
Cybersecurity for Industry 4.0 and Advanced
Manufacturing Environments with Ensemble
Intelligence

Lane Thames and Dirk Schaefer

Abstract Traditional cybersecurity architectures incorporate security mechanisms

that provide services such as confidentiality, authenticity, integrity, access control,

and non-repudiation. These mechanisms are used extensively to prevent computer

and network intrusions and attacks. For instance, access control services prevent

unauthorized access to cyber resources such as computers, networks, and data. How-

ever, the modern Internet security landscape is characterized by attacks that are

voluminous, constantly evolving, extremely fast, persistent, and highly sophisticated

Schnackenberg et al. (2000), Anuar et al. (2010). These characteristics impose signif-

icant challenges on preventive security services. Consequently, methodologies that

enable autonomic detection and response to cyberattacks should be employed syner-

gistically with prevention techniques in order to achieve effective defense-in-depth

strategies and robust cybersecurity systems. This is especially true for the critical

systems belonging to Industry 4.0 systems. In this chapter, we describe how we

have integrated cyberattack detection and response mechanisms into our Software-

Defined Cloud Manufacturing architecture. The cyberattack detection algorithm

described in this chapter is based on ensemble intelligence with neural networks

whose outputs are fed into a neuro-evolved neural network oracle. The oracle pro-

duces an optimized classification output that is used to provide feedback to active

attack response mechanisms within our software-defined cloud manufacturing sys-

tem. The underlying goal of this chapter is to show how computational intelligence

approaches can be used to defend critical Industry 4.0 systems as well as other

Internet-driven systems.

L. Thames (✉)

Tripwire Inc., Atlanta, GA, USA

e-mail: lthames@tripwire.com

D. Schaefer

University of Bath, Bath, UK

e-mail: d.schaefer@bath.ac.uk

© Springer International Publishing AG 2017

L. Thames and D. Schaefer (eds.), Cybersecurity for Industry 4.0,

Springer Series in Advanced Manufacturing, DOI 10.1007/978-3-319-50660-9_10

243



244 L. Thames and D. Schaefer

1 Cyberattack Detection: Methodologies and Algorithms

Traditional cybersecurity architectures incorporate security mechanisms that pro-

vide services such as confidentiality, authenticity, integrity, access control, and non-

repudiation. These services are used extensively to prevent computer and network

intrusions and attacks. For instance, access control services prevent unauthorized

access to cyber resources such as computers, networks, and data. However, the mod-

ern Internet security landscape is characterized by attacks that are voluminous, con-

stantly evolving, extremely fast, persistent, and highly sophisticated Schnackenberg

et al. (2000), Anuar et al. (2010). These characteristics impose significant challenges

on preventive security services. Consequently, methodologies that enable autonomic

detection and response to cyberattacks should be employed synergistically with

prevention techniques in order to achieve effective defense-in-depth strategies and

robust cybersecurity systems Iheagwara et al. (2006), Kabiri and Ghorbani (2005),

Ruighaver (2008).

Cyberattack detection systems require algorithms that collect and analyze data

generated by various events occurring within a cyber environment. The objective

of a detection algorithm is to accurately discover suspicious activities based on the

analysis of event data. This objective is fundamentally important as it forms the core

of any attack detection system. However, the objective is hard to achieve, especially

in terms of accuracy. A detection algorithm that generates inaccurate results can

negatively impact the performance of the entire system. Axelsson (2000) claims that

the performance of an intrusion detection system, in terms of effectiveness, is lim-

ited by its false alarm rate. This performance limit is a consequence of the base-
rate fallacy. For example, inaccurate detection algorithms generate large volumes of

false alarms, which can lead to issues such as collateral damage, unnoticed detec-

tion of live attacks or intrusions, and unmanageable numbers of alarm notifications

that overwhelm security administrators. Consequently, research has explored new

algorithms and methodologies aiming to increase the performance and accuracy of

detection systems Axelsson (2000), Ghorbani et al. (2010), Anderson (1980), Zhang

et al. (2008), Khor et al. (2009).

The study of computational intelligence systems (CIS) is concerned with the the-

ory and design of evolutionary and adaptive systems that possess emergent behav-

ior and intelligent decision making capabilities and that operate within complex

and dynamic environments Venayagamoorthy (2011). These systems are generally

designed to cope with high dimensional and noisy data during their decision making

processes. Since cyberattack detection systems are faced with large volumes of high

dimensional data along with continuously evolving attack characteristics, computa-

tional intelligence systems have become logical choices to consider when designing

new classification algorithms for detection systems.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 245

A computational intelligence algorithm based on new hybridization and ensemble

methodologies is presented in this chapter. The algorithms are constructed as gen-

eralized systems with no underlying domain-specific assumptions influencing the

design. However, the systems are evaluated as classification frameworks for cyber-

attack and intrusion detection. Before introducing the core detection algorithm, we

will first describe how we have integrated the detection system into our software-

defined cloud manufacturing architecture. Then, we will provide the reader with a

brief overview of neural networks and genetic algorithms. Next, we will describe our

ensemble intelligence algorithm and provide details of how we evaluated its perfor-

mance.

