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Preface

The idea for this book emerged as we prepared the celebration of the 50th
anniversary of the Regional Research Institute (RRI) at West Virginia University
in 2016. The Institute was founded in 1965, and the personalities who helped shape
it include founding director William Miernyk, Andrew Isserman, Luc Anselin, Scott
Loveridge, and Randall Jackson. The Institute reflected the research focus and
personalities of each of these directors, flavored by the diversity of personalities
and scholarship of others with RRI ties. Yet throughout its history, the primary
mission remained: engaging in and promoting regional economic development
research, with a special emphasis on lagging and distressed regions. RRI scholars
have come from economics, geography, agricultural and resource economics, urban
and regional planning, history, law, engineering, recreation and tourism studies,
extension, etc. Over the half century of RRI’s existence, regional research has
grown and developed dramatically, with members of the Institute contributing to
scholarship and leadership in the profession. Reflecting on the history of the RRI
made us wonder about the next 50 years of regional research, so we decided to ask
colleagues in our field to share their thoughts about issues, theories, and methods
that would shape and define future regional research directions. Many responded
to our call for contributions, and in the end we accepted 37 chapters, covering
many aspects of regional research. Although the chapters are diverse, several share
common ideas and interests, so we have grouped them into seven parts. As with most
groupings, of course, there are chapters whose content would have been appropriate
in more than one part.

The large number of contributions resulted in a much greater number of pages
than planned, but their quality made us reluctant to cut some or to significantly
shorten them. We are, therefore, grateful to Johannes Glaeser, Associate Editor
for Economics and Political Science at Springer, and to the Advances of Spatial
Sciences series editors, for suggesting that we prepare two volumes instead of
only one, as initially proposed. We also thank Johannes Glaeser for his advice and
support throughout the process of preparing the two volumes. Volume 1 carries the
subtitle “Innovations, Regional Growth and Migration” and contains 20 chapters in
its four parts. In addition to the topics named in the subtitle, Volume 1 also contains
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vi Preface

three chapters on disasters, resilience, and sustainability, topics that are of growing
interest to scholars, policy makers, and agency and program administrators alike.
The subtitle of Volume 2 is “Methodological Advances, Regional Systems Modeling
and Open Sciences.” Its 17 chapters are organized into the three parts named in the
volume’s subtitle. The two volumes are roughly equal in length.

The chapters reflect many of the reasons why research methods and questions
change over time. A major reason for recent developments in regional research is
the digital revolution, which made vastly increased computational capacities widely
available. This made possible methodological advances, such as spatial economet-
rics or geographic information systems (GIS), but perhaps more importantly, it
changed fundamentally the way empirical modeling is conducted. Furthermore,
it has become possible to integrate different tools, such as spatial econometrics
and GIS, and generate graphical displays of complex relationships that enrich our
analyses and deepen our understanding of the processes that underlie empirical
patterns. Overall, the impact of technological changes on regional research has been
pervasive and, judging by the contributions to this volume, will likely continue to
be so, and this can be seen in most book parts. In Modeling Regional Systems, the
chapters’ authors rely on recently developed methodological tools and approaches
to explore what future research directions could be. In the part Disasters and
Resilience, Yasuhide Okuyama proposes a future modeling system that would
be unthinkable without modern computational tools. All contributions in the part
Spatial Analysis depend heavily on computational spatial analytical tools, including
visualization (e.g., Trevor Harris’ contribution on exploratory spatial data analysis).
Particularly interesting in this context is the part Open Source and Open Science,
because it is dealing with aspects of the computational revolution and the Internet
that are only now starting to become a major force in our fields, and the collective
development and integration of software proposed by Jackson, Rey, and Járosi is
still in its infancy.

The evolution of technologies not only drives much of societal change but
also has changed how we look at economic growth. While early models of
economic growth focused on the capital-labor ratio and treated technology as an
exogenous variable, current research in economic growth includes technology as an
endogenous variable and stresses entrepreneurship. It is, therefore, not surprising
to see an entire part focused on technology, innovation, and entrepreneurship. This
part confronts gender issues explicitly in the chapter by Weiler and Conroy, further
reflecting changing social attitudes. Gender issues are also addressed in the Regional
Growth, Regional Forecasts, and Policy part. As Chalmers and Schwarm note,
gender is still a relatively neglected topic in regional research, but social trends and
forces will likely increase the attention it receives in the future.

The digital revolution that made mobile phones ubiquitous has also had another
important effect, namely the emergence relatively recently of “big data” (e.g.,
the chapters by Newbold and Brown, and Harris). Even more importantly, vastly
improved communication technologies and faster means of transportation are
changing the nature of agglomeration. Timothy Wojan reminds us that Alfred
Marshall anticipated some of these changes more than a century ago, a remarkable
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feat of foresight. Because of improved communication technologies, the gap
between geographic and social distance is likely to widen in the future, particularly
among the highly skilled. Those of us working in research settings at universities
or institutes are already experiencing this phenomenon, as it has become common
to collaborate with distant colleagues, a sharp contrast to the case until the late
twentieth century. It seems certain that the impact of digital technologies on
traditional views of geographical space as separation and differentiation will raise
new regional research questions. Woodward provides a complement to Wojan’s
chapter when he speculates about the effects of the interplay of agglomeration
and automatization, which is yet another example of the pervasive influence of
technology on the future of spatial organization of our societies.

Wojan is not the only one looking to the past to glance into the future. David
Bieri studies neglected contributions in regional monetary economics of such
foundational scholars of regional research as Lösch and Isard. His chapter presents
a genealogy of regional monetary thinking and uses it to make a strong case for
renewed attention over the next 50 years to this neglected branch of our intellectual
family tree.

While most regional scholars are well aware of the impacts of the digital
revolution, there is less awareness of the impacts of an ongoing demographic
revolution. This may be because the revolution is far advanced in the economically
most successful countries, mostly the members of the Organisation for Economic
Co-operation and Development (OECD). But while England became the first
country to be more urban than nonurban in the mid-nineteenth century, the world as
a whole has reached this threshold less than 10 years ago. Indeed, urbanization in the
southern hemisphere is proceeding at a very rapid pace that poses significant policy
challenges in the affected nations. As part of industrialization and urbanization,
the world is also experiencing a dramatic decline in effective fertility, with the
number of births per female of child-bearing age declining. Since longevity is
increasing, this is resulting in demographic structures unlike any in the past.
This phenomenon is most advanced and dramatic in places such as Germany,
Japan, and most recently China—where government policies contributed mightily
to demographic restructuring—and challenges the future of public social safety
programs, particularly provisions for the financial security of the elderly and their
healthcare. In such cases, immigration may be seen as a way to slow the transition
from a predominantly young in the past to a much older population. Franklin and
Plane address issues related to this unprecedented demographic shift.

Migration, domestic and international, is also of growing importance because
of the disruptions caused by industrialization in many countries. The “land flight”
that once worried today’s industrial powers is now occurring in the southern
hemisphere. Migration is also fueled by political change in the aftermath of the
end of colonialization. The new nations that emerged were often formed without
regard for historic societies and traditions, and tensions that had been held in check
have sometimes broken out in war between neighboring countries or civil war. As a
result, the world as a whole has seen an increase in internally displaced persons as
well as refugees who had to leave their home countries. In an overview of directions
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in migration research, Schaeffer, therefore, argues for more work on migrations that
are rarely completely voluntary because traditional models have been developed
primarily for voluntary migrations.

Demographic shifts are also driving reformulations and advances in Regional
Systems Models, as evidenced by new directions in household modeling within
the chapter on household heterogeneity by Hewings, Kratena, and Temurshoev,
who touch on these and enumerate a comprehensive research agenda in the
context of dynamic interindustry modeling, and Allen and his group identify
pressing challenges and high potential areas for development within computable
general equilibrium models. Varga’s chapter contributes to this part’s topic and
to technological change, as his Geographic Macro and Regional Impact Modeling
(GMR) provides explicit mechanisms for capturing the impacts of innovation and
technology.

The chapters in these volumes reflect the changing world that we live in.
While some new directions in regional research are coming about because new
technologies allow us to ask questions, particularly empirical questions that once
were beyond the reach of our capabilities, others are thrust upon us by political,
economic, social, demographic, and environmental events. Sometimes several of
these events combine to effect change. A primary task of a policy science is to
provide guidelines for the design of measures to address problems related to change.
So far, regional researchers seem to have been most successful in making progress
toward completing this task in dealing with environmental disasters, addressed in
the Disasters and Resilience part. Rose leverages decades of research in regional
economic resilience to lay the foundation for this part.

These chapters will certainly fall short of anticipating all future developments
in regional research, and readers far enough into the future will undoubtedly
be able to identify oversights and mistaken judgements. After all, Kulkarni and
Stough’s chapter finds “sleeping beauties” in regional research that were not
immediately recognized, but sometimes required long gestation periods before
becoming recognized parts of the core knowledge in our field, and Wojan and
Bieri also point to and build upon contributions that have long been neglected. If
it is possible to overlook existing research, then it is even more likely that we are
failing to anticipate, or to correctly anticipate, future developments. Nonetheless, it
is our hope that a volume such as this will serve the profession by informing the
always ongoing discussion about the important questions that should be addressed
by members of our research community, by identifying regional research frontiers,
and by helping to shape the research agenda for young scholars whose work will
define the next 50 years of regional research.

Morgantown, WV Randall Jackson
Peter Schaeffer
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Part I
Regional Systems Modeling



Chapter 1
Dynamic Econometric Input-Output Modeling:
New Perspectives

Kurt Kratena and Umed Temursho

1.1 Introduction

One of the first research strategies based on input-output (IO) modelling that had
as an objective a fully fledged macro-econometric IO model is the ‘Cambridge
Growth Project’ (Cambridge DAE 1962). The focus of extending the IO model
towards a full macroeconomic model was on the endogenization of parts of final
demand (usually exogenous in the static IO model) and the modelling of demand
components depending on (relative) prices. Another milestone of this work on
the Cambridge Growth Project was the macroeconomic multisectoral model of
the U.K. economy (Barker 1976; Barker and Peterson 1987). Almost at the same
time, U.S. based research group known as INFORUM (Inter-industry Forecasting
at the University of Maryland) developed a macroeconomic closed IO model,
which is first described in Almon et al. (1974). Since then, this model family has
spread worldwide and developed into an international model by linking similar
national models via bilateral trade matrices (Almon 1991; Nyhus 1991). Both
the Cambridge Multisectoral Dynamic Model of the British economy (MDM) as
well as the INFORUM models incorporate econometric specifications that take
into account economic theory but cannot be directly derived from maximization or
minimization calculus of representative agents. At the regional level, different types
of econometric IO models have been developed by Geoffrey Hewings and his team
at the Regional Economics Applications Laboratory (REAL, University of Illinois
at Urbana-Champaign) based on the Washington Projection and Simulation Model
(Conway 1990). Another important example of a recently developed econometric
IO model is the (fully interlinked) Global Interindustry Forecasting System (GIN-

K. Kratena (�) • U. Temursho
Centre of Economic Scenario Analysis and Research, Department of Economics, Loyola
University Andalucía, Spain
e-mail: kurt.kratena@wifo.ac.at
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FORS) model (Lutz et al. 2005), developed by Bernd Meyer and his team at the
Institute of Economic Structures Research (GWS, Gesellschaft für Wirtschaftliche
Strukturforschung).

The purpose of this paper is to bring to the attention of practitioners some, in
our view, fruitful future directions for econometric IO modeling. Our suggestions
on improving this branch of economic modeling comes from our observations
that theoretical and empirical economic research of the last decades has developed
completely new approaches that have not all found their representation in the econo-
metric IO modeling strain. In this respect, we highlight the relevant developments in
three subfields or schools of economics: neoclassical macroeconomics, agricultural
economics, and post-Keynesian economics. Macroeconomics-related improvements
have to do with an improved modeling of private consumption, production and trade,
as briefly outlined below and discussed in some detail in the next two sections.
Theoretical and empirical research in agricultural economics on observed data
calibration seems to be a promising new addition to the econometric IO modeling.
Another very important recent development in macroeconomic modeling includes
the comprehensive integration of all the flows and stocks of the economy in the spirit
of the post-Keynesian school of economic thought. These last two issues and their
relevance for econometric IO modeling are discussed briefly in Sect. 1.4.

It is not difficult to realize that private consumption modeling should not be
simplistic, because it constitutes the largest component (over 50%; close to 70%
in the US) of aggregate demand (or national income) in virtually all individual
economies around the world. Models based on the social accounting matrices
(SAM) structure using average coefficients still dominate the modeling of the link
between consumption and household income generation. That holds true for econo-
metric IO as well as for computable general equilibrium (CGE) modeling. In both
modeling families, also the concept of the representative consumer dominates and
reactions of consumption of single goods to price and income changes follow simple
linear approaches. In Sect. 1.2 we show how this part of an econometric IO model
can be improved by introducing approaches that explicitly deal with household
wealth, durables and nondurables as well as different household characteristics
that have an influence at the level of consumption by commodity. The approaches
presented all take into account the dynamics of structural change in society as well
as in the economy.

In production theory, the important issues are imperfect competition and tech-
nical change. It is well known that both phenomena equally affect the wedge
between costs and prices and, therefore, are rather difficult to disentangle. The
IO model structure is fully compatible with flexible functional forms like the
transcendental logarithmic (or translog) function (Jorgenson et al. 2013), which
allow for a generic form of introducing different sources of technical change (i.e.,
total factor productivity (TFP), factor bias, embodied or induced). In Sect. 1.3 we
discuss these generic forms and compare them with a more explicit treatment of
technical change in an IO framework.

Another important issue, especially in the context of multi-regional modeling, is
trade. As is well known, estimation of trade flows within the standard multiregional
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IO framework is a challenging task mainly due to unavailability or incompleteness
of the relevant data and the fact that interregional inter-sectoral flows can be quite
volatile over time. Thus, in general, it is to be expected that trade flows may be one of
the most important sources of uncertainty in multiregional IO modeling. It should be
noted that within the traditional multiregional IO modeling, surprisingly very little
attention, to the best of our knowledge, has been given to the full characterization
of the IO price system. For example, multicountry IO price systems that explicitly
model (changes in) exchange rates, which is a crucial factor for the analysis of open
economies, seem to be largely lacking. In this respect, econometric IO modelling
has gone much further, since the framework readily allows to incorporate all the
real complexities of the pricing system of an economy. As an example, while prices
per sector (or product) in the IO price model are identical for all intermediate and
final users, in econometric IO models, prices are user-specific due to their proper
account of margins, taxes and subsidies, and import shares that are all allowed to
be different for each user (see e.g., Kratena et al. 2013). Trade flows of substitutes
to domestic goods, as well as in terms of the country of origin and destination in
most models, simply depend on the level of goods demand and relative prices. The
standard workhorse in CGE modeling is still the Armington function (Armington
1969), which is calibrated to elasticity values found in two or three seminal papers.
In this respect, we emphasize the necessity of new empirical work on the magnitude
of Armington elasticities, and call for developing other alternatives to Armington
approaches of trade modeling in IO models with clear links to the production side
(for the first steps in this direction, see Kratena et al. 2013).

Section 1.4 concludes and summarizes the discussed perspectives for future
econometric IO modeling.

1.2 Private Consumption, Income and Socio-economic
Characteristics of Households

In this section we discuss the complex relationship between consumption and
income that has been a major field of macroeconomic research during the last
decades (for an overview of the debate, see e.g., Meghir and Pistaferri 2010).
The SAM multiplier model as well as the standard CGE model both use a static
link between income and consumption. The standard formulation of consumption
in the CGE model with a static consumption function and a linear expenditure
system for splitting up the consumption vector does not take into account the huge
body of literature on macroeconomic consumption functions of the last decades.
A line of development reaches from the Keynesian consumption function used
in Miyazawa (1976) to the model of permanent income. As empirical research
has discovered some puzzles about the dependence of consumption on income
dynamics (Hall 1978) inconsistent with the predictions of the permanent income
hypothesis, the ‘buffer-stock model’ of consumption emerged. Carroll (1997) has
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laid down the basis of the buffer-stock model, starting from the empirical puzzles
that the permanent income hypothesis has not been able to resolve. One of the main
starting points for Carroll in developing this model was the desired characteristic
of a concave consumption function, due to a non-constant marginal propensity of
consumption (MPC) along the process of income growth and wealth accumulation.
This idea dates back to the work of Keynes himself, as Carroll and Kimball (1996)
have shown. In general, the MPC should increase with higher income uncertainty
(the main innovation of the buffer-stock model) and decrease with higher levels
of wealth. Several empirical tests of the buffer-stock model have been carried out.
Japelli et al. (2008) and Luengo-Prado and Sorensen (2004) are two prominent
examples. The two main issues in this empirical testing were, in general, the income
sensitivity of consumption and the empirical proof of a non-constant MPC. As far as
the first point is concerned, the difference between permanent and transitory income
shocks by the founders of the Permanent Income Hypothesis has been crucial. The
MPC out of transitory income should only be significantly different from zero for
households with binding liquidity constraints. This can be part of the households—
in that case household heterogeneity needs to be introduced—or all households in
situations of high liquidity demand, e.g., for debt deleveraging.

Whereas in the original version of the buffer-stock model income uncertainty
was the main saving motive, in a new version households save for the purchase of
durables, as described in Luengo-Prado (2006). Consumers maximize the present
discounted value of expected utility from consumption of nondurable commodity
and from the service provided by the stocks of durable commodity, subject to
the budget and collateralized constraints. The consideration of the collateralized
constraint is formalized in a down payment requirement parameter, which represents
the fraction of durables that a household is not allowed to finance.

max
.Ct;Kt/

V D E0

( 1X
tD0

ˇtU .Ct;Kt/

)
(1.1)

Specifying a constant relative risk aversion (CRRA) utility function yields:

U .Ct;Kt/ D C1��
t

1 � �
C '

K1��
t

1 � � ; (1.2)

where ® is a preference parameter and � > 0 implies risk aversion of consumers.
The budget constraint in this model without adjustment costs for the durables

stock is given by the definition of assets, At:

At D .1C r/ .1 � tr/At�1 C YDt � Ct � .Kt � .1 � ı/Kt�1/ : (1.3)

The sum of Ct and (Kt � (1 � ı)Kt � 1) represents total consumption, i.e., the
sum of nondurable and durable expenditure (with depreciation rate of the durable
stock, ı). The gross profit income rAt�1 is taxed at the rate tr. These taxes,
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therefore, reduce the flow of net lending of households that accumulates to future
assets. Disposable household income that excludes profit income, YDt, is given
as the balance of net wages (1 � tS � tY )wtHt and net operating surplus accruing
to households (1 � tY )…h , t, plus unemployment benefits transfers with UNt as
unemployed persons and br as the benefit replacement rate, measured in terms of
the after tax wage rate, plus other transfers Trt:

YDt D .1 � tS � tY/wtHt C .1 � tY/…h;t C brwt .1 � tS � tY/UNt C Trt: (1.4)

The following taxes are charged on household income: social security contribu-
tions with tax rate tS, which can be further decomposed into an employee and an
employer’s tax rate (twL and tL) and income taxes with tax rate tY . The wage rate
wt is the wage per hour and Ht are total hours demanded by firms. Wage bargaining
between firms and unions takes place over the employee’s gross wage, i.e.,wt (1�tL).

Financial assets of households are built up by saving after durable purchasing has
been financed, and the constraint for lending is:

At C .1 � �/Kt � 0: (1.5)

This term represents voluntary equity holding, QtC1 D At C (1��)Kt, as the
equivalent of the other part of the durable stock (�Kt) needs to be held as equity. The
consideration of the collateralized constraint is operationalized in a down payment
requirement parameter � , which represents the fraction of durables purchases that a
household is not allowed to finance. One main variable in the buffer stock-model of
consumption is ‘cash on hand’, Xt, measuring the household’s total resources:

Xt D .1C rt/ .1 � tr/At�1 C .1 � ı/Kt�1 C YDt (1.6)

Total consumption is then defined as:

CPt D Ct C Kt � .1 � ı/Kt�1 D rt .1 � tr/At�1 C YDt � .At�1 � At/ ; (1.7)

where the last term represents net lending, so total consumption is the sum of
durable and nondurable consumption, or the difference between disposable income
and net lending.

The model solution works via deriving the first-order conditions and yields an
intra-temporal equilibrium relationship between Ct and Kt as one solution of the
model, when the constraint is not binding. For all other cases, where the collateral
constraint is binding, Luengo-Prado (2006) has shown that this relationship can be
used to derive policy functions for Ct and Kt and formulate both as functions of the
difference between cash on hand and the equity that the consumer wants to hold in
the next period.

This model describes a clear alternative to the static model of consumption in
the standard CGE model and introduces dynamics into the model. It allows for
deriving demand for different types of durables and total non-durables as the main
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macroeconomic consumption functions. As an empirical application of this model,
the non-linear functions for durable and nondurable consumption, depending on
wealth (in this case the durable stock), cash on hand, and the down payment (�)
have been estimated for 14 EU countries1 for which the data situation covers the
main variables of the model. The non-linearity of the functions should deal with:
(i) non-constant MPC (in this case with respect to cash on hand), (ii) smoothing
of nondurable consumption with respect to shocks in savings requirements for the
down payment. Both characteristics yield estimation results that can be, in a second
step, built into an econometric IO model of the EU-27 (for details, see Kratena
and Sommer 2014) that incorporates five different groups of household income
(quintiles). For this purpose, the estimation results are used to calibrate the model
at the level of the five quintiles of income, which are characterized by different
values for the durable stocks per household. Therefore, the model contains growth
rates for Cdur,t and Cnondur,t for each quintile (q). Once the full model is set up with
the integrated consumption block, the property of ‘excess sensitivity’ can be tested.
Excess sensitivity describes the empirical fact that the growth rate of consumption
(partly) reacts to the lagged growth rate of disposable (or labour) income. This issue
has been raised by Hall (1978) and confronted the Permanent Income Hypothesis
with contradictory empirical findings.

The full econometric IO model (Kratena and Sommer 2014) is run until 2050, so
that endogenous disposable household income is generated. Then excess sensitivity
is tested by setting up the regressions that Hall (1978) proposed to test the influence
of transitory income shocks on consumption. That means regressing the growth
rates for Cdur,t and Cnondur,t for each quintile (q) on lagged disposable income
growth (without profit income) for each quintile, generated by the full model.
Profit income is not included, because it is endogenous and depends on equity
built up, which in turn is the result of inter-temporal optimization. Luengo-Prado
(2006) also carries out excess sensitivity tests with her calibrated model, based
on U.S. household survey data and confronts similar results with U.S. stylized
macroeconomic facts. The excess sensitivity coefficients, i.e., the MPC with respect
to lagged income change, found by Luengo-Prado (2006) are 0.16 (nondurables)
and 0.26 (durables). The results from the econometric IO model solution until 2050
(Table 1.1) clearly reveal that for the 5th and partly for the 4th quintile, durable
and nondurable consumption do not statistically significantly depend on transitory
income shocks. The MPC is higher in general for lower income households and
for situations with higher liquidity constraints (higher �). The ‘low � scenario’
corresponds to a financial regime, where the relationship debt to durable stock does
not significantly decrease, i.e., no major debt deleveraging by households occurs.
The ‘high � scenario’ corresponds to debt deleveraging so that the relationship debt
to durable stock in the long-run decreases to its values before 2002, i.e., before the
main expansion of household debt began.

1These countries include Austria, Belgium, Cyprus, Czech Republic, Denmark, Finland, France,
Germany, Italy, Lithuania, Poland, Portugal, Romania, and Slovakia.
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Table 1.1 Excess sensitivity of consumption with respect to lagged disposable income (without
profit income), EU 14 (2005–2050)

1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile

Sensitivity, low �

dlog(Cdur) 0.45*** 0.38*** 0.30** 0.21 0.14
(0.15) (0.16) (0.16) (0.16) (0.16)

dlog(Cnondur) 0.94*** 0.76*** 0.58*** 0.38*** �0.03
(0.41) (0.20) (0.15) (0.12) (0.13)
Sensitivity, high �

dlog(Cdur) 0.44*** 0.40** 0.33*** 0.26** 0.20
(0.13) (0.14) (0.14) (0.14) (0.14)

dlog(Cnondur) 1.02*** 0.86*** 0.69*** 0.49*** 0.09
(0.37) (0.18) (0.14) (0.12) (0.09)

Note: ** and *** indicate significance at the 5%, and 1% level, respectively

This specification of the buffer-stock model that has already been built into
a dynamic econometric IO model indirectly yields the following properties that
make it significantly different from the standard consumption model (SAM based
and linear expenditure system) applied in econometric IO and CGE modeling:
(i) a non-constant MPC, (ii) a concave consumption function across household
income groups, and (iii) different sensitivity of different household types in their
consumption reaction on transitory income changes. This version of the buffer-
stock model is data-intensive and introduces cross-section data (i.e., household
heterogeneity) that are combined with time series estimation results.

A different way of ending up with a buffer-stock model that exhibits the
desired properties (non-constant MPC, concave consumption function, different
sensitivity of different household types), is a direct estimation of consumption
functions, incorporating income, wealth and debt for different household groups.
Early examples of these empirical explorations into the validity of the buffer-stock
model are Japelli et al. (2008) and Luengo-Prado and Sorensen (2004). Recently,
models that take into account household heterogeneity with respect to the impacts of
debt deleveraging and wealth shocks have gained ground. Mian et al. (2013) show
that poorer households and households with a higher debt burden react more to
wealth shocks in their consumption than other households. Their specification also
takes into account concavity in the consumption function with respect to the level
of wealth. Eggertson and Krugman (2012) develop a theoretical model with two
different household types (savers and debtors), where debt deleveraging has strong
macroeconomic impacts as it reduces consumption of the debtors, which depends
more on transitory income. The results presented in Table 1.1 and the findings of
Mian et al. (2013), as well as of Eggertson and Krugman (2012), strongly encourage
going into the direction of a model with different household groups, where the
consumption of richer households is simply determined by a constant growth rate,
whereas for the other groups of households, income, wealth and debt limits play a
major role.
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As far as the demand for nondurables at the commodity level is concerned, the
alternative to the linear expenditure system could be a flexible functional form,
like the widely used Almost Ideal Demand System (AIDS), starting from the cost
function for C(u, pi), describing the expenditure function (for C) as a function of a
given level of utility u and prices of consumer goods, pi (see Deaton and Muellbauer
1980). The AIDS model is represented by the well-known budget share equations
for the i nondurable goods in each period:

wi D ˛i C
X

j

�ij log pj C ˇi log

�
C

P

�
for i D 1 : : : n; (1.8)

with price index, Pt, defined by log Pt D ˛0 CP
i ˛i log pit C 0:5

P
i

P
j �ij log pit,

log pjt often approached by the Stone price index, log Pt
� D P

k wit log pit.
This model has been estimated by combining time series (panel data) infor-

mation from 1995 to 2012 for 27 EU countries with individual data from the
2004/2006 household surveys for 6 EU countries (namely, Austria, France, Italy,
Slovakia, Spain, and the UK). This cross section model introduces heterogeneity
of households at the level of commodities. Several socio-economic characteristics
of households can be introduced as additional variables, complementing income
and prices. These variables include age group dummies for the household head,
dummies if the household head is retired, unemployed, and is the owner of the
house. Further, household size and population density are taken into account.

The expressions for the expenditure elasticity (�i) and the compensated price
elasticity ("C

ij ) within the AIDS model for the quantity of each consumption category
Ci can be written as (the details of these derivations can be found in, e.g., Green and
Alston 1990)2:

�i D @ log Ci

@ log C
D ˇi

wi
C 1 (1.9)

"C
ij D @ log Ci

@ log pj
D �ij � ˇiwj

wi
� ıij C �iwj; (1.10)

where ıij is the Kronecker delta with ıij D 0 for i ¤ j and ıij D 1 for i D j.

2The derivation of the budget share wi with respect to log (C) and log (pj) is given by ˇi and � ij�ˇi

(log(P)), respectively. Applying Shephard’s Lemma and using the Stone price approximation, the
elasticity formulae can then be derived.
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Table 1.2 Price and expenditure elasticity of nondurable consumption, EU 27 (1995–2012)

Expenditure elasticity
Nondurable consumption Own price elasticity Time series Cross section

Food �0.14 0.85 0.61
Clothing �0.64 1.04 1.28
Furniture/equipment �1.06 1.11 1.46
Health �0.83 0.98 1.20
Communication �0.89 0.96 0.68
Recreation/accommodation �0.50 1.08 1.27
Financial Services �0.94 1.33 1.00
Other �0.68 1.09 1.00

As can be observed from (1.10), the parameter of the expenditure elasticity
(ˇi) also enters the formula for the compensated price elasticity, so that the two
elasticities are tied together. Estimating both the time series and the cross section
model, therefore, and combining them will also change the compensated price
elasticity. This is not taken into account in the results presented in Table 1.2. These
results just show the difference in expenditure elasticity values from the time series
vs. the cross section model. It clearly comes out that heterogeneity in expenditure
elasticity is higher in the case of the cross section model. The most important result
is that introducing household heterogeneity not only introduces additional socio-
economic variables that also influence behavior, besides income and prices, but
that it also changes the reaction of households to income and prices and, therefore,
aggregate results.

The approach presented can still be seen as sub-optimal, as a combination of
time series and cross section estimation is needed, and no direct use of household
group panel data has been used for estimation. This latter approach has been applied
in Kim et al. (2015) and also yields considerable differences in the income and
price elasticities of households, when age groups are introduced. Integrating this
model into a macroeconomic IO model, Kim et al. (2015) reveal the difference for
aggregate outcomes, compared to the model of the representative consumer.

