
Chapter 3
Link, Writhe, and Twist

“In drawing the various closed curves which have a given number of double points,
I found it desirable to have some simple mode of ascertaining whether a particular

form was a new one, or only a deformation of one of those I had already obtained.”
P. G. Tait [337, Page 289].

3.1 Introduction

In many experiments, a pair of coupled rods or strings are subject to various forces
and moments. It is natural to ask if any features of the original structure are pre-
served in the deformed state? The answer is sometimes yes and in this case the pre-
served feature is often a quantity known as the linking number Lk. While the linking
number dates to the early 19th century and finds application in astronomy, electro-
magnetism, and knot theory, there has been an explosion of interest in Lk starting
in the 1950s which can be attributed to two factors. The first factor is Watson and
Crick’s discovery in the early 1950s of the double helix structure of DNA. The
second factor is a series of works [42–44] by Gheorghe Călugăreanu (1902–1976)
where he showed that the linking number could be decomposed additively into a
twist and a writhe. This result is now known as Călugăreanu’s theorem [85, 239]
and has enabled deep insights into the differential geometry of pairs of curves which
are known as ribbons. This theorem provides a heuristic explanation for coil or loop
formation (also known as writhing) of a rod when it is twisted. As a result, it has
been applied to experiments on rope, tangled polymers, telephone cords, and DNA
in order to gain an understanding of the supercoiling that often accompanies twist
(cf. [67–70, 124, 169, 248] and references therein).

Our purpose in this chapter is to give a broad overview on the topics of linking
number, twist, writhe, and relative rotations. If we consider the two tangled space
curves shown in Figure 3.1, then, by the end of this chapter, the reader should be able
to calculate the self-linking of each of the curves and their linking number. Much of
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Fig. 3.1 Examples of linked space curves S1 and S2. For the curves shown in (a), Lk (S1,S2) =
±1 and, for the curves shown in (b), Lk (S1,S2) = ±21. These values for the linking numbers
were obtained by applying Eqn. (3.34).

what we discuss in this chapter pertains to closed non-self-intersecting space curves.
Such curves are also known as knots and there are a wealth of additional analytical
tools and perspectives that can be applied to these curves. As we have neither the
space nor expertise to cover these topics here, we refer the reader to the accessible
text on knot theory by Livingston [210]. In a similar spirit, for further details on
the application of the twist, link, and writhe to DNA, we recommend the expository
articles by Crick [77] and Pohl [294].
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Fig. 3.2 A space curve showing the evolution of the Frenet triad. A pair of representative tantrices
or tangent indicatrices ct on a unit sphere are also shown.

3.2 Space Curves, Ribbons, and Framings

Consider a space curve S in Euclidean three-dimensional space E3 (see Figure 3.2).
As usual, we define the position vector of a point on the curve:

r = r(s) = x1(s)E1 + x2(s)E2 + x3(s)E3. (3.1)
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Recall that the Frenet triad to this curve can be defined by the set of three vectors
{et ,en,eb}, and that these vectors satisfy the Serret-Frenet relations:

∂et

∂ s
= κen,

∂en

∂ s
=−κet + τeb,

∂eb

∂ s
=−τen, (3.2)

where τ is the geometric torsion of the space curve and κ is the curvature. You may
also recall that the Serret-Frenet relations can be expressed in a compact form by
using the Darboux vector ωSF = τet + κeb. One undesirable feature of the Frenet
frame arises when the curvature vanishes and en is not uniquely defined. As the
parameter s passes through such a point, en suffers a discontinuous change.

We can also construct another triad of vectors by defining a unit vector u which is
normal to et . The (right-handed orthonormal) triad or frame is completed by defining
û = et ×u. If we denote the vector ωt as the angular velocity vector associated with
this triad, then we have

∂et

∂ s
= ω3u−ω2û,

∂u
∂ s

=−ω3et +ω1û,
∂ û
∂ s

= ω2et −ω1u, (3.3)

where
ωt = ω1et +ω2u+ω3û. (3.4)

Examples of the {et ,u, û} triad that we shall see later include the triad
{

r
′
,d1,d2

}

in the theory of the elastica and Kirchhoff’s rod theory and the Bishop frame.
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Fig. 3.3 (a) The et and en elements of the Frenet triad for a plane curve with an inflection point.
(b) One specification for the element B1 of the Bishop frame associated with the plane curve. (c)
Another specification for the element B1 of the Bishop frame associated with the plane curve. The
binormal vector eb = et ×en and the normal vector B2 = et ×B1 are not displayed. Expressions for
the unit vectors can be found in Exercise 3.10.
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The Bishop frame features the three vectors et = r
′
, B1, and B2 and was intro-

duced in a 1975 paper [28] authored by Bishop. This frame was first used with
Kirchhoff’s rod theory by Langer and Singer [196] and has since proven to be ad-
vantageous particularly in computer graphics (cf. Bergou et al. [22] and Hanson’s
marvelous book [155, Chapter 20]). Unlike the Frenet frame, Bishop’s frame is not
unique and is well defined even at points where the curvature of the curve vanishes
(see Figure 3.3). To define the Bishop frame, a unit vector B1 (s0) lying in the plane
normal to et at a chosen location s = s0 on the space curve is chosen. This choice
then determines a second unit vector: B2 (s0) = et (s0)×B1 (s0). The vectors B1(s)
and B2(s) are assumed to only change in the direction of et . That is, they are said to
be relatively parallel to the space curve:

∂B1

∂ s
=−κB1 et ,

∂B2

∂ s
=−κB2 et . (3.5)

Here, the (Bishop) curvatures κB1 and κB2 are functions of s and they can have
positive and negative values. Because Bα is normal to ∂Bα

∂ s , the magnitude of the
vectors B1 and B2 are preserved. For the Frenet triad, we note from Eqn. (3.2) that
neither en nor eb propagate in a relatively parallel manner along the curve unless the
torsion τ = 0. Using the identity et = B1 ×B2, we find that

∂et

∂ s
= κB1 B1 +κB2 B2. (3.6)

Thus, we can define a vector

ωB = κB1 B2 −κB2B1, (3.7)

where
∂et

∂ s
= ωB × et ,

∂B1

∂ s
= ωB ×B1,

∂B2

∂ s
= ωB ×B2. (3.8)

As with the Frenet triad, one can define a rotation tensor associated with the vector
ωB, but we do not pause to do so here.
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Fig. 3.4 The angle θB relating the two sets of
normal vectors.