2 Cyberattack Detection and Response Within the
Software-Defined Cloud Manufacturing Architecture

We introduced our software-defined cloud manufacturing (SDCM) architecture in

Chap. 1. The goal of Chap. 1 was to introduce the reader to a broad array of technolo-

gies and paradigms based on the Industry 4.0 vision. The reader should refer back to

Chap. 1 for specific details underlying SDCM. In this chapter, we show at a high level

how we’ve incorporated real-time cyberattack detection and response to SDCM. We

illustrate the system with Fig. 1. Recall from Chap. 1 that within the SDCM architec-

ture all communications are managed by control elements (CE). SDCM control ele-

ments are highly distributed controllers deployed within the cloud. CEs are respon-

sible for interconnecting SDCM entities, whether it is a cloud consumer using an

application at the virtual layer that must interact with a hardware device or even if it

Fig. 1 Software-defined cloud manufacturing architecture with an ensemble intelligence frame-

work for cyberattack detection and response

http://dx.doi.org/10.1007/978-3-319-50660-9_1
http://dx.doi.org/10.1007/978-3-319-50660-9_1
http://dx.doi.org/10.1007/978-3-319-50660-9_1
http://dx.doi.org/10.1007/978-3-319-50660-9_1


246 L. Thames and D. Schaefer

is multiple hardware devices needing to communicate with each other. Control ele-

ments can also communicate with each other to perform their tasks. Essentially, the

intelligence of a SDCM system lies within the control layer. The elements of the vir-

tual layer and distributed hardware layer are responsible for getting real design and

manufacturing work accomplished. Since the control elements have deep insight into

the activities and communications that are taking place, it is logical to use the con-

trol elements as data tap points. In our architecture, control elements act as sensors

that feed streaming data into the Ensemble Intelligence Framework (EIF). The EIF

is responsible for analyzing the sensed data and, when anomalies are detected, it is

responsible for responding to the detected anomalies. We use the word anomaly here

to reflect that the EIF can be used for other intelligence activities other than cyberat-

tack detection. For example, this could be an intelligent system dedicated to predic-

tive maintenance tasks. However, we are using it here for the purpose of cyberattack

detection and response. As the figure illustrates, any number of detection engines can

be employed as well as any number of response engines. Response mechanisms can

include real-time communication connection termination, installation of new rules

in perimeter firewalls, etc. Essentially, response in this context is anything the SDCM

system employs for protecting its critical assets from an observed cyberattack.

We have described above at a high level how we have integrated real-time cyber-

attack detection and response to SDCM via the incorporation of an ensemble intelli-

gence framework. The goal of this chapter is not to go into an in-depth discussion of

the framework but instead to describe one possible algorithm that can be used as a

detection engine in the framework. In particular, we will describe in the next few sec-

tions a neural network ensemble system that utilizes a neuro-evolved network oracle

that can be used for analyzing streaming inputs collected by SDCM control elements

for the purpose of detecting cyberattacks.

3 Neural Networks and Genetic Algorithms

In this section, we will provide an overview of neural networks and genetic algo-

rithms and how we have used genetic algorithms to produced neuro-evolved neural

networks that are capable of very good classification results.

3.1 Neural Networks

The underlying theory of Artificial Neural Networks (ANN or just network if no con-

fusion arises) was originally inspired by biological processes. Specifically, ANNs are

modeled after the human central nervous system, which consists of a very sophisti-

cated interconnection of neurons and their associated axons, dendrites, and synapses.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 247

Fig. 2 A conceptual diagram of the neural unit

At the core of an ANN is the neural unit (NU) as shown in Fig. 2. The ANN is created

by interconnecting many neural units across several layers to form a highly connected

neural network. An NU takes as its input a vector x = (x1, x2,… , xn). Associated with

each input connection xi is a synaptic weight wi, and these weights form the weight

vector w. The output of an NU represents its activation level for a particular set of

inputs where the output is denoted by u = T(z). T(z) is the transfer function of the

NU (sometimes T is referred to as the activation function). Several forms exist for

the transfer function. In this chapter, will only consider three types, which are given

by Eqs. 1, 2, and 3. Equation 1 is the logistic sigmoidal function or the logsig func-

tion, Eq. 2 is the hyperbolic tangent sigmoidal function or the tansig function, and

Eq. 3 is the linear function or purelin function.

T(z) = 1
1 + e−z (1)

T(z) = e2z − 1
e2z + 1

(2)

T(z) = z (3)

The transfer function’s input, z, is the dot product of the input vector with the weight

vector as shown by Eq. 4.

z =
n∑

i=1
wixi (4)



248 L. Thames and D. Schaefer

Networks are created by interconnecting neural units to other neural units formed by

one or more hidden layers, where each layer has some prescribed number of units.

Networks learn how to map values in the input space to values in the output space via

training, and training is provided by a learning algorithm, of which many different

forms exist. Common types of ANN learning algorithms are based on the gradient

decent algorithm. The basic idea is as follows. Training data is provided to the ANN

in the form of (x, f (x)) tuples where x is the input data and f (x) is the target function.

The learning stage takes the training tuple and sends the input value(s) into the ANN.

Then, the output fa(x) is compared to the target value and an error is calculated. This

error is used to evolve the weights such that over time (training epochs) the error of

the ANN is minimized to some preferably global but possibly local minimum error.