1.3 Production and Technical Progress

The main workhorse in CGE modeling on the production side are nested constant
elasticity of substitution (CES) functions or flexible forms like the translog function
(Jorgenson et al. 2013). The translog model can be set up with inputs of capital
(K), labor (L), energy (E), imported non-energy material (Mm), and domestic non-
energy material (Md), and their corresponding input prices pK ,pL,pE, pMm and pMd.
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Each industry faces a unit cost function for the price (pQ) of output Q, with constant
returns to scale:

log pQ D ˛0 C
X

i

˛i log . pi/C 1

2

X
i

�ii.log . pi//
2

C
X

i;j

�ij log . pi/ log
�
pj
�C ˛tt C 1

2
˛ttt

2 C
X

i

�tit log . pi/

(1.11)

where pi, pj are the input prices for input quantities xi, xj,t is the deterministic time
trend, and TFP is measured by ˛t, and ˛tt. As is well known, Shepard’s Lemma
yields the cost share equations in the translog case, which in this case of five inputs
can be written as:

vK D Œ˛K C �KK log .pK=pMd/C �KL log .pL=pMd/C �KE log .pE=pMd/

C�KM log .pMm=pMd/C �tKt�
vL D Œ˛L C �LL log .pL=pMd/C �KL log .pK=pMd/C �LE log .pE=pMd/

C�LM log .pMm=pMd/C �tLt�
vE D Œ˛E C �EE log .pE=pMd/C �KE log .pK=pMd/C �LE log .pL=pMd/

C�EM log .pMm=pMd/C �tEt�
vM D Œ˛M C �MM log .pMm=pMd/C �KM log .pK=pMd/C �LM log .pL=pMd/

C�EM log .pE=pMd/C �tMt�
(1.12)

The homogeneity restriction for the price parameters
P

i �ij D 0,
P

j �ij D 0

has already been imposed in (1.12), so that the terms for the price of domestic
intermediates pMd have been omitted. The immediate ceteris paribus reaction to
price changes is given by the own and cross price elasticities. These own- and cross-
price elasticities for changes in input quantity xi can be derived directly, or via the
Allen elasticities of substitution (AES), and are given as:

"ii D @ log xi

@ log pi
D v2i � vi C �ii

vi
; (1.13)

"ij D @ log xi

@ log pj
D vivj C �ij

vi
: (1.14)

Here, the vi represent the factor shares in equation (1.12), and the � ij the cross-
price parameters.

The total impact of t on factor xi is given by:

d log xi

dt
D �ti

vi
C ˛t C ˛ttt: (1.15)
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Table 1.3 Price elasticities of factor demand and the factor bias of technical change

Production Own price elasticity Cross price elasticity, E/K Rate of factor bias

K, all industries �0.95 0:00

L, all industries �0.51 �0:01
E, all industries �0.53 0:02

E, energy intensive �0.37 0.20 0:00

All industries 0.15
M(m) �0.75 0:02

This expression takes into account the TFP effect on costs (˛t C˛ttt), as well as
the factor bias of technical change.

The systems of output price and factor demand equation by industry across
the EU 27 have been estimated applying the Seemingly Unrelated Regression
(SUR) estimator for the balanced panel under cross section fixed effects. This
estimation was based on data from the World Input-Output Database (WIOD)
that contains World Input-Output Tables (WIOTs) in current and previous years’
prices, Environmental Accounts (EA), and Socioeconomic Accounts (SEA). The
estimation results (Table 1.3) yield own and cross price elasticities for capital,
labour, energy, and imported intermediates, respectively. The own price elasticity of
labour is on average about �0.5, with relatively high values in some manufacturing
industries. The own price elasticity of energy is very heterogenous across industries
and slightly higher in energy intensive industries (�0.37) than for the un-weighted
average of all industries (�0.53). Capital and energy are complementary in many
industries, but on average are substitutes with an un-weighted cross price elasticity
of 0.15. This elasticity is slightly higher for the energy intensive industries (0.2),
though in two of them (paper and pulp, non-metallic minerals) energy and capital
are complementary.

This simple model of production with constant returns to scale, deterministic
trends for technical change and perfect competition can be extended in order to
incorporate different features that have turned out to be important in the research on
production and trade in the last decades.

Imperfect competition has important consequences for macroeconomic adjust-
ment to demand shocks. If several of these components (technical progress and
imperfect competition) are to be introduced into a cost/factor demand system, these
components, all leading to a deviation from the perfect competition price level, have
to be identified and disentangled.

The translog structure is linked to the IO system by splitting up the factor shares
vE, vM and vD (the residual) into the technical coefficients (in current prices) by using
fixed use structure matrices Sm

NE, Sm
E for imported goods and Sd

NE, Sd
Efor domestic

goods (with E as energy and NE as non-energy goods). A single IO technical coef-
ficient of a domestic input i in industry j(in current prices) therefore is defined as:

ad
ij D sd

ijvD: (1.16)
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This holds for non-energy and energy inputs, where sd
ij is the corresponding

coefficient of the use structure matrix.
As far as technical change is concerned, there are two main avenues for enriching

this standard model with new features. One is making technical change depend on
some variable measuring innovation activity, like R&D expenditure, R&D stocks
or patent stocks, instead of the deterministic trend. This approach does not deal
explicitly with technical change, and still uses some ‘black box’ philosophy on
technical change, which is seen as a mixture of technological and organizational
improvement that is driven by general innovation activities. Most studies in that line
still leave the deterministic trend in the estimation, and the standard result is that
controlling for innovation activity still leaves a significant part of technical change
explained by the deterministic trend (i.e., unexplained). The theoretical base for this
endogenous explanation of technical change stems from endogenous growth theory
and represents technology as a stock of knowledge (Sue Wing 2006; Gillingham et
al. 2008). Technological change is then the outcome of innovative activity within the
model and, therefore, endogenous. Moreover, when innovations respond to policy
instruments, such as taxes, government R&D and regulations, the direction or bias
of technological change itself becomes endogenous.

The other line is combining bottom-up technology information with the top-
down structure of the production model, which—in the case of CGE models—
mainly is a nested CES function structure. Schumacher and Sands (2007) present a
CGE model, where the top-down (CES) structure of one industry (iron and steel) is
split up into different technologies that are combined in the sector and in turn have
a flexible input structure. One prerequisite for the application of this approach is
the availability of input data, which characterize each technology. Schumacher and
Sands (2007) take this information from the German Association of Steelmakers and
other sources. They nest the technologies and their choice into the CES function of
the steel industry. The general logic of this approach is that the unit cost function of
an industry (equation (1.11)) has fixed coefficients, like in the standard IO model:

log pQ D ˛0 C
X

i

vi log .pi/C ˛tt C 1

2
˛ttt

2 C
X

i

�tit log . pi/ : (1.17)

This specification directly uses the factor shares (vi) and still allows for deter-
ministic trend variables representing technical change, like TFP (˛t C ˛ttt) and
the factor bias. The main idea is that this unit cost function is the weighted sum
of different (fixed) technologies, because any factor share of the industry is the
weighted sum of the input coefficients of all technologies:

vi D
X

k

vik�k; (1.18)

where the � k are the shares of the technologies in the output of the sector, i.e., the
part of sector output that has been produced with the corresponding technology.
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Combining (1.16) with (1.18), the IO technical coefficient of a domestic input i in
industry j can be defined as the product of (fixed) technology factor shares with the
coefficient of the use structure matrix:

ad
ij D sd

ij

X
k

vDk�k: (1.19)

This formulation allows for technical change via substitution of technologies
only at the level of the factor shares (vi) of the translog model. In the model
presented here, this comprises the factors K, L, E, Mm and Md. In Schumacher and
Sands (2007), this includes labour, capital, different energy sources, raw material for
steel production and a bundle of all other inputs. This could in principle be extended
by allowing for different columns of the use structure matrix for each technology.
In that case, a specific sd

ij;k for each of the k technologies exists.
Technical change in this framework can occur by shifts in the shares of

technologies (� k) as well as by changes in the productivity that lead to changes in
technology factor shares (vik). The main issue in this framework is the determining
factors for shifts in the share of technologies. In the CGE framework of Schumacher
and Sands (2007), this is driven by a substitution elasticity, similar to the one used
in the industry CES function. As the factor shares include capital, the allocation of
investment across technologies is directly determined by technical change in terms
of shifts in the shares of technologies.

The approach chosen by Pan (2006) and Pan and Köhler (2007) uses an IO model
as the framework and, thus, directly aims at determining the single IO coefficients
as the weighted sum of technology shares (� k) and the fixed input coefficients of a
technology (ad

ij;k):

ad
ij D

X
k

ad
ij;k�k: (1.20)

Pan (2006) presents a profound critique of the standard way of including
technical change in economic models, i.e., via a trend or an accumulated stock
of knowledge. His concept is based on the lifecycle of technologies and describes
a discontinuous process of new technologies substituting old technologies. The
R&D activities and the allocation of investment across technologies are driving this
substitution process in Pan (2006). It can be shown that technical coefficients exhibit
considerable long-run changes through this substitution process. This approach
as well as the one lined out in Schumacher and Sands (2007) present options
to describe technical change as an explicit process of change, driven by prices,
investment and innovation activities.
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1.4 Calibration and Stock-flow Consistency

Very often the results of econometric IO models show simplistic straight lines/trends
into the future, which seem quite unrealistic. Partly, this has to do with the fact that
in such cases the forecasts of exogenous data are not accounted for in the model.
On the other hand, it is also due to the fact that the observed data are not or, most
probably, cannot be (closely or perfectly) replicated by the model at hand, especially
over time whenever the model claims to be a dynamic model.

By now there is a vast amount of literature in agricultural economics on farm-
level production modeling focusing solely on perfect or incomplete calibration
techniques. It turns out that until the late 80s, agricultural economists for policy
analyses widely used linear programming (LP) models, and as such had to introduce
(many) calibration constraints in order to solve the problem of overspecialization.
However, this solution is not really a reasonable solution, since “models that are
tightly constrained can only produce that subset of normative results that the
calibration constraints dictate” (Howitt 1995, p. 330). Therefore, a more formal
approach called Positive Mathematical Programming (PMP) was developed that
solved the calibration issues in agricultural policy analysis modeling. Technically,
this was implemented by introducing non-linear terms in the objective function
of a model such that its optimality conditions are satisfied at the observed levels
of endogenous (or decision) variables without introducing artificial calibrating
constraints. Thus, inclusion of the so-called “implicit total cost function” captures
the aggregate impact of all other relevant factors that are not explicitly modeled.
Applications of the PMP approach date back to Kasnakoglu and Bauer (1988),
but it was first rigorously formalized and developed by Howitt (1995). The last
paper, consequently, led to an immense amount of empirical applications of the
PMP approach and further raised extensive theoretical discussions within the field
of agricultural economics. Review papers on the theory, applications, criticisms and
extensions of the PMP approach include Heckelei and Britz (2005), Henry de Frahan
et al. (2007), Heckelei et al. (2012), Langrell (2013), and Mérel and Howitt (2014).

Recently, Temurshoev et al. (2015), and Temurshoev and Lantz (2016) have
borrowed ideas from the PMP literature for economic modeling of the global
refining industry and proposed a perfect calibration procedure for multi-regional
or global refining modeling, adopting a PMP-like technique of calibration of spatial
models of trade introduced by Paris et al. (2011). One could also adopt the Bayesian
highest posterior density estimator of Jansson and Heckelei (2011) from the same
literature, if there exist a time series of observed data to be closely replicated and,
as such, also accounting for the impact of other variables (not necessarily economic
ones) not modeled. Given the success of the numerous and diverse applications of
PMP-related literature, we tend to believe that their adoption in econometric IO
modeling would be equally fruitful.

The second line of research from which, in our view, econometric IO modeling
would gain, is to consider seriously the issue of consistency of the real and financial
flows and stocks. This issue has recently gained particular importance in what is
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now called the Stock-Flow Consistent (SFC) models within the post-Keynesian
school of thought (see Godley and Lavoie 2007). SFC models are a type of
macroeconomic model that rigorously take into account the accounting constraints,
which are, for example, not fully accounted for with SAM modeling or the standard
textbook macromodels. Referring to such standard economic models, Godley and
Lavoie (2007, p. 6) state that “this system of concepts is seriously incomplete.
Consideration of the matrix [i.e. the standard macro-framework] immediately poses
the following questions. What form does personal saving take? Where does any
excess of sectoral income over expenditure actually go to—for it must all go
somewhere? Which sector provides the counterparty to every transaction in assets?
Where does the finance for investment come from? And how are budget deficits
financed?” These are apparently all legitimate questions, and equally important for
a full-fledged, realistic analysis.

It is, of course, true that some stock-flow relationships are present in the
existing dynamic econometric IO models, e.g., equations relating investment to
capital stock, or consumption of durables to the stock of the durable goods. The
consumption model described in Sect. 1.2 takes into account this type of stock-
flow consistency within the household sector, by making income relevant flows
(property income, debt service payments) depending on stocks as well as stocks
on income and expenditure flows (gross saving and net lending). However, this
is only one part of the stock-flow consistency requirement. What is important
is that such consistency in accounting has to cover all stock-flow aspects of all
sectors (households, firms, government, and the external sector) in the sense that
‘everything comes from somewhere and everything goes somewhere,’ which thus
requires adequate consideration of not only real (tangible) assets, but also financial
assets (cash, deposits, loans, shares, bonds, etc.). In this respect, Godley and
Cripps (1983, p. 18) state that “the fact that money stocks and flows must satisfy
accounting identities in individual budgets and in an economy as a whole provides
a fundamental law of macroeconomics analogous to the principle of conservation
of energy in physics”. The important implication of being stock-flow coherent in
economic modeling is that it allows for realistic restraining of the space of possible
outcomes of economic agents’ behavior, which would otherwise be almost surely
an impossible task, especially with the medium- to large-scale economic models. In
the words of Taylor (2004, p. 2), an explicit account of the stock-flow restrictions
“remove[s] many degrees of freedom from possible configurations of patterns of
payments at the macro level, making tractable the task of constructing theories to
“close” the accounts into complete models”.

Although SFC modeling is by now a rather well-established approach, its
extension to multi-sectoral and/or multi-product modeling is still in the stage of
its infancy. The first such contributions, to the best of our knowledge, include SFC
IO model of Berg et al. (2015), and the multisectoral SFC macro model of Naqvi
(2015); we are not aware of any work on the integration of the SFC techniques into
the econometric IO modeling. Therefore, we expect that such attempts in the future
would definitely benefit this modeling strain in particular, and regional research in
general.
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1.5 Conclusion

In this chapter we have presented our views on the prospective future research
directions in the strain of econometric input-output (IO) modeling. We think that
some important recent developments, both theoretical and empirical, in other fields
of economics, in particular, in macroeconomics, agricultural economics, and post-
Keynesian economics, have been completely ignored in this type of modeling. Given
their importance and usefulness for a sound economic analysis, regional research in
general would benefit in the future, if these issues were incorporated into and/or
appropriately adopted to the needs of econometric IO modeling.

The issues discussed in this chapter that could very well become the forefront
topics of research and empirical applications in econometric IO modeling could be
briefly summarized as follows:

• Importance of modeling consumers’ heterogeneity, which includes, among other
issues, using a concave consumption function across household income groups
indicating non-constant marginal propensities to consume, different sensitivity
of different household types in their consumption reaction to transitory income
changes, heterogeneity with respect to the impacts of debt deleveraging and
wealth shocks, concavity in the consumption function with respect to the level
of wealth, and heterogeneity of households at the level of commodities.

• Importance of accounting for several socio-economic characteristics of house-
holds as additional variables, complementing income, wealth and debt limits.
These variables include age group dummies for the household head; dummies
if the household head is retired, unemployed, and is the owner of the house;
household size; population density; etc. Introducing household heterogeneity
not only introduces additional socio-economic variables other than income and
prices that also influence behavior, but it also changes the reaction of households
to income and prices and, therefore, aggregate results.

• Importance of imperfect competition and technical change in production mod-
eling. Imperfect competition has important consequences for macroeconomic
adjustment to demand shocks. Two approaches of modeling technical change
(one in which technical change depends on innovation activities, and second
where the bottom-up technology information and the top-down structure of the
production model are combined) are discussed.

• Complete or close calibration of the observed data implies accounting for
many relevant factors that are not explicitly modeled, which is essential for
(more) realistic analysis of simulation scenarios. Here adoption of the discussed
approaches of positive mathematical programming and related techniques seems
to be promising.

• Importance of stock-flow consistency, i.e., full integration of stock and flow
variables, both real (tangible) and financial assets. This would also greatly
contribute to the more realistic economic modeling since then the diverse budget
constraints imposed on all economic agents would be respected. Here the
techniques developed in stock-flow consistent models could be readily used or
adopted for the purposes of econometric IO modeling.
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Chapter 2
Unraveling the Household Heterogeneity
in Regional Economic Models: Some Important
Challenges

Geoffrey J.D. Hewings, Sang Gyoo Yoon, Seryoung Park, Tae-Jeong Kim,
Kijin Kim, and Kurt Kratena

2.1 Introduction

Torsten Hägerstrand (1970), in his presidential address to the Regional Science
Association, raised the question about the neglect of people in regional science. In
the intervening decades, there has been a great deal of work elaborating on the role
of movement of people, some significant attempts to create demographic-economic
models (or in the terminology of Ledent 1977, demometric models) but relatively
little work unraveling the heterogeneity of households in terms of their consumption
behavior. This chapter documents some current and continuing research, primarily
focused on the Chicago economy, exploring the role of households, tracing impacts
of ageing, income distribution, consumption expenditure patterns, in- and out-
migration and retirement. Thereafter, some remaining challenges will be presented
since demographic influences on regional economic development are likely to
assume even greater importance in the decades ahead.

As consumption by households plays a dominant role in both national and
regional economies (accounting for about 70% of gross domestic product in the
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U.S.), any change in the composition of this consumption could have important
direct and indirect (ripple) effects on the economy. These changes could be
generated by:

• changes in the age composition of households since consumption patterns change
with age;

• changes in income distribution, since there are important differences in the way
income is allocated depending on the level of income;

• changes in in- and out-migration, not only in terms of volume but also in terms
of composition (e.g., skills or human capital endowments);

• changes in the way and when individuals invest in human capital;
• changes in retirement patterns and especially the propensity for retirees to remain

in a region;
• the changing role of non wage and salary income (wealth) over time;
• changes in social security costs and the way these are allocated across households

over time;
• changes in the way households evaluate the role of savings and precautionary

measures to address idiosyncratic risks and retirement.

In many cases, these changes occur at the same time, generating important
synergies that complicate the outcomes. The Chicago region1 is selected for a
reference region since it has long been both a leading immigration destination and,
further, it is expected to face a significant demographic change with increasing
retirement out-migration as the population ages over the next two decades.

There can be little doubt that the lower level of relative (to the U.S.) economic
performance of both Chicago and Illinois partly resulted from the successive
recessions in the manufacturing sector starting from the early 1980s. Between
1990 and the end of 2015, the state has lost 335,000 manufacturing jobs at a rate
that is almost twice as high as that for the Midwest as a whole. Slow population
growth and changing structure of population in this region have also contributed.
In fact, population growth (through natural increase or immigration) turns out to be
one of the two main engines of economic growth (the other being technological
change). The production system provides income to labor that in turn is spent
on the consumption of goods and services, generating potential for change in the
production structure. The labor component is further influenced by changes in
supply (for example, with retirees leaving and immigrants entering the labor force).
All of these dimensions have a significant spatial component since changes in goods
demanded may signal production increases in one region over another. In the last
two decades, there have been some dramatic changes in the spatial structure of
production systems. However, by contrast, relatively modest attention has been
given to the spatial structure of labor and its concomitant influence on production.

1The Chicago area is the MSA, comprising the counties of Cook, Will, DuPage, McHenry, Lake,
and Kane.
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Although international (legal and illegal) immigration is an increasingly impor-
tant component of national population change, the region’s demographic structure
is determined by the combination of natural increase (births—deaths), and two
types of migration, international and interregional. However, as regional fertility and
mortality have become more uniform throughout the United States, migration has
become by far the more important factor in changing regional populations. One of
the most important reasons, of course, is that fertility changes may take many years
to register in terms of a significant change in the labor force; in contrast, immigrants
have an instantaneous impact on labor supply. Hence, part of the reason for the
slower pace of population growth in Chicago might be traced to the out-migration of
retirees, because Chicago is the second largest loser, next to New York, in retirement
out-migration. Moreover, over the next couple of decades, retiree migration may be
expected to have a dramatic impact on the Chicago economy because of the rapid
transition to a status where the ageing population will comprise a larger share (20%
by 2030) of total population than at the present time.

The rest of this chapter describes some of the analyses that have been conducted
in the Regional Economics Applications Laboratory (REAL); the outcomes provide
a mix of results that meet a priori expectations, produce some surprises and
also create outcomes whose impacts depend on the time period chosen. Thus,
policy formation needs to be considered carefully and while a great deal has been
accomplished, the research agenda is still incomplete. In the next section, attention
focuses on the changing composition of population; Sect. 2.3 explores ways of
estimating consumption by households of different types. Sect. 2.4 addresses the
assessment of ageing and the macro economy while Sect. 2.5 considers the impact
of immigration. The impact of changing the retirement age is explored in Sect. 2.6
while Sect. 2.7 considers the role of endogenous investment in human capital. A
summary of the contributions of these various components on the ageing problem
is provided in Sect. 2.8. The final section presents some important challenges that
arise from the work completed to date.

2.2 Population Composition and Changes Over Time

The population over 65 in both Chicago and the U.S. is expected to exceed 20%
by 2030. Figure 2.1 reveals the expected aggregate consumption growth by six age
groups in comparison to aggregating the effects into a single household type. The
evidence suggests that it is important to pay attention to age if for no other reason
than changes in the rate of growth by age are so different.

However, it is not just the rate of growth but also differences in consumption
patterns; there are some important differences in the way households allocate
income. For example, on average in 2003, households allocated almost 13% of their
income for food, 36% for housing (including mortgage, other loans, maintenance
expenditures etc.) and 17% for all forms of transportation. The food expenditure
allocation varied from 12.4% (45–54 age group) to 14.5% (under 25) while the
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Fig. 2.1 Consumption growth by households of different ages (2000 D 100)

transportation allocations varied from 18.1 (under 25) to 14.7 (over 65). Over time,
many of these expenditures are forecast to change. For example, people over 65
will spend a declining share of their income on food but an increasing share on
other goods and services that include restaurants. Given the current and projected
increases in obesity and eating-related disorders, this is not altogether good news!

The health care allocations generate some interesting outcomes; while all age
groups will experience an increase in the share of income allocated to health care,
the greatest increases occur not in the over 65 age group but in the other age groups,
increasing from 3.9 to 5.9% (35–44), from 4.4 to 5.9% (44–54) and 6.2 to 8.1%
(55–64). Since income usually follows a growth path that peaks in middle to pre-
retirement, the implication here is that not only will a larger share of income go
towards health care but the volume of expenditures on health care will increase as
well. Further, as shown in Kim et al. (2015, 2016), the household disaggregation
makes a significant difference in the forecasts for the region’s economy.

2.3 Consumption by Households of Different Types

Different consumption patterns caused by demographic changes such as an ageing
population will change the industrial production structure of the Chicago region
in the future. In turn, these changes in production structure will have important
implications on the profile of activities that remain competitive in the Chicago
region, creating further feedback effects on the nature of local jobs and wage and
salary income. The analysis was conducted using an extended econometric-input-
output model of the region (see Israilevich et al. 1997); the household sector was
disaggregated by income and age. The consumption behavior of these disaggregated
households was modeled using an Almost Ideal Demand System (AIDS) originally
proposed by Deaton and Muellbauer (1980a, b).
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The AIDS model of Deaton and Muellbauer (1980a, b) gained popularity from its
functional form that allows flexibility in income elasticity as well as substitutability
and complementarity among goods (for details of the application, see Kim et
al. 2015). A concern in this phase of the analysis was the implications for the
distribution of income; in parallel to the division of consumption expenditures by
age, differences due to levels of income were also explored. Over time, the changing
structure of production (for example, the continued erosion of manufacturing
employment that accounted for a large percentage of middle-income jobs) generates
an outcome that can be presented in Fig. 2.2 (for more detail, see Yoon and Hewings
2006).

A combination of factors will see the income inequality rise in Chicago through
2030; in work that will be discussed later in this chapter, this result is modified by
the effects of migration and non wage and salary income.

2.4 Ageing and the Macro Economy

Whereas the analysis presented thus far still explores a set of households that are
reacting to changes in the economy rather than generating those changes, a slightly
different version of our model was constructed on the same database to explore
changes in household behavior on the economy. To accomplish this, behavior by
households of different ages (from 21 on up) was considered through integration
of an overlapping generations framework inside a computable general equilibrium
model; to simplify the analysis, it was assumed that individuals were forward
looking (i.e., they considered the future in making decisions about whether to spend
or save) that they had some uncertainty about how long they would live and that
their income consisted of wage and salary (and dividends) while they were working
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Fig. 2.3 Contributions to income over a lifetime (no change in population structure)

and only dividends and pensions in retirement. Further, it was assumed that all
individuals retired at age 65 and died at 85 (for more details see Park and Hewings
2009). One additional feature of this analysis was the inclusion of non-wage and
salary income since, as Fig. 2.3 suggests, this component becomes an increasingly
important share of total income as an individual ages. While conceptually this
accords with empirical data, capturing the full accounting (e.g., the geographical
source) of this part of total income is exceedingly difficult.2

Each individual makes lifetime decisions about consumption and savings at
the beginning of his/her adult life, leaving no voluntary bequests and receiving
no inheritances. Since each agent is represented as forward looking and having
perfect foresight, the evolution of consumption and savings depend on all future
interest rates and after tax wages. Representative agents of each age cohorts
maximize a time-separable expected lifetime utility function that depends on
streams of aggregate consumption goods. Once these optimal conditions governing
the aggregate consumption levels at each period are established, the consumption
choice is made between goods produced in Chicago and the Rest of the U.S.;
an Armington elasticity of substitution assumes that goods produced in these two
regions are imperfectly competitive.

Figure 2.3 shows the various components of income over a typical household’s
lifetime; since we assume individuals die at 85 (or unexpectedly earlier), their

2Consider for an example, an individual with shares in a diversified mutual fund that invests in
a range of domestic and international companies. While the fund manager might send a dividend
check each quarter from one location to the owner of the shares, the source of that income would
be difficult to trace since a single company might have operations in a variety of locations.
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Fig. 2.4 Contributions to income over a lifetime (ageing population)

consumption patterns reflect a finite expectation for the calculation of expenditures
from income (drawing down their non pension assets over the period from 65 to 85).

Figure 2.4 presents the outcomes under an ageing population scenario. Not
surprisingly, untaxed wages increase under an ageing population, reflecting the
relative scarcity of labor. Nonetheless, total income decreases over almost all age
cohorts. For working age cohorts, this happens because the sharp increase in social
security tax under an ageing population reduces the net wage income from labor
supply. For early retirees, the fall in the interest rate caused by relatively abundant
capital contributes to reducing the capital income from savings. With these different
changes in income by age, the effect of an ageing population on savings is also
sensitive to the age cohorts. That is, before the retirement, the difference in saving
is not large enough to generate major interest. The possible reason is that even an
ageing population will motivate precautionary saving for the working age cohorts
but they cannot afford to sufficiently increase savings due to the fall in total income.
As a result, consumption under an ageing population drops significantly, except
for the oldest cohorts, reflecting a decline in total income and strong precautionary
saving motives.

Figure 2.5 shows the transitional path of Gross Regional Product (GRP). The fall
in aggregate savings accompanied by the smaller labor force eventually leads to the
fall in the GRP compared to the before-ageing population. However, in the initial
periods, the transition to an ageing population helps to increase the absolute level
of effective labor and capital stock because baby boomers are still at work enjoying
higher productivity and accumulating a larger amount of assets preparing for ageing.
Both the increases in labor and capital necessarily drive the regional output above
the level of GRP before the ageing population. However, in the subsequent period,
GRP starts to decrease up to the 2040s, and then converges at the level that is lower
by approximately 9% compared to the base year (2005). This happens because after
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Fig. 2.5 Gross regional product (ageing population)

an initial overshoot, the capital stock starts to decrease, gradually reflecting the fall
in aggregate savings; thus, two negative impacts, smaller capital stock and labor
force, fuel the decline in GRP. The decreasing GRP leads, in turn, to a fall in the per
capita GRP.

In contrast to the earlier finding, when an ageing population is considered in this
more behavioral manner, the income inequality declines rather than increases. A
major reason for this outcome may be traced to changes in social security payments
by wealthier workers, increased returns from assets and, with more forward-looking
behavior, retirees will have more assets from which to draw income in retirement.
The earlier analysis failed to include the effect of assets (non wage and salary
income) and, increasingly, these will form a major part of the income base for
retirees.

2.5 Immigration, Ageing and the Regional Economy

This part of the analysis explores changes in the impacts of immigration policies;
it is assumed that the immigration policies between local and federal government
are differentiated. This differentiation is not in terms of issues such as quotas, visa
requirements, or guest worker programs but more in terms of a region’s ability to
compete more effectively for the pool of in-migrants. Hence, it is assumed that
the local governments in the Chicago region implement a more favorable set of
incentives to attract more immigrants than the federal government (as a share of
total population). These might include housing subsidies, enhanced social and health
care programs, pro-active recruiting policies (through public-private partnerships)
and general enhancement of the current process of channelization of immigrants
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flows (regions with high existing levels of immigrants have a higher probability
to compete more effectively for new immigrants using family and community
(Chicago)-to-community (source of immigrants in their home country) ties.

International immigration has become one of the most debated topics because
it has both positive and negative impacts on the host economy. One of the
biggest costs that immigration may create is through “crowding out;” increased
immigration could reduce wages and exhaust employment opportunities for native
workers, especially for those who are young and have low skills. Also, high income
disparities could be generated due to the large decline in the income of low-skilled
workers. On the other hand, however, immigration fundamentally changes the age
structure, and may very helpful in contributing a solution to the demographic
imbalance caused by an ageing population. In addition, one of the most common
arguments in favor of immigration is that it will significantly alleviate the solvency
problem of the social security program because immigrants pay social security tax,
and usually have no parents who are currently drawing on the system. Of course
this assumes that the immigrants participate in the formal economy (whether they
are legal or not) and thus contribute through direct and indirect taxes.