As discussed in [28] and displayed
in Figure 3.4, the Bishop frame can be
related to the Frenet triad by defining
an angle θB:

en = cos(θB)B1 + sin(θB)B2,

eb =−sin(θB)B1 + cos(θB)B2.
(3.9)

With the help of the Serret-Frenet rela-
tions (3.2) and assuming that κ �= 0, it
is straightforward to show how the cur-
vatures κB1 and κB2 can be computed
from κ and τ:
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κB1 = κ cos(θB) , κB2 = κ sin(θB) . (3.10)

The angle θB is found by integrating the relation

τ =
∂θB

∂ s
. (3.11)

It is interesting to note that θB is thereby determined up to an arbitrary constant.
Furthermore, the Darboux vector and the vector ωB are related as follows:

ωB = κB1 B2 −κB2 B1 = κeb, ωSF = τet +ωB. (3.12)

An example of the computation of the Bishop frame for a plane curve is presented
in Exercise 3.10. The results of this exercise are shown graphically in Figure 3.3 and
they illustrate our earlier remarks about the nonuniqueness of the Bishop frame.
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Fig. 3.5 Representative examples of the Frenet
and Bishop frames at points on a helical space
curve.

To illuminate additional features of
the Bishop frame, we consider the ex-
ample of a helical space curve shown
in Figure 3.5. As discussed in Sec-
tion 1.3.4, this curve has a nonvanish-
ing curvature κ = 1

R(1+α2)
and torsion

τ = ακ . As a result, we can use an
algorithm presented by Guggenheimer
[144] to compute the Bishop frame
from the Frenet frame1:

et =
1√

1+α2
(eθ +αE3) ,

en =−er,

eb =
1√

1+α2
(−αeθ +E3) . (3.13)

First, we compute θB using the identity
τ = ∂θB

∂ s :

θB (s) =
∫ s

s0

ακdu+θB (s0)

= ακ (s− s0)+θB (s0) . (3.14)

Without loss of generality, we choose
s0 = 0 and θB (s0) = 0. Inverting the relations (3.9), and using the aforementioned
results, we find that

1 We refer the reader to Bergou et al. [22] and Hanson [155, Chapter 20] for details on the numerical
computation of the Bishop frame for space curves.
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[
B1

B2

]
=

[
cos(ακs) −sin(ακs)
sin(ακs) cos(ακs)

][
en

eb

]
. (3.15)

Observe that B1 and B2 revolve continuously relative to en and eb. Furthermore, al-
though κ and τ are constant, the curvatures κB1 and κB2 are continuously changing:

κB1 = κ cos(ακs) , κB2 = κ sin(ακs) . (3.16)

We leave it as an exercise to show that the Bishop frame obtained by choosing
θB (s0) �= 0 will differ from (3.15) by a rotation through an angle θB (s0) about et

with concomitant changes to the curvatures κB1 and κB2 . We close our discussion
of the Bishop frame by noting that this frame is also known in the literature as the
natural frame, the parallel transport frame, and the relatively parallel adapted frame
(cf. [6, 28, 155]).
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Fig. 3.6 Ribbons constructed from a space curve S . (a) Ribbon constructed using the normal
vector en and (b) a ribbon constructed using a vector u. Observe that the ribbon constructed using

en is poorly defined at a point of inflection i (where ∂ 2r
∂ s2 = 0 or, equivalently, κ = 0). This well-

known issue [42, 239] arises because en suffers a discontinuity at i: [[en]] �= 0.

3.2.1 Ribbons

The vector u featuring in Eqn. (3.3) can be used to define another curve:

Sε : rε = r(s)+ εu(s). (3.17)

If we consider the union of the points on S , Sε , and the points along εu connect-
ing them, then we will have defined a ruled surface (cf. Figure 3.6). In differential
geometry, this surface is known as a ribbon and we shall assume in the sequel that
ε is sufficiently small so that the two curves S and Sε do not intersect. We also
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note that if S is closed and does not intersect itself, then we assume that Sε is
constructed to have these properties too. In many applications of the ideas presented
in this chapter the pair of curves S and Sε model the sugar-phosphate backbone
curves of DNA.

3.2.2 Gauss-Bonnet Theorem

It is often surprisingly useful to map the tangent vector to the space curve so that
its tip describes a curve on a unit sphere S2. The associated curve is known as the
tangent indicatrix or tantrix ct and representative examples are shown in Figures 3.2
and 3.7. When ct forms a closed curve on the sphere, then it also encloses a solid
angle A.2 The celebrated Gauss-Bonnet theorem, named after Carl F. Gauss (1777–
1855) and Pierre O. Bonnet (1819–1892), we shall present relates this solid angle to
properties of the tantrix. Dating to Kelvin and Tait [341, Section 123] in 1867, this
theorem has also been used as a novel method to determine relative rotations of the
cross sections of rods.
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Fig. 3.7 A pair of space curves and their associated tangent indicatrices. In (a) the curves S1 is a
circle and S2 is a helix. The respective tangent indicatrices ct1 and ct2 are shown in (b).

Consider the case where ct forms a closed curve on S2 and let us embed this
sphere in E

3 with E3 passing along the polar axis. We put coordinates on the sphere
using a set of spherical polar coordinates {φ1 ∈ [0,2π],φ2 ∈ [0,π]} where φ2 = 0

2 The total surface area of a unit sphere is 4π . In topology, the area A in Figure 3.2 is known as a
solid angle.
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and π at the north and south poles of the sphere, respectively. With this coordinate
system in place, the tangent space at a point (φ1,φ2) on the sphere is spanned by the
vectors eφ1 and eφ2 :

eφ1 = −sin(φ1)E1 + cos(φ1)E2,

eφ2 = cos(φ2)cos(φ1)E1 + cos(φ2)sin(φ1)E2 − sin(φ2)E3, (3.18)

where
et = sin(φ2)cos(φ1)E1 + sin(φ2)sin(φ1)E2 + cos(φ2)E3. (3.19)

