
Chapter 1
Mechanics of a String

“In a theory ideally worked out, the progress which we should be able to trace
would be, in other particulars, one from less to more, but we may say that, in regard
to the assumed physical principles, progress consists in passing from more to less.”
A. E. H. Love [213, Page 1] commenting on the historical development of theories

for continuous media.

1.1 Introduction

A purely mechanical theory of a string provides a simple model for several sys-
tems. In particular, it has been used to model axially moving media and biological
filaments. The former is present in cable laying, band saws, textile processes, and
drilling strings, among others. Our interest in this chapter lies in establishing the
equations of motion for such systems when modeled using a mechanical theory of a
string. The developments we present are hopefully of sufficient generality that they
provide a unified perspective on the applications which follow in the subsequent
chapters.

Among the topics of interest are the possibilities that the string will undergo large
motions and large deformations (see Figures 1.1 and 1.2), that it may be subject to
singular supplies of power and momentum, and that its motion may have points of
discontinuity in strain, unit tangent vector, or velocity vector, among others. In the
theory that is presented here, all of these issues are addressed. We base our devel-
opments on a series of works by the late Albert E. Green and Paul M. Naghdi and
their coworkers. These works are supplemented with a recently developed balance
law for material momentum from [264, 278]. The latter allows us to present a sys-
tematic development of models for strings that have discontinuities in their motion.
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Fig. 1.1 The moving threadline problem. Here, an inextensible string is drawn between the outlet
and inlet, and external body forces, such as gravity, are ignored. During the steady motion, the
material points of the string move in rectilinear motion at a constant speed which is denoted by V ,
the string has a constant density ρ , and is in a state of uniform tension which is denoted by P. The
transverse perturbations u(χ , t) to this steady motion are governed by a partial differential equation
ρu,tt + 2ρVu,χt + ρV 2u,χχ = Pu,χχ (see, e.g., [57, 363]). For the threadline shown in this figure,
χb − χa = � where � is a constant and χ is a coordinate.
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Fig. 1.2 Schematic of a string which is being drawn between an inlet and an outlet. The coordinate
χ is used to label the material points passing through the inlet and the outlet and also to parame-
terize the steady motion that the string performs. The problem shown in this figure was analyzed
by O’Reilly [259] and Perkins and Mote [287, 288] for the case when χa = 0, χb = �, and � is a
constant.

1.2 Notation and Nomenclature

A wide range of notation and nomenclature will be introduced in this chapter and
it is convenient here to summarize the major quantities that we will introduce. In
the first table, Table 1.1, most of the kinematical quantities we use are defined. The
second table, Table 1.2, presents kinetic quantities.

We denote Euclidean three-space by E
3 and denote a right-handed, fixed Carte-

sian basis for this space by {E1,E2,E3}. We also make frequent use of the set of
right-handed orthogonal polar coordinate basis vectors:

{er = cos(θ)E1 + sin(θ)E2,eθ = cos(θ)E2 − sin(θ)E1,E3} . (1.1)

Here, θ is measured counterclockwise about E3.
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Table 1.1 Notation and units for a selection of kinematical quantities.

Kinematical quantity Description SI units

ξ material coordinate m
s arc-length parameter m
r position vector m

v = ṙ velocity vector m/s
a = r̈ acceleration vector m/s2

μ =
∣
∣
∣

∣
∣
∣r

′ ∣∣
∣

∣
∣
∣ stretch dimensionless

ρ0 mass density per unit length of ξ kg/m
ρ mass density per unit length of s kg/m

P = −μρv · r′
material momentum kgm/s

vγ velocity vector of the material point ξ = γ(t) m/s
et unit tangent vector dimensionless
en unit normal vector dimensionless
eb unit binormal vector dimensionless
κ curvature 1/m
τ geometric torsion 1/m

ωSF = τet +κeb Darboux vector 1/m

Table 1.2 Notation and units for a selection of kinetic quantities.

Kinetic quantity Description SI units

ψ strain energy function per unit mass m2/s2

n contact force Newton (N) = kgm/s2

f assigned force per unit mass N/kg
b assigned material force N
C contact material force N
B singular (point) contact material force N
F singular supply of linear momentum N

MO singular supply of angular momentum relative to O Nm
ΦE singular supply of power Nm/s

1.3 Space Curves

We first discuss the case of a curve in Euclidean three-dimensional space (see
Figure 1.3). To start, we define the Frenet triad {et ,en,eb}, and the space curve’s
curvature κ and torsion τ . We also discuss the Serret-Frenet relations,

∂et

∂ s
= κen,

∂en

∂ s
= −κet + τeb,

∂eb

∂ s
= −τen, (1.2)

and the handedness of space curves.
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Fig. 1.3 A space curve showing the evolution of the Frenet triad.

1.3.1 The Frenet Triad, Torsion, and Curvature

We assume that the curve is parametrized by an arc-length parameter s. Hence the
position of a point on the curve can be defined by specifying its value of s:

r = r(s) = x1(s)E1 + x2(s)E2 + x3(s)E3. (1.3)

A unit tangent vector et to the curve can be defined:

et =
∂r
∂ s

. (1.4)

The derivative of this vector defines the curvature κ and the unit normal vector en:

∂et

∂ s
= κen. (1.5)

That is,

κ =

∣
∣
∣
∣

∣
∣
∣
∣

∂et

∂ s

∣
∣
∣
∣

∣
∣
∣
∣
, en =

1
κ

∂et

∂ s
. (1.6)

We now use the tangent and normal vectors to define an orthonormal, right-handed
triad, known as the Frenet triad:

{et ,en,eb = et × en} . (1.7)

Here, eb is the unit binormal vector. The Frenet frame is the pairing of the Frenet
triad {et (s1) ,en (s1) ,eb (s1)} and a point P1 on the space curve. The value of the
arc-length parameter s = s1 at the associated point P1.

Using the fact that the Frenet triad is orthonormal, one defines the (geometric)
torsion of the space curve by the relation

∂eb

∂ s
= −τen. (1.8)

Here, the minus sign is conventional.
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The curvature and torsion define two important measures for a space curve and
we can define them without referring explicitly to the Frenet triad:

κ =

∣
∣
∣
∣

∣
∣
∣
∣

∂ 2r
∂ s2

∣
∣
∣
∣

∣
∣
∣
∣
, τ =

1
κ2

[
∂r
∂ s

,
∂ 2r
∂ s2 ,

∂ 3r
∂ s3

]

, (1.9)

where [a,b,c] denotes the scalar triple product. A curve is said to be right-handed if
τ > 0 and left-handed if τ < 0 (see Kreyszig [188]). For a curve where r = r(s, t)
we can still calculate the Frenet triad, however we would do so at each instant of
time t.

While the relations (1.9) are useful, often a curve is parametrically described by
a parameter that is not the arc-length parameter s. In this case, we can establish
equivalent relations by repeated application of the chain rule. To elaborate, suppose
that r = r(x) where x is a parameter which can be expressed as a function of s:
x = x(s). Then, we have

∂r
∂ s

=
dx
ds

∂r
∂x

,

∂ 2r
∂ s2 =

d2x
ds2

∂r
∂x

+

(
dx
ds

)2 ∂ 2r
∂x2 ,

∂ 3r
∂ s3 =

d3x
ds3

∂r
∂x

+3

(
dx
ds

)(
d2x
ds2

)
∂ 2r
∂x2 +

(
dx
ds

)3 ∂ 3r
∂x3 . (1.10)

We can conclude from these three representations that

dx
ds

= ±
∣
∣
∣
∣

∣
∣
∣
∣

∂r
∂x

∣
∣
∣
∣

∣
∣
∣
∣

−1

,

κ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

d2x
ds2

∂r
∂x

+

(
dx
ds

)2 ∂ 2r
∂x2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
,

τ =
1

κ2

(
dx
ds

)6 [∂r
∂x

,
∂ 2r
∂x2 ,

∂ 3r
∂x3

]

. (1.11)

These relations, and particularly the expression for τ , will be used in Chapter 3.
The radius of curvature is the inverse of the curvature κ . As can be seen by

considering the case of a circle of radius R (cf. Figure 1.4), the radius of curvature
is the radius of the largest circle that would be tangent to the curve at the point of
interest. Thus, the radius of curvature of a straight line is infinite while the radius of
curvature of a circle of radius R is R.
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Fig. 1.4 The Frenet triad for a circle of radius R. For this curve, the torsion τ = 0 (because the curve
is planar) and the curvature κ = 1

R . On the left, the direction of increasing s and θ are identical,
whereas they are opposite to each other in the right-hand side image.

1.3.2 The Frenet-Serret Relations

The Frenet-Serret relations are compact expressions of the rate of change of the
Frenet-triad basis vectors expressed in the basis {et ,en,eb}. They are obtained using
the definitions (1.5) and (1.8) and by differentiating the relation en = eb × et :

∂et

∂ s
= κen,

∂en

∂ s
= −κet + τeb,

∂eb

∂ s
= −τen. (1.12)

We can express the Frenet-Serret relations using the compact notation

∂ fi

∂ s
= ωSF × fi, (1.13)

where
f1 = et , f2 = en, f3 = eb, ωSF = τet +κeb. (1.14)

Noting that the Frenet triad is a right-handed frame, then the compact form (1.13) is
a statement of the fact that

fi(s) = QSF(s)fi(0) (1.15)

where QSF is a rotation (or proper-orthogonal) tensor. That is, det(QSF) = 1 and
QT

SFQSF = I. There are numerous parameterizations for rotation tensors, including
Euler angles parameterizations and a unit quaternion parameterization. The former
will be discussed at length in Section 5.3.1 of Chapter 5.1

Differentiating the identity QT
SFQSF = I with respect to s, it can be shown that

∂QSF
∂ s QT

SF is skew-symmetric and has an associated axial vector:

ωSF = ax

(
∂QSF

∂ s
QT

SF

)

. (1.16)

1 For additional background on Euler angles and other parameterizations of a rotation, the inter-
ested reader is referred to the authoritative review [321] by Malcolm Shuster (1943–2012).
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The vector ωSF is often called the Darboux vector after the French mathematician
Gaston Darboux (1842–1917). The Darboux vector is unusual because it has no
en component: ωSF · en = 0. Curiously, if we consider a particle moving along a
fixed space curve with a speed v, then the acceleration vector a of the particle is
a = v̇et +κv2en and a · eb = 0.

