
Chapter 17
Looking at John Snow’s Cholera Map
from the Twenty First Century: A Practical
Primer on Reproducibility and Open Science

Daniel Arribas-Bel, Thomas de Graaff, and Sergio J. Rey

17.1 Introduction

In the fall of 2015 Ann Case and Economics Nobel Prize winner Agnus Deaton
published a very influential paper in the Proceedings of the National Academy
of Sciences (Case and Deaton 2015) concerning the increasing and alarmingly
high mortality rates of white Americans aged 45–54. As possible reasons for this
phenomenon, they suggested the devastating effects of suicide, alcohol and drug
abuse. This article caused quite a great deal of upheaval, and political analysts and
columnists even linked this with the electoral unrest amongst the white middle class.
However, a comment of an anonymous blogger caused Andrew Gelman to rethink
and recalculate the results of Case and Deaton. Namely, what if a shift within the
age cohort of 45–54 would have happened now with more people being closer to 54
than to 45? Indeed, it turns out that, when correcting for age shifts within cohorts,
the results of Case and Deaton are severely less pronounced (although the mortality
rates of the white middle aged in the US still stand out compared to other countries).

The example above signifies that, even for Nobel Laureates, there is always a
need to be able to reproduce and rethink scientific analyses, especially when the
results are this influential. Mistakes can be made, and anecdotes like the above

D. Arribas-Bel (�)
Department of Geography & Planning, University of Liverpool, Liverpool, UK
e-mail: D.Arribas-Bel@liverpool.ac.uk

T. de Graaff
Department of Spatial Economics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
e-mail: t.de.graaff@vu.nl

S.J. Rey
School of Geographical Sciences and Urban Planning, Arizona State University,
Tempe, AZ, USA
e-mail: srey@asu.edu

© Springer International Publishing AG 2017
R. Jackson, P. Schaeffer (eds.), Regional Research Frontiers - Vol. 2,
Advances in Spatial Science, DOI 10.1007/978-3-319-50590-9_17

283

mailto:D.Arribas-Bel@liverpool.ac.uk
mailto:t.de.graaff@vu.nl
mailto:srey@asu.edu

284 D. Arribas-Bel et al.

are abundant across all sciences. The scientific process is traditionally designed to
correct itself, although this adjustment can be quite sluggish. To facilitate this self-
correcting process and to minimize the number of errors within the data preparation,
data analysis and results presentation phase, we argue that a proper workflow is
needed: namely, one that facilitates reproducibility and Open Science.

In general, the need for more emphasis on research reproducibility and Open
Science is increasingly recognised by universities, government institutions and even
the public at large. Strangely, however, virtually no training is provided on workflow
design and choice of appropriate tools. Students and researchers receive no guidance
as to why or how they should adopt habits that favor Open Science principles in their
research activity.1 This applies as well to regional science where, given the emphasis
on spatial data, maps and quantitative approaches, the need for a reproducible
workflow is probably evenmore challenging than in most other social sciences. This
chapter, therefore, focuses on the concept of workflows, reproducibility and Open
Science, and how to apply them in a very practical sense. Moreover, it illustrates
these concepts by providing a completely reproducible environment and hands-on
example.

The next section deals with the concept of workflow, reproducibility and Open
Science, introduces some specific workflows and tackles the question of why these
approaches are relevant. In the third section, we give an example of a completely
open and reproducible analysis of John Snow’s famous cholera map from the
nineteenth century. Although a proper workflow does not revolve around one
single tool, but instead consists of a coherent set of tools and methodologies, we
have chosen to use for this purpose the programming languages R and Python in
combination with the Jupyter Notebook environment, because of its relative ease
of use, accessibility and flexibility. The chapter concludes with a discussion of the
advantages and the (perceived) disadvantages of our approach.

17.2 Workflow, Reproducibility and Open Science
in Regional Science

The Business Dictionary (BusinessDictionary 2016) states that a workflow is a

progression of steps (tasks, events, interactions) that comprise a work process, involve two
or more persons, and create or add value to the organization’s activities.

So a workflow in science is a set of steps (such as data gathering, data
manipulation, analyses, presenting results), usually taken by multiple researchers,
which leads to an outcome (the research findings). Reproducibility requires that
the materials used to make a finding are available and that they are sufficient for

1See for notable exceptions Healy (2011) in the social sciences, and Rey (2014) and Arribas-Bel
and de Graaff (2015) in regional science.

17 Reproducibility and Open Science 285

an independent researcher (including the original researcher herself) to recreate the
finding. Open Science requires that all researchers have free and easy access to all
materials used to make such a finding. Unfortunately, making your research open
and reproducible often requires additional effort, and one may wonder whether it is
worth it. Indeed, adopting a workflow directed at reproducibility and openness can
often be costly in terms of time. However, there are significant gains to be made.