Examining the rate of change of et , we find that

∂et

∂ s
=

∂φ1

∂ s
sin(φ2)eφ1 +

∂φ2

∂ s
eφ2 ,

κ2 =

(
∂φ2

∂ s

)2

+

(
∂φ1

∂ s

)2

sin2(φ2). (3.20)

Thus, an expression for the unit tangent vector ēt to ct and the relation between the
arc-length parameter s of S and the arc-length parameter s̄ of ct can be established:

ēt =
1
κ

∂et

∂ s
,

ds
ds̄

=
1
κ
. (3.21)

An expression for the curvature vector κ= ∂ ēt
∂ s̄ can also be computed. The geodesic

curvature κg of ct on S2 is defined as the rate of change of ēt in the tangent plane
spanned by eφ1 and eφ2 . Using the properties of the scalar triple product and the defi-
nition (1.9) of the geometric torsion, we perform the following set of manipulations:

κg =

[
et , ēt ,

∂ ēt

∂ s̄

]

=

[
et ,

1
κ

∂et

∂ s
,

1
κ2

∂ 2et

∂ s2

]
, (3.22)

and arrive at the conclusions that

κg =
τ
κ
, κgds̄ = τds. (3.23)

In the event that the tangent indicatrix describes a great circle (which is the case if
S is a circle), then τ = 0 and consequently κg = 0. This case illustrates the result
that κg = 0 when ct is a geodesic on S2.

Suppose that ct is closed, then the Gauss-Bonnet theorem for this case states that
the solid angle A enclosed by this curve satisfies the identity

∮

ct

κgds̄+A = 2π modulo 4π. (3.24)
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In the event that ct has corners with exterior angles αk (k = 1, . . . ,n), then a term
∑n

k=1 αk is added to the left-hand side of Eqn. (3.24) (cf., e.g., [234, Page 192, Ex-
ercise 15]). Although our interest in applications of the Gauss-Bonnet theorem is
restricted to curves on the sphere S2, the theorem has a far broader range of appli-
cation. We refer the reader to texts on differential geometry such as [188, 257] for
details on more general forms of this classical theorem.

Let us now apply Eqn. (3.24) to the helix discussed earlier in Section 1.3.4. We
recall that the curvature κ and torsion τ of the helix are

κ =
1

R(1+α2)
=

1
R

cos2 (ς) , τ =
α

R(1+α2)
=

1
R

cos(ς)sin(ς) , (3.25)

where ς = arctan(α) is the pitch angle of the helix. Thus, using the identity κg =
τ/κ , the geodesic curvature of the tangent indicatrix is

κg = α. (3.26)

If we examine the solid angle enclosed by the tantrix then it is easy to verify that
Eqn. (3.24) holds. For the circle shown in Figure 3.7(a), ct1 is a great circle with
s̄ ∈ [0,2π] and so κg = 0. By inspection, the solid angle is 2π in agreement with
Eqn. (3.24). On the other hand for the helix shown in Figure 3.7(a), κg = α , s̄ ∈[
0,2π/

√
1+α2

]
, and the solid angle A enclosed by ct2 as given by Eqn. (3.24) and

those obtained by directly computing the area of the spherical cap above ct2 are in

agreement: A = 2π
(

1−α/
√

1+α2
)

.

3.3 Gauss’ Linking Number of Two Space Curves

The earliest measure of how much two curves wind around each other was devel-
oped in the early 19th century by Gauss. Although he first described this measure
in his notebook in 1833, it was published posthumously in 1867. The derivation for
Gauss’ measure, which is known as the linking number, is not discussed in his note-
book and the first derivation, motivated by his studies on electromagnetic induction,
was supplied by James C. Maxwell (1831–1879) in 1867.3

Gauss’ linking number pertains to two closed nonintersecting space curves S1

and S2 such as the pairs shown in Figures 3.1 and 3.8. If the curves are respectively
parameterized by s1 ∈ [0,2π] and s2 ∈ [0,2π], then we can define the following unit
vector e which points from a point with position vector r2 (s2) on S2 to a point on
S1 with position vector r1 (s1):

3 Our historical comments in this section are based entirely on the (recent) insightful papers by
Epple [95, 96] and Ricca and Nipoti [301]. The latter paper contains a translation of the page in
Gauss’ notebook where Eqn. (3.28) is presented as well as copies of letters from Maxwell to Tait
discussing the linking number.
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Fig. 3.8 An example of a pair of space curves S1 and S2 illustrating the vector r = r1 (s1)−
r2 (s2) and the associated normalized unit vector e = r

||r|| . For the example shown in this figure, the
space curves are defined by Eqn. (3.31) with c = −1.5. For the example of the Gauss map that is
displayed, s2 =

3π
4 and s1 varies from 0 to 2π .

e(s1,s2) =
r1 (s1)− r2 (s2)

||r1 (s1)− r2 (s2)|| . (3.27)

The linking number Lk (S1,S2) between the two curves, which measures how
much S1 winds around S2, is then defined by the integral4

Lk (S1,S2) =
1

4π

∮

S1

∮

S2

f (s1,s2)ds1ds2, (3.28)

where

f (s1,s2) =
(et1 (s1)× et2 (s2)) · e(s1,s2)

||r1 (s1)− r2 (s2) ||2 . (3.29)

Here, et1 is the unit tangent vector to S1 and et2 is the unit tangent vector to S2. As
Gauss noted, and which we can also readily observe from the definition,

Lk (S1,S2) = Lk (S2,S1) . (3.30)

Gauss also noted (a remarkable result which is far from apparent) that Lk (S1,S2)
is integer-valued. The function e is known as the Gauss map. As illustrated in Fig-
ure 3.8, its value can be visualized by plotting the locus of e(s1,s2) on the unit
sphere.

To illuminate the linking number defined by Eqn. (3.28) let us consider the pair
of ellipses shown in Figure 3.9:

r1 (s1) = cos(s1)E1 +2sin(s1)E2,

r2 (s1) = (3cos(s1)+ c)E2 +2sin(s1)E3, (3.31)

4 Our convention for writing Lk (S1,S2) is taken from Spivak [329, Problem 8.28, Page 402]
and differs from Gauss’ original prescription by a minus sign. As a result, our computations using
Eqn. (3.28), such as the results shown in Figure 3.9, agree with those found by counting the signed
crossings using Eqn. (3.34).
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where c is a constant. We consider three cases: c = −1.5, c = 0, and c = 1.5. For
the first and third of these cases, S2 can be considered to wind once around S1

while in the second case, the space curves do not cross. Numerically evaluating the
double integral in Eqn. (3.28), we find the values of Lk (S1,S2) predicted for the
respective cases are 1, 0, and −1.