Given ωSF and the initial conditions et (s0), en (s0), and eb (s0), we can integrate
(1.13)1 to find the Frenet triad as a function of s. A further integration, of the dif-
ferential equation ∂r

∂ s = et(s), using the resulting values of et(s) and the initial value
r(s0) will yield the space curve r(s).2

To help verify the computation of ωSF in later examples, we note that given a
skew-symmetric tensor A,

A = a3(p2 ⊗p1 −p1 ⊗p2)+a2(p1 ⊗p3 −p3 ⊗p1)

+a1(p3 ⊗p2 −p2 ⊗p3), (1.17)

where {p1,p2,p3} is a right-handed orthonormal basis for E3, then the associated
axial vector is

a = ax(A)

= a1p1 +a2p2 +a3p3. (1.18)

We leave it as an exercise to verify that Ab = ax(A)×b for any vector b and skew-
symmetric tensor A. For future use, we also define an operator which transforms a
vector into a skew-symmetric tensor:

skew(a) = a3(p2 ⊗p1 −p1 ⊗p2)+a2(p1 ⊗p3 −p3 ⊗p1)

+a1(p3 ⊗p2 −p2 ⊗p3), (1.19)

where a = a1p1 +a2p2 +a3p3. It is straightforward to verify that skew(a)b = a×b
for any pair of vectors a and b.

1.3.3 A Plane Curve

For a plane curve,
r = r(s) = x1(s)E1 + x2(s)E2. (1.20)

Hence,

et =
∂x1

∂ s
E1 +

∂x2

∂ s
E2. (1.21)

2 It is an interesting exercise to perform this integration for a space curve where ωSF is constant.
As can be seen from the developments in Section 1.3.4, the resulting curve will either be a circle
or a circular helix.
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We define an angle β such that

cos(β ) =
∂x1

∂ s
, sin(β ) =

∂x2

∂ s
. (1.22)

Consequently, we can use β and two unit vectors,

e1 = cos(β )E1 + sin(β )E2, e2 = cos(β )E2 − sin(β )E1, (1.23)

to conveniently represent the vectors

et = e1,
∂et

∂ s
=

∂β
∂ s

e2. (1.24)

Hence,

κ =

∣
∣
∣
∣

∂β
∂ s

∣
∣
∣
∣
, en = sgn

(
∂β
∂ s

)

e2. (1.25)

After taking the cross product of et with en, we observe that

eb = sgn

(
∂β
∂ s

)

E3. (1.26)

Hence, for a plane curve, the torsion τ is zero. With some further calculations, we
find that the Darboux vector for the plane curve is

ωSF =
∂β
∂ s

E3. (1.27)

We leave it as an exercise to write down a representation for QSF for a plane curve.
In mechanics, the curve with constant curvature and zero torsion is the arc of a
circle (see Figure 1.4). Because this is indicative of a constant bending moment,
such curves are prominent in the design of many mechanical systems.

1.3.4 A Circular Helix

The equation for a circular helix (see Figure 1.5) can be expressed as

r = Rer +RαθE3. (1.28)

Here, θ is a cylindrical polar coordinate, and we also recall that

er = cos(θ)E1 + sin(θ)E2, eθ = cos(θ)E2 − sin(θ)E1. (1.29)
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Fig. 1.5 Examples of circular helices showing the evolution of the Frenet triad. The helix in (a) is
left-handed (τ < 0) and the helix in (b) is right-handed (τ > 0).

It is common to define a helix using the pitch parameter α . As can be seen from Fig-
ure 1.6, the pitch parameter relates θ to z. That is, we can use θ and z as coordinates
on a cylinder of radius R. If we cut the cylinder along a vertical line and unfold it,
sections of the helix will appear as straight lines with a slope αR.

For the helix, we can determine the Frenet triad by first differentiating r with
respect to s and using the chain rule:

∂r
∂ s

=
∂θ
∂ s

(Reθ +RαE3) . (1.30)

Because et is a unit vector, we can infer that ∂θ
∂ s = ± 1

R
√

1+α2
and then calculate et

and the other two basis vectors easily. When ∂θ
∂ s > 0, we find that

et =
1√

1+α2
(eθ +αE3) , en = −er, eb =

1√
1+α2

(E3 −αeθ ) . (1.31)

Alternatively, when ∂θ
∂ s < 0, then

et =
−1√

1+α2
(eθ +αE3) , en = −er, eb =

−1√
1+α2

(E3 −αeθ ) . (1.32)

Some straightforward calculations of the derivatives of the Frenet triad basis vectors
and the use of the chain rule will show that
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Fig. 1.6 Examples of Serret-Frenet triads for a portion of a (right-handed) circular helix. The inset
image shows the relationship between the pitch angle ς and the parameter α .

κ = R

(
∂θ
∂ s

)2

=
1

R(1+α2)
=

cos2 (ς)

R
,

τ =
α

R(1+α2)
=

cos(ς)sin(ς)

R
. (1.33)

Hence, if α = tan(ς) > 0(< 0), then the helix is right-handed (left-handed).
Surprisingly, a helix is the only curve with constant curvature and constant

nonzero torsion. The Darboux vector for the helix has the interesting representa-
tions

ωSF = τet +κeb

= κ (αet + eb)

=
∂θ
∂ s

E3. (1.34)

The Darboux vector is the axial vector of the skew-symmetric tensor ∂QSF
∂ s QT

SF
and an explicit representation for the rotation QSF for the helix can be found in
Eqn. (5.99). We also note that ωSF is constant and is parallel to the axis of the helix.
Observing the complex motion of the Frenet triad as one moves along the helix, this
result is surprising and has connections to constant angular velocity motions of rigid
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bodies, geodesics of the rotation group SO(3), and optometry.3 We also note that the
results for a circle can be obtained by setting α = 0 in the previous developments.
Whence, κ = 1

R and τ = 0 for a circle (cf. Figure 1.4).
In applications of rod theories, one often finds that the centerline of the rod is a

helical space curve with a known curvature κ and geometric torsion τ . Given τ and
κ , one can easily invert (1.33) to determine α and R:

α =
τ
κ
, R =

κ
κ2 + τ2 . (1.35)

Observe that if the curve is planar, then α = 0 and R = 1
κ as expected. An appli-

cation of the identities (1.35) to a rod bent by terminal moments can be found in
Section 5.14 of Chapter 5.

1.4 A Material Curve

We recall, from Green and Naghdi [133, 134], the concept of a material curve L
which is embedded in three-dimensional Euclidean space E

3. The current configu-
ration C of this curve is defined by the vector-valued function r = r(ξ , t). Here, ξ is
a coordinate along C which uniquely identifies material points of L and r is the po-
sition vector of a material point of L with respect to a fixed origin (cf. Figure 1.7).
As the material curve moves in space, the coordinate ξ associated with a material
point remains the same. Consequently, the material coordinate ξ is also known as a
convected coordinate. Associated with the inertia of L in the present configuration
is its mass density per unit length of the coordinate ξ : ρ = ρ (ξ , t). A fixed reference
configuration C0 of the material curve is defined by the vector field R = R(ξ ). For
convenience, we shall assume that ξ is the arc-length parameter of the space curve
occupied by L in its reference configuration C0. The arc-length parameter of the
space curve occupied by L in its present configuration C is denoted by s. As we
shall presently discuss, the coordinates ξ and s can be related.

The position vector r is assumed to be defined relative to a fixed origin O. Taking
the partial derivative of r(ξ , t) with respect to t and keeping ξ fixed, we can compute
the velocity vector v of the material point:

v = ṙ. (1.36)

The superposed dot denotes the material time derivative:

ḟ =
∂ f
∂ t

(ξ , t). (1.37)

That is, this derivative keeps the material point (identified by ξ ) fixed but varies t.

3 The interested reader is referred to [252, 253, 267] for further details and references.
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Fig. 1.7 The present C and reference C0 configurations of a material curve L which has a length
� in the reference configuration. The material points ξ = 0 and ξ = � are labeled ◦ and �, respec-
tively.

1.4.1 Stretches, Derivatives, and Velocities

The stretch μ at a material point of L in its present configuration is defined to be
the magnitude of ∂r/∂ξ :

μ =

∣
∣
∣
∣

∣
∣
∣
∣

∂r
∂ξ

∣
∣
∣
∣

∣
∣
∣
∣
. (1.38)

As a result, the unit tangent vector at a point of L in C is

et =

(
1
μ

)

r
′
, (1.39)

where the prime denotes the partial derivative with respect to ξ of a function of
ξ and t. Because et is a unit vector, et · ėt = 0. It follows from the definition of et

above that
μ̇ = v

′ · et . (1.40)

The arc-length parameter s of the space curve occupied by the material curve in its
present configuration depends on ξ and t: s = s(ξ , t). We tacitly assume that ∂ s

∂ξ > 0

and consequently ∂ s
∂ξ = μ . Integrating this equation, we see that

s = s(ξ , t) = s0 +
∫ ξ

ξ0

μ(u, t)du. (1.41)

It is a good exercise to use (1.40) to show that ṡ = 0 for inextensible curves. For
inextensible material curves, μ = 1, and s and ξ are often synonymous. The identity
(1.40) for such curves implies that either v

′ ⊥ et or v
′
= 0. In the latter case, which

is commonly found, the velocity vector is a piecewise constant function of ξ and
can only change its dependency on ξ at discontinuities.

Apart from the coordinates ξ and s, it is also common with axially moving media
to use another coordinate system to parameterize the motion of the string:

χ = ξ + ct, (1.42)
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Fig. 1.8 (a), Example of a material curve L ; (b), a reference configuration C0; (c), a deformed
configuration where the reference configuration has been given a uniform stretch μ = μ0; and (d),
a deformed configuration where the string has been given a uniform stretch μ = μ0 and rigidly
rotated by 90◦.

where c is a constant which can be judiciously chosen to simplify the governing
equations. As μ is assumed to be strictly positive, s

′
= μ > 0. In addition, χ ′

= 1.
Examples of strings, chains, and cables undergoing motions of this type are consid-
ered in Chapter 2.

Distinguishing the space curve occupied by the present configuration C of L and
the material curve itself is important. For instance, there are numerous examples in
the sequel where the space curve occupied by L is fixed in space yet the material
curve performs an axial motion. For such motions, the material points of the string
move along its length. That is,

v =
∂r
∂ t

= v(ξ , t)et , (1.43)

where et is the unit tangent vector to the space curve. As an example, consider the
material curve shown in Figure 1.8(a). We join the ends of this curve to form a circu-
lar reference configuration C0 that is illustrated in Figure 1.8(b). The configuration
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C0 is then given a uniform stretch μ and rigidly rotated. Two distinct examples of
present configurations of L are shown in Figures 1.8(c) and (d). In Figures 1.8(c)
and (d), the space curve that corresponds to the present configuration is parameter-
ized by an arc-length parameter s and, because of the motion of the material curve
along its length, at each instant in time the coordinate s of a material point will
vary. The pair of configurations and the labeling of the material points shown in
Figures 1.8(c) and (d) are intended as examples to illustrate these aspects of the
coordinates ξ and s. The forces required to achieve the deformations shown in
Figure 1.8 are discussed in Section 1.7.

