr
j ). And 𝐖 is defined as:

𝐖ij =

{
1∕nk if 𝐒tri ,𝐒

tr
j are both in the kth class

0 otherwise
(7.17)

and nk is the number of videos in the kth class.

The solution to (7.16) is the eigenvector corresponding to the largest eigenvalue of

the problem𝐊𝐖𝐊𝜶 = 𝜆𝐊𝐊𝜶. Then given a testing video 𝐒te with its covariance

matrix 𝐒te, its projection in the C − 1 dimensional discriminant subspace is:

𝐳te = 𝐀T𝐊te
(7.18)

where 𝐀 =
[
𝜶1,𝜶2,… ,𝜶C−1

]
is the collection of C − 1 largest eigenvectors and

𝐊te =
[
k(𝐒tr1 ,𝐒

te), k(𝐒tr2 ,𝐒
te),…

]T
. Nearest Neighbor classification in the discrim-

inant subspace based on Euclidean distance is then performed.

2. Kernel PLS

Different from KLDA, KPLS directly learns a regression model between train-

ing observations {𝐒tri } and their 1-of-K coding labels 𝐘tr
(refer to [34] for more

details). Then given testing video 𝐒te, its KPLS prediction is given by

𝐲te = 𝐊teT𝐔(𝐓T𝐊𝐔)−1𝐓T𝐘tr
(7.19)

where 𝐔 and 𝐓 are regression parameters learned by KPLS, 𝐊 and 𝐊te
are the

same as in KLDA. The entry index with the largest response in 𝐲te determines the

label of the video.

Furthermore, [22] introduced a method that learns the projection metric directly

on the Grassmann manifold rather than in Hilbert space. It performs a geometry-

aware dimensionality reduction from the original Grassmann manifold to a lower

dimensional, more discriminative Grassmann manifold. The method is demonstrated

in Fig. 7.6.
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Fig. 7.6 Projection metric learning on Grassmann manifold [22]

Given face frames {𝐗i} from videos where𝐗i ∈ ℝD×ni describes a data matrix of

the ni frames from the ith video, 𝐗i is represented by a q-dimensional linear sub-

space spanned by an orthonormal basis matrix 𝐘i ∈ ℝD×q
. This is calculated by

𝐗i𝐗T
i ≃ 𝐘i𝚲i𝐘T

i , 𝚲i and 𝐘i correspond to the q largest eigenvalues and eigenvec-

tors, respectively.

The linear subspace span (𝐘i) lies on a Grassmann manifold G (q,D). It can be

represented by the projection mapping Φ(𝐘i) = 𝐘i𝐘T
i since there is a one-to-one

mapping between each projection matrix and the point on the Grassmann manifold.

The projection distance metric between 𝐘i𝐘T
i and 𝐘j𝐘T

j is defined as

dp(𝐘i𝐘T
i ,𝐘j𝐘T

j ) = 2−1∕2‖𝐘i𝐘T
i − 𝐘j𝐘T

j ‖F. (7.20)

The method learns a mapping f ∶ G (q,D) → G (q, d) which is defined as

f (𝐘i𝐘T
i ) =𝐖T𝐘i𝐘T

i 𝐖 = (𝐖T𝐘i)(𝐖T𝐘i)T (7.21)

where 𝐖 ∈ ℝD×d
is the column full rank transformation matrix. Here, 𝐖T𝐘i is not

a orthonormal basis in general, which doesn’t lie on a Grassmann manifold. Thus,

𝐖T𝐘i is replace by 𝐖T𝐘′
i , which is an orthonormal basis of 𝐖T𝐘i.

After transformation, the projection distance between 𝐖T𝐘′
i𝐘

′T
i 𝐖 and

𝐖T𝐘′
j𝐘

′T
j 𝐖 is

d2p(𝐖
T𝐘′

i𝐘
′T
i 𝐖,𝐖T𝐘′

j𝐘
′T
j 𝐖) = 1

2
‖𝐖T𝐘′

i𝐘
′T
i 𝐖 −𝐖T𝐘′

j𝐘
′T
j 𝐖‖2F = 1

2
tr(𝐏𝐀ij𝐀T

ij𝐏), (7.22)

where 𝐀ij = 𝐘′
i𝐘

′T
i − 𝐘′

j𝐘
′T
j and 𝐏 =𝐖𝐖T

, which is a rank-d D × D PSD matrix.