Fig. 3.9 Three examples of a pair of space curves S1 and S2 showing the behavior of the as-
sociated linking function f (s1,s2) (cf. Eqn. (3.29)). For (a), c = −1.5 and Lk (S1,S2) = 1; for
(b), c = 0.0 and Lk (S1,S2) = 0; and for (c), c = 1.5 and Lk (S1,S2) = −1. The linking num-
ber Lk (S1,S2) is defined by Eqn. (3.28) and the constant c is used to specify the curve S2 (cf.
Eqn. (3.31)).

While Gauss did not provide a derivation for Lk, Maxwell [233, Sections 417–
422], who was working on establishing an expression for the work done by a mag-
netic pole while moving in a closed curve around a closed electric circuit, made
several interesting observations. Among others, he noted that the integrand can be
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Fig. 3.10 The two distinct values of a signed crossing at a point of transversal crossing of two space
curves and the pair of situations associated with each value. For (a) and (c), Lk (S1,S2) =−1 and
Lk (S1,S2) =+1 for (b) and (d). In this figure, the dotted curve S2 is assumed to pass underneath
the solid curve S1 at the crossing point, and, as a result, the vector e (cf. Eqn. (3.27)) points out of
the page. If the solid curve passes underneath the dashed curve, then the linking numbers shown in
this figure would change sign.

viewed as the volume formed in part by the solid angle spanned by the partial deriva-
tives of e(s1,s2):

− e ·
(

∂e
∂ s1

× ∂e
∂ s2

)
ds1ds2 =

(et1 (s1)× et2 (s2)) · e(s1,s2)

||r1 (s1)− r2 (s2)||2
ds1ds2. (3.32)

As a result, the linking number (3.28) appears in studies on electromagnetism.
Maxwell also noted a geometric method which can be used to evaluate the inte-
grals in Eqn. (3.28). Before we discuss this method, we note that there are six other
equivalent methods (up to a sign) of calculating Lk (S1,S2).5

A geometric method for computing the linking number Lk uses signed crossings.
Following [257, 294], suppose that the plane projection of the two curves S1 and
S2 results in a point of crossing P . This crossing corresponds to r1 (s1) on S1 and
r2 (s2) on S2. Suppose that S1 is above S2 at this crossing point (see Figure 3.10).
We use the unit vector e which points from S2 to S1: Then, the index J (P) at the
crossing point P is defined as

5 These methods are discussed in several places in the literature and summarized in Rolfsen’s text
[303, Chapter 5, Section D].
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J (P) = 1 if [et1 (s1) ,et2 (s2) ,e]> 0,

J (P) = −1 if [et1 (s1) ,et2 (s2) ,e]< 0. (3.33)

The linking number of the curves is then defined as half the sum of the indices over
all crossing points:

Lk (S1,S2) =
1
2 ∑

P

J (P) . (3.34)

Notice that the linking number depends on the handedness of the triad {et1 ,et2 ,e}.
We leave it as an exercise to verify that Eqn. (3.34) agrees with the results found for
the curves in Figure 3.9. The latter results were obtained by numerically integrating
Eqn. (3.28).

The linking number of two closed curves which have no points of intersection
has several properties which we now summarize:

(i) The linking number is an integer (. . . ,−2,−1,0,1,2, . . .).
(ii) Lk (S1,S2) = Lk (S2,S1).

(iii) If two curves are unlinked, then their linking number is zero.
(iv) If we change the orientation of one of the curves then Lk (S1,S2) will change

sign. Changing the orientation of S1 can be achieved by reversing the direction
of et1 .

(v) The linking number of two curves is invariant to continuous deformations of
the curves as long as the two curves are not allowed to pass through each other.
That is, the linking number is a topological invariant.

We remark that many of these properties are illustrated by the examples shown
in Figures 3.1 and 3.9. For instance, we can continuously deform the ellipses to
other ellipses in Figure 3.9(a) and not change the linking number (i.e., (v) above).
Although the ellipse S2 shown in Figure 3.9(a) can be continuously transformed
into the ellipse S2 shown in Figure 3.9(c), the orientation of the transformed ellipse
will differ from that of S2 shown in Figure 3.9(c) and, as a result (from (iv) above),
the linking number will differ by a sign. The difference in sign is in agreement with
the numerical computations that used Eqn. (3.28). Cutting one of the ellipses and
then gluing it back together so that the curves in Figure 3.9(a) transform to those in
Figure 3.9(b) would result in a change in the linking number but such a possibility
does not contradict (v). Property (iv) is the reason why the linking numbers in the
caption for Figure 3.1 are given as ±: for these pairs of curves the directions of et1
and et2 were not prescribed and so two values of the linking number are possible
depending on the choices of et1 and et2 .
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3.4 Total Geometric Torsion of a Space Curve and Total Twist
of a Ribbon

Interest in the linking number of two space curves took on a new lease of life in
the 1960s when a theorem by Călugăreanu showed that this quantity could be de-
composed into the sum of two quantities known as twist and writhe. In preparation
for discussing his wonderful theorem, we first pause to discuss measures of twist in
space curves and rods.

To proceed, we recall that any space curve S (which is not necessarily closed)
can be endowed with a Frenet triad and that this triad has an associated Darboux
vector. We define the total geometric torsion of a space curve of length � as the
integral of the geometric torsion:

Tw (S ,en) =
1

2π

∫ �

0
ωSF · etds. (3.35)

Here, s is the arc-length parameter of S and this parameter varies from 0 to � on
S . The division by 2π is a convention. With the help of the Serret-Frenet relations
we note that the geometric torsion τ = ωSF · et and can be considered as the rate at
which the normal vector en rotates about the tangent vector et .