For our work, we utilized networks based on the back-propagation algorithm, whose

weight update rule is given by Eq. 5.

wi(t + 1) = wi(t) + 𝛼[f (xi) − fa(xi)]xi (5)

During training, each weight vector component for each NU in the ANN is updated

similar to Eq. 5. As seen in Eq. 5, as the approximation function approaches the actual

function over increasing training epochs, the change in weight value wi approaches

zero such that at convergence wi(t + 1) ≈ wi(t). The value 𝛼 represents the learning

rate, and this value determines how fast the weights evolve. Figure 3 will be used

to further illustrate the weight training process. In this example, a single neuron is

simulated that is initiated with a weight vector consisting of a randomly generated

set of 1000 values. A single target vector with 1000 elements is used as the training

data. The algorithm employs a constant learning rate of 𝛼 = 0.5. Figure 3 plots the

target vector versus the weight vector as the training epoch is increased from t = 0 to

t = 80. The emergence of a straight line indicates how the weight vector successfully

converges towards the target vector with increasing training epochs.

The performance of an ANN is sensitive to the selection of parameters that define

its overall configuration. These parameters include, just to name a few, the type of

transfer function to use in each layer, the total number of layers, the total number of

units per layer, the learning rate’s value, the type of training algorithm to use, and the

number of training epochs to use. Furthermore, these parameters are not generalized

to any given network, and in many cases, they depend on the underlying data’s input-

output space. If an experienced network designer has a good understanding of the

input-output space, then the designer’s domain knowledge and expertise allows her

to select respectable parameter values. However, this is normally a trial-and-error

process even for experienced designers. Further, the problem is more challenging

when working with high-dimensional input-output spaces where underlying patterns

that drive the selection of parameters are not known. Hence, methods for automated

selection of optimized parameters using other computational optimizations sounds

promising. In particular, we will investigate the use of genetic algorithms for select-

ing optimal network parameters.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 249

0 0.5 1
0

0.5

1
W

i

Ti

Weights versus Targets at t = 0

0 0.5 1
0

0.5

1

W
i

Ti

Weights versus Targets at t = 10

0 0.5 1
0

0.5

1

W
i

Ti

Weights versus Targets at t = 20

0 0.5 1
0

0.5

1

W
i

Ti

Weights versus Targets at t = 30

0 0.5 1
0

0.5

1
W

i

Ti

Weights versus Targets at t = 40

0 0.5 1
0

0.5

1

W
i

Ti

Weights versus Targets at t = 50

0 0.5 1
0

0.5

1

W
i

Ti

Weights versus Targets at t = 60

0 0.5 1
0

0.5

1

W
i

Ti

Weights versus Targets at t = 70

0 0.5 1
0

0.5

1

W
i

Ti

Weights versus Targets at t = 80

Fig. 3 Learning weights

3.2 Genetic Algorithms

The creation of genetic algorithms (GAs) was inspired by the biological evolutionary

process. The primary inspiration is due to the fact that biological systems can adapt

over time (evolve) within changing environments. Further, this adaptation can prop-

agate through successor generations within the biological system. This adaptation-

propagation scheme leads to the idea of survival of the fittest individuals that can

adapt well to changing environments have a higher probability of survival.

The primary operations performed by GA include chromosome representation,

genetic selection, genetic crossover, genetic mutation, and population fitness evalu-

ation. In GAs, problem domains are encoded via chromosomes in a population P(t).
This chromosome encoding is usually in the form of a bit string or some numerical

representation, i.e., one is required to map population members to a binary or numer-

ical form. The population represents a particular state space of hypotheses at evolu-



250 L. Thames and D. Schaefer

tion time epoch t, where a hypothesis is a possible solution to a given problem. At

each time epoch, the fitness of each individual of the population is evaluated. The fit-

ness is evaluated with a fitness function F(hi) where hi is the hypothesis represented

by the ith member (chromosome) of the population and the fitness F represents how

well a particular hypothesis represents the solution of the given problem.

In general, the GA’s fitness function must be an increasing function with respect

to a candidate hypothesis’s response to the problem such that good solutions have

higher fitness and poor solutions have low fitness. F is computed for each member,

and the next population P(t + 1) is created by probabilistically selecting the most fit

members of the current population. Some of the members will be part of P(t + 1) in

their current form, and some are selected for genetic modifications such as crossover

and mutation. Crossover produces offspring from two parents whereas mutation is

the act of randomly modifying the encoding features of a selected set of individuals.

There are two important design issues when using a GA. First, one must define a

mapping from the input-output space of the problem into an encoding that can be

used by the GA, i.e., a binary or numerical mapping. Second, one must design a

fitness function for the problem domain. The power of the GA is in its ability to

encode a very large set of possible solution spaces for a given problem. They are

often used successfully for optimization problems, but they have also been used for

function approximation, complex circuit layout, and scheduling. They are also used

in neuroevolution to evolve neural networks. In this work, the GA will be used to

optimize a certain set of ANN design parameters.

4 Cyberattack Detection with Ensembles of Computational
Intelligence Systems

The performance of an artificial neural network is sensitive to the selection of para-

meters that define its overall configuration. Some of these parameters include the

transfer function used within each layer, the total number of layers, the total num-

ber of units per layer, the learning rate, the training algorithm, and the number of

training epochs to use. Furthermore, these parameters are not generalized to any

given network and depend on characteristics of the classification data. Appropriate

selection of neural network parameters is typically a trial-and-error process whereby

the designer seeks the set of parameters that minimize classification error produced

by the network. Optimization algorithms that autonomically tune the parameters of

artificial neural networks can alleviate the trial-and-error parameter selection process

and can lead to neural networks with better classification accuracy.

