
Chapter 6
Theory of an Elastic Rod with Extension
and Shear

“In this way, one arrives at the kinematical model of a rod consisting of a one-

dimensional continuum M1 and a set of two vector fields

(
d
1

i (ξ , t) ,d
2

i (ξ , t)
)

in

M1 whose values fix a homogeneous deformation of the cross section of the rod
through the point ξ .”

R. A. Toupin’s discussion in [348, Page 90] of a model for a rod as a material curve
with a set of directors.

6.1 Introduction

For many of the applications analyzed using Kirchhoff’s rod theory one cannot help
but ask about the influence of extensibility of the centerline. This is particularly true
for the telephone cord that is often used to demonstrate perversions. In attempting to
use a rod theory to analyze the twisting and bending of a length of surgical tubing,
the possibility for relaxing some of the assumptions associated with the deformation
of the cross sections in Kirchhoff’s rod theory also appears to be desirable. Two
paths are available to develop the resulting rod theory. One avenue is to establish
the theory as an approximate solution for a three-dimensional continuum. A second
avenue, popularized by Ericksen and Truesdell’s paper [100] on directors in 1958, is
to model the rod as a directed (or Cosserat) curve - that is, as a material curve with a
set of deformable vectors (directors) associated with each point on this curve. While
the resulting rod theory stands alone as a separate theory, many of the parameters
in the models produced by this theory, such as mass density per unit length and
stiffnesses, are identified by directly comparing the predictions of the rod theory
to corresponding problems from the three-dimensional theory. In the early 1970s
several researchers, including Antman [10], Green and Laws [130], and Reissner
[299, 300], extended Kirchhoff’s theory to include extension of the centerline and
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270 6 Theory of an Elastic Rod with Extension and Shear

rotation of the cross sections relative to the centerline. The latter effect is known
as transverse shear. As shall be shown in an exercise at the end of this chapter,
a linearized version of the rod theory provides Stephen P. Timoshenko’s (1878–
1972) celebrated beam theory [344]. The extensions to Kirchhoff’s original theory
were neither free from controversy nor recriminations and many contributions on
the topic have largely been forgotten.

Primarily because of Antman’s seminal book [12] and papers, the most popular
form of the theory in the recent literature is the one which he presents. His formu-
lation has inspired a numerical implementation of the theory in an influential paper
[327] written by Simo and Vu-Quoc. In addition, partially because both n and m
are prescribed by constitutive relations involving six strains, the theory has enabled
several teams of researcher to propose a range of Hamiltonian formulations using
notions from geometric mechanics (cf. [86, 178, 238, 326]).

Antman [12] is the primary resource for the analyses of problems describing the
rod theory discussed in this chapter. Our developments will be closely aligned with
[12, Chapter 8] and include an explicit discussion of material momentum and recent
treatments of material symmetry for elastic rods. We present a limited discussion
of applications and refer the reader to [12] for examples and analyses. One applica-
tion that we do consider is motivated by a remarkable series of recent works where
strands of DNA molecules are subject to mechanical testing (see the review [40]).
From these tests, it has become apparent that a twist-bend coupling [228] and a
stretch-twist coupling [177, 227] is present. While the twist-bend coupling can be
modeled using Kirchhoff’s rod theory by incorporating the strains ν1ν3 and ν2ν3

in the strain energy function, the latter coupling requires an extensible rod theory
of the type considered in this chapter. Further, as demonstrated by Healey [158],
the theory discussed in the present chapter is ideal for wire ropes which possess
an inherent helical symmetry. The second application we consider is an analysis of
static solutions for the rod theory that is based on Ericksen’s notion of uniform states
for rods.

6.2 Kinematical Considerations

For the rod theory of interest in this chapter, the rod is modeled as a material curve
L to which at each point a pair of directors d1 and d2 are defined. As in the previous
chapter, the material curve with its associated directors is known as a Cosserat or
directed curve. Variants of the rod theory discussed here were proposed by Antman
[10] and Green and Laws [130], among others, and it is often known, following [12],
as a special Cosserat rod theory.

In the reference configuration R0 and present configuration R of the directed
curve, the directors are denoted by Dα = Dα (ξ ) and dα (ξ , t), where α = 1,2. The
locations of material points in the two configurations are defined by the vector-
valued functions R(ξ ) and r(ξ , t), respectively. The configuration R0 of the di-
rected curve is defined by the triple R(ξ ) and Dα(ξ ) and the configuration R of the
directed curve is defined by the triple r(ξ , t) and dα(ξ , t).
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Fig. 6.1 (a) Schematic of the reference configuration for a straight rod. (b) The present configura-
tion of the rod. Note that the cross sections of the rod are not constrained to remain normal to the
tangent vector r

′
.

For the rod theory of interest, the directors retain their magnitude and relative
orientation:

dα(ξ , t) = P(ξ , t)Dα(ξ ), Dα(ξ ) = P0(ξ )Eα . (6.1)

Here, as in the previous chapter, P and P0 are rotation tensors and {E1,E2,E3} are
a set of fixed, right-handed orthonormal basis vectors. We recall the definitions of
the skew-symmetric tensors

K = PT P
′
, K0 = P

′
0PT

0 , (6.2)

and their respective axial vectors ν and ν0:

ν= ax(K) , ν0 = ax(K0) . (6.3)

Differentiating Eqn. (6.1)1 and using the identity (5.9), we find a familiar result:

d
′
α = (P(ν+ν0))×dα . (6.4)

It is crucial to note here that we are not assuming that d1 ×d2 ‖ r
′
. That is, we are

allowing transverse shearing of the cross sections of the rod that may initially be
normal to the tangent vector to the material curve L (cf. Figure 6.1).
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Fig. 6.2 Schematic of a pair of motions of a directed curve which differ by a rigid body motion.
Observe that both motions are relative to the same reference configuration R0.

A pair of motions (r(ξ , t) ,dα (ξ , t)) and
(
r⊥

(
ξ , t⊥

)
,d⊥

α
(
ξ , t⊥

))
of a directed

curve differ by a rigid body motion if

r⊥
(

ξ , t⊥
)
= Q(t)r(ξ , t)+q(t),

d⊥
1

(
ξ , t⊥

)
= Q(t)d1 (ξ , t) ,

d⊥
2

(
ξ , t⊥

)
= Q(t)d2 (ξ , t) . (6.5)

Here, Q is a proper-orthogonal tensor-valued function of time, q(t) is a vector-
valued function of time, and t⊥ = t + a with a being constant (cf. Figure 6.2). Ob-
serve that

P⊥
(

ξ , t⊥
)
= Q(t)P(ξ , t) ,

(
P⊥

(
ξ , t⊥

))′
= Q(t)P

′
(ξ , t) . (6.6)

With the help of the identities a · (Ab) = b · (AT a
)

for all second-order tensors
A and Q(a×b) = (Qa)× (Qb) for all proper-orthogonal tensors Q, it should be
easy to see that the inner products r

′ · r′
, r

′ ·dα , and dα ·dβ remain invariant under
superposed rigid body motions whereas r · r or r ·dα are not the same for a motion
and another motion which differs from it by a rigid body motion.