The method learns 𝐏 by minimizing the projection distances of any within-class

subspace pairs and maximizing the projection distances of between-class subspace

pairs. The corresponding objective function J(𝐏) is defined as
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𝐏∗ = argmin

𝐏
J(𝐏) = argmin

𝐏
(Jw(𝐏) − 𝛼Jb(𝐏)), (7.23)

where 𝛼 is the trade-off parameter between within-class scatter Jw(𝐏) and between-

class scatter Jb(𝐏),

Jw(𝐏) =
1
Nw

m∑

i=1

∑

j∶Ci=Cj

tr(𝐏𝐀ij𝐀T
ij𝐏) = tr(𝐏𝐒w𝐏)

Jb(𝐏) =
1
Nb

m∑

i=1

∑

j∶Ci≠Cj

tr(𝐏𝐀ij𝐀T
ij𝐏)tr(𝐏𝐒b𝐏). (7.24)

Since𝐖𝐘′
i need to be orthogonal all the time, an algorithm is proposed to optimize 𝐏

and solving 𝐘′
i iteratively. In each iteration, 𝐖T𝐘i is first decomposed into 𝐖T𝐘i =

𝐐i𝐑i by QR-decomposition.𝐘′
i is normalized by𝐘′

i = 𝐘i𝐑−1
i . Then 𝐏 is solved using

Riemannian Conjugate Gradient algorithm [1]. Finally, for verification task, given

two videos, their projection distance in the low-dimensional space can be calculated

using (7.22).

In [21] a hybrid metric learning method for image set-based face recognition

was proposed, which is essentially an extension of [20]. The image sets are mod-

eled simultaneously by mean, covariance matrix and Gaussian distribution and fused

together for robustness. Another highlight of this paper is that the metrics are learned

based on deep learning features. Combining set-based face recognition algorithm and

the power of deep learning, the proposed method achieved state-of-the-art results in

many challenging datasets. The conceptual illustration of the method is shown in

Fig. 7.7.

Given an image set 𝐗 = {𝐱1,… , 𝐱n}, 𝐱i ∈ ℝd
, the DCNN features 𝐘 = {𝐲1,… ,

𝐲n} are first extracted. Here, according to [9], the DCNN network is trained on 256 by

256 pixel face images. The face images are normalized using detected eye positions.

The network has 17 layers, including 14 convolution layers, 2 fully connected layers,

and 1 soft-max layer. The training of the DCNN network consists of pretraining and

fine-tuning. The pretraining is conducted on “Celebrities on the Web” (CFW) dataset

[44]. The fine-tuning is carried using the training part of the given dataset. Finally,

the output of the second fully connected layer of the trained DCNN network is used

as the deep feature. All the network training and feature extraction are accomplished

by the Caffe deep learning framework [24].

After the deep features are obtained, the first statistic, the sample mean is defined

by𝐦 = 1
n

∑n
i=1 𝐲i, which lies in Euclidean space ℝd

. The second statistic, the covari-

ance matrix, is defined by𝐂 = 1
n−1

∑n
i=1(𝐲i −𝐦)(𝐲i −𝐦)T , which lies on Riemannian

manifold Symd
+. The third statistic, the Gaussian Mixture Model, is learned by Expec-

tation Maximization algorithm. It can be written as

G =
M∑

i=1
wiN (𝐲|�̃�i,

̃𝐂i), (7.25)
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Fig. 7.7 Hybrid Euclidean-and-Riemannian metric learning [21]

where �̃�i and ̃𝐂i are the mean and covariance matrix for the ith Gaussian compo-

nent. According to the information geometry theory in [29], it can be embedded into

Symd+1
+ and represented by a (d + 1) × (d + 1)-dimensional SPD matrix 𝐏 as

N (�̃�i,
̃𝐂i) ∼ 𝐏 = |𝐐|−2∕(d+1)