Among U.S. states, Illinois has long been a major immigrant settlement place
as the fifth leading immigrant-receiving state. It has admitted the nearly 0.4
million legal immigrants in the last decade, an average of 40,000 immigrants
per year. The cumulative total of legal immigrants in Illinois between 1965 and
2002 was estimated to be 1.3 million. In addition, according to the Immigration
and Naturalization Service (INS), over 0.4 million illegal immigrants reside in
Illinois, and most of them are concentrated in the Chicago region. Among these
immigrants, more than three-fifths (64.7%) of all immigrants since 1993 came from
Mexico, Poland, India, Philippines, former Soviet Union, and China. Mexico alone
accounted for nearly one-quarter of all new immigrants (24.8%). This continuing
influx of new immigrants will account for a much more significant share of
Chicago’s population; now, the Latino population of Chicago slightly exceeds that
of the African-American population and is growing more rapidly as a result of
higher rates of natural increase as well as through in-migration (including both
interregional and international contributions).

Simulations were conducted for the following three scenarios, which are dif-
ferentiated by the size of immigrants for both regions, Chicago and rest of the
U.S. Scenario 1 assumes that each region admits new immigrants amounting to
0.6% of the regional population every year, which is equivalent to the historical
average of immigrants admitted into the Chicago region between 1993 through
2002. Scenario 2 assumes that only the Chicago region admits more immigrants,
while rest of the U.S. fixes the share of immigrants at 0.6%. That is, in Scenario
2, the proportion of newly admitted immigrants into the Chicago region is adjusted
to 1.2% of the population, or about 0.1 million per year while Scenario 3 assumes
that the number of annual immigrants admitted to the Chicago region increases to
1.5% of its population, or about 0.12 million. According to these scenarios, the
dependency ratio [the percentage of the dependent old age populations (those �65)
to the population in the working age groups (between 15 and 64)] in the Chicago
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region is expected to be substantially reduced over the next several decades. Without
immigration, the model projects a significant increase in the dependency ratio from
19% to 32% over the next 30 years, whereas new immigrants admitted following
Scenario 3 contribute to dropping the dependency ratio in the 2030s to 19%, which
is the same level (in 2005) as before the impacts of an ageing population. Taking
into account the characteristics of immigrants, who are usually younger and lower-
skilled than the resident population, newly admitted immigrants are assumed to be
equally distributed between the ages of 21 and 35, and their average productivity
is about 60% of the peak at 47 years of age. The baseline scenario, whose results
are compared with Scenarios 1 through 3, assumes an ageing population with no
immigration. This is the scenario that was introduced in the previous section.

Figure 2.6 examines the impacts on wages. The inflow of young immigrants,
initially, lowers the capital/labor ratio, which, in turn, contributes to a decrease
in wages. However, after the initial period, the fall in the capital/labor ratio
corresponding to accumulating immigrants decreases and ceases its downward
trend around 2040, about 5 years earlier than the case of baseline (no ageing or
immigration). After 2040, the wages under favorable immigration remain higher
than the baseline case. This result is somewhat counter intuitive because large
immigration should be expected to exert a strong downward impact on wages. One
possible reason for this result is that the first immigrants start to retire in the early
2040s, resulting in an increase in the capital/labor ratio. However, there are two more
important factors at work for this result to happen. The first factor is that the more
immigrants that are admitted, the more native workers can save since immigrants
will significantly reduce the social security tax burden (by increasing the after-tax
income of native workers). Further, at the time of immigration, it is assumed that the
capital does not flow into the host country with immigration, but once immigrants
start to work and acquire the higher levels of productivity, they can accumulate more
savings, thereby increasing aggregate capital stock. This is a critical assumption;

Fig. 2.6 Impacts of immigration on wages
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there is likely to be some return migration and the empirical evidence has revealed
significant transfers of income back to families in the countries from which the
immigrants originated.

Figure 2.7 shows how the regional output would be changed by immigration
streams over time. For example, in the case of the maximum contribution by the
most favorable policy (Scenario 3), the Chicago region appears to grow annually
by 0.9% between 2005 and 2070, while without immigration it will face negative
growth (�0.2% per year) over the same period due to an ageing population. This
result can be fully expected because immigration provides a positive labor supply
shock to the local economy.

However, the transitional profile of per capita GRP (Fig. 2.8) is not similar to
that of aggregate GRP as shown in Fig. 2.7. During the initial period, relatively
larger immigration, as in Scenarios 2 and 3, keeps the per capita GRP remaining

Ageing only

0.6% immigration

1.2% immigration

1.5% immigration

Fig. 2.7 Impact of immigration on Chicago gross regional product

Fig. 2.8 Per capita Chicago gross regional product
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at a lower level than that of the baseline case because the immigration increases
(by assumption) only the supply of low skilled workers. However, after the 2030s,
when the first immigrants really begin to acquire higher levels of productivity, per
capita GRP reveals an upward trend and grows faster than the baseline case. This
positive trend also contributes substantially to reducing the decline of per capita
GRP under an ageing population. For example, between 2005 and 2070, the negative
5.5% per capita GRP growth under an ageing population is reduced, ranging from
negative 2.6% in scenario 1 to negative 1.9 and negative 1.2% in scenario 2 and
3, respectively. The national GRP share of the Chicago region noticeably increases
from 3.0% to around 3.5–4.0% in Scenario 2 and 3 because both scenarios assume
relatively higher share of immigrants are admitted only in the Chicago region.

Not surprisingly, a larger number of working-age immigrants appear to have
a significant downward impact on the social security tax rate. Thanks to this
downward pressure, in 2050, the social security tax rate is projected to return to
the level established before the impacts of an ageing population. This is one of the
most significant benefits generated from immigration. However, the benefit for the
social security system is reversed when the immigrants start to retire. After 2050, the
social security tax rate starts to increase and eventually converges to around 9% that
is higher than the rate expected under no immigration. This result reveals that in the
longer run, immigration could generate a different impact; as immigrants age, like
everyone else, a sustained policy of immigration has little long-run impact on the age
structure of the population, and, thus, its benefit declines. Another important policy
implication, especially for local government, arises from the different stance on
immigration between federal and local governments. In the cases of Scenario 2 and
3, only the Chicago local government optimistically attracts more immigrants than
the national average. However, the social security tax rate changes insignificantly
because the additional working-age immigrants in Chicago region are not of a
significant size to decrease the tax rate that is influenced by changes in the national
population. Therefore, locally increased immigration may only hurt the local labor
market without generating additional tax benefits. This is an important point; local
autonomy in the case of a small region has limited impact of national policy that, in
turn, could affect the outcome in Chicago (Fig. 2.9).

Figures present the effects of immigration on income distribution; immigration
turns out to have a negative impact on equality in terms of income distribution,
i.e., the income Gini coefficient becomes larger as more immigrants are admitted.
There are two reasons for this. First, younger, lower income groups substantially
rely on labor income, while middle-aged populations earn larger incomes from
both asset holdings and labor earnings. Thus, the younger populations become
relatively poorer as more immigrants decrease wage income, whereas richer middle-
aged populations are not much affected by the immigration because they earn
larger capital income thanks to the increases in the interest rate. The second
reason is closely related to the change in the demographic structure associated with
immigration. Before the first immigrants start to retire around the 2040s, the share
of the population with larger income increases relatively faster than the younger and
older poor populations because more immigrants acquire higher skills and become



2 Unraveling the Household Heterogeneity in Regional Economic Models:. . . 35

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070

Fig. 2.9 Immigration impacts on income distribution: Gini coefficients for Chicago

richer. This structural change in population increases the aggregate income gap
between the middle-aged richer population and the poor young and old populations.
However, after the 2040s, since wages start to increase and immigrants start to retire,
the Gini coefficients in all immigration scenarios starts to fall.

The welfare effects of the immigration were also examined.3 The current young
populations appear to be big gainers of the favorable immigration policy. The
rationale for this is that even with the wage declines in the initial period, the prospect
of higher disposable income for the rest of their lives obtained by both increased
interest rates and reduced social security taxes outweighs the negative effect from
reduced wages. This is good news for current young generations. However, unlike
the assumption of this model, if more immigrants fail to adapt to conditions in the
host region’s labor market and, thus, remain lower skilled workers, then immigration
cannot make a sufficient contribution to increasing tax contributions.

2.6 Does a Change in Retirement Age Affect a Regional
Economy?

The final part of the analysis considers the impact of changes in the retirement
age. Recall that it was fixed at 65 but the flexibility afforded by an absence of
requirements to retire at this age is generating longer attachments to the labor force.
Does this have much of an impact on a regional economy?

3The welfare benefit is measured by a consumption equivalent variation (EV), which computes
the consumption change required to keep the expected utility in the initial condition equal to that
achieved in the new condition under immigration policies.
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If the worker learns that he/she will live longer than previously expected, he/she
would consume less or work longer before retirement to finance the additional
consumption expenditure during their extended lifetime. In this model, even though
the maximum lifetime is limited to the age of 85, the average expected lifetime is
assumed to increase due to the lower probability of death under an ageing popu-
lation. Thus, the optimal behavior of each individual under an ageing population
should be similar to that of the situation where an individual lives longer. In this
respect, increasing the retirement age can be considered as an alternative policy
measures to compensate for the loss of labor supply under an ageing population.
In addition, since it would delay the age of initial social security benefit receipts, it
might lower the fiscal burden of the public social security pension system.

Simulations assumed that the retirement age is delayed by 1 year for each
Scenario, i.e., for Scenario 1 through 4, individual is supposed to retire at 66,
67, 68, and 69, respectively. Once again, the baseline scenario is one in which
the population ages as before. Increasing the retirement age generates a smaller
capital/labor ratio compared to the Baseline Scenario since the labor force increases
as much as the working age is expanded. The lower capital/labor ratio leads to a fall
in wage as shown in Fig. 2.10. According to the simulation results, if the retirement
age is delayed by 4 years, i.e., retirement at the age 69, then wages fall by 7–8%
until the 2030s compared to the baseline. Figure 2.11 shows that the rise in the
retirement age contributes to an increase in the output, and, thus, the per capita
GRP also increases since there is no change in the size of population. In particular,
if individuals could continue working beyond the age 65 for at least 2 or 3 years
longer, then the per capita GRP around the 2050s starts to rise above the level
before the ageing population occurs. However, the additional gain in per capita GRP

Ageing 
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Fig. 2.10 Extending retirement age and the impact on wages
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Fig. 2.11 Retirement age and Chicago per capita gross regional product

corresponding to a 1-year increase in retirement age becomes smaller, reflecting the
fact that the productivity of population decreases dramatically from age 65.4

Not surprisingly, there is a marked decline in the social security tax rate over the
transition period. For example, the maximum tax rate around the 2030s decreases
from 11% in the Baseline Scenario to below 6% in Scenario 4, which is even
lower than before the ageing population. The significant fall in tax rate becomes
possible thanks to both increases in pension contribution by increased working-age
populations and the delay in the payment of pension benefits.

By affecting the social security tax rate, the increasing retirement age influences
the allocation of consumption over the lifetime, and this reallocation may cause
either an increase or decrease in welfare. The welfare benefits change depending
on an increase in retirement ages. All individuals over the whole age cohorts
appear to favor the increasing retirement age. Furthermore, younger generations
gain more than older generations who have already retired. For younger generations,
they benefit from the longer payrolls with smaller taxes until far into the future,
whereas for the older generations welfare gains are limited since all the benefits
are generated from increasing capital income arising from the increases in the
interest rate. What happens when immigration is also considered? According to
the simulation, the optimal immigration occurs at the share of immigrants in
the neighborhood of 0.6%. However, beyond this point, like pension reforms, an
increase in immigrants generates welfare cost. The policy implications become
complicated when immigration, pension reform, changing retirement age and skill
acquisitions of the immigrant children are considered—as well as the effects of
differential in-migration rates for Chicago and the Rest of the U.S. This is an area of

4As the economy shifts increasingly to non-physical labor, this assumption may not longer be valid.
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research that needs far more attention—especially for the development of optimal
policies.

2.7 Endogenous Investment in Human Capital

Given the skill hollowing out of the Midwest economy (see Madland 2015) and the
anticipated impacts of ageing on the size of the labor force, one issue that needs to
be explored is the role of investment in human capital. Focusing on the Midwest
states of Illinois (IL), Wisconsin (WI), Indiana (IN), Ohio (OH) and Michigan
(MI) with the Rest of the US (RUS) aggregated into a sixth region, a dynamic
general equilibrium model incorporating inter-regional transactions and endogenous
growth mechanisms within an overlapping generations (OLG) framework was used
in conjunction with two different age-cohort population structures corresponding
to years 2007 and 2030. The growth rate of the per-capita output is projected to
be heterogeneous across the regions: regions with high-skilled workers hold the
potential threat that population ageing could yield more negative impacts on the
economy due to the relatively sluggish growth of the human capital stock

Human/occupational capital has increasingly been identified as a critical factor in
attraction and retention of industry—ageing may reduce a region’s “stock” of capital
absent significant investment. The issue is further complicated by the presence of
significant heterogeneity—both ethnic and income based. Educational investment
in developing workers’ human capital might improve the overall productivity in
the corresponding economy and, thus, significantly attenuates the negative impacts
generated by a shrinking labor force. The work of Sadahiro and Shimasawa (2002)
and Ludwig et al. (2012) has been influential in motivating this exploration. The
economy is closed to the rest of the world; no foreign imports or exports are
considered in the model. There are two types of economic agents in each region: a
representative firm and households. Each year, there are 65 overlapped generations
(age 21–85) in the household sector and the federal government operates a social
security system in each region. The economy produces physical goods as well as
human capital; physical goods are tradable across regions and the firms can purchase
intermediate goods from each region. Consumers and investors purchase goods from
all the regions for consumption and investment purposes respectively.

Households now have three decisions:

• Allocation between consumption and saving (inter-temporal)
• Allocation between goods produced in any region (inter-regional)
• Allocation between education and working (human capital)

Drawing on ideas of Sadahiro and Shimasawa (2002), the model estimates
parameters for the accumulation efficiency of human capital, the portion of physical
capital stock used for producing the human capital stock, the depreciation rate of
human capital stock and, most critically, the parameter of human capital trans-
mission factor. This latter parameter can be interpreted as the degree of quality or



2 Unraveling the Household Heterogeneity in Regional Economic Models:. . . 39

efficiency to pass the available stock of knowledge from generation to generation in
the workplace. If a society can provide the individual with a successful educational
environment (either formally or informally) in childhood and youth so that the
individual accumulates the cognitive ability and creativeness in these periods, this
parameter value should be high since the human ability acquired early will make
post-secondary learning easier (for more details, see Kim and Hewings 2015).

The steady state simulation results were based on the age-cohort population
structure from the Census Bureau’s estimation for the year 2007. Table 2.1 reveals
that OH has the highest dependency ratio while IL has the lowest. For the steady
state analysis, this age-cohort population structure is assumed to be maintained
in the long-term; further, it is assumed that there will be no change in output,
consumption and investment prices as well as factor prices such as the rental
return and the wage rate. These assumptions will not be maintained in the dynamic
simulation.

There exists a noteworthy gap in per-capita output across the regions according
to the simulation results (Table 2.2). Simulation and actual statistics point out that
the state with the lowest per-capita output among the five Midwest states is MI; and
the state with the highest per-capita output is IL. It should be noted that one of the
reasons for the discrepancy between the simulation result and the actual data could
be attributed to ignoring the differences of the technology level across the regions
in the simulation model.

The gaps of investment in physical capital and human capital play a key role in
achieving different levels of per-capita output in the simulation model. The ROUS
and IL invest 17.1% and 16.2% of their output while IN, WI, MI and OH allocate
only 12.2%, 13.1%, 13.6% and 14.2% of their output in physical investment. This
difference in investment tendencies is related to the rate of rental return; household
agents would be more inclined to consume goods rather than save and invest them
when the rental return becomes relatively low (or is expected to become low in the
dynamic model.)

In addition, educational attainment could be a major factor in determining the
difference of economic performance (here, per-capita output) since the educational
investment is directly linked to the improvement of the human capital stock or

Table 2.1 Dependency ratio
of each region in 2007

IL IN MI OH WI ROUS

18.04% 18.54% 18.33% 20.11% 19.39% 18.70%

Table 2.2 Per-capita output

IL IN MI OH WI ROUS

Simulation 0.9704 0.8036 0.7286 0.7990 0.7996 1.0000
Actual data 1.0729 0.8885 0.8442 0.8835 0.9197 1.0000

Note: Numbers for ROUS are normalized to unity. Actual data are calculated GSP (Gross State
Product) excluding public sectors � population estimation in 2007
Source: BEA (www.bea.gov) for GSP; and Census Bureau for population estimation

http://www.bea.gov
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Table 2.3 Steady-state results-time share of educational investment and average human capital
stock

IL IN MI OH WI ROUS

Time share in education (%) 13:18 10:42 10:55 11:42 10:97 13:55

Avg. human capital stock 2:27 1:77 1:78 1:94 1:85 2:39

Gross State Product/Annual
Employment: 1998 thru 20071

80:52 67:77 74:88 68:94 65:06 78:66

1Unit: thousand dollars chained with 2000 price level
Source: Bureau of Labor Statistics and Bureau of Economic Analysis
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Fig. 2.12 Age profile of human capital stock

productivity in the model; the regions with higher per-capita output tend to combine
inputs such as physical capital and labor force with a higher level of productivity.
Table 2.3 shows the average time share spent in educational investment across the
regions: IN, MI, WI and OH spend apparently less time in education than ROUS and
IL. Accordingly, there should be subsequent gaps in human capital stock across the
regions: Fig. 2.12 shows the discrepancies of the age-productivity profile (or human
capital stock).

There is a notable gap between two groups: high skilled (IL and ROUS) and less
skilled (IN, MI, OH and WI) regions. For example, the average worker at retirement
age in the high skilled region is 36.8% more productive than the worker at the same
age in the less skilled region. This simulation result is consistent with the statistics of
labor productivity between the regions: the labor statistics show that IL and ROUS
is the leading region in terms of labor productivity (the last row in Table 2.3). Again,
these gaps in productivity are attributed mainly to the differences in time spent on
educational investment (Table 2.3) and also the level of physical capital stock in the
six regional economies according to the model specifications.

Finally, Table 2.4 presents the regional prices such as output, consumption and
investment price as well as production factors. The gaps of goods prices between
the regions are larger than the actual CPI; however, the order of prices matches
well with the actual CPI level except MI: the simulation results underestimate the
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Table 2.4 Steady state results-prices

IL IN MI OH WI ROUS

Goods price Production 0.9783 0.7619 0.7611 0.8816 0.8316 1.0000
Consumption 0.9720 0.8085 0.8057 0.9010 0.8608 0.9963
Investment 0.9701 0.7841 0.8011 0.8892 0.8457 0.9968

Rental return (physical capital) 0.0857 0.0648 0.0662 0.0723 0.0690 0.0888
Wage rate 1.5363 0.9494 0.9717 1.2228 1.1041 1.6090

Table 2.5 Steady state result-per-capita output under the alternative age-cohort structures

IL IN MI OH WI ROUS

Per-capita output 2007: A 7.9932 6.6194 6.0017 6.5813 6.5866 8.2374
2030: B 7.3336 6.1256 5.6248 6.4631 6.1252 6.6928
B/A 0.9175 0.9254 0.9372 0.9820 0.9299 0.8125

consumption price in MI. Also, the simulation results imply that renting physical
capital and hiring one unit of labor cost the most in the ROUS; on the contrary, the
least expensive region is IN.

Another steady state result can be generated with the different age-cohort
structure in order to obtain the insight of impact of population ageing on the
economy. According to Census Bureau projections, the number of people between
15 and 64 will decline in the Midwest from 2007 to 2030. In contrast, the number of
people 65 and above will grow at a significant rate. In particular, in the ROUS, the
number of people of age 65C will almost double from 2007 to 2030. Without any
change of model specification, the steady state simulation was implemented with
the projected age-cohort structure for the year 2030. The steady-state results in this
section reflect the changes of human capital level only between the generations, but
do not consider the changes of human capital stock along the time dimension.

Table 2.5 shows the comparison of per-capita output under the two different age-
cohort structures. The results are quite intuitive: due to population ageing, per-capita
output under the age-cohort structure in 2030 is less than the per-capita output under
the age-cohort structure in 2007 in every region. It should be noted that the per-
capita output in OH under the demographic scenario of 2030 does not decline so
much from the level under the scenario of 2007. The number of people belonging
to the working age (15–64) in OH declines faster than the other region from 2007
through 2030; subsequently, the total population size (15C) grows at only 1.4%. In
contrast, it grows at 24.6% in the ROUS and 10.6% in the WI. The relative faster
growth of the external demand mitigates the negative impact of population ageing
to some extent. This positive effect from the external economy is reflected by the
relative price changes: the demand growth from the growing population in the other
regions and the limited supply of the goods produced in OH (owing to the decline in
the size of the labor force) generates an improvement in the terms of trade for OH,
assuming that the goods produced in each region are imperfect substitutes for each
other. The growth of the relative output price of OH from 2007 through 2030 is the
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highest among the five Midwest states, reflecting the improving terms of trade for
OH.

Kim and Hewings (2013a) also provide some dynamic simulation results. Unlike
the results presented here, the dynamic simulation demonstrates that the per-capita
output will grow positively even though there will be a fast growing population
ageing phenomenon. Kim and Hewings (2013b, 2015) revealed that this outcome
could be attributed to the individual’s endogenous choice in educational investment
that mitigates the negative effects of population ageing to some extent by improving
the overall productivity in the corresponding economy during the transition.

2.8 Summary

Even with the caveats noted at the conclusion of the last section, several important
conclusions can be drawn from the analysis conducted to date:

• Household consumption varies by age and income level; as the composition
(age structure or income structure) of households change, there are likely to be
important changes in the type of goods and services demanded

• Ageing in the absence of immigration will have important consequences for
social security funding and the allocation of expenditures on health care by pre-
retirement age cohorts

• An ageing population in the absence of immigration and with continued out-
migration of retirees will likely have a longer term (next 20–30 years) impact on
the Chicago economy

• Immigration at the current level (0.6% of the base population) is likely to generate
positive impacts on the economy

• Expansion of the labor force and potential depressing of wage levels is more than
compensated by the stimulus to demand and contributions to social security by
the immigrants

• Without sustained investment in skill acquisition in the children of immigrants,
the effects of immigration could turn potentially negative when the immigrants
who entered in the 1980s and 1990s start to retire

• The combination of ageing and immigration is likely to change, in significant
ways, what is purchased in Chicago generating an endogenous stimulus to
structural change in the economy; this, in turn, could generate a positive or a
negative effect on what is produced in the region to meet local consumer demand

• The synergies among ageing, immigration, retirement year and social security
funding generate complex interactions that provide different effects on the
Chicago economy over time
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2.9 Future Research Agenda

While a great deal has been learned about the Chicago economy and the role of
ageing and immigration, more research is warranted. Some of the more important
issues are presented below.

2.9.1 Additional Household Disaggregation

With increased longevity, it makes no sense to continue to aggregate all households
>65 years old into one category; greater disaggregation is required to explore
possible changes in consumption behavior and migration. Kim and Hewings
(2015b) found that between 2001–2013, unemployment rates, wage rates and labor
force participation increased for persons >65 of age; but was this effect concentrated
in the 65–70 age group or did it extend into the 70s?

2.9.2 Migration Dynamics

Is the return migration to city-regions like Chicago of cohorts >70 who out-migrated
in their 60s a real phenomenon or an anecdote? Partridge et al. (2012) found the
migration rates had declined starting in 2000, with a slight uptick in the last few
years. Is this decrease in mobility spread across all age cohorts and those with
different levels of human capital? The changing dynamics at the regional level are
further complicated by different patterns within metropolitan regions with central
cities in the U.S. once again attracting both younger working age and the older (>55)
age groups in significant numbers. How are international migration patterns likely
to change over the next two to three decades, especially in response to continued
strife in some parts of the world? Further, there is a need to examine in more depth
the pension-ageing-immigration interfaces, examining not just the short-run impacts
but giving more careful consideration to the longer term. For example, a key factor
centers on the role of skill acquisition of immigrant children and the potential impact
of non-acquisition needs to be explored in more depth not just from an economic
perspective but also with additional considerations of the impact on social cohesion.

2.9.3 Changing Demographics and Changing Regional
Competitiveness

Will changes in consumption associated with changing demographics (ageing and
immigration) provide firms in a region with greater opportunities to meet these
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new demands or will they be eclipsed by providers located outside the region? The
current interest in smart specialization5 as a policy initiative needs to be harnessed to
the changing demographics of regional economies. For example, given, the findings
presented in this chapter, what are some of the pro-active policies (focusing on
education, skills training and re-training, immigrant attraction, affordable housing,
etc.) that regions can adopt to enhance the possibilities of growth and development
in the future? In this regard, the role of human capital investment may prove to be
critical. What has not been addressed are issues such as: (1) how the individual
will pay for this investment (assuming it is not provided by a firm); (2) when
and for how long should the investment be made and (3) how many times over
a lifetime in the labor force should an individual anticipate having to make this
choice? Further, there are some potentially critical dynamics emerging, especially in
the U.S.; many retirees have not planned for an extensive lifespan and, accordingly,
many are reattaching themselves to the labor force to help fund this extended
lifespan. How will they do this—returning to the one of the locations in which they
last worked, seeking jobs in the same sector or will they explore other options? For
example, Kim and Hewings (2015a) found that an increasing share of individuals
>65 were self-employed (compared to those of prime working age). In addition,
there are concerns about increasing incidence of poverty among retirees, particularly
prevalent in female-headed households.

2.9.4 Enhancing the Modeling of Consumption and the Role
of Wealth

As Kratena and Temurshoev (2016) discuss in their chapter, there is now a richer
literature upon which to draw in modeling consumption. The work of Carroll (1997)
in suggesting the buffer-stock savings’ idea as an alternative to the traditional life
cycle permanent income hypothesis to handle uncertainty and precautionary savings
motives offers a richer theoretical platform on which to model consumption. In
Carroll’s view,

“..buffer-stock savers have a target wealth-to-permanent-income ration such
that, if wealth is below the target, the precautionary saving motive will dominate
impatience and the consumer will save, while if wealth is above the target,
impatience will dominate prudence and the consumer will disserve.”

Such a formulation could potentially enrich the intertemporal consumption
function presented earlier. Note also that consumption is assumed to be a function
of wealth (assets) not just wage and salary income. While conceptually appealing,
assembling the necessary data for the non wage and salary components will present
a challenge. There is usually a reasonably high probability of wage and salary

5See http://www.oecd.org/sti/inno/smartspecialisation.htm for a description and reference to more
detailed analysis.

http://www.oecd.org/sti/inno/smartspecialisation.htm
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income being spent in the region in which it is earned; the same may not be
true for non wage and salary income as dividends from shares may originate in
companies widely scattered throughout a country or even the world. However, there
are some important limitations: many investment decisions imply perfect rationality
and foresight, not only in terms of the consumption decision-making but also in the
context of investment in human capital. In reality, some incentives may be needed
to encourage workers to invest (and continue to invest) in their human capital.
From the individual perspective, the choice centers on how many times to invest
in human capital and when to invest in human capital. From the firm’s perspective,
investment in their labor force is usually concentrated in the early age groups, but
employee mobility is very high, thereby generating positive externalities on society.
Munnell and Sass (2009) have been arguing for more investment in older workers
who probably have a higher probability of remaining with a firm, thereby generating
externalities that are internalized in the firm. Policy makers might argue that there is
a need for the provision of incentives. From the government perspective, how much
intervention/incentives should be considered and should incentives be provided to
individuals and/or firms?

The challenges are rich ones, offering opportunities to generate new modeling
systems (e.g., more extensive use of microsimulation and the application of micro-
to-macro multi-level models) to address these challenges. The standard toolbox of
models needs some reinvestment to be able to capture the dimensions explored in
this chapter.
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Chapter 3
Geographical Macro and Regional Impact
Modeling

Attila Varga

3.1 Introduction

After a long-experienced neglect of spatial issues in the mainstream of economic
research (Krugman 1991b), economics becomes increasingly geographical. The
appearance and success of the new economic geography (NEG) plays a key role
in this development. Static NEG models extend a non-spatial macroeconomic
general equilibrium framework toward a multi-regional system via the integration
of agglomeration effects, transport costs and migration (Krugman 1991a; Fujita et
al. 1999). Dynamic new economic geography growth models incorporate agglom-
eration effects in the framework of a-spatial endogenous growth theories in order to
study the complex interrelationship between agglomeration and aggregate economic
growth (Baldwin and Martin 2004). The extensions of non-spatial economic models
in static and dynamic NEG theories underline that geography plays a substantial role
in generating macro (national or supranational) economic outcomes.

The key role of geography in national economic development has also been
brought into the forefront of recent policy debates (World Bank 2009; OECD
2009; Barca 2009). Advocates favoring either the place-based or the spatially
blind approaches—despite the different weights the two approaches apply on
various aspects of geography—agree that agglomeration, regional capabilities, or
interactions at the regional and interregional scales remarkably determine national
level results of development policy measures. Thus, the geography of interventions
is understood as a key factor in the success of development policies.

A remarkable recent observation points to another dimension of macro-regional
interactions suggesting that macro (national) level policies could significantly
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influence the effectiveness of a particular geography of interventions targeting
economic development (D’Costa et al. 2013). Governments’ monetary and fiscal
policies interact with regionally deployed development policies: macroeconomic
policies could support but could also distract regionally targeted interventions.