The components of Pν and r
′ − PR

′
with respect to the basis {d1,d2,d3 =

d1 ×d2} define the six strain measures:

η= PT r
′ −R

′
= η1D1 +η2D2 +η3D3,

ν= ν1D1 +ν2D2 +ν3D3. (6.7)
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Here, D3 = D1 ×D2 and neither d3 nor D3 should be confused with the unit tangent
vector to the centerline of the rod. We leave it as an exercise to verify that

η⊥
(

ξ , t⊥
)
= η(ξ , t) , ν⊥

(
ξ , t⊥

)
= ν(ξ , t) . (6.8)

That is, the vectors ν and η are suitable candidates for strain measures for the rod
theory. If we identify d1 and d2 with the cross section of the rod-like body that the
directed curve is modeling, then ν1 and ν2 can be identified as flexural (bending)
strains, and ν3 is the torsional strain of the cross section. The strains η1 and η2

measure the change in the d1 and d2 components of r
′

and are considered to be
shearing strains:

ηβ =
(

PT r
′ −R

′) ·Dβ = r
′ ·dβ −R

′ ·Dβ . (6.9)

The sixth strain measure η3 provides a measure of the change in the volume r
′ ·

(d1 ×d2):

η3 =
(

PT r
′ −R

′) ·D3 = r
′ ·d3 −R

′ ·D3. (6.10)

Only in exceptional instances is η3 equal to the extension (stretch) squared of the
centerline.

6.3 Summary of the Governing Equations for the Rod Theory

The balances laws for the theory are identical to those for the Kirchhoff rod theory
that we presented in Section 5.7.2 of Chapter 5. The primary differences are the
constitutive relations for n and m and the fact that r

′ �= d1 ×d2. These differences
were anticipated in writing Chapter 5 so that much of the material could be recycled
in the present chapter. As a consequence our discussion here is brief.

The conservation laws (5.75)–(5.79) are postulated and the local forms and jump
conditions are established in the usual manner. Omitting details, we find the follow-
ing jump conditions:

[[r]]γ = 0, [[PP0]]γ = 0,

[[ρ0]]γ γ̇ = 0,
[[

ρ0y0α]]
γ γ̇ = 0,

[[
ρ0yαβ

]]
γ

γ̇ = 0,

[[n]]γ +[[G]]γ γ̇ +Fγ = 0,

[[C]]γ +[[P]]γ γ̇ +Bγ = 0,

[[m]]γ +
[[

d1 ×L1 +d2 ×L2]]
γ γ̇ +MOγ − r(γ , t)×F = 0. (6.11)

Here, the linear momentum G and director momenta Lβ have the familiar forms

G = ρ0ṙ+ρ0

2

∑
α=1

y0α ḋα , Lβ = ρ0y0β ṙ+ρ0

2

∑
α=1

yβα ḋα . (6.12)
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The jump conditions are supplemented by the pair of partial differential equations
and the local form of the balance of energy:

Ġ = ρ0f+
∂n
∂ξ

,

ρ0

(
2

∑
α=1

dα × y0α r̈+
2

∑
α=1

2

∑
β=1

dα × yαβ d̈β

)
= ma +

∂m
∂ξ

+
∂r
∂ξ

×n,

ρ0ψ̇ = n ·
(

∂v
∂ξ

−ω× ∂r
∂ξ

)
+m · ∂ω

∂ξ
. (6.13)

Observe that ∂v
∂ξ −ω× ∂r

∂ξ is the corotational rate of ∂r
∂ξ .

The jump condition arising from the energy balance (5.79) is not listed above.
As with the theories of strings and rods we have discussed previously, this jump
condition is used to relate the mechanical powers of the singular supplies:

Bγ γ̇ +Fγ ·vγ +Mγ ·ωγ = ΦEγ , (6.14)

where the resultant moment Mγ is defined by the identity

Mγ = MOγ − r(γ , t)×Fγ . (6.15)

Given the appropriate boundary conditions, constitutive relations, and initial condi-
tions, the preceding equations serve to enable the calculation of r and P (or equiva-
lently dα ) for a directed curve.

6.3.1 Constitutive Relations for n and m

Using the strains ν and η, the strain energy function of the rod is assumed to have
the representations

ρ0ψ = ρ0ψ
(
η(ξ ) ,ν(ξ ) ,ν0 (ξ ) ,R

′
(ξ ) ,ξ

)
= ρ0ψ̂ (ηi,νk,ξ ) . (6.16)

In the second of these representations, ηi = η(ξ ) ·Di(ξ ) and νk = ν(ξ ) ·Dk(ξ ).
Observe that both representations of ρ0ψ are invariant under superposed rigid body
motions of the directed curve: ψ⊥ = ψ . Later, we shall use the local form of the
balance of energy to specify constitutive relations for n and m using ψ .

We can parallel our earlier developments in Section 5.4 of Chapter 5 to find that

ḋα = ω×dα , ω= ax
(
ṖPT ) . (6.17)

In addition, the derivatives of P with respect to ξ and t are related (cf. Eqn. (5.40)):

ω
′
= Pν̇. (6.18)
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Given any vector b, say, where

b = b1d1 +b2d2 +b3 (d1 ×d2) , (6.19)

then the corotational rate of b has the representations

ḃ−ω×b = ḃ1d1 + ḃ2d2 + ḃ3 (d1 ×d2) . (6.20)

This identity is helpful for interpreting representations for the derivatives of strain
energy functions. For instance, differentiating η with respect to time and noting that
the axial vector of PṖT is −ω, we find that

η̇= PT
(

v
′ −ω× r

′)
. (6.21)

The identities (6.18) and (6.21) can also be considered as compatibility equations
for the material time and ξ derivatives.