While the linear momentum of a material point of the material curve is ρv, we
also introduce the material momentum P per unit length of the curve:

P = −ρμv · ∂r
∂ξ

. (1.44)

The minus sign in the definition of the material momentum is conventional and
follows from Eshelby’s definition of this quantity for a three-dimensional continuum
in [103, Eqn. (55)] (cf. Eqn. (8.94) on Page 365). We also note that P is sometimes
known as the pseudomomentum. With the help of the definition of the unit tangent
vector, it is not difficult to see that P is related to the momentum of the material point
along the curve, P = −ρv · et . Later, in Section 2.2.1 of Chapter 2, we shall discuss
how P is related to a kinematical quantity championed by William Thomson, Baron
Kelvin (1824–1907) that is known as the circulation.

1.4.2 Functions and Their Derivatives

Any function b(ξ , t) can also be unambiguously written as a function of s and t or
of χ and t:

b = b(ξ , t) = b̃(χ = ξ + ct, t) = b̂(s = s(ξ , t), t). (1.45)

We shall also need to take various partial derivatives of the representations for a
function b and it is convenient to define notations for them here:

b,χ =
∂ b̃
∂ χ

, b,s =
∂ b̂
∂ s

, b,t =
∂ b̃
∂ t

. (1.46)

It should be clear that

db
dt

= ḃ = ṡb,s +
∂ b̂
∂ t

= cb,χ +b,t . (1.47)

We also emphasize that b,t �= ∂ b̂
∂ t .
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In the sequel we need to evaluate the derivatives of integrals with respect to time.
To do this, we use the Leibnitz rule:

d
dt

∫ ξ1= f (t)

ξ0=g(t)
a(u, t)du =

∫ ξ1= f (t)

ξ0=g(t)
ȧ(u, t)du+a( f (t), t) ḟ −a(g(t), t) ġ. (1.48)

Notice how this result simplifies if ξ1 and ξ0 are constants.

(a)

(b)

=

m

m

E

g

g

FE

= 0

= 0

= 1

= 2

O

E1

E2

H

Loose heap of string

x

x

x

x

x

g

g

g

−

Fig. 1.9 Two classic examples of systems with points of discontinuity. In (a), an inextensible string
of length � hangs from one point and exhibits a fold (discontinuity). A particle of mass m is attached
to the point ξ = � and an external force F =−FE acts on the particle. In (b), a string leaves a loose
heap of stationary string and moves along the table before falling off the edge of the table.

1.4.3 Discontinuities

We next consider a point of discontinuity or singular supply at a material point
ξ = γ(t) along a string. Such instances are common in applications and a pair of
illustrative examples of systems with discontinuities are shown in Figure 1.9. While
our developments are quite general and the conditions we present below enable
several interesting kinematical results for these systems to be easily inferred, we
restrict attention to situations where r(ξ , t) is a continuous function of ξ (i.e., the
string does not break apart).
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To accommodate discontinuities in a function χ (ξ , t) at ξ = γ , we need to
recall standard notation for left- and right-sided limits, and jumps and averages of
functions across discontinuities. Thus, the bracket [[χ ]]γ denotes the jump of a func-
tion χ (ξ , t) at ξ = γ , while {χ}γ denotes the average value of the left-sided and
right-sided limits of the function:

χ± = lim
σ→0

χ(γ ±σ , t), [[χ ]]γ = χ+ − χ−, {χ}γ =
1
2

(

χ+ + χ−) , (1.49)

where σ > 0. Because we will be dealing with examples having multiple points of
discontinuity, we often use the designations

χ+ = χ
(

γ+, t
)

, χ− = χ
(

γ−, t
)

, (1.50)

so the appropriate point of discontinuity can be identified.
Now suppose we are tracking a point P which occupies a different material co-

ordinate ξ at each instant of time: ξ = p(t). Such a situation can be visualized by
imagining a bead moving along a string. At a time t, the velocity vector vP of the
point P can be considered to have two components: one component can be attributed
to the change in the material coordinate of P, and the other arises because of the ve-
locity vector of the material point ξ at ξ = p(t):

vP =
d
dt

(r(p(t), t))

= v(p(t), t)+
∂r
∂ξ

(p(t), t) ṗ. (1.51)

You should notice that the velocity vector which can be attributed to the change in
p(t) is (as expected) tangent to the material curve. As a simple example, suppose

r(ξ , t) = ξ E1 +20tE2, p(t) = t2. (1.52)

In this instance, we find that

r(p(t), t) = t2E1 +20tE2, v = 20E2, vP = v+2tE1. (1.53)

Thus, if the string was stationary, P’s velocity vector would be exclusively tangent
to the string.

We use the previous construction of the velocity vector of a point P to com-
pute representations for the velocity vector vγ of the point of discontinuity. Here,
however, we need to take left-sided and right-sided derivatives because the differ-
entiability of v and ∂r

∂ξ are not certain. Consequently, we arrive at two equivalent
representations for vγ :
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vγ = lim
σ→0

(
d
dt

r(γ(t)±σ , t)

)

= v+ + γ̇r
′+

= v− + γ̇r
′−. (1.54)

Because the pair of representations are equal we can also write

vγ =
{

v+ γ̇r
′}

γ
. (1.55)

The corresponding acceleration vector can be defined in a similar manner:

aγ = a+ +2γ̇v
′+ + γ̇2r

′′+ + γ̈r
′+

= a− +2γ̇v
′− + γ̇2r

′′− + γ̈r
′−, (1.56)

where a = v̇. From the representations for vγ and aγ follow well-known compatibil-
ity conditions:

[[v]]+
[[

r
′]]

γ̇ = 0,

[[a]]+2
[[

v
′]]

γ̇ +
[[

r
′′]]

γ̇2 +
[[

r
′]]

γ̈ = 0. (1.57)

For convenience, we temporarily dropped the subscripts γ that would ornament [[·]]
and {·} in (1.57)–(1.59). The conditions (1.54) and (1.56) express the facts that the
velocity vγ and acceleration aγ vectors can be calculated using either left-sided or
right-sided limits.

The following identity, which is straightforward to establish, is very useful for
manipulating jump conditions:

[[c ·d]] = [[c]] · {d}+{c} · [[d]] , (1.58)

where c and d are arbitrary vector-valued functions of t and ξ . Another result that
is very useful is the ability to move functions which only depend on time into and
out of [[·]] and {·}:

[[c f (t)]] = [[c]] f (t), {c f (t)} = {c} f (t), (1.59)

for any function f that is independent of ξ .

1.4.4 Eulerian Formulation

In many areas of application, particularly gas dynamics, the jump conditions are rep-
resented in terms of an Eulerian (or spatial) formulation rather than the Lagrangian
(or material) formulation which is emphasized in this book. To establish the spatial
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form of a jump condition one uses the identity μ ∂
∂ s = ∂

∂ξ and the fact that Eqn. (1.41)

assigns to each s a unique value of ξ for each instant in time. Thus, we can express
any function χ = χ (ξ , t) as a function of s and t:

χ = χ (ξ , t) = χ̃ (s, t) . (1.60)

With the help of Eqn. (1.54), we find that

γ̇ =
(

vγ − ṽ
(

s+
γ , t

)) · ẽt
(

s+
γ , t

)

μ̃
(

s+
γ , t

) =
(

vγ − ṽ
(

s−γ , t
)) · ẽt

(

s−γ , t
)

μ̃
(

s−γ , t
) . (1.61)

Here, sγ corresponds to the value of the arc-length parameter s at the material point
ξ = γ:

sγ = s(γ , t) = s0 +
∫ γ

ξ0

μ(u, t)du. (1.62)

It is now easy to show that

[[ρ0χ ]]γ γ̇ =

[[
ρ̃0χ̃
μ̃

(

vγ − ṽ
) · ẽt

]]

sγ

. (1.63)

We refer the reader to texts, such as Liepmann and Roshko [206], on gas dynamics
where the Eulerian forms of the forthcoming jump conditions are used and the iden-
tity (1.63) can be used to show the relationship between the spatial and Lagrangian
formulations of the forthcoming jump conditions.

Fig. 1.10 An example of two motions of a material curve which differ by a rigid body motion.
Observe that both motions are relative to the same reference configuration C0.
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1.4.5 Superposed Rigid Body Motions

Consider a string that is deformed in its current configuration C at time t. Now, at
a time t⊥, imagine rigidly rotating and translating this configuration into another
configuration which we denote by C⊥ (see Figure 1.10). We say that the motions r
and r⊥ of the string differ by a superposed rigid body motion:

r⊥
(

ξ , t⊥
)

= Q(t)r(ξ , t)+q(t). (1.64)

Here, Q is a proper-orthogonal tensor-valued function of time, q(t) is a vector-
valued function of time, and t⊥ = t + a with a being constant. Proper-orthogonal
tensors are synonymous with rotations and, as mentioned previously, have the prop-
erties QT Q = I and det(Q) = 1. While there are a wealth of interesting parameter-
izations for Q, for the present purposes it suffices to recall that a rotation tensor Q
can be uniquely described by an axis of rotation i and an angle of rotation θ . The
axis of rotation is unaltered by the action of Q: Qi = i.4

Motions which differ by a rigid body motion arise when considering choices of
appropriate strain measures and strain energy functions.5 If two motions differ by
a rigid body motion, we expect the strain and strain energy functions for an elastic
string to be the same for both motions. This expectation places restrictions on the
strain measures and strain energy functions that we can use.

In the sequel, we will use the stretch μ as a strain measure. It is of interest to
compare μ and its counterpart μ⊥ for the pair of motions which differ by a rigid
body motion. To this end, we compute that

(

r⊥
)′

= Qr
′
, μ⊥ =

∣
∣
∣
∣

∣
∣
∣
∣

(

r⊥
)′∣∣
∣
∣

∣
∣
∣
∣
=
∣
∣
∣

∣
∣
∣r

′∣∣
∣

∣
∣
∣ = μ . (1.65)

To establish the second of these results, we used the identities a · (Qb) =
(

QT a
) ·b

and QQT = I. Having shown that μ = μ⊥, we conclude that μ is invariant under
superposed rigid body motions. This invariance explains its prominent role as a
strain measure for elastic strings.

By way of contrast, suppose we were to propose using r
′ ·E1 as a strain measure.

