
Chapter 8
A Rapid Review of Some Elements
of Continuum Mechanics

“There are analogs of the energy-momentum tensor in branches of continuum
mechanics other than the theory of elasticity. Some of them might repay

investigation.”
J. D. Eshelby [103, Page 113]. His remarks foreshadow the use of the material

force C in one-dimensional continua.

8.1 Introduction

Our interest lies in the application of one-dimensional theories of matter to various
problems and the analysis of the resulting models. One central issue that arises at
the onset is the development of a suitable model from a wide range of possible
choices. Partially as a result of historical and pedagogical developments, it is often
not transparent how various beam, rod, and cable theories can be considered in the
context of continuum mechanics of three-dimensional continua. One of the goals of
this textbook is to make these connections transparent. Fortunately, we have plenty
of help and guidance from the literature to achieve this goal (see, e.g., [12, 137, 147,
243, 309]).

In this chapter, we review some needed background from continuum mechanics.
Most of the kinematics we cover are standard and can be found in many introductory
texts on continuum mechanics (such as Gurtin [147]). We supplement the kinemat-
ics with details on convected coordinates from a seminal textbook by Green and
Zerna [140]. These coordinates play a key role in deriving rod and string theories
from three-dimensional continuum mechanics and they also serve to illuminate the
role played by various stress tensors. We then turn to a discussion of the balance laws
and constitutive relations for the stress tensors. The chapter closes with a discussion
of superposed rigid body motions, constraints, and a material (configurational) force
balance. As discussed in Chapters 2, 4, and 5, the counterpart of the material force
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Fig. 8.1 The reference K0 and present K configurations of a body B.

balance for one-dimensional continua, such as strings and rods, plays a key role in
solving problems where a discontinuity is present in the motion and often yields a
useful conservation law in others.

8.2 Some Kinematical Results

Consider a body B and let K0 and K denote its reference and present configu-
rations, respectively (see Figure 8.1). Here, we define a body B to be a collection
of material points X . For the present purposes, this collection of material points is
fixed. The reference configuration occupies a fixed region of three-dimensional Eu-
clidean space E

3 and the position vector of a material point X in this configuration
is denoted by X = R∗. The position vector of the same material point in the subset
of E3 known as the present configuration K is denoted by x = r∗.

The motion of B is denoted by the vector-valued function

x = χ(X, t) . (8.1)

We also have the deformation gradient F of this motion:

F = Grad(χ) . (8.2)

This second-order tensor can also be viewed as a linear transformation of vectors
dX which are tangent to material curves in K0 to their counterparts dx in the present
configuration K :

dx = FdX. (8.3)
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We shall assume that F preserves orientation and is invertible:

J = det(F)> 0. (8.4)

The positiveness of J ensures that the motion is orientation preserving.
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Fig. 8.2 The curvilinear coordinate system that is used to identify material points in the reference
configuration.

8.2.1 Curvilinear Coordinates

Motivated by Green and Zerna [140], it is convenient to define a set of curvilinear
coordinates

{
θ i
}

which uniquely identify material points in K0. That is, we as-
sume that the curvilinear coordinates and their Cartesian counterparts are related by
invertible functions:

θ k = θ k (X1,X2,X3) , (8.5)

where Xi =X·Ei. It follows from this assumption that any function f = f (X1,X2,X3)
can be expressed as an equivalent function of the curvilinear coordinates: f =
f̂
(
θ 1,θ 2,θ 3

)
. In particular,

X = R∗ (θ 1,θ 2,θ 3)= R∗ (θ i) . (8.6)

A schematic of such a coordinate system and its coordinate curves is shown in
Figure 8.2. Where confusion may arise, we ornament quantities associated with
three-dimensional fields with an asterisk so as to distinguish them from their one-
dimensional counterparts: e.g., R(ξ ) and R∗ (θ 1,θ 2,θ 3

)
.

We define the covariant vectors associated with this coordinate system in K0:
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Fig. 8.3 Schematic of a θ 1 coordinate surface which is foliated by θ 2 and θ 3 coordinate curves.
The vector G1 is normal to the θ 1 coordinate surface, while the vectors G2 and G3 are tangent to
this surface.

Gi =
∂R∗

∂θ i =
∂X1

∂θ i E1 +
∂X2

∂θ i E2 +
∂X3

∂θ i E3. (8.7)

These vectors are tangent to their respective coordinate curves. For example, the
vector G2 is tangent to a θ 2 coordinate curve. We also define the three dual or
contravariant vectors Gk:

Gk = Grad
(

θ k
)
=

∂θ k

∂X1
E1 +

∂θ k

∂X2
E2 +

∂θ k

∂X3
E3. (8.8)

With the help of the chain rule, it is possible to show that

Gk ·Gi = δ k
i , (8.9)

where δ k
i is the Kronecker delta: δ 1

1 = δ 2
2 = δ 3

3 = 1 and δ 1
2 = δ 2

1 = δ 3
2 = . . .= 0. It

follows that Gk is normal to a θ k coordinate surface (see Figure 8.3). In addition,
solving the nine equations (8.9) for the nine components of the contravariant vectors,
we find the well-known results

G1 =
1√
G

G2 ×G3, G2 =
1√
G

G3 ×G1, G3 =
1√
G

G1 ×G2, (8.10)

where √
G = (G1 ×G2) ·G3. (8.11)

It follows from the expressions (8.10) that

1√
G

=
(
G1 ×G2) ·G3. (8.12)
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The set of vectors {G1,G2,G3} form a basis for E3 which is known as a covariant
basis. Similarly, the set

{
G1,G2,G3

}
form a contravariant basis for E3. All of the

six vectors in these sets are not necessarily of unit magnitude and some of the vectors
may depend on θ 1, θ 2, and θ 3.

As illustrative examples, consider the Cartesian coordinate system θ k = xk:

Gk = Ek, G j = E j, ( j,k = 1,2,3) . (8.13)

A more interesting example is the spherical polar coordinate system (R,ϕ,ϑ):

R =
√

x2
1 + x2

2 + x2
3, tan(ϕ) =

√
x2

2 + x2
1

x3
, tan(ϑ) =

x2

x1
. (8.14)

Whence,

G1 = eR =
1

√
x2

1 + x2
2 + x2

3

(x1E1 + x2E2 + x3E3) ,

G2 = Reϕ = Rcos(ϕ)(cos(ϑ)E1 + sin(ϑ)E2)−Rsin(ϕ)E3,

G3 = Rsin(ϕ)eϑ = Rsin(ϕ)(cos(ϑ)E2 − sin(ϑ)E1) , (8.15)

and

G1 = G1, G2 =
1

R2 G2, G3 =
1

R2 sin2 (ϕ)
G3. (8.16)

For this coordinate system, G = R4 sin2 (ϕ).
Any vector b can be expressed as a linear combination of either the covariant or

contravariant basis vectors:

b =
3

∑
i=1

biGi =
3

∑
k=1

bkGk. (8.17)

To calculate the components, we note that

bk = b ·Gk, bi = b ·Gi. (8.18)

For the purposes of introducing the Christoffel symbols, it is useful to define

Gik = Gi ·Gk, Gik = Gi ·Gk. (8.19)