The material time derivative of ρ0ψ has several representations:

ρ0ψ̇ = ρ0

3

∑
k=1

∂ψ̂
∂ηk

η̇k +ρ0

3

∑
k=1

∂ψ̂
∂νk

ν̇k

=

(
ρ0

3

∑
k=1

∂ψ̂
∂ηk

Dk

)
· η̇+

(
ρ0

3

∑
k=1

∂ψ̂
∂νk

Dk

)
· ν̇

= Pρ0
∂ψ̂
∂ν

·ω′
+Pρ0

∂ψ̂
∂η

·
(

v
′ −ω× r

′)
, (6.22)

where we used the identities (6.18) and (6.21) and defined the following pair of
vectors:

∂ψ̂
∂ν

=
3

∑
k=1

∂ψ̂
∂νk

Dk,
∂ψ̂
∂η

=
3

∑
k=1

∂ψ̂
∂ηk

Dk. (6.23)

The role played by P in establishing the last of the relations (6.22) is to change the
basis from Dk to dk in the vectors ∂ψ̂

∂ν and ∂ψ̂
∂η .

The constitutive relations for the rod are found by considering the local form of
the balance of energy:

ρ0ψ̇ = m · ∂ω
∂ξ

+n ·
(

∂v
∂ξ

−ω× ∂r
∂ξ

)
. (6.24)

Following the procedure we have used several times previously, we now introduce
the representation (6.22)3 for ρ0ψ̇ and rearrange the local form of the balance of
energy:

(
m−Pρ0

∂ψ̂
∂ν

)
·ω′

+

(
n−Pρ0

∂ψ̂
∂η

)
·
(

v
′ −ω× r

′)
= 0. (6.25)
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Assuming this equation holds for all motions of the rod and that n and m are inde-
pendent of η̇k and ν̇i, it follows that

n = Pρ0
∂ψ̂
∂η

= ρ0
∂ψ̂
∂η1

d1 +ρ0
∂ψ̂
∂η2

d2 +ρ0
∂ψ̂
∂η3

(d1 ×d2) ,

m = Pρ0
∂ψ̂
∂ν

= ρ0
∂ψ̂
∂ν1

d1 +ρ0
∂ψ̂
∂ν2

d2 +ρ0
∂ψ̂
∂ν3

(d1 ×d2) . (6.26)

Thus, in contrast to the constitutive relations Eqn. (5.91) for the Kirchhoff theory, n
is completely described by constitutive relations. It may be helpful to note that we
are no longer imposing the constraint r

′
= d1 ×d2. Consequently, the shear forces

n ·dα can be loosely interpreted as being responsible for deforming (shearing) dα
in the tangential direction to the material curve.

The reference configuration R0 is said to be a natural configuration if n = 0 and
m = 0 when ν= 0 and η= 0:

∂ψ̂
∂ν

(ν= 0,η= 0,ξ ) = 0,
∂ψ̂
∂η

(ν= 0,η= 0,ξ ) = 0. (6.27)

Such a directed curve can be held in equilibrium without the application of external
forces ρ0f or moments ma, or terminal forces and moments at its boundary.

We consider linearizations of ρ0ψ so these functions are expressed as quadratic
functions of the components of ν and η. Thus, if the reference configuration is a
natural configuration, we find the canonical form

ρ0ψ =
1
2
gTAg+ vTCg+

1
2
vTBv, (6.28)

where

g =

⎡
⎣η1

η2

η3

⎤
⎦ , v =

⎡
⎣ν1

ν2

ν3

⎤
⎦ , (6.29)

and

A=

⎡
⎣ a11 a12 a13

a12 a22 a23

a13 a23 a33

⎤
⎦ , B=

⎡
⎣b11 b12 b13

b12 b22 b23

b13 b23 b33

⎤
⎦ , C=

⎡
⎣ c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤
⎦ . (6.30)

The coefficients aik,bik, and cik may depend on ξ , the intrinsic strains ν0 j , and R ·Ek.
Material symmetry conditions are often imposed to reduce the number of coeffi-
cients aik,bik, and cik from 21. These conditions will be discussed shortly and the
most dramatic of them will reduce the number of coefficients from 21 to four. In a
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geometrically nonlinear theory with a quadratic strain energy function, the constitu-
tive relations for n and m have the forms

n =
3

∑
i=1

nidi, m =
3

∑
i=1

midi, (6.31)

where ⎡
⎣n1

n2

n3

⎤
⎦= Ag+Cv,

⎡
⎣m1

m2

m3

⎤
⎦= Cg+Bv. (6.32)

For a linearized theory, the strains ηi and νi are linearized about a reference config-
uration, and n and m are expressed in terms of the Di basis, e.g., n ≈ ∑3

k=1 nkDk.

6.4 Treatments of Material Symmetry

In contrast to three-dimensional continua, the strain energy function of an elastic
rod depends not only on the constitution of the rod but also on its geometry. For
Kirchhoff’s rod theory, the most well-known example of the geometry dependence
lies in the simplification to the strain energy function ρ0ψ = EI1

2 ν2
1 +

EI2
2 ν2

2 +
D
2 ν2

3
that occurs when the cross section of the rod is either circular or square (i.e., I1 = I2).
In the more elaborate rod theory under consideration in this chapter the number of
strains has risen to six and it is natural to ask if there are conditions under which the
strain energy function contains coupling terms between, say, torsion ν3 and dilation
η3? To explore this question, it is necessary to establish restrictions on the function
ρ0ψ that manifest because of material symmetry.

The notion of material symmetry employed here is broader than the one used in
three-dimensional continuum mechanics because it must account not only for the
constitution of the continuum composing the rod but also for the geometry of the
rod. For instance, consider a rod composed of an isotropic linearly elastic material.
The material symmetry of the rod will depend on the geometry of the cross section.
For instance, a rod with a rectangular cross section is expected to behave differently
than one with a circular cross section and this will be reflected in the strain energy
function of the rod and the inertial coefficients yαβ .

Several treatments of material symmetry for rods can be found in the literature.
The first class of treatments considers the invariance of a strain energy function
under specific orthogonal transformations of a reference configuration (see, e.g.,
Antman [12, Section 8.11], Cohen [62], Green and Naghdi [133, Section 9], Green,
Naghdi, and Wenner [138, Section 8], and Lauderdale and O’Reilly [198]). The re-
sulting set of transformations forms what is known as the material symmetry group
of the rod. Two generalizations of these treatments can also be found in the litera-
ture. The first generalization includes transformations of the coordinate ξ in parallel
with an orthogonal transformation. This treatment is motivated by the use of rod
theories to model rod-like bodies, such as wire rope and DNA strands, that possess
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Fig. 6.3 The pair of reference configurations IR0 and IIR0 of a directed curve and the present
configuration R.

helical microstructures. The seminal work on this type of treatment is a recent paper
by Healey [158]. The second generalization considers orthogonal transformations
which are functions of ξ and transformations of the coordinate ξ and can be found
in the recent papers [199, 214]. In this chapter, we only consider the simplest treat-
ment and refer the reader to the literature for details on the more general treatments.

