
Chapter 4
Theory of the Elastica and a Selection
of Its Applications

“What Euler gives us first is a golden analysis of the forms an elastic band may
assume. It is a treatise on the nature of certain elliptic integrals in which scarcely

any integrals are evaluated.”
C. A. Truesdell [350, Page 216] commenting on Euler’s analysis of the elastica in

[106].

4.1 Introduction

For many problems, the string model we discussed is inadequate. This is particu-
larly the case if the body that the string is intended to model shows an ability to
respond to applied moments. In this instance, the next member in the hierarchy of
potential models is a rod theory. There are a wide range of rod theories and the
simplest possible nonlinear theory is known as the elastica. The elastica originates
in a seminal work [106] by Leonhard Euler (1707–1783) in 1744 and a linearized
version of this theory produces the well-known Bernoulli-Euler beam model. As we
shall see in Chapter 5, Euler’s theory of the elastica was extended to include torsion
and nonplanar motions by Kirchhoff and others in the 19th century.

Over the course of three centuries since its initial development, Euler’s theory of
the elastica has been extended to include dynamical effects, material momentum,
adhesion, and growth, among others. The theory has also been extensively applied
to model many important structural mechanics problems such as growth of tree
stems, deflection and buckling of columns, and deformation of carbon nanotubes,
among many others (cf. Figure 4.1). In this chapter, we can only touch on a small
subset of these applications. In addition to discussing some of Euler’s extraordinary
analysis of the equations for the elastica, we emphasize adhesion problems as they
also illuminate the role of the balance of material momentum and examine Bosi
et al.’s ingenious arm scale that they presented in [32]. Prior to solving problems,
we first summarize the governing equations for a rod which is subject to terminal

© Springer International Publishing AG 2017
O.M. O’Reilly, Modeling Nonlinear Problems in the Mechanics of Strings and Rods,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-319-50598-5_4

121



122 4 Theory of the Elastica and a Selection of Its Applications

(a) (b)

(c) ξ = 0

ξ =

g

g

−PA2−PA2

−PA2−PA2

−PA2

inc. P

P

F

Fig. 4.1 A selection of problems that are analyzed using the elastica. (a) Buckling of an initially
straight rod under the combined action of a terminal force −PA2 and its own weight. The de-
formed configurations shown in this figure correspond to equilibrium configurations of the rod for
values of the load P which are successively greater than the buckling load. (b) A simple rod-based
model for the spine where the spine is fixed to the sacrum at ξ = 0 and to the head at ξ = �.
The intrinsic curvature κ0 of the elastica in this model mimics the intrinsic curvature of the spine.
(c) A terminally loaded rod which has a portion adhered to a flat horizontal surface.

loadings, applied forces, and applied moments. Our development of the balance
laws will have evident similarities to the corresponding developments for the theory
of the string in Chapter 1.

After applying the theory to several problems, we then explore a variational for-
mulation of the equations governing the elastica. This formulation enables us to es-
tablish nonlinear stability criteria for equilibrium configurations of the elastica and
a short introduction to the calculus of variations needed for the formulation can be
found in Chapter 9. While variational methods for rods can be found in Kirchhoff’s
seminal paper [185] from 1859, these methods for the elastica were taken to another
level by Born in his dissertation [31] from 1906. We can only speculate as to how
Born’s work was inspired by the remarkable series of results on calculus of varia-
tions that were produced in Berlin and Göttingen at the end of the 19th century.1

There has recently been a resurgence of interest (and new results) in stability cri-
teria2 and some of these developments appear in our discussion of stability criteria
for buckled rods and adhered rods that occupy the closing sections of this chapter.

1 These developments are discussed at length in Bolza’s marvelous textbook [30].
2 The interested reader is referred to the works of Bigoni et al. [26], Maddocks and his collaborators
[169, 215, 224–226] and Majidi and his coworkers [219, 220, 268, 269] for discussions of, and
references to, these results.
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Our discussion of buckling and adhesional instabilities in this chapter relies heavily
on the works by O’Reilly and Peters [268, 269] and Majidi, O’Reilly, and Williams
[219, 220].

4.2 Kinematical Considerations

For the elastica, the rod is modeled with the assistance of a flexible material curve
L which resists bending. The classical treatment of this theory assumes that the
material curve is inextensible, but we relax this assumption in the development of
the theory and allow the material curve to stretch. The position vector of a point
on the material curve in the present configuration C is defined by the vector-valued
function

r = r(ξ , t) = X (ξ , t)A1 +Y (ξ , t)A2. (4.1)

Here, {A1,A2,A3 = A1 ×A2} is a right-handed Cartesian basis for E3. The con-
vected coordinate ξ that is used to denote material points on the material curve is
chosen to be the arc-length parameter of this curve in a fixed reference configuration.
Thus, the arc-length parameter of the material curve in the present configuration and
ξ are related:

∂ s
∂ξ

= μ , (4.2)

where μ is the stretch. We choose the parameterization s such that μ > 0. For many
statics problems where the material curve is assumed to be inextensible (i.e., μ = 1),
s and ξ are used interchangeably.

Referring to Figure 4.2, the material curve models the centerline of the planar
rod-like body, and the rotation of a material curve which is orthogonal to the center-
line can be defined using an angle θ = θ (ξ , t). In this case,

r
′
= μet , et = cos(θ)A1 + sin(θ)A2,

∂X
∂ s

= cos(θ),
∂Y
∂ s

= sin(θ),
(4.3)

where et =
∂r
∂ s is the unit tangent vector to the material curve in its present configu-

ration and the prime denotes the partial derivative with respect to ξ .
Material fibers of the rod that are orthogonal to the centerline are assumed to

remain orthogonal to the centerline. Consequently, the curvature κ of the centerline
is related to θ :

κ =
∂θ
∂ s

=
1
μ

θ
′
. (4.4)

In a state where neither forces nor moments act on the rod, we allow for the situation
where the centerline can have a curvature and refer to this curvature as an intrinsic
curvature κ0 = κ0(ξ ). An example of a rod with nonzero intrinsic curvature can be
seen in the model for the spine shown in Figure 4.1(b). We also define an angular
velocity vector and a strain vector ν−ν0:
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Fig. 4.2 (a) Schematic of the planar deformation of a three-dimensional body B. The body is
bounded by a lateral surface surrounding a centerline and bounding material lines. (b) The present
configuration of the elastica used to model B. Observe that the representative material lines dis-
played in B are assumed to remain orthogonal to the material curve L . The latter models the
centerline of B.
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ω= θ̇A3, ν= θ
′
A3 = μκA3, ν0 = κ0A3. (4.5)

In the sequel, κ −κ0 will be known as the bending strain in the rod.
At a discontinuity, we have the jump conditions at a material point ξ associated

with the kinematics of the curve. We assume that the position vector of the centerline
is continuous and that the cross sections of the rod can be continuously related to
the tangent vector:

[[r]]ξ = 0, [[θ ]]ξ = 0. (4.6)

We leave it as an exercise for the reader to imagine situations where (4.6) are vio-
lated by L being severed or a material fiber which is initially normal to L being
split into two pieces and pulled apart. Continuity of θ is synonymous with conti-
nuity of r

′
. Thus, the centerline of the rod cannot exhibit kinks. By differentiating

r(γ(t), t) and θ (γ(t), t) with respect to time at a point of discontinuity ξ = γ , we
can show that

vγ =
{

ṙ+ γ̇r
′}

γ
,
[[

ṙ+ γ̇r
′]]

γ
= 0, ωγ =

{
θ̇ + γ̇θ

′}
γ
,
[[

θ̇ + γ̇θ
′]]

γ
= 0,

(4.7)
where the angular velocity ωγ is the sole component of ωγ = ωγ A3.

The linear momentum G per unit length of ξ of the rod is defined by the expres-
sion

G = ρμ ṙ, (4.8)

where ρ = ρ (ξ , t) is the mass density per unit length of ξ , and μ is the stretch. In the
sequel μ = 1, but to facilitate comparisons with the string theory we do not impose
this condition here. Further, the angular momentum density of the rod relative to O
per unit length of ξ is

hO = r×G+ρμy22θ̇A3, (4.9)

where y22 is an inertia coefficient which has units of length squared and is related
to the second moment of area I.3 For example, for a homogeneous rod whose cross
section has a height h and a width b, ρ0 = ρ∗

0 bh, and ρ0y22 = ρ∗
0 I = ρ∗

0

(
bh3/12

)
.

Hence, y22 = h2/12. Supplementing this pair of momenta, the material momentum
P for the elastica is defined as

P=−ρμr
′ · ṙ−ρμy22θ̇θ

′
. (4.10)

We also note that the kinetic energy density T of the elastica is

T =
ρμ
2

ṙ · ṙ+ ρμy22

2
θ̇ 2. (4.11)

The evident parallels of this expression to that for the planar motion of a rigid body
should be noted.

3 We shall give a prescription for this quantity later on in the related context of more general rod
theories (cf. Eqns. (5.36)3, (5.37), and (7.98)3).
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The theory of the inextensible elastica assumes that the strain energy function
depends on the bending strain Δκ = θ ′ −κ0 = κ−κ0. If the rod is nonhomogeneous,
then the strain energy function ψ can also depend on the material coordinate ξ :

ρμψ = ρμψ
(

θ
′ −κ0,ξ

)
. (4.12)

For the constitutive relation proposed by Euler for the inextensible elastica,

ρμψ =
EI
2

(
θ

′ −κ0

)2
, (4.13)

where the product of Young’s modulus E and the second moment of area I, EI, is
known as the flexural rigidity. Recently, modest generalizations of this constitutive
relation have found application in elastica-based models for soft robot actuators (cf.
[286, 372, 373] and references therein). For the extensible case, the strain energy
function additionally depends on the stretch μ . One representation for this func-
tion is

ρμψ = ρμψ̂
(

θ
′ −κ0,μ ,ξ

)
. (4.14)

For the extensible case, we note that θ ′
= μκ . Alternatively, we could prescribe the

functional representation

ρμψ = ρμψ̃ (κ −κ0,μ ,ξ ) , (4.15)

where ψ̂ (μκ −κ0,μ ,ξ ) = ψ̃ (κ −κ0,μ ,ξ ).
If we consider two motions of the elastica which differ by a rigid body motion,

then it is straightforward to use the results from Section 1.4.5 in Chapter 1 to show
that (

r⊥
)′

= Qr
′
, μ⊥ = μ ,

(
θ

′)⊥
= θ

′
. (4.16)

Because the motion of the elastica is planar, the rotation Q has a fixed axis of
rotation A3. As a consequence of the relations (4.16), we can verify that the strain
energy functions ψ and ψ̂ that were discussed earlier (cf. Eqns. (4.12) and (4.14))
are invariant under superposed rigid body motions:

ψ⊥ = ψ
((

θ
′)⊥−κ0,ξ

)
= ψ

(
θ

′ −κ0,ξ
)
,

ψ̂⊥ = ψ̂
((

θ
′)⊥−κ0,μ⊥,ξ

)
= ψ̂

(
θ

′ −κ0,μ ,ξ
)
. (4.17)

The importance of these results lies in our expectation that the strain energy of the
elastica should not change if we rigidly move the elastica from one configuration to
another.
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4.3 Balance Laws

Preparatory to writing the conservation laws for the rod, we admit the following
force fields for the theory of the elastica: a contact force, n = n(ξ , t); a contact
material force, C= C(ξ , t),

C= ρμψ −n · r′ −m ·θ ′
A3 − ρμ

2
ṙ · ṙ− ρμy22

2
θ̇ 2; (4.18)

and a contact moment, m = m(ξ , t). The body forces and surface tractions act-
ing on the lateral surface of the three-dimensional body that the rod is model-
ing contribute to the assigned force, ρμf = ρμf(ξ , t), and the assigned moment,
ma = ma(ξ , t) = MaA3, each per unit length ξ of the elastica. For the applications
considered here, the prescriptions for f and ma will be in agreement with more de-
tailed treatments that are presented in Chapter 5 (cf. Eqns. (5.70) and (5.71)) and
Section 7.6.1 in Chapter 7. Completing the assigned forces, we have the assigned
material force b. As with the earlier developments of the theory of an elastic string,
we are motivated by the works of Green and Naghdi [132] and Marshall and Naghdi
[230], among others, and admit singular supplies of momentum, Fγ , material mo-
mentum, Bγ , angular momentum relative to O, MOγ , and power, ΦEγ , at a specific
material point ξ = γ(t).4 It is useful to note that, in comparison to the string the-
ory, the new quantities introduced here are moments and strains associated with the
rotation θ of the tangent vector to L .

We adopt the following balance laws for any fixed material segment (ξ1,ξ2) of
the elastica. First, we record the conservations of mass and inertia:

d
dt

∫ ξ2

ξ1

ρ μdξ = 0,

d
dt

∫ ξ2

ξ1

ρy22 μdξ = 0. (4.19)

The balance of linear momentum is

d
dt

∫ ξ2

ξ1

ρ ṙ μdξ =

∫ ξ2

ξ1

ρμfdξ +[n]ξ2
ξ1
+

∫ ξ2

ξ1

Fγ δ (ξ − γ)dξ . (4.20)

The balance of angular (or moment of) momentum relative to O is

d
dt

∫ ξ2

ξ1

hOdξ = [r×n+m]
ξ2
ξ1

+
∫ ξ2

ξ1

(r×ρμf+ma)dξ

+
∫ ξ2

ξ1

MOγ δ (ξ − γ)dξ . (4.21)

4 As usual, for ease of exposition and without loss of generality, we assume that there is at most
one such point.
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As with the string, one has a balance of material momentum,

d
dt

∫ ξ2

ξ1

Pdξ = [C]
ξ2
ξ1
+
∫ ξ2

ξ1

bdξ +
∫ ξ2

ξ1

Bγ δ (ξ − γ)dξ . (4.22)

One also has the balance of energy:

d
dt

∫ ξ2

ξ1

(ψ ρ μ +T )dξ = [n ·v+m ·ω]ξ2
ξ1

+
∫ ξ2

ξ1

(ρ μf ·v+ma ·ω)dξ

+

∫ ξ2

ξ1

ΦEγ δ (ξ − γ)dξ . (4.23)

The similarities in structure between these balance laws and those we presented
earlier for a string should be recorded. In addition, you should notice the alterations
made to the balances of energy, material momentum, and angular momentum to
accommodate the moment fields.

As we shall see later in our discussion of the elastica arm scale, (4.22) will lead
to a useful conservation law. We also take this opportunity to note that the balance
of material momentum for a homogeneous rod, albeit in the absence of assigned
forces and moments, has appeared as a conservation law of the form

d
dt

∫ ξ1

ξ0

Pdξ = [C]
ξ1
ξ0

(4.24)

in the literature (see [66, 182, 183] and references therein). Indeed for the static case,
the conservation of C can be found in Love [213, Eqn. (7) in Sect. 262]. However, for
the problems of interest in this chapter, we find that we need to allow for a nonzero
b and a singular supply of material momentum Bγ .