It is straightforward to show that ∑3
r=1 GirGrk = δ k

i .
Following [29, 59], we define the connection coefficients γirk and γk

ir:

∂Gi

∂θ r =
3

∑
k=1

γirkGk =
3

∑
k=1

γk
irGk. (8.20)
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As
∂Gi

∂θ r =
∂ 2R∗

∂θ r∂θ i =
∂Gr

∂θ i , (8.21)

these coefficients are identical to the Christoffel symbols,

Γirk =
1
2

(
∂Gik

∂θ r +
∂Grk

∂θ i − ∂Gir

∂θ k

)
,

Γ k
ir =

3

∑
s=1

GksΓirs, (8.22)

respectively, that can be found in classic texts on differential geometry, such as
[234, 325, 328], and texts on continuum mechanics, such as [140].1

The gradient of a scalar-valued function f = f
(
θ 1,θ 2,θ 3

)
and the gradient of a

vector-valued function f = f
(
θ 1,θ 2,θ 3

)
are defined as

Grad( f ) =
3

∑
i=1

∂ f
∂θ i Gi, Grad(f) =

3

∑
i=1

∂ f
∂θ i ⊗Gi. (8.23)

Expressing f in terms of its covariant or contravariant components and expanding
the partial derivatives ∂ f

∂θ i , an expression for Grad(f) containing the connection co-
efficients (8.20) can be established.

8.2.2 A Material Curve

Consider a curve C which is parameterized by u ∈ [u0,u1] in K0. That is, on this
curve

θ i = θ i (u) . (8.24)

The length of C is obtained by evaluating the following integral:

s(u1)− s(u0) =
∫ u1

u0

√
G ·Gdu

=
∫ u1

u0

√√
√
√

3

∑
i=1

3

∑
k=1

∂θ i

∂u
∂θ k

∂u
(Gi ·Gk)du, (8.25)

where G = ∑3
i=1

∂θ i

∂u Gi is a tangent vector to C . As we shall shortly observe, we
can use the coordinates θ i to readily parameterize this material curve in the present
configuration K .

1 For the Euler basis vectors and dual Euler basis vectors that are discussed in Section 5.3.1 of
Chapter 5, because ∂e1

∂α3 �= ∂e3
∂α1 , some of the associated connection coefficients may differ from

the corresponding Christoffel symbols. This is a property that the 3-2-3 set of Euler angles has in
common with all of the other sets of Euler angles.
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8.2.3 Metric Tensors and Identities

The determinant G of the metric tensor [Gi j] = [Gi ·G j] can be calculated using the
identity2 √

G = [G1,G2,G3] . (8.26)

To see this result, you may wish to note that the identity tensor has the representa-
tions

I =
3

∑
i=1

Gi⊗Gi =
3

∑
k=1

Gk ⊗Gk =
3

∑
i=1

3

∑
j=1

Gi jGi⊗G j =
3

∑
n=1

3

∑
m=1

GnmGn⊗Gm, (8.27)

and the determinant of any tensor A satisfies the identity

[Aa,Ab,Ac] = det(A) [a,b,c] , (8.28)

where a, b, and c are any three vectors. The tensor product ⊗ that we use throughout
this book is defined as follows:

(a⊗b)c = a(b · c) , (8.29)

for all vectors a, b, and c.

8.2.4 Convected Coordinates

When the θ i coordinate curves are identified with material curves in B, then the
θ i coordinate system is said to be a convected (or material) coordinate system. We
henceforth assume that this is the case. If a particle X̄ has coordinates θ̄ i in K0, then
it can be identified with these same coordinates in K :

x̄ = χ
(
X̄, t

)
= r∗

(
θ̄ 1, θ̄ 2, θ̄ 3, t

)
. (8.30)

Needless to say the images of the θ i coordinate curves in K can be very intricate
and a simple example is shown in Figure 8.4.

Associated with the convected coordinates, we define the following sets of co-
variant gi and contravariant gk bases vectors:

gi =
∂r∗

∂θ i , (8.31)

and

g1 =
1√
g

g2 ×g3, g2 =
1√
g

g3 ×g1, g3 =
1√
g

g1 ×g2, (8.32)

2 Here, [G1,G2,G3] denotes the scalar triple product G1 · (G2 ×G3).
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Fig. 8.4 Reference K0 and present K configurations of a parallelepiped that is being deformed
into a state of pure flexure. The abbreviation c.c. stands for coordinate curve. This problem is
discussed in a seminal work by Rivlin [302, Sections 14–16] and the text by Green and Zerna
[140, Section 3.11].

where, paralleling the definition of
√

G,

√
g = (g1 ×g2) ·g3. (8.33)

It is a good exercise to consider the parallels in the representations involving gi

and gk for the arc-length of a material curve in K and the identity tensor I (cf.
Eqns. (8.25) and (8.27)). In addition, one can define Christoffel symbols and con-
nection coefficients for these basis vectors.

We now turn to some very useful representations for tensors that are widely em-
ployed in continuum mechanics. First, consider the deformation gradient tensor F.
Recall that x = r∗

(
θ 1,θ 2,θ 3, t

)
. Now, with the help of the definition (8.23),

F = Grad(r∗)

=
3

∑
i=1

∂r∗

∂θ i ⊗Gi

=
3

∑
i=1

gi ⊗Gi. (8.34)

From this representation, it follows that

gi = FGi, gi = F−T Gi, (8.35)
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where F−1 = G1 ⊗ g1 +G2 ⊗ g2 +G3 ⊗ g3. A graphical summary of the transfor-
mations induced by F and F−T is presented in Figure 8.5.

G1

G2

G3

g1 g2

g3

F

F−1
G1

G2

G3

g1

g2

g3
F−T

FT

Fig. 8.5 Graphical representations of the transformations induced by F and F−T and their inverses.

The representation for F results in the following representations for the right
Cauchy-Green strain tensor C, the left Cauchy-Green strain tensor B, the La-
grangian strain tensor E, the determinant of F, and the adjugate of F:

C = FT F =
3

∑
i=1

3

∑
k=1

(gi ·gk)Gi ⊗Gk,

B = FFT =
3

∑
i=1

3

∑
k=1

(
Gi ·Gk

)
gi ⊗gk,

E =
1
2
(C− I) =

3

∑
i=1

3

∑
k=1

1
2
(gi ·gk −Gi ·Gk)Gi ⊗Gk,

J = det(F) =
√

g√
G
,

FA = JF−T =
3

∑
i=1

√
g√
G

gi ⊗Gi. (8.36)

In the last of these results, FA denotes the adjugate of F. It is easy to show from the
representations listed above that det(C) = det(B) = g/G.

The adjugate of F plays a key role in Nanson’s formula:

nda = FANdA. (8.37)

Here, n is the unit normal at a point on a material surface F
(
θ 1,θ 2,θ 3

)
= 0 in

K , and N is the unit normal at the same point of the corresponding surface in K0.
An example of such a material surface can be seen in Figure 8.6. For the material
surface θ 3 = ξ2 in the reference configuration K0, the area element NdA has the
representation
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Fig. 8.6 Schematic of the reference K0 and present K configurations of a rod-like body whose
reference configuration is parameterized using a curvilinear coordinate system. The ends of the
body are described using θ 3 coordinate surfaces, the centerline is described as a θ 3 coordinate
curve where θ 1 = θ 2 = 0, and the lateral surface of the body is described using the function
F
(
θ 1,θ 2,θ 3

)
= 0.