First, and the most obvious of all, the research becomes reproducible. This brings
great benefits to the scientific community at large. Sharing code for estimations,
figures and data management leads to a faster dispersion of knowledge. Secondly, it
leads to larger transparency, and thus a higher probability of early error detection.
Thirdly, research becomes more modular and portable, so that it is easier to
cooperate with colleagues at a distance and to continue with parts of the research
where others have left it. Fourthly, one of the most salient advantages of a
reproducible workflow is that, in the long term, it makes the scientist more efficient.
However, this will show up at the end of the research cycle, when somebody—
an editor, a supervisor, a referee, a colleague, your own future self—may ask to
redo (parts of the) analysis with slight modifications. In this context, having an
automated process that prepares your data, analyses them and presents the final
results is of great help. An additional benefit of a reproducible workflow is self-
sanity. The effort put to explain to others what steps were taken and how they were
approached provides an additional degree of confidence over the traditional case-
scenario where documentation is scarce and unclear. Finally, reproducibility and
especially openness increases the visibility of the research.Most notably, when code
for a complex estimation is available alongside a paper, others will not only be more
convinced of the results, but they also will be more likely to use it and give it proper
credit.

Often, complete reproducibility in regional science is hard to achieve. Proprietary
data, qualitative methods such as interviews and case studies and sampling issues in
surveys often prohibit others from perfectly mimicking a study’s results. However,
by choosing appropriate tools, one can strive to work as reproducibly as possible.
Making available coding books for surveys and interviews, protocols for case
studies and data management code for proprietary data often significantly helps
others to understand how the results have been obtained.

Recent years have seen a remarkable increase in tools and attention to repro-
ducibility and openness. Unfortunately, most of these tools come from the realm of
computer science and have not yet permeated into other domains, such as regional
science. In general, there is not a particular set of tools that we advocate. However,
there are some types of tools that in general are unavoidable when striving for an
open and reproducible workflow, including:

• Data analysis and programming applications. For quantitative data analyses, one
needs tools for data management and statistical analysis, such as the two most
popular data science tools at the moment, R and Python.

• Typesetting applications. These are used to convey the text and results, whether
on paper (typically using the pdf format) or on screen (using the html

286 D. Arribas-Bel et al.

language). Typically, LaTeX is often used for scientific purposes, especially
because it is scriptable and produces high quality results. Nowadays, however,
Markdown seems to be growing in popularity, mostly because of its very
accessible and easy to learn syntax.

• Reference managers. These typically are combined with typesetting applications
and form a database of references and a system to handle citations and reference
lists. BibTex, Mendeley, and Endnote are popular applications.

• Version control systems. These enable the archiving of older file versions, while
only one copy is ever in use (this avoids the usual awkward naming conventions
for files, such as FinalDraftVersion3.3.doc.final.really.docx).
In combinationwith central repositories, these version control systems act as well
as backup applications. Dropbox is an example of a version control system,
just as is the popular open source version control system Git.

• Literate programming environments. These are typically applications able to
weave code, text and output together. At the moment, there are not many general
literature programming environments. The most popular are probably the knitr
package for R2 and the Jupyter notebook for a multi-language environment.
Moreover, these environments are able to write output to different formats
(usually, html, Markdown, LaTeX/pdf, and the Open Office .odt format).

In general, tools for reproducible research need to be preferably open source
and particularly scriptable. The lack of the latter makes it very difficult for other
applications to communicate and “cooperate” with the tools used.

17.3 John Snow’s Cholera Map

To demonstrate some of the ideas discussed above, we use a classic dataset in
the history of spatial analysis: the cholera map by Dr. John Snow. His story is
well known and better described elsewhere (Hempel 2006). Thanks to his mapping
exercise of the location of cholera deaths in nineteenth century London, he was
able to prove that the disease is in fact transmitted through contaminated water
(associated to a specific pump), as opposed to the conventional thinking of the
day, which stated that transmission occurred through the air. In this section, we
will support Snow’s view with the help of Exploratory Spatial Data Analysis
(ESDA) tools. In the process, we will show how a reproducible and open workflow
can in fact be applied by including the code required to produce the results
presented.3 In fact, the entire content, as well as its revision history, have been
tracked using the Git version control software and can be downloaded from

2See for further information how to use R to make your research as reproducible as possible
Gandrud (2013) and Stodden et al. (2014).
3Part of this section is based upon Lab 6 of Arribas-Bel (2016), available at http://darribas.org/
gds15.

http://darribas.org/gds15
http://darribas.org/gds15

17 Reproducibility and Open Science 287

https://bitbucket.org/darribas/reproducible_john_snow. Equally, the code required
to carry out the analysis is closely integrated in the paper and will be shown inline. A
reproducible notebook version of this document, available from the online resource,
allows the reader to not only see the code but to interactively execute it without
decoupling it from the rest of the content in this chapter.

17.3.1 Point Pattern Exploration

This analysis will be performed using a combination of both the Python and R
programming languages. In addition to both being free and open-source, they have
become essential components of the data scientist’s toolkit and are also enjoying
growing adoption within academia and scientific environments. Thanks to the
Jupyter Notebook (Perez 2015), both can be included alongside each other and the
best of both worlds can be leveraged.We start with a visual map exploration by using
data stored in the R package HistData. We then use this data for an analysis in
the Python language. To do this, we need to import the Python interface to R.

import rpy2.robjects.conversion

import rpy2 as r
import rpy2.robjects

import rpy2.interactive as r
import rpy2.interactive.packages

The data for the original John Snow analysis is available in R as part of the
package HistData, which we need to import together with the ggplot2 package
to create figures and maps.

r.packages.importr(’HistData’)
r.packages.importr(’ggplot2’)

In order to have a more streamlined analysis, we define a basic ggplot map
using the data from HistData that we will call on later:

%%R

Snow_plot <- ggplot(Snow.deaths, aes(x = x, y=y)) +
geom_point(data=Snow.deaths, aes(x=x, y=y),

col="red", pch=19, cex=1.5) +
geom_point(data=Snow.pumps, aes(x=x, y=y),

col="black", pch=17, cex=4) +
geom_text(data=Snow.pumps,

aes(label = label, x = x, y = y+0.5))+
xlim(6, 19.5) + ylim(4, 18.5) +
geom_path(data=Snow.streets,

https://bitbucket.org/darribas/reproducible_john_snow

288 D. Arribas-Bel et al.

aes(x=x,y=y,group=street), col="gray40") +
ggtitle("Pumps and cholera deaths\n

in 19th century London")+
theme(panel.background = element_rect(fill = "gray85"),
plot.background = element_rect(fill = "gray85"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
plot.title = element_text(size = rel(2), face="bold"))

At this point, we can access the data:

%R head(Snow.deaths$x)

which produces the following results:

array([13.58801, 9.878124, 14.65398, 15.22057, 13.16265,
13.80617])

And move the coordinates from R to Python:

X = %R Snow.deaths$x
Y = %R Y=Snow.deaths$y

A first visual approximation to the distribution of cholera deaths can then be
easily produced:

%R plot(X,Y)

which gives Fig. 17.1.
A more detailed map can also be produced by calling on the map we defined

earlier:

%%R Snow_plot

which gives the spatial context of the coordinates as in Fig. 17.2.
We can start moving beyond simple visualization and into a more in-depth

analysis by adding a kernel density estimate as follows:

%%R
overlay bivariate kernel density contours of deaths
Snow_plot + geom_density_2d()

and overlaying it on top of our death locations map as in Fig. 17.3.
This already allows us to get a better insight into Snow’s hypothesis of a

contaminated pump (the one in Broad Street in particular). To further support this
view, we will use some of the most common components of the ESDA toolbox.

17 Reproducibility and Open Science 289

8

6
8

10
12

Y

14
16

10 12 14 16

X

18

Fig. 17.1 X and Y coordinates of cholera deaths

Fig. 17.2 Spatial point of map of cholera deaths

290 D. Arribas-Bel et al.

Fig. 17.3 Kernel estimation of cholera deaths

17.3.2 ESDA

Although the original data were locations of deaths at the point level, for this section
we will access an aggregated version that reports cholera death counts at the street
level. Street segments (lines, topologically) are the spatial unit that probably best
characterizes the process we looking at; since we do not have individual data on
house units, but only the location of those who passed away, aggregating at a unit
like the street segment provides a good approximation of the scale at which the
disease was occurring and spreading.

In addition, since the original data are raw counts, we should include a measure
of the underlying population. If all maps are the events of interest, unless the
population is evenly distributed, the analysis will be biased because high counts
could just be a reflection of a large underlying population (everything else being
equal, a street with more people will be more likely to have more cholera deaths).
In the case of this example, the ideal variable would be to have a count of the
inhabitants of each street. Unfortunately, these data are not available, so we need
to find an approximation. This will inevitably imply making assumptions and

17 Reproducibility and Open Science 291

potentially introducing a certain degree of measurement error. For the sake of this
example, we will assume that, within the area of central London covered by the
data, population was evenly spread across the street network. This means that the
underlying population of one of our street segments is proportional to its length.
Following this assumption, if we want to control for the underlying population of a
street segment, a good approach could be to consider the number of cholera deaths
per (100) metre(s)—a measure of density—rather than the raw count. The polygon
file includes building blocks from the Ordnance Survey (OS data l’ Crown copyright
and database right, 2015).

This part of the analysis will be performed in Python, for which we need to
import the libraries required:

%matplotlib inline
import seaborn as sns
import pandas as pd
import pysal as ps
import geopandas as gpd
import numpy as np
import matplotlib.pyplot as plt

17.3.2.1 Loading and Exploring the Data

Data in this case come from Robin Wilson.4

Load point data
pumps = gpd.read_file(’data/Pumps.shp’)
Load building blocks
blocks = gpd.read_file(’data/polys.shp’)
Load street network
js = gpd.read_file(’data/streets_js.shp’)

To inspect the data and find out the structure as well as the variables included, we
can use the head function:

print js.head().to_string()

with the following output
Deaths Deaths_dens geometry segIdStr seg_len
0 0 0.000000 LINESTRING (529521 180866, 529516 180862) s0-1 6.403124
1 1 1.077897 LINESTRING (529521 180866, 529593 180925) s0-2 92.773279
2 0 0.000000 LINESTRING (529521 180866, 529545 180836) s0-3 38.418745
3 0 0.000000 LINESTRING (529516 180862, 529487 180835) s1-25 39.623226
4 26 18.079549 LINESTRING (529516 180862, 529431 180978) s1-27 143.808901

Before we move on to the analytical part, we can also create choropleth maps for
line data. In the following code snippet, we build a choropleth using the Fisher-Jenks

4See: http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/.

http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/

292 D. Arribas-Bel et al.

classification for the density of cholera deaths in each street segment, and style it by
adding a background color, building blocks and the location of the water pumps:

Set up figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot building blocks
for poly in blocks[’geometry’]:
gpd.plotting.plot_multipolygon(ax, poly, facecolor=’0.9’)
Quantile choropleth of deaths at the street level
js.plot(column=’Deaths_dens’, scheme=’fisher_jenks’,

axes=ax, colormap=’YlGn’)
Plot pumps
xys = np.array([(pt.x, pt.y) for pt in pumps.geometry])
ax.scatter(xys[:, 0], xys[:, 1], marker=’^’, color=’k’, s=50)
Remove axis frame
ax.set_axis_off()
Change background color of the figure
f.set_facecolor(’0.75’)
Keep axes proportionate
plt.axis(’equal’)
Title
f.suptitle(’Cholera Deaths per 100m.’, size=30)
Draw
plt.show()

which produces Fig. 17.4.