[
𝐐𝐐T + �̃�i�̃�T

i �̃�i
�̃�T

i 1

]
, (7.26)

where ̃𝐂 = 𝐐𝐐T
and |𝐐| > 0. For mean vectors, the linear kernel is directly used,

which is

Km(𝐦i,𝐦j) = 𝐦T
i 𝐦j. (7.27)

For covariance matrices, the Log-Euclidean Distance is used, which is d(𝐂i, 𝐂j) =
‖ log(𝐂i) − log(𝐂j)‖F. It leads to the kernel

KC(𝐂i,𝐂j) = tr(log(𝐂i,𝐂j)). (7.28)

For GMMs, the LED metric is used as well. The kernel function is

KG(𝐆i,𝐆j) =
Ma∑

a=1

Mb∑

b=1
wawbtr(log(𝐏a

i ) log(𝐏
b
j ))), (7.29)

where 𝐏a
i is the ath Gaussian component of the i th GMM.
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Given training sets 𝐗i and 𝐗j, let 𝚽r
i and 𝚽r

j be the high dimensional features in

RKHS of the rth statistic feature. The distance metric is defined as

dAr
(𝚽r

i ,𝚽
r
j ) = tr(𝐀r(𝚽r

i −𝚽
r
j )(𝚽

r
i −𝚽

r
j )
T ), (7.30)

where 𝐀r is the learned Mahalanobis matrix for the rth statistic in the high dimen-

sional RKHS (r = 1,… , 3 here). Using the Information-Theoretic Metric Learning

method proposed in [15], the objective function for learning {𝐀r} is formulated as

min
𝐀1≥0,…,𝐀R≥,𝝃

1
R

R∑

r=1
D𝓁d(𝐀r,𝐀0) + 𝛾D𝓁d(diag(𝝃), diag(𝝃0)),

s.t.
𝛿ij

R

R∑

r=1
d𝐀r

(𝚽r
i ,𝚽

r
j ) ≤ 𝝃ij, ∀i, j (7.31)

whereD𝓁d(𝐀r,𝐀0) = tr(𝐀r𝐀−1
0 ) − log det(𝐀r𝐀−1

0 ) − d, d is the dimensionality of the

data. 𝝃 is a vector of slack variables and is initialized to 𝝃0, where 𝝃0ij = 𝜹ij𝜌 − 𝜁𝜏,

𝜌 is the threshold for distance comparison, 𝜏 is the margin, and 𝜁 is the tuning scale

of the margin. 𝜹ij =

{
1 if 𝐗i and 𝐗j come from the same class

−1 otherwise

Learning 𝐀r is equivalent to learning𝐖r such that 𝐀r =𝐖r𝐖T
r . By applying the

kernel trick, explicit computation of𝚽r
can be avoided. Assume that every column of

𝐖r is a linear combination of all the training samples in RKHS,𝐰r
k can be expressed

by 𝐰r
k =

∑N
j=1 𝐮

k
j𝚽

r
j , 𝐮

k
are the expansion coefficients here. Let 𝐔r =

[
𝐮1,… ,𝐮N

]
,

𝐖r = 𝚽r𝐔r, instead of learning 𝐖r directly, 𝐔r can be learned. Then the objective

function can be rewritten as

min
𝐁1≥0,…,𝐁R≥,𝝃

1
R

R∑

r=1
D𝓁d(𝐁r,𝐁0) + 𝛾D𝓁d(diag(𝝃), diag(𝝃0)),

s.t.
𝛿ij

R

R∑

r=1
d𝐁r

(𝐊r
⋅i,𝐊

r
⋅j) ≤ 𝝃ij, ∀i, j, (7.32)

where 𝐁r = 𝐔r𝐔T
r is the new Mahalanobis matrix. d𝐁r

(𝐊r
⋅i,𝐊

r
⋅j) = tr(𝐁r(𝐊r

⋅i −𝐊
r
⋅j)

(𝐊r
⋅i −𝐊

r
⋅j)

T ). 𝐊r
⋅i is the ith column of 𝐊r

. The proposed method adopted the cyclic

Bregman projection method [10] to solve this problem.