NdA =
∂R∗

∂θ 1

(
θ 1,θ 2,ξ2

)
dθ 1 × ∂R∗

∂θ 2

(
θ 1,θ 2,ξ2

)
dθ 2

= G1
(
θ 1,θ 2,ξ2

)×G2
(
θ 1,θ 2,ξ2

)
dθ 1dθ 2

= G3 (θ 1,θ 2,ξ2
)√

G(θ 1,θ 2,ξ2) dθ 1dθ 2. (8.38)

Paralleling (8.38), the area element nda in the present configuration for the material
surface θ 3 = ξ2 has the representation

nda = g3 (θ 1,θ 2,ξ2
)√

g(θ 1,θ 2,ξ2) dθ 1dθ 2. (8.39)

It is a useful exercise to verify how these representations for NdA and nda are in
compliance with Nanson’s formula.
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8.3 Stress Tensors and Divergences

We next recall four stress tensors: the Cauchy stress tensor T, the first Piola-
Kirchhoff stress tensor P, the nominal stress tensor Σ, and the second Piola-
Kirchhoff stress tensor S (see, e.g., [55, 147]). These four tensors are related:

P = TFA,

Σ = F−1PFT = PT ,

S = F−1P = JF−1TF−T . (8.40)

To see these definitions in a different light, let the Cauchy stress tensor have the
representation

T =
3

∑
i=1

3

∑
k=1

τ ikgi ⊗gk. (8.41)

Then,

J−1P =
3

∑
i=1

3

∑
k=1

τ ikgi ⊗Gk, J−1Σ=
3

∑
i=1

3

∑
k=1

τ ikGk ⊗gi,

J−1S =
3

∑
i=1

3

∑
k=1

τ ikGi ⊗Gk. (8.42)

Observe that the tensors have the same components and “legs” in different config-
urations: S has both “legs” in K0, T has both “legs” in K , and P and Σ have one
“leg” in K0 and the other in K .

The representations of the stress tensors using the covariant basis vectors also
illuminate the role played by a traction vector Ti that was first introduced by Green
and Zerna [140]3:

Ti =
√

gTgi =
3

∑
k=1

√
gτkigk

=
√

GPGi

=
√

GFSGi. (8.43)

To further elaborate on Ti and the role it plays in formulating the governing equa-
tions for rods and strings, consider the material surface A defined by θ 3 = ξ2 that
is shown in Figure 8.6. Suppose that a traction vector t acts on this surface. From
Cauchy’s lemma [55, 147], we know that t = Tn, where n is the outward normal.
Using Eqn. (8.39), the resultant force acting on this surface can be computed4:

3 Green and Zerna use the notation Ti for these vectors. Our notation follows later papers by Green
and Naghdi [133, 135, 137, 138]. As will shortly become apparent, the vector Ti has similarities
to the vector t = Tn acting on a surface whose unit outward normal is n.
4 Observe that da �= dθ 1dθ 2.
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∫

A
tda =

∫

A
Tnda

=
∫

A
Tg3 (θ 1,θ 2,ξ2

)√
g(θ 1,θ 2,ξ2) dθ 1dθ 2

=
∫

A
T3 (θ 1,θ 2,ξ2

)
dθ 1dθ 2. (8.44)

Concomitantly,
T1 = T(g2 ×g3) , T2 = T(g3 ×g1) . (8.45)

The elegance of the representation (8.44) is remarkable and it is often used to estab-
lish a representation for the contact force n in rod and string theories. We leave it as
an exercise to show that the corresponding representation for the referential traction
vector p = PN is

∫
A pdA =

∫
A T3

(
θ 1,θ 2,ξ2

)
dθ 1dθ 2.

8.3.1 Divergences

In the balance laws for a continuum, one finds a pair of distinct divergences of a
tensor:

Div(P) =
3

∑
k=1

∂P
∂θ k Gk, div(T) =

3

∑
k=1

∂T
∂θ k gk. (8.46)

To motivate these representations, we first consider a pair of gradient operators:

grad(a) = ∇(a) =
3

∑
r=1

gr ∂a
∂θ r , Grad(a) = ∇0 (a) =

3

∑
r=1

Gr ∂a
∂θ r , (8.47)

where a is an arbitrary differentiable scalar-valued function. For any vector c, we
use the aforementioned gradient operators to define the divergences of a vector:

Div(c) = ∇0 · c =
3

∑
k=1

Gk · ∂c
∂θ k , div(c) = ∇ · c =

3

∑
k=1

gk · ∂c
∂θ k . (8.48)

Following the treatment in Gurtin [147, Section 4], we next employ the defini-
tion (8.48) to define the divergences of a tensor H:

a ·div(H) = div
(
HT a

)
, a ·Div(H) = Div

(
HT a

)
, (8.49)

where a is any constant vector. This final step sets the stage to use Eqn. (8.49) to
establish Eqn. (8.46). For example,
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a ·div(H) = div
(
HT a

)

=
3

∑
r=1

gr · ∂
∂θ r

(
HT a

)

=
3

∑
r=1

gr ·
(

∂HT

∂θ r a
)

=
3

∑
r=1

(
∂H
∂θ r gr

)
·a. (8.50)

We used the property of the transpose of a second-order tensor (Ab) ·a = b ·(AT a
)

to manipulate the previous expression. As a consequence of the earlier manipula-
tions, we can conclude that

(

div(H)−
3

∑
r=1

(
∂H
∂θ r gr

))

·a = 0. (8.51)

As this result is true for all a and the term inside the parentheses is independent of
a, we find that

div(H) =
3

∑
r=1

∂H
∂θ r gr. (8.52)

As expected, this result agrees with Eqn. (8.46)2. A parallel derivation applies for
Eqn. (8.46)1.

8.3.2 The Traction Vector and a Divergence

Using Tr, one finds very useful representations for the divergences of T and P. To
see these results, we need to perform some lengthy but straightforward manipula-
tions:

div(T) =
3

∑
r=1

3

∑
i=1

∂
∂θ r

(
1√
g

Ti ⊗gi

)
gr

=
3

∑
r=1

3

∑
i=1

(gi ·gr)√
g

∂Ti

∂θ r +
3

∑
i=1

Ti

(
3

∑
r=1

(
∂

∂θ r

(
gi√

g

)
·gr

))

︸ ︷︷ ︸
= 0 using Eqns. (8.56) and (8.59)

=
3

∑
r=1

3

∑
i=1

δ r
i√
g

∂Ti

∂θ r +
3

∑
i=1

Ti(0)

=
3

∑
r=1

1√
g

∂Tr

∂θ r . (8.53)
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Similarly,

Div(P) =
3

∑
r=1

1√
G

∂Tr

∂θ r . (8.54)

In summary,
3

∑
r=1

∂Tr

∂θ r =
√

GDiv(P) =
√

gdiv(T) . (8.55)

To establish the representations (8.55), we used one of the following identities in
Eqn. (8.53):

3

∑
r=1

3

∑
i=1

(
Ti ⊗ ∂

∂θ r

(
gi√

g

))
gr = 0,

3

∑
r=1

3

∑
i=1

(
Ti ⊗ ∂

∂θ r

(
Gi√

G

))
Gr = 0.