Now if we consider a motion which differs from r by a rigid body motion, then

(

r⊥
)′

·E1 =
(

Qr
′) ·E1 = r

′ · (QT E1
)

. (1.66)

4 The representation for a rotation tensor Q in terms of the angle of rotation and axis of rotation is
known as Euler’s representation and can be found in Eqn. (5.14) on Page 194.
5 As first shown by Green and Rivlin [139] some fifty years ago, superposed rigid body motions can
be exploited to furnish elegant formulations of the balance laws. The paper [139] has influenced
numerous researchers seeking to develop balance laws (governing equations) for deformable me-
dia.
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Whence,
(

r⊥
)′

·E1 �= r
′ ·E1 (1.67)

unless we only consider rotations which leave E1 unchanged: QT E1 = E1. That is,
rotations whose axis of rotation are parallel to E1. However, confining attention to
such rotations is overly restrictive and so we conclude that the component r

′ ·E1 is
not an appropriate strain measure.

ξ = ξ1
ξ = ξ2

ξ = γ

Fa

string

particle

spring-dashpot system

Fig. 1.11 Schematic of a string in contact with a spring-mass-dashpot system. The mass m of the
spring-mass-dashpot is assumed to be concentrated at the eyelet through which the string can pass,
and the position vector of this particle is denoted by x. An applied force Fa is assumed to act on
the particle. The sole material point of the string in contact with the eyelet is ξ = γ and a force
Fγ can be used to model the contact force between the eyelet and the string at this material point
(cf. [279]).

1.5 Balance Laws

We are interested in being able to formulate the equations of motion of systems such
as that shown in Figure 1.11. This well-studied system has a spring-mass-dashpot
system in point contact with a string.6 As a result of the point contact at the material
point ξ = γ , discontinuities in the contact force n and velocity vector ṙ are to be
expected, and it is nontrivial to formulate the governing equations for this system.
Our treatment below is designed to make this task far easier for the system shown
in Figure 1.11 and related systems.

Motivated by the developments in [12, 132, 230, 251], all of the balance laws we
present are of the form

d
dt

∫ ξ2

ξ1

adξ =

∫ ξ2

ξ1

edξ +[c]
ξ2
ξ1

+

∫ ξ2

ξ1

dδ (ξ − γ) dξ , (1.68)

where δ (·) is the Dirac delta distribution and ξ1 and ξ2 are fixed. The fields a, c,
d, and e denote functions that are either scalar valued or vector valued. Following

6 See, for example, [56, 58, 201, 279, 316, 342, 343].
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[277], we shall assume that the field a is integrable and has a finite number of points
of discontinuity where ȧ is undefined. Apart from this finite number of points, a is
assumed to possess a continuous and bounded material time derivative. The function
e is assumed to be a bounded function of ξ with a finite number of points of discon-
tinuity. Finally, the function c is assumed to be a bounded function of ξ with a finite
number of points where c

′
is undefined but elsewhere this derivative is assumed to

be continuous.

1.5.1 Assigned Forces, Contact Forces, and Material Forces

Preparatory to writing the conservation laws for the material curve, we intro-
duce some additional fields. Pertaining to forces, we introduce the contact force
n = n(ξ , t) and the assigned force per unit mass f = f(ξ , t).7 The forces n and f are
familiar forces for string theories and an interpretation of the former is presented in
Figure 1.12. The contact force is often known as the tension force and we say that
the string is in tension at a point ξ = x if n(x−, t) · r

′
(x−, t) > 0. As will become

evident in the examples considered in Chapter 2, body forces, such as a gravitational
loading, and applied forces on the lateral surface of the string are accommodated by
the assigned force ρμf. Examples of applied forces on the lateral surface include
reaction forces when the string is in contact with a surface and forces modeling an
elastic foundation in moving load problems.

Fig. 1.12 A material curve L in its present configuration and the contact forces n(x±, t) at a point
ξ = x along its length. The force n(x−, t) is the force exerted by the segment to the right of ξ = x
on the segment ξ ∈ [0,x) and the force −n(x+, t) is the force exerted by the segment to the left
of ξ = x on the segment ξ ∈ (x, �]. The jump condition from the balance law of linear momentum
(cf. Eqn. (1.86)2) at ξ = x dictates that n(x−, t) = n(x+, t). Additionally, the local form of the
balance of angular momentum for a string (cf. Eqn. (1.84)) requires that n and r

′
are parallel. The

material points ξ = 0 and ξ = � are labeled ◦ and �, respectively.

7 Details on the continuity and boundedness assumptions on these fields can be inferred from our
discussion following (1.68).
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To introduce the two other forces of interest, we first define the strain energy
function ψ per unit mass of the string. This enables us to introduce the contact
material force C:

C = ρμψ −n · ∂r
∂ξ

− ρμ
2

v ·v. (1.69)

Associated with this force, we also have the assigned material body force b per unit
length of ξ . Observe that while C has unit of Newtons it can also be interpreted as
an energy-density. Throughout the remainder of this book, we will see that changes
to C reflect impacts in chains (in Chapter 2), and both the presence (in Section 4.5.3)
and absence (in Section 4.6) of adhesion. An elementary example which highlights
a role that C can play in examining problems with inhomogeneities is presented in
Section 1.8 at the conclusion of the present chapter.

In contrast to n and f, the material (also known as configurational or Eshelbian)
forces C and b have only recently garnered attention in the literature. As discussed
in the texts [149, 182, 232], this attention has been inspired by the seminal works of
Eshelby [101–103].8 To help relate the developments in this book to those arising
in continuum theories for three-dimensional media, a rapid review of material mo-
mentum and its related balance law for a three-dimensional continuum is presented
in Sections 8.7 and 8.8 in Chapter 8.

Fig. 1.13 Cayley’s problem of an inextensible chain. (a) Schematic of the chain as it falls through
a hole on a horizontal table and (b) a graphical summary of the singular supplies acting on the
chain. A reaction force Fγ acts, and a dissipation −ΦEγ of power occurs, at the point where the
chain leaves the table. This problem is discussed at length in Section 2.4 of Chapter 2.

In order to cover a wide range of applications, we admit singular supplies of mo-
mentum, Fγ , material momentum, Bγ , angular momentum relative to a fixed point
O, MOγ , and power, ΦEγ , at a specific material point ξ = γ(t). For ease of exposi-
tion, and without loss of generality, we assume that there is at most one such point.
By way of motivation, the force Fγ can model a reaction force on a rod or string

8 Eshelby’s collected works were recently assembled and published in [104]. The recent collection
[332] of articles by researchers in this area provides an interesting panorama and a variety of
perspectives on the legacy of Eshelby’s work.
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passing over a sharp obstacle or knife edge (cf. Figure 1.13), an applied force that
features in moving load problems (cf., e.g., [112, 255, 280]), or the contact force on
a string as it passes through an eyelet such as the one shown in Figure 1.11. The sup-
ply Bγ will appear in adhesion problems with elastic rods, dissipative shocks in the
dynamics of chains (such as the problem shown in Figure 1.13), the deformation of
an inhomogeneous bar discussed in Section 1.8, and branching points in rod-based
models for tree-like structures [109, 269, 274]. In certain circumstances, −Bγ can
be identified with an energy release rate and the driving force f in the influential
works of Abeyaratne and Knowles [2, 5] on phase transformations.9

The supplies Fγ and Bγ can both perform work and the former can introduce
a moment. These respective contributions are related to the sources ΦEγ and MOγ

using the forthcoming identities Eqns. (1.87) and (1.88) on Page 29.10 Motivated by
the treatments proposed in Green and Naghdi [132] and Marshall and Naghdi [230],
for many problems we will find it convenient to prescribe Bγ and Fγ and then use
the identities to determine MOγ and ΦEγ .

1.5.2 The Postulated Balance Laws

We adopt the following balance laws for any segment (ξ1,ξ2) of the material curve.
First, we record the conservation of mass:

d
dt

∫ ξ2

ξ1

ρ μdξ = 0. (1.70)

The balance of linear momentum is

d
dt

∫ ξ2

ξ1

ρv μdξ =
∫ ξ2

ξ1

ρμfdξ +[n]
ξ2
ξ1

+
∫ ξ2

ξ1

Fγ δ (ξ − γ) dξ . (1.71)

The balance of material momentum is

d
dt

∫ ξ2

ξ1

Pdξ =
∫ ξ2

ξ1

bdξ +[C]
ξ2
ξ1

+
∫ ξ2

ξ1

Bγ δ (ξ − γ) dξ . (1.72)

The balance of angular momentum relative to the fixed point O is

d
dt

∫ ξ2

ξ1

r×ρv μdξ =
∫ ξ2

ξ1

r×ρf μdξ +[r×n]
ξ2
ξ1

+
∫ ξ2

ξ1

MOγ δ (ξ − γ) dξ . (1.73)

9 We refer the reader to the example considered in Section 1.8, Exercises 1.7 and 2.7, and Sec-
tion 8.8.2 of Chapter 8 for further details on these correspondences.
10 These identities have counterparts in the continuum mechanics of a three-dimensional body
that can be found in the papers [230, 263]. The counterpart to Eqn. (1.88) is also discussed in
Section 8.8.2 of Chapter 8.
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One also has the balance of energy:

d
dt

∫ ξ2

ξ1

(
1
2

v ·v+ψ
)

ρ μdξ =
∫ ξ2

ξ1

ρf ·v μdξ

+[n ·v]
ξ2
ξ1

+
∫ ξ2

ξ1

ΦEγ δ (ξ − γ) dξ . (1.74)

Notice that we are not admitting singular supplies of mass.
As regards dissipation, we note from Eqn. (1.74) that if ΦEγ > 0(< 0), then it

serves to increase (decrease) the kinetic energy of the string. As a result, we term
the case where ΦEγ < 0 as dissipative. Situations with dissipative ΦEγ arise in the
dynamics of chains such as the chain fountain in Section 2.8 and falling folded
chains in Section 2.7. As discussed in [231, Appendix A5.2], some researchers view
a balance of material momentum as a secondary law, while others grant it a primary
status on par with a balance of linear momentum. Based in part on our experiences
solving problems in the dynamics of strings and rods with discontinuities, we agree
with the latter viewpoint. We also take this opportunity to note that alternative treat-
ments of, and motivations for, a material momentum balance law can be found in
the literature. These works include Gurtin [148, 149] who invokes invariance re-
quirements, Kienzler and Herrmann [182, 183] who use Noether’s theorem, and
Tomassetti [347] who employs the Principle of Virtual Power.