After {𝐁r}3r=1 are learned for all statistics, for verification task, given two image

sets 𝐗i and 𝐗j, their corresponding DCNN features are first calculated. Means,

covariance matrices and GMMs are then computed. Then the kernels between these

testing samples and the training samples are computed as 𝐤ri and 𝐤rj . Finally, their

distance is calculated by
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d(𝐗1,𝐗2) =
3∑

r=1
d𝐁r

(𝐤ri ,𝐤
r
j ) =

3∑

r=1
tr(𝐁r(𝐤ri − 𝐤

r
j )(𝐤

r
i − 𝐤

r
j )
T ). (7.33)

Besides the methods mentioned above, Wang et al. [42] proposed a face recog-

nition method for image sets using Gaussian Mixture Model which lies on specific

Riemannian manifold. Huang et al. [23] provided a image set-based metric learning

method using Log-Euclidean metric on SPD manifold. Arandjelovic and Cipolla [6]

built a pose-wise linear illumination manifold model for video-based face recogni-

tion. Arandjelovic and Cipolla [5] modeled the video faces by shape-illumination

manifolds which are robust to different variations. Kim et al. [25] introduced canon-

ical correlations between two subspaces for image set recognition. Huang et al. [19]

proposed the Euclidean-to-Riemannian Metric for Point-to-Set Classification on Rie-

mannian manifold.

7.4 Probabilistic Methods

Probabilistic methods provide flexibility so that the similarity scores can either be

modeled as “distance” or as “likelihood”.

In [27], a video-based face recognition algorithm based on probablistic appear-

ance manifolds is introduced. The image set of a given object can be treated as a

low-dimensional appearance manifold Mk in the image space. Given a testing image

I, identity k∗ is determined by finding the manifold Mk with minimal distance to I,
which is

k∗ = argmin

k
dH(I,Mk), (7.34)

where dH denotes the L2-Hausdorff distance between the image I and Mk. Proba-

bilistically, let

P(k|I) = 1
Λ
exp(− 1

2𝜎2 d
2
H(I,Mk)), (7.35)

where Λ is a normalization term. Thus, (7.34) turns into

k∗ = argmax

k
P(k|I). (7.36)

Since Mk is usually not known and can only be estimated by samples, dH(I,Mk)
cannot be calculated directly. Let pMk

(x|I) be the probability that x is the point on

Mk at minimal L2 distance to I. Also, since the appearance manifold is complex and

non-linear, it is decomposed into a collection ofm simpler disjoint manifolds asMk =
Ck1 ∪… ∪ Ckm

where Cki
is called a pose manifold. Each pose manifold is further
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approximated by an affine plane through PCA. P(Cki|I) denotes the probability that

Cki
contains point x∗ with minimal distance to I. Then

dH(I,Mk) =
∫Mk

d(x, I)pMk
(x|I)dx =

m∑

i=1
P(Cki|I)

∫Cki
dH(x, I)pCki(x|I)dx

=
m∑

i=1
P(Cki|I)dH(I,Cki), (7.37)

which is the average expected distance between I and each pose manifold Cki
. This

is shown in Fig. 7.8.

For video-based face recognition, the temporal coherence between consecutive

image frames can be exploited. As the example shown in Fig. 7.9, {It} probably

originate from MB by looking at the whole sequence. But because of the appear-

ance variations, some of the frames are closer to MA. By considering the temporal

coherence, the image-to-manifold can be estimated more robustly.

Given previous frames I0∶t−1 at time t, assume It and I0∶t are independent given

Cki
t , Cki

t and I0∶t−1 are independent given Cki
t−1, P(Cki

t |It, I0∶t−1) can be calculated as

Fig. 7.8 dH(I,Mk) [27]

Fig. 7.9 Exploit temporal

coherence [27]
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P(Cki
t |It, I0∶t−1) = 𝛼P(It|Cki

t , I0∶t−1)P(C
ki
t |I0∶t−1)

= 𝛼P(It|Cki
t )

m∑

j=1
P(Cki

t |C
kj
t−1, I0∶t−1)P(C

kj
t−1|I0∶t−1)