4.3.1 Local Balance Laws and Constitutive Relations

For the elastica, we assume that the laws (4.19)–(4.23) hold for any material seg-
ment. With the help of the procedure used to localize the balance laws, we find the
following balance laws should hold at a point ξ �= γ for the elastica. First, we have
moment of inertia and mass conservations:

ρ0 = ρ0 (ξ ) = ρμ , y22 = y22 (ξ ) . (4.25)

Next, we find the balance laws for linear and angular momentum:

ρ0 r̈ = ρ0f+
∂n
∂ξ

, ρ0y22θ̈A3 = ma +
∂m
∂ξ

+
∂r
∂ξ

×n. (4.26)
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We also find local forms of the material momentum balance and energy balance:

∂C
∂ξ

+b= Ṗ, (4.27)

and

ρ0ψ̇ = m · ∂ω
∂ξ

+n ·
(

∂v
∂ξ

−ω× ∂r
∂ξ

)
. (4.28)

We have used Eqns. (4.25)–(4.26) to simplify the energy balance (4.28).
To establish a determinate system of governing equations for the elastica, we first

need to establish constitutive relations for n and m. The methodology we use to es-
tablish these relations has parallels to the ones used earlier for strings in Section 1.6
of Chapter 1 and, in Section 8.6 of Chapter 8, for a three-dimensional continuum.
We first consider the inextensible case: μ = 1, ∂v

∂ξ = ω× ∂r
∂ξ , and the energy equa-

tion (4.28) simplifies dramatically:

ρ0ψ̇ = m · ∂ω
∂ξ

. (4.29)

Additionally, it is assumed that

ρ0ψ = ρ0ψ (Δκ ,ξ ) where Δκ = κ −κ0. (4.30)

Consequently,

ψ̇ =
∂ψ

∂Δκ
κ̇ =

∂ψ
∂Δκ

θ̇
′
. (4.31)

Next, we assume that the local form of the balance of energy (4.29) is identically sat-
isfied by all motions of the elastica. Thus, we seek solutions m and n of Eqn. (4.29).
Using a standard procedure, we find the desired constitutive relations:

m = ρ0
∂ψ

∂Δκ
A3, n = n1A1 +n2A2, (4.32)

where n1 = n1 (ξ , t) and n2 = n2 (ξ , t) must be determined from the balance laws.
Use of the relations (4.32) implies that the local form of the energy balance is iden-
tically satisfied. We note that these relations include as a special case the Bernoulli-
Euler relations for m:

m = EI
(

θ
′ −κ0

)
A3, (4.33)

where the strain energy function is prescribed as

ρ0ψ =
EI
2

(
θ

′ −κ0

)2
=

EI
2

(κ −κ0)
2 . (4.34)

Observe that in contrast to the theory of the string, n is no longer restricted to being
parallel to r

′
and now has a component in the normal direction en to the material

curve L . This additional component can be interpreted as a shearing force.
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The constitutive relations for the extensible elastica follow a similar line of argu-
ment with the strain energy function now being assumed to additionally depend on
the stretch μ :

ρ0ψ = ρ0ψ̂
(

θ
′ −κ0,μ ,ξ

)
. (4.35)

With the help of an identity,

∂v
∂ξ

= ω× ∂r
∂ξ

+ μ̇et , (4.36)

the balance of energy (4.28) simplifies to

ρ0ψ̇ = m · ∂ω
∂ξ

+n · μ̇et . (4.37)

Whence, we find the constitutive relations

m = ρ0
∂ψ̂
∂θ ′ A3,

n = ρ0
∂ψ̂
∂ μ

et +nnen, (4.38)

where the (shear) force nnen must be determined from the balance laws. It is an
interesting exercise to compare the constitutive relation for n and its counterpart
for an elastic string (cf. Eqn. (1.96)). Another interesting exercise is to compute the
constitutive relations for m and n that arise when ψ is assumed to have the functional
form ρμψ̃ (κ −κ0,μ ,ξ ) that was mentioned earlier.

For both the extensible and inextensible cases, we prescribe the assigned mate-
rial force b so that the local form of the material momentum balance law (4.27) is
identically satisfied:

bp = −ρ0f · r′ −ma ·θ ′
A3 −

(
∂ (ρ0ψ)

∂ξ
− ∂T

∂ξ

)

exp.
. (4.39)

A similar prescription was used earlier with the theory of an elastic string and shall
also be employed in the sequel with more elaborate rod theories.

4.3.2 Jump Conditions

Five jump conditions are obtained from the balance laws. The procedure is identical
to that discussed in Section 1.5.3 in Chapter 1. Before presenting the conditions,
we emphasize that they are supplemented by the compatibility conditions (4.6)
and (4.7)2,4:

[[r]]ξ = 0, [[θ ]]ξ = 0,
[[

ṙ+ γ̇r
′]]

γ
= 0,

[[
θ̇ + γ̇θ

′]]
γ
= 0. (4.40)
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Turning to the jump conditions from the balance laws at a point ξ = γ , we find that

[[ρ0]]γ γ̇ = 0,
[[

ρ0y22]]
γ γ̇ = 0,

[[n+ρ0γ̇ ṙ]]γ +Fγ = 0, [[C+ γ̇P]]γ +Bγ = 0,
[[

m+ρ0y22θ̇ γ̇A3
]]

γ +MOγ − r(γ , t)×Fγ = 0,

[[ρ0ψ +T ]]γ γ̇ +[[n ·v+m ·ω]]γ +ΦEγ = 0. (4.41)

It is convenient to define a moment Mγ relative to the material point ξ = γ:

Mγ = MOγ − r(γ , t)×Fγ . (4.42)

The moment Mγ will also prove to be convenient to use when dealing with boundary
conditions.

A2

A1

M0

M

F0

F

θ

r = μet

ξ = 0

ξ =

O
r

Fig. 4.3 Schematic of an elastica which is subject to terminal forces and moments.

The singular supplies in these jump conditions can be related by an identity which
follows from the jump condition (4.41)6 in a fashion similar to that used to estab-
lish (1.88)5:

Bγ γ̇ +Fγ ·vγ +Mγ ·ωγ A3 = ΦEγ . (4.43)

Note that the singular supplies are each associated with their conjugate velocity.
Continuing a theme from earlier, we consider (4.43) to be an identity satisfied by
the supplies and make no further mention of the jump condition (4.41)6 from the
energy balance.

As we have shown previously, the jump conditions are also helpful in establishing
boundary conditions. For instance, for the situation shown in Figure 4.3, we can use

5 For additional details on this matter, see [263, 264] and Exercises 1.3 and 1.4.
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the jump conditions to infer that n(0+, t) = −F0 and m(�−, t) = M�. In addition,
in the absence of singular supplies and assuming that γ̇ = 0 (i.e., γ corresponds to a
constant material point), the jump conditions yield

[[n]]γ = 0, [[m]]γ = 0, (4.44)

so n and m are continuous at such material points.

4.3.3 Summary of the Governing Equations

In the applications that follow, the material curve shall be assumed to be inextensible
and the local forms of the balances of energy and material momentum are considered
to be identically satisfied. In addition, the jump condition from the energy balance
will be used to determine ΦEγ . Thus, the governing equations for the inextensible
elastica that are used in the sequel are the differential equations (4.26) supplemented
by the Bernoulli-Euler constitutive relations (4.33) and the jump conditions for lin-
ear momentum, material momentum, and moment of momentum (4.41)3,4,5. We
shall also appeal to the compatibility conditions (4.40).

4.4 A Terminally Loaded Elastica and the Kinetic Analogue

¯

g

O

m

φ

Fig. 4.4 A planar pendulum and the ana-
logue model for an elastica. The simple pen-
dulum of length �̄ is free to rotate in a plane
and is attached to a fixed point O by a pin
joint.

As a first application of the theory of the
elastica, we consider the classical problem
of a uniform rod of length � which is subject
to loadings at its ends. This problem, that
of a terminally loaded rod, is the subject of
Euler’s celebrated work [106] and we will
reproduce several of his results. For such a
homogenous rod in the absence of assigned
forces and moments, the equation govern-
ing the static equilibrium configuration can
be found from Eqn. (4.26). The latter equa-
tions simplify dramatically to the following
pair of results:

EIθ
′′
+

(
∂r
∂ξ

×n
)
·A3 = 0,

n = n0 = n01 A1 +n02A2, (4.45)

where n0 is a constant. Here, the homogeneous rod is assumed to be subject to the
following constant terminal loadings:
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F0 = P1A1 +P2A2, F� =−P1A1 −P2A2, M0 = M0A3, M� = M�A3,
(4.46)

and the Bernoulli-Euler constitutive relations, m = EIθ ′
A3, are assumed. Observe

that Eqn. (4.46) implies that n0 = −P1A1 − P2A2. For the case where P2 = 0, it
should be apparent that if P1 > 0 (P1 < 0), then the rod is in compression (tension)
if r

′
(0+, t) ·A1 > 0.

With some additional manipulations, the ordinary differential equation for θ(ξ )
reduces to

EIθ
′′ −P2 cos(θ)+P1 sin(θ) = 0. (4.47)

Solutions to this equation which pertain to the boundary-value problem of interest
must satisfy the boundary conditions:

θ
′ (

ξ = 0+
)
=−M0

EI
, θ

′ (
ξ = �−

)
=

M�

EI
. (4.48)

This pair of conditions follow from Eqn. (4.46) and the jump condition (4.41)5 from
the balance of angular momentum.

We can express the differential equation (4.47) in an alternative form by defining
a constant angle β :

sin(β ) =
P2√

P2
1 +P2

2

, cos(β ) =
P1√

P2
1 +P2

2

. (4.49)

Whence, Eqn. (4.47) becomes

EI (θ −β )
′′
+
√

P2
1 +P2

2 sin(θ −β ) = 0. (4.50)

Equivalently, one can choose A1 and A2 so that F0 and F� have the simple represen-
tations F0 = PA1 and F� =−PA1. That is, one rotates A1 and A2 through an angle
β about A3 so that F0 =−F� are parallel to A1. We choose to make such a selection,
and so (4.47) simply becomes

EIθ
′′
+Psin(θ) = 0. (4.51)

A variety of pairs of suitable boundary conditions for θ(ξ ) will be explored in the
remainder of this chapter.

Dating to the 1800s, it was realized that the ordinary differential equation (4.51)
is analogous to that governing the motion of a planar pendulum shown in Figure 4.4:

IOφ̈ +mg�̄sin(φ) = 0, (4.52)

where the center of mass of the pendulum is located a distance �̄ from the pin-joint
at O, and the mass moment of inertia of the pendulum about O is IO = m�̄2. That
is, the pendulum is analogous to the terminally loaded elastica: a correspondence
that is known as the kinetic analogue. The advantage of the correspondence is that
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it enables the use of known analytical solutions to Eqn. (4.52) to help develop an
understanding of the solutions θ(ξ ) to the differential equation (4.51) and analytical
expressions for the corresponding r(ξ ).

Fig. 4.5 A selection of some classic inflexional solutions θ ′
(θ) and r(ξ ) to the boundary-value

problem (4.48) and (4.51) for a terminally loaded elastica where the length � is varied and the load-

ing parameter
P�2

0
EI is held constant. The arrows on the graphs of θ ′

(θ) and r(ξ ) correspond to the
direction of increasing ξ from 0 to �. The solution labeled a corresponds to the straight compressed

elastica (and the equilibrium
(

θ ,θ ′)
= (0,0)); each one of the solutions labeled b-c correspond

to elastic rods with points of inflexion; and the solution labeled d is the solution corresponding to

a tensile load (and the equilibrium
(

θ ,θ ′)
= (π,0)). Observe that the rod in a is in compression,

while the rod is in a state of tension in d.

To elaborate, consider a given boundary-value problem for a rod so that P1, P2,
EI, and a length scale �0 are specified. Then, the correspondence between the pen-
dulum equations of motion and those for the rod are found by first specifying the
angle β (using Eqn. (4.49)), the length �̄, and the scale T0 (in seconds):

gT 2
0

�̄
=

�2
0

EI

√
P2

1 +P2
2 . (4.53)

Then, the solution to the equation of motion for the pendulum (4.52) which satisfies
the boundary conditions (cf. Eqn. (4.48))

φ̇ (t = 0) =
1
T0

(
M0�0

EI

)
, φ̇

(
t =

�T0

�0

)
=

1
T0

(
M��0

EI

)
, (4.54)

is analogous to the corresponding solution θ(ξ ) to Eqn. (4.45).
As we shall see in several examples in Sections 4.5.3 and 4.6.4, the kinetic ana-

logue enables one to obtain useful quantitative information on θ(ξ ). However, in
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order to determine the equilibrium configuration, this information must then be
translated using the identities ∂Y

∂ξ = sin(θ) and ∂X
∂ξ = cos(θ) to provide the cor-

responding equation for the position vectors r(ξ ) of points on the centerline of the
rod (cf. Eqn. (4.3)2,3). The most extraordinary examples of such calculations date to
Euler [106] in the 18th century and Hess [168] among others in the 19th century.6

A discussion of these works can be found in Love’s treatise [213, Sections 262–263]
and Truesdell’s epic commentary [350]. In addition to these works, the papers by
Batista [17], Bigoni et al. [26], Coleman and Dill [65], and Domokos and Ruina [92]
are recommended reading and resources for additional perspectives and references
to works on the elastica.

Fig. 4.6 An additional selection of some classic solutions θ ′
(θ) and r(ξ ) to the boundary-value

problem (4.48) and (4.51) for a terminally loaded elastica where the length � is varied and the

loading parameter
P�2

0
EI is held constant. The arrows on the graphs of θ ′

(θ) and r(ξ ) correspond
to the direction of increasing ξ from 0 to �. The solutions labeled e-h are each examples of inflex-
ional elastica and solutions labeled i- j are each examples of non-inflexional elastica. For the latter,
terminal bending moments are always needed for equilibrium.

The solutions r(ξ ) found by Euler [106] and documented further by Hess [168]
and Love [213, Sections 262–263] are presented in Figures 4.5 and 4.6. To dis-
cuss the figures, we assume that A1 has been chosen so that β = 0 and the ter-
minal load at ξ = 0 is simply F0 = PA1 with P > 0. We now comment on the

6 A translation of Euler’s original work [106] is readily available and was published by Oldfather
et al. [254].
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solutions shown in the aforementioned figures. First, the equilibria of the equations
EIθ ′′

+P1 sin(θ) = 0 correspond to straight equilibrium configurations of the rod.

The equilibrium
(

θ ,θ ′)
= (0,0) corresponds to the compressed state, while the

equilibrium
(

θ ,θ ′)
= (π,0) corresponds to the rod in tension. The reversal of the

rod, which is akin to a reflection, that is evident in Figures 4.5 can be understood by
examining the equilibrium configurations shown in this figure and the companion
Figure 4.6.

i
i

iiii

iii

iii

iv

iv

ξ =

ξ =

ξ =

ξ =

F

F

F

F F0

F0
F0

F0

M

M

−2

2

0
∂θ
∂ξ

θ 2−2

Fig. 4.7 A selection of some classic non-inflexional solutions θ ′
(θ) and r(ξ ) to the boundary-

value problem (4.48) and (4.51) for a terminally loaded elastica where the length � is varied and the

loading parameter
P�2

0
EI is held constant. It should be evident from these examples that, depending

on the value of θ ′
(ξ = �), a terminal moment M� may be required to maintain equilibrium. The

arrows on the graphs of θ ′
(θ) and r(ξ ) correspond to the direction of increasing ξ from 0 to �.

The solutions highlighted in Figure 4.5 each correspond to configurations of the
elastica that are known as inflexional by Love [213]. These solutions, if � is suffi-
ciently large, contain points where the bending moment vanishes. Consequently, if
� is chosen appropriately, they can be supported by terminal forces only. This is the
case for the solutions r(ξ ) shown in Figure 4.5. By way of contrast, a family of in-
flexional solutions are shown in Figure 4.7 which are intended to further illuminate
the correspondence between the trajectories in the phase portrait and the boundary
conditions at the two ends of the rod.

The solutions labeled g and h in Figure 4.6 can be manifested in infinitely long
rods by terminal forces alone. Each of the configurations for r(ξ ) have a single
loop and the corresponding solution curve θ ′

(θ) in the phase portrait is known as a
homoclinic orbit or separatrix. Two other types of solutions are shown in Figure 4.6.
First, we find solutions where self-contact occurs. This occurs first for the solution
labeled e and as one approaches the separatrix (labeled g and h), the centerline of
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the elastica passes through itself and the reversal discussed earlier now becomes
possible. With this reversal, the straight rod passes from a state of compression to
one of tension.