(8.56)

It suffices to consider Eqn. (8.56)1 in order to show how its referential counter-
part (8.56)2 can be established. The proof starts by examining the derivative of

√
g

and using the identities (8.32):

1√
g

∂√g

∂θ r =
1√
g

∂g1

∂θ r · (g2 ×g3)+
1√
g

∂g2

∂θ r · (g3 ×g1)+
1√
g

∂g3

∂θ r · (g1 ×g2)

=
3

∑
k=1

∂gk

∂θ r ·gk. (8.57)

Because gk =
∂r∗
∂θ k , the following identity for the mixed partial derivatives holds:

∂gi

∂θ r =
∂gr

∂θ i . (8.58)

Returning to the underbraced term in Eqn. (8.53), we can isolate the ith term and
consider its expansion:

3

∑
r=1

∂
∂θ r

(
gi√

g

)
·gr =

3

∑
r=1

∂
∂θ r

(
1√
g

)
gi ·gr +

1√
g

3

∑
r=1

∂gi

∂θ r ·gr

=
∂

∂θ i

(
1√
g

)
+

1√
g

3

∑
r=1

∂gr

∂θ i
︸︷︷︸

using Eqn. (8.58)

·gr

= −1
g

∂√g

∂θ i +
1√
g

3

∑
r=1

∂gr

∂θ i ·gr

= − 1√
g

3

∑
k=1

∂gk

∂θ i ·gk

︸ ︷︷ ︸
using Eqn. (8.57)

+
1√
g

3

∑
r=1

∂gr

∂θ i ·gr

= 0. (8.59)

The identity (8.56)1 now follows in a straightforward manner.
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8.4 Balance Laws

We recall the local forms of the balance laws for mass, linear momentum, and an-
gular momentum for a three-dimensional continuum:

ρ̇∗+ρ∗div(v∗) = 0,

div(T)+ρ∗b = ρ∗v̇∗,

T = TT . (8.60)

In these equations, the superposed dot denotes the material time derivative, b is the
body force per unit mass, ρ∗ is the mass density per unit volume of B in K , and
v∗ = ṙ∗.

Mass conservation (8.60)1 integrates to

Jρ∗ = ρ∗
0 , (8.61)

where ρ∗
0 is the mass density per unit volume of B in K0. As J =

√
g√
G

, we can write
the linear momentum balance (8.60)2 as

1√
G
(
√

gdiv(T))+ρ∗
0 b = ρ∗

0 v̇∗. (8.62)

We next invoke Eqn. (8.55) to conclude that

3

∑
r=1

1√
G

∂Tr

∂θ r +ρ∗
0 b = ρ∗

0 v̇∗. (8.63)

It is easy to write this result in terms of the divergence of P. We also remark that,
because the representation (8.63) is convenient to integrate over a three-dimensional
continuum, Eqn. (8.63) is used in Green and Naghdi’s papers [133, 137] to establish
the linear momentum and director momentum balance laws.

8.5 Invariance Requirements under Superposed
Rigid Body Motions

Consider two motions of B. The two motions χ and χ⊥ differ by a rigid body motion
if, and only if,
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K0 K

K ⊥

x

x⊥

X

X

X

X

O

Fig. 8.7 Two configurations, K and K ⊥, of a body B which differ by a superposed rigid body
motion. The reference configuration K0 is also shown.

x⊥ = χ⊥
(

X, t⊥ = t +a
)

= Q(t)χ(X, t)+q(t)

= Q(t)x(t)+q(t), (8.64)

where Q, which is a rotation tensor, and q are functions of t only and a is a constant.
Notice that we are considering two distinct present configurations and a single ref-
erence configuration here (see Figure 8.7).5 For the two motions, it can be shown
from Eqn. (8.64) that

F⊥ = QF, C⊥ = C, D⊥ = QDQT . (8.65)

Here, the stretching tensor D is the symmetric part of the tensor L = ḞF−1:

D =
1
2

(
ḞF−1 +F−T ḞT ) . (8.66)

5 This is in contrast to the framework required to establish restrictions on constitutive relations
using the principle of material frame indifference [242].
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You might have noticed that

L = ḞF−1 =
3

∑
k=1

3

∑
i=1

ġi ⊗Gi
(

Gk ⊗gk
)

=
3

∑
i=1

ġi ⊗gi. (8.67)

Thus, the tensor L = ḞF−1 transforms gk to ġk.
Supplementing the balance laws and response relations, it is necessary to im-

pose invariance requirements under superposed rigid body motions. The invariance
requirements we impose are standard:

(ψ∗)⊥ = ψ∗, (φ ∗)⊥ = φ ∗, (8.68)

where ψ∗ is the strain energy function per unit volume in K0 and φ ∗ is an internal
constraint on the motion of B. Examples of such constraints include incompress-
ibility (φ ∗ = det(F)−1).

8.6 Constitutive Relations for Hyperelastic Bodies

For a hyperelastic (or Green) elastic body, a strain energy function ψ∗ exists which
is a function of F:

ψ∗ = ψ̂∗ (F,X, t) . (8.69)

However, because we are imposing the invariance requirement (8.68)1, ψ∗ cannot
depend on t and can only depend on F through its invariant part. Consequently,

ψ∗ = ψ∗ (C,X) . (8.70)

We also assume that the body is subject to an internal constraint which is properly
invariant:

φ ∗ = φ ∗ (C,X) . (8.71)

That is, (φ ∗)⊥ = φ ∗. We now seek constitutive relations for the stress tensor T of the
constrained hyperelastic continuum. Our treatment follows Ericksen and Rivlin [99]
and benefits from the insights of later works by Antman and Marlow [14], Carlson
et al. [46, 47], Casey et al. [49, 50], Green et al. [136], and Truesdell and Noll [351,
Section 30].

In what follows, we make frequent use of the fact that, for any pair of tensors,

A =
3

∑
i=1

3

∑
k=1

AikEi ⊗Ek, B =
3

∑
i=1

3

∑
k=1

BikEi ⊗Ek, (8.72)
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the trace operator,

A ·B = tr
(
ABT )=

3

∑
i=1

3

∑
k=1

(AikBik) , (8.73)

provides an inner-product. We will also invoke the following result in the sequel:
Assuming that A and B are independent of Z, then the solution to the equation

A ·Z = 0 for all Z which satisfy B ·Z = 0, (8.74)

is A = λB where λ is a scalar. One proof of this result can be found in Green
et al. [136, Page 902]. The result A = λB, which also appears in Exercise 8.4, has a
(well-known) geometric interpretation: A is parallel to B.