17.3.2.2 Spatial Weights Matrix

A spatial weights matrix is the way geographical space is formally encoded into a
numerical form so it is easy for a computer (or a statistical method) to understand.
These matrices can be created based on several criteria: contiguity, distance, blocks,
etc. Although usually spatial weights matrices are used with polygons or points,
these ideas can also be applied with spatial networks made of line segments.

For this example, we will show how to build a simple contiguity matrix, which
considers two observations as neighbors if they share one edge. For a street network
as in our example, two street segments will be connected if they “touch” each other.
Since lines only have one dimension, there is no room for the discussion between
“queen” and “rook” criteria, but only one type of contiguity.

Building a contiguity matrix from a spatial network like the streets of London’s
Soho can be done with PySAL, but creating it is slightly different, technically. For
this task, instead of the ps.queen_from_shapefile, we will use the network module
of the library, which reads a line shapefile and creates a network representation of it.
Once loaded, a contiguity matrix can be easily created using the contiguity weights
attribute. To keep things aligned, we rename the IDs of the matrix to match those

17 Reproducibility and Open Science 293

Fig. 17.4 Choropleth map of cholera deaths

in the table and, finally, we row-standardize the matrix, which is a standard ps.W
object, like those we have been working with for the polygon and point cases:

Load the network
ntw = ps.Network(’data/streets_js.shp’)
Create the spatial weights matrix
w = ntw.contiguityweights(graph=False)
Rename IDs to match those in the ‘segIdStr‘ column
w.remap_ids(js[’segIdStr’])
Row standardize the matrix
w.transform = ’R’

294 D. Arribas-Bel et al.

Now, the w object we have just created comes from a line shapefile, but it is of the
same type as if it came from a polygon or point topology. As such, we can inspect
it in the same way. For example, we can check who is a neighbor of observation
s0-1:

w[’s0-1’]
{u’s0-2’: 0.25, u’s0-3’: 0.25,
u’s1-25’: 0.25, u’s1-27’: 0.25}

Note how, because we have row-standardized them, the weight given to each of the
four neighbors is 0.25, which, all together, sum up to one.

17.3.2.3 Spatial Lag

Once we have the data and the spatial weights matrix ready, we can start by
computing the spatial lag of the death density. Remember, the spatial lag is the
product of the spatial weights matrix and a given variable and that, if W is
row-standardized, the result amounts to the average value of the variable in the
neighborhood of each observation. We can calculate the spatial lag for the variable
Deaths_dens and store it directly in the main table with the following line of
code:

js[’w_Deaths_dens’] = ps.lag_spatial(w, js[’Deaths_dens’])

Let us have a quick look at the resulting variable, as compared to the original one:

toprint = js[[’segIdStr’, ’Deaths_dens’, ’w_Deaths_dens’]].head()
Note: next line is for printed version only. On interactive mode,
you can simply execute ‘toprint‘
print toprint.to_string()

which yields:

segIdStr Deaths_dens w_Deaths_dens
0 s0-1 0.000000 4.789361
1 s0-2 1.077897 0.000000
2 s0-3 0.000000 0.538948
3 s1-25 0.000000 6.026516
4 s1-27 18.079549 0.000000

The way to interpret the spatial lag (w_Deaths_dens) for the first observation is
as follows: the street segment s0-2, which has a density of zero cholera deaths per
100m, is surrounded by other streets which, on average, have 4.79 deaths per 100m.
For the purpose of illustration, we can check whether this is correct by querying the
spatial weights matrix to find out the neighbors of s0-2:

w.neighbors[’s0-1’]
[u’s0-2’, u’s0-3’, u’s1-25’, u’s1-27’]

17 Reproducibility and Open Science 295

And then checking their values:

Note that we first index the table on the index variable
neigh = js.set_index(’segIdStr’).loc[w.neighbors[’s0-1’],

’Deaths_dens’]
neigh

segIdStr
s0-2 1.077897
s0-3 0.000000
s1-25 0.000000
s1-27 18.079549
Name: Deaths_dens, dtype: float64

And the average value, which we saw in the spatial lag is 4.79, can be calculated as
follows:

neigh.mean()
4.7893612696592509

For some of the techniques we will be seeing below, it makes more sense
to operate with the standardized version of a variable, rather than with the raw
one. Standardizing means to subtract the average value and divide by the standard
deviation each observation of the column. This can be done easily with a bit of basic
algebra in Python:

js[’Deaths_dens_std’] = (js[’Deaths_dens’] -
js[’Deaths_dens’].mean())/js[’Deaths_dens’].std()

Finally, to be able to explore the spatial patterns of the standardized values,
sometimes called z values, we need to create its spatial lag:

js[’w_Deaths_dens_std’] =
ps.lag_spatial(w, js[’Deaths_dens_std’])

17.3.2.4 Global Spatial Autocorrelation

Global spatial autocorrelation relates to the overall geographical pattern present in
the data. Statistics designed to measure this trend thus characterize a map in terms of
its degree of clustering and summarize it. This summary can be visual or numerical.
In this section, we will walk through an example of each of them: the Moran Plot,
and Moran’s I statistic of spatial autocorrelation.