In this section, a classification algorithm for attack detection based on ensembles

of neural networks is described. The novelty of the algorithm stems from the method-

ology employed for combining outputs of neural network ensembles. Particularly, a

neural network oracle is utilized to combine the ensemble outputs. The neural net-



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 251

work oracle is constructed with a genetic algorithm that finds a set of configuration

parameters that produce high classification accuracy and low classification error.

4.1 The NNO Classification Algorithm

The proposed algorithm referred to as NNO employs a genetic algorithm to find an

optimal selection of configuration parameters for a neural network oracle, which is

responsible for combining the outputs of an ensemble of neural networks that classify

features belonging to audit data for the cyberattack detection problem. The overall

idea is illustrated by Fig. 4 and described as follows.

A set of artificial neural networks 𝜂 = {𝜂i} is assigned to features of the collection

of labeled audit data that describe a classification domain. The collection of ANNs

are trained with standard procedures. Once the collection has been trained, the train-

ing data is used to generate a secondary set of training data. The secondary set of

training data contains the output of each ANN along with the actual output defined

by the baseline training data. The secondary training data is then used to train the

neural network oracle. However, the oracle uses a genetic algorithm to find the set

of configuration parameters that minimizes its error.

The algorithm consists of two primary phases. During phase 1, a GA is con-

structed that contains a population of chromosomes that are numerical representa-

tions of ANN configuration parameters. At each evolution time epoch, t, the chro-

mosome for each population member is submitted to the ANN. The ANN maps the

chromosome’s numerical values to their respective parameter types, implements a

self-configuration based on these values, and then learns from a training set. Once the

Fig. 4 Architectural illustration of the NNO algorithm



252 L. Thames and D. Schaefer

ANN has been trained, a set of labeled validation data from the input-output space is

used to evaluate the ANN’s post-training error response. This error response is then

used to evaluate the fitness of the population member whose chromosome was sub-

mitted to the ANN for configuration and training. Since the goal is to find an ANN

with minimal error, the error response, which is given by Eq. 6, is used as input to

the fitness function of the genetic algorithm.

Ei =

√√√√
N∑

j=1

(
f (xj) − fa(xj)

)2
(6)

In Eq. 6, Ei is the error of the ANN configured and trained based on the chromo-

some hi of the ith population member. f (x) is the value of the target function for input

x, whereas fa(x) is the approximation of f (x) produced by the ANN. The error is cal-

culated over a total of N evaluations from a validation dataset. The fitness function

for the system is given by Eq. 7.

F(hi;Ei) =
1
Ei

(7)

The fitness function is inversely proportional to the error of the ANN configured

by parameters represented by the ith chromosome (i.e., the ith hypothesis hi) of the

GA’s population. With the fitness function of Eq. 7, a decrease in error produced by

an ANN configured via hi produces an increase in fitness, which is the underlying

objective of the algorithm.

The steps described above are performed for each member of the GA’s population.

Once each member in the population has been evaluated for fitness, the GA performs

selection, crossover, and mutation operations and then proceeds to the next evolution

epoch, t + 1. This entire process proceeds until the evolution process terminates.

During phase 2, which proceeds after the simulated evolution process terminates,

the GA submits the chromosome from the terminal population’s best fit individual

to the ANN. The ANN uses this chromosome to configure its parameters and then

trains from a set of phase-2 training data. Once this training is complete, the system

is ready to be deployed for its target application.

5 Datasets and Performance Metrics for Evaluating
Cyberattack Detection Systems

Appropriate datasets for training and testing classification algorithms along with

reliable metrics to evaluate classification performance are needed for the design

of effective cyberattack detection systems. This section discusses the datasets and

performance metrics used to evaluate the classification algorithms proposed in this

chapter.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 253

5.1 Datasets

Datasets containing relevant features that characterize cyberattacks are needed for

the design, evaluation, and comparative analysis of new classification algorithms for

attack detection systems. However, datasets and testing environments for evaluating

attack detection systems are rare Athanasiades et al. (2003). Of the few datasets pub-

licly available, the ones most frequently used by researchers were produced by the

DARPA intrusion detection evaluation program Tavallaee et al. (2010). The objec-

tive of the DARPA intrusion detection evaluation program was to produce a collec-

tion of standardized datasets that could be used to formally evaluate and objectively

compare the performance of intrusion detection systems Lippmann et al. (2000).

The datasets have played a critical role in the advancement of intrusion detection

systems along with the development of new attack detection and classification algo-

rithms. The DARPA datasets were collected at MIT Lincoln Laboratories during the

years 1998, 1999, and 2000. These datasets contain various types of audit data with

features representing normal and attack traffic.

The KDD CUP99 dataset, which was used as a benchmark for the Third Interna-

tional Knowledge Discovery and Data (KDD) Mining Tools Competition, is fre-

quently used to evaluate intrusion and attack detection algorithms. The CUP99

dataset is a derivative of the 1998 DARPA dataset (DARPA98). DARPA98 contains

audit data generated by simulated background traffic representing normal packet

flows between a military network and the Internet along with traffic representing

attack packet flows.