6.4.1 The Case of a Constant Transformation Q

For the treatment of material symmetry that we present, we consider a pair of refer-
ence configurations of the directed curve (cf. Figure 6.3). The pair of configurations
are denoted by IR0 and IIR0, respectively. The material coordinates in these config-
urations are denoted by Iξ and IIξ , respectively, and are presumed to be identical:

ξ = IIξ = Iξ . (6.33)

We suppose that the directors and tangent vectors in IR0 and IIR0 can be related by
a constant orthogonal transformation Q:

IIDβ (IIξ ) = Q IDβ (Iξ ) ,
∂ IIR
∂ IIξ

(IIξ ) = Q IR
′
(Iξ ) ,

IIP0 (IIξ ) = Q IP0 (Iξ ) . (6.34)
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Here, the prime denotes the partial derivative with respect to Iξ . Representative ex-
amples of proper- and improper-orthogonal transformations elements of the material
symmetry groups are shown in Figure 6.4.

D1

D1D1

D2 D2

D2

D3D3

D3

θ

QD1

QD2

QD1 =−D1

QD2 =D2

QD3 =D3

QD1 =D1

QD2 =−D2

QD3 =−D3

QD1 =−D1

QD2 =−D2

QD3 =−D3

(a) (b)

(c) (d)

Fig. 6.4 The orthogonal transformations that are elements in the transverse isotropy material sym-
metry groups: (a), a rotation about D3: Q = QE (θ ,D3); (b), a reflection in the D2 −D3 plane:
Q = ReD1 ; (c), a rotation about D1 through an angle of 180◦: Q = −ReD1 ; and (d), an inversion:
Q =−I.

It follows from the relations (6.34) that

IIP(IIξ ) = IP(Iξ )QT , IIη(IIξ ) = Q Iη(Iξ ) , (6.35)

and
IIK(IIξ ) = Q IK(Iξ ) QT , IIν(IIξ ) = QA

Iν(Iξ ) . (6.36)

In these equations, QA = det(Q)Q is the adjugate of Q. We recall that the adjugate
BA of a tensor B has the property that BA (a×b) = Ba×Bb. For an invertible tensor

B, BA = det(B)
(
B−1

)T
. Using the adjugate, it can be shown that

(
BAc

)×b =
(
BCBT )b, (6.37)

for all vectors b and skew-symmetric tensors C = −CT where c = ax(C). This
property of the adjugate is used to establish Eqn. (6.36)2 from Eqn. (6.36)1 and it is
repeatedly used throughout Section 6.6.
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For the same present configuration (r,dα) and the same material point, the
strain energy functions of the rod relative to the two reference configurations are,
respectively,

ρ0ψ = Iρ0Iψ (Iη(Iξ ) , Iν(Iξ ) , Iξ )
= IIρ0IIψ (IIη(IIξ ) , IIν(IIξ ) , IIξ ) . (6.38)

For notational simplicity, the possible dependency of the strain energy functions on
ν0 (ξ ) and R

′
(ξ ) have been lumped into the dependency on ξ . We find, with the

help of the relations (6.34)–(6.36), that

ψ = IIρ0IIψ (IIη(IIξ ) , IIν(IIξ ) , IIξ )

= Iρ0Iψ
(

QT
IIη(Bξ ) ,

(
QA)−1

IIν(IIξ ) , IIξ
)
. (6.39)

The specific point where IIν and IIη are evaluated in Iψ is important to note.
We define two reference configurations of the rod to be material symmetry re-

lated if, for all motions with the same ν and η, and the same value of the material
coordinates, Iξ = ξ and IIξ = ξ ,

Iρ0Iψ (η(ξ ) ,ν(ξ ) ,ξ ) = IIρ0IIψ (η(ξ ) ,ν(ξ ) ,ξ ) . (6.40)

With the assistance of Eqn. (6.39), we can express the condition (6.40) in terms of
the strain energy function Iψ:

ρ0ψ (η(ξ ) ,ν(ξ ) ,ξ ) = ρ0ψ
(
QTη(ξ ) ,det(Q)QTν(ξ ) ,ξ

)
,

= ρ0ψ̃
(
QTη(ξ ) ,QT K(ξ )Q,ξ

)
. (6.41)

For convenience, we have dropped the left-subscript I and made some other ob-
vious simplifications in notation. The function ψ̃ has been introduced for future
convenience so we can easily exploit results from the literature.

In part because the product of two orthogonal transformations is an orthogonal
transformation and the identity I is an orthogonal transformation, the group structure
associated with the symmetry condition (6.41) can readily be developed. Elements
g of the group G will be orthogonal transformations, g = (Q). The group operation
g2 ◦g1 = (Q2Q1) yields another element Q2Q1 of the group. It is easy to see that the
group operation is associative: g3◦(g2 ◦ g1) = (g3 ◦ g2)◦g1 = (Q3Q2Q1). In addition,
the identity and inverse elements are

i= (I) , g−1 =
(
QT ) . (6.42)

The group G is known as the material symmetry group of the rod.
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Table 6.1 Invariants in irreducible function bases for the five different transverse isotropies. The
function bases are taken from Zheng [371, Tables 12 and 14] for scalar functions of a vector η and
a skew-symmetric tensor K = skew(ν).

Material Symmetry Elements g of G Irreducible function
Group G bases

C∞ {QE (θ ,D3) ,θ ∈ [0,2π]} ν ·ν, η ·η,
η ·D3, ν ·D3,
ν ·η, D3 · (η×ν).

C∞h {−I,QE (θ ,D3) ,θ ∈ [0,2π]} ν ·ν, η ·η,
(η ·D3)

2, ν ·D3,
(ν×η) · (ν×η), D3 · (η× (ν×η)),

D3 · (η× (ν× (ν×η))),
(D3 ·η)(D3 · (η×ν)).

C∞v {ReD1 ,QE (θ ,D3) ,θ ∈ [0,2π]} ν ·ν, η ·η,
η ·D3, (ν ·D3)

2,
D3 · (η×ν),

D3 · (ν× (ν×η)).
D∞h {−ReD1 ,QE (θ ,D3) ,θ ∈ [0,2π]} ν ·ν, η ·η,

(η ·D3)
2, (ν ·D3)

2,
(ν×η) · (ν×η), (D3 ·η)(D3 · (ν×η)),

(D3 · (ν×η))(D3 · (ν× (ν×η))).
D∞ {−I,ReD1 ,QE (θ ,D3) ,θ ∈ [0,2π]} ν ·ν, η ·η,

(η ·D3)
2, (ν ·D3)

2,
ν ·η, (D3 ·η)(D3 ·ν),
(D3 · (η×ν))(D3 ·ν),
(D3 ·η)(D3 · (ν×η)).