To prescribe constitutive relations for T, we require that the stress power is equal
to the rate of change of strain energy for all motions which satisfy the constraint6:

tr
(
TLT )= ρ∗ψ̇∗ for all C which satisfy φ ∗ (C,X) = 0. (8.75)

There are several representations for ψ̇∗:

ψ̇∗ = tr

(
∂ψ∗

∂C
Ċ
)
= tr

((
3

∑
i=1

3

∑
k=1

∂ψ∗

∂Cik
Ei ⊗Ek

)

Ċ

)

=
3

∑
i=1

3

∑
k=1

∂ψ∗

∂Cik
Ċik, (8.76)

where

C =
3

∑
i=1

3

∑
k=1

CikEi ⊗Ek,
∂ψ∗

∂C
=

3

∑
i=1

3

∑
k=1

∂ψ∗

∂Cik
Ei ⊗Ek. (8.77)

Further,
Ċ = ḞT F+FT Ḟ = 2FT DF. (8.78)

Invoking the moment of momentum balance law, we note that T = TT . However,
for all skew-symmetric tensors B and symmetric tensors A,

tr(AB) = 0. (8.79)

Thus, the symmetry of T implies that the expression tr
(
TLT

)
can be simplified by

removing the skew-symmetric part of L:

tr
(
TLT )= tr

(
T
(

D =
1
2

(
L+LT )

))
+

1
2

tr
(
T
(
LT −L

))

= tr(TD) . (8.80)

We are now in a position to rephrase Eqn. (8.75) as

tr(TD) = tr

(
2ρ∗ ∂ψ∗

∂C
FT DF

)
for all C which satisfy φ ∗ (C,X) = 0. (8.81)

6 Observe that 1√
G

Ti · ġi = tr
(
PḞT

)
= Jtr

(
TF−T ḞT

)
= Jtr

(
TLT

)
. The former representations for

stress power are often more illuminating than tr
(
TLT

)
.
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If C satisfies the constraint φ ∗ = 0, then its derivative satisfies

tr

(
∂φ ∗

∂C
Ċ
)
= 0. (8.82)

Or, equivalently, with the help of Eqn. (8.78),

tr

(
2

∂φ ∗

∂C
FT DF

)
= 0. (8.83)

With this in mind, we rephrase Eqn. (8.81) as

tr

((
T−2ρ∗F

∂ψ∗

∂C
FT

)
D
)
= 0 for all D which satisfy tr

(
2

∂φ ∗

∂C
FT DF

)
= 0.

(8.84)

If we assume that T does not depend on D and that Eqn. (8.84) is true for all D, then,
appealing to the solution to Eqn. (8.74), we find the classic response function for the
Cauchy stress tensor:

T = 2ρ∗F
∂ψ∗

∂C
FT +2λF

∂φ ∗

∂C
FT . (8.85)

The scalar-valued function λ = λ (X, t) and is an unknown that must be determined
as part of the solution to the boundary-value problem associated with the contin-
uum. This function is sometimes identified as a Lagrange multiplier (cf. Ericksen
and Rivlin [99, Section 4]). Following Casey and Carroll [49], we do not assume
that the function λ that enforces the constraint φ ∗ = 0 is invariant under superposed
rigid body motions. That is, λ⊥ and λ are not necessarily identical. It is also impor-
tant to note that the constitutive relations (8.85) guarantee that T is symmetric and
automatically satisfies the balance of angular momentum: T = TT .

One useful interpretation of Eqn. (8.85) is that, for a constrained material, the
stress response can be considered as an additive decomposition of a part associated
with the deformation of the material and a part needed to ensure that the constraint
is satisfied. The former part, 2ρ∗F ∂ψ∗

∂C FT , is known as the active stress and the latter

part, 2λF ∂φ∗
∂C FT , is known as the reactive stress. Indeed, the alternative derivation of

Eqn. (8.85) in Truesdell and Noll [351, Section 30] postulates the decomposition of
the stress into active and reactive parts, assumes that the reactive stress is workless
in any motion of the continuum that satisfies the constraints, and assumes that the
active part identically satisfies the local form of the energy balance.

With the help of the identities

∂ψ∗

∂F
= 2F

∂ψ∗

∂C
,

∂φ ∗

∂F
= 2F

∂φ ∗

∂C
, (8.86)

the constitutive relations for T can also be expressed in a manner that is convenient
for representations of the other stress tensors that appear in these pages:
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T = ρ∗ ∂ψ∗

∂F
FT +λ

∂φ ∗

∂F
FT . (8.87)

We leave it as an exercise to write out the corresponding response functions for
Ti, P, Σ, and S. The representation for S can be used to transparently demonstrate
that the reactive stress is normal to the constraint manifold φ ∗ (C) = 0. This five-
dimensional manifold corresponds to the set of all symmetric tensors C which sat-
isfy the constraint φ ∗ (C) = 0 and is a subset of the space of all symmetric second-
order tensors. For additional details and perspectives on the constraint manifold, we
refer the reader to [46, 50]. The geometric perspective in these papers also enables
one to see that the prescription for the reactive stress in Eqn. (8.85) is equivalent to
the Lagrange prescription for constraint forces and moments in particle and rigid
body dynamics.7

8.6.1 A Mooney-Rivlin Material

One of the most prominent examples of constitutive relations for an incompressible,
isotropic elastic body is due to Mooney and Rivlin:

T =−pI+β1B+β−1B−1. (8.88)

Here, p is the pressure associated with the incompressibility constraint,

φ ∗ (C) = det(C)−1, (8.89)

(i.e., p =−λ in Eqn. (8.85)). Additionally, β1 and β−1 are constants in the simplest
Mooney-Rivlin material and, when β−1 = 0, the material is known, following Rivlin,
as a neo-Hookean material. The strain energy function for the (simplest) Mooney-
Rivlin material is

ρ∗
0 ψ∗ =

1
2

β1 (IC −3)− 1
2

β−1 (IIC −3) , (8.90)

where the two nontrivial invariants of C are

IC = tr(C) , 2IIC = tr(C)2 − tr
(
C2) . (8.91)

The third invariant IIIC = det(C) = 1 for an incompressible continuum. The deriva-
tion of the relations (8.88) from the strain energy function given by Eqn. (8.90) is
outlined in Exercise 8.4 at the end of this chapter.

7 In the case of a single particle, the Lagrange prescription implies that the constraint force is
normal to surface or curve that the particle is constrained to move on. For this reason, this prescrip-
tion is sometimes known as the normality prescription. We refer the reader to [271, 283, 284] for
additional background on constraint forces and constraint moments in classical mechanics.
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8.6.2 Additional Remarks

It is important to note that the constitutive relations (8.85), the balance laws, and the
constraint may be used to provide a determinate system of equations to determine
the motion r∗ of the body and λ :

3

∑
r=1

(
∂

∂θ r

(
2F

(
ρ∗

0

√
G

∂ψ∗

∂C
Gr +

√
gλ

∂φ ∗

∂C
Gr

)))
+
√

Gρ∗
0 b =

√
Gρ∗

0 v̇∗,

tr

(
2

∂φ ∗

∂C
FT DF

)
= 0. (8.92)

The corresponding set of equations for the unconstrained case were shown in
Eqn. (8.63). Of course, both sets of equations need to be supplemented with bound-
ary conditions and initial conditions.