The CUP99 data are viewed as sequences of connection records representing

unique packet flows. A flow can be defined, similar to the packet filters of a fire-

wall, by specifying a matching criteria over some set of header fields. The canonical

flow is specified by a 5-tuple containing source IP address, destination IP address,

source port, destination port, and protocol type. The records are classified by two

types of flows: attack flows or normal flows. The attack flows are further categorized

by 24 unique attack types.

Each record of the CUP99 dataset contains 42 fields. One field provides a label

specifying the record’s flow type, i.e., normal or attack type. The remaining 41 fields

are comprised of features representing data extracted from the flow. The features are

categorized as basic TCP features, content features, network-based traffic features,

and host-based traffic features. The features are encoded numerically or symbolically.

The goal of the KDD competition was to use the CUP99 dataset as a benchmark for

evaluating attack classification algorithms produced by the various competitors of

the KDD mining tools competition.

The DARPA and CUP99 datasets are out of date. Further, these datasets have

been criticized by several whose investigations have discovered various limitations

and deficiencies of the data McHugh (2000), Tavallaee et al. (2009). However, the

datasets remain widely used for testing and evaluation of attack detection and clas-

sification algorithms because there are no suitable alternatives currently available

Perdisci et al. (2009), Engen (2010).



254 L. Thames and D. Schaefer

In this chapter, classification algorithms for the cyberattack detection problem are

introduced. Each algorithm was evaluated with the CUP99 dataset. Particularly, the

well-known 10% CUP99 dataset was employed.

5.2 Performance Metrics

The accuracy of a classification algorithm is a key performance indicator that deter-

mines the algorithm’s suitability for solving a particular problem. However, other

performance indicators are commonly measured in conjunction with accuracy. For

example, true positive rates and true negative rates measure a classifier’s capability

to correctly distinguish positive cases from negative cases. Classification problems

based on two-class decision spaces can use positive and negative rates as perfor-

mance measures. However, the positive and negative classes must be defined when

designing the classifier. Many researchers who design algorithms for intrusion and

attack detection problems define attack instances as the positive class and normal

instances as the negative class. This is especially true for classifiers implementing

anomaly detection. Anomaly detection is based on audit data that represents nor-

mal instances and instances deviating from the characteristics underlying the audit

data are assumed to be anomalous and, by definition, indicative of an attack. Devi-

ations indicate ‘positively’ that the instance is an anomaly. Hence, classification of

an anomaly is defined to be positive whereas classification of a normal instance is

defined to be negative, i.e., not anomaly.

The new classification algorithms proposed in this chapter for the attack detection

problem were trained and tested with the CUP99 dataset. CUP99 contains records

representing audit data that characterize both normal instances (normal traffic flows)

and attack instances (attack traffic flows). Moreover, the dataset is comprised of a

multiplicity of attack types. Consequently, CUP99 can be used to evaluate detection

systems based on two-class or multi-class classification algorithms. The algorithms

proposed in this chapter are designed as two-class classification systems.

Since CUP99 contains audit data characterizing normal and attack instances, sev-

eral design scenarios can be considered. The data can be partitioned into normal

classes for the design of anomaly detection, into attack classes for misuse detection,

or the data can remain un-partitioned for mixed detection. The classification algo-

rithms presented in this chapter were trained and tested as two-class mixed detection

(non-partitioned) methodologies.

The mixed detection approach with two-class (binary) classification enables two

perspectives for defining the positive and negative classes. These perspectives are

illustrated by Table 1. The perspective defining the normal class to be positive and

the attack class to be negative was chosen for the work described in this chapter.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 255

Table 1 Perspectives of the positive and negative classes for mixed detection binary classification

Positive Negative

Normal Attack (NOT normal)

Attack Normal (NOT attack)

Table 2 Basis parameters of the performance metrics defined in Table 3

Symbol Description

TP Total number of true positives

TN Total number of true negatives

FP Total number of false positives

FN Total number of false negatives

Table 3 Definitions and nomenclature of the performance metrics used to evaluate the proposed

classification algorithms

Name Symbol Calculation

Accuracy ACC ACC = TP+TN
TP+TN+FP+FN

Positive prediction rate PPR PPR = TP
TP+FP

Negative prediction rate NPR NPR = TN
TN+FN

False discovery rate FDR FDR = FP
TP+FP

False positive rate FPR FPR = FP
TN+FP

False negative rate FNR FNR = FN
TP+FN

Several metrics are commonly used when evaluating the performance of classi-

fication algorithms. Classification accuracy is a key performance indicator of clas-

sification systems. However, accuracy measurements alone do not provide complete

information for comparative analysis and optimization purposes. Other key perfor-

mance indicators include metrics such as error rates, true/false positive/negative

rates, and predictive rates.

Evaluations of the new algorithms introduced in this chapter where made with the

basis parameters shown in Table 2 and the performance metrics shown in Table 3.

5.3 NNO Ensemble Intelligence: Simulation Results

The NNO ensemble methodology investigated for the cyberattack detection prob-

lem used a neural network oracle parametrically optimized with genetic algorithms

as described above. Although several parameters can be considered for the optimal

response of the NNO, the evaluations described in this section were based on an



256 L. Thames and D. Schaefer

NNO configured with two hidden layers of nodes. The optimal parameters that were

determined with the genetic algorithm included the number of neural units (nodes)

to use for the first and second hidden layers, the type of transfer functions to use in

the hidden layers, and the type of transfer function to use for the output layer.