Equilibrium configurations of the elastica that correspond to solutions of the form
i and j shown in Figure 4.6 are classified by Love [213] as non-inflexional. Regard-
less of �, these solutions require terminal moments in addition to terminal forces. If �
is sufficiently large, the space curve formed by r(ξ ) inevitably involves self-contact
of the rod at a discrete number of points. The self-contact phenomenon associated
with the loop formation is technically challenging not least because we are assuming
planar solutions yet an equilibrium configuration having a loop must be nonplanar.
We shall return to this problem in Section 5.15.3 of Chapter 5 where a more sophis-
ticated rod model is used to examine loop formation. Additional examples of the
correspondence between solutions of the planar pendulum equation of motion and
the shape of r(ξ ) can also be found in Figure 5.16 and throughout the remainder of
this chapter.

4.5 The Adhesion of a Rod

For the next set of applications of interest, we consider an elastic rod which is in
partial contact with a horizontal surface (see Figure 4.8). Specifically, the portion
ξ ∈ (γ , �) is glued to the surface by a bond whose adhesive strength per unit length
of rod is Wad. This positive material constant is the work required to free a unit length
of the rod from the horizontal surface.7 At the other end of the rod, a terminal force P
and a terminal moment M0 are applied at ξ = 0. The terminal loading can be used to
peel the rod from the horizontal surface or maintain a state of adhesion. In addition
to the deformed shape of the rod, one of the crucial unknowns in this problem is
the value γ of the coordinate ξ where the adhesive bond is broken. The adhesion
problem we are considering is sometimes referred to as the peeling problem or the
peel test.

Our goal here is to show how to formulate and solve the adhesion problem. The
method we present relies heavily on the jump condition from the balance of material
momentum. This condition produces a boundary condition at the interface between
the adhered and free segments of the rod.8 We model the rod as an elastica and
note that such a model has received considerable attention in the literature9 in part
because of its analytical tractability and in part because the system of interest is
a prototype for studies of adhesion in peeling tape, Gecko setae [16], and carbon
nanotubes [116, 117, 374].

7 Discussions on how to calculate this constant can be found in [172, 175].
8 Our emphasis of the key role played by the material momentum balance law in specifying the
adhesion boundary condition is heavily influenced by the works [217, 219, 220, 264, 292].
9 See the papers [116, 117, 217, 219, 220, 290, 291, 364] and references therein.
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ξ = 0

M0 =M0A3

ξ =
− γ

A1

A2

Elastic rod

P

Flat surfaceAdhesive layer

Fig. 4.8 Schematic of a terminally loaded rod of length � where a portion of the rod has adhered
to a horizontal surface.

4.5.1 General Considerations

We consider the simplest model for the adhesion problem and use the static version
of the elastica theory. For convenience, we divide the rod into three sections: SI:
0 < ξ < γ , SII: ξ = γ , and SIII: � > ξ > γ . On SI, there are no body forces or
surface tractions on the lateral surface, thus ma = 0 and f = 0. This is in contrast to
the situation on SIII where surface tractions are present and EI ∂θ

∂ξ = 0. At ξ = γ ,
we have a discontinuity, a material momentum supply

Bγ =−Wad. (4.55)

and unknown momentum supplies Fγ and Mγ . As the problem is static and the cen-
terline of the rod is inextensible, we will use s and ξ interchangeably. A variational
formulation of this problem that is presented in Section 4.7.2.2 yields additional
motivation for the prescription Bγ =−Wad and also demonstrates that the prescrip-
tion (4.55) is in accord with other formulations of this adhesion problem.

Referring to Section 4.3, we recall the local form of the balance laws and consti-
tutive relations for this theory:

n
′
+ρ0f = 0,

m
′
+ r

′ ×n+ma = 0,

C
′
+b= 0,

m = EI
∂θ
∂ξ

A3, C=−EI
2

(
∂θ
∂ξ

)2

−n · r′
. (4.56)

Here, we have specialized the prescription for C to the static case.
On SI, we have the boundary conditions

n
(
0+
)
=−P, m

(
0+
)
=−M0 =−M0A3, r

(
γ−
) ·A2 = 0. (4.57)
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Correspondingly, on SIII, we have the boundary conditions and contact conditions

n
(
�−
)
= 0, r(ξ ) ·A2 = 0,

∂θ
∂ξ

= 0. (4.58)

At ξ = γ , r and θ are continuous,10 and we have the jump conditions

n
(
γ+
)−n

(
γ−
)
+Fγ = 0,

−m
(
γ−
)
+Mγ = 0,

C
(
γ+
)−C

(
γ−
)
+Bγ = 0. (4.59)

Note that we used the fact that m(γ+) = 0 in writing the second jump condition.
The governing equations for the boundary-value problem on SI yield the provi-

sional solutions
n(ξ ) =−P =−P1A1 −P2A2,

EI
∂ 2θ
∂ξ 2 −P2 cos(θ)+P1 sin(θ) = 0. (4.60)

The differential equation (4.60)2 needs to be solved subject to the boundary condi-
tions

θ(γ) = 0,
∂θ
∂ξ

(0) =−M0

EI
,

∂θ
∂ξ
(
γ−
)
= θ

′
−, (4.61)

where θ ′
− is presently unknown. For the boundary-value problem on SIII, we find

from the balance laws that

m(ξ ) = 0, n(ξ ) = 0, (4.62)

for ξ ∈ (γ , �).
At the discontinuity, the jump conditions (4.59) can be explored in further detail.

Substituting for the fields at γ+, we solve for Fγ and Mγ and specify ∂θ
∂ξ (γ−):

Fγ = n
(
γ−
)
=−P,

Mγ = EIθ
′
−A3,

−Wad =−EI
2

(
θ

′
−
)2

+P · r′ (
γ−
)
. (4.63)

These results are also displayed in Figure 4.9.
We remark that the equation (4.63)3 for θ ′

−, which is known as the adhesion
boundary condition, arises from the material momentum balance law. In treatments
of this problem where the material momentum balance law is not used, other as-
sumptions are employed (cf. Majidi [217]). For instance, Glassmaker and Hui [117]
postulate an energy balance in order to obtain an expression that is equivalent

10 See Eqn. (4.6).
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to (4.63)3. The interested reader is also referred to Section 4.7.2.2 where, as we
mentioned previously, a variational formulation of the adhesion boundary condition
is presented.

ρ0f

ξ = 0

M0 =M0A3

ξ = γ

F0= P

Fγ = −P

Mγ = EIθ−A3

B= −Wad

Fig. 4.9 Schematic of the singular supplies acting on the rod shown in Figure 4.8. The terminal
moment M0 will appear in the examples considered in Sections 4.5.3.2 and 4.9.3.

4.5.2 Summary of the Solution Procedure

To solve the adhesion problem, we need to solve the differential equation (4.60)2

subject to the boundary conditions (4.61) where θ ′
− is determined from the equation

−Wad =−EI
2

(
θ

′
−
)2

+P1 cos(θ(γ))+P2 sin(θ(γ)) . (4.64)

The resulting solution of the boundary-value problem also provides the length γ .
The general solution to the differential equation (4.60)2 can be obtained using

classical methods and is aided by a graphical representation of the solutions that
can be seen in Figure 4.10. Because there are no assigned forces acting on SI of the
rod, bp = 0 and the local form of the balance of material momentum (4.56)3 shows
that C is conserved by the solutions to (4.60)2:

C=−EI
2

(
∂θ
∂ξ

)2

+P · r′
. (4.65)

To examine the solutions to the boundary-value problem, it is first convenient to
non-dimensionalize the differential equation using the variables
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θ π−π

3

−3

dθ
dx

Fig. 4.10 The solutions of (4.60)2 where f2 > 0 and f1 = 0. The equilibrium denoted by a hexagon
is the equilibrium θ = π

2 , and the second equilibrium which is denoted by a star is the equilibrium
θ =− π

2 . The arrows indicate the direction of increasing s.

x =
ξ
�
, g =

γ
�
, w =

Wad�
2

EI
, f1,2 =

P1,2�
2

EI
, ω0 =

M0�

EI
. (4.66)

With the help of these variables, we find that the first integral −C of (4.60)2 has the
dimensionless representation

e0 =−C�2

EI
=

1
2

(
dθ
dx

)2

− f2 sin(θ)− f1 cos(θ), (4.67)

where e0 is a constant determined by the boundary conditions.
Comparing the boundary condition (4.64) to the conservation (4.67), we find that

e0 =

(
�2

EI

)
Wad = wad. (4.68)

Thus the solution to the differential equation (4.60)2 of interest to us is the integral
curve corresponding to e0 = wad. In addition, we notice that e0 = wad on SI is
consistent with the result that C= 0 throughout the segment SIII. At the other end of
the rod, we can use the fact that e0 = wad along with the boundary condition (4.61)2

for ∂θ
∂ξ to find an equation for θ0 = θ (ξ = 0) from the conservation (4.67):

wad =
1
2

ω2
0 − f2 sin(θ0)− f1 cos(θ0) . (4.69)

In addition to using this equation to determine θ0, the equation is also useful for
finding allowable parameter ranges for adhesion (wad), terminal bending moment
(ω0), and terminal forces ( f1,2).
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θ
−π

x= 0

x= 0

x= g−
3

1

e0 = wad

e0 = wad

−1

dθ
dx

Fig. 4.11 Two representative solutions of (4.60)2 where f2 > 0 and f1 = 0. The solution where
dθ
dξ (ξ = 0) = 0 is discussed in Section 4.5.3.1, and the solution where dθ

dξ (ξ = 0)> 0 is discussed
in Section 4.5.3.2. In the interests of clarity, the dimensionless adhesion energy wad has distinct
values for the pair of solutions.

We can also use the integral (4.67) to obtain an analytical expression for θ(x):
∫ x1

x0

du =
∫ θ1

θ0

dθ√
2(e0 + f2 sin(θ)+ f1 cos(θ))

, (4.70)

where x0 = 0. The integral on the right-hand side of this equation is an elliptic
integral of the first kind, and an analytical solution for θ(x) can be developed.11 We
express this analytical solution symbolically as

θ(x) = f (x,x0,θ0,θ1,e0,ω0, f1, f2) . (4.71)

The function f has four constants (x0 = 0, e0, ω0, and θ0) which need to be pre-
scribed or are specified using Eqns. (4.68) and (4.69). A graphical summary of the
aforementioned solution procedure can be seen in Figure 4.11 for two cases: one
where ω0 = 0 and the other where ω0 < 0.

The identity (4.70) along with Eqns. (4.68) and (4.69) can also be used to de-
termine the length of the adhered length �− γ of the rod by setting x1 = γ

� and
θ1 = θ (x = g) = 0:

γ
�
=
∫ 0

θ0

dθ√
2(wad + f2 sin(θ)+ f1 cos(θ))

. (4.72)

It is useful to note that the right-hand side of this equation can be evaluated without
explicitly determining the shape of the deformed rod.

11 For background on elliptic integrals and functions, Byrd and Friedman’s classic handbook [41]
and Lawden’s concise textbook [200] are recommended. Integrals of the form (4.70) can also be
evaluated using symbolic manipulation packages such as MATHEMATICA.
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4.5.3 Examples

In the examples we now consider, we restrict attention to a rod where the force acting
at one of the terminal points is P = P2A2. In the first example, we assume that no
moment acts at the point of application of the load. We find that this assumption
leads to a very limited range of adhesive solutions. In the second example, we relax
the boundary condition and assume that a terminal moment is applied. We then find
a much wider range of situations where adhesion is possible. This is to be expected
as the moment serves to press the rod onto the adhesive layer.

4.5.3.1 Pulling up or pushing down on the adhesive layer

To further illustrate the previous developments, consider the situation shown in Fig-
ure 4.8 with P= P2A2. That is, n(ξ ) =−P2A2 on SI. We next use the developments
of the previous section. First, we use the boundary condition (4.61)2 along with the
conservation (4.67) to conclude that

e0 =− f2 sin(θ0) , (4.73)

where θ0 = θ (x = x0 = 0). As e0 = wad, we can immediately see that the type of
contact we are considering requires that the bond strength be less than the applied
force: wad ≤ | f2|. That is, in terms of the dimensioned quantities, Wad ≤ ||P2A2||.

The integral (4.70) reduces to

∫ x1

x0

du =
∫ θ1

θ0

dθ√
2 f2 (sin(θ)− sin(θ0))

. (4.74)

This integral can be expressed as the sum of two elliptic integrals of a well-known
form.12 We present our results for the case f2 > 0, and can infer the results for f2 < 0
where needed using symmetry arguments. Evaluating the right-hand side of (4.74),
we find that √

f2 (x1 −0) = K (k)−F (φ1,k) , (4.75)

where F (φ ,k) is an elliptic integral of the first kind and K (k) is a complete elliptic
integral of the first kind:

F (φ ,k) =
∫ φ

0

dy√
1− k2 sin2 (y)

, K = K (k) = F
(π

2
,k
)
. (4.76)

In (4.75), the modulus k and angle φ1 are defined as

12 See Example 288.50 for the integral
∫ π

2
ψ

dθ√
a+bsin(θ)

where b > |a|> 0 in [41].
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k2 =
1
2
(1− sin(θ0)) , φ1 = sin−1

(√
1− sin(θ1)

1− sin(θ0)

)
, (4.77)

where θ1 = θ (x = x1). With the help of our earlier observation that e0 = wad on SI,
we can easily obtain a pair of more illuminating expressions for k:

k2 =
1
2

(
1+

wad

f2

)
=

1
2

(
1+

Wad

P2

)
. (4.78)

The solution (4.75) can be used to determine the deformed shape of the rod once θ0

and γ have been determined from the boundary conditions.
To determine the contact length �− γ , we invoke the boundary condition θ (γ)

= 0. Thus,
γ
�
=

1√| f2|
(K (k)−F (φg,k)) , (4.79)

where the angle φg corresponding to θ (γ) = 0 is computed using Eqn. (4.77)2:

φg = sin−1

(√
1

1− sin(θ0)

)
. (4.80)

From Eqns. (4.73) and (4.79), we can determine the initial inclination θ0 of the
rod, and the length of the contact region for a given P2 and wad

f2
= Wad

P2
. The results

are presented in Figure 4.12 and the corresponding solution curve of the ordinary
differential equation can be seen in Figure 4.11.

Fig. 4.12 Solutions to Eqns. (4.73) and (4.79) for (a) the angle θ0 and (b) the contact point γ as
functions of the adhesive strength wad

f2
= Wad

P2
. When γ = 0, the entire rod is adhered to the surface.

Referring to Figure 4.12, several results can be concluded from (4.79). First,
for the type of solutions we are seeking, the ratio of the adhesive strength Wad to
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the peeling force P2 is restricted to lie in the range −1 ≤ Wad
P2

≤ 1. Outside of this
range, either an adhesive solution is not possible, or the rod is entirely adhered
to the surface. When P2 is within the range needed for an adhesive solution, the
precise amount of contact depends on P2 and there will be a unique value of θ0 for
this solution. Figure 4.12(b) also illustrates that the contact length �− γ increases as
Wad
|P2| =

wad
| f2| decreases. This seems contradictory until one realizes that as wad

| f2| → 0, the
angle of inclination θ0 at the tip of the rod also tends to 0. That is, it is not possible
to vary P2 and θ0 independently without changing the contact length �− γ .

4.5.3.2 The Helpful Effects of a Terminal Moment M0

We again consider the problem of the previous section, but replace the boundary
condition dθ

dξ (ξ = 0) = 0 with the condition that θ (ξ = 0) = θ0 = −π
2 . For this

case, there will be a terminal moment M0 = −EI ∂θ
∂ξ (0+)A3 acting at ξ = 0 and

f2 > 0 (see Figure 4.9). The results for the case θ (ξ = 0) = θ0 =
π
2 and f2 < 0 can

be inferred using symmetry arguments.

Fig. 4.13 The solution γ
�

√| f2| as a function of wad
| f2| for the adhesion problem where the terminal

end of the rod is constrained so that θ0 = − π
2 when f2 > 0 and θ0 = π

2 when f2 < 0. For these

cases, a moment whose dimensionless form is M0 =−sgn( f2)
EI
�

√
wad −| f2|A3 acts at ξ = 0.