1.5.3 Localization Procedure

In the balance laws, we assume that there is one point of discontinuity. Conse-
quently, for the balance of linear momentum (1.71), with the help of Leibnitz
rule (1.48),

d
dt

∫ ξ2

ξ1

ρv μdξ =
d
dt

∫ γ

ξ1

ρv μdξ +
d
dt

∫ ξ2

γ
ρv μdξ

=
∫ γ

ξ1

d
dt

(ρv μ)dξ +
∫ ξ2

γ

d
dt

(ρv μ)dξ − [ρv μγ̇]
γ+

γ−

=

∫ γ

ξ1

d
dt

(ρv μ)dξ +

∫ ξ2

γ

d
dt

(ρv μ)dξ − [[ρv μγ̇]] . (1.75)

With this result, Eqn. (1.71) becomes
∫ γ

ξ1

d
dt

(ρv μ)dξ +
∫ ξ2

γ

d
dt

(ρv μ)dξ − [[ρv μγ̇]] =
∫ ξ2

ξ1

ρμfdξ +[n]
ξ2
ξ1

+
∫ ξ2

ξ1

Fγ δ (ξ − γ) dξ .

(1.76)
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We now establish the local form of this equation and the associated jump condition.
The procedure we discuss is known as the localization procedure (see, e.g., [55] or
[105]).

The law (1.76) is supposed to hold for all material segments. So we first choose
a segment where there are no sources or discontinuities:

∫ ξ2

ξ1

d
dt

(ρv μ)dξ =
∫ ξ2

ξ1

ρμfdξ +[n]
ξ2
ξ1
. (1.77)

With the aid of the fundamental theorem of calculus, this equation reduces to

∫ ξ2

ξ1

(
d
dt

(ρv μ)−ρμf− ∂n
∂ξ

)

dξ = 0. (1.78)

Assuming that the integrand is continuous and bounded, then as ξ1 and ξ2 are arbi-
trary, we conclude that

d
dt

(ρv μ)−ρμf− ∂n
∂ξ

= 0. (1.79)

This equation is known as the local form of the balance law.
To establish the jump condition associated with Eqn. (1.76), we shrink the inter-

val: ξ1 → γ− and ξ2 → γ+. Noting the fact that the integral of a continuous and
bounded function goes to zero as the region of integration goes to zero, we find that
the balance law (1.76) reduces to

− [[ρv μγ̇]]γ = [[n]]γ +Fγ . (1.80)

This is the jump condition associated with the balance of linear momentum (1.76). It
can be shown that Eqn. (1.79) combined with Eqn. (1.80) is equivalent to Eqn. (1.71).

1.5.4 Local Balance Laws

The balance laws (1.70)–(1.74) are used to establish the local balance laws and
jump conditions using the procedure discussed in Section 1.5.3. The following local
balance laws pertain to all ξ �= γ: mass conservation,

ρ0 = ρ0(ξ ) = ρμ , (1.81)

and a balance of linear momentum and a conservation of energy, respectively,

ρ0 v̇ = ρ0f+
∂n
∂ξ

,

ρ0ψ̇ = n · ∂v
∂ξ

. (1.82)
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As ξ is the arc-length parameter of the reference configuration C0, ρ0 is the mass-
density per unit reference length of ξ . We also obtain the local form of the balance
of material momentum and the balance of angular momentum:

Ṗ = b+
∂C
∂ξ

, (1.83)

and
∂r
∂ξ

×n = 0. (1.84)

The previous equation shows that n must be tangent to the string.
Paralleling a methodology used in continuum mechanics, in the sequel the local

form of the five balance laws will be used to generate a partial differential equation
to determine r(ξ , t), to provide constitutive equations for n(ξ , t), and to prescribe b:

ρ0 v̇ = ρ0f+
∂n
∂ξ

, ←− partial differential equation for r(ξ , t) ,

ρ0ψ̇ = n · ∂v
∂ξ ,

∂r
∂ξ ×n = 0,

⎫

⎪⎬

⎪⎭

←− constitutive relations for n(ξ , t) ,

Ṗ = b+
∂C
∂ξ

, ←− prescription for b(ξ , t) . (1.85)

As will become evident from the examples in the subsequent chapters, this proce-
dure produces a closed set of equations for r(ξ , t). We also take this opportunity to
note that our developments are in accordance with Green and Naghdi’s methodol-
ogy whereby Eqns. (1.82)2 and (1.84) are assumed to be identically satisfied by the
constitutive relations for n (cf., e.g., [133]), and Gurtin [149] and Maugin’s [231,
Sect. 3] methodology of prescribing a b-like term so that an associated balance law
(in our case Eqn. (1.83)) is identically satisfied. An example of such a prescription
for an elastic string is discussed in Section 1.6.3 below.

1.5.5 Jump Conditions

From the balance laws, we find that the following jump conditions must hold at
ξ = γ(t):

[[ρ0]]γ γ̇ = 0,

[[n]]γ +[[ρ0v]]γ γ̇ +Fγ = 0,
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[[C]]γ +[[P]]γ γ̇ +Bγ = 0,

[[r×n]]γ +[[r×ρ0v]]γ γ̇ +MOγ = 0,

[[n ·v]]γ +

[[

ρ0ψ +
1
2

ρ0v ·v
]]

γ
γ̇ +ΦEγ = 0. (1.86)

In writing these conditions, some rearrangements have been performed using
Eqn. (1.59).

The jump condition from the mass balance, [[ρ0]]γ γ̇ = 0, shows that if the mass
density ρ0 is continuous, then this jump condition is identically satisfied. This situ-
ation arises if there are no discontinuous changes in the cross-sectional area of the
string or in the mass density per unit volume of the three-dimensional body that it
is modeling. Most frequently, it occurs when the string is assumed to be homoge-
neous. On the other hand, if ρ0 has a discontinuity at ξ = γ , then this jump condition
implies that γ̇ = 0. That is, the discontinuity is stationary at the material point ξ = γ .

Since it is assumed that [[r]]γ = 0, the jump condition (1.86)2 reduces the jump
condition (1.86)4 to the identity

MOγ = r(γ , t)×Fγ . (1.87)

That is, the resultant moment relative to the point ξ = γ is 0. We can also inter-
pret this result as implying that the string cannot support a moment. It is interest-
ing to contrast this to the case of a rod which can support a bending moment (cf.
Eqn. (5.83)). The jump condition (1.86)5 from the energy equation can be expressed
in the form11

ΦEγ = Fγ ·vγ +Bγ γ̇ . (1.88)

Note that the force Fγ is associated with the velocity of the point on which it acts
and Bγ is associated with the velocity of the discontinuity along the material curve.
The identity (1.88) states that the combined power of these forces is equal to the net
power transmitted to the string. In applications of the theory, we will use the iden-
tity (1.87) to prescribe MOγ and we will employ the identity (1.88) to prescribe ΦEγ .
Hence, MOγ and ΦEγ are not considered to be independent supplies: they are deter-
mined by Fγ and Bγ .

Paralleling the summary presented in Eqn. (1.85) for the local form of the balance
laws, for the jump conditions we have

11 This identity was first established in [264]. An outline of the derivation of the identity (1.88) is
presented in Exercises 1.3 and 1.4.
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[[v]]+
[[

r
′]]

γ
γ̇ = 0,

[[ρ0]]γ γ̇ = 0,

[[n]]γ +[[ρ0v]]γ γ̇ +Fγ = 0,

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

←− conditions for
[[

r
′]]

γ
and [[n]]γ ,

[[C]]γ +[[P]]γ γ̇ +Bγ = 0, ←− differential equation for γ(t),

MOγ = r(γ , t)×Fγ , ←− prescription for MOγ ,

ΦEγ = Fγ ·vγ +Bγ γ̇ , ←− prescription for ΦEγ . (1.89)

The role of the jump conditions for energy (1.86)5 and material momentum (1.86)3

has been the subject of many recent papers (see [264] for references and further dis-
cussion). We note in particular that the role of the jump condition for energy (1.86)5

in producing a differential equation for the evolution of γ as in, e.g., [3, 39, 277, 297]
is provided by the material momentum condition (1.86)3. Furthermore, if a varia-
tional formulation of the equations of motion for a string is performed, then, with
the help of the forthcoming constitutive relations and in the absence of singular sup-
plies, the Weierstrass-Erdmann corner conditions (see Section 9.3.2 in Chapter 9)
can be used to establish the jump conditions for linear momentum and material
momentum.

1.6 Elastic Strings and Inextensible Strings

For an elastic string, we assume that the strain energy function ψ depends on the
stretch μ and ξ :

ψ = ψ (μ ,ξ ) . (1.90)

If the string is homogenous, then the strain energy function will be independent of
ξ : ψ = ψ (μ). We can use our earlier results on motions which differ by a rigid body
motion from Section 1.4.5 where we showed that μ⊥ = μ to also show that ψ for
two such motions will have identical values for each material point ξ :

ψ⊥ = ψ
(

μ⊥,ξ
)

= ψ (μ ,ξ ) = ψ. (1.91)

In other words, ψ as given by Eqn. (1.90) is invariant under superposed rigid body
motions. This invariance is appealing on physical grounds: it implies that the only
method of changing the strain energy at a material point is to change the stretch. In
addition, if we subject the entire string to a rigid motion, then its strain energy will
not change.
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A useful representation for the material time derivative of the function ψ (μ ,ξ )
can be found with the help of the identity (1.40) for μ̇:

ψ̇ =
∂ψ
∂ μ

μ̇ =
1
μ

∂ψ
∂ μ

r
′ ·v′

. (1.92)

To establish the constitutive equation for an elastic string, we assume that the local
form of the balance of energy (1.82)2 is satisfied for all motions12:

ρ0ψ̇ = n · ∂v
∂ξ

. (1.93)

Substituting for ψ̇ , this equation reduces to
(

ρ0

μ
∂ψ
∂ μ

r
′ −n

)

· ∂v
∂ξ

= 0. (1.94)

From the balance of angular momentum (1.84), we know that n = net . Consequently,
the identity (1.94) simplifies to

((
n
μ
− ρ0

μ
∂ψ
∂ μ

)

r
′
)

· ∂v
∂ξ

= 0. (1.95)

This equation is assumed to hold for all v
′
. Hence, with the additional assumption

that n does not depend on v
′
, we conclude that

n =
ρ0

μ
∂ψ
∂ μ

r
′
= ρ

∂ψ
∂ μ

r
′
= ρ0

∂ψ
∂ μ

et . (1.96)

This is the constitutive equation for a nonlinearly elastic string.
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0
0
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ρ0ψ
n = ρ0

∂ψ
∂ μ

μ

μ

Fig. 1.14 (a) A pair of representative strain energy functions ρ0ψ and (b) their associ-
ated forces n = ρ0

∂ψ
∂ μ . For the examples shown, (i) ρ0ψ = EA

2 (μ −1)2 and (ii) ρ0ψ =

EA
(

log
(

μ + 1
μ −1

)

+(μ −1)4
)

.