Now suppose � and S are such that the tangent indicatrix ct of the curve S forms
a closed curve on the unit sphere. From our earlier discussion on the Gauss-Bonnet
theorem we are aware that (cf. Eqn. (3.24))

∮

ct

κgds̄+A = 2π modulo 4π. (3.36)

However, we also showed previously (cf. Eqn. (3.23)) that κgds̄ = τds. Thus,

∫ �

0
τds+A = 2π modulo 4π. (3.37)

Whence, the total geometric torsion can be related to the spherical area enclosed by
the tangent indicatrix:

Tw (S ,en)+
A

2π
= 1 modulo 2. (3.38)

This relation was first recorded by Fuller [111, Eqn. (6.3)].6

Let us consider as an example a helical space curve7:

κ =
1

R(1+α2)
=

1
R

cos2 (ς) , τ =
α

R(1+α2)
=

1
R

cos(ς)sin(ς) , (3.39)

6 Fuller’s version of Eqn. (3.38) differs from ours in that Tw (S ,en) is replaced by the more gen-
eral case Tw (S ,u) in Eqn. (3.38). Alternative proofs of Fuller [111, Eqn. (6.3)] can be found in
Aldinger et al. [7] and Kamien [176].
7 The parameters for this curve are discussed in Section 1.3.4.



3.4 Total Geometric Torsion and Total Twist 107

where ς = arctan(α) is the pitch angle of the helix. If we parameterize the helix
with the angle φ , then

dφ
ds

=
1

R
√

1+α2
=

cos(ς)
R

. (3.40)

Consequently, for one segment of the helix,

Tw (S ,en) =
1

2π

∫ �

0
ωSF · etds

=
1

2π

∫ �

0
τds

=
1

2π

∫ 2π

0
τR

√
1+α2dφ

=
α√

1+α2

= sin(ς). (3.41)

The total geometric torsion Tw (S ,en) is used to characterize configurations of
double-stranded DNA. For the aforementioned segment of the helix, the tangent
indicatrix forms a closed curve on the sphere. Thus, with the help of Fuller’s iden-
tity (3.38), we find that the solid angle A enclosed by ct is

A = 2π (1− sin(ς)) , (3.42)

a result that, as expected, is in agreement with our earlier calculation of this solid
angle in Section 3.2.2.

The aforementioned integral of the rate at which en rotates about et can also be
applied to the frame {et ,u,et ×u} that we previously used to generate a ribbon (cf.
Page 98 and Figure 3.6). Following classic works in this area such as [110, 213],
the resulting integral is known as the total twist and it depends on both S and the
choice of u:

Tw (S ,u) =
1

2π

∫ �

0
ωt · etds. (3.43)

When u = en, then the total twist corresponds to the total torsion Tw (S ,en) defined
earlier. By way of comparison, if u = b1B1+b2B2 where b1,2 are constants and B1,2

are the normal vectors associated with the Bishop frame, then

Tw (S ,b1B1 +b2B2) =
1

2π

∫ �

0
ωB · etds = 0. (3.44)

This result is the motivation for referring to the Bishop frame as a rotation mini-
mizing frame. In the sequel, when specifying the twist, to avoid ambiguity where it
might occur, we will specify the vector we are using to compute Tw.
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Fig. 3.11 Three distinct examples of a pair of space curves S and Sε showing the behavior of
the associated linking function f (s1,s2) (cf. Eqn. (3.29)). For (a), Lk (S =S1,Sε =S2) = −5;
for (b), Lk (S =S1,Sε =S3) = −5; and, for (c), Lk (S =S1,Sε =S3) = −5. The linking
number Lk (S1,Sε ) is defined by Eqn. (3.28). The curve S1 is a circle of radius 1 lying in the
x− y plane. The curves S2 and S3 are constructed as ribbons using the unit normal vector to S1
(cf. Eqn. (3.52) with n = 5 and ε = 0.1).

3.5 Călugăreanu’s Theorem

Consider a closed ribbon formed from a pair of curves S and Sε . As indicated
by the three examples shown in Figure 3.11, the curve Sε is formed in the usual
manner from the closed curve S using a unit vector u that is normal to et and a
number ε .8 Following standard practice, ε is considered to be sufficiently small so
that the curves S and Sε do not intersect. For such a ribbon, Călugăreanu [42–44]

8 The orientability condition on the ribbon is satisfied when u(s) = u(s+ �) where s ∈ [0, �] on S .
Thus, the ribbon is not a Möbius strip.



3.5 Călugăreanu’s Theorem 109

showed that the linking number could be decomposed additively into the sum of a
quantity known as the writhe and the total geometric torsion:

Lk (S ,Sε) =Wr (S )+Tw (S ,en)+N (S ,Sε) . (3.45)

In this equation,9

Wr =Wr (S ) =
1

4π

∮ �

0

∮ �

0
[et (s1)× et (s2)] · r(s1)− r(s2)

||r(s1)− r(s2)||3
ds1ds2, (3.46)

and N (S ,Sε) denotes the number of times u revolves about et . Thus, if we define
an angle ψ ,

u = cos(ψ)en + sin(ψ)eb, (3.47)

then, from [43],

N (S ,Sε) =
1

2π
(ψ (�)−ψ(0)) . (3.48)

As noted by Moffatt and Ricca [239], the presence of N (S ,Sε) in Eqn. (3.45)
accommodates the fact that the ribbon is formed with u which is not necessarily
equal to en. We refer to Eqn. (3.45) as Călugăreanu’s theorem.

(a) (b)

+

+

+

−
−

−

positive crossing negative crossing

Fig. 3.12 (a) Conventions for the index JW (P) of the signed crossings of a curve with itself.
These representations are a more compact version of the index conventions for J (P) shown earlier
in Figure 3.10. (b) Example of the use of the convention with a particular projection of a figure
eight knot.

The writhing number Wr (S ) can be loosely interpreted as the number of times
the curve S folds or coils upon itself. Complementing this nonlocal behavior,
Tw (S ,en)+N (S ,Sε) is a measure of the twisting of the ribbon about S . The
beauty of Călugăreanu’s theorem is that it states that the sum of these two quantities
is equal to the (invariant) linking number of the two curves. Thus, any deformations
of the ribbon performed that change Wr (S ) will induce an equal and opposite effect

9 As emphasized in [7], the domain of integration excludes those points s1 = s2 where the integrand
becomes unbounded.
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in Tw (S ,en)+N (S ,Sε). Thus, Eqn. (3.45) enables an intuitive understanding of
the conversion of twist to writhe and vice versa that is often found in deformation
of long slender bodies such as telephone cords and lengths of surgical tubing. Of
course this perspective is gained after two material curves in the slender body are
identified with S and Sε . Such an identification is readily made in the case of
double-stranded DNA where S and Sε can be individually identified with one of
the pair of sugar-phosphate backbone curves. Indeed, as evidenced by the works of
Crick [77] and Pohl [293], it did not take long after Călugăreanu’s work was pub-
lished in the early 1960s for people to realize that his theorem could be applied to
understand the coiling behavior of double-stranded DNA.