The CUP99 dataset was used to evaluate the performance of the proposed sys-

tem. An ensemble of 41 neural networks was created. Each feature of the CUP99

dataset was assigned to a single member of the ensemble. A subset of the CUP99

dataset was extracted for training. Each neural network was trained with respect to

its corresponding feature. After the ensemble components were trained, a secondary

training set was produced by collecting the output of each neural network in the

ensemble over the phase-1 testing data and augmenting these outputs with the target

class associated with each corresponding training vector. This secondary set of train-

ing data was then used to train the NNO. The NNO was parametrically optimized

with a genetic algorithm as described above. Once the genetic algorithm converged

to a best fit candidate representing the configuration parameters that minimized the

NNO’s error response with respect to the training data, the NNO was configured and

trained via these parameters.

The simulation methodology is described as follows. The CUP99 dataset was par-

titioned into two disjoint sets comprising training data and testing data. The train-

ing procedure was described above. For evaluation, testing proceeded as follows. A

total of 500 trials was performed. For each trial, a random selection of records were

50 100 150 200 250 300 350 400 450 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Simulation Epoch

Fig. 5 Accuracies of the individual ensemble members and the neural network oracle over the 500

trials



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 257

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index

A
ve

ra
ge

 A
cc

ur
ac

y
Average Accuracy over 500 Trials for Ensemble, NNO, and WMV

Ensemble
   y min
   y max
   y mean
NNO
WMV

Fig. 6 Bar chart revealing the average accuracies produced over the 500 trials

selected from the test data, and performance metrics of the algorithm were computed

and stored as average values. Moreover, the performance of the proposed algorithm

was compared to that of the weighted majority vote (WMV) algorithm.

Figure 5 plots the average accuracy over 500 trials for each of the 41 neural net-

works of the ensemble along with the accuracy of the NNO. The accuracy of the

NNO is highlighted by the thick black line towards the top of the figure. Two things

should be noted from Fig. 5. First, the range of accuracies reveals that the system

has diversity, which is a fundamental requirement for the design of ensemble sys-

tems. The accuracies indicate that some of the networks are poor classifiers, some

are decent classifiers, and some are good classifiers. Second, the NNO performs con-

sistently better than any given member of the ensemble.

Figure 6 provides a bar chart showing the average of the accuracies produced

over the 500 trials for each neural network of the ensemble along with the NNO and

WMV. As seen from the figure, the NNO outperforms each of the ensemble members

as well as the WMV algorithm.



258 L. Thames and D. Schaefer

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

Accuracy

Fr
eq

ue
nc

y
Frequency Distribution of NN1-NN13

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

Accuracy

Fr
eq

ue
nc

y

Frequency Distribution of NN14-NN27

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

Accuracy

Fr
eq

ue
nc

y

Frequency Distribution of NN28-NN41

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

Accuracy

Fr
eq

ue
nc

y

Frequency Distribution of NNO 
versus WMV

NNO
WMV

Fig. 7 Frequency distribution of the accuracies for each system over 500 simulation trials

The frequency distributions of the various metrics calculated over the 500 trials

for the ensemble components, the NNO method, and the WMV method were gen-

erated in order to provide a finer-grained perspective of the performance of each

system. A bin width of 0.01 was used to calculate the frequency distributions. Each

of the following figures provide metrics for ensemble members, NNO, and WMV.

The ensemble results are provided for completeness and for illustrating diversity of

the system. However, comparing the performance of NNO versus WMV is the main

objective.

Figure 7 plots the frequency distributions for classification accuracies. As seen

by the lower right plot, NNO has better accuracy than WMV. Figure 8 plots the fre-

quency distributions for positive prediction rates (PPR) for each classification algo-

rithm. PPR measures how well a classification algorithm predicts the positive class

correctly. As seen in the figure, NNO has a better PPR than WMV.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 259

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

PPR

Fr
eq

ue
nc

y
Frequency Distribution of NN1-NN13

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

PPR

Fr
eq

ue
nc

y

Frequency Distribution of NN14-NN27

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

PPR

Fr
eq

ue
nc

y

Frequency Distribution of NN28-NN41

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

PPR

Fr
eq

ue
nc

y

Frequency Distribution of 
NNO versus WMV

NNO
WMV

Fig. 8 Frequency distribution of the PPR for each system over 500 simulation trials

Figure 9 plots the negative prediction rate (NPR) of the algorithms. NPR mea-

sures how well a classification algorithm correctly classifies negative instances. For

NPR, NNO and WMV both perform well and similarly. Figure 10 provides the false

discovery rates (FDR) produced by the simulations for the classification algorithms.

FDR should be small for good classification algorithms. As seen in the figure, NNO

has better FDR performance than WMV.

Figures 11 and 12 plot the frequency distributions for the false positive rates (FPR)

and false negative rates (FNR), respectively. Similar to FDR, a good classification

algorithm should have small FPR and FNR. As seen in Fig. 11, NNO has better FPR

performance than WMV. However, NNO and WMV perform comparably for FNR.