= 𝛼P(It|Cki
t )

m∑

j=1
P(Cki

t |C
kj
t−1)P(C

kj
t−1|It−1, I0∶t−2), (7.38)

where 𝛼 is a normalization constant. P(Cki
t |C

kj
t−1) is the probability of x∗t ∈ Cki

given

x∗t−1 ∈ Ckj
. Because of the temporal coherency between consecutive frames, x∗t−1

and x∗t should have small geodesic distance on Mk. P(Cki
t |C

kj
t−1) is thus related to

their geodesic distance. Equation (7.38) can be computed recursively if P(It|Cki
t ) and

P(Cki
t |C

kj
t−1) ∀i, j, t are known.

Given training image sets {Sk} from videos, K-means algorithm is used to parti-

tion these sets into m disjoint subsets {Sk1,… , Skm}. For each Ski, a linear approx-

imation Lki of local manifold Cki
is obtained by PCA. P(Cki|Ckj) is then calculated

by

P(Cki|Ckj) = 1
Λkj

l∑

t=2
𝛿(It−1 ∈ Ski)𝛿(It ∈ Skj), (7.39)

which is counting the actual transitions in the corresponding training set. Λkj is a

normalization constant. P(I|Cki) is calculated by

P(I|Cki) = 1
Λki

exp(− 1
2𝜎2 dH(I,Lki)), (7.40)

where Lki is the low-dimensional linear approximation of manifold Cki
. Λki is a

normalization constant. dH(I,Lki) = dH(I,Cki) is the distance between I and Cki
.

Finally, for identification task, given an image It from a testing video sequence {It},

P(Cki
t |It, I0∶t−1),∀k, i are calculated recursively by (7.38). dH(I,Mk) is then obtained

by (7.37). The decision is made by (7.36).

A probability distribution-based method for video-based face recognition was

proposed in [7]. The Kullback–Leibler divergence is used as the distance mea-

sure between the distributions of videos. Given image sets collected from videos,

Gaussian mixture models p̂ are learned for each image set. This is done using the

Expectation Maximization algorithm. EM is initialized by K-means clustering and

constrained to diagonal covariance matrices. The number of components is selected

according to the minimal description length criterion [8]. Then for each training and

testing video pair (Vte
,Vtr), the KL divergence between the learned distributions p̂te

and p̂tr is used as the distance measure, which is

d(Vte
,Vtr) = DKL(p̂te||p̂tr) =

∫
p̂te(𝐱)log

(
p̂te(𝐱)
p̂tr(𝐱)

)
d𝐱. (7.41)
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The KL divergence DKL(p||q) quantifies how well the distribution p describes

samples from q. It is nonnegative and equal to zero if p ≡ q. Since the calculation

of the KL divergence involves integration, there is no closed form when p̂te and p̂tr
are GMMs. However, according to the law of large numbers, the KL divergence can

still be approximated by sampling using Monte-Carlo simulation:

DKL(p̂te||p̂tr) ≈
1
N

N∑

k=1
log

(
p̂te(𝐱k)
p̂tr(𝐱k)

)
, (7.42)

where 𝐱k are samples drawn from distribution p̂te. Then for identification task, the

similarity between every training and testing video pair is computed using (7.42).

Liu and Chen [28] proposed a Hidden Markov Models based method to perform

video-based face recognition. When training, the statistics and the temporal infor-

mation of training videos are learned by HMMs. During the recognition phase, the

temporal characteristics of the testing videos are analyzed by the HMM correspond-

ing to each subject. The decision is made by finding the highest likelihood scores

provided by the HMMs.

A continuous HMM model is defined as the triplet 𝜆 = (𝐀,𝐁,𝝅). 𝐀 = {aij}
is the transition probability matrix, where aij = P(qt = Sj|qt−1 = Si), 1 ≤ i, j ≤ N.