The Moran plot is a way of visualizing a spatial dataset to explore the nature
and strength of spatial autocorrelation. It is essentially a traditional scatter plot
in which the variable of interest is displayed against its spatial lag. To be able to
interpret values as above or below the mean and their quantities in terms of standard
deviations, the variable of interest is usually standardized by subtracting its mean
and dividing it by its standard deviation.

296 D. Arribas-Bel et al.

Technically speaking, creating a Moran Plot is very similar to creating any other
scatter plot in Python, provided we have standardized the variable and calculated its
spatial lag beforehand:

Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot values
sns.regplot(x=’Deaths_dens_std’, y=’w_Deaths_dens_std’,

data=js)
Add vertical and horizontal lines
plt.axvline(0, c=’k’, alpha=0.5)
plt.axhline(0, c=’k’, alpha=0.5)
Display
plt.show()

which produces Fig. 17.5.

Fig. 17.5 Moran plot of cholera deaths

17 Reproducibility and Open Science 297

Figure 17.5 displays the relationship between Deaths_dens_std and its spa-
tial lag which, because the W that was used is row-standardized, can be interpreted
as the average standardized density of cholera deaths in the neighborhood of each
observation. In order to guide the interpretation of the plot, a linear fit is also
included in the post, together with confidence intervals. This line represents the
best linear fit to the scatter plot or, in other words, what is the best way to represent
the relationship between the two variables as a straight line. Because the line comes
from a regression, we can also include a measure of the uncertainty about the fit in
the form of confidence intervals (the shaded blue area around the line).

The plot displays a positive relationship between both variables. This is associ-
ated with the presence of positive spatial autocorrelation: similar values tend to be
located close to each other. This means that the overall trend is for high values to be
close to other high values, and for low values to be surrounded by other low values.
This, however, does not mean that this is the only pattern in the dataset: there can
of course be particular cases where high values are surrounded by low ones, and
vice versa. But it means that, if we had to summarize the main pattern of the data
in terms of how clustered similar values are, the best way would be to say they are
positively correlated and, hence, clustered over space.

In the context of the example, the street segments in the dataset show positive
spatial autocorrelation in the density of cholera deaths. This means that street
segments with a high level of incidents per 100m tend to be located adjacent to
other street segments also with high number of deaths, and vice versa.

The Moran Plot is an excellent tool to explore the data and get a good sense of
howmany values are clustered over space. However, because it is a graphical device,
it is sometimes hard to condense its insights into a more concise way. For these
cases, a good approach is to come up with a statistical measure that summarizes the
figure. This is exactly what Moran’s I is meant to do.

Very much in the same way the mean summarizes a crucial element of the
distribution of values in a non-spatial setting, so does Moran’s I for a spatial dataset.
Continuing the comparison, we can think of the mean as a single numerical value
summarizing a histogram or a kernel density plot. Similarly, Moran’s I captures
much of the essence of the Moran Plot. In fact, there is an even closer connection
between the two: the value of Moran’s I corresponds with the slope of the linear fit
overlayed on top of the Moran Plot.

In order to calculate Moran’s I in our dataset, we can call a specific function in
PySAL directly:

mi = ps.Moran(js[’Deaths_dens’], w)

Note how we do not need to use the standardized version in this context as we will
not represent it visually.

298 D. Arribas-Bel et al.

The method ps.Moran creates an object that contains much more information
than the actual statistic. If we want to retrieve the value of the statistic, we can do it
this way:

mi.I
0.10902663995497329

The other bit of information we will extract from Moran’s I relates to statistical
inference: how likely is it that the pattern we observe in the map and Moran’s I is
not generated by an entirely random process? If we considered the same variable but
shuffled its locations randomly, would we obtain a map with similar characteristics?

The specific details of the mechanism to calculate this are beyond the scope of
this paper, but it is important to know that a small enough p-value associated with
the Moran’s I of a map allows rejection of the hypothesis that the map is random.
In other words, we can conclude that the map displays more spatial pattern that we
would expect if the values had been randomly allocated to a particular location.

The most reliable p-value for Moran’s I can be found in the attribute p_sim:

mi.p_sim
0.045999999999999999

That is just below 5% and, by standard terms, it would be considered statistically
significant. Again, a full statistical explanation of what that really means and what
its implications are is beyond the discussion in this context. But we can quickly
elaborate on its intuition. What that 0.046 (or 4.6%) means is that, if we generated
a large number of maps with the same values but randomly allocated over space,
and calculated the Moran’s I statistic for each of those maps, only 4.6% of them
would display a larger (absolute) value than the one we obtain from the real data,
and the other 95.4% of the randommaps would receive a smaller (absolute) value of
Moran’s I. If we remember again that the value of Moran’s I can also be interpreted
as the slope of the Moran plot, what we have in this case is that the particular spatial
arrangement of values over space we observe for the density of cholera deaths is
more concentrated than if we were to randomly shuffle the death densities among
the Soho streets, hence the statistical significance.