260 L. Thames and D. Schaefer

0.4 0.6 0.8 1
0

50

100

150

200

NPR

Fr
eq

ue
nc

y
Frequency Distribution of NN1-NN13

0.4 0.6 0.8 1
0

50

100

150

200

NPR

Fr
eq

ue
nc

y

Frequency Distribution of NN14-NN27

0.4 0.6 0.8 1
0

50

100

150

200

NPR

Fr
eq

ue
nc

y

Frequency Distribution of NN28-NN41

0.4 0.6 0.8 1
0

50

100

150

200

NPR

Fr
eq

ue
nc

y

Frequency Distribution of 
NNO versus WMV

NNO
WMV

Fig. 9 Frequency distribution of the NPR for each system over 500 simulation trials

Based on the results obtained from simulations along with analysis of its per-

formance metrics, the proposed ensemble methodology using a parametrically opti-

mized neural network oracle provides good performance as a classification system

for the cyberattack detection problem.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 261

0 0.2 0.4 0.6
0

50

100

150

200

FDR

Fr
eq

ue
nc

y
Frequency Distribution of NN1-NN13

0 0.2 0.4 0.6
0

20

40

60

80

100

120

140

FDR

Fr
eq

ue
nc

y

Frequency Distribution of NN14-NN27

0 0.2 0.4 0.6
0

50

100

150

FDR

Fr
eq

ue
nc

y

Frequency Distribution of NN28-NN41

0 0.2 0.4 0.6
0

50

100

150

200

FDR

Fr
eq

ue
nc

y

Frequency Distribution of 
NNO versus WMV

NNO
WMV

Fig. 10 Frequency distribution of the FDR for each system over 500 simulation trials

6 Summary

In this chapter, an algorithm for cyberattack detection for Internet-based systems

such as Industry 4.0 systems was introduced. The algorithm, referred to as NNO, is

based on an ensemble of neural networks along with a neural network oracle that has

its configuration parameters optimized by genetic algorithms using a fitness function

evaluated with neural network error responses. The performance evaluation of the



262 L. Thames and D. Schaefer

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

FPR

Fr
eq

ue
nc

y
Frequency Distribution of NN1-NN13

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

FPR

Fr
eq

ue
nc

y

Frequency Distribution of NN14-NN27

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

FPR

Fr
eq

ue
nc

y

Frequency Distribution of NN28-NN41

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

FPR

Fr
eq

ue
nc

y

Frequency Distribution of 
NNO versus WMV

NNO
WMV

Fig. 11 Frequency distribution of the FPR for each system over 500 simulation trials

proposed algorithm was based on the CUP99 intrusion detection dataset. Accord-

ing to the simulation results obtained, the algorithm was shown to provide good

classification performance when trained and tested with the CUP99 intrusion detec-

tion dataset. The algorithm can be used to successfully detect cyberattacks targeting

Industry 4.0 systems and can be coupled with active response mechanisms in order

to stop real cyberattacks.



Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 263

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

FNR

Fr
eq

ue
nc

y
Frequency Distribution of NN1-NN13

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

FNR

Fr
eq

ue
nc

y

Frequency Distribution of NN14-NN27

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

FNR

Fr
eq

ue
nc

y

Frequency Distribution of NN28-NN41

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

FNR

Fr
eq

ue
nc

y

Frequency Distribution of 
NNO versus WMV

NNO
WMV

Fig. 12 Frequency distribution of the FNR for each system over 500 simulation trials

References

Anderson J (1980) Computer security threat monitoring and surveillance

Anuar NB, Papadaki M, Furnell S, Clarke N (2010) An investigation and survey of response options

for intrusion response systems (IRSs). In: Information security for south africa (ISSA)

Athanasiades N, Abler R, Levine J, Owen H, Riley G (2003) Intrusion detection testing and bench-

marking methodologies. In: Proceedings of the first IEEE international workshop on information

assurance (IWIA’03)

Axelsson S (2000) Intrusion detection systems: a survey and taxonomy. Technical Report, Depart-

ment of Computer Engineering, Chalmers University of Technology

Axelsson S (2000) The base-rate fallacy and the difficulty of intrusion detection. ACM Trans Inf

Syst Secur 3(3):186–205

Engen V (2010) Machine learning for network based intrusion detection. PhD Thesis, Bournemouth

University

Ghorbani AA, Lu W, Tavallaee M (2010) Detection approaches. Springer, J Network Intrusion

Detection and Prevention

Hatch M (2014) The maker movement manifesto, McGraw-Hill Education. ISBN 10:0071821120

Iheagwara C, Awan F, Acar Y, Miller C (2006) Maximizing the benefits of intrusion prevention

systems: effective deployment strategies. In: Proceedings of the 18th annual forum of incident

response and security teams (FIRST) conference



264 L. Thames and D. Schaefer

Kabiri P, Ghorbani A (2005) Research on intrusion detection and response: a survey. Int J Netw

Secur 1(2):84–102

Khor KC, Ting CY, Amnuaisuk SP (2009) From feature selection to building of bayesian classifiers:

a network intrusion detection perspective. Am J Appl Sci 6(11):1949–1960

Knapp E, Langill J (2015) Industrial network security: securing critical infrastructure networks for

smart grid, SCADA, and other industriaal control systems, 2nd edn. ISBN 978-0-12-420114-9

Li BH, Zhang L, Wang SL, Tao F, Cao JW, Jiang XD et al. (2010) Cloud manufacturing: a new

service-oriented networked manufacturing model. Comput Integr Manuf Syst 16(1):1–7