Economic theory and policy discussions, thus, both underline that the macro
(national or supranational) and regional (sub-national) spatial levels are mutually
interconnected in development: the geography of interventions influence macro
level policy results and the effectiveness of regionally implemented interventions
is related to several macroeconomic policy conditions. Despite that theory and
policy discussions emphasize the importance of both spatial levels in generating
development policy impacts, the majority of economic models applied in policy
evaluation consider these layers separately: models either follow the tradition of
macroeconomic (national) or regional (sub-national) level of analysis.1

In the past decade the emergence of ‘new generation impact models’ (Varga
2015) has been experienced. These models undertake the initial attempts in the
direction of integrating geography in traditional modeling frameworks. This chapter
sheds some light on key technical challenges that geographic policy impact models
currently face and illustrates the response to these challenges by outlining one of
the earliest attempts in this direction, the Geographic Macro and Regional (GMR)
model system. The second section briefly reviews current policy debates on the role
of geography in development policy, followed by the account of some key modeling
challenges. The section outlining the GMR approach follows and the chapter ends
with an epilogue.

3.2 Geography in Modern Development Policy Approaches

The literature of regional development reports limited success of policies in
reducing territorial disparities. For instance, the contribution of EU Cohesion policy
to regional convergence in the EU appears only weakly positive (Hagen and Mohl
2009). Disappointment in traditional policy approaches has stimulated policy think-
ing to reconsider the old instruments in order to suggest the kinds of interventions
that are expected to enhance economic development more successfully. Two streams
of modern policy thinking emerged recently. The first stream, in general, does
not trust regionally targeted interventions but favors space-neutral policies with
universal coverage in every territory, while the second stream would continue
supporting region-specific interventions and argues that properly designed place-
based policies are appropriate means of economic development.

1The HERMIN model (ESRI 2002), the ECOMOD model (Bayar 2007) or the QUEST III model
(Ratto et al. 2009) are good examples of macroeconomic modeling while the REMI model (Treyz
et al. 1992) is a well-known representative of regional modeling.
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In both approaches, the focus has moved towards policies that strengthen aggre-
gate economic growth. Despite extensive debates, there is some complementarity
between the two modern approaches to development policy (Farole et al. 2011;
Varga 2015): the space-neutral focus does not disclose the validity of place-based
policies under specific circumstances, like in the case of regional innovation policy
(e.g., World Bank 2009); and the place-based approach claims that policies targeting
large agglomerations could occasionally perform as better alternatives (e.g., Barca
2009; OECD 2009).

Spatially blind policies advise strengthening the self-reinforcing cycle of
agglomeration and growth. The proponents suggest encouraging economic
integration of lagging places with core economic areas (World Bank 2009).
Economic integration is being reached when no major differences exist among
territories in institutional development (e.g., provision of education, health care,
security or regulations of land and labor) and when lagging regions are sufficiently
interconnected with the agglomerated economic core by transportation linkages.
Interventions, thus, should aim at fueling agglomeration effects in the economic
core and, as such, should be designed in a space-neutral way to the greatest extent
possible.

Though the proponents of place-based development do not question the relevance
of spatially blind policies or the importance of agglomeration in economic growth,
their main emphasis is positioned on the role of region-specific policies. It is
suggested that growth potential exists in many regions outside the major agglom-
erations (Barca 2009; OECD 2009). Advocates of place-based development are in
favor of territory-specific innovation policies as effective tools of growth promotion
(McCann and Ortega-Argilés 2015).2

The key feature of modern policy approaches is, thus, their emphasis on
geography as a significant factor in aggregate (macro-level) economic development.
Agglomeration is one particular aspect of geography but local specificities, such
as industrial structure, the strength of research, the size of human capital or
accessibility, are at least as important geographic features as interregional linkages,
such as trade flows, labor and capital migration or knowledge transfers.

Because geography is considered a key element in economic development, the
spatial structure of interventions influences the outcomes of development policies:
the same development policy budget may affect national level economic growth
differently depending on alternative distributions of resources across different
regions. Impact models incorporating geography would, thus, act as suitable tools
for assessing the likely outcomes of different spatial distributions of the same
aggregate policy budget.

2An additional reason for place-based (or region-specific) policies is politics, particularly in an
ethnically and/or culturally diverse economy. The EU meets this criterion. It is also the reason why
Canada has very specific region-based objectives, as does Switzerland.
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3.3 Geographical Extension of Traditional Development
Policy Impact Models: Critical Challenges

In the following I detail some key economic modeling challenges of incorporating
geography in development policy impact models. These include modeling the effect
of policies on technological progress, formulating the transmission of innovation
impacts to economic variables, modeling spatiotemporal dynamics of growth and
incorporating the macro dimension.

The first question in model design is related to the way the impacts of policy
instruments on innovation are represented in an economic model. A rich empirical
literature has mapped several geographical aspects of innovation and, as such,
collected important information for model builders (Varga and Horváth 2015).
The observed positive association of innovation with research, human capital,
physical proximity, agglomeration, entrepreneurship and knowledge networks at
different spatial scales suggests that integrated policies proposed by modern devel-
opment approaches aiming at stimulating R&D, education, entrepreneurial culture,
transportation infrastructure investments and collaborations in research are indeed
realistically expected to positively influence innovation. The question still remains
however as to how these elements of innovation are integrated into a coherent
empirical modeling framework. Possibilities in this respect might range from the
application of geographic knowledge production function and regional computable
general equilibrium approaches to dynamic evolutionary modeling techniques.

The choice of how to model empirically the transmission of policy impacts
on innovation to changes in economic variables such as output, employment or
inflation is the second challenge. Innovation may contribute to aggregate growth
in two (not necessarily independent) ways. Technological progress either increases
the production of already existing goods (a productivity impact) or results in the
introduction of new or improved quality products (a variety impact). Modeling
the productivity and variety effects in an integrated framework is a real challenge.
Nevertheless, it is a common experience that their translation to empirical models
becomes indeed difficult because of the appearance of several technical issues.
Among them, data availability is a really serious problem, especially at sub-national
regional levels.

The technical challenge of incorporating spatiotemporal dynamics addresses
the problem of modeling policy-induced expansion of indigenous resources and
their migration between regions simultaneously. Consistency with the neoclassical
growth framework requires deriving saving and investment behavior from intertem-
poral optimization of households and firms in all locations. Development of models
in this direction is slow and solutions are rare due to substantial analytical and
computational difficulties involved. Alternatives include the introduction of ad-
hoc investment and saving behavior in regional models, or separately modeling
intertemporal optimization of investment and saving behavior at the macro level and
migration and dynamic agglomeration effects at the regional level in an integrated
model system.
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The macroeconomic framework, including the exchange rate of the national
currency, government deficit and debt, the monetary policy regime or the interest
rate, could be important factors behind the impact of development policies. In a
carefully designed macroeconomic policy, economic development targets would
indeed be aligned with other macro framework conditions. Because the derivation of
these conditions from the regional level is not theoretically clear (and most probably
regional to macro aggregation is not even possible in this respect), integration of the
macro and regional dimensions seems to be a desirable solution. This is an open
area of research and examples are rare in the literature (Varga 2015).

3.4 The Emergence of a New Generation of Development
Policy Impact Models: The Case of the GMR-Approach

Increasing activity of different research groups to develop a new generation of
economic impact models indicates that the problem of incorporating geography has
already been realized and the search for suitable model constructions is ongoing.
These research directions include, for example, the MASST (“MAcroeconomic,
Sectoral, Social, Territorial”) model (Capello 2007) and the GMR (“Geographic
Macro and Regional”) policy impact modeling approach. The GMR-approach is
followed in EcoRet (Varga and Schalk 2004), in GMR-Hungary (Varga 2007),
in GMR-Europe (Varga et al. 2015; Varga 2015), in GMR-Turkey (Varga et al.
2013; Varga and Baypinar 2016) and in the European Commission’s RHOMOLO
(“Regional HOlistic MOdeL”) model (Brandsma and Kancs 2015). Though GMR,
MASST and RHOMOLO are different in many respects in their internal structures
(e.g., MASST is a partial equilibrium econometric model, RHOMOLO is a general
equilibrium SCGE (Spatial Computable General Equilibrium)3 model on six indus-
tries, the GMR model is an integrated econometric-SCGE-DSGE4 model), they
share the common interest of incorporating geographical effects into their model
structures. Below we outline how GMR policy impact models reflect the challenges
indicated in the previous section.

3SCGE models extend the more conventional CGE (Computable General Equilibrium) approach
with geographic effects such as agglomeration, interregional migration and transport costs. An
SCGE model is formulated as a set of (sub-national) regions where regions are not independent
but connected by linkages like transportation and migration. The short run equilibrium of the model
is reached when supply and demand equals in each market in each of the regions. However this
does not necessarily mean that this equilibrium is stable because differences in factor prices might
induce interregional migration. Equilibrium becomes stable in the long run when no motivation for
further factor migration is present.
4DSGE stands for Dynamic Stochastic General Equilibrium modeling. These models are dynamic
because they explicitly take into account intertemporal decisions of economic actors; they are
stochastic as the structural relationship and variables of the model can be hit by different shocks
driving the economy away from the equilibrium path; they are general equilibrium as they assume
market clearing (even if markets are not perfect).
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The GMR approach is an economic development policy impact modeling
framework. In comparison with traditional approaches the novel feature of the
GMR-approach is that it incorporates geographic effects (e.g., agglomeration,
interregional trade, migration) while both macro and regional impacts of policies
are simulated. GMR models provide ex-ante and ex-post evaluation of development
policies, such as promotion of R&D activities, human capital advancement or
improved physical accessibility. The models simulate macro- and regional economic
impacts while taking into account geography effects, such as regional innovation
system features, agglomeration, migration and costs of transportation. The intention
of the GMR research program is to develop efficient and relatively simple model
structures, which fits in with the generally weak quality of regional data.

The GMR-framework is rooted in different traditions of economics (Varga
2006). Romerian endogenous growth theory shapes the GMR approach to modeling
knowledge generation (Romer 1990) while the spatial patterns of knowledge flows
and the role of agglomeration in knowledge transfers are formulated with insights
and methodologies learned from the geography of innovation field. Interregional
trade and migration linkages and dynamic agglomeration effects are formed with an
empirical general equilibrium model in the tradition of the new economic geography
(Krugman 1991a). Specific macroeconomic theories provide the foundations for
modeling macro level impacts.

The GMR approach reflects the modeling challenges outlined in the previous
section by structuring its system around the mutual interactions of three sub-models
such as the TFP (Total Factor Productivity), SCGE and MACRO (macroeconomic)
sub-models.

3.4.1 Modeling Policy Impact on Technological Progress

Policy impact on innovation is formulated in the TFP sub-model. Following Romer
(1990), development of ideas for new technologies is explained by the amount of
research inputs and the stock of accumulated scientific-technological knowledge.
The assumption behind this formulation is that even the same research inputs can
result in a number of new technologies depending on the level of knowledge already
accumulated over time. In GMR models, the impact of research expenditures on
new technological ideas is influenced by the concentration of technology intensive
industries in the region on the one hand and interregional research cooperation on
the other.
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3.4.2 Modeling the Transmission of the Technology Impact
to Economic Variables

Many of the new technological ideas become introduced in production but many of
them remain unexploited. The development of concrete technologies on the basis of
technological ideas is formulated in the TFP equation. Therefore, innovation policy
impacts on economic variables are transmitted through an increase in TFP. Policy
induced change in TFP may increase output even if capital and labor stays the same.
Increased output might result from new varieties and/or from growing productivity.

3.4.3 Modeling Spatiotemporal Dynamics of Economic Growth
and Macro Impact Integration

A higher level of TFP resulting from innovation policy interventions may effect
production partly via increased regional employment and investment and partly via
labor and capital migration from other regions. Increased concentration of economic
activities might strengthen dynamic agglomeration economies that could initiate a
cumulative process towards further concentration. Therefore, increased capital and
labor on the one hand and additional expansion in TFP sparked by agglomeration
on the other hand drive policy-induced regional growth.

In modeling spatiotemporal dynamics and macro impact integration, this com-
plex process is separated into three steps, which at the end result in a coherent
macro-regional impact via mutual alignments. The first two steps reflect spatial
dynamics. In their design, the solution frequently applied in many of the new
economic geography models is followed. In the first step, the short run impact of
a change in TFP on the values of economic variables (e.g., output, capital and
labor demand, prices, wages) for each region is calculated under the assumption that
aggregate supply of capital and labor and their regional distribution remain constant.
In the second step, utility differences across regions motivate labor migration, which
is followed by the migration of capital. The first and second steps are formulated in
the SCGE model block. So far aggregate labor and capital supply have been assumed
constant. Their dynamics is modeled then in the third step with the MACRO model
block.

The mutually connected three model-block system is depicted in Fig. 3.1 below.
Without interventions TFP follows a steady state growth rate in each region. The
impacts of interventions run through the system according to the following steps.

1. Resulting from interventions related to R&D, human capital, interregional
knowledge networks and entrepreneurship regional TFP increases.

2. Changing TFP induces changes in quantities and prices of output and production
factors in the short run while in the long run the impact on in-migration of
production factors implies further changes in TFP not only in the region where
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Intervention Spatio-temporal dynamics Impacts
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Fig. 3.1 Regional and macroeconomic impacts of the main policy variables in GMR-models

the interventions happen but also in regions that are connected by trade and factor
migration linkages.

3. Increased private investments expand regional private capital, which implies
further changes in regional variables (output, prices, wages, prices, TFP, etc.)
in the SCGE model block. The impact of private investment support affects the
macro model as well via increased private capital.

4. For each year, changes in regional TFPs are aggregated to the national level.
These changes in TFP enter the macro model as time specific shocks. The
macroeconomic model calculates the changes in all affected variables at the
national level.

5. Changes in employment and investment calculated in the MACRO block are
distributed over the regions following the spatial pattern of TFP impacts.

6. The SCGE model runs again with the new employment and capital values to
calculate short run and long run equilibrium values of the affected variables.

7. The process described in steps 5 and 6 run until aggregate values of regional
variables calculated in the SCGE model converge to their corresponding values
calculated in the MACRO model.
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3.5 Epilogue

Policy discussions highlight the key role of geography in the performance of
development policies. Recently emerged policy impact models undertake the initial
attempts in the direction of integrating geography in traditional modeling frame-
works. To illustrate how model structures might reflect the challenges of integrating
geography, I briefly outlined the GMR policy impact modeling approach in this
chapter.

What can one expect in the coming 50 years in development policy impact
analysis? I believe that (following the trend of “more geography in economics”)
models will become increasingly spatial. The sub-national (regional, local, city)
and macro (national, supranational) levels will be integrated in a systematic manner
incorporating findings accumulated by theoretical, empirical and policy research.

Therefore, substantial efforts and careful, professional and enduring work could
lead to the development of geographic policy impact models with increasing
precision. Economic theory on the one hand and empirical techniques on the
other have already reached the critical intellectual mass to support this endeavor.
Because technical components to address the four challenges are already accessible,
the inventiveness of modelers will determine the particular characteristics of
individual solutions. However, availability of detailed information on industrial
sectors and innovation activities at the regional level may significantly determine
the effectiveness of the models. This underlines that progress in the collection of
accurate regional data will be crucial for the future success of geographic policy
impact models.
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Chapter 4
Computable General Equilibrium Modelling
in Regional Science

Grant J. Allan, Patrizio Lecca, Peter G. McGregor, Stuart G. McIntyre,
and J. Kim Swales

4.1 Introduction

Why should we be interested in building regional CGEs? In general terms,
because they provide a coherent framework in which to analyze the impact of
any disturbances emanating from overseas, the nation or the region (or the sub-
region/city) itself. The potential for assisting ex-ante and ex-post policy analysis and
evaluation is clear. They can be used to explore the regional impacts of regional and
national policies. We see no limit to the range of potential applications for regional
CGE modelling, wherever system-wide ramifications of policy or other changes are
anticipated.

It seems sensible to begin this chapter by identifying what is—and what is likely
to remain—distinctive about regional CGE models. First and foremost, there is
typically a significantly greater degree of spatial integration of factor, goods and
financial markets at regional than national levels. In part, this is fostered by the
history of a permanently fixed exchange rate and a common currency, subject to a
national monetary policy. In goods markets, for example, this integration is reflected
in the extent of trade flows and their sensitivity to relative price and other changes.
Factor mobility is higher and requires explicit modelling of migration flows, in
particular.
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For regional financial markets, the default assumption is often that they are
perfectly integrated with the national economy, but some dispute this and argue
for a degree of spatial segmentation, even in this case (e.g. in loan markets).
Regional CGEs also need to capture regional/national (and potentially local/city)
government funding relationships, which can imply very different macroeconomic
closures from equivalent models of the national economy. Furthermore, the models
reflect available evidence of the behavior of regional markets—perhaps especially of
regional labour markets, which can be crucial to overall model behavior. Typically,
regional CGE modellers also have to cope with data challenges that are more severe
than those for national models.

There is now a large range of CGE models, including single region and multi-
regional models, that, in the latter case, may embody a bottom up model of the
national economy. Spatial (regional) CGE models is a term typically only applied
to those models whose specification reflects New Economic Geography (NEG)
approach and incorporate transport and agglomeration economies. Early regional
models often had more in common with the kinds of CGEs that were applied to
developing economies than those being used in North America to explore fiscal
issues. In particular, the former reflected a pragmatic concern with the impact of
key market imperfections (notably in the labour market) for the efficacy of policy
changes. National models often assumed entirely fixed aggregate labour supply,
surely never an accurate characterization, but hopelessly inappropriate in a regional
context.

Partridge and Rickman (1998, 2010) and Giesecke and Madden (2013) provide
very extensive reviews, analysis and a fairly comprehensive bibliography of regional
CGE modelling, Moreover, the general developments in CGE modelling are
comprehensively discussed in contributions to the Dixon and Jorgenson (2013)
edited volume. The interested reader is directed to these works for a literature review
treatment of existing CGE models. Our purpose in this chapter, consistent with the
theme of the present volume, is to provide a forward looking perspective and to
anticipate major future developments in regional CGE modelling.

There are two major interrelated areas for future developments of regional CGEs.
The first set of developments relate to improving and augmenting the methods
currently employed by the typical regional CGE model. We want to improve the
ability of these models to capture more accurately the key features of regional
economies and the behavior of relevant economic actors. This involves improving
the specification of CGEs, the methods used to parameterize them, and the quality
of regional data. With such improvements, we expect to see regional CGEs being
increasingly adopted as the standard workhorses for regional economic analysis.

The second set of developments relate to the application of the future vintages
of regional CGE models. In fact, the range of regional CGE model applications is
already huge (as reflected in, for example, the papers cited in Giesecke and Madden
2013); this is a manifestation of one of the great strengths of these models, namely
their flexibility, which allows their adaption to address new or emerging policy (and
non-policy) issues. Fundamental, and policy-relevant, concerns seem unlikely to
alter, although events may lead to shifting priorities among them. These fundamental
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concerns are with regional (sub-regional/ local/ city) issues: economic development,
environmentally sustainable growth, demographics, income-distribution, the spatial
distribution of economic activity and regional finances.

Regional CGEs can, in principle at least, incorporate all of these concerns
simultaneously, and indeed need to do so if they are to inform policy-makers of all
the policy trade-offs they are likely to face. So we anticipate continual growth in the
application of CGEs to emerging regional issues, including new policy initiatives at
international, national, regional and sub-regional levels that are likely to have spatial
impacts. Furthermore, as the parameterization and statistical basis of CGE models
are improved, there are likely to be further applications of CGEs to (medium term)
regional forecasting and historical simulation.

In Sect. 4.2 we consider likely developments in the specification, computation
and parameterization of regional CGE models. Inevitably, these overlap with
general developments in CGE modelling, although there are some regional specific
aspects to this. Sect. 4.3 looks at one of these promising developments, namely
the integration of regional CGEs with energy systems models. Sects. 4.4 and 4.5
consider two illustrative areas in which we anticipate significant further innovations
in regional CGE modelling: urban modelling and regional fiscal issues. In Sect. 4.6
we provide brief conclusions.

4.2 Model Computation, Specification and Methodology

Regional CGE models are currently widely used for policy evaluation exercises.
They are particularly suited to assess policies that are intrinsically supply side in
nature. Additionally, regional CGE models have been valuable to analyse regional
economic adjustment mechanisms (e.g. McGregor et al. 1996) in particular the
nature of regional adjustment processes, and to identify the implication of alternative
assumptions about regional macroeconomic processes against a national or a
global economy (Deepak et al. 2001). Regional CGE models have been used
to demonstrate the important role played by regional wage setting in shaping
the impact of regional policies (including R&D policies) as well as alternative
assumptions about the formation of agents’ expectations. It is also worth mentioning
efforts to identify specific regional features of financial balances and the regional
macroeconomic implications of imposing balance of payment constraints (Lecca
et al. 2013).

However, for the future, the focus of interest of regional CGE models should
expand particularly in the area of regional macroeconomic dynamics, attempting
to explain the key regularities (and irregularities) of regional business cycles. This
field of research has been comparatively neglected by regional economists in general
and regional modellers in particular. Hence, regional CGE models could be used to
investigate issues such as the properties and the drivers of the regional business
cycle, the impact of financial constraints and the role of banking systems in regional
economies. However, to study these important and challenging issues, the modelling
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approach needs to become more sophisticated, necessitating improvements in the
current, widely-used approach. What we propose here is intended to encourage an
experimental approach to help to broaden the vision of regional scientists engaged
in CGE modelling.

The main improvements we believe are necessary to deal with the problem
defined above involve working towards abandoning the deterministic approach and
systematically adopting a stochastic modelling framework to provide a statistical
underpinning for regional CGE models. If, for example, we wish to use CGE models
to determine the drivers of regional business cycles, the model should ideally be
validated with statistical techniques; that is to say the variability obtained from
the results of the model should in principle reflect that in the data we observe.
Increasingly, we think regional CGE models will follow the example of Dynamic
Stochastic General Equilibrium (DSGE) models and traditional Real Business Cycle
(RBC) models.

The incorporation of inference in regional CGE models could result not only
in a better modelling framework, but also in a more complete and potentially
much-improved setup compared to conventional DSGE and RBC models. CGE
models are multisectoral and often multiregional, and allow for greater flexibility in
defining economic and financial closures. Imperfect markets (labour and commodity
markets) as well as different treatments of the saving-investment nexus, together
with flexibility in choosing financial closures are all elements that make CGE
models more suitable than other general equilibrium frameworks in determining
what factors govern the macroeconomic adjustments in regional economies. The
regional spillover effects, agglomeration and dispersion effects are easier to capture
in CGE models than in DSGE and RBC models. Furthermore, the impact of vertical
linkages and asymmetric cycles could be better understood in a flexible modelling
framework such as stochastic CGE models.

In order to incorporate statistical inference in CGE models we could follow the
approach of Canova (1994, 1995). This is extensively applied in DSGE models,
but could be adapted for CGE models as well. The way to solve the model is
very similar to RBC and DSGE models. By repeatedly solving the model for the
empirical distribution of parameters and structural variables it should be possible to
evaluate the capacity of the model to reproduce the variance of the actual data. If
the variance incorporated into the model is able to explain, say, 75% of the variance
of the actual data (generally represented by the GDP growth per capita or other
economic variables over a predetermined time period), the defined CGE model
would be ready to be used for policy evaluation. The empirically based simulation
analysis can then be augmented with bootstrapping for sensitivity analysis. The
bootstrapping approach is generally performed using the same principle of the
Monte Carlo simulation as in the inference of calibrated models.

The operationalization of statistical inference in regional CGE models should
improve their credibility not only as tools for policy analysis, but also as an
instruments capable of explaining the main economic adjustments in operation
in a region. The CGE model should —in principle— be capable of replicating
the most important stylized facts concerning the macroeconomic dynamics of
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the region. GDP, employment and consumption in the target region should move
procyclically, the volatility of GDP, investment and consumption should reflect the
characteristics of the region under examination. Furthermore, we would expect log-
normal distributions for firm size, while firm growth distributions are expected to
follow a tent-shape distribution characterized by tails fatter than the Gaussian (see
Botazzi and Secchi 2003).

However, we would not expect that typical stylized facts inferred for a national
economy would necessarily hold for a regional economy, given that the region
is subject to a common currency area and fiscal policy constraints. What we
would expect is some (significant) degree of deviation from mainstream theory as
applied to national economies. As commonly found in RBC models, fluctuations in
the regional economy are not necessarily determined by supply-side shocks. It is
likely that demand shocks will prove to be part of the cause of regional economic
fluctuations. Such a finding would not be puzzling; in general, and particularly for
regional economies, technological shocks are unlikely to be the only driving force
behind cyclical fluctuations.

To allow CGE models to better capture economic fluctuations in the regional
economic system, the modelling setup is expected to be closer to new developments
in the micro and macro-economic literature than in the past. It is useful to draw
from the behavioural theories of the firm by, for example, assuming boundedly
rational expectation formation rather than profit maximizing behaviours. It is also
important to explore several other possible treatments of dynamic agent behaviour.
Efforts to investigate alternatives to perfectly myopic households and fully perfectly
foresighted consumers should be on the agenda. Indeed, dynamic choice can also be
specified using a hyperbolic Euler relation as in Laibson (1998), where consumers’
preferences are dynamically inconsistent since the discount rate should decline as
the time horizon increases.

Given that regional economies do not have control over monetary policy,
the interaction between financial intermediations and the business cycle may be
important for regional economies. Some regions might be more likely to suffer
from financial constraints. Under some regional financial systems, severe regional
payment problems could arise if there is a continuous decline in bank reserves (for
example, due to negative competitiveness effects). In this case, banks might not have
sufficient generalized claims to meet the loss and loans would need to be reduced,
producing a multiplicative contraction in the regional money supply. The adjustment
would then require reductions in income and change in prices with a continuous
drain of bank deposits that in turn could generate further income effects. Therefore,
there is the potential to extend the focus of CGE models to accommodate regional
financial market segmentation as appropriate, by incorporating the banking system
and therefore the credit/deposit adjustment mechanisms in the model. These would
all be fruitful areas for future research.
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4.2.1 Statistical Inference in CGE Models

A CGE model can be formalized with the relation Xt D f .Zt; ˇ; �/ where the
endogenous variables of the model Xt, which typically would include variables
such as value added, labour demand, capital stock, consumption, investment, are a
function of a set of behavioural parameters ˇ(elasticities of substitution in trade,
production and consumption, intertemporal elasticities), structural parameters �
(for instance, the depreciation rate and the interest rate) and state variables, Zt

(any other exogenous variables such as policy variables). The time paths of the
endogenous variables Xt are obtained by repeatedly solving the model for random
(Zt, ˇ). Therefore one could draw with replacement i.i.d. ˇ and Zt and generate a

simulated distribution of 	.Xt/ where 	 .Xt/
d! E Œ	 .Xt/� given a larger number of

replications N.
The empirical distribution of ˇ is constructed by assuming a specific distribution

based on an a-priori interval. A more straightforward approach suggests assuming
the density for ˇ as the product of univariate densities thereby imposing no correla-
tion between the parameters of the model. See Canova and Marrinan 1998, for the
case of correlation among parameters. In a typical CGE model, the main parameters
ˇ are subject to perturbations that can be identified in the elasticities of substitution
in trade 
T , in production 
P, the wage curve elasticity ", the intertemporal elasticity
of substitution, v and the elasticity in the migration equation '.

Typically, the dimension of CGE models is bigger than that of their counterpart
models so the major point of concern is the possibility of obtaining information
about the distribution of all these parameters. We can in principle estimate their
values and in turn obtain information about the statistical distributions of the
elasticities. However, this is a time consuming process and researchers would
have to commit significant time and effort considering the number of parameters
involved. A less rigorous, but more effective path would involve a meta-analysis
of the elasticities. For example, from a collection of 15 papers we observe that
estimates related to the wage elasticities for the UK economy are in the range
0.03 to 0.15 with a mean in the neighbourhood of 0.1 and standard deviation of
around 0.045. According to this information, the resulting empirical distribution for
this parameter is normal with mean and standard deviation that equates those of
our sample of estimates. Things could be more difficult for production and trade
elasticities where the range of variation is generally wider and the point estimates
are obtained using quite disparate modelling techniques and data. Alternatively, in
the absence of data and lack of previous estimates in the literature, the parameters
are generally drawn from a uniform distribution choosing a subjective but sensible
range.

The CGE model f as described above is a set of linear and non-linear equations
representing Euler equations, first order conditions, steady state conditions and
identities. This model in the majority of cases is assumed to be correct, although
in some cases, f, is unknown (see for example Canova 1994, 1995). In the case
in which we assume no approximation error, the computational problem consists



4 Computable General Equilibrium Modelling in Regional Science 65

of finding a local or global solution using the joint density of simulated data and
parameters drawn from the information set available from the literature as described
above. Approximation error is only considered in very few RBC models. Typically,
the approximation error is due to the transformation of a non-linear-system into a
linear system (the Johansen approach). This should also contain the error of function
misspecification (e.g., LES instead of CD) that is already captured by the errors in
the parameters.

The next step is to choose the exogenous random shocks Z. The standard
procedure is to simulate a random productivity shock such that the exogenous
stochastic variable follows an AR(1) process. In logs:

ln At D .1 � �/ ln A C � ln At C "t

Where A > 0 is the steady state level of TFP, 0 < � < 1 is the first order
autoregressive persistent parameter and the error term "t � N(0,
2)1.

As we said above, the exogenous random shock would not necessarily have to
be represented by a TFP shock as conventional RBC and DSGE models assume.
Indeed, there is no reason to believe the main drivers of the business cycle are
influenced solely by supply-side shocks. The issues discussed in this section provide
another fruitful avenue of travel for future researchers. Having outlined some areas
of focus in model development and specification, we now turn to consider potential
areas for development in the use of regional CGE models.