𝐁 = {bi(𝐨)} is the observation probability density function, where bi(𝐨) =
∑M

k=1 cik
N (𝐨;𝝁ik,𝚺ik). 𝝅 = {𝜋i} is the initial state distribution, where 𝜋i = P(q1 = Si), 1 ≤

i ≤ N. Here 𝐒 = {S1, S2,… , SN} is the set of states in the model.𝐎 = {𝐨1, 𝐨2,… , 𝐨T}
are the observations and 𝐐 = {q1, q2,… , qT} are the corresponding hidden state

variables. Given state Si, bi(𝐨) is a Gaussian Mixture Model with M Gaussians. cik,
𝝁ik and 𝚺ik are the mixture coefficient, mean and covariance for the kth Gaussian,

respectively.

Given training videos, the face images are first projected to a low-dimensional

space using PCA. Then each video is modeled as an HMM with these low-

dimensional features as observations 𝐎, which is shown in Fig. 7.10.

The estimation for HMM parameter 𝜆 = (𝐀,𝐁,𝝅) is as follows:

1. 𝐀, 𝐁, and 𝝅 are initialized (observations are clustered into M Gaussians. c0ik, 𝝁
0
ik

and 𝚺0
ik are estimated for each Gaussian). n = 0.

2. Do.

2.1. Reestimate 𝜆 using the expectation maximization algorithm, in order to

maximize the likelihood p(𝐎|𝜆). The reestimation is defined as

𝜋

n+1
i =

P(𝐎, q1 = i|𝜆n)
p(𝐎|𝜆n)

(7.43)

an+1ij =
∑T

t=1 p(𝐎, qt−1 = i, qt = j|𝜆n)
∑T

t=1 p(𝐎, qt−1 = i|𝜆n)
(7.44)
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Fig. 7.10 Temporal HMM for modeling face sequences [28]

cn+1ik =
∑T

t=1 P(qt = i,mqtt = k|𝐎, 𝜆n)
∑T

t=1
∑M

k=1 P(qt = i,mqtt = k|𝐎, 𝜆n)
(7.45)

𝝁
n+1
ik =

∑T
t=1 𝐨tP(qt = i,mqtt = k|𝐎, 𝜆n)

∑T
t=1 P(qt = i,mqtt = k|𝐎, 𝜆n)

(7.46)

𝚺n+1
ik = (1 − 𝛼)𝐂 + 𝛼

∑T
t=1(𝐨t − 𝝁

n+1
ik )(𝐨t − 𝝁

n+1
ik )TP(qt = i,mqtt = k|𝐎, 𝜆n)

P(qt = i,mqtt = k|𝐎, 𝜆n)
(7.47)

where mqtt indicates the mixture component of state qt and time t. 𝐂 is a

general model for the variance of all videos. 𝛼 is a weighting factor, which

prevents the estimated 𝚺 to be singular.

2.2 n = n + 1

3. Until p(𝐎|𝜆) converges.

For identification task, after the HMM models {𝜆trc } are estimated for training

videos, given a testing video, the face images are projected onto the same low-

dimensional space as the training samples and obtain the testing observation 𝐎te
.

Then the likelihood score p(𝐎te|𝜆trc ) of the observation given the training testing

HMM models are computed. The identification decision is made by p = argmaxc
p(𝐎te|𝜆trc ), which finds the highest likelihood score.

In addition to the methods discussed above, Zhou et al. [45] introduced an

appearance-adaptive model-based on particle filter to realize robust visual tracking

and recognition. Zhou et al. [46] proposed a time series based method for video-

based face recognition. Arandjelovic and Cipolla [4] provided another method based

on kernelized distribution-to-distribution distance. Wang et al. [43] introduced a

probablistic nearest neighbor search method for image set classification.
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7.5 Geometrical Model-Based Methods

Geometrical model-based methods construct certain geometrical models for faces

in the videos. Then the texture map of the faces are projected on to these models

and features are extracted. The recognition will based on these features. The mod-

els can vary from the simple spherical head models to the human-specific 3D head

models. Geometrical model based methods are more robust to illumination and pose

variations because they exploit the geometrical structures from the faces.

Sankaranarayanan and Chellappa [17] proposed a novel feature for robust video-

based face recognition in camera networks. It is developed using the spherical

harmonic representation of the face texture mapped onto a spherical head model.