We can use the analysis of the previous section with some slight modifications.
As boundary conditions, we now have

θ (x = g) = 0, θ (x = 0) =−π
2
,

1
2

(
dθ
dx

(
x = g−

))2

= wad + f1. (4.81)

The last condition is equivalent to e0 = w. Applying (4.81)2 to the conserva-
tion (4.67), we find that
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e0 =
ω2

0

2
+ f2, (4.82)

where −ω0 =
dθ
dx (x = 0+)> 0. Thus, we have quickly found an expression for M0:

M0 =−EI
∂θ
∂ξ
(
0+
)

A3 =−
√

2EI (Wad −P2)A3, P2 > 0. (4.83)

You will notice that the moment at ξ = 0 can improve the strength of the bond by
increasing the range of allowable forces f2.

The solution of the governing differential equation we now seek is shown in Fig-
ure 4.11. It differs from the solution of the previous subsection in that dθ

dx (x = 0) �=
0. The elliptic integral we now need to solve is

∫ x1

0
du =

∫ θ1

θ0

dθ√
2(wad + f2 sin(θ))

. (4.84)

Again, the integral on the right-hand side can be expressed in a canonical form13

and we can solve for x1. Evaluating the result when x1 = g and θ1 = 0, the contact
point can be determined:

γ
�

√
f2 =

√
2

1+ wad
f2

(
K (k)−F

(π
4
,k
))

, k2 =
2

1+ wad
f2

. (4.85)

For this case wad
f2

ranges from 1 to ∞, and, for a given value of this adhesion param-
eter, a contact length can be determined with the help of the solution (4.85). As can
be inferred from Figure 4.13, for a given value of wad

f2
, we can determine the corre-

sponding value of γ
�

√
f2, and, based on the value of f2 compute the contact length

�− γ . As wad
f2

→ ∞, the contact length tends to �.
Results for f2 < 0 and θ0 =

π
2 are also shown in Figure 4.13. These results can be

easily inferred from the previous analysis using either a symmetry argument or by
direct calculation. We note in particular that as ω0 =− dθ

dx (x = 0+)> 0, the terminal
moment in this case can be shown to have the representations

M0 =−EI
∂θ
∂ξ
(
0+
)

A3 =
√

2EI (Wad +P2)A3, P2 < 0. (4.86)

These expressions are notably consistent with our earlier results.

4.5.3.3 Closing Remarks

In conclusion, we have presented an analysis of the adhesion of a rod under terminal
loading P = P2E2 with a substrate. When the adhesive is weak, we found that the

13 See Example 288.00 for the integral
∫ π

2
ψ

dθ√
a+bsin(θ)

where a > b > 0 in [41].
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bond could be supported without the application of a terminal moment. However, for
larger values of Wad

|P2| , application of a terminal moment helped to strengthen the bond.

4.6 The Elastica Arm Scale

Fig. 4.14 The elastica arm scale. Image
courtesy of Davide Bigoni.

In 2014, Bosi et al. [32] presented a novel
measuring scale shown in Figure 4.14. The
scale uses an elastic rod of length � that
is free to move inside a frictionless sleeve
which is inclined at an angle α to the ver-
tical. Weights P1 and P2 are attached to the
respective ends of the lamella and, assum-
ing that one of the weights and the slope of
the tangent at the ends of the rod are known,
the second weight can be determined from
the relation

P1 cos(θ(0)+α)+P2 cos(θ(�)+α) = 0.
(4.87)

The device is referred to as an “elastica
arm scale” and the inspiration for its design
can be traced to the papers by Bigoni et al.
[25, 27] on Eshelby-like forces in continua.
We also refer the interested reader to Bigoni
et al. [26] and Bosi et al. [33, 34] for related
works and additional perspectives.

In this section of the book we will
demonstrate how the scale operates by de-
riving the relation (4.87). In the process of
the derivation, we find that we are able to
extend Eqn. (4.87) to the case where the weight of the rod is considered and termi-
nal moments can be applied to the ends (cf. Eqn. (4.115) on Page 154):

P1 cos(θ(0)+α)+P2 cos(θ(�)+α) = ρ0gĝ · (r(�)− r(0))+
1

2EI

(
M2

2 −M2
1

)
.

The analysis we employ, which is adapted from our recent paper [266], makes exten-
sive use of the balance law for material momentum, shows that a conserved quantity
C−ρ0gĝ · r can be used to establish the relation (4.87), and includes the effects of
terminal moments which were not considered in our earlier work. Our analysis com-
plements the work of Bosi et al. [32]. These authors used a variational formulation
to establish Eqn. (4.87) and they also include a nonlinear stability analysis of the
equilibrium configurations of the rod.
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4.6.1 Background

The rod in this problem takes on static configurations that are shown schematically
in Figure 4.15. The rod is assumed to be inextensible, and so we use the arc-length
parameter s in place of ξ in the sequel. To enable easy comparisons with the litera-
ture on the arm scale, we define the following representation for the unit tangent to
the curve:

r
′
=

∂r
∂ s

= cos(θ)A2 − sin(θ)A1. (4.88)

We note that for this problem θ represents the angle subtended by r
′

with the A2

axis. The rod will be assumed to be homogeneous with a uniform mass density ρ0

per unit length of s and the classic strain energy function ρ0ψ = EI
2

(
θ ′)2

.

A2

A1

sleeve

elasticaĝ

O

g

M0 =M1A3

M =M2A3

F = P2ĝ

F0 = P1ĝ

α

α +θr(s)
r (s)

s= 0

s= a1

s= a2

s=

Fig. 4.15 Schematic representation of the Bosi et al.’s elastica arm scale. While neither the weight
of the rod nor the presence of terminal moments is included in the original analysis of Bosi et al.
[32], we show how they can be accommodated into their measurement device.

We are now in a position to recall from Section 4.3 the balance laws for forces,
material forces, and moments for the elastica:

C
′
+b= 0,

n
′
+ρ0f = 0,

m
′
+ r

′ ×n = 0. (4.89)

In these local forms, the force b is such that the material momentum balance
law (4.89)1 is identically satisfied and the force C is prescribed as

C= ρ0ψ −n · r′ −m ·θ ′
A3. (4.90)
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We thus find from Eqn. (4.39) that the assigned body force for the homogeneous
rod is

b= bp =−ρ0f · r′
. (4.91)

The assigned body force ρ0f is not constant throughout the rod, so we refrain from
simplifying this expression further at this stage in the analysis.

At a point of discontinuity s = γ , the following jump conditions hold:

[[C]]γ +Bγ = 0,

[[n]]γ +Fγ = 0,

[[m]]γ +Mγ = 0. (4.92)

As with many of the problems considered in this book, the latter pair of jump con-
ditions are useful in establishing boundary conditions.

4.6.2 The Deformable Arm Scale

To analyze the arm scale it is convenient to consider three segments: the left freely
hanging section, s ∈ [0,a1); the right freely hanging section, s ∈ (a2, �]; and the
section inside the smooth guide of length �∗ where

a2 −a1 = �∗. (4.93)

Thus, in determining the equilibrium configuration of the deformed rod, it suffices
to determine either a1 or a2. The guide or sleeve is inclined at an angle α to the
vertical.

4.6.2.1 The freely hanging segment s ∈ [0,a1)

The first section of the rod we consider extends from the free end at s = 0 to the start
of the guide at s = a1. At the free end, we assume that a force F0 = P1ĝ along with
a moment M0 = M1A3 act. Here, the unit vector ĝ, which points downward, has the
representation

ĝ =−cos(α)A2 − sin(α)A1. (4.94)

With the help of the jump conditions (4.92)2,3, we find that

n
(
0+
)
=−F0 =−P1ĝ, m

(
0+
)
=−M0 =−M1A3. (4.95)

With the help of the constitutive equations for m and dropping the +, we conclude
that the boundary conditions on this section are

θ(a−1 ) = 0, θ
′
(0) =−M1

EI
, n(0) =−P1ĝ. (4.96)
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With the help of the balance laws for linear and angular momentum (4.89)2,3, we
find that

n(s) =−(P1 +ρ0gs) ĝ,

EIθ
′′
= (P1 +ρ0gs)sin(θ +α) . (4.97)

From one of these results, expressions for the material force C can be computed
from Eqns. (4.90) and (4.96):

C(s) =−M2(s)
2EI

−n(s) · r′
(s)

=−EI
2

θ ′2 − (P1 +ρ0gs)cos(θ +α) ,

C(0) =−n(0) · r′
(0)− M2

1

2EI
. (4.98)

In the first of these expressions for C, we used the abbreviation M(s) = m(s) ·A3.
Because the rod is homogeneous, after computing b using Eqn. (4.39), it is straight-
forward to find the following energy conservation law from the local form of the
balance of material momentum (4.89)1:

(C−ρ0gĝ · r)′ = 0. (4.99)

We note that −ρ0gĝ · r is the gravitational potential energy for the material point
located at r on the rod. Thus, in the case where gravity is ignored and the terminal
moment M1A3 is absent, the material force C is constant throughout this segment of
the rod: C(s) = C(0) =−P1ĝ ·r′

(0). This conservation is equivalent to the conserva-
tion law presented in Love [213, Eqn. (7) in Sect. 262] and is central to the analysis
of the arm scale presented in Bosi et al. [32].

4.6.2.2 The freely hanging segment s ∈ (a2, �]

The second segment of the rod of interest is terminally loaded at one end and extends
to the sleeve at the other. At the free end, we assume that a force F� = P2ĝ along
with a moment M� = M2A3 act. With the help of the jump conditions (4.92)2,3, we
find that

n
(
�−
)
= F� = P2ĝ, m

(
�−
)
= M� = M2A3. (4.100)

Dropping the −, we conclude that for this portion of the rod, the boundary conditions
are

θ(a+2 ) = 0, θ ′(�) =
M2

EI
, n(�) = P2ĝ. (4.101)



4.6 The Elastica Arm Scale 151

O

s= 0

s= a1

s= a2

s=

Fa1

Fa2

F0 = P1ĝ

F = P2ĝ

λA1

ĝ

A1 A2

g

M0 =M1A3

M =M2A3

Ma1

Ma2

Fig. 4.16 Schematic showing the forces Fa1 , Fa2 , and λA1, moments, Ma1 and Ma2 , and terminal
loadings acting on the elastica arm scale. It is important to observe that there are no singular
supplies of material momentum in this system: Ba1 = 0 and Ba2 = 0.

We parallel the developments in the previous section and compute that

n(s) = (P2 +ρ0g(�− s)) ĝ,

EIθ
′′
=−(P2 +ρ0g(�− s))sin(θ +α) . (4.102)

From these results and the balance of material forces, we again find a conservation
law:

(C−ρ0gĝ · r)′ = 0. (4.103)

For this segment of the rod, the material force has the representations

C(s) =−EI
2

(
θ

′)2
+(P2 +ρ0g(�− s))cos(θ +α)

=−M2(s)
2EI

−n(s) · r′
(s),

C(�) =−n(�) · r′
(�)− M2

2

2EI
. (4.104)

As in the previous section, if gravity and the terminal moment are ignored, then C(s)
is conserved along this segment of the rod where C(�) =−P2ĝ · r′

(�).
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4.6.2.3 The segment s ∈ [a1,a2] of the rod in the smooth sleeve and the points
of discontinuity

It is straightforward to show that the slope of the rod is continuous where the rod
enters and exits the sleeve:

[[θ ]]a1
= 0, [[θ ]]a2

= 0. (4.105)

However, these results in no way imply that the curvature of the rod is continuous
at these points. At s = a1 and s = a2, we assume that respective singular forces, Fa1

and Fa2 , and respective singular moments, Ma1 and Ma2 , act on the rod. In addition,
for the segment of the rod in the frictionless guide, the assigned force acting on the
rod can be decomposed into a gravitational force and a normal force λ (s)A1 (cf.
Figure 4.16).

The balance of linear momentum for the portion of the rod in the sleeve reads

n
′
+ρ0gĝ+λA1 = 0, s ∈ (a1,a2). (4.106)

As θ = 0 for this section of the rod, the balance of angular momentum reduces to

n(s) = n2(s)A2 =
(
n2
(
a+1
)
+ρ0gcos(α)(s−a1)

)
A2. (4.107)

That is, n is tangent to the rod. We can now revisit the balance of linear momentum
and solve for the normal force acting on the rod:

λA1 = ρ0gsin(α)A1. (4.108)

Furthermore, the contact material force C is simply

C=−n2
(
a+1
)−ρ0gcos(α)(s−a1) , s ∈ (a1,a2) . (4.109)

In contrast to the other two segments of the rod, C decreases linearly with increasing
s and the following material force b needs to be supplied to satisfy the material
momentum balance law (4.89)1 (cf. Eqn. (4.39)):

b= ρ0gcos(α). (4.110)

Paralleling the developments in the previous segments of the rod, we again find that
the energy C−ρ0gĝ · r is conserved for this segment of the rod.

At s = a1, we assume a vanishing singular supply Ba1 = 0 along with a singular
force Fa1 and singular moment Ma1 acts. Thus, from the jump conditions (4.92),

Fa1 = n
(
a−1
)−n

(
a+1
)
,

Ma1 = m
(
a−1
)
= EIθ

′ (
a−1
)

A3,

0 = C
(
a−1
)−C

(
a+1
)
. (4.111)
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It is important to observe here that Fa1 is an unknown reaction force while Ma1 is
prescribed by the solution to the boundary-value problem for the hanging segment
s ∈ [0,a1). Noting that C is continuous at s = a1, we use the jump condition (4.111)3

to solve for n
(
a+1
) ·A2:

n(a+1 ) ·A2 =
M2(a−1 )

2EI
+n(a−1 ) ·A2. (4.112)

The analysis at the exit point s = a2 closely parallels the case for s = a1. Again, we
prescribe Ba2 = 0 and assume that a singular force Fa2 and singular moment Ma2

act at s = a2. The jump condition associated with the material force balance yields
continuity of C, and so we find

n(a−2 ) =
(

n(a+2 ) ·A2 +
M2(a+2 )

2EI

)
A2. (4.113)

It should be clear from the relations (4.112) and (4.113) that the axial component of
the force n experiences jumps at s = a1 and s = a2. However, because we assume
that Ba1 = 0 and Ba2 = 0, C does not and this continuity serves to determine the
jump in n. Continuity of C and r implies that the conserved quantity C−ρ0gĝ · r is
continuous at s = a1 and s = a2.

P1ĝ · r (0)− M2
1

2EI

−P2ĝ · r ( )− M2
2

2EI

C(s)

C(s)−ρ0gĝ · r

ρ0gcos(α)(a2 −a1)

s= a2s= a1 s=s= 0

Fig. 4.17 Representative distributions of the material force C and the conserved energy C−ρ0gĝ ·r
along the length of the deformable arm scale.

4.6.3 The Operation of the Arm Scale

With the help of Eqns. (4.98), (4.104), and (4.109), we are now in a position
to examine the distributions of the material force C and the conserved quantity
C− ρ0gĝ · r along the rod. A summary of the results is presented in Figure 4.17.
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The conservation of C−ρ0gĝ · r provides the equation governing the operation of
the arm scale. To see this, we use the expressions for C mentioned earlier to find that

n(0) · r′
(0)+ρ0gĝ · r(0)+ M2

1

2EI
= n(�) · r′

(�)+ρ0gĝ · r(�)+ M2
2

2EI
. (4.114)

On substituting for r
′

from Eqn. (4.88), n(0) =−P1ĝ, and n(�) = P2ĝ, it is straight-
forward to show that

P1 cos(θ(0)+α)+P2 cos(θ(�)+α) = ρ0gĝ · (r(�)− r(0))+
1

2EI

(
M2

2 −M2
1

)
.

(4.115)
This equation is the extension of the relation (4.87) when the weight of the rod
is included and terminal moments are allowed. It is the operating principle for the
arm scale: Given P1, M1, M2, α , the length of the sleeve, ρ0g, the difference in
heights between the ends of the rod, and measurements of θ(0) and θ(�), P2 can be
determined.