12 This parallels the methodology used in establishing constitutive relations for a three-dimensional
continuum. For the reader’s convenience, a rapid summary of this procedure is presented in Sec-
tion 8.6 of Chapter 8. Additional developments are presented in Exercise 8.4.
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In addition to invariance requirements, it is necessary to consider physically
meaningful restrictions on the strain energy function.13 For example, if the string
is neither in compression nor tension when unstretched (μ = 1), then we should
expect that

lim
μ→1

(

n = ρ0
∂ψ
∂ μ

)

= 0. (1.97)

Further, compressing an element of the string to zero length should require infinite
amounts of energy and compressive force:

lim
μ↘0

ρ0ψ = ∞, lim
μ↘0

(

n = ρ0
∂ψ
∂ μ

)

= −∞. (1.98)

We also expect that infinite amounts of energy and tensile force are needed to stretch
the string indefinitely:

lim
μ→∞

ρ0ψ = ∞, lim
μ→∞

(

n = ρ0
∂ψ
∂ μ

)

= ∞. (1.99)

As an example, the strain energy function labeled (ii) and its associated n that are
shown in Figure 1.14 satisfy the limit (1.97) and also exhibit the desired extreme
behaviors (1.98) and (1.99).

Not all popular strain energy functions exhibit the extreme features (1.98) and
(1.99). For example, consider an elastic string where

ρ0ψ =
EA
2

(μ −1)2 . (1.100)

Referring to the graph labeled i in Figure 1.14(b), such a string has a tension n =
EA(μ −1) that is a linear function of the extension of the string and has the desired
behavior (1.97). However, this function does not satisfy Eqn. (1.98). Indeed a finite
compressive force −EA is all that is needed to reduce a section of the string to zero
length. Consequently, a string modeled with a strain energy function (1.100) would
provide questionable results when μ << 1.

An additional example of a strain energy function for elastic strings is highlighted
in Exercises 1.9 and 2.7 and is a three-parameter nonlinear function of the stretch
μ . A simplified version of this energy appears in Eqn. (2.10) and is used in the
analysis of a steady motion of a closed loop of string. The examples of strain energy
functions discussed in this book are far from exhaustive and other examples are easy
to construct. However, the parameters in the resulting functions must be evaluated
by comparison with experiment and this can be a very challenging task.

13 Restrictions of this type are common in continuum mechanics and the interested reader is re-
ferred to [351, Section 87] for a review of these restrictions. In the context of one-dimensional
continua, Antman’s masterful discussion in [12, Chapter III, Section 3] has greatly influenced our
exposition.



1.6 Elastic Strings and Inextensible Strings 33

1.6.1 Gibbs Free Energy

Consider an elastic string with a strain energy function ρ0ψ (μ ,ξ ) and suppose that
the constitutive relations

n = n · et = ρ0
∂ψ
∂ μ

(1.101)

can be inverted, at least locally, to solve for the stretch μ as a function of n:

μ = μ̂ (n,ξ ) . (1.102)

Then, with the help of a Legendre transformation, we can define a Gibbs free energy
function14:

ρ0φG = ρ0φG (n,ξ ) = ρ0ψ (μ̂ (n,ξ ) ,ξ )−nμ̂ (n,ξ ) . (1.103)

This function can be considered as a dual to the strain energy function.
To see the usefulness of the Gibbs free energy function, observe that

ρ0
∂φG

∂n
=

∂
∂n

(ρ0ψ (μ̂ (n,ξ ) ,ξ )−nμ̂ (n,ξ ))

= ρ0
∂ψ
∂ μ

︸ ︷︷ ︸

=n

∂ μ̂
∂n

− μ̂ (n,ξ )−n
∂ μ̂
∂n

= −μ̂ (n,ξ ) . (1.104)

Whence, we find the pair of relations

n = ρ0
∂ψ
∂ μ

, μ = −ρ0
∂φG

∂n
. (1.105)

The Gibbs free energy function can be used to interpret the material contact force C
in static problems for elastic strings (cf. [5, Chapter 2]). This energy function is also
used by Green et al. [137, 138] to determine constitutive relations for elastic rods.

As an example, consider the strain energy function given by Eqn. (1.100). The
associated Gibbs free energy function is readily computed with the help of the in-
termediate results

n = EA(μ −1) , μ̂ =
n

EA
+1. (1.106)

Substituting into the definition (1.103), we find that

14 For further details on the Legendre transformation, we refer the reader to the lucid discussion of
this transformation in Lanczos [195].
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ρ0φG = −n
( n

2EA
+1

)

. (1.107)

The resulting Gibbs free energy function is a quadratic function of n. An additional
example of a Gibbs free energy function is highlighted in Exercise 1.10.

1.6.2 Inextensibility

In a purely mechanical string theory, inextensibility is the only internal constraint
on a material curve which is invariant under superposed rigid body motions of the
curve. Assuming that ξ is the arc-length parameter of C0, then this constraint is

μ =
∣
∣
∣

∣
∣
∣r

′∣∣
∣

∣
∣
∣ = 1. (1.108)

In this case, r
′

is the unit tangent vector et to the material curve L in C . The
local form of the balance of angular momentum (1.84) implies that n = net , and
the strain energy function is constant. As a result, the local form of the balance of
energy (1.82)2 implies that

n · ∂v
∂ξ

= 0. (1.109)

This equation is assumed to hold for all v
′

where r
′ · v′

= 0.15 After assuming that
n does not depend on v

′
, we conclude that n is parallel to the tangent vector to the

material curve in its present configuration:

n = pr
′
= pet , (1.110)

where the scalar-valued function p = p(ξ , t) is known as the tension. As we shall
see in the sequel, p must be determined from the balance laws and boundary
conditions.16

1.6.3 Identities

Either set of the constitutive relations given by Eqns. (1.96) and (1.110) identically
satisfy the local balance of energy (1.82)2 and the local form of the balance of
angular momentum (1.84). This parallels the situation presented in Section 1.5.5 for
the power ΦEγ and moment MOγ , respectively.

15 For an inextensible string μ = 1 and, after computing μ̇ , one finds that r
′ ·v′

= 0.
16 We follow Casey and Carroll [49] and do not presume that p⊥ = p. Related invariance require-
ments for Fγ and ΦEγ are discussed in [277].
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In addition to the identical satisfaction of the balances of angular momentum
and energy, we prescribe the assigned material force b so that the local form of the
balance of material momentum is identically satisfied. Thus,

b = bp. (1.111)

With the help of Eqns. (1.82), (1.83), (1.96), and (1.110), we find that the material
force needed to identically satisfy the balance of material momentum is given by
the expression

bp = Ṗ− ∂C
∂ξ

= −ρ0f · r′ −
(

∂
∂ξ

(

ρ0ψ − ρ0

2
v ·v

))

exp
. (1.112)

Here, we have used the derivative
(

∂ f
∂ξ

)

exp
of a function f = f

(

r,r
′
,v,ξ

)

:

(
∂ f
∂ξ

)

exp
= lim

Δξ→0

f
(

r,r
′
,v,ξ +Δξ

)

− f
(

r,r
′
,v,ξ

)

Δξ
. (1.113)

For example,
(

∂
∂ξ

(ρ0

2
v ·v

))

exp
=

ρ ′
0

2
v ·v. (1.114)

Clearly, this derivative is zero if ρ0 is uniform throughout the string. Furthermore,
the derivative of the function ρ0ψ in Eqn. (1.112) will be zero if ρ0ψ is not an
explicit function of ξ . That is, if the string is homogeneous in its reference configu-
ration, then bp = −ρ0f · r′

.

1.7 Summary of the Governing Equations

For future reference, it is convenient at this stage to summarize the governing equa-
tions of motion for the string. For regions of the string where discontinuities are
absent, the motion r(ξ , t) of the string is determined by solving the following par-
tial differential equation:

(net)
′
+ρ0f = ρ0v̇, (1.115)

where ρ0 and f are specified and n = ρ0
∂ψ
∂ μ for elastic strings (cf. Eqn. (1.96)) or

n = p for inextensible strings (cf. Eqn. (1.110)). For the latter, Eqn. (1.115) is sup-
plemented by the constraint equation (1.108) and the condition that ψ is constant.
At a point of discontinuity, the following jump conditions need to be satisfied:
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[[ρ0]]γ γ̇ = 0,
[[(

n−ρ0μγ̇2)et
]]

γ = −Fγ ,
[[

ρ0ψ −n · ∂r
∂ξ

− ρ0

2
v ·v

]]

γ
−
[[

ρ0v · ∂r
∂ξ

]]

γ
γ̇ +Bγ = 0. (1.116)

In writing these conditions some rearrangements of Eqns. (1.57) and (1.86)2,4 were
performed with the assistance of the identities (1.58) and (1.59). The jump condi-
tions (1.116) are supplemented by the compatibility conditions:

[[v]]γ +
[[

r
′]]

γ
γ̇ = 0,

[[a]]γ +2
[[

v
′]]

γ
γ̇ +

[[

r
′′]]

γ
γ̇2 +

[[

r
′]]

γ
γ̈ = 0. (1.117)

You may have noticed that the set of jump conditions (1.116) does not contain the
jump condition for energy or angular momentum. Their absence is due to the fact
that they are considered to be identities for MOγ and ΦEγ (see Section 1.5.5).

To illuminate the summary presented above we consider the example of the
present configuration of the string shown in Figure 1.8(c). Here, an undeformed
circular section of string of length � is given a uniform stretch μ = μ0, so that its
present configuration is described by

r(ξ , t) =
μ0�

2π

(

cos

(
πξ
�

)

E1 + sin

(
πξ
�

)

E2

)

. (1.118)

The associated unit tangent vector to L in C is

et = cos

(
πξ
�

)

E2 − sin

(
πξ
�

)

E1. (1.119)

Substituting into the balance law (1.115) we find that the applied forces needed to
sustain this configuration are

ρ0f = −
(

ρ0
∂ψ
∂ μ

(μ = μ0)et

)′

. (1.120)

Assuming that the string is homogeneous and that Fγ = 0 and Bγ = 0, we find that
the jump conditions (1.116) are all identically satisfied for this configuration. For a
homogeneous string, ρ0, ψ , and, consequently, ρ0

∂ψ
∂ μ (μ = μ0) are independent of

ξ and we conclude that ρ0f points in the radial direction: f ‖ r as expected.
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1.8 An Elementary Example Involving Material Forces

One of the distinct aspects of the summary presented in the previous section is the
presence of material forces and material momentum. While many examples involv-
ing Bγ , C, P, and b will be developed in the coming chapters, it is interesting to
consider an elementary example which has distinct ties to earlier works on material
forces in continua with defects and inhomogeneities. The example we consider is
inspired by the bending of a beam considered in Eshelby [102, Page 142] and Kien-
zler and Herrmann [183] and studies on phase transformations by Abeyaratne and
Knowles [5], Ericksen [98], Heidug and Lehner [161], and Truskinovsky [352, 354],
among others. In particular, we explore how the material force C can be related to a
potential energy density function and the material supply Bγ can be interpreted as an
energy release rate and related to Eshelby’s force on a singularity FE and Abeyaratne
and Knowles’ driving force f .