8.7 Configurational, Material, or Eshelbian Forces

Following the seminal work of John D. Eshelby (1916–1981), it has become stan-
dard to consider the behavior of an energy-momentum tensor for hyperelastic bod-
ies. For elastostatic problems, several alternative definitions of this tensor appear in
the literature:

σC = ρ∗
0 ψ∗I−SC, proposed by Chadwick [54],

σE = ρ∗
0 ψ∗I+

(
I−FT )ΣT , proposed by Eshelby (cf. [103, Eqn. (13)]),

σG = ρ∗
0 ψ∗I−FTΣT , proposed by Gurtin (cf. [149, Eqn. (5.14)]),

σM = ρ∗
0 ψ∗I−PF, proposed by Maugin and co-workers (cf. [231, Eqn. (3.7)]).

The extension of these definitions to the dynamic case is obtained by subtracting the
kinetic energy density from the strain energy function (cf., e.g., [103, Eqn. (53)]).
For present purposes, we use a definition of the (dynamic) energy-momentum ten-
sor that can be found in a variety of sources including [82, Eqn. (2.18)] and [149,
Eqn. (7.8)]:

σ=

(
ρ∗

0 ψ∗ − 1
2

ρ∗
0 v∗ ·v∗

)
I−FT P. (8.93)

Concomitant with σ, we follow Eshelby [103, Eqn. (55)] and define the material
momentum P∗:

P∗ =−ρ∗
0 FT v∗. (8.94)

Among other uses, the momentum P∗, which is alternatively referred to as the pseu-
domomentum or configurational momentum, and tensor σ can be used to establish a
balance law for material momentum. This law provides a conservation law in certain
instances and, as demonstrated by Eshelby [103], the energy release rate for a crack
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in others. The force ρ∗
0 bM in this balance law is known as an assigned material (or

configurational) force. As we shall see below, if the material is homogeneous and
there are no body forces, b = 0, then ρ∗

0 bM is identically zero. The vanishing of bM

has been championed by Braun [36] as a test for the accuracy of numerical meth-
ods used in computational mechanics and we refer the reader to [240] for additional
references and interesting examples.

K

K0

S

S
N

n

XS
XSXS v∗

S

u

Fig. 8.8 The reference K0 and present K configurations of a body B showing a propagating sur-
face of discontinuity S and the associated velocity vectors u and v∗S associated with a material
point XS ∈S . The unit normal vectors to the shock surface in the reference and present config-
urations are N and n. The normal vectors are related by Nanson’s formula (8.37) and the velocity
vectors are related by Eqn. (8.95).

8.8 A Material Momentum Balance Law

The development of a balance law for material momentum follows from the afore-
mentioned works by Gurtin (cf. [149] and references therein) and Maugin (cf. [232]
and references therein). Referring to Figure 8.8, we allow the existence of a surface
of discontinuity S in the body. A material point XS on this surface has a position
vector XS in a fixed reference configuration and a position vector xS = χ(XS , t)
in the present configuration. This material point has the velocity vector u = ẊS in
the reference configuration and a velocity vector v∗S in the present configuration.
These velocity vectors are related by compatibility conditions:

v∗S = (v∗+Fu)+ = (v∗+Fu)− . (8.95)

The normal velocity of the shock or discontinuity as it propagates through material
points in the fixed reference configuration is

Un = u ·N, (8.96)
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where the unit normal vector N is shown in Figure 8.8. We allow the existence of
sources of material momentum B∗

S , linear momentum F∗
S , and power Φ∗

ES
on S .

The source B∗
S is vector-valued in contrast to the scalar-valued supply Bγ in one-

dimensional theories.
The integral form of the balance law is equivalent to a local form,

Div(σ)+ρ∗
0 bM = Ṗ∗, (8.97)

and a companion jump condition,

[[σN+UnP
∗]]S =−B∗

S . (8.98)

We also note that the associated jump conditions for mass, linear momentum, and
energy are

[[ρ∗
0Un]]S = 0,

[[PN+Unρ∗
0 v∗]]S =−F∗

S ,

[[PN ·v∗]]S +

[[
ρ∗

0 ψ∗+
ρ∗

0

2
v∗ ·v∗

]]

S

Un =−Φ∗
ES

. (8.99)

In the sequel, we shall elaborate on the local form of the balance of material mo-
mentum and comment on the relationship between the jump condition (8.98) and
related treatments in the literature. One of our intentions is to give context to the
one-dimensional material momentum balance law that is used in this book. For cer-
tain problems in elastostatics, the balance law (8.97) can lead to a conservation law.
Dating to the works of Günther [146] and Knowles and Sternberg [187], it is known
that the resulting conservation law can also be established using Noether’s theorem.8

8.8.1 The Local Form

The local form of the balance of material momentum is Div(σ)+ρ∗
0 bM = Ṗ∗. By

suitably specifying ρ∗
0 bM, this law will be identically satisfied. The procedure has

obvious parallels to the one used for one-dimensional theories, but the algebra is
somewhat more involved.

To elaborate on the prescription for ρ∗
0 bM, several preliminary results are needed.9

First, with the help of the constitutive relations P = ρ∗
0

∂ψ∗
∂F , we find the following

intermediate results:

8 Kinzler and Hermann [182, Chapter 1] and Olver [256] provide accessible treatments of infinites-
imal transformations and their role in establishing conservation laws using Noether’s theorem.
9 The corresponding developments for an incompressible hyperelastic material are easily inferred
from Chadwick’s lucid paper [54].
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Div

((
ρ∗

0 ψ∗ − 1
2

ρ∗
0 v∗ ·v∗

)
I
)
=

3

∑
r=1

∂
∂θ r

(
ρ∗

0 ψ∗ − 1
2

ρ∗
0 v∗ ·v∗

)
Gr

=
3

∑
r=1

(
tr

(
P

∂FT

∂θ r

))
Gr +ρ∗

0 ḞT v∗

+∇exp

(
ρ∗

0 ψ∗ − 1
2

ρ∗
0 v∗ ·v∗

)
. (8.100)

The derivative ∇exp is defined for a function f
(
θ 1,θ 2,θ 3,C, t

)
as

∇exp ( f ) =
3

∑
r=1

∂ f
∂θ r Gr

∣
∣
∣
∣
∣C = const.

t = const.

. (8.101)

For example, if a body is homogeneous, then ρ∗
0 is independent of θ k and ∇exp (ρ∗

0 )
= 0. Invoking the balance of linear momentum, Div(P)− ρ∗

0 v̇∗ = −ρ∗
0 b, we find

that

−Div
(
FT P

)
=−

3

∑
r=1

∂FT

∂θ r PGr −FT Div(P)

=−
3

∑
r=1

∂FT

∂θ r PGr +ρ∗
0 FT b−ρ∗

0 FT v̇,

−Ṗ∗ = ρ∗
0 ḞT v∗+ρ∗

0 FT v̇∗. (8.102)

Choosing θ r to be Cartesian coordinates in the reference configuration is the easiest
method to see that

3

∑
r=1

(

tr

(
P

∂FT

∂θ r

)
I−

3

∑
r=1

∂FT

∂θ r P

)

Gr = 0. (8.103)