We can use the jump conditions Fa1 +[[n]]a1
= 0 and Fa2 +[[n]]a2

= 0 to determine
the reaction forces:

Fa1 = −M2(a−1 )
2EI

A2 +(P1 +ρ0ga1)sin(α)A1

= −EI
2

(
θ ′ (a−1

))2 A2
︸ ︷︷ ︸

+(P1 +ρ0ga1)sin(α)A1,

Fa2 =
M2(a+2 )

2EI
A2 +(P2 +ρ0g(�−a2))sin(α)A1

=
EI
2

(
θ ′ (a+2

))2 A2
︸ ︷︷ ︸

+(P2 +ρ0g(�−a2))sin(α)A1. (4.116)

Both of these forces are related to the bending moment (and bending strain) in the

rod. In [32], the (underbraced) terms
M2(a+2 )

2EI and
M2(a−1 )

2EI , which are the axial com-
ponents of Fa1 and Fa2 , are called Eshelby-like forces. Here, and as displayed in
Figure 4.16, we have shown how they manifest in reaction forces and how they can
be explicitly attributed to the material force C.

4.6.4 Insights from a Pair of Pendula

To gain a different appreciation for the dramatic change in strain energy that occurs
at s = a1 and s = a2 in the elastica arm scale, we ignore the weight of the elastica,
set the terminal moments M0 = M� = 0, and consider a pair of pendula. The di-
mensionless time variable τ and important instances for the pendula are identified
as follows:

τ =
s
�
, τ1 =

a1

�
τ2 =

a2

�
. (4.117)
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1
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(a) (b)

O

O

g gφ1

φ2

α

α

Fig. 4.18 The pair of pendula and the analogue model for the elastica arm scale. (a) The pendulum
analogous to the segment s ∈ (0,a−1 ) and (b) the pendulum analogous to the segment s ∈ (a+2 , �).
The distinct lengths �1 and �2 of the pendula are defined in (4.124) and are respectively inversely
proportional to the loads P1 and P2.

Observe that as s ranges from 0 → �, τ ranges from 0 → 1. Here, we are modifying
the classic kinetic analogue for a single elastica that we discussed in Section 4.4 to
incorporate the unusual boundary conditions at s = a1,2.

One of the pendula is analogous to the section s ∈ [0,a−1 ) of the elastica. In
the absence of terminal moments and ignoring the weight of the rod, the equation
governing this section is (from Eqn. (4.97))

(θ +α) ′′ =
P1

EI
sin(θ +α) , θ ′(0) = 0, θ(a−1 ) = 0. (4.118)

Thus, we can consider the motion of an analogous simple pendulum which oscillates
about its downward equilibrium with a dimensionless frequency ω1:

ω2
1 =

P1�
2

EI
. (4.119)

The equations of motion of this pendulum, which is shown in Figure 4.18, are

d2φ1

dτ2 = ω2
1 sin(φ1) ,

dφ1

dτ
(0) = 0, φ1(τ1) = α. (4.120)

The second pendulum models the segment of rod s ∈ (a+2 , �]. For this segment of the
rod we have (from Eqn. (4.102))

(θ +α) ′′ =− P2

EI
sin(θ +α) , θ ′(�) = 0, θ(a+2 ) = 0. (4.121)

Thus, we can consider the motion of an analogous simple pendulum which oscillates
about its downward equilibrium with a dimensionless frequency ω2,
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ω2
2 =

P2�
2

EI
, (4.122)

and whose equations of motion are described by

d2φ2

dτ2 =−ω2
2 sin(φ2) ,

dφ2

dτ
(1) = 0, φ2(τ2) = α. (4.123)

We refer to this pendulum as pendulum II and its counterpart of length �1 as pendu-
lum I. If the dimensional measure t of time is given by t = βτ where β is a constant,
then the lengths of pendulum I and pendulum II are

�1 = β 2g

(
EI

P1�2

)
=

β 2g

ω2
1

,

�2 = β 2g

(
EI

P2�2

)
=

β 2g

ω2
2

. (4.124)

With the help of Figure 4.19, we are now in a position to discuss the analogue
model for the elastic arm scale. Consider pendulum I and assume that it is released
from rest with φ1(0) = θ (0)+α . The pendulum falls as shown in Figure 4.19(b) and
eventually collides with a surface in a perfectly plastic collision (cf. Figure 4.19(c))
wherein it loses all its kinetic energy. After a period a2−a1

� of no motion, pendulum
II, which is at rest inclined at an angle φ2 =α to the vertical, is launched with a speed
dφ2
dτ
(
τ+2
)
> 0 (cf. Figure 4.19(d)). The resulting motion of pendulum II persists until

τ = 1 where it eventually comes to a state of instantaneous rest (cf. Figure 4.19(e)
& (f)). The counterpart of the material force C in this problem is the total energy of
the individual pendula:

e1 =
1
2

(
dφ1

dτ

)2

+ω2
1 cos(φ1) ,

e2 =
1
2

(
dφ2

dτ

)2

−ω2
2 cos(φ2) . (4.125)

We assume that the value of the total energies of both pendula are identical when
they are in motion. This assumption prescribes dφ2

dτ
(
τ+2
)
:

(
dφ2

dτ
(
τ+2
))2

=

(
dφ1

dτ
(
τ−1
))2

+2
(
ω2

1 +ω2
2

)
cos(α). (4.126)

In addition, the equality of the energies also implies that

ω2
1 cos(φ1(0)) =−ω2

2 cos(φ2(1)) . (4.127)

This identity is the counterpart to the relation (4.87) for the arm scale.
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Fig. 4.19 Schematic of the motion of pendulum I ((a) - (c)) and the subsequent motion of pendulum
II ((d) - (f)).

The kinetic analogue also sheds light on solving the boundary-value problem
associated with the elastic arm (whose weight is ignored). For a given loading P1

and P2 on the elastica arm scale and a given length a2 − a1 of sleeve, ω1 and ω2

can be computed, and the phase portraits for both pendula can be constructed (cf.
Figure 4.20). Now the solution shown in Figure 4.20(a) starts with a chosen φ1(0).
This value of φ1(0) then determines the time of flight τ1 =

a1
� to the impact event.

This time of flight then prescribes the allowable time of flight 1− a2
� for pendulum

II (cf. Figure 4.20(b)). The initial speed dφ2
dτ
(
τ+2
)
> 0 is prescribed by Eqn. (4.126)
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dφ1
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dφ2
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−15−15
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Fig. 4.20 Phase portraits for (a) pendulum I and (b) pendulum II. Referring to Eqns. (4.120)
and (4.123), for the results shown in this figure, ω2

1 = 20, ω2
2 = 40, and α = 60◦. The solution

labeled E is discussed in the text and in Figure 4.21.

and then it remains to verify that φ2 must transition to a state of instantaneous rest in
1− a2

� units of dimensionless time at a value of φ2 given by Eqn. (4.127). Typically,
for a given loading P1 and P2 on the elastica scale arm and a given length a1 −a2 of
sleeve, it is necessary to iterate the values of φ1(0) and a1 so as to find a solution that
satisfies Eqns. (4.126) and (4.127) given the time of flight 1− a2

� for pendulum II.
An example of a solution for prescribed values of ω1, ω2, and a2−a1 is shown in

Figure 4.21(a). The configuration of the elastic rod corresponding to this solution is
constructed in Figure 4.21(b) after integrating Eqn. (4.88) to determine the position
vector of the centerline r. In computing the solution numerically, we found that

a1

�
= 0.4022, φ1 (0) =

2π
9
,

dφ2

dτ
(
τ+2
)
= 8.80633. (4.128)

For the impact at τ = τ1 =
a1
� , an energy

1
2

(
dφ1

dτ
(
τ−1
))2

=
1
2
(4.19465)2 (4.129)

is lost by pendulum I. However for the launch at τ = τ2 =
a2
� , an energy

1
2

(
dφ2

dτ
(
τ+2
))2

=
1
2
(8.80633)2 (4.130)

is transferred to pendulum II. The plots of the total energies of the pendula shown in
Figure 4.21(c) confirm conservation of energy during the pendulum motions while
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Fig. 4.21 (a) A solution to the pendulum equations of motion (4.120) and (4.123), (b) the cor-
responding elastica arm scale, and (c) the energy of the pendula during their motions. Referring
to Eqns. (4.120) and (4.123), for the results shown in this figure, α = 60◦, ω2

1 = 20, ω2
2 = 40,

the sleeve is 36.44% of the length � of the elastic rod, τ1 = a1
� , and τ2 = a2

� . The phase plane
representation for the solution shown in (a) corresponds to the trajectory labeled E in Figure 4.20.

the pendula are moving - although the analogy we have presented breaks down when
the pendula are stationary during the time interval τ ∈ (τ1,τ2).

When one of the terminal loads is zero, then it is possible to use a single pen-
dulum to develop an analogue model for the deformable scale. In this case, say if
P1 = 0, then Eqn. (4.127) implies that θ(�)+α = 90◦. For pendulum II, we have
e2 = 0, φ2

(
1− a2

�

)
= α , and φ2(1) = 90◦. Thus, it is possible to quickly arrive at a

closed form expression for a2
� from Eqn. (4.125)2

14:

14 Eqn. (4.131) can also be inferred from [32, Eqn. (2.6)].
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1

Fig. 4.22 The length a2
� as a function of α when P1 = 0 for various values of P2. The results

shown in this figure are calculated using Eqn. (4.131) with i, ω2
2 = 1; ii, ω2

2 = K2
(

1
2

)≈ 3.43759;
iii, ω2

2 = 5; iv, ω2
2 = 20; and v, ω2

2 = 40.

a2

�
= f (ω2,α) where f (ω2,α) =

1
ω2

(
K

(
1
2

)
−
√

2F
(α

2
,2
))

, (4.131)

K(x) is a complete elliptic integral of the first kind, and F(x,m) is an elliptic inte-
gral of the first kind.15 The solutions a2

� to Eqn. (4.131) are shown in Figure 4.22.

Observe that for P2�
2

EI > K2
(

1
2

)
, the scale can be operated at all values of α ∈

(0,90◦). In addition, the more vertical the sleeve (i.e., the smaller the value of α),

the more sensitive the measurement a2
� is to changes in ω2

2 = P2�
2

EI . This result is

evident from Figure 4.22 or � ∂ f
∂P2

that can be calculated from Eqn. (4.131). Finally,
we note that the range of values of α for which the scale operates is limited when

0 < P2�
2

EI < K2
(

1
2

)
.

Our analysis of the arm scale assumes that

Ba1 = 0, Ba2 = 0, (4.132)

which in turn lead to a derivation of the relation Eqn. (4.87) for the operation of
an arm scale (where the weight of the elastica was neglected). As with the chain
problems, such as the chain fountain, discussed in Chapter 2, the prescriptions for
the supplies of material momentum must be justified by experiment. To this end,
we note that the relation Eqn. (4.87) governing the arm scale has been validated
experimentally by Bosi et al. [32]. Their experiments justify the prescriptions we
used for Ba1 and Ba2 .

15 As noted earlier, for background on elliptic integrals and functions, the handbook [41] and the
textbook [200] are recommended.
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4.7 Potential Energies and a Variational Formulation

For many problems that use the elastica as a model for a rod-like body, it is possi-
ble to use a variational principle to establish the equations of motion. A principal
advantage of a variational formulation is that it also enables stability criteria to be
established for the equilibrium configuration of the rod. Among others, these crite-
ria enable the interpretation of buckling phenomena as instabilities. Central to any
variational formulation is a potential energy functional Π and in this section we will
be concerned with establishing such a function for a variety of boundary-value prob-
lems, a sample of which were shown earlier in Figure 4.1. Additional background
on variational methods can be found in Chapter 9 and the references cited therein.

We restrict attention to rods which are terminally loaded with constant forces and
constant moments. In the context of planar motions of the elastica, such forces and
moments are conservative.16 We also assume that the assigned force ρ0f is conser-
vative; the prototypical example of such a force is gravitational: ρ0f = −ρ0gA2. In
a second example, we allow for the fact that a portion of the rod may have adhered
to a rigid surface.

4.7.1 A Terminally Loaded Rod Deforming Under a Conservative
Assigned Force

As our first example, consider a rod which is fixed at ξ = 0 and loaded at ξ = � by
a terminal force and terminal moment:

F� = P = P1A1 +P2A2, M� = M1A3. (4.133)

Examples of such rods can be seen in Figures 4.1(a) & (b). For these examples, we
have the respective specifications:

F� =−PA2, M� = 0, ρ0f =−ρ0gA2,

F� = P1A1 +P2A2, M� = 0, ρ0f =−ρ0gA2. (4.134)

The example we consider in this section does not encompass the elastica arm scale
or the adhered rod because the boundary condition at one end of the rod does not
pertain to a fixed material point.

16 Referring the reader to [8, 163, 265, 375] for further details, it is known that a constant moment
is not necessarily conservative.
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The balance laws (4.26) and jump conditions (4.41)1,3 imply that

n(�) = P, EI
(

θ
′
(�)−κ0(�)

)
= M1,

n(ξ ) = P+
∫ �

ξ
ρ0fds,

(
EI
(

θ
′ −κ0

))′
+
(

A3 × r
′) ·
(

P+
∫ �

ξ
ρ0fds

)
= 0. (4.135)

where we have dropped the − ornamenting some of the �s in these equations.
The total elastic strain energy ΠE of the elastica is

ΠE =
∫ �

0
ρ0ψds =

1
2

∫ �

0
EI
(

θ
′ −κ0

)2
ds. (4.136)

Noting that the potential energy of the terminal load is −P · r(�) and exploiting the
constancy of P, we find that this potential energy, which we denote by ΠP, can be
represented as

ΠP =−P · r(�) =−
∫ �

0
P · r′

ds−P · r(0). (4.137)

As the end ξ = 0 of the rod is fixed, we can ignore P · r(0) in much of the sequel.
The contribution from the moment M� can be expressed as

ΠM�
=−M� ·θ(�)A3 =−

∫ �

0
M� ·θ ′

A3ds−M� ·θ(0)A3. (4.138)

We have not found a discussion of ΠM�
in the literature, but note that it is crucial

to assume in the establishment of the final representation that M� is constant and
parallel to the constant axis of rotation A3. If either of these conditions are violated,
then the moment will typically be nonconservative.

The potential energy Πf of the assigned force ρ0f is simply the integral of −ρ0f ·
r over the length of the rod. However, to make this expression tractable to later
analysis, we need to use the fundamental theorem of calculus and replace r with
the integral of r

′
and then change the order of integration in the resulting integral.17

These manipulations are summarized in the following identities:

Πf =−
∫ �

0
ρ0(s)f(s) · r(s)ds

=−
∫ �

0
ρ0(s)f(s) ·

(∫ s

0
r
′
(u)du+ r(0)

)
ds

=−
∫ �

0

∫ �

s
ρ0(u)f(u) · r′

(s)duds−
∫ �

0
ρ0(s)f(s)ds · r(0). (4.139)

This completes the discussion of representations for the components of Π .

17 Our manipulations of Πf are inspired by related work in a recent paper by Farjoun and Neu
[108].
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Combining the potential energy functions, we find the total potential energy of
the rod:

Π =
∫ �

0

(
EI
2

(
θ

′ −κ0

)2 −
{

P+
∫ �

s
ρ0(u)f(u)du

}
· r′ −M� ·θ ′

A3

)
ds+C0,

(4.140)
where the constant C0 =−∫ �0 ρ0(s)f(s)ds ·r(0)−P ·r(0)−M� ·θ(0)A3. It is impor-
tant to note that the term inside the curly brackets, which is equivalent to n(ξ = s),
is a function of ξ and not r.