4.3 Model Integration with Other Systems and Models

This section is specifically concerned with the interactions between CGE and
energy system models. Energy is a vital input to economic activity, while many
regions across the world have ambitious targets for reducing the environmental
impacts of economic activity, of which many focus on type and scale of energy
requirements. Additionally, many regions in the coming decades are likely to
experience environmental and natural resource changes that will impact directly
upon their economy. In this context it is becoming increasingly important to regional
policy makers that they are aware of the links between the delivery of regional and
national environmental targets, the changing scale and shape of energy system in a
rapidly decarbonising world, and economic activity.

An easy criticism of the use of CGE models in specific cases for policy analysis
is where they neglect an important aspect of the “real world”. In that case, the CGE
model results reflect a set of incorrect treatment(s) of the nature of, or interaction
within, the economic system. CGE models have significant advantages as an ex
ante modelling system. However other model types —such as “bottom-up” energy

1The unconditional mean of the process states that E ."t/ D 0 and E
�
"2t
� D 
2 ln A.
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systems models of MARKAL or TIMES— can have different foci and strengths of
their own. A developing literature brings the features of both model types closer, and
so permits more useful advice to policy. Such attempts can include “interacting,”
“linking,” or (in the extreme) “coupling” models together.

Attempts in these directions are to be welcomed. The insights from appropriately
connected models can be particularly useful for policymakers seeking to understand
the trade-offs in energy and economic policy at the regional level (a recent paper
doing so is Santos et al. 2013). This section continues as follows. First, top-down
(CGE) and bottom-up energy systems model forms are reviewed. Second, examples
from recent efforts to connect the features of CGE models to models of the energy
system are examined. Third, the challenges and questions that regional integrated
modelling systems might be used to address over the coming decades are explored.

4.3.1 Model Strengths and the Benefits of Interaction

Regional CGE models have obvious strengths for analysing the impacts of policy
and non-policy disturbances on an economy. Such models —as discussed elsewhere
in this chapter— have been widely applied to a range of issues. CGE models have
been termed “top-down” in that they explicitly capture the whole economic system,
being based on national or regional economic accounts. Bottom-up energy models
on the other hand are characterised by their focus on specific technologies, costs,
and resource availability.

What model features are important to appropriately capture the most salient
issues? Clearly, these will differ based on the specifics of the job at hand, and
the specific characteristics of the region (or area) being modelled. For instance, is
the region an energy exporter, an exporter of energy intensive products, or both?
Such issues will need to be appropriately and explicitly captured by the chosen
model. As Glynn et al. (p. 385, 2015) note, characteristics such as energy intensity,
trade, competitiveness and the level of development will be critical for the economic
consequences of energy and environmental targets and constraints.

In this context, the strength of CGE models is particularly clear: the models are
constructed within, and so constrained to, economic accounts. The dataset at the
heart of the analysis reconciles the specific characteristics of the region in question.
These will be multisectoral in nature, permitting a detailed assessment of production
and consumption within the region. CGE models, however, do not typically capture
potential or new technologies, while also tending not to address specific natural
resource constraints (either within or external to the region of interest).

Bottom-up energy systems models however, such as MARKAL and TIMES,
capture in fine granularity the technological constraints on energy systems, includ-
ing energy resources, transformation technologies and energy use (including by
location). The MARKAL model, for instance, is an optimisation model that
minimises the system cost of delivering energy demands where such resources,
technologies, uses and demands are exogenously imposed and known with perfect
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foresight. The model simulations can impose environmental constraints, such as
those imposed by stated environmental policies of carbon reduction targets. In
the UK, for instance, Kannan and Strachan (2008) reported the energy system
requirements compatible with a stated 60% CO2 reduction target.

Early energy systems models were primarily focused on examining the shape
and scale of the energy system. The term “hybrid” was developed for models that
combined energy systems with other model frameworks, where the purpose was to
reconcile “technological explicitness, microeconomic realism and macroeconomic
completeness” (Glynn et al. 2015, p. 362). For an early paper on the potential for
reconciling bottom-up and top-down systems, see Bohringer (1998). For a view on
the rise and usefulness of “hybrid” models for energy issues, see the special issue of
the Energy journal, introduced in Hourcade et al. (2006).

More recent versions of hybrid models have acknowledged that CGE models
can provide a useful companion modelling system. Different connections have
been made between CGE and energy systems models (e.g., see Glynn et al.
2015). We term these “soft-linking” and “full-linking”, although, as noted, many
such models at the national and global level currently do not adopt full-linking
systems. Softlinked models, on the other hand, typically either adopt a single sector
connection, or “interact” in more incremental ways.

For instance, Glynn et al. (2015) note how even within this field of study —and
with an acceptance of the usefulness of these hybrid approaches— different forms
of interaction between CGE and energy systems models occur. These might include
soft-linking, e.g., using the CGE system to forecast energy service demands, which
are then inputs to the TIMES system, where prices and technologies are reconciled
in the energy system (e.g. Fortes et al. 2014). Similar softlinking practices are
described in Glynn et al. (2015) for national models of Portugal, Sweden and South
Africa. There are clear advantages to soft-linking models: “by soft-linking energy
system models and CGE models the energy and climate policy analysis becomes
more transparent” (Glynn et al. 2015, p. 385). Inputs and shared “connection
points” between the CGE and energy system modelling make the process clear,
and the assumptions at each stage obvious. Alternative approaches can be used and
compared to earlier interactions between these systems, for instance. Other more
formal connections, including full-form linking or coupling appear likely but are
not part of national models to date.

A “whole economy-energy” system model would offer a technically pleasing
solution to reconciling energy and economy models; however, it must be done with
care. One clear advantage of CGE systems is the (in principle) traceability of the
results, and regional scientists would do themselves no favours by combining two
complex models without regard for the clear communication —and validation— of
model results. Interactions between energy and economy are likely to become more
important in the future, and so frameworks that permit these to be jointly considered
—such as hybrid CGE-energy systems models— may become a central part of
regional scientists’ toolkits. As energy prices evolve, new technologies develop
and old technologies become more niche in their applications, notions of regional
economic competitiveness may increasingly be affected by a region’s ability to meet
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its energy requirements. In a decarbonised future, access to energy resources will
increasingly drive the timing, spatial pattern and level of economic activity.

Ambitions in energy security are driving many regions towards increasing
interconnectivity through enhanced and extended networks and connections with
future political, as well as economic, implications. At the other extreme, many
regions are focusing on energy independence through the increased use of region
specific resources, particularly renewables. As regions face the future, decisions
taken over their energy policy will have profound implications for their economic
directions.

4.4 Urban Modelling

In recent years there has been increased interest in developing and extending CGE
models to better capture more localized economies. In this short section we consider
the future use of CGE models at the urban level. In doing so, a necessarily brief
outline of existing work in the area will be given. In using the term ‘urban’ in this
context, we have in mind an economy characterized by a central city and surrounded
by a number of other jurisdictions as part of the broader urban hinterland. However,
within-city analysis can also be incorporated in our discussion, although this would
limit the scope for the exercise of many economic policy levers which CGE models
are used to analyse.

One of the main reasons for the increase in interest in developing CGE models at
a more localized level is the interest in the operation of fiscal powers at such a level.
Historically, in the UK case, this has been as a result of the devolution of economic
powers to different regions of the UK, and this has spurred the development of more
elaborate and detailed CGE models at the regional level (e.g. Ferguson et al. (2007),
Harrigan et al. (1991), Harrigan et al. (1992), Lisenkova et al. (2010) and Lecca
et al. (2014)). This has now extended further to an interest in better capturing city
economies as a result of the growth of so-called ‘city deals’ for a number of UK
cities which includes potential for greater fiscal autonomy. In the U.S. case, such
fiscal devolution, or “fiscal federalism” as it is known., has been embedded in the
fabric of governance structures much longer, and it is this literature which provides
our point of departure in this section.

There is a series of papers seeking to reflect the fiscal federalism structure in the
U.S. within the CGE modelling framework. Notable contributions in this area are
the works of Nechyba (see for instance Nechyba (1996a, b, 1997)). In these papers,
the aim is to capture the complex interactions which exist when examining local
tax policy and its impacts on economic agents and the aggregate economy. Nechyba
(1996a), for example, presents a model with heterogeneous agents who are endowed
with property and income, who can move freely between jurisdictions, and who can
vote to determine local and national/state tax policy. Using this model Nechyba
(1996a) shows the impact of different models of revenue sharing between local
authorities. Importantly, and unlike most regional or national CGE models, these
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multi-level urban CGE models capture local taxation through labour and property
taxation.

Another series of papers have used similar modelling approaches to study the
impact of changes from one tax base to another at a local and state (regional) level
(England (2003); England and Zhao (2005)).

Specifically, England (2003) looked at a move from a uniform property tax to
a land value tax, keeping revenue constant. England and Zhao (2005) took this a
stage further and considered the distributional impacts of such a change. This fiscal
literature has largely focused on better capturing the nature and operation of local
taxation in CGE models, however there is more to the urban economy than simply
the operation of fiscal powers (even if these may be the most obvious policy issue
to focus on).

Kilkenny (1999) made an early effort to extend CGE models to capture more
explicitly the interconnectedness of the urban economy with its wider spatial
economy. This paper raised a number of issues; some which have subsequently
been neglected in the broader applied literature, while some (e.g., issues around
transportation costs) have been formally embedded within (particularly spatial)
CGE models. The embedding of ideas of urban agglomeration within the CGE
model framework is key to understanding the operation of the urban economy. Just
as capturing the economic and social openness and interconnectedness of a region
within a country is critical to meaningful policy evaluation at the regional level, so
too is capturing the interconnectedness of our cities with their broader hinterland in
economic and social terms in urban policy evaluation.

The obvious starting point here is the operation of the labour market. Regional
CGE models implicitly assume that region of residence and work are the same, and
that workers migrate between regions, or from outside the region more generally, in
response to economic incentives (usually wage differences). Yet in the urban setting,
workers may operate in either the urban labour market or in the labour market of the
broader hinterland with some ease, while not moving their place of residence and
main place of consumption. Better capturing and embedding the operation of the
urban labour market within CGE models will be key to understanding the incentives
faced by different forms of local taxation. For instance, an income based local
taxation will likely induce movement of firms and workers, just as one would expect
in an interregional setting, but is less likely to affect the location of residence of
households directly. Meanwhile, the operation of a property tax in an urban setting is
likely to impact on the location decision of households and firms, and thus indirectly
on the location of work.

Relatedly, a better understanding of the operation of the housing market at a
local level is likely to be critical to modelling the location decisions of households
in terms of access to work and residence. Similarly, understanding the commercial
property market in terms of firm location decisions will be important. While regional
CGE models capture migration into the region from outside, and in an interregional
setting one could endogenise migration between regions, this does not address the
assumed link between working and living in the same area in these CGE models.
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One example that brings these issues to the fore is some recent work at the
regional level, discussed in the next section on fiscal issues. This has sought to
consider the valuation of public spending more explicitly in the utility function of
workers; something which is simplified by the implicit assumption that workers
both work and reside — and thus are taxed and consume— within the region in
question. This implicit assumption is infeasible at the urban scale. Capturing the
interconnectedness between place of residence, place of work, and the places of
consumption is going to be crucial for meaningful analyses at the urban level.
Economic agents do not have spatially limited consumption behaviour, and with
the provision of locally paid for public goods, the utility function of the consumer
needs to embody this interdependence.

While spatial CGE models are not the subject of this section, or indeed this
chapter, it is worth noting that while the main focus of these models has been
on transportation analysis and modelling, significant strides have been made in
incorporating some of the household and firm location decisions discussed above.
In many cases, the uses of spatial CGE models has been to understand travel
and location decisions (e.g., the studies summarized in Anas 2013). While this
is unlikely to be the focus of any of the types of analyses discussed here, it is
nevertheless the case that better specifying firm and household location decisions
will enhance the empirical results derived from CGE modelling at the urban scale.
In developing urban CGE models further, there is much to learn from existing spatial
CGE modelling work (Choi and Sjoquist (2015) is a useful recent paper in this area).

Finally, we should note that one consequence of more elaborately capturing the
operation of the urban economy within CGE models is that it will necessitate the
specification of more key parameters. While in many cases at a more aggregate level,
key elasticities and other parameters are assumed or sourced from other studies,
given the localized focus of urban models, a number of these estimates will ideally
be produced for the urban area in question, or at least produced at the urban level.
While this is an econometric challenge, it is not something beyond the abilities of
existing methods, even if the existing data are sometimes lacking.

There is, of course, much more in this literature than has been sketched out here,
but the purpose of this section has been to give some flavour for the types of issues
that have already been investigated using CGE models at the more localized level,
and to identify areas where further work and development would be welcomed. The
key areas we identified here relate to better modelling of urban migration, urban
land and property markets, and more generally urban amenity and agglomeration.
In policy terms, local fiscal analysis is likely to be one of the key beneficiaries of
improvements in this modelling framework, and the next section of this chapter
considers regional fiscal issues in more depth.
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4.5 Regional Fiscal Issues

A major attraction of regional CGE models is their ability to capture alternative
fiscal frameworks and to allow analysis of issues relating to fiscal federalism.
There has already been considerable work on regional fiscal issues, aspects of
which are discussed in Partridge and Rickman (1998, 2010) and Giesecke and
Madden (2013). We focus here on possible future applications and extensions.
The fact that alternative inter-governmental financing arrangements can be captured
within a regional CGE offers considerable potential for the comparative analysis
of alternative regional fiscal arrangements that has yet to be fully explored. This
could, for example, be used to analyse the properties of alternative real-world fiscal
systems, but on a common database (so that differences in structure are controlled
for).2 Equally, any proposed changes in regional fiscal systems can be subjected to
rigorous analysis.

Given our location and interests, this section will use examples from recent
changes in the devolution settlement in the UK to illustrate broader issues of
importance in regional fiscal CGE modelling. For example, the Scottish Government
has recently experienced a substantial increase in its revenue-raising powers and
is set to enjoy further enhancement of these powers to the point where, in terms
of its control over both revenues and public spending, it will become one of the
most devolved regions in the world. One impact of this is to enhance the Scottish
economy’s sensitivity to policy and other shocks: government expenditure will now
have to adjust to track changes in tax revenues (given limited borrowing powers),
whereas previously public spending was unaffected by changes in Scottish tax
revenues.

The endogeneity of public spending may increase the incentives both for the
Scottish Government to adopt growth enhancing policies and for the electorate to
vote for such policies. However, this also implies that negative asymmetric shocks
will exert a more significant contractionary impact on the Scottish economy and
that there is some scope for borrowing to mitigate the scale of such impacts.
Furthermore, the dynamic response of the fiscal system to shocks may inhibit
adoption of policies that take a long time to stimulate economic activity. Supply
side policies, including balanced budget changes in corporation tax, can take a long
time to generate positive effects—longer than the typical lifetime of a government
(Lecca et al. 2016). Most regional CGE analyses of fiscal issues have not explored
the implications of alternative fiscal systems, but rather have focused on particular
changes in taxes or public spending, with the emphasis typically on the former. One
regional fiscal issue that is due more systematic investigation than it has had to date,
concerns the treatment of public expenditures within regional CGEs.

2We do not mean to imply that there has been no work of this kind (e.g., Nechyba (1996a, b), whose
work is discussed above, and Ferguson et al. (2007)) rather that there is considerable potential for
further analysis.
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One aspect of this issue, linked to the fiscal federalism literature, is the extent
to which potential migrants value the amenity provided by current public spending
and take that into account in their location decisions. In the presence of imperfectly
competitive labour markets, it is also possible that such amenity effects would be
taken into account in the wage bargaining process (Lecca et al. 2014). The idea
here is that workers may bargain over a “social wage” that attributes positive value
to public spending as well as to private consumption. This can matter a great deal
for the macroeconomic impact of balanced budget fiscal changes, since bargaining
over the social wage eliminates the adverse supply-side effect that would otherwise
predominate as workers seek to restore their post-tax real wage. However, there is —
as yet— little evidence from opinion polls that the Scottish people would be willing
to sacrifice —at least to any significant degree— public for private consumption.
Internationally, however, Scandinavian systems appear to be based on these kinds of
considerations, where a centralized bargaining system takes account of the provision
of public services as well as the level of post-tax wages.

Furthermore, there is evidence that the public (and migrants) value some
elements of public spending more than others: health and education tend to be
highly valued and welfare spending much less so. This opens the possibility of
heterogeneous system responses to balanced budget fiscal changes depending on
the composition of public spending, a possibility that may well be worth further
exploration.

One aspect of the composition of public spending that has not been neglected is
the distinction between government capital and current expenditure. The common
assumption that current government expenditure has no supply effects cannot
legitimately be extended to the case of public capital expenditure in general, and
infrastructure spending in particular (e.g., Giesecke 2008). Again, the potential long
delay until beneficial supply side effects predominate can raise particular issues
for regional governments that are subject to a balanced budget constraint. (Lecca
et al. 2016). Furthermore, what is classified as current government spending in fact
represents investment in human capital and, as such, would be expected to have
potentially important supply-side effects, as well as the expenditure effects which
are the focus of conventional “impact studies”. Clearly, education is an example,
and while there has been some regional CGE analysis much remains to be done
(for example, in terms of the system-wide impacts of early years interventions and
work-based learning).3

A further under-researched example is health, where there is compelling evidence
both of the impact of the economy on health and vice versa (e.g. reduced days lost
through sick leave and enhanced working life durations), but as yet there appears to
have been no attempts to provide a fully system-wide regional analysis.4 Of course,
recognition of the supply-side impacts of public spending in these areas again works

3See e.g.Giesecke and Madden (2006); Hermannsson et al. (2014); Kim et al. (2016).
4However, Mayeres and Van Regemorter (2008) provide an analysis of this kind for the economies
of the EU.
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to mitigate or offset any adverse supply effects of wage claims to restore workers’
take home pay following a balanced-budget fiscal expansion.

In multi-regional models interdependence among regions becomes central. The
presence of spillovers and feedback among regions has potentially important
implications for policy, as regional economists have long recognized. The proposals
for enhanced fiscal devolution to Scotland made by the Smith Commission proposed
a “no detriment” principle, according to which fiscal decisions by the Scottish
government or the UK government that impacted adversely on the other should
be compensated. In fact, in the new Fiscal Framework automatic compensation is
restricted to “direct” effects only, but, at least in principle, an explicitly interregional
CGE analysis can quantify any system-wide spillover and feedback effects.5

Longer term we would anticipate increasing efforts to assess the significance
of spillovers to facilitate improved regional fiscal policy and, of course, not
simply in the UK context, but also in the EU and North America. The presence
of significant spillovers creates a potential for improved outcomes through the
coordination of policies at the regional (sub-regional/ city) levels, and this could
merit exploration using similar approaches to those adopted in the macroeconomics
literature (e.g., McKibbin and Sachs 1989). There is also considerable scope for
further development of a political economy approach in a regional CGE context
(Groenewald et al. 2003).

The treatment of expectations and dynamics in regional CGE analyses of fiscal
issues has typically been fairly crude. Indeed, comparative static models are still the
most common form of regional CGE used for analysing regional tax changes. To
the extent that models have been dynamic at all, they have tended to be recursively
dynamic, with movement through time being generated by stock updating processes
(for population and capital stocks). However, forward looking models have been
developed and hold the potential for a more nuanced analysis of the dynamics of
regional fiscal policy (and the impacts of national fiscal policies) (e.g., Lecca et al.
2014). So it becomes possible, for example, to distinguish between the impact of
anticipated and unanticipated regional fiscal policy changes. Of course, while the
limiting cases of (universal) perfect foresight and (universal) myopia offer useful
benchmarks for likely adjustment paths, we would expect future exploration of
hybrid models, which allow a degree of heterogeneity among transactors.

Even in the context of analyzing tax changes, there may also be some ben-
efits to exploring the significance of alternative “behavioural” specifications for
transactors— particularly for households. For example, there is some survey
evidence in the UK to suggest that households are much more likely to respond to
increases in taxation through variations in tax rates than they are to changes (or the
absence of changes) in tax thresholds, though even if true, there would be concern
about the legitimacy of policies that seek to exploit such “irrational” behavior.

5Lecca et al. (2015) attempt to do this. However, they identify a major concern here, namely
absence of official measures of interregional trade flows.
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Demographics are crucial in governing longer-term pressures on regional fiscal
finances, and there is considerable scope for further exploration of this issue. There
are a number of possible approaches. One of the simplest is to use an augmented
demographic module linked to a CGE framework (e.g. Lisenkova et al. 2010).
However, a comparatively recent development, at least in a regional context, uses
an overlapping generations (OLG) framework to track the ageing of cohorts in a
regional setting (Lisenkova et al. 2015). In the Scottish context, for example, the
new fiscal framework implies that the Scottish Government budget will be under
pressure as its population is projected to be ageing (on average) more rapidly than
that of the rest of the UK (RUK), with implications for the composition (and likely
total) of public spending. Longer-term, slower population growth is likely to add
further pressure to the region’s public finances.6 Such frameworks offer the potential
to capture long-term pressures on the public finances through changes in the levels
and age structure more accurately. Of course, it is interesting in such contexts
to explore the extent to which indigenous demographic pressures might be offset
through interregional migration.

While the discussion of this section has been mainly in terms of regional public
finances, a similar approach to sub-regional and local/city public finances would be
appropriate, particularly where the relevant authorities are responsible for the setting
of some taxes, or even where some tax revenues are assigned (e.g. replacement of
council taxes with a local income tax). The issue of the timing of fiscal effects
has come up in a number of contexts, and the systematic exploration of alternative
means of financing fiscal changes is an area where further research would be
welcome. Even where current arrangements preclude deficit financing, it would
be useful to explore the potential role of borrowing in smoothing the time paths
of adjustment, of course, in the context of dynamic models with an appropriate
treatment of expectations formation.

4.6 Conclusions

We anticipate two major types of development in regional CGE models: improved
specification, parameterization and solution methods; further applications to policy
relevant issues. In the case of methods, we expect a whole range of developments,
some of which have already been initiated, but none of which have yet been
fully developed and applied. Some of these methods are likely to be mutually
exclusive, and all are, at least in part, made possible by enhanced computing power.
The development we have particularly emphasized in Sect. 4.2 is enhancing the
statistical basis of CGE models, which will close the gap between CGEs and
DSGEs.

6In Scotland this may well happen when the new Fiscal Framework comes up for review in 2020.
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We have throughout referred to a number of other possible developments, includ-
ing: improved modelling of expectations; the development of behavioural CGEs
(incorporating e.g., risk aversion, inertia, hyperbolic discounting); endogenous
technical change, learning and innovation; improved treatment of space; the further
development of regional OLG models; more sophisticated treatments of imperfect
competition; allowing for endogenous policy formation, for example, in the context
of political economy models, and the incorporation of special modules with much
more detail on the behavior of key tansactor groups (e.g., micro-simulation models
of individuals’ behaviour) or sectors (e.g., energy and transport systems models).
Such developments will enhance the capacity of regional CGEs in forecasting and
historical simulation.

However, the process should not be about increased sophistication for its own
sake. As models grow in complexity, the more difficult it becomes to retain
an intuitive grasp of key transmission mechanisms, and the more challenging it
becomes to explain the results—to ourselves as well as to policy makers.7 Models
should be selected so as to be appropriate to the key questions of interest, and
augmented in a transparent and informative way that carefully builds upon earlier
models and thereby avoids the “black box” criticism.

While we have provided some examples here, including more systematic anal-
yses of the effects of public expenditure (e.g. on health and education), it is
virtually impossible to anticipate the whole range of potential applications of
future generations of regional CGEs. The flexibility of the modelling approach,
and past experience, tells us that we can say little about future applications,
beyond acknowledging that they will be even more wide ranging and extensive.
The potential seems limitless, and relevance to policy will be assured if the
model specifications incorporate the range of policy objectives and the transmission
mechanisms of policy instruments, so that key trade-offs and “double dividends”
can be identified and quantified.

The applications will reflect emerging regional issues (which will in turn
be associated with international, national, regional and local disturbances) and
policy concerns. Increasing awareness of global warming, for example, stimulated
numerous regional energy-economy-environment CGEs and their application to,
for example, renewables, carbon taxes and emission trading schemes. However,
fundamental issues will continue to reflect the long-standing concerns of regional
scientists: economic development and employment; environmentally sustainable
growth; skills; equity; the spatial distribution of economic activity, and regional
finances. Ultimately, the value of future generations of regional CGE models will
be assessed in terms of their ability to contribute to our understanding of regions

7Giesecke and Madden 2013, suggest a “back of the envelope” approach to enhancing understand-
ing of model results. The approach we have adopted is to use simplified analytical models as
appropriate, while using a very flexible modelling framework that allows us to track the source of
any model “surprises” (e.g. Lecca et al. 2014).
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and facilitate improved government policies that enhance the well-being of their
inhabitants.
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Chapter 5
Measuring the Impact of Infrastructure Systems
Using Computable General Equilibrium Models

Zhenhua Chen and Kingsley E. Haynes

5.1 Introduction

Regional impact assessment of infrastructure systems is an important public policy
concern given its relevance to economic development and homeland security.
A valid understanding of the linkages between various infrastructure systems and
growth of national and regional economies is vital for the development of sound
policies targeting investment and system protection. The relationship between
public expenditure and aggregate productivity has been explored for over for two
decades following the path-breaking study conducted of Aschauer (1989), who
argued that critical infrastructures, such as streets, highways, airports, mass transit,
sewers, and water systems, play significant roles in promoting economic growth
and productivity improvement. The positive impact of infrastructure systems on
the economy has been widely confirmed. However, the extent and magnitude of its
contributions are still not well understood. The marginal economic contributions
of infrastructures were found to vary substantially across different studies. This
is not surprising given that previous studies conducted impact assessments with
focuses on different infrastructure systems, geographic locations and time periods.
The different scales of analysis and data being adopted were also found to lead to
different research findings.

Methodology is another key factor that affects a valid understanding of an
infrastructure system’s contribution to the economy. A plethora of pioneering
studies evaluated the economic contribution of infrastructure to economic growth
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and productivity improvement following a neo-classical approach by measuring
the economic output elasticity of infrastructure through some forms of aggregated
production function using a regression format (Duffy-Deno and Eberts 1991;
Gramlich 1994, 2001; Harmatuck 1996; Nadiri and Mamuneas 1996; Fernald 1999;
Boarnet 1997; Boarnet and Haughwout 2000; Mattoon 2002; Bhatta and Drennan
2003). The estimated output elasticities are found to vary substantially with a range
between �0.15 and 0.56, due to the differences in the data and specific modeling
forms (Melo et al. 2013).

Such evaluations of infrastructures’ contribution to economic growth and produc-
tivity through an econometric analysis can only be considered a partial equilibrium
assessment. This is because the relationship between economic growth and/or
productivity improvement and infrastructure is only evaluated from the supply
side, in other words, only a part of the market to attain equilibrium. This is due
to the implicit assumption of a constant demand as a response to infrastructure
change during the period of investigation. The indirect impact on the economy
as a result of demand change cannot be adequately captured in a regression-based
supply-side model. For instance, influence as a result of transportation infrastructure
investment on the price change of final commodities and ultimately on change
of disposable income of households cannot be captured in a partial equilibrium
assessment. Hence, a general equilibrium assessment is indispensable to achieve
a comprehensive economic impact of infrastructure with considerations from both
the supply and the demand side.

With the advancement of computational technology and applied modeling plat-
forms, Computable General Equilibrium (CGE) models have been widely adopted
to assess the economic impact of infrastructure systems. Originally developed by
Johansen (1960), CGE is an applied microeconomic modeling system that uses
actual economic data to estimate interactions between the economy and changes in
policy, technology or other external factors. Unlike partial equilibrium assessment,
CGE captures the interactions among various markets and between both demand
and supply through a simultaneous equations system that can involve thousands
of equations and variables. The analysis is built on the Walras-Arrow-Debreu
theory of general equilibrium (Arrow and Debreu 1954), with modern modifications
and extensions allowing for imperfect markets. Because it provides clear linkages
between the microeconomic structure and the macroeconomic environment, CGE
can be used to simulate the interrelationships among multiple industrial sectors and
markets.

A typical CGE modeling mechanism is illustrated in Fig. 5.1. The model consists
of a series of simultaneous equations that are calibrated using two data sources:
a social accounting matrix (SAM) which measures the initial economic activities
under equilibrium, and a set of parameters including different types of elasticities of
substitution. After calibration, the model is rerun to calculate a new equilibrium
based on prerequisite policy shock conditions and closure rules. The output of
CGE analysis normally contains indicators of welfare, the macro and the micro
effects, which can be used to evaluate the magnitude of impacts as well as for policy
analysis.
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Fig. 5.1 CGE modeling mechanism

A standard CGE modeling framework consists of four sets of institutions:
producer, consumer, government, and foreign trade. Each institution interacts with
others while maximizing its utility or profit under relevant constraints. The produc-
tion structure is often measured through either a Cobb-Douglas production function
form or a constant elasticity of substitution (CES) form for aggregate factors of
production, whereas fixed coefficient relationships are used for intermediate inputs.
Value added from primary factors, together with intermediate inputs, generate the
final output. The model specifies goods produced in different countries or regions
as imperfect substitutes. Sectoral output is modeled through a constant elasticity
of transformation (CET) aggregation of total supply to all export markets and
supply to the domestic market by following the approach of Lewis et al. (2003).
The allocation of goods between exports and domestic markets is set to maximize
revenue from total sales. Government plays dual roles as both a policy maker in
terms of providing exogenous shocks to the economy and a consumer in terms of
allocating public funds collected from taxes and tariffs to various fields, such as
public affairs, intergovernmental transfers and subsidies.

General equilibrium analysis is usually conducted at the national level due to
data availability, but in recent years, the analysis has also been more widely applied
for assessments of regional economic impact and related policy issues. Partridge
and Rickman (1998) conducted a comprehensive appraisal of regional CGE models
based on 36 empirical studies conducted between 1983 and 1997. A summary of
their appraisal suggests that future research in regional CGE modeling should be
focused on the following directions:

• Restrictions on functional forms of production activities should be relaxed;
• Inherent uncertainty in predictions of regional CGE should be examined system-

atically;
• Sensitivity should be examined for the conditioning assumptions against avail-

able data and empirical evidence;
• Attention should be paid to the dynamics, or time-paths of relationships in a

regional economy.