6.4.2 Transverse Isotropy and Transverse Hemitropy

For many rod-like bodies modeled using rod theory, the structure of the continuum
has a material symmetry and this symmetry is reflected in the constitutive relations
for the rod. One prominent example arises when the body has a unique preferred
direction and the material is said to be transversely isotropic. If this body is mod-
eled as a rod with a circular cross section and the preferred direction is aligned
with the axis of the rod, then the rod inherits this material symmetry. An example
of this situation lies in modeling an insulated electrical cord using a rod theory. A
second example arises when the elastic rod-like body is isotropic. If the cross sec-
tions are circular, then the resulting rod is said to be transversely isotropic or, more
commonly, isotropic.
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For a three-dimensional continua there are five distinct types of transverse
isotropy and, depending on the rod’s strain energy function, some of them may be
indistinguishable.1 The five groups, along with their elements, are as follows:

Rotational symmetry : C∞ = {QE (θ ,D3) ,θ ∈ [0,2π]} ,
Rotational symmetry : C∞h = C∞ ∪{−I} ,
Rotational symmetry : C∞v = C∞ ∪{ReD1} ,

Transverse hemitropy : D∞h = C∞ ∪{−ReD1} ,
Transverse isotropy : D∞ = C∞ ∪{−I,ReD1} .

In these groups,
ReD1 = I−2D1 ⊗D1 (6.43)

is a reflection about the plane perpendicular to D1 and QE (θ ,D3) is a rotation about
the axis D3 through an angle θ (cf. Figure 6.4). We also note that

−ReD1 = 2D1 ⊗D1 − I = QE (π,D1) . (6.44)

For the rod-like body, we assume that the preferred direction is chosen to coincide
with the axis D3 in the reference configuration R0. In addition, we assume that this
configuration is straight and natural with ν0 = 0. Motivated by the correspondence
between the rod theory and the three-dimensional theory of a continuum, we adopt
the definitions above for the rod theory. We next seek the most general forms of the
strain energy function for the rod which has one of the aforementioned five material
symmetry groups.

The most general form of a function compatible with the material symmetry
condition (6.41) is determined by an irreducible set of functions. The members of
the irreducible set of functions are invariant under the elements of the rod’s material
symmetry group. For example, ν ·ν= (Qν ·Qν) and so the function ν ·ν is invariant
under orthogonal transformations while ν ·E3 (which transforms to Qν ·E3) does not
possess this invariance. Following seminal work by Ronald S. Rivlin (1905–1995)
and others, Zheng et al. (see [369–371] and references therein) have compiled the
smallest (irreducible) sets of invariant functions for a wide range of strain energy
functions. Their results for functions of a vector and a skew-symmetric tensor are
presented in Table 6.1. For the five material symmetry groups of the rod, we use
these results to establish the simplest functional forms of the strain energy function
ρ0ψ which satisfy the material symmetry condition (6.41) for each of the groups.
Specifically, using the results from [371, Tables 12 and 14] which are summarized
in Table 6.1, we find that

ρ0ψ = F (A,ν0 (ξ ) ,ξ ) , (6.45)

1 By way of additional background, we also note that if a function is invariant only under proper-
orthogonal transformations (i.e., rotations) then it is said to be hemitropic. The adjective isotropic
pertains to the case where the function is invariant under orthogonal transformations.
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where the arguments A can be read from Table 6.1. The linearized (quadratic) strain
energy function can also be readily determined by restricting attention to quadratic
elements of the irreducible function basis.

For instance, consider the transverse isotropy D∞h. As we shall see, this type of
symmetry is synonymous with the notion of an isotropic rod. We can infer from
Table 6.1 that the most general functional form of ρ0ψ that is compatible with the
material symmetry condition for all of the elements of D∞h is

ρ0ψ = F
(
ν2

1 +ν2
2 ,ν2

3 ,η2
1 +η2

2 ,η2
3 , i1, i2, i3,ν0 (ξ ) ,ξ

)
, (6.46)

where the quartic, cubic, and quintic terms are

i1 = (ν×η) · (ν×η) ,
i2 = (D3 ·η)(D3 · (ν×η)) ,

i3 = (D3 · (ν×η))(D3 · (ν× (ν×η))) . (6.47)

For the quadratic strain energy function (6.28) these restrictions imply that the
most general quadratic strain energy function that is compatible with the transverse
isotropy material symmetry group D∞h is

ρ0ψ =
a11

2

(
η2

1 +η2
2

)
+

b11

2

(
ν2

1 +ν2
2

)
+

a33

2
η2

3 +
b33

2
ν2

3 . (6.48)

Whence, the number of coefficients has been reduced from 21 to four. We leave
it as an exercise for the reader to show that the quadratic strain energy functions
for the material symmetry groups associated with C∞h and D∞h are identical to the
function (6.48).

A rod whose material symmetry group is C∞ is aptly termed transversely
hemitropic by Healey [158]. For such a rod, we can infer the most general form
of the strain energy function that is compatible with the material symmetry group
using Table 6.1:

ρ0ψ = F
(
ν2

1 +ν2
2 ,ν3,η2

1 +η2
2 ,η3,η1ν1 +η2ν2,(η1ν2 −ν1η2)

)
. (6.49)

The quadratic strain energy function for such a rod is readily inferred:

ρ0ψ =
a11

2

(
η2

1 +η2
2

)
+

b11

2

(
ν2

1 +ν2
2

)
+

a33

2
η2

3 +
b33

2
ν2

3

+c11 (η1ν1 +η2ν2)+ c33η3ν3 + c12 (η1ν2 −ν1η2)︸ ︷︷ ︸ . (6.50)

The underbraced terms in this equation are the differences between the quadratic
strain energy functions for the isotropic and hemitropic cases. We also note that a
nonvanishing c33 in this expression implies that there will be coupling between ex-
tension and torsion in a straight rod. As discussed in Healey [158], the strain energy
function (6.50) with c12 = 0 is suitable for modeling some rods whose microstruc-
ture has a helical symmetry.
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6.4.3 Application to Kirchhoff’s Rod Theory

The strain energy function for a homogenous rod modeled using Kirchhoff’s rod
theory with ν0 = 0 has the functional form

ρ0ψ = ρ0ψ (ν) . (6.51)