After substituting for r
′
= cos(θ)A1 + sin(θ)A2, we find that Π is a functional

of the form Π =
∫ �

0 f (θ ,θ ′
,ξ )ds. We seek extremizers of Π using methods from

the calculus of variations. To perform the variation, we let

θ(ξ ) = θ ∗(ξ )+ εη(ξ ), (4.141)

where the variation η(ξ ) satisfies the boundary condition

η(ξ = 0) = 0. (4.142)

We substitute (4.141) into Π and then assume that limε→0
dΠ
dε = 0. In other words,

θ ∗(ξ ) extremizes Π . Using the standard methods from the calculus of variations18

we find a pair of necessary conditions for θ ∗ to extremize Π . The first of these
conditions is the Euler-Lagrange necessary condition (cf. Eqn. (9.14)),

d
dξ

(
∂ f

∂θ ′

)
−
(

∂ f
∂θ

)
= 0, (4.143)

where

d
dξ

(
∂ f

∂θ ′

)
=
(

EI
(

θ
′ −κ0

)
−M1

)′

=
(

EI
(

θ
′ −κ0

))′
,

∂ f
∂θ

=−
(

P+
∫ �

ξ
ρ0(u)f(u)du

)
· (cos(θ)A2 − sin(θ)A1) . (4.144)

In addition, the second condition is the natural boundary condition at ξ = �
(cf. Eqn. (9.12)):

EI
(

θ
′
(�)−κ0(�)

)
= M1 = M� ·A3. (4.145)

Upon inspection, we conclude that Eqns. (4.143) and (4.145) are identical to the
governing equation (4.135)4 and boundary condition (4.135)2 we discussed earlier.
We denote the solution to (4.143) with an asterisk. What is important to note is that
the solution θ(ξ ) = θ ∗(ξ ) to either of these governing equations that satisfies the
boundary conditions

18 These methods are discussed in Section 9.3 of Chapter 9.
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θ ∗ (ξ = 0) = θ0, EI
(

θ ∗′ (�)−κ0(�)
)
= M1, (4.146)

satisfies a necessary condition for an extremizer of Π . Whether or not it is a mini-
mizer or a maximizer can be partially ascertained by looking at the second variation
of Π , a task we shall shortly examine.

The material we have just presented pertains to a rod where one end is clamped
and the other is free. The corresponding developments where both ends are clamped
or both ends are free are straightforward to deduce and we leave them as an exercise
for the reader.

4.7.2 Application to an Adhesion Problem

Consider the problem shown in Figure 4.8 of a rod for which a portion �− γ is
contacting a rigid surface or the elastica arm scale shown in Figure 4.15. For these
problems, additions are needed to our previous developments. The most significant
of these amendments involves subdividing the potential energy functional into a set
of piecewise potential energy functionals whose limits of integration are variable.

For a rod which is in contact with a rigid substrate, the total potential energy of
the rod will be composed of the potential energy of terminal forces and moments,
the integral of the strain energy per unit length, and the adhesion energy per unit
length −Wad. Many of the details, particularly for the segment of the rod ξ ∈ [0,γ ],
are similar to those discussed earlier and so we focus on the differences. In particular
for this rod, the balance of linear momentum can be used to show that

n
(
0+
)
= −F0 =−P,

n(ξ ) = −
∫ ξ

0
ρ0(u)f(u)du−P, ξ ∈ [0,γ). (4.147)

It is convenient to decompose the potential energy into the sum of the elastic poten-
tial energy in the noncontacting and contacting sections. Modulo an additive con-
stant, the resulting expression for the total potential energy Π is19

Π =

∫ γ

0

⎛
⎜⎜⎜⎝
{

EI
2

(
θ

′ −κ0

)2
}
+

(∫ s

0
ρ0(u)f(u)du+P

)

︸ ︷︷ ︸
=−n

·r′
+M0 ·θ ′

A3

⎞
⎟⎟⎟⎠ dξ

+
∫ �

γ

{
EI
2

κ2
0 −n ·A1 −Wad

}
dξ +Cγ . (4.148)

19 The contribution of ρ0f to this expression follows from Eqn. (4.139) with some minor modifica-
tions to one of the limits of integration.
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In writing Eqn. (4.148), we noted that r
′
= A1 and θ = 0 in the contact region and

we defined an additive constant to Π :

Cγ =−P · r(γ)−M0 ·θ(γ)A3 −
∫ γ

0
ρ0(s)f(s)ds · r(γ). (4.149)

The adhesion energy Wad is subtracted from the penultimate term in Eqn. (4.148).
This subtraction can be explained by the fact that Wad is defined as the work of the
adhesive and elastic restoring forces during interfacial detachment.20

In the sequel, the behavior of the functional (4.148) with respect to variations in
θ and γ will be computed:

θ = θ (ξ ,ε) = θ ∗(ξ )+ εη(ξ ), γ = γ (ε) = γ∗+ εμ . (4.150)

In terms of a more classic notation, the respective variations in θ and γ are δθ = εη
and δγ = εμ . In the region where the rod is adhering to the horizontal surface, θ is
prescribed and so

η(ξ ) = 0 ∀ ξ ∈ (γ , �]. (4.151)

It is known that the variations of θ and γ are not independent and must satisfy
compatibility conditions.21 To find these conditions we compute the first and second
derivatives of θ (ξ = γ∗+ εμ ,ε) with respect to ε evaluated at ε = 0. The desired
set of compatibility conditions are obtained by taking the first and second derivatives
of Eqn. (4.150)1 with respect to ε and then setting ε → 0:

[[
μθ ∗′ +η

]]
γ
= 0,

[[
μ2θ ∗′′ +2μη

′]]
γ
= 0. (4.152)

These conditions prove remarkably useful when simplifying expressions for the first
and second variations of Π .

4.7.2.1 Static Balance Laws

By considering variations of the form (4.150)1 and keeping γ fixed, we find that
the equation dΠ

dε
∣∣
ε=0 = 0 leads, as anticipated, to a differential equation which is

identical to that obtained using the balances of linear and angular momentum:

∂
∂ξ

(
EI
(

θ ∗′ −κ0

))
+n · (cos(θ ∗)A2 − sin(θ ∗)A1) = 0, (4.153)

where ξ ∈ (0,γ). This differential equation is often known as the Euler-Lagrange
equation because it is intimately related to the Euler-Lagrange necessary condition.

20 Alternatively, the adhesion may be represented as a surface potential by also adding Wad� to Π .
This is accomplished by eliminating Wad in the second integrand and adding it to the first integrand.
21 Compatibility conditions of the form (4.152) for adhesion problems can be found in [219] and
[318] and for problems where the rod passes through a sleeve, as in the elastica arm scale, in
[27, 32]. They express the restrictions that variations in θ (γ±) and γ are not always independent.
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We also obtain the boundary conditions at ξ = 0 and ξ = γ∗−:

EI
(

θ ∗′(0)−κ0

)
=−M0 ·A3, θ ∗ (γ∗−)= 0. (4.154)

In the condition (4.153), we identified the term comprised of P and ρ0f with the
contact force n (cf. Eqn. (4.147)).

4.7.2.2 Adhesion Boundary Conditions

To consider the variations of γ , we need to use the Leibniz rule. You may recall that
we used this rule earlier in Chapter 1 (cf. Eqn. (1.48)) to obtain jump conditions
from the integral form of the balance laws. In the present context, this rule takes the
form

d
dε

∫ f (ε)

g(ε)
a(u,ε)du =

∫ f (ε)

g(ε)

d
dε

a(u,ε)du+a( f (ε),ε)
d f
dε

−a(g(ε),ε)
dg
dε

.

(4.155)

The natural boundary condition at the edge of the region of adhesive contact is
obtained by applying the variations (4.150). After differentiating the expression for
the functional Π with respect to ε , using the Leibniz rule (4.155), taking the limit
ε → 0, using Eqns. (4.153) and (4.154), and then setting the resulting expression to
0, we find that

([[
EI
2

(
θ ∗′ −κ0

)2 −n · r′
]]

γ
−Wad

)
μ = 0. (4.156)

The condition (4.156) must hold for all μ . Whence, we find the adhesion boundary
condition22 [[

EI
2

(
θ ∗′ −κ0

)2 −n · r′
]]

γ
=Wad. (4.157)

This boundary condition can be further simplified by noting that (because θ is a

continuous function of ξ )
[[

r
′]]

γ
= 0. Thus, we can use Eqn. (4.41)1 to write

[[
EI
2

(
θ ∗′ −κ0

)2
]]

γ
+Fγ ·E1 =Wad. (4.158)

In the absence of shear adhesion (i.e., Fγ is normal to the surface and so Fγ ·E1 = 0)
or when the shear traction is distributed along the interface between the rod and
the surface, the boundary condition (4.158) is the same natural boundary condi-
tion previously derived in [217] and [318] and corresponds to the jump in material

22 If the rod were extensible, then
[[

n · r′]]
γ

would be due to the jump in the stretch of the centerline

across the discontinuity. For examples where this situation arises, see [181] and [218].
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momentum (4.41)2 with Bγ =−Wad. When adhesion is absent, as it is in the elastica
arm scale, then Wad = 0 and the condition corresponding to Eqn. (4.158) is discussed
and exploited in [27, 32].

In addition to a force Fγ and material force Bγ at the edge of the region of
adhesive contact, a moment Mγ can also be present. This moment is computed from
Eqn. (4.41)3:

Mγ =
(

EIθ ∗′ (γ∗−)−EIθ ∗′ (γ∗+)
)

A3. (4.159)

An example of Mγ can be seen in Figure 4.9. Moments of this type also appear
in the elastica arm scale (cf. Eqn. (4.111)) and are similar to the adhesion moment
discussed in the literature (cf. [282]).

Where no confusion should arise, in the sequel we will drop the ∗ ornamenting
the solutions θ ∗(ξ ) and γ∗ of the boundary-value problem.

4.8 Conditions for Stability from the Second Variation

We now turn to examining stability conditions for the equilibrium configurations
discussed in the previous sections. The central idea here is to consider an expansion
of Π about ε = 0:

Π (ε) = Π (ε = 0)+
dΠ
dε

∣∣∣∣
ε=0

ε +
1
2

d2Π
dε2

∣∣∣∣
ε=ε0

ε2, (4.160)

where ε0 ∈ [0,ε ]. Now for an equilibrium configuration the first variation of Π is
zero:

δΠ =
dΠ
dε

∣∣∣∣
ε=0

ε = 0, (4.161)

and, after assuming that d2Π
dε2 is continuous in a neighborhood of ε = 0, we can

conclude that

Π (ε)−Π (ε = 0) =
1
2

d2Π
dε2

∣∣∣∣
ε=ε0

ε2 ≈ 1
2

d2Π
dε2

∣∣∣∣
ε=0

ε2. (4.162)

The latter term is known as the second variation δ 2Π of Π :

δ 2Π =
1
2

d2Π
dε2

∣∣∣∣
ε=0

ε2. (4.163)

Thus, if d2Π
dε2

∣∣∣
ε=0

≥ 0, then the potential energy functional is minimized at an equi-

librium configuration. This nonnegativity of the second variation enables us to
conclude that the configuration satisfies a necessary condition for stability. If the

stronger condition d2Π
dε2

∣∣∣
ε=0

> 0 holds, then we can conclude that the configuration
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satisfies a sufficient condition for stability and we classify the configuration as sta-

ble. By way of contrast, if we can show that d2Π
dε2

∣∣∣
ε=0

< 0, then the necessary condi-

tion for stability is not satisfied and we conclude that the equilibrium configuration
is unstable.

We now explore conditions that can be used to determine the sign of d2Π
dε2

∣∣∣
ε=0

and

use them to establish a necessary condition, which we denote as N1, for stability.
For some cases, we are able to establish a pair of sufficiency conditions, which are
referred to as B1 and S1, for stability. For the purposes of exposition, it is convenient
to first consider the adhesion problem in Section 4.7.2. Our presentation is based on
the works of Majidi, O’Reilly, and Williams [219, 220].

4.8.1 A Representation for the Second Variation

We return to the adhesion problem shown in Figure 4.8 and discussed in Sec-
tion 4.7.2. For this problem, the potential energy functional to be examined was
presented in Eqn. (4.148) and we reproduce it here for convenience:

Π =
∫ γ

0

{
EI
2

(
θ

′ −κ0

)2
}
−n · r′

+M0 ·θ ′
A3 dξ +Cγ

+
∫ �

γ

{
EI
2

κ2
0 −n ·A1 −Wad

}
dξ . (4.164)

We consider variations of θ and γ of the form (4.150) and evaluate d2Π
dε2

∣∣∣
ε=0

. After

some rearranging, we find that this derivative has a simple additive decomposition:

d2Π
dε2

∣∣∣∣
ε=0

=
∫ γ

0

(
EIη

′
η

′
+Pη2

)
dξ

−
[[(

EI
(

θ ∗′ −κ0

))′ (
θ ∗′ −κ0

)
−n

′ · r′ − (EI)
′

2

(
θ ∗′ −κ0

)2
]]

γ

μ2

−
[[

2EI
(

θ ∗′ −κ0

)
η

′ −S
(

μθ ∗′ +2η
)]]

γ
μ , (4.165)

where

P = n · (cos(θ ∗)A1 + sin(θ ∗)A2) ,

S =
(

r
′ ×n

)
·A3 = n · (−sin(θ ∗)A1 + cos(θ ∗)A2) . (4.166)

To start to simplify this expression, we first invoke the compatibility conditions
(4.152):

0 = μθ ∗′ (γ−)+η
(
γ−
)
, 0 = μθ ∗′′ (γ−)+2η

′ (
γ−
)
. (4.167)
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This helps to eliminate η ′
and η from the expression (4.165):

d2Π
dε2

∣∣∣∣
ε=0

=
∫ γ

0

(
EIη

′
η

′
+Pη2

)
dξ

−
[[(

EI
(

θ ∗′ −κ0

))′ (
θ ∗′ −κ0

)
−n

′ · r′ − (EI)
′

2

(
θ ∗′ −κ0

)2
]]

γ

μ2

+
[[

EI
(

θ ∗′ −κ0

)
θ ∗′′ +Sθ ∗′

]]
γ

μ2. (4.168)

We next appeal to the balance laws for the two segments of the rod:

(
EI
(

θ ∗′ −κ0

))′
+S = 0, n

′
+ρ0f = 0, ξ ∈ (0,γ),

(
EI
(

θ ∗′ −κ0

))′
+n ·A2 = 0, n

′
+ρ0f+λA2 = 0, ξ ∈ (γ , �), (4.169)

where λA2 is the normal force exerted by the horizontal surface on the rod. Omit-

ting details, the end result of the manipulations is that the expression for d2Π
dε2

∣∣∣
ε=0

reduces to a desirable decoupled form:

J =
d2Π
dε2

∣∣∣∣
ε=0

=
∫ γ

0

(
EIη

′
η

′
+Pη2

)
dξ

−
[[

Sθ ∗′ +ρ0f · r′
+

(EI)
′

2

(
θ ∗′ −κ0

)2
]]

γ

μ2

+
[[

EI
(

θ ∗′ −κ0

)
κ

′
0

]]
γ

μ2. (4.170)

The terms associated with μ2 can be simplified further by appealing to the fact
that the segment of the rod in contact with the flat surface has a constant θ ∗ = 0,
however we do not pause to do this here. We also note that for many problems with
homogeneous rods in the absence of intrinsic curvature and gravitational loading,
the simplifications to the right-hand side of Eqn. (4.170) are extensive and reduce
the term associated with μ to a single term: +μ2S (γ−)θ ∗ (γ−).