L

L◦

◦

EA1 EA2

1 2

C0

C

(a)

(b)

(c) −PE1 PE1

E1

E1

Fig. 1.15 Modeling the static deformation of a bar which has a piecewise constant stiffness.
A schematic of the geometry of the undeformed bar of total length �1 + �2 is shown in (a). In (b),
the reference configuration C0 of a string (material curve L ) that is used to model the bar is shown.
The material points ξ = 0, ξ = �1, and ξ = � are labeled ◦, �, and �, respectively. The configu-
ration C of the deformed material curve L after it has been subjected to terminal forces is shown
in (c). For the situation shown in (c), it is assumed that EA2 < EA1.

Referring to Figure 1.15, we consider a bar which has a discontinuity in its stiff-
ness EA. The undeformed bar has a length � = �1 + �2. The segment of the bar of
length �1 has a stiffness EA1 and the remaining segment has a stiffness EA2. Ter-
minal forces ±PE1 are applied to the ends of the bar and we seek to determine
the total energy of the bar and its associated loadings. To proceed, we model the
bar as a string which, in a reference configuration C0, has a length � = �1 + �2, a
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strain energy function given by Eqn. (1.100), and a piecewise constant stiffness EA.
The deformed string is assumed to be held in a state of static equilibrium by ter-
minal forces F0 = −PE1 and F� = PE1 applied to its ends. No assigned forces are
assumed to act on the string: ρ0f = 0. In the notation of the previous sections, the
discontinuity occurs at γ = �1 with γ̇ = 0. Furthermore, r = xE1 and μ = ∂x

∂ξ .

We can use the jump condition (1.116)2 to show that n(0+, t) = PE1 and
n(�−, t) = PE1.17 It is easy to check that the balance of linear momentum, n

′
= 0,

is satisfied by the constant contact force n = PE1 acting in the string. With the help
of the constitutive relations n = ρ0

∂ψ
∂ μ et we conclude that the string is in a state of

piecewise constant stretch:

μ =

⎧

⎨

⎩

μ1 = P
EA1

∀ξ ∈ (0, �1) ,

μ2 = P
EA2

∀ξ ∈ (�1, �) .
(1.121)

As a consequence, we find that the contact material force C is piecewise constant:

C =
EA
2

(μ −1)2 −n · r′
=

⎧

⎨

⎩

−EA1
2

(

μ2
1 −1

) ∀ξ ∈ (0, �1) ,

−EA2
2

(

μ2
2 −1

) ∀ξ ∈ (�1, �) .

(1.122)

In agreement with the prescription (1.112), we also observe that the local form of
the balance of material momentum, C

′
+b = 0, is satisfied by the prescription b =

bp = 0.
The jump condition (1.116)3 associated with the balance of material momen-

tum yields some interesting results. With the help of the expressions presented in
Eqn. (1.122) for C, Eqn. (1.116)3 implies that a source of material momentum B�1

acts at the point where the discontinuity in stiffness occurs:

B�1 = C
(

�−1
)−C

(

�+1
)

=
EA2

2

(

μ2
2 −1

)− EA1

2

(

μ2
1 −1

)

. (1.123)

If the bar was homogeneous, i.e., EA1 = EA2, then B�1 would vanish. Furthermore,
for the unloaded bar, P = 0 and μ1 = μ2 = 1. In this case,

B�1

∣
∣
P=0 = 0. (1.124)

The behavior of B�1 for various values of the load P and the parameter EA2
EA1

are
shown in Figure 1.16. For the purposes of our forthcoming discussion on an inter-
pretation for B�1 , it is worthy of note that this quantity can have positive and negative
values depending on the ratio of EA2 to EA1.

17 A detailed description of this procedure can be found in Section 2.3.2 of Chapter 2.
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Fig. 1.16 Graphs of the material momentum supply B�1 defined by Eqn. (1.123) as a function of
the loading parameter P

EA2
for various values of the parameter EA2

EA1
. For the graphs shown in this

figure: i, EA2
EA1

= 0.25; ii, EA2
EA1

= 0.5; iii, EA2
EA1

= 1; iv, EA2
EA1

= 2; and v, EA2
EA1

= 4. Observe that the
value of the force P is limited by the fact that μ1 and μ2 must remain positive.

1.8.1 Interpretations of B�1 and C

While B�1 and C both have units of Newtons, they do not correspond to physical
forces that are required for equilibrium. For the problem of the terminally loaded
bar, we now start the process of exploring interpretations for B�1 and C. To this end,
it is illuminating to establish an expression for the total potential energy of the string.
This energy is the sum of the strain energy of the string and the potential energy of
the terminal forces. As the potential energy of a constant force is the negative of
the inner product of the force vector and the displacement of the material point on
which it acts, we find that the potential energy of the string is

Π =
∫ �1

0

EA1

2
(μ1 −1)2 dξ − (−PE1) · r(0, t)

+

∫ �

�1

EA2

2
(μ2 −1)2 dξ − (PE1) · r(�, t)

=
∫ �1

0

EA1

2
(μ1 −1)2 −n · r′

dξ +
∫ �

�1

EA2

2
(μ2 −1)2 −n · r′

dξ , (1.125)

where we used the result that n = PE1 throughout the entire string. From the final
representation for Π , it should be apparent that we can express the potential energy
simply in terms of C:

Π =
∫ �1

0
Cdξ +

∫ �

�1

Cdξ . (1.126)
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Thus, we can interpret the contact material force C as an energy density. This inter-
pretation is useful when attempting to relate the presentation in this book to other
works where variational formulations are emphasized.

EA1

EA1

EA2

EA2

μ1 1 μ2 2

μ1 ( 1 +δ 1) μ2 ( 2 −δ 1)

(a)

(b)

−PE1

−PE1

PE1

PE1

Fig. 1.17 The static deformations of a pair of bars loaded at their ends by equal and opposite
forces. The bars, labeled I and II, are identical in every respect except that the lengths of their
undeformed constituent components differ by an amount δ�1: (a) bar I and (b) bar II.

An interpretation of the material momentum supply B�1 can be found using in-
sights on a related problem of a Bernoulli-Euler beam that appears in works by
Eshelby [102, Page 142] and Kienzler and Herrmann [183]. Returning to the termi-
nally loaded bar, we now compare two different bars. The first bar, known as bar
I, is identical to the one shown in Figure 1.15 and reproduced in Figure 1.17(a).
We also consider a similar bar, known as bar II and shown in Figure 1.17(b). In
contrast to bar I, the length of the segment whose stiffness is EA1 has an unloaded
length �1 +δ�1 and the segment of stiffness EA2 has an unloaded length of �2−δ�1.
Both bars are loaded with the same terminal forces ±PE1. In the loaded state, the
segment of length δ�1 of bar II has a length μ1δ�1. Computing the stretch μ and
material contact force C for bar II in its loaded state is straightforward. Indeed, the
resulting expressions for μ and C can be inferred from Eqns. (1.121) and (1.122)
with a minimal amount of work. In the sequel, we distinguish quantities associated
with the two bars by the respective subscripts I and II.

We now seek to determine which of the two bars have the greater potential en-
ergy. It is important to note that both bars have the same overall length � and are
subject to the same terminal forces ±PE1. Comparing the potential energies of both
bars, we find the following expression:

ΠII −ΠI =
∫ �1+δ�1

0
Cdξ +

∫ �

�1+δ�1

Cdξ −
∫ �1

0
Cdξ −

∫ �

�1

Cdξ . (1.127)
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We evaluate the integrals on the right-hand side of this expression to find that18

ΠII −ΠI =
(

C
(

�−1
)−C

(

�+1
))

δ�1. (1.128)

However, the jump in the contact material force is none other than the supply of
material momentum. Whence,19

ΠII −ΠI = B�1 δ�1. (1.129)

Referring to Figure 1.16, we observe that B�1 > 0 if EA1 > EA2 and B�1 is negative
if EA1 < EA2. Consequently, if EA1 > EA2 and δ�1 > 0, then bar II has a greater
potential energy than bar I. Expressed in another fashion, given a bar of length �
and a given terminal loading, by increasing the portion of material of stiffness EA1,
where EA1 > EA2, we increase the potential energy of the bar.

We can also conduct a thought experiment where we imagine that an amount
δ�1 of material of stiffness EA1 is added (accreted) on bar I at ξ = �1. The addi-
tion of this material is at the expense of a portion of length δ�1 of material which
has a stiffness EA2. During the accretion process, the terminal loads ±PE1 remain
unchanged. The potential energy of the bar is altered in this process and, follow-
ing Eshelby (cf. [101, Eqn. (28)], [102, Eqn. (10.1)], or [103, Eqn. (17)]) and his
definition of a force on a singularity, we define a material force FE:

FE = −dΠ
d�1

, (1.130)

where the minus sign in this definition parallels the definition of a conservative force
as the negative of the gradient of a potential energy. After observing that

dΠ
d�1

= lim
δ�1→0

ΠII −ΠI

δ�1
= − [[C]]�1

= B�1 , (1.131)

we conclude that Eshelby’s force on a singularity FE is none other than the negative
of the supply of material momentum:

FE = −B�1 . (1.132)

Indeed, one can imagine FE = −B�1 as a force moving the material at ξ = �1 to
ξ = �1 + δ�1. The displacement associated with this force is δ�1 and the product
FEδ�1 = −B�1δ�1 is the work performed by this force.

The change in stiffness achieved by the accretion process we have just considered
can also be attained by a phase transformation. Here, a segment of length δ�1 of

18 Alternatively, we could use the Leibnitz rule and the constancy of C to establish the sought-after
expression.
19 Observe that Eqn. (1.129) is simply a restatement of the identity ΦEγ = Bγ γ̇ + Fγ · vγ (where
Fγ = 0) applied to the present problem.
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material with stiffness EA2 is transformed to a material with a stiffness EA1.20 As
emphasized in the works of Abeyaratne and Knowles, a driving force f plays a key
role in continuum models for these problems. For the case of interest here, it can
be shown that f = −B�1 .21 Thus, for the static problem at hand where F�1 = 0, we
conclude that

[[C]]�1
= FE = f = −B�1 . (1.133)

In summary, the singular supply of material momentum B�1 is closely related to
Eshelby’s force on a singularity FE and Abeyaratne and Knowles’ driving force f .
Because f , FE, and B�1 can be expressed as a change in potential energy, these
quantities can also be identified with an energy release rate.