It is straightforward to develop a material symmetry condition akin to the condi-
tion (6.41) for such a rod. For the material symmetry groups C∞ and C∞h, we can
use the previous developments to show that the strain energy function has the in-
variant form

ρ0ψ = F
(
ν2

1 +ν2
2 ,ν3

)
. (6.52)

By way of contrast, for the material symmetry groups D∞, D∞h, and C∞v, the invari-
ant form of the strain energy function is

ρ0ψ = F
(
ν2

1 +ν2
2 ,ν2

3

)
. (6.53)

Thus, these three material symmetry groups are commonly associated with the
notion of an isotropic Kirchhoff rod. Furthermore, for all five material symmetry
groups, the quadratic form of the strain energy function is the familiar

ρ0ψ =
b11

2

(
ν2

1 +ν2
2

)
+

b33

2
ν2

3 . (6.54)

By comparing solutions of the Kirchhoff rod theory to the solutions to the corre-
sponding problems in three-dimensional linear elasticity, the identifications b11 =
EI and b33 =D can be made.

6.5 Application to Torsion and Extension

In many recent experiments on segments of double-stranded DNA, one end of the
single molecule of DNA is attached to a fixed surface, while the other end is sub-
ject to a force F�E3 and a moment M�E3. These effects are simulated using optical
tweezers, hydrodynamic drag, or magnetic fields. A schematic of one such exper-
iment is shown in Figure 6.5(a) and reviews of the experiments are presented in
[40, 120]. A coupling between stretching and twisting is observed in many of these
experiments. In the sequel, we explore how this effect can be explained by modeling
the strand of DNA as an initially straight rod with a helical microstructure. As em-
phasized in Ðuričković et al. [89], one can also model the DNA strand as a helical
spring and observe the same couplings reported in the biophysics literature.

Referring to Figures 5.7(b) and 6.5(b), we use the material curve to model the
duplex (molecular) axis and choose the directors to follow the phosphate backbone
strands of DNA:

D1 = cos(φh)E1 + sin(φh)E2, D2 = cos(φh)E2 − sin(φh)E1, D3 = E3,
(6.55)
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where the angle φh is a function of the coordinate ξ . Hence,

ν0 = ν03E3 =
∂φh

∂ξ
E3, (6.56)

and ν0 is constant.
We will model the single molecule of DNA using a rod whose strain energy

function ρ0ψ is

2ρ0ψ = b11ν2
1 +b22ν2

2 +b33ν2
3 +a11

(
η2

1 +η2
2

)
+a33η2

3 +2c33η3ν3. (6.57)

Here c33 is a coefficient responsible for the coupling of torsion and extension. The
constants in this strain energy function must be identified by experiments or com-
parison to models based on worm-like chains used in the biophysics literature. By
way of illustration, the radius of the rod will be approximately 10Å and ν03 ≈ 0.185
radians/Å [228]. Using data from [35], the bending moduli b11 = b22 ≈ 2× 10−28

Nm2 and the torsional modulus b33 ≈ 2− 4× 10−28 Nm2. Gore et al. [120] have
measured c33 ≈ −90× 10−21 Nm. With the help of the identities (6.26), we con-
clude that

n = a11 (η1d1 +η2d2)+(a33η3 + c33ν3)d3,

m = b11ν1d1 +b22ν2d2 +(b33ν3 + c33η3)d3. (6.58)

From this pair of constitutive relations observe that, if ν = 0, a nonzero η3 will
induce a moment in the rod and, if η = 0, a nonzero torsion ν3 will induce a force
in the rod.

We suppose that the DNA strands are subject to negligible external body forces
and negligible surface tractions on the lateral surfaces, ρ0f = 0 and lα = 0, and we
restrict attention to static solutions. Starting from the balance laws,

∂n
∂ξ

= 0,
∂m
∂ξ

+
∂r
∂ξ

×n = 0, (6.59)

using the appropriate constitutive relations for n and m, and taking the components
of the balance laws (6.59) relative to the basis {d1,d2,d1 ×d2}, we can establish
the ordinary differential equations governing the shape of the material curve and the
behavior of dα .

The boundary conditions for the problem of interest are

r(0, t) = 0, d1 (0, t) = E1, d2 (0, t) = E2,

n(�, t) = F�E3, m(�, t) = M�E3, (6.60)

where F� and M� are constants.
From the balance laws, we find that n is constant. Assuming that the centerline

remains straight, r
′ ‖ E3, then we also find that m is constant. Consequently,
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(a) (b)

M E3

F E3

D1

D1

D1

D2

E3

L

Fig. 6.5 (a) Schematic of a strand of DNA being stretched and torqued. One end of the strand
is fixed while the other end is affixed to a bead which is used to transmit the applied torque and
force. In experiments on DNA in the literature, the force F� ranges from 0 to 70 picoNewtons. (b)
A portion of the reference configuration R0 for a rod model of the DNA strand.

[
F�
M�

]
=

[
a33 c33

c33 b33

][
η3

ν3

]
. (6.61)

For the simple deformation being considered here, we can express η3 and ν3 in
terms of the displacement Δz ≈ r(�) ·E3 − r(0) ·E3 − � and the change in the angle
of twist at the top of the structure: Δθ ≈ ν3�. In these expressions,

�= R(�) ·E3 −R(0) ·E3 (6.62)

is the initial height of the helical structure. Inverting the linear equations (6.61), we
find that

Δz
�

≈ η3 =
1

a33b33 − c2
33

(b33F�− c33M�) ,

Δθ
�

≈ ν3 =
1

a33b33 − c2
33

(a33M�− c33F�) . (6.63)

After assuming that the strain energy function is positive definite,2 we observe that if
c33 > 0(< 0) then application of a clockwise moment alone can stretch (compress)

2 Necessary conditions for the positive definiteness of the strain energy function (6.57) include
a33 > 0, b33 > 0, and a33b33 − c2

33 > 0.
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the rod and application of a tensile force alone can cause it to rotate in the clockwise
(counterclockwise) direction. The linear relations (6.63) can be used to identify the
parameters a33, b33, and c33 from tests where F� and M� are controlled and Δz

� and
Δθ
� are measured.

We take this opportunity to note that relations which are similar to (6.61) ap-
pear in studies on the extension and twist of wire ropes [73, Chapter 4]. Indeed, we
encountered related work earlier in Chapter 5 when we examined the coupling be-
tween twist and extension in a helical spring (cf. Eqn. (5.228)). If we now identify
the stiffnesses for both models, we will find the identifications

a33 =
Dκ0

R
+

EI
R

τ2
0

κ0
,

b33 =DRτ2
0 +EIRκ0,

c33 = (D−EI)τ0. (6.64)

We note that the coupling coefficient c33 < 0 for right-handed helices which agrees
with the experimental results of Gore et al. [120] who examined the twist-stretch
coupling of strands of DNA.