It is important to notice that the integral term in Eqn. (4.170) may not be positive

because we are uncertain as to the contribution of the term Pη2 =
(

n · r′)η2. This is

particularly the case when the rod is in compression (and we anticipate that possible
buckling instabilities might be present). To proceed, we follow an idea dating to the
French mathematician Adrien-Marie Legendre (1752–1833) in 1786 and add the
following term to Eqn. (4.170)23:

23 Further background on Legendre’s treatment of the second variation can be found in the superb
texts by Bolza [30] and Gelfand and Fomin [113].
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∫ γ

0

∂
∂ξ
(
η2w

)
dξ − [η2w

]γ
0 = 0. (4.171)

Manipulating the resulting expression for J from Eqn. (4.170), we find that

J =

∫ γ

0
EI
{

η
′
+
( w

EI

)
η
}2

+

(
w

′
+P− w2

EI

)
η2 dξ

−
[[

Sθ ∗′ +ρ0f · r′
+

(EI)
′

2

(
θ ∗′ −κ0

)2
]]

γ

μ2

+
[[

EI
(

θ ∗′ −κ0

)
κ

′
0

]]
γ

μ2 − [η2w
]γ

0 . (4.172)

It is useful to note that

−[η2w
]γ

0 = η2(0)w(0)−η2 (γ−)w
(
γ−
)

= η2(0)w(0)−μ2
(

θ ∗′ (γ−)
)2

w
(
γ−
)
. (4.173)

Thus, provided a solution w(ξ ) to the following Riccati equation can be found,

∂w
∂ξ

+P− w2

EI
= 0, (4.174)

we can then express J in its final desired form:

J = J1 + J2, (4.175)

where

J1 =

∫ γ

0
EI
{

η
′
+
( w

EI

)
η
}2

dξ ,

J2 =−
[[

Sθ ∗′ +ρ0f · r′
+

(EI)
′

2

(
θ ∗′ −κ0

)2
]]

γ

μ2

+
[[

EI
(

θ ∗′ −κ0

)
κ

′
0

]]
γ

μ2 +η2(0)w(0)−μ2
(

θ ∗′ (γ−)
)2

w
(
γ−
)
. (4.176)

Observe that adding the identity (4.171) to J succeeds in making the integrand a
positive semi-definite function of η (provided we can find a bounded solution w(ξ )
to the Riccati equation). It is also interesting to observe that we have some freedom
in choosing the initial conditions for w(ξ ) and this freedom will be exploited in the
sequel.
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(a) (b)
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Fig. 4.23 Schematic of solutions u(ξ ) to a Jacobi equation (4.178) and the corresponding solutions
w(ξ ) to a Riccati equation (4.174). In (a) there is no conjugate point to ξ = 0 in the interval [0,γ ]
and in (b) there is a conjugate point ξc to ξ = 0 in the interval [γ , �] where w(ξ )↗ ∞ as ξ ↗ ξc and

w(ξ )↘−∞ as ξ ↘ ξc. For the examples shown in (a), P�2

EI =−1 and γ = 0.8�. Correspondingly

for (b), the parameter values are P�2

EI =−5 and γ = 0.8� and, as a result, ξc ≈ 0.70248�.

4.8.2 Conjugate Points and the Riccati and Jacobi Equations

For many problems seeking a bounded solution w(ξ ) to the Riccati equation is chal-
lenging. Part of the challenge is to distinguish parameter regimes where the solution
becomes unbounded from their bounded counterparts. Fortunately, a remedy is at
hand that is attributed to the German mathematician Carl Jacobi (1804–1851). The
solution is to employ a Jacobi transformation which relates the function w(ξ ) to
another function u(ξ ):

w =−EI
u
′

u
. (4.177)

Substituting for w(ξ ) in the Riccati equation (4.174), one finds that this transforma-
tion produces a Jacobi differential equation for u(ξ ) from Eqn. (4.174):

EIu
′′ −Pu = 0. (4.178)

We consider solutions u(ξ )∀ξ ∈ [0,γ ] to Eqn. (4.178) which satisfy the initial con-
ditions

u(ξ = 0) = 1, u
′
(ξ = 0) = 0. (4.179)

Note that this pair of initial conditions is equivalent to w(0) = 0. If the solution
u(ξc) = 0 for some ξc, then the point ξc is said to be conjugate to ξ = 0.24

24 Our definition of the conjugate point differs from the traditional definition as the latter applies
to the case where the rod is clamped at both of its ends.
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To relate unbounded solutions of the Riccati equation to conjugate points, we
recall a theorem that can be found in [298]:

Bounded solutions to the Riccati equation (4.174) for w(ξ ) on a given interval
exist if, and only if, a solution u(ξ ) for the corresponding Jacobi differential

equation (4.178) exists on the same interval with u(ξ ) �= 0 and w given by (4.177).

We use this theorem to conclude that the solution to the Riccati equation becomes
unbounded at a conjugate point: limξ→ξc

|w(ξ )| = ∞ (see Figure 4.23(b)). On the
other hand, and as demonstrated in Figure 4.23(a), the existence of a bounded solu-
tion w(ξ )∀ξ ∈ [γ , �] is equivalent to the nonexistence of conjugate points to ξ = �
in the interval [γ , �] for the solution u(ξ ) to the Jacobi equation (4.178).

4.8.3 The Criterion N1

We have now compiled all the needed background to state the necessary condition
for stability which we denote by N1. Part of this criterion pertains to the buckling
instability of the rod. The second part of the criterion is intimately related to the
kinematics at the adhesion point ξ = γ .

CRITERION N1: If a solution {θ ∗(ξ ),γ∗} to the boundary-value problem (4.153),
(4.154), and (4.158) minimizes Π then the solution w(ξ )∀ξ ∈ [0,γ∗] to the boundary-
value problem

∂w
∂ξ

+P− w2

EI
= 0, w(0) = 0, (4.180)

cannot become unbounded in the interval [0,γ∗] and the following inequality must
be satisfied:

[[
EI
(

θ ∗′ −κ0

)
κ

′
0

]]
γ
−
[[

Sθ ∗′ +ρ0f · r′
+

(EI)
′

2

(
θ ∗′ −κ0

)2
]]

γ

≥
(

θ ∗′ (γ∗−)
)2

w
(
γ∗−
)
. (4.181)

We sketch a proof of the criterion as follows. First, if a solution w(ξ ) to the Riccati
equation (4.180) can be found, then we can decompose J into the sum of J1 and J2 as
shown in (4.175). Further, J1 will be positive semi-definite (cf. Eqn. (4.176)). Sim-
plifying J2 using the fact that w(0) = 0, we find that it is sufficient for Eqn. (4.181)
to hold in order for J2 ≥ 0. This completes the proof.

The adhesion boundary condition (4.158) can often be used to express θ ∗′ (γ∗+)
in terms of Wad. In this instance, the condition (4.181) can then be interpreted as a
condition on the relative work of the adhesion to that of loading P1. On the other
hand, the existence of a solution to the Riccati equation (4.180) implies that the rod
has not buckled.
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4.8.4 The Criterion B1

Many of the buckling problems of interest involve rods where one end is free and the
other is clamped at ξ = �. To examine stability for these cases, it suffices to examine
J and ignore the effects of γ . To ignore the effects of changing γ , one simply sets
μ = 0 in the expression for J shown in Eqn. (4.175). In this case, we can establish a
very useful sufficient condition for stability by choosing the initial condition w(0) =
0 and appealing to some known results from the calculus of variations.25 We label
the resulting criterion B1.

CRITERION B1: Consider the case of a terminally loaded rod which is clamped at
ξ = � and subject to a conservative assigned body force. If a solution {θ ∗(ξ )} to
the boundary-value problem

∂
∂ξ

(
EI
(

θ ∗′ −κ0

))
+n · (cos(θ ∗)A2 − sin(θ ∗)A1) = 0,

EI
(

θ ∗′(0)−κ0

)
=−M0 ·A3, θ ∗ (�) = θ�, (4.182)

results in a solution u(ξ )∀ξ ∈ [0, �] to Eqns. (4.178) and (4.179) with no conjugate
points in ξ ∈ [0, �] then the equilibrium configuration defined by θ ∗(ξ ) is stable.

This stability criterion is classical and equivalent statements can be found in many
papers on stability of rods featuring variational methods. The criterion can also be
stated in terms of the Riccati differential equation. However, because of the sim-
plicity of J2 (i.e., J2 = 0) it is more convenient to state the result using the Jacobi
differential equation. We shall explore an application of B1 in Section 4.9.

4.8.5 The Criterion S1

For some applications featuring adhered rods, the geometry of the adhesive interface
as well as the constitutive properties of the rod conspire so that the boundary term
J2 defined in Eqn. (4.176) can be set to zero by simply choosing the initial condition

w(0) = 0. (4.183)

One example of such a situation arises when the rod is homogeneous, has no
intrinsic curvature and θ ∗′ (γ±) = 0. In this case, we can strengthen N1 to yield
a sufficient condition, which we denote by S1, for stability. Because J2 = 0, the
forthcoming criterion only pertains to perturbations in θ : perturbations to γ need
not be considered.

25 See, in particular, [113, Theorem 3 in Section 26]. Choosing w(0) = 0 implies that the boundary
term J2 defined in Eqn. (4.176) will vanish.
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Referring to Theorem 3 in [113, Section 26], we can now readily establish a
sufficient condition for positive definiteness of J and, hence, a sufficient condition
for stability.26 In the interests of brevity, we merely state the criterion:

CRITERION S1: Consider the case θ ∗ (γ+) = 0. If a solution {θ ∗(ξ ),γ∗} to the
boundary-value problem is such that either

(i) a bounded solution w(ξ )∀ξ ∈ [γ∗, �] to Eqn. (4.174) can be found where
w(�) = 0, or

(ii) there are no points conjugate to ξ = � in the interval [γ∗, �],

then {θ ∗(ξ ),γ∗} is stable.

Clearly, the development of a stability criterion in this case is identical in all but one
respect to the case of a rod fixed at one end and subject to a terminal load P at the
other.27 The distinction from this classical problem is that the length �− γ of the
beam is typically a (nonlinear) function of P, EI, and Wad.

4.9 Simple Examples of Buckling

We now consider a series of examples designed to illustrate the conditions estab-
lished in the previous section.

4.9.1 Compressing an Adhered Rod

To illuminate the criteria N1 and S1, consider the rod shown in Figure 4.24.28 The
rod of length � has a section of length γ which is restrained by friction from moving
on a horizontal surface. The contact between the rod and the surface can be main-
tained with Wad = 0. An applied force FA1 acts at the material point ξ = 0. Clearly,
if the applied force F is too large then the unattached section of the rod will buckle.
This buckling instability will be revealed using the criterion S1.

To analyze this problem, we first solve the balance laws with the help of the
appropriate boundary conditions and find the trivial solution

n(ξ ) =−FA1, θ ∗(ξ ) = 0. (4.184)

26 Gelfand and Fomin’s proof in [113] pertains to the fixed-fixed case. It requires some minor
modifications to deal with the fixed-free case of interest here and these modifications are outlined
in [289].
27 That is, the problem of a terminally loaded fixed-free strut.
28 This example is adopted from [219]. It is the simplest illustrative example of a buckling problem
featuring adhesion that we could find.
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A1

A2

FA1

Rigid plane Adhesive layerElastic rod

ξ = 0 ξ = γ ξ =

Fig. 4.24 An axially loaded elastic rod of length �. A portion of the rod ξ ∈ (γ , �] has adhered to
the rigid horizontal plane.

This solution is statically admissible for all values of F and all adhesion lengths
γ > 0. To examine the possibility of buckling, we establish the appropriate single
Riccati and Jacobi equations, from Eqns. (4.174) and (4.178):

∂w
∂ξ

= F +
w2

EI
, EIu

′′
+Fu = 0, ξ ∈ [0,γ ]. (4.185)

The boundary conditions for these differential equations are, respectively,

w(ξ = 0) = 0, u(ξ = 0) = 1, u
′
(ξ = 0) = 0. (4.186)

The solutions of the pair of boundary-value problems are

u(ξ ) = cos

(√
F
EI

ξ

)
, w(ξ ) =−

√
FEI tan

(√
F
EI

ξ

)
. (4.187)

Using the solutions (4.187), it is straightforward to show that the Riccati equa-
tion (4.185)1 has a bounded solution and, equivalently, there are no conjugate points
to ξ = 0 in the interval [0,γ) provided F < Fcrit

29:

Fcrit =
π2EI
4γ2 . (4.188)

We conclude with the help of S1 that the straight configuration θ ∗ = 0 is stable
provided F < Fcrit and unstable otherwise. Notice that instability occurs when the
rod buckles and is independent of the adhesive.

Now suppose that F >Fcrit. It follows that u(ξc) = 0 for ξ = ξc. That is, ξ = ξc is
the conjugate point to ξ = 0. We observe from the solutions (4.187) that w(ξ )↗ ∞
as ξ ↘ ξc as expected from our earlier discussion in Section 4.8.2. We can thus
appeal to the criterion N1 to conclude that the equilibrium configuration in this case
is unstable.

29 This is equivalent to the classical result for the buckling load of a fixed-free strut.
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4.9.2 Buckling of a Clamped Rod

We now examine the classic problem of a straight uniform rod which is clamped at
ξ = �, subjected to a vertical force −FA2 at the free end ξ = 0, and must support
its own weight (see Figure 4.25). Initially the rod is straight, but as F increases this
straight configuration will eventually become unstable, and the rod will then buckle
into one of either two configurations (which turn out to be stable). Examples of the
buckled states are shown in Figure 4.26. This buckling problem has a celebrated
history and we refer the reader to the discussions in Love’s textbook [213], a pa-
per by Maddocks [215], Timoshenko and Gere’s textbook on elastic stability [345,
Chapter 2], and a seminal historical review by Truesdell [350]. By way of additional
applications, a closely related analysis applied to understanding the stability of the
human spine in the sagittal plane can be found in [211].

0

1

ξ

u(ξ )

w(ξ ) EI

F inc.

F inc.
F

g

Fig. 4.25 Solutions u(ξ ) to the Jacobi equation (4.191)2 and w(ξ ) to the Riccati equation (4.191)3

for the straight strut. For the examples shown, α = 1.0, βcrit ≈ 2.16, and the values of β = F�2

EI are
0.0, 1.0, 2.0, and 2.5.

For the problem at hand,

κ0 = 0, F0 =−FA2, ρ0f =−ρ0gA2. (4.189)

It follows that
P = n · r′

= (F +ρ0gξ )sin(θ ∗) . (4.190)

The Euler-Lagrange, Jacobi, and Riccati equations for this problem can be deduced
from Eqns. (4.153)1, (4.178), and (4.174), respectively:
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(a) (b)

0
1
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ξ

u(
ξ)
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F F

F F

g

Fig. 4.26 (a) Schematic of the buckled states of a heavy terminally loaded strut elastica which is
subject to a terminal load −FA2. (b) The solution of the Jacobi equation (4.191)2 for the buckled
strut as β increases from βcrit. For the examples shown, α = 1.0, βcrit ≈ 2.16, and the values of

β = F�2

EI used in (a) and (b) are 2.2,5,10, and 20.

EI
∂ 2θ ∗

∂ξ 2 =−(F +ρ0gξ )cos(θ ∗) ,

EIu
′′
= (F +ρ0gξ )sin(θ ∗)u,

∂w
∂ξ

− w2

EI
=−(F +ρ0gξ )sin(θ ∗) . (4.191)

The solutions to these equations are subject to the following boundary conditions:

θ ∗ (ξ = �) =−90◦,
∂θ ∗

∂ξ
(ξ = 0) = 0,

w(ξ = 0) = 0, u(ξ = 0) = 1, u
′
(ξ = 0) = 0. (4.192)

In the sequel, we shall fix the dimensionless weight parameter α = ρ0g�3

EI and vary

the terminal load parameter β = F�2

EI .
Examining the solution to the Euler-Lagrange equation (4.191)1, we observe that

the straight strut (i.e., θ ∗ = −90◦) is a solution for all F and ρ0g. Assuming that
α is sufficiently small, we find that the Riccati equation (4.191)3 for the straight
strut has a bounded solution provided β is smaller than a critical value βcrit.30

30 An analytic expression, featuring Airy functions, for w(ξ ) can be established for Eqn. (4.191)3
when θ ∗ =−90◦.
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A representative sample of w for varying β is shown in Figure 4.26(b). When
β ≥ βcrit, then Eqn. (4.191)3 does not have a solution. We conclude with the help
of S1 that the straight strut is stable for β < βcrit and, using B1, that the straight
strut is unstable for β ≥ βcrit. For β > βcrit, the Euler-Lagrange equation (4.191)1

admits two nontrivial solutions (or buckled states) which are mirror images of each
other. The evolution of these solutions as F is increased beyond its critical value
Fcrit = EIβcrit/�

2 is shown in Figure 4.26(a). We note that, as F is increased, the
strut shows considerable deflection from the vertical. It suffices to examine a single
Riccati equation (4.191)3 to determine the stability of both buckled solutions. Refer-
ring to Figure 4.26(b), we find that the Riccati equation (4.191)3 possess bounded
solutions for each one of the pair of buckled states and conclude, with the help of
the criterion S1, that the buckled states are stable.