)c()b()a(

et et

et

ēt

ēt
ēt

ct ct

ct

SSS

+

−

E1

E2

Fig. 3.13 Examples of calculations of JW (P). (a), Closed curve with no crossings: JW (P)= 0;
(b), closed curve with a positive crossing: JW (P) = 1; and (c), closed curve with a negative
crossing: JW (P) = −1. The tangent indicatrices ct for each of the three curves are also shown.
Observe from (b) and (c) that when over- and under-crossings are interchanged the index changes
by a factor of 2. The parametric expressions for S are taken from an example in [43] which is
discussed further in Exercise 3.8.

In a highly cited paper that appeared in 1971, Fuller [110] introduced the term
writhing number for Wr (S ) because the verb to writhe is defined as “to twist into
coils or folds.” While the expression for the writhe integral has intriguing similarities
to the definition (3.28) of the linking number of a pair of curves that was introduced
earlier, it pertains only to the curve S and can take non-integer values. Computing
Wr (S ) has been the subject of many works since then. Several approaches can be
found to this computation and each of them can offer a different perspective on
Wr (S )10:

10 The primary reference for our summary of the methods used to compute the writhing number is
[7]. We also recommend the later works [20, 21, 85, 169, 176] for helpful perspectives and insights
on this topic.
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(i) Taking advantage of a parametric representation for S , if it is available, the
integrand in Eqn. (3.46) can be evaluated directly. In this context, we note that
parametric expressions for trefoil, figure eight, and other knots are readily avail-
able. We also note that if S is planar, then the triple product in the integrand in
Eqn. (3.46) will be zero. Hence,

For a planar curve Wr = 0. (3.49)

(ii) Following Fuller [111], use Eqn. (3.45) to compute Wr (S ) by first computing
Lk (S ,Sε) and Tw (S ,en)+N (S ,Sε). The difference of these quantities then
provides the sought after value of writhe:

Wr (S ) = Lk (S ,Sε)−Tw (S ,en)−N (S ,Sε) . (3.50)

(iii) Again following Fuller [111], one uses the Gauss-Bonnet theorem to establish a
relation between Tw (S ,en) and the solid angle encircled by ct (cf. Eqn. (3.38)).
Then, after noting that Lk (S ,Sε) is an integer, one appeals to Eqn. (3.45) to
find

Wr (S ) = Lk (S ,Sε)−1+
A

2π
−N (S ,Sε) modulo 2. (3.51)

(iv) As summarized in [21], Wr (S ) can be identified with the sum of the indices
of the signed crossings of S with itself averaged over all possible projection
angles. The convention for the index JW (P) of the crossings is shown in
Figure 3.12. The curve with no self-crossings has zero writhe, while the closed
curves in Figure 3.13(b) & (c) show that by twisting a loop through 360◦, a
change in the writhing number can be achieved. The trefoil knots discussed in
Exercise 3.9 offer an illustration of the invariance of writhing number to the
choice of the direction of increasing arc-length parameter s.

3.6 Examples of Computing Writhing Numbers

To illuminate our comments on writhing numbers, it is necessary to explore some
examples. One of the few works that we found where explicit computations could
be found is in a paper by White and Bauer [360] and our examples are inspired by
their work. Pairs of the space curves in question form ribbons, examples of which
are shown in Figure 3.11. The three space curves which form the ribbons have para-
metric representations in terms of the arc-length parameter s1 of S1

11:

11 The curves considered in [360] are discussed in Exercise 3.9.
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r1 (s1) = cos(s1)E1 + sin(s1)E2,

r2 (s1) = r1 + ε (cos(ns1)cos(s1)E1 + cos(ns1)sin(s1)E2 + sin(ns1)E3) ,

r3 (s1) = r1 − ε (cos(ns1)cos(s1)E1 + cos(ns1)sin(s1)E2 + sin(ns1)E3) ,

(3.52)

where n and ε are constants. For the examples shown in Figure 3.11, n = 5 and
ε = 0.1. Geometrically, the curves S2 and S3 wind counterclockwise about S1. As
s1 ranges from 0 to 2π , S2 winds n times around S1.

For the circle S1, we have

et1 =−sin(s1)E1+cos(s1)E2, en1 =−cos(s1)E1−sin(s1)E2, eb1 =E3,
(3.53)

and
κ1 = 1, τ1 = 0. (3.54)

For the helical spirals, some lengthy calculations reveal that

ds2

ds1
=

√
ε2n2 +(1+ ε cos(ns1))

2 = 1+ ε cos(ns1)+O
(

ε2
)
,

κ2 = 1+ ε
(

n2 −1
)

cos(ns1)+O
(

ε2
)
,

τ2 = 0+ εn
(

1−n2
)

cos(ns1)+ ε2n
(

n2 −1+
(

n4 +3n2 −1
)

cos(2ns1)
)
+O

(
ε3
)
,

et2 = et1 + εn
(
sin(ns1)en1 + cos(ns1)eb1

)
+O

(
ε2
)
,

en2 = en1 − εn
(
et1 +neb1

)
sin(ns1)+O

(
ε2
)
,

eb2 = eb1 − εn(cos(ns1)et1 −nsin(ns1)en1)+O
(

ε2
)
. (3.55)

The corresponding results for S3 can be obtained from Eqn. (3.55) by setting
ε → −ε . Thus for the three ribbons shown in Figure 3.11, we have the respective
normal vectors that are used to define the ribbons:

u1 = −cos(ns1)en1 + sin(ns1)eb1 ,

u2 = −u1,

u3 = 2u2 +O
(
ε2) . (3.56)

The expressions (3.55) will now be used in conjunction with Eqn. (3.45) to obtain
approximate expressions for the writhing numbers of the ribbons. For the third rib-
bon, extensive perturbation calculations are needed and we used a symbolic manip-
ulation package for assistance.