Indeed, regional CGE modeling has been greatly enhanced in terms of com-
putational algorithms and modeling frameworks since Partridge and Rickman’s
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appraisal in 1998. Current CGE models are equipped with a flexible nesting struc-
ture, which allows for a detailed representation of any particular type of production
activities. The bottom-up framework of many regional CGE models has generally
improved with capacities to capture heterogeneous regional economic structures and
diverse interregional trade flows. In addition, many recent CGE models have been
upgraded with dynamic functions that allow for dynamic recursive simulations of
regional economic activities in response to policy shocks.

Despite these advances, issues such as sensitivity related to parameterization,
reliability of simulation and theoretical underpinnings of shock mechanisms remain
critical concerns in regional CGE models and are still not well understood. This
essay discusses these issues with a focus on regional impact assessments of
transportation infrastructure by following the path of Partridge and Rickman (1998).
The objective is to stimulate scholars and practitioners to rethink the fundamentals
of regional CGE modeling and its applications in infrastructure appraisal and
suggest future research directions. The rest of this chapter is organized as follows.
Section 5.2 summarizes the various CGE frameworks being developed. Section 5.3
discusses the major challenges in CGE modeling, with a focus on the application
of CGE for impact assessment of transportation infrastructure. Section 5.4 outlines
other future research directions.

5.2 Different Frameworks of CGE Modeling

CGE inherits the advantage of Input–Output analysis in terms of capturing economic
transactions among various economic sectors and entities in the form of a Social
Accounting Matrix (SAM). Because the sectoral scheme of a SAM can be aggre-
gated or disaggregated depending on any specific research purpose, the modeling
framework of CGE is flexible and can be applied to impact assessments of different
sectors. In addition, CGE can also be modified for impact assessment at various
regional scales and it can be upgraded with dynamic functions for long-term impact
assessments and forecasting. The following section summarizes the key features
and status of development of four CGE modeling frameworks: a static single-region
CGE, multi-regional CGE, dynamic CGE and dynamic-recursive multi-regional
CGE. Understanding the various CGE modeling frameworks is important as it helps
to recognize the gap between the current CGE modeling and future research needs.

5.2.1 Static Single-region CGE

Single-region static CGE is the standard modeling framework of CGE analysis and
has been widely adopted for impact assessment with a focus on a single region,
which is often applied to a national level assessment. The model is static because
only year-one impacts of a policy shock are considered. ORANI is one of the early
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single-region CGE models developed by a team at the Centre of Policy Studies
(CoPS) in Australia (Dixon et al. 1982). A single and static CGE model has a
wide range of applications in impact assessments of transportation infrastructures.
Most single-region models were originated from the tradition of Dervis-DeMelo-
Robinson (Dervis et al. 1982). For instance, the International Food Policy Research
Institute (IFPRI) model, developed by Lofgren et al. (2002), is one of the examples
of the standard single region static CGE model. The role of transportation services is
modeled through the related sectors and transaction cost in the SAM and the model.
Conrad (1997) developed a theoretical modeling framework for a static single-
region CGE model to investigate the role of transportation services on congestion
and air pollution, which was primarily achieved through the development of detailed
cost functions with multi-level nesting structures. McDonald (2005) also developed
a single-region CGE model in the tradition of the Dervis-DeMelo-Robinson model.
The model was applied by Chen and Haynes (2013) to evaluate the national
economic and welfare impacts of six modes of transportation infrastructures in
the U.S., including truck, rail, air, transit, water and pipeline. The impacts of
transportation infrastructure investments were measured through policy shocks from
investments in capital stocks of related transportation sectors. Their study found
a positive but small stimulus effect of transportation infrastructure investment on
growth of the national GDP and welfare in the U.S.

Economic Consequence Analysis of critical infrastructure system from unex-
pected events, such as natural disasters, terror attacks and technological failure,
is another major application area of CGE modeling. The USCGE model has been
adopted for economic consequence analysis for both natural hazards and terrorism
events (Rose et al. 2009; Chen et al. 2015a). Developed by Rose and Oladosu
(2002), the model consists of 58 economic sectors, along with multiple institutions
including nine household income groups, three government actors (two federal
and one state and local), and external agents (i.e., foreign producers). Production
activities are represented in six-level nested constant elasticity of substitution (CES)
function and international trade is represented through an Armington substitution
function between imports and domestic production. Chen and Rose (2015) evaluated
the influences of economic resilience to transportation infrastructure system failure
using the USCGE model. Vulnerability and economic resilience of the different
modes of transportation infrastructure, including air, road, rail, water and, local
transit were assessed and compared within a modified CGE structure to allow for
modal substitution.

Although the single-region and static CGE model has been widely utilized
for various empirical assessments, it still has several limitations. First, the model
assumes the economy is in equilibrium, though disequilibrium can be incorporated
in the labor market (unemployment equilibrium). Second, the model is static, hence
it does not trace the time-path of impacts, including various economic cycles
associated with employment and investment changes. In addition, the model is
constructed through a deterministic approach on the basis of a single base year
of data (in contrast to the superior approach of econometric models, which use
time series data and have goodness of fit measures), hence it lacks of the ability
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to incorporate uncertainty. Third, the model has limited power in analyzing regional
spillovers given its single-region modeling structure.

Some of these limitations, such as the constraints of regions and temporal
interactions, are due to the intrinsic structural characteristics of a single-region CGE
model, whereas other limitations, such as the deterministic structure for modeling
various interactions among the economy, can be further improved in future research.
For instance, one potential area for improvement is to integrate Dynamic Stochastic
General Equilibrium (DSGE) modeling procedure into a CGE model to enable
policy analysts to conduct impact assessment with a consideration of forward-
looking behavior under uncertainty. Rickman (2010) suggested that dynamic fitting
of DSGE has great potential to be applied to regional CGE models to improve
their empirical basis and lead to a wide utilization. However, numerous challenges
remain. For example, issues such as empirical identification, parameterization and
verification of DSGE modeling structure need to be further understood before the
integration of DSGE into CGE.

5.2.2 Multi-regional CGE

Multi-regional CGE was developed to address the third limitation of the single-
region CGE model discussed above. The expansion from a single-region to a
multi-region framework is known as regionalization and can be achieved in two
ways. The first is called a “top-down” approach in which national results such as
gross output, employment and GDP are simulated through a single-region CGE
model first, and economic output for different regions are then disaggregated based
on certain regional proxy indicators (Klein and Glickman 1977). Alternatively,
the other method is known as a “bottom-up” approach in which national results
are aggregated based on regional economic outputs that are simulated initially in
a multi-regional CGE model. Unlike the single-region CGE or the “top-down”
approach of regionalization, a multi-regional CGE model developed through a
“bottom-up” approach consists of multiple independent regional accounts and
interregional trade involving various commodities and factor flows. Because price
and quantities in different regional accounts are determined endogenously by
the supply and the demand both interregionally and intraregionally, the model
is able to measure distinct regional impacts and associated regional spillover
effects caused by a policy simulation. Hence, a multi-regional CGE model is
sometimes also called a Spatial CGE model, or SCGE. The multi-regional CGE
model has been widely applied for regional economic impacts assessments of
infrastructure investment. The model is particularly relevant and critical for the
evaluation of regional policies related to regional disparity and regional economic
restructuring.

Early applications of the multi-regional CGE model in the transportation sector
can be traced back to the 1990s. Buckley (1992) developed a multi-regional CGE
model with three regions and five sectors to evaluate the spatial and environmental
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impacts of transportation services in the U.S in terms of equity and efficiency.
His analysis found that transportation costs for both intraregional and interregional
trade could be reduced when labor productivity increased. Roson and Dell’Agata
(1996) developed a different multi-regional CGE model with 20 regions and 17
sectors for Italy. The model was applied to evaluate environmental and economic
impacts of investment in the freight transportation sector. Their study found that
traffic congestion could be reduced as a result of an increase in transportation
investment. Haddad and Hewings (2001) evaluated the long-run regional impacts
of the productivity in the transportation sector in Brazil using a multi-regional CGE
model called B-MARIA. The model, which consists of three regions and 40 sectors,
was built based on the modeling framework of the MONASH, a multi-regional
model for the Australian economy. (Haddad et al. 2010). Bröcker and Mercenier
(2011) evaluated the impacts of transportation infrastructure investment for the
Trans-European Transport Networks using a SCGE model that consists of 260
European regions. Impacts of new infrastructure links were modeled by reducing
transport costs along these links and tracing the effects through the economy. Zhang
and Peeta (2011)developed a SCGE model called MINSCGE to evaluate interdepen-
dencies of four types of infrastructures: transportation, telecommunication, energy
and power.

The Global Trade Analysis Project (GTAP) model developed by Hertel (1997)
is one of the well-known multi-regional CGE models. Because regions in the
GTAP model are measured as countries or groups of countries, the model has been
adopted extensively for policy analysis related to the economy and international
trade. The standard GTAP model has a limited application in impact assessment of
transportation infrastructures because only transportation margins for international
trade are represented in the model. This limitation was reduced in the extended
version of GTAP as domestic transportation margins for various transportation
modes, such as road, rail, water and air were added to the model (Peterson 2006).

The research team at CoPS is the pioneer of regional CGE modeling. A series
of large-scale multi-regional CGE models, such as ORANI (Dixon et al. 1982),
FEDERAL (Madden 1990), Monash Multi-Regional Forecasting Model (MMRF)
(Adams et al. 2000) were developed and applied for various policy impact analyses.
The Enormous Regional Model (TERM) is another MMRF style multi-regional
CGE model, but it has an enhanced capacity for regionalization in a “bottom-
up” manner (Horridge et al. 2005). Unlike the GTAP model, which is primarily
designed for multi-country analysis, TERM is specifically designed for regional
impact analysis within a country and the model can handle detailed regional
accounts for up to 57 regions and 144 sectors. TERM model is developed based
on a “bottom-up” approach and enables researchers to assess regional economic
effects of infrastructure investment given that transportation costs are considered
explicitly as regional trade margins in the model. Although the model was originally
developed for the assessments of the impact of drought on Australian economy, the
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model has been modified into various versions for over 13 countries.1 SinoTERM
is one example of the modified TERM designed for the Chinese regional economy.
The model consists of 31 regions and the number of sectors can be upgraded up to
137 (Horridge and Wittwer 2008).

5.2.3 Dynamic CGE

Dynamization is the other key extension of CGE modeling. It allows for a general
equilibrium impact assessment for various years by incorporating time-lagged
effects caused by a policy shock into the model. Unlike a static CGE model, a
dynamic CGE model provides impact results on GDP, employment, gross output
and change of demand for given time periods as well as results for each specific
time period. Hence, the modeling framework is more relevant for long-run impacts
of policy, such as in the case of infrastructure investment. The detailed modeling
mechanism is discussed in Sect. 5.3.

As Dixon and Rimmer (2002) pointed out, the key to upgrading a static CGE
model into a dynamic model involves three major modifications: physical capital
accumulation, accumulation of financial assets/liabilities and lagged adjustment
processes. The first one introduces additional equation systems to the static CGE
in order to allow for an accumulation of physical capital. In particular, the flow
of annual investment for each sector has to be added to capital stocks. A standard
capital accumulation function can be expressed as:

Ki;tC1 D Ki;t .1 � Di;t/C Ii;t (5.1)

where Ki , t denotes the quantity of capital stock available to sector i in year t,
Ii , t represents the quantity of investment in sector i in year t and Di , t represents the
rate of depreciation. The base year quantity of capital stock is normally provided
exogenously, which can be retrieved from economic survey or estimated based on
private fixed assets.2 The level of investment is determined by the expected rate of
return in sector i in a given time period. The mechanism is also applicable to model
capital accumulation at different regions.

The accumulation of financial assets/liabilities is the second key upgrade in
converting a static CGE to a dynamic model.3 This is particularly relevant for

1These countries include Brazil, China, Finland, Indonesia, Italy, Japan, Korea, New Zealand,
Poland, South Africa, Sri Lanka, Sweden and USA.
2As pointed out by one of our reviewers, data scarcity as well as methodological challenges of
capital stock estimation should be considered as a caveat.
3One should note that applications of the accumulation of financial assets/liabilities in a multi-
regional CGE model would require additional specifications or assumptions than that being applied
to a single-region CGE in terms of regional balance of payments, For instance, are local assets
owned elsewhere and assets outside the region but owned by residents treated modeled in the same
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countries with a heavy debt burden. The process requires establishment of linkages
between current account flows and net foreign liabilities and then this link feeds into
net disposable income and the consumption function relating household spending to
disposable income (Dixon and Rimmer 2002). The third aspect of dynamization of
CGE modeling involves a lagged adjustment process, which is conducted automati-
cally period-by-period in the model. The process helps to eliminate inconsistencies,
for instance between levels of investment and rates of return on the one hand and
the theory of investment behavior on the other hand (Dixon and Rimmer 2002).

The dynamic CGE model is often simulated recursively because it traces a time
path by sequentially solving a static model, one period at a time. The assumption is
that behavior depends only on current and past states of the economy. Alternatively,
if the expectations of agents (e.g., producers, consumers, and government) depend
on the future state of the economy, the model then requires solutions for all periods
simultaneously, leading to a full multi-period dynamic CGE model. Within the
latter group, dynamic stochastic general equilibrium models explicitly incorporate
uncertainty about the future.

In recent years, there have been burgeoning numbers of empirical studies for
impact assessment of transportation infrastructure using a dynamic CGE model.
Kim (1998) developed a dynamic CGE model to analyze the economic impact
of transportation investment in Korea. Economic impacts were simulated through
the shocks of infrastructure investment expenditure and operation services of
infrastructure facilities along with the time period. The dynamic mechanism was
modeled through a capital accumulation and updates of total labor supply and
government policy variables. Rioja (1999) evaluated infrastructure policy using
a dynamic CGE model with two sectors for seven Latin American countries.
The dynamic mechanism was modeled through the accumulation of capital stock
and the study found that more highways and telecommunication infrastructures
promote private investment and increased productivity in the private sectors. Seung
and Kraybill (2001) evaluated the impacts of infrastructure investment on Ohio’s
economy using a two-sector dynamic CGE model, in which they found that the
magnitude of the stimulus effect was determined by the output elasticity of public
capital.

Chen et al. (2015b) evaluated the economic and environmental impacts of rail
investment in China using an edited dynamic CGE model based on their earlier
static model. The dynamic mechanism follows the approach of Morley et al.
(2011), El-Said et al. (2001) and Thurlow (2003) by introducing additional updating
equations for all the stock variables (including capital stock, working capital and
labor force) as well as dynamic policy shocks. The model is solved recursively
period by period with the updated variables. As indicated by Morley et al. (2011),
such a dynamic mechanism is a standard method for turning a long-run comparative
static CGE model into a tool that gives a time-series solution showing how an

way. The implications to modeling results related to these specifications and assumptions are likely
to be substantial.
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economy reacts to external shocks or internal changes in policy. The key functions
are represented in the following equations:
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where WFKAVa
ft: Average capital rental rate of factor f of activity a at time t;

QFfat: Next period sectoral capital stock of factor f of activity a at time t;
WFft: Wage rate of factor f in time t;
WFDISTfat: Wage distortion factor of factor f in activity a and time t;
INVSHRa

fat: Capital share of factor f of activity a at time t;
ˇa: Wage-rental ratio parameter. It equals to 1 as default;
DKAPSa

fat: Gross fixed capital formation of factor f of activity a at time t;
PKft: Price of capital f at time t;
PQct: Composite commodity price of commodity c;
QINVct: Quantity of investment demand of commodity c and time t;
depratef : Capital stock depreciation rate. It equals to 5% in this study.

5.2.4 Dynamic-Recursive Multi-regional CGE

The combination of a dynamic function in a multi-regional CGE modeling frame-
work forms the Dynamic-Recursive Multi-Regional Model. To activate the dynamic
mechanisms, additional data is required, which include investment elasticity, rate
of depreciation, expected rate of return on investment, and capital growth rate.
The model is powerful for regional economic forecasting and policy analysis as it
captures dynamic impacts for different regions. The key is to allow physical capital
accumulation and lagged adjustments (e.g., wage, employment, and investment) at
various rates for different regions.

For instance, FEDERAL-F is a dynamic-recursive multi-regional CGE model
developed by Giesecke (2000). A sequence of single-period equilibria is linked
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via stock-flow functions, and the change of equilibria is computed in response to
the value change of stock variables in the model. Specifically, flows in previous
periods (such as investment, inter-regional migration, and government borrowings)
influence the values for the endogenous variables computed in each period through
their contribution to the value of the model’s stock variables (such as capital,
population, and government debt) in each period (Giesecke 2003, 3).

In addition to FEDERAL-F, the team at CoPS also developed several dynamic
multi-regional CGE models with different functions and for different policy analy-
ses. MMRF-GREEN is one of these models designed primarily for regional envi-
ronmental modeling (Adams et al. 2000). The model was upgraded by incorporating
the two dynamic mechanisms of the MONASH model into the comparative-static
multi-regional MMRF model: physical capital accumulation and lagged adjustment
processes.

TERM-DYN is another dynamic recursive multi-regional CGE model developed
by the research team at CoPS and has been applied to analyze the urban water
infrastructure project in South-East Queensland (Wittwer 2012). The output of the
water and drains sector in the model is considered to be equivalent to the volume
of urban water supply. Hence, within a dynamic CGE baseline, water is treated
as an exogenous resource, the scarcity of which worsens with economic growth.
Conversely, the construction of water infrastructure, such as Dam, improves water
supply which, in turn, promotes economic growth.

Other stylized dynamic multi-regional CGE models were also developed for
regional economic assessments using similar dynamic mechanisms. For instance,
Kim and Kim (2002) evaluated the impacts of regional development strategies on
economic growth and equity in Korea using a dynamic and multi-regional CGE
model, which consists of six metropolitan areas and eight provinces. The impacts
were simulated consecutively through different counterfactual shocks on regional
investment expenditures for ten periods, in which a 1995 SAM was treated as
the base year. Kim et al. (2004) applied the same model to evaluate the regional
economic impacts of highway investment in Korea. The analysis was conducted to
determine which highway development deserves priority for investment based on
consideration of economic growth and regional economic equity in the long run.
Unlike most CGE analysis with interests on measuring regional impacts through
the changes in gross output, GDP and employment, Zhang and Peeta (2014)
developed a dynamic version of MINSCGE and evaluated interdependencies of
four infrastructure types by measuring the change in household utility.

5.3 Key Issues

The modeling framework of CGE has been substantially improved both in terms
of regionalization and dynamization in recent decades, which greatly facilitated its
application in impact assessment for various policies. Nevertheless, limitations of
CGE modeling such as a complex modeling framework and high cost of operation
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are often criticized (Fæhn 2015). This is because CGE is a complex applied microe-
conomic/macroeconomic model that contains thousands of equations and variables
representing the entirety of economic activities (Donaghy, 2009). The analytical
framework is constructed based on numerous assumptions and extensive specifica-
tions of parameters. Application of CGE for regional impact assessment can be even
more challenging. Partridge and Rickman (1998) pointed out that regional CGE
modeling requires adjustment of assumptions designed for a national-level CGE
modeling to reflect regional-level activities, such as government fiscal transactions
and market structures. Because the number of assumptions on market structure and
strategic behavior by government, firm and consumer may potentially lead to differ-
ent results, sensitivity analysis is considered critical for validation of the model. The
following discussion focuses on three major concerns of CGE modeling: parame-
terization, theoretical underpinnings for policy simulation, and data reliability.

5.3.1 Parameterization

Parameterization remains a major issue of CGE modeling since the previous
appraisals by Partridge and Rickman (1998, 2010). As illustrated in Fig. 5.1, CGE
analysis requires two sets of input data (a SAM and parameters) to calibrate the
simultaneous equation systems through a computerized simulation run. This is a
crucial step prior to moving to the implementation of the policy simulation analysis
for impact assessment (Sánchez-Cantillo 2004). Key parameters include elasticities
of substitution for factor inputs, imports, exports and household consumption.
Ideally, these parameters need to be estimated based on data that are consistent with
the benchmark data in SAM in terms of sectoral scheme, period and geographic
representations. This is because a system-wide econometric estimation of CGE
parameters avoids potential simulation errors caused by the inconsistency of
benchmark data and various parameters. However, this is a challenging task given
the amount of work for estimating various elasticity parameters. This can be so
substantial that it becomes prohibitive. Lack of relevant data is another constraint for
parameter estimations. Econometric estimation through partial equilibrium models
normally requires a sufficient amount of time-series or panel data observations
with consistent regional and sectoral schemes. However, researchers often find that
data reflecting price and quantity of different sectors and at different geographic
aggregation are not always available. Regional level data become even more scant
as the geographic scale of analysis narrows.

Given these restrictions on research efforts and data, many CGE studies adopted
parameter values from econometric studies as an alternative approach for param-
eterization. The limitations of such an approach have been widely criticized.
For instance, Shoven and Whalley (1992) pointed out that CGE modeling lacks
empirical foundations for estimates of behavioral parameters. In fact, the adoption
of key parameters from the literature for CGE calibration relies on three underlying
assumptions. The first one is that CGE simulations results are insensitive to the
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specifications of parameters; the second is that parameters are relatively inelastic to
time periods and geographic locations, in other words, they are considered both
temporally and spatially invariant; third, the parameters are relatively consistent
across various related sectors and in various aggregations.

Due to the lack of foundations for parameter identification, there is no consensus
on which value to use. Table 5.1 provides an example on the trade elasticity values
of some selected sectors used by different CGE models. Except for the GTAP
model, which is essentially a multi-country model, all these models were designed
specifically for the U.S. with different focuses on policy analysis. The elasticity
values were obtained from different studies and are substantially different for most
sectors. The inconsistent trade elasticity value being adopted clearly suggests the
existence of a potential estimation bias problem due to the various effects of
substitution between imports and domestic goods being introduced. Hillberry and
Hummels (2013) suggested that one appropriate approach for parameterization is
to rely on econometric exercises that employ identifying assumptions and exploit
shocks that are similar in nature to those imposed in the model experiment.

Parameterization can be a more severe issue in multi-regional CGE and dynamic
CGE models given the involvements of different regional accounts and dynamic

Table 5.1 Comparison of the trade elasticity among different CGE models and studies

Sectors USITCa GTAPb TERM-USA USAGE USCGE USREPc

Grains 5 2:2 5:05 5 2 5

Livestock 3:2 2:8 2:06 5 2 5

Coal 1 2:8 3:05 2:6 0:97 4

Oil and gas 2:8 2:8 5:21 2:6 0:97 4

Other minerals 2 2:8 0:9 2:6 0:97 5

Meat products 2:7 2:2 3:01 3:73 2:5 5

Vegetable fats and oils 5 2:2 3:3 3:73 2 5

Textiles 2:3 2:2 3:74 2:87 1:1 5

Leather products 1:7 4:4 4:05 2:01 1:1 5

Wood products 2:8 2:8 3:4 2:72 3 5

Paper products 3:9 1:8 2:95 3:58 1:1 5

Petroleum and coal
products

2:5 1:9 2:1 2:34 2 4

Chemicals rubber and
plastic products

2 1:9 3:3 1:93 1:1 5

Metal products 1:9 2:8 3:22 2:35 1:8 5

Transportation
equipment

1:7 5:2 3:51 1:5 3 5

Machinery and
equipment

2:2 2:8 4:11 2:35 3 5

Electricity 2:8 2:8 4:4 2:8 0:2 0:5

Transport services 1:9 1:9 1:9 1:54 1:1 5

Source: aDonnelly et al. (2004), bDimaranan et al. (2006) and cRausch et al. (2011)
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mechanisms. New economic geography theory suggests that regional agglomeration
and spillover are influenced by two forces: centripetal forces and centrifugal
forces, both of which are determined by various regional characteristics such as
endowments and transportation costs. Under a multi-regional CGE framework, it
is possible that parameters, such as the elasticity of factor substitution, could vary
among different regions. For instance, capital and labor may be substituted more
easily among the Northeast states in the U.S. than among the states in the Midwest
or West due to the concerns of geographic adjacency and homogeneous economic
structure. On the other hand, the substitution between capital and labor may occur
both intraregionally and interregionally. For instance, the substitution of capital and
labor for production activities may occur not only within the New York Metropolitan
Statistical Area (MSA), it could also occur between the New York MSA and the
Philadelphia MSA given the well-connected infrastructure systems and economic
activities. Without capturing the interregional substitution, CGE results of a policy
shock could either be underestimated or overestimated due to the adoption of
inappropriate elasticity of substitution.

Chen and Haynes (2015) evaluated regional economic impacts of different modes
of transportation infrastructure in the U.S. based on a CGE model with elasticities of
substitution for factor inputs estimated through spatial econometric models. Their
study found that the integration of spatially estimated elasticity of substitution
with CGE is important as spatial dependence has been observed among many
economic sectors through spatial autocorrelation tests. The elasticity of substitution
for factor inputs were found relatively smaller using spatial econometric models
than using either OLS or panel estimation. This indicates that the controls of spatial
dependence among variables representing quantity and price of labor and capital
lead to a high cost penalty to the economy when a policy shock is implemented,
which in turn amplifies the impact results. Without considering the issue of spatial
dependence in CGE parameter estimation, the various elasticities of substitution
are likely to be overestimated using traditional OLS estimation. This can lead to
underestimated impact outcomes.

Parametrization for dynamic CGE model is even more challenging as the
dynamic recursive mechanism involves additional assumptions and specifications
of parameters for physical capital accumulation and investment allocation. For
instance, in a dynamic CGE model, depreciation rates for various sectors are
required to enable the physical capital accumulation function as indicated in Eq.
5.1. To identify appropriate depreciation rates is important in dynamic CGE models
but, unfortunately, relevant data are scarce (Dixon et al. 2013). A higher value
for a depreciation rate is likely to underestimate the impacts of a policy shock,
whereas a lower value may lead to an overestimation error. Unfortunately, there is
a lack of both theoretical and empirical foundations for the selection of appropriate
depreciation rates and many studies adopted a rate without explicit justification.

Investment allocation also requires additional information for parameterization.
As suggested by Horridge (2002), the mechanism involves two basic assumptions:
(1) investment/capital ratios are positively related to expected rates of return and (2),
expected rates of return converge to actual rates of return via a partial adjustment
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mechanism. The two assumptions are represented in Eqs. 5.7 and 5.8, respectively:

G D F.E/ (5.7)

G D Q � Gtrend � M˛

Q � 1C M˛:
(5.8)

where G denotes gross rate of capital growth in the next period and E denotes
expected gross rate of return in the next period; M represents the ratio between the
expected gross rates of return E and normal gross rates of return Rnormal; Q denotes
(max/trend) investment/capital ratio, and Gtrend is represented as a function of Rnormal

Implementation of the first equation assumes that each sector has a long-run or
normal rate of return and requires an exogenously determined expected gross rate
of return, whereas calibration of the second equations requires specific parameters,
such as investment elasticities ˛, investment/capital ratio G and normal gross rate
of return Rnormal, all of which need to be provided exogenously. It is clear that the
information needed for a Dynamic-Recursive Multi-Regional CGE model further
increases exponentially given that parameters related to dynamic mechanisms for
different regional accounts have to be specified. Despite these issues, empirical
applications of dynamic CGE models have emerged rapidly (e.g., Oktaviani et
al. 2007; Bohlman 2010; Arndt et al. 2012). However, these issues related to
sensitivity and reliability of these parameters for dynamic mechanisms have rarely
been discussed or analyzed.

In sum, parameter estimation of CGE models still deserves further attention
in future research. Although adopting parameters that were estimated from the
literature for CGE analysis has become a normal approach and is widely adopted
in many existing studies, the shortfall of such an approach has been generally
recognized (Partridge and Rickman 1998; Chen and Haynes 2015). Surprisingly,
it is still uncommon to find CGE analysis that is based on a self-estimated
parameterization approach rather than depending on estimates from the literature.
The lack of incentive to consider estimations of elasticities of substitution as a
part of CGE analysis is because the amount of work for estimating elasticities of
substitution increases exponentially as the numbers of sectors and regions are added.
Another unavoidable fact is that the available data for econometric estimation of
parameters become scare as the sectoral structure of CGE is further disaggregated.
Nevertheless, given that CGE simulations are found to be sensitive to parameter
specifications, additional efforts for parameter validation remain necessary to
improve the robustness of CGE analysis.

5.3.2 Underpinnings of Policy Shock

In contrast to econometric analysis, CGE modeling is based on a computerized
simulation in which macroeconomic impacts in terms of gross output, GDP and
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employment are calculated as changes before and after a policy shock, which
is implemented through adjustments of exogenous variables and/or parameters to
reflect the direct effects of a policy reform. Hence, CGE modeling avoids statistical
errors such as endogeneity, multicollinearity and heteroscedasticity and has the
potential to capture wider economic impacts. On the other hand, CGE modeling
also has limitations in the way a policy shock is implemented. Because the direct
effects from a policy reform can be modeled in various ways in a CGE model,
which approach is most appropriate remains unclear given the lack of theoretical
underpinnings for CGE policy shocks. We further elaborate the issue with a focus
on impact studies on transportation infrastructure using CGE. We first introduce
the various techniques of implementing shocks to reflect changes in equilibrium
conditions, such as an increase in investment, and a reduction of stock due to system
disruptions. We then discuss the potential caveats of CGE policy simulations using
relevant empirical studies as examples.

Economic impact analysis of infrastructure investment and economic conse-
quence analysis of infrastructure disruption under unexpected events, such as natural
disaster, terror attack or technological failure are similar in that both can be
implemented through CGE simulations. The major difference between these two
is that the former represents positive shocks to the economy, whereas the latter is
measured as negative shocks. Nevertheless, empirical studies for these two areas
can be implemented through four types of shocks in CGE models: capital shock,
productivity shock, margin shock and expenditure shock.