That is,

3

∑
r=1

tr

(
P

∂FT

∂θ r

)
Gr −

3

∑
s=1

∂FT

∂θ s PGs =
3

∑
r=1

3

∑
k=1

3

∑
l=1

Pkl
∂Fkl

∂Xr
Er −

3

∑
s=1

3

∑
k=1

3

∑
l=1

Pks
∂Fkl

∂Xs
El

=
3

∑
r=1

3

∑
k=1

3

∑
l=1

Pkl

(
∂xk

∂Xr∂Xl
− ∂xk

∂Xl∂Xr

)
Er

= 0, (8.104)

where

F =
3

∑
i=1

3

∑
k=1

∂xi

∂Xk
Ei ⊗Ek, P =

3

∑
i=1

3

∑
k=1

PikEi ⊗Ek. (8.105)

It should be noted that the final step in the derivation above used the identity (8.58).
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We now use the intermediate results (8.100), (8.102), and (8.103) to solve for a
material force:

ρ∗
0 bM =−Div(σ)+ Ṗ∗. (8.106)

The force ρ∗
0 bM, which is known as the assigned material force, is given by

ρ∗
0 bM = −∇exp

(
ρ∗

0 ψ∗ − 1
2

ρ∗
0 v∗ ·v∗

)
−ρ∗

0 FT b. (8.107)

This is the desired prescription for the assigned material force and it ensures that
the balance law (8.97) is identically satisfied. For elastostatic problems where the
body is homogeneous and the body force is zero, the balance law (8.97) immediately
implies the conservation law Div(σ) = 0.

8.8.2 The Jump Condition

K

S

nXS

F∗
S

B∗
S

Fig. 8.9 Schematic of the singular supplies of linear
momentum F∗

S and material momentum acting at a
point XS on a surface of discontinuity.

In the purely mechanical theory of
interest, the primary singular sup-
plies pertain to linear momentum
and material momentum (cf. Fig-
ure 8.9). Further, the jump condi-
tion [[σN+UnP

∗]]S +B∗
S = 0 that

is associated with the balance of
material momentum is related to a
driving force (or driving force) on a
discontinuity and Eshelby’s notion
of a force on a singularity. Before
elaborating on these connections,
we recall from [263] that the jump
conditions for mass, material mo-
mentum, and linear momentum can
be used in a straightforward man-
ner to reduce the jump condition
from the balance of energy to an
identity for Φ∗

ES
:

Φ∗
ES

=F∗
S ·v∗S +B∗

S ·u. (8.108)

Thus, the power supply Φ∗
ES

can be related to the power of the sources of momenta.
This parallels the situation for the supply ΦEγ for one-dimensional media that is
presented throughout this book.

The normal component of the supply of material momentum B∗
S can be related

to a quantity known as the driving force f that appears in works by Abeyaratne and
Knowles [1, 4, 5] and Truskinovsky [353, 354] and the force on a singularity that
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appears in Eshelby [102]. Specifically, a driving force f is defined in [4, Eqn. (19)]
(or [5, Eqn. (6.28)]),

f = [[ρ∗
0 ψ∗]]S −{P}S · [[F]]S . (8.109)

Abeyaratne and Knowles interpret this force as “a normal traction applied to S
by the body” [1, Page 353] and prescriptions for f play a key role in developing
discontinuous solutions to boundary-value problems. Prescribing f is equivalent to
prescribing the sources of material and linear momenta. To see this, we note that we
can expand [[σN+UnP

∗]]S ·N by substituting for the energy-momentum tensor σ
and P∗ in terms of ρ∗

0 , ψ∗, F, and v∗:

σ=

(
ρ∗

0 ψ∗ − 1
2

ρ∗
0 v∗ ·v∗

)
I−FT P,

P∗ =−ρ∗
0 FT v∗. (8.110)

With some rearranging and elimination of terms using the jump conditions (8.99),
we find that10

[[σN+UnP
∗]]S ·N= [[ρ∗

0 ψ∗]]S −{P}S · [[F]]S︸ ︷︷ ︸
+F∗

S · {FN}S . (8.111)

After invoking the N component of the jump condition [[σN+UnP
∗]]S =−B∗

S and
identifying the driving force as the underbraced term in (8.111), we conclude that

f =−B∗
S ·N−F∗

S · {FN}S . (8.112)

In [4], source terms such as F∗
S are set to zero, so the “normal traction” quoted above

is B∗
S ·N. However, the identity (8.112) implies that the driving force could also

be supplied by F∗
S . The one-dimensional counterpart of the result (8.112) and its

relation to Eshelby’s force on a singularity is discussed in Section 1.8.1 of Chapter 1
and Exercise 1.7.

Throughout this book, we advocate for, and exploit, the notion that the jump con-
dition associated with the material momentum balance is helpful in solving prob-
lems associated with strings and rods. In the problems of interest in this book, the
material momentum is supplied by adhesion and impacts. We hope however to have
supplied sufficient detail for the reader to be able to appreciate how the balance
is related to one-dimensional phase transformation problems that are discussed in
[2, 3, 5, 296] and references therein.

8.9 Closing Comments

The partial differential equations (8.92) are formidable: only a small collection
of exact static solutions (and an even smaller set of exact dynamic solutions)
are known. Consequently, most analyses of the equations use numerical methods.

10 Further details of this calculation can be found in [263, Section 5].
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The one-dimensional theories discussed in this book are designed to provide more
tractable models compared to the three-dimensional theory. One important point to
note as you explore these theories is that their structures are similar to that of the
three-dimensional theory. Consequently, the one-dimensional theories do not nec-
essarily have to be considered as a mishmash of assumptions that they often seem
when one first encounters them in undergraduate courses.

K0

K

θ 1 c.c. θ 2 c.c.

θ 1 c.c. θ 2 c.c. θ 3 c.s.

θ 3 c.s.

G1

G2

g1

g2

E1

E1

E2

E2

O

O

(a)

(b)

Fig. 8.10 An example of a θ 3 coordinate surface (c.s.) in (a) the reference configuration K0 and
(b) the present K configurations of a parallelepiped that is being dilated. The abbreviation c.c.
stands for coordinate curve.

8.10 Exercises

Exercise 8.1: The covariant and contravariant basis vectors are related by the nine
equations

gk ·gi = δ i
k, (i,k = 1,2,3) . (8.113)

Assuming the contravariant basis vectors gi are known, show that

g1 =
√

g
(
g2 ×g3) , g2 =

√
g
(
g3 ×g1) , g3 =

√
g
(
g1 ×g2) , (8.114)

where
1√
g
=
(
g1 ×g2) ·g3. (8.115)

Exercise 8.2: Consider the dilation of a parallelepiped shown in Figure 8.10. In the
reference configuration, the convected coordinate system coincides with a Cartesian
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coordinate system:

θ k = xk, R∗ (θ 1,θ 2,θ 3)= θ 1E1 +θ 2E2 +θ 3E3. (8.116)

For the present configuration, the convected coordinate system can be described
using Cartesian coordinates:

θ 1 = f1 (x1) , θ 2 = f2 (x2) , θ 3 = f3 (x3) , (8.117)

where fk are smooth invertible functions.