Spherical harmonics are a set of orthonormal basis functions defined over the unit

sphere, and can be used to linearly expand any square-integrable function on 𝕊2
as

f (𝜃, 𝜙) =
∞∑

l=0

l∑

m=−l
flmYlm(𝜃, 𝜙), (7.48)

where Ylm(⋅, ⋅) defines the SH basis function of degree l ≥ 0 and order m ∈ (−l,−l +
1,… , l − 1, l). flm is the coefficient associated with the basis function Ylm for the

function f . The spherical coordinate system is used here. 𝜃 ∈ (0, 𝜋) and 𝜙 ∈ (0, 2𝜋)
are the zenith and azimuth angles, respectively. There are 2l + 1 basis functions for a

given order l. The SH basis function for degree l and order m has the following form

(shown in Fig. 7.11):

Ylm(𝜃, 𝜙) = KlmPm
l (cos𝜃)𝐞

jm𝜙
, (7.49)

where Klm denotes a normalization constant such that

∫

𝜋

0 ∫

2𝜋

0
YlmY∗

lmd𝜙d𝜃 = 1. (7.50)

Here, Plm(x) are the associated Legendre functions. As with Fourier expansion, the

SH expansion coefficients f ml can be computed as

f ml =
∫
𝜃

∫
𝜙

f (𝜃, 𝜙)Ym
l (𝜃, 𝜙)d𝜃d𝜙. (7.51)

Given two multiview videos, the head centers in these videos are first obtained

using a multiview tracking algorithm proposed in the paper. Then a spherical head

model for each head is build. The SH spectrum features are extracted from the texture

map projected on the models from all views. The projection of the texture map is

shown in Fig. 7.12.

These features are projected into a reproducing kernel Hilbert space (RKHS),

which is performed via an Radial Basis Function (RBF) kernel. The limiting
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Fig. 7.11 Visualization of the first three degree of Spherical Harmonics [17]

Fig. 7.12 Texture map projection [17]
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Bhattacharyya distance between these probability distributions in RKHS (assume

to be Gaussian) is considered as the distance measure. The limiting Bhattacharyya

distance in this case is

D = 1
8
(𝛼11 + 𝛼22 − 2𝛼12), (7.52)

where

𝛼ij = 𝝁
T
i (
1
2
𝐂i +

1
2
𝐂j)−1𝝁j. (7.53)

𝝁i and 𝐂i are the means and covariance matrices in RKHS which cannot be directly

calculated. Denote the Gram matrix as 𝐊ij, where i, j ∈ {1, 2} are the indices of

videos. 𝐊11 and 𝐊22 are centered by

𝐊′
ii = 𝐉Ti 𝐊ii𝐉i, 𝐉i = N

− 1
2

i (𝐈N − 𝐬𝟏T ), (7.54)

where 𝐬 = N−1
i 𝟏, 𝟏 is a Ni × 1 vector of 1s and Ni is the number of features from

video i. Then 𝛼ij is calculated by

𝛼ij = 𝐬Ti 𝐊ij𝐬j − 𝐬Ti
[
𝐊i1 𝐊i2

]
𝐁
[
𝐊j1
𝐊j2

]
𝐬j, (7.55)

where

𝐁 = 𝐏𝐋−1𝐏,𝐋 = 𝐏T
[
𝐊11 𝐊12
𝐊21 𝐊22

]
𝐏 (7.56)

and

𝐏 =
⎡
⎢
⎢
⎣

√
1
2
𝐉1𝐕1 0

0
√

1
2
𝐉2𝐕2

⎤
⎥
⎥
⎦

(7.57)

𝐕i is the matrix which stores the first r eigenvectors of𝐊′
ii (i.e., corresponding to the r

largest eigenvalues). For identification and verification tasks, the similarity between

the two set of features is measured by the computed limiting Bhattacharyya distance

between them.

Park and Jain [33] also provided a video-based face recognition method which

reconstructs 3D face models from the videos and recognizes faces at frontal view.