As a first step, the global autocorrelation analysis can teach us that observations
do seem to be positively correlated over space. In terms of our initial goal to find
evidence for John Snow’s hypothesis that cholera was caused by water in a single
contaminated pump, this view seems to align: if cholera was contaminated through
the air, it should show a pattern over space—arguably a random one, since air is
evenly spread over space—that is much less concentrated than if this was caused by
an agent (water pump) that is located at a particular point in space.

17.3.2.5 Local Spatial Autocorrelation

Moran’s I is a good tool to summarize a dataset into a single value that informs
about its degree of clustering. However, it is not an appropriate measure to identify

17 Reproducibility and Open Science 299

areas within the map where specific values are located. In other words, Moran’s I
can tell us whether values are clustered overall or not, but it will not inform us about
where the clusters are. For that purpose, we need to use a local measure of spatial
autocorrelation. Local measures consider each single observation in a dataset and
operate on them, as opposed to on the overall data, as global measures do. Because
of that, they are not good at summarizing a map, but they do provide further insight.

In this section, we will consider Local Indicators of Spatial Association (LISAs),
a local counter part of global measures like Moran’s I. At the core of these methods
is a classification of the observations in a dataset into four groups derived from the
Moran Plot: high values surrounded by high values (HH), low values nearby other
low values (LL), high values among low values (HL), and vice versa (LH). Each of
these groups are typically called “quadrants”. An illustration of where each of these
groups fall into the Moran Plot can be seen below:

Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot values
sns.regplot(x=’Deaths_dens_std’, y=’w_Deaths_dens_std’, data=js)
Add vertical and horizontal lines
plt.axvline(0, c=’k’, alpha=0.5)
plt.axhline(0, c=’k’, alpha=0.5)
ax.set_xlim(-2, 7)
ax.set_ylim(-2.5, 2.5)
plt.text(3, 1.5, "HH", fontsize=25)
plt.text(3, -1.5, "HL", fontsize=25)
plt.text(-1, 1.5, "LH", fontsize=25)
plt.text(-1, -1.5, "LL", fontsize=25)
Display
plt.show()

which gives Fig. 17.6.
So far we have classified each observation in the dataset depending on its value

and that of its neighbors. This is only halfway into identifying areas of unusual
concentration of values. To know whether each of the locations is a statistically
significant cluster of a given kind, we again need to compare it with what we would
expect if the data were allocated in a completely randomway. After all, by definition
every observation will be of one kind of another based on the comparison above.
However, what we are interested in is whether the strength with which the values
are concentrated is unusually high.

This is exactly what LISAs are designed to do. As before, a more detailed
description of their statistical underpinnings is beyond the scope in this context, but
we will try to shed some light into the intuition of how they go about it. The core
idea is to identify cases in which the comparison between the value of an observation
and the average of its neighbors is either more similar (HH, LL) or dissimilar (HL,
LH) than we would expect from pure chance. The mechanism to do this is similar to
the one in the global Moran’s I, but applied in this case to each observation, results
in as many statistics as the original observations.

300 D. Arribas-Bel et al.

Fig. 17.6 Moran plot of cholera deaths with “quadrants”

LISAs are widely used in many fields to identify clusters of values in space. They
are a very useful tool that can quickly return areas in which values are concentrated
and provide suggestive evidence about the processes that might be at work. For that,
they have a prime place in the exploratory toolbox. Examples of contexts where
LISAs can be useful include: identification of spatial clusters of poverty in regions,
detection of ethnic enclaves, delineation of areas of particularly high/low activity of
any phenomenon, etc.

In Python, we can calculate LISAs in a very streamlined way thanks to PySAL:

lisa = ps.Moran_Local(js[’Deaths_dens’].values, w)

All we need to pass is the variable of interest—density of deaths in this context—
and the spatial weights that describes the neighborhood relations between the
different observation that make up the dataset.

17 Reproducibility and Open Science 301

Because of their very nature, looking at the numerical result of LISAs is
not always the most useful way to exploit all the information they can provide.
Remember that we are calculating a statistic for every single observation in the data
so, if we have many of them, it will be difficult to extract any meaningful pattern.
Instead, what is typically done is to create a map, a cluster map as it is usually called,
that extracts the significant observations (those that are highly unlikely to have come
from pure chance) and plots them with a specific color depending on their quadrant
category.

All of the needed pieces are contained inside the LISA object we have created
above. But, to make the map making more straightforward, it is convenient to pull
them out and insert them in the main data table, js:

Break observations into significant or not
js[’significant’] = lisa.p_sim < 0.05
Store the quadrant they belong to
js[’quadrant’] = lisa.q

Let us stop for second on these two steps. First, look at the significant column.
Similarly as with global Moran’s I, PySAL is automatically computing a p-value for
each LISA. Because not every observation represents a statistically significant one,
we want to identify those with a p-value small enough that to rule out the possibility
of obtaining a similar situation from pure chance. Following a similar reasoning
as with global Moran’s I, we select 5% as the threshold for statistical significance.
To identify these values, we create a variable, significant, that contains True if the
p-value of the observation has satisfied the condition, and False otherwise. We can
check this is the case:

js[’significant’].head()
0 False
1 False
2 False
3 False
4 True
Name: significant, dtype: bool

And the first five p-values can be checked by:

lisa.p_sim[:5]
array([0.418, 0.085, 0.301, 0.467, 0.001])

Note how only the last one is smaller than 0.05, as the variable significant correctly
identified.