Lippmann R, Haines J, Fried D, Korba J, Das K (2000) The 1999 DARPA off-line intrusion detec-

tion evaluation. Comput Netw 34(4):579–595

McHugh J (2000) Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA

intrusion detection system evaluations as performed by Lincoln laboratory. ACM Trans Inf Syst

Secur 3(4):262–294

NIST Special Publication 800-82 (2011) Guide to industrial control systems (ICS) security. http://

csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf

Open Networking Foundation (ONF) (2012) Software-defined networking: the new form for net-

works

Paul Brody (2013) Get ready for software-defined supply chain. Web: http://www.

supplychainquarterly.com/topics/Manufacturing/20140110-get-ready-for-the-software-

defined-supply-chain/

Perdisci R, Ariu D, Fogla P, Giacinto G, Lee W (2009) McPAD: A multiple classifier system for

accurate payload-based anomaly detection. Int J Comput Telecommun Netw 53(6):864–881

Peterson A, Schaefer D (2016) Social product development: introduction, overview, and current

status, In: Schaefer D (ed) Product development in the socio-sphere: game changing paradigms

for 21st century breakthrough product development and innovation. Springer pp 63–98. ISBN

978-3-319-07403-0

Ruighaver A (2008) Organisational security requirements: an agile approach to ubiquitous infor-

mation security. In: Proceedings of the sixth australian information security management con-

ference

Schaefer D, Thames JL, Wellman R, Wu D, Yim S, Rosen D (2012) Distributed collaborative design

and manufacture in the cloud motivation, infrastructure, and education. ASEE 2012 annual con-

ference and exposition, San Antonio, Texas, June pp 10–13

Schnackenberg D, Djahandari K, Sterne D (2000) Infrastructure for intrusion detection and

response. In: Proceedings of the 2000 DARPA information survivability conference and expo-

sition

Tavallaee M, Stakhanova N, Ghorbani A (2010) Toward credible evaluation of anomaly-based

intrusion-detection methods. IEEE Trans Syst Man Cybern Part C: Appl 40(5):516–524

Tavallaee M, Bagheri E, Lu W, Ghorbani A (2009) A detailed analysis of the KDD CUP 99 data

set. In: Proceedings of the second IEEE international conference on Computational intelligence

for security and defense applications, IEEE Press

Thames JL, Abler R, Hyder A, Wellman R, Schaefer D (2011) Architectures and design method-

ologies for scalable and sustainable remote laboratory infrastructures. In: Azad A, Judson (ed)

Internet accessible remote laboratories: scalable e-learning tools for engineering and science

disciplines. IGI Global Publishing, ISBN 978-1-61350-186-3, Chapter 13, pp 254–275

Thames JL (2014) Distributed, collaborative, and automated cyber security infrastructures for

cloud-based design and manufacturing systems. In: Schaefer D (ed) Cloud-based design and

manufacturing (CBDM): a service-oriented product development paradigm for the 21st century.

Springer, pp 207–229. ISBN 978-3-319-07398-9. doi:10.1007/978-3-319-07398-9_8

Venayagamoorthy G (2011) Dynamic, stochastic, computational, and scalable technologies for

smart grids. IEEE Comput Intell Mag 6(3):22–35

Wu D, Greer MJ, Rosen DW, Schaefer D (2013) Cloud manufacturing: strategic vision and state-

of-the-art. J Manuf Syst

http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf
http://www.supplychainquarterly.com/topics/Manufacturing/20140110-get-ready-for-the-software-defined-supply-chain/
http://www.supplychainquarterly.com/topics/Manufacturing/20140110-get-ready-for-the-software-defined-supply-chain/
http://www.supplychainquarterly.com/topics/Manufacturing/20140110-get-ready-for-the-software-defined-supply-chain/
http://dx.doi.org/10.1007/978-3-319-07398-9_8


Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments . . . 265

Wu D, Thames JL, Rosen D, Schaefer D (2012) Towards a cloud-based design and manufacturing

paradigm: looking backward, looking forward. ASME 2012 international design engineering

technical conference and computers and information in engineering conference (IDETC/CIE),

Chicago, Illinois, August pp 12–15

Wu D, Thames JL, Rosen D, Schaefer D (2013) Enhancing the product realization process with

cloud-based design and manufacturing systems. ASME J Comput Inf Sci Eng (JCISE) 13(4)

Xu X (2012) From cloud computing to cloud manufacturing. Rob Comput Integr Manuf 28(1):75–

86

Zhang J, Porras P, Ullrich J (2008) Gaussian process learning for cyber-attack early warning. In:

Proceedings of the SIAM international conference on data mining


	10 Cybersecurity for Industry 4.0 and Advanced Manufacturing Environments with Ensemble Intelligence
	1 Cyberattack Detection: Methodologies and Algorithms
	2 Cyberattack Detection and Response Within the Software-Defined Cloud Manufacturing Architecture
	3 Neural Networks and Genetic Algorithms
	3.1 Neural Networks
	3.2 Genetic Algorithms

	4 Cyberattack Detection with Ensembles of Computational Intelligence Systems
	4.1 The NNO Classification Algorithm

	5 Datasets and Performance Metrics for Evaluating Cyberattack Detection Systems
	5.1 Datasets
	5.2 Performance Metrics
	5.3 NNO Ensemble Intelligence: Simulation Results

	6 Summary
	References