A capital shock refers to the approach of measuring economic impacts by
altering the quantity of capital input in a CGE model. A positive shock on the
quantity of capital input drives up the quantity of production, which thus increases
gross output and GDP and vice versa. Many studies evaluate regional economic
benefits of transportation investment through such an approach (e.g., Kim 1998;
Chen and Haynes 2013). Productivity shock is implemented through adjustments
to corresponding productivity parameter in CGE. The shock is normally adopted
to reflect improvements or declines of production activities in responses to a status
change of economic equilibrium. For instance, a completion of a highway project is
expected to increase the productivity of road transportation related services. Hence,
an output expansion in the truck sector is expected to contribute to the growth of
total gross and GDP. Examples of evaluation of infrastructure investment through
a productivity shock can be found in Rioja (1999) and Siegesmund et al. (2008).
CGE simulation can also be implemented through a shock on transportation margin
as a response of transportation infrastructure improvements. This approach has a
requirement for SAM in that trade and transportation margins have to be added
in as separate accounts. See examples in Lofgren et al. (2002) and Bröcker et al.
(2010).

In addition to these three supply side shocks, macroeconomic impacts of
transportation infrastructure can also be measured from the demand side, such
as a shock to household expenditure. This is particularly relevant in economic
consequence analysis of infrastructure system disruption where behavioral effects
play a dominant role. For instance, Chen et al. (2015a) evaluated the economic
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consequences of aviation system disruption, in which the primary negative impacts
from the 9/11 World Trade Center terrorist attack was measured through reductions
of travel and tourism related household expenditure.

Most empirical studies using CGE modeling were de facto conducted from an
ex ante perspective based on hypothetical scenarios. Hence, CGE policy shocks
generally lack evidence based underpinnings, which can make results difficult to
interpret. For instance, Kim et al. (2004) evaluated the regional economic impacts
of highway investment in Korea using a multiregional CGE model. Although
one of the findings revealed that the selected highway projects mitigate regional
disparities in terms of wages with fading impacts over time, the cause of such
outcomes remains improbable because several fundamental questions, such as what
magnitudes of shocks had been applied for the CGE simulation and how they were
determined, were still unclear. Seung and Kraybill (2001) investigated the effects
of infrastructure investment on regional output and welfare in Ohio using a regional
dynamic CGE model. The policy shocks were implemented through the adjustments
of public capital elasticity parameters at three different levels. The approach
seems like a hybrid of capital shock and productivity shock but, unfortunately, the
specifications of policy shock levels appear to be incomprehensible. Infrastructure
investment was found to reduce household welfare instead of increasing it, which
seems counterintuitive and raises a red flag for their modeling mechanism.

The lack of evidence based underpinnings also raises concerns on the validity
of simulation outcomes for the following two reasons: First, since the magnitude of
CGE shocks is generally based on author(s)’ arbitrary judgement, the corresponding
simulation outcomes have limited power to reflect the real world situation. Second,
CGE simulations are likely to involve omission bias due to the lack of scientific
procedures to determine appropriate shocks. As a result, empirical CGE studies
generally focus on magnitude, direction and distributive patterns instead of inter-
preting the numeric outcomes. The lack of evidence based underpinnings for CGE
shocks further constrains the implications of CGE modeling, and results from CGE
analysis can only be used as road maps for policy implications.

It is clear that the underpinnings of policy shock in CGE analysis need to
be considered more cautiously and carefully. One potential improvement strategy
is to connect the direct shock to external resources. For instance, the classical
economic consequence analysis using CGE for natural hazards such as earthquake
and tsunami, is to simulate the macroeconomic impacts based on the direct impacts
(such as property damages, number of deaths, and losses of trade volume) obtained
from other reliable sources, such as government reports and academic research
articles. This would be particularly relevant if the focus is on ex post impact assess-
ment. In addition, constructing a CGE policy shock scenario using an econometric
estimation or side-calculation based on relevant data would also be more pragmatic
than a hypothetical scenario that is based on an arbitrary specification. In fact,
given that impact drivers for regional CGE modeling assessment can be even more
complicated due to the existence of regional heterogeneity, such a data driven or
fact driven approach to establish CGE policy shock scenario would be even more
critical for regional CGE modeling.
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5.3.3 Data Reliability

Data demand for CGE modeling is enormous, and the procedure of data processing
is more complicated than econometric analysis. The basic data structure of CGE
modeling is a social accounting matrix (SAM), which illustrates the circular
process of economic transactions between demand and supply and among different
markets. Unlike an Input–Output (I–O) table which shows only the relationship
between production accounts and the other accounts (e.g., factor of production,
consumption, government, investment, and trade), SAM extends an I–O table by
including additional information to reflect the owners of different factor inputs
and interrelations between all accounts, such as transfers between household and
government, etc. (Rutherford and Paltsev 1999).

Often this information was derived from different resources and not necessarily
with consistent reference years. For instance, although information such as trade
data, taxes and government transfers are generally available on an annual basis,
the I–O tables are updated less frequently. As a result, a SAM table representing
a benchmark economic status may reflect an equilibrium condition with multiple
reference years and this could make the interpretation of CGE results difficult. One
example is the latest GTAP 9 data base used for global trade analysis, which involves
three reference years: 2004, 2007 and 2011 and is enormous, containing data for 140
countries/regions and 57 commodities (Narayanan et al. 2015). Some data, such as
the macro-economic status, bilateral services trade and energy performance includes
three reference years, whereas other data, such as the bilateral merchandise trade,
includes one reference year, 2011. Clearly, although GTAP 9 is a gigantic integrated
data base, and plays a central role in analyzing important trade policy issues at
a global level, the data base has problems when it includes three reference years.
The resulting CGE simulations cannot be simply interpreted as a deviation from the
initial equilibrium status in a single base year due to a policy shock. Instead, it could
only be considered as a change from the benchmark equilibrium status for a given
period, since it covers a period between 2004 and 2011.

The process of SAM balancing also raises concerns on data reliability for CGE
modeling. A balanced SAM is the foundation of CGE analysis, which requires that
all rows and columns must be equal. This means that supply equals demand for
all goods and factors, tax payments equals tax receipts, the value of household
expenditure equals the value of factor income plus transfers, and the value of
government tax revenue equals the value of transfers (Rutherford and Paltsev
1999).4 The construction of a SAM for CGE analysis requires the balancing of all
the data from various sources, such as the I–O tables, tax payment and receipts,
government and household transfers. SAM balancing can be achieved in various

4It also requires zero profit in production given the assumption of perfect competition. In the
situation of non-perfect competition, Mark-up is normally required to be provided exogenously.
See Francois (1998).
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ways, such as the RAS method, the cross-entropy method or a manual balancing
method.

Each method has advantages and disadvantages. For instance, although the RAS
is easy to implement, the method lacks an economic foundation and flexibility for
specific adjustments. Conversely, the cross-entropy method allows the user to adjust
certain cell values while keeping others constant, which helps to maintain economic
logic. However, to what extent the adjustment made appropriately is unclear, and the
process of balancing is purely based on a mathematical procedure and the personal
judgement of modelers. In some cases, accuracy of SAM is sacrificed in order to
fit the CGE model. As a result, it becomes unavoidable that information of some
specific accounts and transactions in a balanced SAM can be altered substantially
from the original data but it is the original data that reflects the real world in the base
year.

The issue of data reliability can become very serious if the data is disaggregated
for regional CGE modeling. This is because regional economic data, such as
regional I–O tables and trade flows, are often incomplete or unavailable. In some
cases, the data might be too coarse or inconsistent due to the fact that regional
tables may reflect different dates and are in different formats. As a result, regional
CGE modeling often requires creation of regional data using various techniques.
The classical approach is to create regional data by a “top-down” approach, in which
the national accounts are disaggregated into various regional accounts using regional
shares as proxies. The approach is based on several assumptions. First, it assumes
homogeneity of industrial technology across regions. Second, it assumes a fixed
regional share for commodities that are heavily traded between regions. Third, it
assumes the outputs of the remaining commodities are adjustable in accordance to
regional demand (Horridge 2012). It is clear that such a disaggregation approach
relies heavily on these assumptions. While the approach sounds reasonable, its
validity is difficult to justify given the lack of empirical evidences and our general
knowledge of regional economic differentiation.

In general, although regional CGE modeling has received increasing attention
from scholars and practitioners, regional data has to be created based on a variety
of assumptions due to the lack of appropriate regional economic information. The
lack of appropriate validation for these assumptions also leads to a concern on data
reliability since each step adds additional errors and might lead to an imprecise
impact assessment in the end. No wonder, as suggested by West (2002), building a
CGE model for a small region, while not invalid, may not be a very efficient use of
resources in the context of the trade-off between increased complexity and increased
data “fuzziness”. The evidence and arguments suggest that the input data for CGE
modeling should be used with caution. What’s more important for future efforts is
to support development of more regional data availability for researchers.
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5.4 Future Research Directions

Despite some scholars’ belief that CGE modeling is inappropriate to be applied to
analyze various fields, such as economic sustainability, because its structure is too
rigid and stylized to represent the system-wide economic activities (Barker 2004;
Scrieciu 2007), it is undeniable that it will continue to be a heavily used approach
for economic impact assessment. This is especially true in fields such as impact
assessments of infrastructure investment, natural disasters, and analysis of various
governmental policy options. Given its strong theoretical underpinnings, its base in
empirical analysis, its strong base of consumer support and its wide community of
users, it is important for CGE researchers to address the following issues in the near
future.

First, the quality of data should be improved to allow for more reliable CGE
analysis. In particular, the collection of regional economic data such as regional
level IO tables and interregional trade flows should be given more emphasis in
regional economic modeling. This will require increased effort and broader and
deeper financial support from both the public and private sectors. For instance, an
improvement of regional economic data collection through conducting a regional
economic survey on a regular basis would be a worthwhile endeavor.

Second, more attention should be paid to CGE parameter estimation. As
discussed earlier, the major limitation of most existing CGE models is due to the
adoption of parameters that are inconsistent with the analytical data framework.
Hence, parameter estimations for CGE models should be given a high priority for
research. Spatial dependence of regional factor/commodity substitution is another
critical aspect of regional economic modeling, which deserves further attention.

Third, validation of CGE models deserves more research efforts. Currently,
the approach to CGE model validation is primarily conducted through various
sensitivity tests, which is valuable in identifying the extent of variations in CGE
simulation output as a response to the changes in inputs. However, the accuracy
of CGE simulation outcomes is uncertain as most existing CGE simulations are
based on hypothetical scenarios. There is a lack of validation against reality. One
of the major future research endeavors should aim to valid CGE modeling through
simulations based on real world data. This also implies that CGE shocks must be
conducted cautiously using evidence based data rather than conduct simulations
based on arbitrarily specified shocks.

While future research will surely continue to expand economic functions and
computational power of CGE modeling from a theoretical perspective, it is also fore-
seeable that applications of CGE models for impact assessment will be standardized
in terms of modeling frameworks. The advantages for using a standardized CGE
model are quite clear. First, it improves the efficiency of impact assessment as efforts
could be focused primarily on identifying appropriate inputs and parameterization
for CGE modeling based on established CGE models. Hence, the cost of CGE anal-
ysis can be greatly reduced. Second, given the fact that standardized CGE models
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are developed by experts and have been run through extensive tests, simulation
outcomes will be much more reliable than a self-developed CGE approach.

Last but not the least, the development of CGE with an integration of DSGE will
be a worthwhile direction for future research. On the one hand, the development
of DSGE models with the levels of sectoral and regional detail found in CGE
models would allow researchers to analyze impacts with uncertainty. This type of
analysis is particularly relevant and important to help us understand both forward-
looking behavior of economic activities and regional and sectoral heterogeneity.
On the other hand, the introduction of stochastic optimization specifications into
CGE poses a new challenge for computational algorithm development given that the
increased modeling size and restrictions will make it much more difficult to solve.
Hence, future research for regional CGE modeling should also focus on developing
advanced software system to achieve computational efficiency.
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Chapter 6
Potentials and Prospects for Micro–Macro
Modelling in Regional Science

Eveline van Leeuwen, Graham Clarke, Kristinn Hermannsson,
and Kim Swales

6.1 Introduction

There is growing interest in regional science, and related fields, in the potential
for linking multi-sectoral macro models of economic development and change with
micro models of household structures and economic activities. Multi-sectoral macro
models, such as input–output (IO), social-accounting matrix (SAM) and computable
general equilibrium (CGE), analyse the impact of a major job loss or gain in a region
by first exploring the direct impact in terms of changes in variables such as regional
GDP and gross/net income. This analysis is then augmented by identifying further
multiplier effects on other sectors of the economy. Input–output accounts show
the strength of the regional linkage or interaction between different sectors of the
economy. Multi-sectoral macro models use this information to estimate the jobs and
economic activity generally gained or lost in other sectors of the regional economy
through indirect and induced effects. This procedure generates information relating
to the dynamics of the regional labour market.

For many applications changes in these regional variables provide the relevant
key economic impacts associated with major job changes and are, therefore, of
great interest to policy makers. However, there are further interesting questions
surrounding potential intra-regional variations. For example, jobs gained or lost
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in location X1 within region Y may have little impact on the local economy of
location X2 within the same region if these locations are actually very far apart.
The proportionate changes in regional economic indicators are in effect averages,
potentially masking widespread variations within an individual region. Such models
are rarely disaggregated to finer sub-regional geographical scales, although there has
always been interest in the potential to do so (see Batey and Madden 2001; Hewings
et al. 2001; Jin and Wilson 1993; Ballas and Clarke 2001; Ballas et al. 2006; van
Leeuwen 2010; Bourguignon et al. 2010; van Leeuwen et al. 2016).

Microsimulation models can provide a link between regional multisectoral macro
models and the individual households and firms that make up the region. By linking
households to jobs within the region, we gain the potential to estimate the small-area
or local impacts of major changes in the economy. Thus, a major loss of jobs at firm
A can be analysed not only by changes to regional GDP, income etc., but also on the
basis of which households will be directly impacted in which areas. This, in turn,
will allow planners to understand the loss of household incomes, welfare benefit
payment changes, multiplier impacts on local shops etc., all at the small-area level.

The aim of this chapter is to demonstrate the benefits of a potential macro–micro
model linkage. Our case study region is the Western Islands of Scotland (WIS), an
area of considerable interest at the moment given the Scottish Government (2011)
target to meet the equivalent of 100% of Scottish gross electricity consumption
from renewables by 2020. The work is ongoing and at the time of writing we are
a long way from having a fully integrated model. However, it is hoped that we
can show sufficient progress to allow the reader to appreciate the advantages of the
combined approach. In Sect. 6.2 we discuss the two main modelling approaches in
more detail and show ways in which they can be linked. Section 6.3 examines the
various components of the modelling exercise as they apply to the Western Isles.
An important part of the linkage between the models is the building of a journey
to work model, which we also describe in this section. In Sect. 6.4 we demonstrate
how two specific investments in employment opportunities in the Western Isles can
be modelled using macro and micro models, showing how the framework helps to
produce both local and regional indicators of economic change. Section 6.5 provides
a short conclusion and future road map.

6.2 Linking MSM with IO Modelling

6.2.1 Regional Input–Output Analysis

Regional IO impact analysis is frequently used to capture the total spending
effects of institutions, projects or events. This analysis incorporates the multiplier,
or “knock-on”, impacts of any expenditure injection, obtained by summing the
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subsequent internal demand feedbacks within the economy. This section briefly
outlines the methods adopted in such studies.1

Regional demand-driven, multi-sectoral models, including IO, make a basic dis-
tinction between exogenous and endogenous expenditures. Exogenous expenditures
are determined independently of the level of economic activity within the host
economy. In IO studies, many of the elements of final demand, including exports,
government expenditure and investment, are typically taken to be exogenous. On
the other hand, endogenous expenditures are driven by the overall level of economic
activity within the host economy. Specifically, demand for intermediate inputs and
often household consumption demands are taken to be endogenous. IO analysis
thus identifies a clear causal pathway from exogenous changes in final demand to
subsequent adjustments in endogenous economic activity.

These IO and SAM demand-driven models assume that the supply side of the
regional economy is entirely passive. Essentially this means that any change in
domestic demand is met by a corresponding change in output and no change in
prices or wage rates. There are also no physical supply constraints. In the short
and medium runs, such a model applies where there is general excess productive
capacity and significant regional unemployment. In the long run, supply-side
passivity holds where the supply of the primary inputs of labour and capital even-
tually becomes infinitely elastic, as migration and capital accumulation ultimately
eliminate any short-run capacity constraints (McGregor et al. 1996).2 The lack
of a direct modeling of the supply side means that the outputs of a standard IO
impact analysis cannot be disaggregated to individual households or small-areas
within the study region. Thus, with such models we cannot typically understand
the spatial impacts of the changes within the region being modelled (although we
again acknowledge attempts to include demand and supply side factors in Batey and
Madden 1983, 1999, 2001; Hewings et al. 2001; Jin and Wilson 1993; Ballas and
Clarke 2001; Ballas et al. 2006; Hérault 2010; van Leeuwen 2010; Bourguignon et
al. 2010).

6.2.2 Microsimulation Modelling

Spatial microsimulation (MSM) is a well-established method for estimating the
attributes of individuals or households at the small-area level. Although the U.K.
population census gives some information on individuals at the small-area level,
the detail on interdependency is insufficient for much policy analysis. However, like

1For a more detailed account see Armstrong and Taylor (2000), Loveridge (2004) and Miller and
Blair (2009).
2CGE models allow price flexibility. For example, Learmonth et al. (2007) models the island
economy of Jersey. Here a tight labour market combined with institutional restrictions on migration
mean that the supply side cannot be treated as passive over any time interval.
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many other countries, the U.K. does have some rich survey datasets, which associate
many more attributes to individuals. One of these is the Sample of Anonymised
Records (SARs). Although rich in attribute data, the level of geography in the
SARs is rather coarse—identification is at the regional level at best. However, by
effectively cloning individuals in the SAR to match the characteristics of individuals
in the census, it is possible to reweight the SARs to provide a detailed set of
individuals and their attributes at the small-area level. There are a number of well-
known methods for reweighting surveys in this way, which are discussed in Tanton
and Edwards (2013) and Hermes and Poulsen (2012).

As far as regional science applications are concerned, MSM has been used to
model household income and expenditures, often for input into other economic or
spatial interaction models. Some well-known and very policy-relevant economic
models are aspatial. These models contain all households in a region or country but
are not linked to individual places (for an overview see Bourguignon and Spadaro
2006; Li and O’Donoghue 2013). However, Birkin and Clarke (1989) use a spatial
MSM to estimate income in Leeds, U.K., the first of many subsequent spatial
analyses of household income and expenditure.

Ballas and Clarke (2001) and Ballas et al. (2006) use a microsimulation model
to investigate the detailed spatial impacts of job losses in Leeds following a major
factory closure in the east of the city. They do this by linking households to jobs
via a journey to work model (see Sect. 6.3.5 below). Then, when jobs are lost, the
model can identify the individual households affected in the commuting catchment
area of that factory. Households identified as being impacted change their status
from employed to unemployed so that subsequent local income and expenditure
reductions can be additionally calculated. They further speculate on the impact on
other parts of the city that might be affected by the initial factory closure through the
forced to close or downsizing of suppliers to that factory. Whilst these papers help to
show the advantages of potential macro/micro linkages, the economic changes were
hypothesized rather than being formally derived from an IO model. In other words,
the second and subsequent round impacts of the factory closures were ‘guestimated’
rather than derived from the outputs of a multi-sectoral macro model.

6.2.3 Linking Macro and Micro Models

6.2.3.1 Top-Down Linkage

When answering questions about the micro effects of a macroeconomic change, top-
down linkage is important (Bourguignon et al. 2010). The top-down approach (see
Fig. 6.1) builds on insight derived from a multi-sectoral macro model. Information
about the way in which sectors are linked with each other and with households (in
terms of final demand and/or labour inputs) are translated into multiplier values.
A rare example to date is the work of Hérault (2010) who used a CGE model
to simulate the changes at the macroeconomic level after a certain policy change,
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which are then passed on to the MSM model. In Ballas and Clarke (2001), the focus
is on the type and location of households that are affected by a decline in jobs. In
this chapter, we also take a top-down approach.

6.2.3.2 Bottom-Up Linkage

In a bottom-up approach, the modeller starts with behaviour at the individual
level, which in a next step is linked to multipliers to show redistributive/indirect
effects (see Fig. 6.2). Van Leeuwen (2010), for example, looked at the effect of
a new out-of-town shopping centre on the retail sector of a medium-sized Dutch
town. Dutch policymakers are often reluctant to allow out-of-town retailing due
to possible negative effects on shops in the city center. Lower expenditures in the
centre could potentially affect (local) suppliers and result in a loss of jobs. By
linking an individual-level spatial shopping model to the simulated population of
Nunspeet, van Leeuwen estimated the changing expenditures in the local and wider
economic area because of these new larger and, for some, closer shops. Next, the
expenditures were combined with the retail multiplier derived from an interregional
SAM. Because this multiplier could be decomposed into output, employment and
income effects in town and hinterland, the final results showed a range of effects.
It confirmed the concerns of local retailers that their sales would fall; however, it
also showed to policy-makers that local income will not decrease, and in total more
household expenditures will be retained in the local economy (van Leeuwen 2010).

6.2.4 Enriching IO Tables

Thirdly, MSM models can enrich empirical regional multi-sectoral macro models.
Developing a regional model requires data at the relevant spatial level, which
is not always available in exactly the right format (year or scale). Sometimes
researchers take a hybrid approach in which carefully collected survey information
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is reweighted to known totals. However, often a (simple) univariate reweighting
is used, which can strongly bias the results. In addition, an important advantage
of spatial MSM relates to data linkage (coupling) (van Leeuwen et al. 2016).
When there is a link through at least one common attribute, MSM can combine
different data sets (for example, questionnaire results and census data at different
geographical levels) in the same simulation exercise. Examples are Ballas and
Clarke (2001), Lovelace et al. (2014) and van Leeuwen et al. (2016). The results
can subsequently be aggregated to whatever level is relevant for the input–output
model.

6.3 An Example of a Top-Down Study: Western Isles (WI)
in Scotland

6.3.1 Investment in Energy Production in Scotland

To provide a route to sustainability in energy production, the Scottish Government
(2011) has set a target that by 2020 the electricity generated in Scotland from
renewable energy sources should equal the Scottish gross consumption of electricity.
Figure 6.3 shows the electricity generation mix in Scotland between 2000 and 2013.
Allan et al. (2011a, b) suggest that the bulk of subsequent increases in renewables
will come from on and off-shore wind and that much of this new renewable capacity
will be located in peripheral areas. This reinforces current Scottish economic policy
which favours development in peripheral areas like the Western Isles.

6.3.2 The Study Area

The Western Isles (Eilean Siar) consist of 36 regions with a working population of
around 20,000. Each region has between 400 and 800 workers. Figure 6.4 shows the
location of the region in the UK context.



6 Potentials and Prospects for Micro–Macro Modelling in Regional Science 111

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

El
ec

tr
ici

ty
 g

en
er

at
io

n,
 G

W
h

Nuclear

Renewables

Coal *

Gas

Fig. 6.3 Electricity generation by fuel (GWh) Scotland 2000–2013. Source: Energy in Scotland
2015, Scottish Government (Fig. 3.2)

Scotland

England

Western Isles

Ireland

Fig. 6.4 The Western Isles of Scotland

http://dx.doi.org/10.1007/978-3-319-50590-9_3


112 E. van Leeuwen et al.

6.3.3 Macro View of the Western Isles Economy

There are already in place good foundations for studying the regional economy of
the Western Isles. For a macro view of the economy, we draw on the 2003 Regional
Accounts (Roberts 2005), which were commissioned by the local authority and
are publicly available.3 These were constructed by combining secondary data with
detailed surveys of business, households and public sector institutions.4 The regional
accounts consist of a SAM, which separately identifies 26 production sectors and
three types of households (adults, adults with dependents, retired). Furthermore,
the regional accounts comprise an employment occupation matrix, which identifies
employment across seven occupation types for each sector.

To align the regional accounts with our microsimulation model, production
was aggregated to 12 individual sectors. In this application, we draw on the
relative strength of the multisectoral economic accounts in identifying inter-industry
linkages. The accounts further inform parameters in the microsimulation model,
which is used to identify the spatial distrubtion of impacts. More specifically, the
regional economic accounts are used to derive Type-1 IO multiplier values. In the
standard Leontief demand-driven approach, the endogenous vector of final outputs,
q, is determined by the exogenous vector of final demands, f, through the operation
of the Leontief inverse multiplier matrix. This can be summarised as:

q D .1 � A/�1f (6.1)

where (1 � A)�1 is the Leontief inverse (Miller and Blair 2009, Chap. 2). In a Type-
I specification, the Leontief inverse identifies the indirect effects of any exogenous
demand stimulus, which arise through increased demands for intermediate goods.
As is well known, it is straightforward to extend the matrix to identify the impact of
changes in final demand on other activity indicators, such as employment or income.

In earlier versions of this model based upon 1997 data, Roberts (2003) highlights
the importance of central government funding of public services in maintaining
economic activity in the Western Isles. Further exogenous transfers of income
direct to households support 8% of all jobs and 7% of all factor earnings in the
region. Roberts and Thompson (2003) take a demand-side approach and decompose
changes in economic activity to distinguish between those generated by changes in
technology, local sourcing and final demand. The analysis reveals the importance
of export demand in generating activity in WI but also the large variability between
sectors in the direction and magnitude of the different drivers of change. Using the
2003 data, Roberts (2005) simulates the impact of a decline in aquaculture and a
change in net migration and household expenditure patterns.

3The regional accounts can be accessed at: http://www.cne-siar.gov.uk/factfile/economy/
regaccounts03/index.asp
4For details of the method used in their construction see: http://www.cne-siar.gov.uk/factfile/
economy/regaccounts03/methodology.asp

http://www.cne-siar.gov.uk/factfile/economy/regaccounts03/index.asp
http://www.cne-siar.gov.uk/factfile/economy/regaccounts03/index.asp
http://www.cne-siar.gov.uk/factfile/economy/regaccounts03/methodology.asp
http://www.cne-siar.gov.uk/factfile/economy/regaccounts03/methodology.asp
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6.3.4 A New Microsimulation Model for WI

For the WI, the SARs provide detailed characteristics on 1500 individuals. We only
use individuals living in the WI region, as people living in other parts of Scotland,
such as the large cities (Glasgow and Edinburgh for example), might not be suitable
for matching in this way. As the principal purpose of the modelling exercise is to
examine the economic and social impacts of labour market changes, we simulate
the population using age, sex, hours worked and socio economic classification as
the main constraint variables. Furthermore, we only take into account individuals
aged 16–74. This means, that the 1500 individuals will be reweighted until all known
totals of the four variables in the 36 WI regions are met. Table 6.1 gives the definition
of the classes.

The constraint variable “age” has been aggregated in such a way that a match
could be made between the census and SARS data. The sex and socio-economic
class variables were already classified in a similar way in both datasets. For the
constraint variable “hours worked”, we used the commuting data in which this

Table 6.1 The variables included in the WI microsimulation model

Variables Classes Code Number of respondents

Age 16–24 years 1 136

25–29 years 2 61

30–59 years 3 543

60–64 years 4 81

65–74 years 5 145

Sex Male 1 481

Female 2 485

Hours worked Full-time (�30 hours per week) 1 640

Part-time (<30 hours per week) 2 252

Not classifiable 3 74

Socio-economic class Large employers and higher managers 1 11

Higher professional occupations 2 28

Lower managerial and professional
occupations

3 146

Intermediate occupations 4 59

Small employers and own account
workers

5 73

Lower supervisory and technical
occupations

6 80

Semi-routine occupations 7 112

Routine occupations 8 139

Never worked/Long-term unemployed 9 42

FT Students 10 77

Not classifiable �9 199
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Fig. 6.5 Evaluation of the simulated results: the percentage difference between the error and the
total population of the regions

variable is present. We aggregated the available classes of hours worked per week
into part-time (<30 hours per week) and full-time (�30 hours per week).5 When
checking the results with the census data, in particular the number of people in- and
out-commuting, we find a precise match, with only small (1%) differences due to
rounding.

The deterministic MSM techniques we used were developed by Robin Lovelace
and Dimitris Balllas from Sheffield University (Lovelace and Ballas 2013) and are
based on an iterative proportional fitting technique (Lovelace et al. 2015).

The results of the simulation for the 36 regions produce a fairly accurate outcome.
Figure 6.5 shows the difference between the expected output and the simulated
output in average, minimum and maximum terms. It appears that on average we
underestimate the number of persons aged between 30–59 by 1%. However, in one
area the underestimate is as much as 6%, and in one region there is an overestimate
of 3%. Furthermore, although gender is, on average, very well projected, there is
one region with 6% overestimate of women. Finally, the social classes (NEC1-8)
are very accurately simulated against reality.

The internal evaluation shows reliable results. But what about an external
validation? From the SARS, we know whether people work mainly at home, within
their local area district (the Western Isles in this case), in the rest of Scotland, or
outside Great Britain. When comparing this broad place of work classification with
the commuting database, we find very small errors that are all below 2%.

5We only assigned the hours worked to those that are economically active according to the SARS.
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6.3.5 The Journey to Work Model

The first major task in the linkage process is to allocate individuals in the
microsimulation to a place of work. This can be done through the journey to work
(JTW) data provided in the census. For every individual, we can use the JTW data
to estimate a probability of working in a particular locality, in a particular industry
and occupation type. The total number of people aged between 16 and 74 (which we
consider as working age) is around 19,500. Of those, almost 11,600 have a full-time
or part-time job.

For the journey to work model, we have to link the simulated population to
the commuting data at the area level. The external validation showed that the
microsimulation predicts commuting behavior extremely well, with an average
difference of only 2% (excluding the people who don’t have a fixed workplace).
To assign the area and sector of work, we use a matching procedure based on zone
of residence, gender and hours worked.