The second column denotes the quadrant each observation belongs to. This one
is easier as it comes built into the LISA object directly:

js[’quadrant’].head()
0 3
1 3

302 D. Arribas-Bel et al.

2 3
3 3
4 4
Name: quadrant, dtype: int64

The correspondence between the numbers in the variable and the actual quadrants
is as follows:

• 1: HH
• 2: LH
• 3: LL
• 4: HL

With these two elements, significant and quadrant, we can build a typical LISA
cluster map.

Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot building blocks
for poly in blocks[’geometry’]:
gpd.plotting.plot_multipolygon(ax, poly, facecolor=’0.9’)
Plot baseline street network
for line in js[’geometry’]:
gpd.plotting.plot_multilinestring(ax, line, color=’k’)
Plot HH clusters
hh = js.loc[(js[’quadrant’]==1) & (js[’significant’]==True),

’geometry’]
for line in hh:
gpd.plotting.plot_multilinestring(ax, line, color=’red’)
Plot LL clusters
ll = js.loc[(js[’quadrant’]==3) & (js[’significant’]==True),

’geometry’]
for line in ll:
gpd.plotting.plot_multilinestring(ax, line, color=’blue’)
Plot LH clusters
lh = js.loc[(js[’quadrant’]==2) & (js[’significant’]==True),

’geometry’]
for line in lh:
gpd.plotting.plot_multilinestring(ax, line, color=’#83cef4’)
Plot HL clusters
hl = js.loc[(js[’quadrant’]==4) & (js[’significant’]==True),

’geometry’]
for line in hl:
gpd.plotting.plot_multilinestring(ax, line, color=’#e59696’)
#gpd.plotting.plot_multilinestring(ax, line, color=’#e59696’,

linewidth=5)
Plot pumps
xys = np.array([(pt.x, pt.y) for pt in pumps.geometry])
ax.scatter(xys[:, 0], xys[:, 1], marker=’^’, color=’k’, s=50)
Style and draw

17 Reproducibility and Open Science 303

Fig. 17.7 LISA cluster map cholera deaths

f.suptitle(’LISA for Cholera Deaths per 100m.’, size=30)
f.set_facecolor(’0.75’)
ax.set_axis_off()
plt.axis(’equal’)
plt.show()

which yields Fig. 17.7.
Figure 17.7 displays the streets of the John Snow map of cholera and overlays on

top of it the observations that have been identified by the LISA as clusters or spatial
outliers. In bright red we find those street segments with an unusual concentration
of high death density surrounded also by high death density. This corresponds with
segments that are close to the contaminated pump, which is also displayed in the
center of the map. In light red, we find the first type of spatial outliers. These are
streets with high density but surrounded by low density. Finally, in light blue we
find the other type of spatial outlier: streets with low densities surrounded by other
streets with high density.

The substantive interpretation of a LISA map needs to relate its output to the
original intention of the analyst who created the map. In this case, our original idea
was to find support in the data for John Snow’s thesis that cholera deaths were
caused by a source that could be traced back to a contaminated water pump. The
results seem to largely support this view. First, the LISA statistic identifies a few

304 D. Arribas-Bel et al.

clusters of high densities surrounded by other high densities, discrediting the idea
that cholera deaths were not concentrated in specific parts of the street network.
Second, the location of all of these HH clusters centers around only one pump,
which in turn is the one that ended up being contaminated.

Of course, the results are not entirely clean; they almost never are with real data
analysis. Not every single street segment around the pump is identified as a cluster,
while we find others that could potentially be linked to a different pump (although
when one looks at the location of all clusters, the pattern is clear). At this point it is
important to remember issues in the data collection and the use of an approximation
for the underlying population. Some of that could be at work here. Also, since this
is real world data, many other factors that we are not accounting for in this analysis
could also be affecting this. However, it is important to note that, despite all of
those shortcomings, the analysis points into very much the same direction that John
Snow concluded more than 150 years ago. What it adds to his original assessment
is the power and robustness that comes with statistical inference and does not with
visualization only. Some might have objected that, although convincing, there was
no statistical evidence behind his original map, and hence it could have still been the
result of a purely random process in which water had no role in transmitting cholera.
Upon the results presented here, such a view is much more difficult to sustain.

17.4 Concluding Remarks

This chapter deals with reproducibility and Open Science, specifically in the realm
of regional science. The growing emphasis on geographically referenced data of
increasing size and interest in quantitative approaches leads to an increasing need for
training in workflow design and guidance in choosing appropriate tools. We argue
that a proper workflow design has substantial benefits, including reproducibility
(obviously) and efficiency. If it is possible to easily recreate the analysis and the
resulting output in presentation or paper format, then slight changes induced by
referees, supervisor or editors can be quickly processed. This is not only important
in terms of time saving, but also in terms of accountability and transparency. In more
practical terms, we illustrate the advocated approach by reproducing John Snow’s
famous cholera analysis from the nineteenth century, using a combination of R and
Python code. The analysis includes contemporary spatial analytic methods, such as
measuring global and local spatial autocorrelation measures.