To apply Călugăreanu’s theorem (3.45), we compute using Eqns. (3.53) and
(3.54) that

Tw (S1,en1)+N (S1,S2) = N (S1,S2) =−n,

Tw (S1,en1)+N (S1,S3) = N (S1,S3) =−n. (3.57)
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By counting crossings and using Eqn. (3.34), we find that the linking numbers for
these ribbons are also −n. Referring to Eqn. (3.50), this is consistent with the fact
that the writhing number of the circle S1 is zero. Turning to the third ribbon, which
is formed by S2 and S3, we find that Lk (S2,S3) =−n, N (S2,S3) =−n, and

Tw (S2,en2) =
1

2π

∫ �2

0
τ2ds2

=
1

2π

∫ 2π

0
τ2

ds2

ds1
ds1

=
ε

2π

∫ 2π

0

(
1−n2)ncos(ns1)ds1

+
ε2n
4π

∫ 2π

0
n2 −1+

(
2n4 +5n2 −1

)
cos(2ns1)ds1 +O

(
ε3)

=
ε2n
2

(
n2 −1

)
+O

(
ε3) . (3.58)

Consequently, using Călugăreanu’s theorem (3.45), we compute the approximate
expressions for the writhing numbers of the curves S2 and S3:

Wr (S2) = −ε2n
2

(
n2 −1

)
+O

(
ε3) ,

Wr (S3) = −ε2n
2

(
n2 −1

)
+O

(
ε3) . (3.59)

For the curves shown in Figure 3.11, Wr (S2)≈−1.2.
The results of this analysis can be applied to circular strands of DNA (or DNA

plasmids) that are discussed in the literature12 provided the radius of the circular
reference curve is used to non-dimensionalize the length scales. The radius R in this
case is typically in the order of several hundred nanometers (nm) and εR is of the
order of 1 nm.

3.7 Self-Linking of a Space Curve with Application to Strands
of DNA

Restricting attention to curves with no points of inflection, Pohl [293] published the
following identity for the self-linking number SL of the curve in 1968:

SL =Wr (S )+Tw (S ,en) , (3.60)

12 See [169, 360] and references therein.
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(a) (b)

−

−

−

−

−

−

S S

Fig. 3.14 A trefoil knot with a self-linking number SL = −3 showing the crossings for a given
projection. (a) Computation of the crossing index using a given orientation of s and (b) computation
by reversing the direction of s.

where SL is obtained from half the sum of the crossing indices JW (P) of S .
As examples, SL = −3 for the trefoil knot shown in Figure 3.14, SL = 0 for
the figure eight knot shown in Figure 3.12, and SL = +1 for the knot shown in
Figure 3.13(c).

Pohl’s student, White, subsequently extended Eqn. (3.60) in a well-cited paper
[359]. In establishing Eqn. (3.60), Pohl was seeking to give “a new, clearer, and
much simplified treatment of” Călugăreanu’s theorem as presented in [42–44]. It
should be clear that Eqn. (3.60) is intimately related to Călugăreanu’s
theorem (3.45). The identity (3.60) has also had an influential role in the liter-
ature on writhe and twist in rods and DNA.13 There are numerous papers (e.g.,
[68, 235, 294, 314, 335]) devoted to this topic and, in particular, calculating Wr and
Tw for deformed strands of DNA.

As mentioned previously, one of the primary drivers for the spread of interest in
Călugăreanu’s theorem (3.45) and Eqn. (3.60) has been an attempt to understand the
supercoiling of DNA. To see how link, writhe, and twist can be applied to strands of
double-stranded DNA (dsDNA), we recall that DNA can be modeled as two space
curves S1 and S2 which are intertwined about a imaginary third curve S which is
known as the duplex or molecular axis. We can define a ribbon using S and S1 (or
S2). It is also interesting to note that dsDNA can also be found in closed configura-
tions (called DNA circles or DNA plasmids). For example, the chromosome of the
bacteria E. Coli is a DNA circle one millimeter in length, and has a linking number
that is close to 300,000 [294].

The twisting number Tw of the DNA strand is calculated using the ribbon formed
by S and S1,2, and the linking number Lk is also determined using the two space
curves. It is standard to then apply Călugăreanu’s theorem (3.45) to determine the
writhe of the DNA strand.14

13 We refer the reader to [239] for a discussion of Călugăreanu’s legacy and the roles played by
Călugăreanu’s theorem and Eqn. (3.60).
14 For examples, see [18, 360, 361].
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For strands of DNA, one also defines the supercoiling density σ [83, 314]:

σ =
Lk −Lk0

Lk0

. (3.61)

Here, Lk0 is the self-linking number of a strand of DNA where the molecular axis
(duplex axis) is straight and unstressed. For B-DNA, there are 10.5 base pairs per
turn of the helix, so when the molecular axis is straight and unstressed, Wr = 0 and

Lk0 = Tw =
Number of base pairs

10.5
. (3.62)

For DNA in vivo, σ = 0.5 and σ = −1.0 for separated strands of double-stranded
DNA. Strands of DNA, where σ < 0(> 0) are known as underwound (super-
coiled).15

We emphasize that the twist Tw is the number of times that one sugar phosphate
backbone wraps around the molecular axis S and the writhe Wr is the average of the
indices of the self-crossings of the double helix. In many of the recent experiments
on DNA, one fixes Lk (i.e., σ ) and varies Tw by extending the strands of DNA (see,
e.g., [40, 314, 335]). In this way, Lk is a control parameter for their experiments.
A lucid discussion on the importance of using Lk in this manner can be found in
Pohl [294].

Because the linking number is a topological invariant, the only way to change it is
to cut the DNA strands. This is precisely what some enzymes known as topoisomers
perform [83, 241]. Indeed, there are two types of these enzymes, which either cut
one strand (Type I) or two strands (Type II). The former enable changes in Lk of +1
while the latter enable changes of +2. An example of the latter phenomenon can
be seen in Figure 3.13 where the self-linking number SL for two curves differs by a
factor of 2.

3.8 Exercises

Exercise 3.1: Consider a plane curve y = f (x). For this curve, compute the tangent
indicatrix ct and its geodesic curvature κg. Verify that ct describes a geodesic (i.e.,
a curve of shortest distance between two points) on the sphere S2.