6.6 Ericksen’s Uniform States

In a remarkable paper, Ericksen [97] proposed a static solution for a wide range of
rod theories where the centerline of the rod describes a helical space curve, a straight
line, or a circular arc, and the directors form constant angles with the normal and
binormal vectors to this curve (cf. Figure 6.6). We now explore Ericksen’s so-called
uniform states for initially straight homogeneous rods where Di = Ei. The deformed
shape of the rod in a uniform state is specified by a rotation tensor Q as follows:

r
′
(ξ ) = Q(ξ )r

′
(0) ,

dβ (ξ ) = Q(ξ )dβ (0) ,

d
′
α (ξ ) = Q(ξ )d

′
α (0) . (6.65)

The axial vector associated with the skew-symmetric tensor Q
′
QT is denoted by νQ

and we shall find that it is a constant throughout the length of the rod.3 We also note
that Ericksen’s analysis provides a transparent proof that wrenches are needed to
maintain the deformed rod and the axis of the wrench coincides with the axis of the
helical space curve. His analysis can be applied to rods modeled using Kirchhoff’s
rod theory and, to this end, we invite the reader to revisit Sections 5.14 and 5.16.2
of the previous chapter.

3 Our use of the symbol Q to denote the rotation tensor associated with the uniform state should
not be confused with the use of the same symbol to denote an orthogonal transformation in an
earlier section of this chapter.



288 6 Theory of an Elastic Rod with Extension and Shear

(a) (b)

(c)

F E3F E3

F E3

mOE3mOE3

mOE3

−F E3 −F E3

−F E3

−mOE3 −mOE3

−mOE3

Fig. 6.6 Ericksen’s uniform states of a rod where the centerline r(ξ ) takes the form of (a), a straight
line, (b), a circular arc, and (c), a circular helix. The deformed state of the rod is maintained by a
wrench in all three cases. Rigid appendages are added to the ends of the rod to enable the wrench
loading.

6.6.1 Kinematical Considerations

Taking the derivative of Eqn. (6.65)2 and comparing the result to Eqn. (6.65)3, we
are lead to the compatibility condition

Q
′
(ξ )QT (ξ ) = Q(ξ )

(
Q

′
(0)QT (0)

)
QT (ξ ) . (6.66)

Whence,
νQ (ξ ) = Q(ξ )νQ (0) . (6.67)

It follows from this relation that the vector νQ (ξ ) is constant throughout the rod:

ν
′
Q (ξ ) = Q

′
(ξ )νQ (0) = Q

′
(ξ )QT (ξ )νQ (ξ ) = νQ (ξ )×νQ (ξ ) = 0. (6.68)

That is, the rotation Q has a constant angular rate. Because Q(ξ = 0) = I, the axis of
rotation of Q is parallel to νQ (ξ ).4 We choose the axis of rotation to be E3 without
loss in generality. We also define the scalar νQ:

νQ (ξ ) = νQE3. (6.69)

The identity QE3 = E3 will be exploited numerous times in the sequel.
Differentiating the equation r

′
(ξ ) = Q(ξ )r

′
(0), we find that

r
′′
(ξ ) = νQ (ξ )× r

′
(ξ ). (6.70)

Integrating this equation, we find the results

r
′
(ξ ) = νQ (ξ )× r(ξ )+ ch, r(ξ ) = Q(ξ )r(0)+ξ ch, (6.71)

4 A proof of this result can be found in [267].
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where ch is a constant. It is convenient to choose the origin so that

ch =ϒ νQE3, (6.72)

where ϒ is a constant. Thus, the centerline of the rod has the shape of a circular
helix, or, if ϒ = 0, a circle, or, if νQ = 0, a straight line. The centerline is in a state
of uniform stretch:

μ =
∣∣∣
∣∣∣r′

(ξ )
∣∣∣
∣∣∣=

∣∣∣
∣∣∣r′

(0)
∣∣∣
∣∣∣ . (6.73)

Consequently, the arc-length parameter s for the centerline and the material coordi-
nate ξ are not identical:

μ =
∂ s
∂ξ

. (6.74)

With the help of Eqn. (1.33), we can identify the parameters of the circular helix:

R =

√
(r(0) ·E1)

2 +(r(0) ·E2)
2, τ =

ϒ
R2 +ϒ 2 , κ =

R
R2 +ϒ 2 . (6.75)

When ϒ = 0, the centerline is a circular arc of radius R.
With regards to the rotation tensor P(ξ ), we find that

Q(ξ ) = P(ξ )PT (0) , P(ξ ) = Q(ξ )P(0) . (6.76)

Consequently,

ν(ξ ) = ax
(

PT (ξ )P
′
(ξ )

)

= ax
(

PT (0)QT (ξ )Q
′
(ξ )P(0)

)

= PT (0)QT (ξ )νQ (ξ )
= PT (0)νQ (0) . (6.77)

For the uniform states, we can quickly find that the strain measure η is also a con-
stant throughout the rod:

η(ξ ) = PT (ξ )r
′
(ξ )−E3

= PT (0)r
′
(0)−E3

= η(0) . (6.78)

The constancy of the strains ν and η throughout the rod is the motivation for Erick-
sen’s choice of the term “uniform state.” Because the rotation tensor for the tangent
vector is identical to those for the directors, the deformed state of the rod will be
twistless.
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6.6.2 Forces and Moments

With the help of the constitutive relations (6.26) for n and m and the assump-
tions (6.65), it is straightforward to see that

n(ξ ) = Q(ξ )n(0) , m(ξ ) = Q(ξ )m(0) . (6.79)

We assume the rod is maintained in equilibrium solely by terminal loadings:

n
(
0+

)
=−F0, n

(
�−

)
= F�, m

(
0+

)
=−M0, m

(
�−

)
= M�, (6.80)

where we will drop the + ornamenting 0 and − ornamenting � in the sequel. The
equilibrium equations yield

n
′
= 0, (m+ r×n)

′
= 0. (6.81)

It follows that F0 and F� are equal and opposite and both are parallel to the axis of
rotation of Q:

F� =−F0 = F�E3. (6.82)

The second conservation implies that

m(ξ )+ r(ξ )×n(ξ ) = mO, (6.83)

where mO is a constant. Substituting for r(ξ ) and using the fact that n ‖ E3, we find
that

m(ξ )+ r(ξ )×n(ξ ) = Q(ξ )(m(0)+ r(0)×n(0)) . (6.84)

This implies that Q(ξ )mO = mO. Consequently, either mO = 0 or mO = mOE3

where mO is a scalar. We can now conclude that the terminal moments on the rod
are

M0 =−mOE3 + r(0)×F�E3, M� = mOE3 − r(�)×F�E3. (6.85)

The fact that F� and the moment relative to O, mO, are parallel to E3 constitutes a
type of loading known in the literature as a wrench (cf. Figure 6.6).