7.6 Dynamical Model-Based Methods

Dynamical model-based methods are sequence-based methods. They consider videos

as dynamical systems with video frames as the observation of these systems. The

advantage of these methods is that the extra temporal information is exploited.
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Dynamical models are often used to represent motions or activities, but there are

some publications that use dynamical models for face recognition.

In [2], the video-to-video face recognition problem is transferred into a dynamical

system identification and classification problem. Videos are modeled by dynamical

systems. Here, the ARMA model is used for the dynamical system. The ARMA

model is defined as

𝐱(t + 1) = 𝐀𝐱(t) + 𝐯(t) (7.58)

𝐲(t) = 𝐂𝐱(t) + 𝐰(t), (7.59)

where 𝐱(t) is the state vector, 𝐲(t) is the observation. 𝐀 and 𝐂 are transition matrix

and observation matrix, respectively. The system is driven by the IID process 𝐯(t).
𝐰(t) is the observation noise.

Suppose 𝐯(t) ∼ N (0,𝐐) and 𝐰(t) ∼ N (0,𝐑), given a video sequence 𝐘𝜏 =[
𝐲(1),… , 𝐲(𝜏)

]
, (7.59) can be rewritten as

𝐘𝜏 = 𝐂𝐗𝜏 +𝐖𝜏

, (7.60)

where𝐗 and𝐖 are similarly defined. Then the model parameters can be estimated by

̂𝐂(𝜏) = 𝐔 (7.61)

̂𝐗(𝜏) = 𝚺𝐕T
(7.62)

̂𝐀(𝜏) = 𝚺𝐕T𝐃1𝐕(𝐕T𝐃2𝐕)−1𝚺−1
(7.63)

̂𝐐(𝜏) = 1
𝜏

𝜏∑

t=1
�̂�(t)�̂�T (t), (7.64)

where𝐘𝜏 = 𝐔𝚺𝐕T
is the SVD of𝐘𝜏

.𝐃1 =
[

0 0
𝐈
𝜏−1 0

]
and𝐃2 =

[
𝐈
𝜏−1 0
0 0

]
. �̂�(t) = �̂�(t +

1) − ̂𝐀(𝜏)�̂�(t).
Given video pairs 𝐕1 and 𝐕2, their model parameters M1 and M2 are first esti-

mated, respectively. Then the distance between two ARMA models is calculated by

dM(M1,M2)2 = ln
n∏

i=1

1
cos2 𝜃i

(7.65)

dg(M1,M2) = sin 𝜃max (7.66)

df (M1,M2)2 = 2
n∑

i=1
sin2 𝜃i, (7.67)

where dM(M1,M2) is the Martin distance, dg(M1,M2) is the gap distance and df (M1,M2)
is the distance based on Frobenius norm. 𝜃i’s are the subspace angles between M1
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and M2 (see [13] for more details). Different distances can be chosen for different

scenarios or fused together to improve the performance.

Turaga [37] also considered videos as ARMA models and treated each video as

a point on the Grassmann manifold for recognition.

7.7 Conclusion and Future Directions

As we saw in this chapter, most of the modeling approaches for video-based face

recognition focus on how to define the similarity scores (or the “distances”) between

videos. Sparse coding-based methods model videos as dictionaries and use recon-

struction error as the similarity score. Manifold-based methods use special kernels

between manifolds as the similarity. Probabilistic methods are more flexible. The

similarity scores can be the KL divergence between distributions, or the expected

distance under some certain distributions. Dynamical model-based methods con-

sider videos as dynamical systems. The similarity scores are the distance between

two systems on a certain manifold. Geometrical model-based methods are slightly

different from the others since their main objective is to construct geometrical mod-

els from videos and project texture maps onto them.

Since deep learning is becoming increasingly important recently, one of the future

directions for video-based face recognition will be the classic methods combined

with deep learning-based methods. The special statistical and geometrical properties

of deep features will lead to new modeling techniques. Another possible direction

would be to build 3D DCNN networks, where the convolutions are applied through

the time-axis as well, in order to capture the temporal information between consec-

utive frames. Also, thanks to the fast developments in deep learning-based detec-

tion and landmark extraction techniques, face detection and alignment are becoming

more and more precise, which can provide geometrical model-based methods with

improved performance.
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