4.9.3 Stability of Peeling

The third class of problems we examine involves a rod which is partially adhered
to a rigid surface. Examples of this class of problem were considered in Section 4.5
and, for the reader’s convenience, we rapidly recall some of these developments
here. The example discussed here is adapted from [219].

0
0

1

−2

v(s)

s= ξ

P

M0 = − EI ω0A3

decr. f1
decr. f1

u

u

Fig. 4.27 Deformed configurations of the terminally loaded rod for various values of f1: −2, −3,
−4, −5, and −5.9. The corresponding values of Γ (which is defined in Eqn. (4.205)) for these
solutions are −1.03053, 1.37988, 2.3106, 1.76842, and −0.000105, respectively. The inset image
shows the corresponding solutions v(s) for the Riccati equation (4.204). Unlike the other three
solutions shown, the solutions displayed for f1 = −2 and f1 = −5.9, which are labeled u, do not
satisfy (4.205) and are unstable. The remaining parameters for the solutions shown are f2 = −1,
ω0 =−3, and wad = 6.

Referring to Figures 4.8 and 4.27, we assume that the rod is terminally loaded
at ξ = 0 by a force F0 = P = P1A1 +P2A2 and a terminal moment M0 = M0A3.
At ξ = γ , the rod adheres to the flat horizontal surface with the aid of a dry adhesion
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mechanism. Paralleling our previous developments it can be shown that the ordinary
differential equation governing θ(ξ ) for ξ ∈ [0,γ) is

EI
∂ 2θ
∂ξ 2 −P2 cos(θ)+P1 sin(θ) = 0, (4.193)

where

θ(γ) = 0,
∂θ
∂ξ

(0) =−M0

EI
,

∂θ
∂ξ
(
γ−
)
= θ

′
−. (4.194)

As part of the solution process, θ ′
−, θ(ξ = 0) = θ0, and γ will be determined.

At ξ = γ , the adhesion boundary condition holds:

−Wad =−EI
2

(
θ

′
−
)2

+P · r′ (
γ−
)
, (4.195)

and owing to the conservation of C on (0,γ), we can relate the adhesion energy at
ξ = γ to the configuration of the rod (cf. Eqn. (4.67)):

Wad =
EI
2

(
∂θ
∂ξ

)2

−P2 sin(θ)−P1 cos(θ) . (4.196)

At this stage, it is convenient to reintroduce several dimensionless quantities,

x =
ξ
�
, v =

w
�
, ḡ =

γ
�
, (4.197)

and loading parameters,

f1 =
P1�

2

EI
, f2 =

P2�
2

EI
, ω0 =−M0�

EI
, wad =

Wad�
2

EI
. (4.198)

Note that we have dropped the ∗ ornamenting the solutions θ ∗ and γ∗ to the
boundary-value problem.

Solving the boundary-value problem is greatly facilitated by noting that γ can be
determined using the conservation of C and the adhesion boundary condition. To
elaborate, at x = ḡ = γ/� we find that

e0 =−C�2

EI
=

(
�2

EI

)
Wad = wad. (4.199)

Applying the conservation to the other end of the rod (at ξ = 0) permits us to con-
clude that

e0 =− f2 sin(θ0)− f1 cos(θ0)+
ω2

0

2
, (4.200)
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where θ0 = θ(ξ = 0). Thus,

wad − ω2
0

2
=− f2 sin(θ0)− f1 cos(θ0) ,

1
2

(
∂θ
∂ s

)2

= wad + f2 sin(θ)+ f1 cos(θ) . (4.201)

The first of these equations can be used to determine θ0. It can also be used to show
a necessary restriction on some of the parameters of the system:

1 ≥ wad − ω2
0

2√
f 2
1 + f 2

2

≥−1. (4.202)

We observe from this equation that the stronger the dry adhesive, the greater the
magnitude of the terminal force needed to ensure an adhered state. Further, for a
given terminal force, a terminal moment can be introduced to ensure the necessary
condition (4.202) is satisfied.

The second of the conditions (4.201) can be used to solve for γ:

γ
�
=
∫ 0

θ0

dθ√
2(wad + f2 sin(θ)+ f1 cos(θ))

. (4.203)

Once γ has been determined using the identity (4.203), it is then straightforward
to solve the initial-value problem consisting of the ordinary differential equa-
tion (4.193) subject to the boundary conditions θ (0) = θ0 and θ ′

(0) = −M0/EI
in order to determine θ(ξ ) = θ ∗(ξ ). With the assistance of Eqn. (4.203), we take
this opportunity to note the expected result that, for a given loading f1 and f2, the
adhered length of the rod (�− γ) increases with increasing wad.

The solution {θ ∗(ξ ),γ∗} to the boundary-value problem is then interrogated us-
ing Criterion N1 to determine stability. We recall from Section 4.8.3:

CRITERION N1: If a solution {θ ∗(ξ ),γ∗} to the boundary-value problem (4.193)
minimizes Π then the solution v(x)∀x ∈ [0,γ∗/�] to the Riccati equation

∂v
∂x

− f1 cos(θ ∗)− f2 sin(θ ∗)− v2 = 0, v(0) = 0, (4.204)

cannot become unbounded in the interval [0,γ∗/�] and the following inequality must
be satisfied at the point x = ḡ = γ∗/�:

Γ =
(

f2 cos
(
θ ∗ (γ∗−))− f1 sin

(
θ ∗ (γ∗−))) ∂θ ∗

∂ s

(
γ∗−
)

−
(

∂θ ∗

∂ s

(
γ∗−
))2

v
(
γ∗−
)≥ 0. (4.205)
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As discussed in [219, 220], the presence of the bounded solution to the Riccati
equation indicates stability of the rod. This existence result is identical to the more
familiar use of an equivalent Jacobi equation in studies on buckling that can be
found in the literature. The condition (4.205) is intimately related to the work of the
adhesion Wad at ξ = γ .

Fig. 4.28 Phase portrait of the ordinary differential equation (4.207). The shaded region containing

the point
(

θ , ∂θ
∂ s

)
= (β ,0) is bounded by the level-set corresponding to wad = 0 and does not

contain solutions to the adhesion boundary-value problem. The trajectories labeled with values of
f1 correspond to the solutions shown in the inset image in this figure and in (additional detail in)
Figure 4.27.

While the solution space of EIθ ′′
+P1 sin(θ)−P2 cos(θ) = 0 has a wealth of

solutions, most of them are not applicable to the adhesion problem of interest. To
elaborate further on this, we define the angle β subtended by P with the horizontal:

f =
√

f 2
1 + f 2

2 , cos(β ) =
f1

f
, sin(β ) =

f2

f
. (4.206)

The solutions θ(s) of interest are those that satisfy

∂ 2

∂ s2 (θ −β )+ f sin(θ −β ) = 0 (4.207)

with
1
2

(
∂
∂ s

(θ −β )
)2

− f cos(θ −β ) = wad > 0. (4.208)

Thus the set of admissible solutions excludes the region in state space from the
fixed point at θ = β (where wad = f ) to the level set of θ − ∂θ

∂ s where wad = 0 (see
Figure 4.28).
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(a) (b)
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Fig. 4.29 The dimensionless length γ
� and angle θ0 computed using (4.203) and (4.201)1, respec-

tively, as a function of the dimensionless shear force f1 =
(

�2

EI

)
P ·A1 for three values of ω0: i,

ω0 = −2.0; ii, ω0 = −3.0; and iii, ω0 = −4.0. The remaining parameters for the solution shown
are f2 =−1 and wad = 6.

4.9.3.1 An Example

We now consider a numerical example to illustrate the previous developments. After
a parameter search, we select a rod with a preload in the normal direction and an
applied moment on the end:

f2 =−1, wad = 6, ω0 =−3. (4.209)

We now vary the (dimensionless) shear force f2. Arbitrary values of f2 are not pos-
sible, and our first check is to examine the existence of a physically realistic γ using
Eqn. (4.203). Some of the numerical results are shown in Figure 4.29(a). We see
from this figure that −1.5 > f2 >≈ −5.986 in order for γ to be realizable. That
is, γ ∈ (0, �). We also observe that changing ω0 changes the adhered length of the
rod, and, from Figure 4.29(b), how the angle of inclination θ0 at the free end also
changes.

For each of the solutions computed, we next calculate Γ using Eqn. (4.205). After
checking the sign of Γ , we then appeal to Criterion N1 to ascertain instability. As
summarized in Figure 4.27, the configurations with f1 = −2 and f1 = −5.9 are
unstable. Because a bounded solution to the appropriate Riccati equation (4.204)
exists for all the configurations shown, this instability can be attributed entirely to
adhesion.

4.10 Additional Areas of Application of the Elastica

Euler’s elastica, being the simplest nonlinear rod theory, has been applied to a
wealth of problems and space precludes us from giving full justice to all these
works. Among many others, the areas of application include flexible risers in ocean
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environments [312, 313], folding of thin sheets [216], soft robot gripping and loco-
motion mechanisms [372, 373], the buckling of rods in constrained environments
[91] and in carbon nanotube bundles [374], and the growth and dynamics of plant
stems. The application of the elastica to plant growth has several interesting aspects
including an intermediate growth configuration, branching and tree-like structures,
a time-evolving intrinsic curvature and constitutive relations that change with time.
This area of application was championed by the works by Silk and her coworkers
[322–324] and further promoted by Goldstein and Goriely’s work [118] on evolving
constitutive relations. We refer the reader to [109, 121, 122, 145, 269, 273, 274, 368]
for additional references and perspectives on this interesting area of application and
close this chapter with the hope that we have given the reader the relevant back-
ground to comprehend, critique, and appreciate the aforementioned works.

4.11 Exercises

Exercise 4.1: Suppose a rod (of length �) is subject to terminal forces F0 = RA1

and F� =−RA1. Show that n is constant and that Eqn. (4.26) reduces to an ordinary
differential equation for θ :

EI
∂ 2θ
∂ξ 2 +Rsin(θ) = 0. (4.210)

What are the boundary conditions for θ ′
(ξ = 0+) and θ ′

(ξ = �−)? Show that
Eqn. (4.210) is equivalent to the equation of motion of a simple pendulum in a
gravitational field. By non-dimensionalizing this equation, numerically determine
its solutions for three values (say −5, 0, and 5) of the parameter

β =
R�2

EI
. (4.211)

It is a good idea to plot the solutions on the plane θ − ∂θ
∂u where u = ξ

� . You should
also verify that your solutions conserve the energy

e(u) =
1
2

(
∂θ
∂u

)2

−β cos(θ) . (4.212)

Exercise 4.2: Determine the shape r(ξ ) of the elastica corresponding to the tra-
jectories you found in Exercise 4.1. For your solutions, it is convenient to choose
r(ξ = 0) = 0.

(a) Determine the terminal moments M0 and M� needed to support these solutions.
(b) For the case β = 0, give an interpretation for the presence of an infinite number

of equilibria of (4.210). In addition, show that the space curve formed by r(ξ )
is either a straight line or the arc of a circle.
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(c) Discuss the distinction between the cases β > 0 and β < 0.
(d) For the case β > 0, compare your results to Hess’s which date to 1885 and

can be found in Love’s book [213, Page 404]. You should comment on the
“apparent” change in the boundary conditions between Figures 51–53 and 54
of [213]. In addition, discuss why terminal moments are needed to capture all
the solutions shown on [213, Page 404].

Exercise 4.3: Consider an elastica of length � which is horizontal and subject to
terminal forces:

n
(
ξ = 0+

)
=−RA1, M

(
ξ = 0+

)
= 0,

n
(
ξ = �−

)
=−RA1, M

(
ξ = �−

)
= 0. (4.213)

Show that if R = Rcn for some integer n where

Rcn =
(nπ

�

)2
EI, (4.214)

then, in addition to the trivial solution θ = 0, another solution is possible. The exis-
tence of this other solution is known as a buckling instability and Rcn is known as a
buckling load. Give an interpretation of the buckling phenomenon using the phase
portrait similar to that shown in Figure 4.10. You should also notice that by fixing
R, buckling can also be achieved by varying the length �.31

Exercise 4.4: For the case where β > 0 and assuming that θ is small, show that
Eqn. (4.210) reduces to the equation for a Bernoulli-Euler beam subject to a terminal
loading32:

EI
d4y
dx4 +R

d2y
dx2 = 0. (4.215)

What is the analytical solution to this equation and how many boundary conditions
are needed to uniquely prescribe a solution?

Exercise 4.5: Using the non-dimensionalizations (4.66), verify that Eqn. (4.60)2

can be written in the form

d2θ
dx2 − f2 cos(θ)+ f1 sin(θ) = 0. (4.216)

Using a change of variables, show that this equation can be simplified to

d2Θ
dx2 −

√
f 2
2 + f 2

1 cos(Θ) = 0, (4.217)

31 Additional perspectives on buckling can be found in Section 5.17 of Chapter 5. We also refer
the reader to the seminal text by Timoshenko and Gere [345, Chapter 2].
32 The interested reader is referred to the works of Eshelby [102, Page 142] and Kienzler and
Herrmann [182, 183] for discussions on material forces in the context of Bernoulli-Euler beam
theory.
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where

Θ = θ +β , cos(β ) =
f2√

f 2
1 + f 2

2

, sin(β ) =
f1√

f 2
1 + f 2

2

. (4.218)

Argue that Eqn. (4.217) can also be obtained by suitably rotating the basis vectors
A1 and A2 about A3. Establish a first integral of Eqn. (4.217).

Exercise 4.6: Consider the adhesion problem discussed in Section 4.5.3.1. Using
Eqn. (4.75), establish an expression for θ as a function of ξ

�

√− f2. With the help of
these expressions and Eqn. (4.79), determine r(ξ ) using either numerical or analyt-
ical techniques.

Exercise 4.7: Consider the adhesion problem discussed in Section 4.5.3.2. Using
elliptic functions, establish an expression for θ as a function of ξ

�

√− f2. With the
help of these expressions and Eqn. (4.85), determine r(ξ ) using either numerical or
analytical techniques.

Exercise 4.8: Suppose a variant of the adhesion problems discussed in Sec-
tions 4.5.3.1 and 4.5.3.2 is considered where f1 �= 0. Show that by using the results
of Exercise 4.5 it is possible to solve the adhesion problem with a small amount of
modifications to the analyses presented in these subsections.

Exercise 4.9: Consider the Johnson-Kendall-Robert’s (JKR) theory of adhesion
[175] applied to the adhesion problems discussed in Section 4.5.3. In this theory,
one solves the problem by seeking minimizers (γ and θ (ξ )) of the potential energy
functional

Π =
∫ ξ=γ

ξ=0

(
P · r′

+
EI
2

(
dθ
dξ

)2
)

dξ +
∫ ξ=�

ξ=γ

(
EI
2

(
dθ
dξ

)2

−Wad

)
dξ , (4.219)

subject to the condition that θ (ξ ) = 0 for ξ ∈ [γ , �]. Show that the Euler-Lagrange
necessary condition for an extremizer yields the differential equation (4.60)2, and
the Weierstrass corner condition (9.25) yields the boundary condition (4.64).33 From
these results, you should be able to conclude that the solution γ found earlier is such
that the potential energy of the system is extremized.

33 As can be seen from Section 9.3.2, the variations used to establish the corner condition (9.25)
correspond to varying γ . For further details on calculus of variations problems of this type see [30,
Section 10].
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