Thus Ericksen’s ingenious perspective demonstrates the ubiquitous nature of he-
lical forms and shows how they are supported by a wrench in the rod theory of
interest here. An alternative derivation of this result can be found in Antman [12,
Section 9.2]. It remains to solve for the deformed shape of the rod and we refer the
interested reader to [12, Section 9.2] for a discussion of the solution procedure.

6.7 Closing Comments

The rod theory we have just discussed is capable of accommodating extensibility,
transverse shear, torsion, and flexure. It is also the first theory we have consid-
ered since the elastic string where the contact forces and moments are completely
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prescribed by constitutive relations. Consequently, the governing equations lead to
partial differential equations for the components of r and dα . For most problems,
these governing equations are provided in a noncontroversial manner by the balance
of linear momentum and balance of angular momentum. If we relax the assump-
tion that the directors are unit vectors and allow their magnitudes to vary, then we
can in principle capture the contraction and expansion of the cross sections of the
rod. However, the source of the extra equations needed to describe the evolution
of these magnitudes is not obvious. Before turning to an exploration of one solu-
tion to this problem, we note that many of the problems analyzed using Kirchhoff’s
rod theory remain to be explored using the more sophisticated theory discussed in
the present chapter. Some progress towards this end has been made. For instance,
Stump analyzed the hocking problem in [334]. However, many problems remain to
be examined.

6.8 Exercises

Exercise 6.1: Consider a rod whose strain energy function is given by the expression

2ρ0ψ = EI1ν2
1 +EI2ν2

2 +Dν2
3 +

kEA
2(1+ν)

(
η2

1 +η2
2

)
+EAη2

3 , (6.86)

where k is known as the shear correction factor.5 Numerically determine the static
equilibria of a uniform, homogeneous rod of length � which is subject to equal and
opposite end forces n0 = −n(0, t) = n(�, t), and end moments m(0, t) and m(�, t).
You should assume that there are no body forces and no surface tractions on the rod-
like body that the rod is modeling. For the material properties, use those for steel or
aluminum.

Exercise 6.2: Consider an infinitely long, homogeneous rod undergoing a steady
axial motion. Show that the equations governing the deformed shape of the rod are
similar to those governing a static equilibrium.6

Exercise 6.3: Consider the static equilibrium of a homogeneous rod in the absence
of assigned forces and moments. Under which conditions is the material contact
force C constant throughout the rod?

5 The shear correction factor is a constant in beam theory that is used to match static and dy-
namic solutions of the three-dimensional theory to those for the rod theory. The factor depends
on the geometry of the cross section and the type of comparisons used (cf. [74, 93, 143, 310]
and references therein). For a square cross section of a linearly elastic isotropic rod-like body
with ν = 0.3, k ≈ 0.85(0.822) if a comparison based on a static (dynamic) solution is employed
(cf. [93, Table 3]).
6 An analysis of the resulting equations can be found in Antman and Liu [13]. We also refer the
reader to the paper by Coleman et al. [66] for a related analysis for a planar rod theory.
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Fig. 6.7 The kinematic measures u1, u3, φs, and δ13 associated with a linearized theory known as
Timoshenko beam theory [344]. It is important to notice that r

′
and d1 are not constrained to be

orthogonal in the rod theory of interest here.

Exercise 6.4: Consider the homogeneous rod which is straight in an undeformed
natural configuration, P0 = I, that is shown in Figure 6.1. The strain energy function
of the rod has the representation

ρ0ψ =
EI1

2
ν2

1 +
EI2

2
ν2

2 +
D

2
ν3

2 +
kEA

4(1+ν)
(
η2

1 +η2
2

)
+

EA
2

η3
2 , (6.87)

where k is known as the shear correction factor. We consider small amplitude, pla-
nar, flexural deformations of this rod7:

R = zE3,

r = u1E1 +u3E3 +R+O
(
ε2) ,

d1 = E1 +δ13E3 +O
(
ε2) ,

d2 = E2, (6.88)

where ε is a small number.

(a) For the deformations of interest, the rotation tensor P has the representation
P = QE (φs,E2). Show that

Pν=
∂φs

∂ z
E2. (6.89)

With the help of the identity d1 = PD1 and Figure 6.7, show that

φs ≈−δ13. (6.90)

7 The reader is also referred to the closely related Exercises 5.6 and 7.4.
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(b) Show that the nontrivial strains of the rod are, to O
(
ε2
)
,

η1 =
∂u1

∂ z
+δ13, η3 =

∂u3

∂ z
, ν2 =

∂φs

∂ z
=−∂δ13

∂ z
. (6.91)

Explain why ∂u1
∂ z + δ13 is known as the transverse shearing strain of the rod.

Show that the contact force n and contact moment m have the representations

n =

(
kEA

2(1+ν)

)
η1E1 +EAη3E3, m = EI2ν2E2. (6.92)

(c) Argue that the equations governing the motion of the rod reduce to the three
differential equations

∂
∂ z

(
EA

∂u3

∂ z

)
+ρ0f ·E3 = ρ0

∂ 2u3

∂ t2 ,

}
−→ Extension/Contraction

∂
∂ z

(
kEA

2(1+ν)

(
∂u1

∂ z
−φs

))
+ρ0f ·E1 = ρ0

∂ 2u1

∂ t2 ,

∂
∂ z

(
EI2

∂φs

∂ z

)
+

kEA
2(1+ν)

(
∂u1

∂ z
−φs

)
+ma ·E2 = ρ0y11 ∂ 2φs

∂ t2 .

⎫⎪⎪⎬
⎪⎪⎭

−→ Flexure

(6.93)

Here, y11 = I2/A, n ·E1 is known as a shear force, and m ·E2 is known as the
bending moment.

(d) Show that the flexural equations (6.93)2,3 correspond to those for a Timoshenko
beam [344] that can be found in the literature (cf. [152, 204, 275, 310] and ref-
erences therein). You should observe that the extensional equations are identical
to those for the longitudinal vibration of a bar. We also note that an alternative
derivation of the Timoshenko beam equations is discussed in the forthcoming
Exercise 7.4.
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