1.8.2 A Uniform Bar

To gain additional perspective on the results we have just presented, the problem of
a terminally loaded bar composed of a material of uniform stiffness EA is discussed
in Exercise 1.8. The results of this exercise demonstrate that, for a bar of a given
length � and given terminal forces ±PE1, the total potential energy of the bar is an
increasing function of EA. This conclusion is in agreement with the observations
about B�1 that we have previously stated.

1.9 Closing Remarks

This concludes our presentation of a purely mechanical theory of a one-dimensional
elastic string. The applications of the theory we will discuss in the next chapter in-
clude a wide range of classic problems featuring inextensible strings, the problem
of an axially moving elastic string, and a static analysis of a bar with a non-convex
strain energy function. These examples are chosen primarily to illuminate the roles
played by Fγ and Bγ in the dynamics of strings. The applications will also pro-
vide additional perspectives on the material forces C, b, and Bγ , and the material
momentum P.

If one assumes uniaxial motions of the string, i.e., r(ξ , t)−R(ξ ) = u(ξ , t)E1

and et = E1, then the theory can also be used to formulate the equations governing
the longitudinal displacement u of an elastic bar. The partial differential equation
governing u = u(ξ , t) is

20 The strain energy function ρ0ψ = EA
2 (μ −1)2 is insufficient to examine the phase transforma-

tion. Instead, what is required is a strain energy function such as the one shown in Figure 2.5 (cf.
Eqn. (2.10)). The computation of C and B�1 for this strain energy function follows our previous
developments, but the algebraic details are more complicated and are presented in Exercise 2.7.
21 We refer the reader to Eqn. (1.144) in Exercise 1.7 and Abeyaratne and Knowles [5, Chapter 2].
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ρ0
∂ 2u
∂ t2 =

∂
∂ξ

(

ρ0
∂ψ
∂ μ

)

, (1.134)

where the strain energy function ρ0ψ depends on ∂u
∂ξ and (if the bar is inhomoge-

neous) ξ . This equation is supplemented by boundary conditions, initial conditions,
and a set of jump conditions. The dynamic solutions u(ξ , t) have a storied his-
tory. In particular, the solutions can exhibit shocks and nonuniqueness. This has
lead researchers, including Abeyaratne and Knowles [5], Dafermos [80], LeFloch
[202, 203], and Truskinovsky [354], to establish admissibility criteria for solutions,
nucleation criteria for shocks to develop, and kinetic relations for driving forces so
that unique solutions to problems can be established. Given the excellent texts, such
as [5, 80, 202], available on this class of problems they are not discussed in great
detail in this book.

1.10 Exercises

Exercise 1.1: Consider an elastic string of length �. The reference configuration for
the string is defined by R(ξ ) = ξ E1 where ξ ∈ [0, �]. During a motion of the string,
it is stretched around the circumference of a circle of radius R = R(t):

r(ξ , t) = R(t)

(

cos

(
πξ
�

)

E1 + sin

(
πξ
�

)

E2

)

. (1.135)

Compute the stretch μ and the arc-length parameter s = s(ξ , t) of the string in its
present configuration.

Exercise 1.2: Suppose a bead P of mass m moves along the present configuration
of the string in Exercise 1.1. The material point of the string in contact with the bead
at time t ∈ [0,0.5] is ξ = �sin(πt). Show that the velocity vector vP of the bead is

vP = Ṙ

(

cos

(
πξ
�

)

E1 + sin

(
πξ
�

)

E2

)

+π2Rcos(πt)

(

−sin

(
πξ
�

)

E1 + cos

(
πξ
�

)

E2

)

. (1.136)

Exercise 1.3: To establish the identity (1.88) several intermediate results are first
established. This exercise explores two of these results. First, with the help of the
definition of vγ and the identity (1.58), show that

[[G]]γ ·vγ =
[[

G ·
(

ṙ+ γ̇r
′)]]

γ
, (1.137)

where the linear momentum density G = ρ0v. With the help of this identity,
show that
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[[2T ]]γ γ̇ = [[Pγ̇ ]]γ γ̇ +[[Gγ̇ ]]γ ·vγ , (1.138)

where the kinetic energy density T = 1
2 ρ0v ·v.

Exercise 1.4: With the help of Exercise 1.3, show that the jump conditions
(1.86)1,...,4 and the definition of vγ can be used to reduce the energy jump condi-
tion (1.86)5 to the identity (1.88).

Exercise 1.5: Consider an elastic string, and suppose that the function

f = α ||r||2 +β
(∣
∣
∣

∣
∣
∣r

′ ∣∣
∣

∣
∣
∣

2 −1

)

(1.139)

is being proposed as a candidate strain energy function ρψ . Show that f is not
invariant under superposed rigid body motions of the string and argue why it should
not be used as a strain energy function.

Exercise 1.6: Consider a string of length � which has the following mass density
function:

ρ0(ξ ) = 10 for ξ ∈
[

0,
�

2

)

, ρ0(ξ ) = 2 for ξ ∈
(
�

2
, �

]

. (1.140)

Show that v, a, and (in the absence of Fγ ) n are continuous at γ = �
2 .

Exercise 1.7: Recall from Section 1.7 that the jump conditions for material mo-
mentum and energy can be expressed in the following manner:

[[C]]γ +[[P]]γ γ̇ +Bγ = 0,

Fγ ·vγ +Bγ γ̇ = ΦEγ . (1.141)

(a) Assuming that the string is elastic with a strain energy function ψ , show that
the pair of jump conditions (1.141) can be expressed as

[[ρ0ψ]]γ −{n}γ ·
[[

r
′]]

γ
= −Fγ ·

{

r
′}

γ
−Bγ ,

(

[[ρ0ψ]]γ −{n}γ ·
[[

r
′]]

γ

)

γ̇ = −ΦEγ +Fγ · {ṙ}γ . (1.142)

(b) From the representations (1.142), argue that the jump condition for energy will
be trivially satisfied in a statics problem, whereas the jump condition for mate-
rial momentum is not necessarily identically satisfied.

(c) Show that the driving force f defined in Abeyaratne and Knowles (see [2,
Eqn. (2.11)] or [5, Eqn. (2.25)]) corresponds to

f = [[ρ0ψ]]γ −{n}γ ·
[[

r
′]]

γ
. (1.143)



1.10 Exercises 45

In addition, show that f can be identified with supplies of linear and material
momenta:

f = −Fγ ·
{

r
′}

γ
−Bγ . (1.144)

The corresponding result for a three-dimensional continuum is discussed on
Page 370.

EA

μ

−PE1 PE1

Fig. 1.18 Schematic of a bar of stiffness EA that is loaded at its ends by equal and opposite forces
±PE1. The bar is uniformly stretched by the applied forces and its length changes from � to μ�.

Exercise 1.8: This exercise is intended to complement the discussion in Section 1.8
of the terminally loaded bar. As shown in Figure 1.18, consider a bar of length �
composed of a material with a stiffness EA. The bar is modeled as a uniform string
with a strain energy function ρ0ψ = EA

2 (μ −1)2.

(a) Show that the stretch in the string is μ = P
EA .

(b) Show that the contact material force in the string is

C = −EA
2

((
P

EA

)2

−1

)

. (1.145)

(c) Show that the potential energy of the terminally loaded string is

Π = −EA�
2

((
P

EA

)2

−1

)

. (1.146)

(d) For a given load P, show that Π is an increasing function of the stiffness EA.
That is, for a given load, a stiffer bar will have a greater potential energy.

(e) For a given stiffness EA, show that Π is a decreasing (increasing) function of
the load P > 0 (P < 0).

Exercise 1.9: Consider the following strain energy function:

ρ0ψ = α1

(
1
4

(μ −α2)
4 + μ

(

1+α2 − μ
2

))

+α1α3log

(

μ −1+
1
μ

)

, (1.147)

where α1, α2, and α3 are constants.
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∂ μ
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μ

Fig. 1.19 (a) The strain energy function ρ0ψ given by Eqn. (1.147) and (b) the associated contact
force n = ρ0

∂ψ
∂ μ . For the graphs shown, α2 ≈ 2.32472 and α3 = 0.1.

(a) Show that the et component of the contact force n = net is

n = α1

(

(μ −α2)
3 +1+α2 −μ

)

+α1α3

(
μ2 −1

μ3 + μ −μ2

)

. (1.148)

(b) If n is assumed to be zero when the string is unstretched, show that

α2 ≈ 2.32472. (1.149)

(c) Verify the results shown in Figure 1.19.
(d) Establish the conditions on α1 and α3 whereby ρ0ψ and n become unbounded

as μ ↘ 0 (cf. Eqn. (1.98)).
(e) Suppose that α1 > 0, α2 is given by Eqn. (1.149), and α3 = 0.1. Show that the

equation

ρ0
∂ψ
∂ μ

= P0 (1.150)

can have multiple solutions depending on the value of the constant P0.
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(a) (b)
i

i

ii

ii

ρ0ψ

ρ0φG

n

μ

Fig. 1.20 (a) The strain energy function ρ0ψ defined by Eqn. (1.147) (labeled i) and the strain
energy function ρ0ψ defined by Eqn. (1.151) (labeled ii), and (b) the associated Gibbs free en-
ergy functions. For the graphs shown, α2 ≈ 2.32472 and α3 = 0.1. The arrows in (b) indicate the
direction of increasing μ as a function of n.
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Exercise 1.10: Consider the strain energy function (1.147) and the quadratic strain
energy function

ρ0ψ =
α1

2
(μ −1)2 , (1.151)

where α1 is a constant which can be identified with the stiffness EA.

(a) Using the definition (1.103) of the Gibbs free energy function ρ0φG, compute
the corresponding free energy functions.

(b) Verify the results shown in Figure 1.20. The dramatic difference in the behaviors
of ρ0φG can be attributed to the lack of convexity of the strain energy function
(1.147) as a function of μ .

(c) For the pair of strain energy functions (1.147) and (1.151), compute the corre-
sponding static material contact force C both as a function of μ and as a function
of n.

(d) Relate the results of Exercise 1.9(e) to the behavior of ρ0φG shown in
Figure 1.20 when n ∈ (0.654306α1,1.43586α1).
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