In general, it is not so much the reproducible part but the openness part that
some researchers find hard and counterintuitive to deal with. This is because the
“publish or perish” ethos that dominates modern academic culture also rails against
openness. Why open up all resources of your research so that others might benefit
and scoop you in publishing first? A straightforward rebuttal to this would be: “Why
publish then after all if you are hesitant to make all materials public?” And if you
agree about this, why open up not only after the final phase when the paper has been
accepted, but earlier in the research cycle? Some researchers are so extreme in this

17 Reproducibility and Open Science 305

that they even share the writing of their research proposals with the outside world.
Remember, with versioning control systems, such as Git, you can always prove, via
timestamps, that you came up with the idea earlier then someone else.

Complete openness and thus complete reproducibility is often not feasible in the
social sciences. Data could be proprietary or privacy-protected and expert interviews
or case studies are notoriously hard to reproduce. And sometimes, you do in fact
face cutthroat competition to get your research proposal rewarded or paper accepted.
However, opening up your research, whether in an early, late or final phase definitely
can reward you with large benefits. Mostly, because your research becomes more
visible and is thus recognized earlier and credited. However, and most importantly,
the scientific community most likely benefits the most as results, procedures, code
and data are disseminated faster, more efficiently and with a much wider scope. As
Rey (2009) has argued, free revealing of information can lead to increased private
gains for the scientist as well as enhancing scientific knowledge production.

References

Arribas-Bel D (2016) Geographic data science’15. http://darribas.org/gds15
Arribas-Bel D, de Graaff T (2015) Woow-ii: workshop on open workflows. Region 2(2):1–2
BusinessDictionary (2016) Workflow [Online; accessed 15-June-2016]. http://www.

businessdictionary.com/definition/workflow.html
Case A, Deaton A (2015) Rising morbidity and mortality in midlife among white non-hispanic

americans in the 21st century. Proc Natl Acad Sci 112(49):15078–15083
Gandrud C (2013) Reproducible research with R and R studio. CRC, Boca Raton, FL
Healy K (2011) Choosing your workflow applications. Pol Methodologist 18(2):9–18
Hempel S (2006) The medical detective: John Snow and the mystery of cholera. Granta, London
Perez F (2015) Ipython: from interactive computing to computational narratives. In: 2015 AAAS

Annual Meeting (12–16 February 2015)
Rey SJ (2009) Show me the code: spatial analysis and open source. J Geogr Syst 11:191–207
Rey SJ (2014) Open regional science. Ann Reg Sci 52(3):825–837
Stodden V, Leisch F, Peng RD (2014) Implementing reproducible research. CRC, Boca Raton, FL

Daniel Arribas-Bel is a Lecturer in Geographic Data Science at the University of
Liverpool. He has held positions as Lecturer in Human Geography at the University
of Birmingham, postdoctoral researcher at the Department of Spatial Economics at
the VU University (Amsterdam), and postdoctoral researcher at the GeoDa Center
for Geospatial Analysis and Computation at Arizona State University. Trained as an
economist, Dani is interested in the spatial structure of cities and in the quantitative
and computational methods required to leverage the power of the large amount of
urban data increasingly becoming available. He is also part of the team of core
developers of PySAL, the open-source library written in Python for spatial analysis.

Thomas de Graaff is assistant professor at the Department of Spatial Economics,
Free University Amsterdam. His primary research interests are spatial interactions
between households and firms; spatial econometrics; migration patterns; regional

http://darribas.org/gds15
http://www.businessdictionary.com/definition/workflow.html
http://www.businessdictionary.com/definition/workflow.html

306 D. Arribas-Bel et al.

performance; and reproducibility of scientific research. Previous positions were at
the Netherlands Bureau of Economic Policy Analysis (CPB) and the Netherland
Environmental Assessment Agency (PBL). Dr. De Graaff earned the Ph.D. in
economics from the Department of Spatial Economics at the Free University
Amsterdam in 2002.

Sergio Rey is professor, School of Geographical Sciences and Urban Planning,
Arizona State University (ASU). His research interests focus on the development,
implementation, and application of advancedmethods of spatial and space-time data
analysis. His substantive foci include regional inequality, convergence and growth
dynamics as well as neighborhood change, segregation dynamics, spatial criminol-
ogy and industrial networks. Previous faculty positions were at the Department of
Geography, San Diego State University and a visiting professor at the Department
of Economics, University of Queensland. Dr. Rey earned the Ph.D. in geography
from the University of California Santa Babara in 1994.

	17 Looking at John Snow's Cholera Map from the Twenty First Century: A Practical Primer on Reproducibility and Open Science
	17.1 Introduction
	17.2 Workflow, Reproducibility and Open Science in Regional Science
	17.3 John Snow's Cholera Map
	17.3.1 Point Pattern Exploration
	17.3.2 ESDA
	17.3.2.1 Loading and Exploring the Data
	17.3.2.2 Spatial Weights Matrix
	17.3.2.3 Spatial Lag
	17.3.2.4 Global Spatial Autocorrelation
	17.3.2.5 Local Spatial Autocorrelation

	17.4 Concluding Remarks
	References