(a) Show that

G1 = G1 = E1, G2 = G2 = E2, G3 = G3 = E3. (8.118)

Compute
√

G.
(b) For the present configuration, show that

g1 =
∂ f1

∂x1
E1, g2 =

∂ f2

∂x2
E2, g3 =

∂ f3

∂x3
E3. (8.119)

(c) Verify that 1√
g = ∂ f1

∂x1

∂ f2
∂x2

∂ f3
∂x3

.
(d) Establish the following representations for the covariant basis vectors gk:

g1 =

(
∂ f1

∂x1

)−1

E1, g2 =

(
∂ f2

∂x2

)−1

E2, g3 =

(
∂ f3

∂x3

)−1

E3. (8.120)

(e) Show that the deformation gradient F associated with this problem has the rep-
resentation

F =

(
∂ f1

∂x1

)−1

E1 ⊗E1 +

(
∂ f2

∂x2

)−1

E2 ⊗E2 +

(
∂ f3

∂x3

)−1

E3 ⊗E3. (8.121)

Show that the deformation is homogeneous if fk = akxk + ck where a1, a2, a3,
c1, c2, and c3 are constants. What are these functions if the body expands uni-
formly so that its volume in the present configuration is 8 times its volume in
the reference configuration?

Exercise 8.3: Consider the flexure of a parallelepiped shown in Figure 8.4.11 In the
reference configuration, the convected coordinate system coincides with a Cartesian
coordinate system:

θ k = xk, R∗ (θ 1,θ 2,θ 3)= θ 1E1 +θ 2E2 +θ 3E3. (8.122)

11 Further details on the solution to this problem for specific constitutive equations can be found
in [140]. The problem is of particular relevance because the rod theories we use give solutions to
this flexure problem that are only approximations to the solution obtained using three-dimensional
considerations.
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For the present configuration, the convected coordinate system can be described
using cylindrical polar coordinates (r,ϑ ,z):

θ 1 = f1(r), θ 2 = f2 (ϑ) , θ 3 = f3 (z) , (8.123)

where fk are smooth invertible functions.

(a) Show that

G1 = G1 = E1, G2 = G2 = E2, G3 = G3 = E3. (8.124)

Compute
√

G.
(b) For the present configuration, show that

g1 =
∂ f1

∂ r
er, g2 =

1
r

∂ f2

∂ϑ
eϑ , g3 =

∂ f3

∂ z
E3, (8.125)

where

er = cos(ϑ)E1 + sin(ϑ)E2, eϑ = cos(ϑ)E2 − sin(ϑ)E1. (8.126)

(c) Verify that 1√
g = 1

r
∂ f1
∂ r

∂ f2
∂ϑ

∂ f3
∂ z .

(d) Establish the following representations for the covariant basis vectors gk:

g1 =

(
∂ f1

∂ r

)−1

er, g2 = r

(
∂ f2

∂ϑ

)−1

eϑ , g3 =

(
∂ f3

∂ z

)−1

E3. (8.127)

(e) Show that the deformation gradient F associated with this problem has the rep-
resentation

F =

(
∂ f1

∂ r

)−1

er ⊗E1 + r

(
∂ f2

∂ϑ

)−1

eϑ ⊗E2 +

(
∂ f3

∂ z

)−1

E3 ⊗E3. (8.128)

(f) If the parallelepiped is composed of an incompressible material, then show that

∂ f3

∂ z
= r

(
∂ f1

∂ r
∂ f2

∂ϑ

)−1

. (8.129)

Exercise 8.4: This exercise is devoted to an exploration of constitutive relations for
a constrained hyperelastic continuum. We note that there are several treatments of
this topic, among them [46, 50, 351], and these treatments have some overlaps to
one that is used in the mechanics of rigid bodies and particles.

(a) Consider solving the following equation for f(x):

f · ẋ= 0, (8.130)

for all ẋ which satisfy the equation

g · ẋ= 0. (8.131)
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Here, g = g(x), the vector x and vector-valued functions f and g are N-
dimensional, and a ·b= ∑N

K=1 aKbK . Prove that the solution to Eqn. (8.130) is

f = 0+λg, (8.132)

where λ is a scalar. That is, f is parallel to g.12 Would this result hold if f =
f (x, ẋ)?

(b) Using the results of (a), show that the constitutive equations for a constrained
hyperelastic material whose strain energy function is ψ∗(C) and which is sub-
ject to a constraint φ ∗(C) = 0 is

S = 2ρ∗
0

∂ψ∗

∂C
+λ

∂φ ∗

∂C
. (8.133)

Your starting point should be the identity S · Ċ = 2 ˙ρ∗
0 ψ∗, where the inner-

product · of two tensors is defined using the trace operator: A ·B = tr
(
ABT

)
.13

(c) The prescription λ ∂φ∗
∂C for the constraint response is sometimes known as the

normality prescription. Why is this the case? Give a brief discussion of the iden-
tical satisfaction of the moment of momentum balance law by the constitutive
relations (8.133).

(d) Show that the principal invariants of B and C are identical:

IB = IC, IIB = IIC, IIIB = IIIC, (8.134)

where, for any second-order tensor A,

IA = tr(A) , IIA =
1
2

(
tr(A)2 − tr

(
A2)

)
, IIIA = det(A) . (8.135)

(e) Using the results of (b) show that the constitutive relations for an incompressible
hyperelastic body are

T = 2ρ∗F
∂ψ∗

∂C
FT − pI. (8.136)

Here, the scalar function p = p(X, t) is known as the pressure. For this exercise,
you may need to use the following identity:

∂ det(C)

∂C
= det(C)C−1. (8.137)

(f) Apply the results of (e) to the case of an incompressible Mooney-Rivlin mate-
rial where ρ∗

0 ψ∗ is given by Eqn. (8.90). Your final expression for T should be

12 For assistance with this exercise, it may be helpful to point out that a closely related proof can
be found in Green et al. [136, Page 902].
13 You may wish to notice that T ·LT = JP · Ḟ = JS · Ė, where, among others, the moment of
momentum balance law T = TT is used to establish the equivalence. As mentioned on Page 361,
the tensor L has the representation L = ḞF−1 = ∑3

k=1 ġk ⊗gk.
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equivalent to Eqn. (8.88). In addition to the Cayley-Hamilton theorem for B,

B3 − IBB2 + IIBB− IIIBI = 0, (8.138)

the following identities will be helpful:

∂ tr(C)

∂C
= I,

1
2

∂
∂C

(
tr(C)2 − tr

(
C2)

)
= tr(C)I−C. (8.139)

(g) Consider the theory of a nonlinear elastic string that is discussed in Chapter 1.
Suppose that the string has a strain energy function ρ0ψ = ρ0(ξ )ψ(μ ,ξ ) where

μ =
∣
∣
∣
∣
∣
∣r

′ ∣∣
∣
∣
∣
∣ is the stretch of the string and ξ is a convected coordinate. Starting

from the energy theorem (1.82)2 and the local form of the balance of angular
momentum (1.84) for the string,

ρ0ψ̇ = n ·v′
, r

′ ×n = 0, (8.140)

using the results of (a), and the identity μμ̇ = r
′ ·v′

, determine the constitutive
relations for the contact force n in the string. Specialize your results to the case
of a strain energy function

ρ0ψ =
EA
2

(μ −1)2 . (8.141)

When would E and A depend on ξ ? What is ρ0ψ for a linearly elastic string?
(h) Suppose that the string in (g) is inextensible. Using the results of (a), develop

an expression for the constitutive relations for the string.
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