Exercise 3.2: Consider a left-handed circular helix (α < 0) parameterized using a
cylindrical polar coordinate system: z = αRθ . Compute the tangent indicatrix ct for
this helix and show that the Gauss-Bonnet theorem (3.24) can be used to compute
the spherical area enclosed by ct .

Exercise 3.3: While the linking number of two non-linked curves is zero (see, e.g.,
Figure 3.9(b)), the converse is not true. To see this fact, show that the linking number

15 Underwound is also termed negatively supercoiled in contrast to the case σ > 0 which is termed
positively supercoiled.
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for the pair of closed space curves forming a link variously known as “Maxwell’s
link” or the “Whitehead link” has a linking number of 0.16

Exercise 3.4: Verify the computation of the linking number for the three pairs
of curves shown in Figure 3.9 using the signed crossing formula (3.34). In your
solution you might notice the difference in orientation between the curve labeled
S2 that is shown in Figures 3.9(a) and 3.9(c).

Exercise 3.5: After suitably modifying the definition (3.28), compute the linking
number of the following pair of curves which are defined parametrically by the
respective position vectors:

r1 = r1 (s1) = s1E1 +E3, r2 = r2 (s2) = s2E2. (3.63)

Exercise 3.6: After suitably modifying the definition (3.28), show that the linking
number of two parallel lines is zero.

Exercise 3.7: Verify the identity (3.32). The following tensor, which describes a
combined projection and scaling, will be useful in your work:

A =
1

||r1 (s1)− r2 (s2)|| (I− e⊗ e) . (3.64)

Here, from Eqn. (3.27),

e(s1,s2) =
r1 (s1)− r2 (s2)

||r1 (s1)− r2 (s2)|| . (3.65)

You will also find that the adjugate, adj(A), of the non-invertible tensor A is

adj(A) =
1

||r1 (s1)− r2 (s2)||2
e⊗ e, (3.66)

and plays a role in the derivation because of the identity

adj(A)(a×b) = Aa×Ab, (3.67)

which holds for any pair of vectors a and b.

Exercise 3.8: Consider the following parametric equation for a closed space curve
that appeared in Călugăreanu [43, Pages 616–617]:

x(t) = cos(t)−λ cos(2t), y(t) = sin(t)−λ sin(2t), z(t) = αλ sin(t). (3.68)

In these expressions, the parameters λ ≥ 0 and α = ±1. Three examples of these
curves are shown in Figure 3.13. Determine the unit tangent vector et , arc-length
parameter s = s(t), curvature κ , and torsion τ for this space curve. In addition, show

16 This result was first established by Maxwell [95, 301].
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that there are no self-crossings provided 0 ≤ λ < 0.5, while for λ > 0.5 show that
there is a self-crossing which can change sign depending on the whether α =±1.

Exercise 3.9: Consider the following pair of curves that are discussed in White and
Bauer [360, Eqn. (16)]:

r1 (s1) = RA cos(s1)E1 +RA sin(s1)E2,

r2 (s1) = r1 − r (cos(ns1)cos(s1)E1 + cos(ns1)sin(s1)E2 − sin(ns1)E3) .

(3.69)

Here, r and RA are constants and n is an integer.17 As s1 ranges from 0 to 2π ,
show that S2 winds n times around S1. Using the results in Section 3.6 where
appropriate, show that Lk (S1,S2) = n.

Exercise 3.10: As an alternative to the Frenet triad, Bishop [28] proposed a framing
of the curve that is now known as the Bishop frame: {et ,B1,B2}. As discussed in
Section 3.2, for this right-handed orthonormal frame B1 and B2 = et ×B1 are chosen
such that they only change in the direction of et :

∂B1

∂ s
=−κB1 et ,

∂B2

∂ s
=−κB2 et . (3.70)

Here, the curvatures κB1 and κB2 are functions of s. The present exercise explores
the Bishop frame for the plane curve

r = xE1 + f (x)E2, (3.71)

where f is a sufficiently smooth function of x. The results of the exercise will reveal
the advantage of the Bishop frame when a curve has an inflection point, and the
nonuniqueness of the vectors B1 and B2.

(a) Consider the plane curve r = xE1 + f (x)E2 shown in Figure 3.3. For this curve,
show that the unit tangent vector has the representation

et =
1√

1+ d f
dx

d f
dx

(
E1 +

d f
dx

E2

)
, (3.72)

and the curvature κ is

κ =

∣∣∣ d2 f
dx2

∣∣∣
(√

1+ d f
dx

d f
dx

)3 . (3.73)

(b) For the plane curve, show that two possible choices of the Bishop frame are

{et ,B1 = n1,B2 = E3} , {et ,B1 =−n1,B2 =−E3} , (3.74)

17 The curve S2 is not identical to the curve S2 that is defined in Eqn. (3.52)2.
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where the unit vector

n1 =
1√

1+ d f
dx

d f
dx

(
E2 − d f

dx
E1

)
. (3.75)

For this pair of frames, show the respective results:

κB1 =

d2 f
dx2(√

1+ d f
dx

d f
dx

)3 , κB2 = 0, (3.76)

and

κB1 =−
d2 f
dx2(√

1+ d f
dx

d f
dx

)3 , κB2 = 0. (3.77)

In contrast to the Frenet triad, observe that each of these frames is defined even
at points where the curvature κ = 0 (i.e., at a point of inflection). It is also inter-
esting to note that, for both Bishop frames, the angle θB (defined by Eqn. (3.9))
is either 0◦ or 180◦ and switches between these values at points of inflection.

(c) Show that

B1 = cos(θ0)n1 + sin(θ0)E3, B2 =−sin(θ0)n1 + cos(θ0)E3, (3.78)

where θ0 is a constant, satisfy the conditions (3.70) with

κB1 =

d2 f
dx2 cos(θ0)(√

1+ d f
dx

d f
dx

)3 , κB2 =

d2 f
dx2 sin(θ0)(√

1+ d f
dx

d f
dx

)3 . (3.79)

These results demonstrate statements in Bishop [28, Section 3] that the Bishop
frame is not unique and that κB1 and κB2 are determined up to a rotation.

(d) Compute Bishop frames for a circular arc and compare the frames to the Frenet
triad. Your results should be consistent with Eqn. (3.15).
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