First, joint probabilities are calculated using gender and working hours (full-
time or part-time). Expression (6.2) defines the probability mass function such that
the joint probability is non-negative and Eq. (6.3) states that the sum of the joint
probabilities should equal one.

f .x; y/ � 0 for all .x; y/ (6.2)

X
x

X
y
.x; y/ D 1 (6.3)

By multiplying the probabilities by the total number of people with a job in an
area, we get the hours worked by men and women.

Secondly, we use the R procedure ‘matchby’ (Sekhon 2011) to match the
commuting data with the simulated micropopulation. We match the two datasets
based on gender and hours worked by the individuals grouped by the zone in
which they live. By adding a caliper vector to the procedure, we define for different
covariates (zone, gender and hours worked) the distances that are acceptable for
a match. When all calipers are set to 0 (and only exact matches are allowed),
8791 of the 10,998 are perfectly matched.6 When allowing for some differences
between actual and predicted hours worked (caliper (zone D 0; gender D 0;
hours D 3)), 10,474 cases are perfectly matched on zone and gender, but with a
different qualification of hours worked in 1800 cases.

The results show an upward bias towards working full-time. This is partly a result
of the fact that we used a simple approach to calculate the multivariate variables
gender and hours worked. That is to say, we multiply the share of women by the
share of full-time jobs in a region to get the share of full-time working women. This
does not take into account the fact that women are more likely to be working part

6In 650 cases we could assign an exact place of work and sector, without having to use probabilities.
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Fig. 6.6 Out and in-commuting predicted by the MSM

time than men. On average, the mismatch is around 3% per zone. In the future, some
of these jobs could be allocated to key firms in each locality. Thus, some individuals
in the microsimulation model can be allocated not only to a work destination, for
example Lerwick, but also to a particular firm, the largest being the most important
with which to form a link. The rest can be split between the remaining small firms
as appropriate.

Having an establishment database would also allow us in the future to disaggre-
gate the potential employment sector linkages in the input–output model. Figure 6.6
shows the patterns of commuting estimated—the left hand map shows the degree of
out-commuting whilst the right hand map shows in-commuting.

6.4 Linking the Macro to the Micro

6.4.1 Input–Output Scenario Analysis

We use the input–output model to explore the impact of two future likely growth
scenarios that are illustrative of the nature of the energy investment projects being
considered in the Western Isles. First is the production of energy from the anaerobic
digestion of seaweed. The second is the operation of a large scale windfarm. We
briefly summarise each in turn.
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Fig. 6.7 Employment impact of bioenergy scenario in aggregate and by sector (FTEs)

6.4.1.1 Bioenergy from Seaweed

Hermannsson and Swales (2013) appraise the potential economic and environmental
impact of harvesting seaweed from the waters around the Western Isles and using it
to produce biogas via anaerobic digestion, which in turn is used to produce energy
for export to the U.K. national grid. Once in operation this would stimulate final
demand for seaweed harvesting in the Western Isles. Based on the energy potential
of sustainable seaweed harvests around the WI coastline, electricity prices and
subsidies for small scale renewables, Hermannsson and Swales (2013) estimate
this could stimulate final demand in the WI to the tune of £2.64 million, which
is approximately 0.5% of total final demand in the isles.

In the absence of detail information about the structure of the nascent harvesting
sector, we assume for simulation purposes that it can be proxied by the “Agriculture,
forestry, fishing” sector in our IO-model, which has a Type-I multiplier of 1.27.
Based on this multiplier, the impact on the output of the WI-economy can be
estimated at £3.35million. The employment impacts are detailed in Fig. 6.7. The
red bar to the left shows the aggregate employment supported across all sectors,
whereas the blue bars show employment by individual sectors. Approximately four
out of five jobs occur within the “Agriculture, forestry, fishing” sector, whilst other
jobs are scattered through service sectors. The spatial distribution of these impacts
is likely to depend on how seaweed-harvesting activities will be distributed across
the harbours in the Western Isles.
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6.4.1.2 Large Scale Windfarm

Plans are under way for a large-scale windfarm just outside the main settle-
ment of Stornoway, the Stornoway Wind Farm (http://www.stornowaywind.com/).
Appraisal of this project has suggested that once operational it would support
around 75 jobs in the Western Isles.7 Most of the direct jobs are likely to occur
in maintenance and servicing activities in and around Stornoway. According to our
IO model, this would be consistent with a final demand stimulus of £1.47million
to the “Other industries” sector, which has a Type-I multiplier of 1.12. Based on
this multiplier, the output supported directly and indirectly across all sectors can be
estimated at £1.64 million. In this case, 96% of the employment occurs within the
directly affected sector, as the indirect effects are relatively subdued.

6.4.2 Testing Impacts with the WI Microsimulation Model

The previous discussion identifies the conventional outputs from the WI-IO model.
For illustration, we show how the simulation results for the new jobs created in
wind farming can be handled by the WI-MSM model. First, the 75 direct new jobs
are created in the main wind farm company operating in the WI capital Stornoway.
Second, the additional jobs predicted by the IO model in finance and other industries
are also assumed to be in locations containing existing concentrations of jobs in
those sectors. Existing firms are taken to be more likely to get extra business than
new firms entering the labour market, although that assumption could be relaxed in
the future. Thus, the jobs predicted through the second order effects are primarily
in the main towns. Using the MSM and the journey to work model, unemployed
households with the necessary occupation skills from within the commuting
catchment areas of the predicted location of the new jobs can be allocated to those
new jobs. Again, at the moment this is a very straightforward allocation. In the future
it would be useful to include a full labour market model which allocated households
to new jobs from a pool of both unemployed and employed households, so as to
incorporate job switchers. Figure 6.8 shows the predicted catchment area for the
new jobs based on the number of households qualified to be matched to those jobs.
If insufficient persons are unemployed, then the model searches in the next zone and
so on until all the jobs are allocated. Figure 6.8 shows another important and key
result: that the impact of the new jobs is spatially bounded and many areas of the
Western Isles will be only slightly impacted by the new job generation.

Finally, we can now change the attributes of the households with the new
jobs—they move from a status of unemployed to employed. The most significant
change is, therefore, a greater household income. Figure 6.9 shows the increase in

7http://www.hie.co.uk/about-hie/news-and-media/archive/stornoway-wind-farm-approval-will-
support-75-jobs.html#sthash.NFXA7itb.dpbs

http://www.stornowaywind.com/
http://www.hie.co.uk/about-hie/news-and-media/archive/stornoway-wind-farm-approval-will-support-75-jobs.html#sthash.NFXA7itb.dpbs
http://www.hie.co.uk/about-hie/news-and-media/archive/stornoway-wind-farm-approval-will-support-75-jobs.html#sthash.NFXA7itb.dpbs
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Fig. 6.8 The estimated location of households taking up the new jobs

earned income across the study region—the pattern clearly mirrors the location of
households gaining the jobs in Fig. 6.8.

6.5 Conclusions and a Future Road Map

This chapter has presented a case for the greater linkage of macro and micro models
in regional science. We believe such a linkage has powerful advantages in terms
of the production of both regional and local economic variables associated with
job gain or loss. The macro models produce powerful estimates of inter-industry
linkage, which the microsimulation models can in turn link to individuals and
households at the small-area level. In the preliminary case study analysis presented
here illustrates how the combined approach reveals the spatial extent of new job
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Fig. 6.9 The growth in household income following the new jobs generated

generation estimated by industrial sector. The demand and supply sides of the labour
market are now more closely aligned.

The integration of microsimulation and multi-sectoral macro-economic models
is driven by the desire to capture the spatial interaction between the population’s
domestic, work and shopping locations, and the way this is linked to aggregate
economic activity. Future enhanced computing power should make such modelling
increasingly viable. The improved collection and ease of manipulation of computer-
ized databases (especially in the new era of ‘big data’) and the increased speed and
capacity of model solutions will all aid such analysis.

If the microsimulation model is linked to purely demand-driven IO or SAM
economic models, a major advance would be in a more detailed spatial tracking of
economic impacts through production (and also consumption) linkages. This could
be done in a more sophisticated way than at present through acknowledging spatial
gravity effects on inter-industry trade. This would involve running the models in a
round-by-round manner specifying both the spatial and sectoral composition of the
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demand injection in each round. This method would identify the sectoral and spatial
ripples of demand economic activity emanating from an original exogenous demand
shock.

Such extentions to the macro-modelling would be consistent with simultaneous
enhancement of the microsimulation model. In addition to income we could add
expenditure by occupation and industry type plus shopping and service-based
interactions between home location and supply point. Then, changes between
households in and out of work could be supplemented by changes in expenditures
at local businesses that might in turn lead to more job losses/gains.

Linking Computable General Equilibrium (CGE), rather than IO or SAM,
models to micro-simulation raises a number of challenges. The key-differentiating
characteristic of CGE models is that prices (and therefore incomes) are endogenous,
determined by market factors. The operation of the labour market is important
here. It would be conceptually straightforward to replace the IO model in the
Western Isles analysis outlined in Sects. 6.3 and 6.4 with a corresponding CGE
model. Moreover regional CGE models typically operate with imperfectly com-
petitive labour markets, where the level of unemployment through a wage-curve
specification determines the real wage. However, the operation of the labour market
over space would clearly require more thought. A more sophisticated labour market
model would incorporate job switching and possibly migration, and progress with
this already exists (see, for example, Ballas and Clarke 2000).

One major issue for a fully integrated model is initial model calibration. First data
from disparate sources need to be aligned and fully consistent. This is challenging
especially if the databases themselves have already been through a data consistency
procedure. A related issue is that the integrated model should ideally replicate the
base-year values if run forward with no change in exogenous variables. This would
mean that the model needs to be parameterized such that both the sectoral and spatial
decisions of firms and households are initially in equilibrium. This is a non-trivial
task.

We are convinced that future developments in combining the operation of spatial
micro-simulation models and multi-sectoral macro-economic models will produce
a more spatially nuanced account of the sectoral, demographic and social impact of
demand and supply-side economic shocks. Initially this will come from operating
the two types of model in tandem, However, increasingly attempts will be made to
more fully coordinate and incorporate elements of both into a single model.

Finally, not only what is technically and/or in terms of data-availability feasible,
but also what is relevant for other academics or policy-makers should be taken into
account. As in most modeling contexts, increased detail comes at a cost. This can be
computation time, but also less accurate results. Therefore it is important to decide
beforehand what the most appropriate level of analysis and outcome is for specific
research questions, but also for the relevant end-users.
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Chapter 7
On Deriving Reduced-Form Spatial
Econometric Models from Theory and Their Ws
from Observed Flows: Example Based
on the Regional Knowledge Production Function

Sandy Dall’erba, Dongwoo Kang, and Fang Fang

7.1 Introduction

A number of recent contributions (e.g., Corrado and Fingleton 2012; Pinkse and
Slade 2010; McMillen 2012) have called for more attention to two intrinsically
related and recurrent issues in spatial econometrics. The first one deals with the
common use of diagnostic and goodness-of-fit tests to determine the appropriate
form of spatial autocorrelation. However, we demonstrate that spatially explicit
reduced form models can be derived from substantive economic theory when the
spatial processes at work are motivated theoretically and can be directly embedded
in the foundations of the model. A previous application of this approach can be seen
in Ertur and Koch (2007), Fischer (2011) and Dall’erba and Llamosas-Rosas (2015)
who study the role of inter-regional knowledge externalities in a Cobb-Douglas
production function of regional income dynamics.

The second challenge relates to the W matrix of spatial weights being almost
consistently based on some degree of geographical proximity as if the strength of
inter-regional interactions were to depend on that factor only (Fingleton and Le
Gallo 2008). While geographical distance is unambiguously exogenous, it does not
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change with time and does not account for the possible asymmetric nature of the
flows between pairs of spatial units. As a result, some contributions have proposed
alternatives such as, among many others, the transportation cost (e.g., Conley and
Ligon 2002), economic distance (Fingleton 2001, 2008; LeSage and Pace 2008), or
technological proximity (Parent and LeSage 2008) across regions. However, such
specifications still miss the opportunity to capture the directionality of the flows and
their actual magnitude. As such, we advocate that using weight matrices based on
observed flows will increasingly become commonplace. Examples of studies that
have used this route are Eliste and Fredriksson (2004), Chen and Haynes (2015)
who rely on inter-regional trade flows and Kang and Dall’erba (2015) or Sonn and
Storper (2008) who use inter-county flows of patent creation-citation.

In order to illustrate the role these increasingly popular approaches will have on
the spatial economics literature, we highlight their contribution in the frame of the
regional knowledge production function literature (henceforth KPF). While early
econometric contributions in this field paid considerable attention to the impact of
investments in R&D (Research and Development) on the production of innovation
at the firm level (Griliches 1979; Jaffe 1989; Cefis and Orsenigo 2001), the spatial
location of the firms as well as the existence of economies of agglomeration and
of spatial spillovers were ignored. However, as regional economies try to compete
nationally and internationally to attract the factors at the origin of innovation,
more recent contributions have adopted a spatial approach, recognized the role of
knowledge spillovers and highlighted geographical differences in the dynamics of
innovation (Audretsch and Feldman 1996; Crescenzi et al. 2007; Rodríguez-Pose
2001; Acs and Armington 2004; Adams 2002; Ó hUallacháin and Leslie 2007; Sonn
and Park 2011; Anselin et al. 1997).

7.2 Traditional Model of Regional KPF and Extensions
to the Spatial Case

In his seminal contribution Griliches (1979) formalizes the knowledge production
function for each unit i at time t as follows:

Yit D AitC
˛1
it H˛2

it L1�˛1�˛2it (7.1)

where the production of knowledge Yit is a function of the current state of technical
knowledge Ait assumed to grow at an exogenous rate similarly experienced in all
locations; Cit is the level of private reproducible physical capital; Hit is the level
of human capital and Lit reflects the level of labor. As usual in a Cobb-Douglas
production function, the coefficients ˛1 and ˛2 are positive and below 1, thus
reflecting the decreasing returns to physical and human capital; and the returns to
scale are also assumed decreasing. When rewritten in per capita terms, we get:

yit D Aitc
˛1
it h˛2it
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and applying a log transformation leads to:

ln yit D ln Ait C ˛1 ln cit C ˛2 ln hit C "it with "it � N
�
0; 
2"

�
(7.2)

As noted earlier, empirical applications of the regional KPF has moved away
from the a-spatial model captured in Eq. (7.2) to specifications that allow to
explicitly capture the role of knowledge spillovers. They take place when firms,
industries, or regions benefit from the knowledge created by other firms, industries
or regions without bearing the cost associated to its creation (Fischer et al. 2009).
While the role of spillovers in knowledge creation has been well documented in
the theoretical literature (Marshall 1920; Jacobs 1969; Jaffe 1986; Glaeser et al.
1992; Fung and Chow 2002; Asheim and Isaksen 2002; Henderson 2003), their
appropriate measurement remains a challenge. For instance, a large amount of
knowledge spillovers takes place through face-to-face interactions (Jaffe 1986;
Jaffe et al. 1993; Audretsch and Feldman 1996; Rodríguez-Pose 2001; Sonn and
Storper 2008) and this process is not documented clearly. We do not know how
often nor where the agents of one company meet agents from another company to
exchange ideas. As a result, regional KPF often deal with this type of undocumented
spillovers as if they are limited spatially. Empirical evidence confirms this point.
For example, Jaffe et al. (1993) find that patents produced in one state are more
likely to be cited within the same state. In addition, when Sonn and Storper (2008)
analyze 20 Metropolitan Statistical Areas, they conclude that the proportion of
local citations has increased over the 1975–1999 period. At the same time, other
contributions indicate that knowledge spillovers may well reach companies located
beyond the boundaries of the locality they originate from. For instance, Johnson et
al. (2006) show that, in the US, the average distance between patent collaborators
has increased from 117 miles in 1975 to 200 miles in 1999. Years earlier, Anselin et
al. (1997) uncovered that university research leads to innovation in high technology
companies located not only within the same region but also in neighboring ones. The
previous study is the first one to have used the formal tools of spatial econometrics
to measure these spillovers. Many more have followed since then with applications
to many different areas of the world. For instance, Bode (2004) highlights the role
of inter-regional knowledge spillovers in West Germany while Parent and LeSage
(2008) do so for all the European regions. Recent extensions to spatial panel data
models offer the advantage to increase the efficiency of the estimates but are still
relatively scarce. To our knowledge, only four have been published so far: Peri
(2005) estimates cross-regional citation flows and plugs the estimated fitted values
into a spatial weight matrix that captures the diffusion of knowledge flows across a
panel of 113 European and North American regions over 22 years. Autant-Bernard
and LeSage (2011) examine the spatial spillovers associated with public and private
research expenditures by industry from 1992 to 2000 over a sample of 94 French
regions. Parent and LeSage (2012) analyze the dynamics of European patenting
over 1989–1999 based on a sample of 320 European regions, while Parent (2012)
investigates a KPF across the 49 US states over 1994–2005. The latter contribution
has the advantage of offering a spatial dynamic panel model so that both spatial
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and temporal autocorrelations are simultaneously accounted for. We expect that
additional spatial panel data models of the KPF will emerge in the coming years
given that a growing number of contributions have laid the theoretical (e.g. Baltagi et
al. 2003; Kapoor et al. 2007; Elhorst 2014) and methodological foundations (Millo
and Piras 2012; Elhorst 2011) for their estimation.

7.3 Selecting the Reduced-Form Spatial Model from Theory

While knowledge spillovers have now been modeled and estimated on numerous
occasions, their local (as in a SLX model where the covariates are spatially lagged)
or global nature (as in a SAL model where the dependent variable is spatially
lagged) is very often the result of the researcher’s belief or of a selection through the
well-known Lagrange Multiplier tests and their robust version (Anselin et al. 1996).
Several contributions have called for more theoretically-grounded foundations in the
model selection (Corrado and Fingleton 2012; Pinkse and Slade 2010; McMillen
2012) and one of the most cited example of this approach is Ertur and Koch (2007).
Focusing on the issue of regional income inequality, their starting point is also a
Cobb-Douglas production function. However, instead of assuming that Ait is only
exogenously determined, they describe it as the product of three elements as follows:

Ai;t D �tc
�1
i;t h

�2
i;t…

N
j¤iA

�wi;j

j;t (7.3)

where �t is the exogenous stock of knowledge that is shared by all entities as
proposed by the neoclassical growth model (Solow 1956; Swan 1956); c�1i;t and h�2i;t
come from the endogenous growth framework (Romer 1986; Lucas 1988) and
indicate that the levels of physical and human capital per worker available in region
i increase the stock of knowledge available to all firms in region i by a value �1

and �2 respectively (with 0 � �1 , �2). Finally, the last term captures the knowledge
externalities that originate from all the neighboring regions j (with j ¤ i) and spill
over to i (as emphasized in the new economic geography theory: Fujita et al. 1999;
Boarnet 1998). The coefficient �(0 < � < 1) measures the average degree of inter-
regional dependence.

After log transformation and some matrix algebra (see Ertur and Koch 2007, for
all the successive steps), combining Eqs. (7.2)–(7.3) leads to the following spatial
Durbin model:

ln yi;t D ln�t C ı1 ln cit C ı2 ln hit � ˛1�PN
j¤iWi;j ln cit�

˛2�
PN

j¤iWi;j ln hit C �
PN

j¤iWi;j ln yj;t with "it � N
�
0; 
2"

� (7.4)

where ı1 D �1 C˛1 and ı2 D �2 C˛2 and the individual coefficients and their
significance level can be found through the delta method of Casella and Berger
(2002) which builds on the estimated coefficient means and variance-covariance
matrix. According to Eq. (7.4), knowledge created in one location would spill over
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to the rest of the sample with a magnitude that decreases with increasing distance
and even feed back to the place of origin (LeSage and Pace 2008). Besides Ertur
and Koch (2007), this approach has been used by Fischer (2011) and Dall’erba and
Llamosas-Rosas (2015) for the case of regional income growth in Europe and in the
US respectively.

As much as deriving the choice of the reduced-form spatial model represents an
important contribution compared to the past, one should note that the choice of the
initial form taken by Ai , t is not neutral. For instance, in the context of the regional
KPF, Fang et al. (2016) propose to compare the results obtained using Eq. (7.3) as
is versus using the following modified form:

Ai;t D �tc
�1
i;t�1h

�2
i;t�1…

N
j¤ic

�cPi;jC
cMi;j

j;t�1 h
�hPi;jC
hMi;j

j;t�1 (7.5)

where the first elements are similar to Eq. (7.3), but include the fact that local
R&D efforts do not lead instantaneously to the creation of knowledge (Griliches
1979). Furthermore, the latter elements reflect that the spillovers of private and
human capital are assumed to originate from two distinct sources: the flows of
patent creation-citations Pi , j as described in Sonn and Storper (2008) and Kang
and Dall’erba (2015) and the flows of educated workers moving from i to j Mi , j

as in Breschi and Lissoni (2009) and Kerr (2013) although in a different context.
Both types of spillovers are assumed to affect the technical knowledge after a one-
year period as it is well-known that R&D expenditures take time to produce any
innovational output (Griliches 1979). Furthermore, compared to Eq. (7.4) where
inter-regional linkages are based on geography only, the obvious advantages are
that the elements of Pi , j and Mi , j identify two different types of spillovers and they
are changing from one year to the next. Halleck Vega and Elhorst (2015) provide a
list of additional advantages of a SLX model such as Eq. (7.6) compared to models
with global spillovers as Eq. (7.4).

Combining (7.5) and (7.2) leads to:

ln yi;t D ln�t C ˛1 ln ci;t C ˛2 ln hi;t C �1 ln ci;t�1C
�2 ln hi;t�1 C �c

PN
j¤iPi;j ln cj;t�1 C 
c

PN
j¤iMi;j ln cj;t�1C

�h
PN

j¤iPi;j ln hj;t�1 C 
h
PN

j¤iMi;j ln hj;t�1 with "it � N
�
0; 
2"

� (7.6)

where only the first-order places of export or out-migration have an effect on local
innovation. Such spillovers are still qualified as “local” even though they are not
based on geographical proximity.

When estimating Eqs. (7.4) and (7.6) across the US States, Fang et al. (2016)
note that the direct and indirect marginal effects of the inputs (spending in academic
and private R&D in their case) correspond for the most part to their expectations in
Eq. (7.4). With Eq. (7.6), they find that current and last year’s R&D expenditure at
universities and colleges support local innovation while private R&D may require
more time to show the same effect. Their findings indicate also that past levels
of R&D in the states migrants come from benefit the state they move to, hence
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confirming the transfer of knowledge embedded in labor migration (Almeida and
Kogut 1999). The flows of patent creation-citation lead to more novel results
by which academic R&D spending that takes place at time t�1 in the states
where patents are originally created is negatively correlated with the production
of innovation at time t in the states that cite these patents. One possible explanation
is that a patent-citing state may, intentionally or not, reduce its marginal spending in
academic R&D in its own location if it is known that other states, the patent-creating
states, are bearing the costs of academic R&D. Since spending on academic R&D
has a positive marginal effect on local innovation, the marginal effect of this “free-
rider” behavior leads to a negative effect on local innovation.

7.4 Stepping Away from Proximity-Based Network

The large majority of spatial econometric estimations of the regional KPF define
inter-regional interactions based on geographical proximity. The motive is that
knowledge spillovers take place through face-to-face interactions (e.g. Jaffe 1986;
Jaffe et al. 1993) and thus their spatial extent is geographically limited. For instance,
Anselin et al. (1997) and Acs et al. (2002) choose a distance cut-off of 50 miles
based on the maximum distance found among US commuting patterns (Rapino and
Fields 2013). Their results are robust to 75 miles. In this case, the matrix where
regions i and j are separated by distance dij and a chosen distance cut-off d can be
written as:

wij D
�
1; 0 < dij � d
0; dij > d

However, the well-established notion of proximity of knowledge spillovers has
also been challenged numerous times. The earliest contribution to do so is Jaffe
(1986). His focus is on addressing intellectual interactions among regions so that
he specifies the knowledge externalities for any considered pair of firms by using
a Pearson correlation coefficient. Numerical vectors describing the distribution of
firm-level patents over several technological fields are first constructed and the
correlation between any pair of vectors is used as a proxy for the firms’ interaction.
The geographical distance that separates them is thus disregarded. A few years later,
Parent and LeSage (2008) have extended his approach by weighting Jaffe’s firm-
level technology spillovers by GDPi/GDPj GDPi/GDPj which captures the output
gap between regions i and j. The larger the gap is the larger the asymmetric effect
between technological distances wij and wji is assumed:

wij D
�

GDPi

GDPj

�1=2
�

Pm
kD1 FkiFkj	Pm

kD1F2ki

Pm
kD1F2kj


1=2
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where Fki represents the number of patents granted in the technology field k and
region i so that regions i and j reduce their technological distance by patenting
in the same fields (Jaffe 1986). Other notable exceptions to the general rule of
geographically-limited spillover effects are the growing number of contributions
based on some measurement of the network of collaboration among innovators.
For instance, Autant-Bernard et al. (2007) use a model of cooperation choice to
highlight that a firm’s position within a network matters more than its geographical
location. Their model is based on all the collaborative projects submitted to the
European Union 6th Framework Program. Ponds et al. (2010) focus on how
networks stemming from university-industry collaborations support the impact of
academic research on innovation across Dutch regions and Crescenzi et al. (2016)
uncover that among the different types of proximities (geographic, organizational,
cognitive, social and cultural-ethnic) they identify and test, U.K. inventors rely more
often on social connections while cultural, cognitive and geographic proximity do
not matter much.

The above contributions build on the idea of a network of researchers who
collaborate in order to create innovative products no matter how far apart they
live. To our knowledge, the dataset that has been the most extensively used to
measure this network of collaboration is the US Patent and Trade Office (USPTO
2010) as it reports the address of the inventors and the address of the headquarter
of the company they work for. The contributions of Jaffe and Lerner (2004) and
Crescenzi et al. (2007) are examples of studies that rely on USPTO. In order to
allocate spatially the patents that are the fruit of the work of N inventors, they use
the fractional counting method suggested by Jaffe et al. (1993) whereby a fraction
1/N of the patent is allocated to each inventor and, as a result, to his/her geographical
unit. As such, patent data is not an integer value anymore but a rational number.

7.5 Using Connections that Capture the Directionality
of the Flows

However, one element that is missing from the previous approaches is the direction-
ality of the knowledge flows. Indeed, the causality associated to investing inputs in
region i to create knowledge output in region j is proxied in various ways but not
explicitly captured. For instance, in a spatial network of co-patenting inventors it is
impossible to assess who got the idea first. We foresee that the coming decades will
offer an increasing number of sources reporting flow data as regional economies
become more integrated and the study of spillovers keeps developing. Popular
examples of such sources for the U.S. economy are the Commodity Flow Survey that
reports data on the movement of goods and the Census Bureau data on migratory
flows reported in the Integrated Public Use Microdata Series (IPUMS). When it
comes to innovation, the appropriate dataset is the “NBER US Patent Citation Data
File” of Hall et al. (2001) as it reports the citation records associated to each patent
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Fig. 7.1 Number and place of creation of the patents cited by California’s counties (Kang and
Dall’erba 2015)

for the period of 1975–1999, as well as the name of the inventors, assignees and
their address. A matrix that clearly stipulates the directionality of the knowledge
spillovers from the place(s) of creation of a patent to the place(s) where it is cited
for further innovation and patenting can be created from it.

Peri (2005) and Sonn and Storper (2008), among others, have used this approach
and an extension of the fractional counting method to origin-destination flows to
capture knowledge spillovers. To our knowledge, the most recent application is
Kang and Dall’erba (2015) who generate a (3109 � 3109) patent creation-patent
citation flow matrix across US counties. Figure 7.1 below from their manuscript
provides a snapshot of their matrix and confirms, as noted earlier, that geographical
proximity is not a necessary condition for knowledge spillovers. For example, Santa
Clara county (where the Silicon Valley is located) creates new products that are
mostly based off of products patented in the East coast, the Midwest and several
Southern States. Based on their econometric estimates, the authors conclude that
over 1995–1999 the average number of patents created in remote locations (more
than 50 miles away) have had a greater role on the US counties’ 2003–2005
patenting activities than patents created locally (less than 50 miles away).

Last but not least, we believe that future research interested in capturing the true
nature of inter-regional knowledge spillovers requires more efforts in at least three
directions: first, interconnections between national and international knowledge
spillovers are often disregarded as most studies focus on a single country only. Peri
(2005) and Chellaraj et al. (2008) are exceptions to this rule. Second, the list of
types of inter-regional spillovers reported above is not exhaustive as Miguélez et al.
(2010) indicate that they would also take place through various market transactions,
the monitoring of competitors and firm spin-offs. Third, their sectoral heterogeneity
has often been ignored but is gaining recognition, as presented next.
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7.6 Intra- Versus Inter-Sectoral Knowledge Flows

Most empirical studies in the regional knowledge production function literature
use sectorally aggregated data. Sectoral heterogeneity is only partially controlled
for by using sectoral dummies (Ponds et al. 2010) or sectoral share in total value
added (Bottazzi and Peri 2003). The same lack of evidence applies to the treatment
of sectoral heterogeneity among knowledge spillovers. Jaffe (1989) and Anselin
et al. (2000) differentiate the localized knowledge spillovers by sector but only
capture intra-sectoral spillovers. Autant-Bernard and LeSage (2011) demonstrate
the significant impact of inter-sectoral spillovers of private R&D among French
metropolitan areas. However, their panel model is averaged across all sectors so that
they do not provide an estimate of the marginal effect of such spillover by sector. As
a result, if knowledge spillovers are so important for the production of innovation,
a deeper understanding of how each sector is likely to benefit from intra- vs. inter-
sectoral spillovers and from intra- vs. inter-regional spillovers is necessary. Based
on five manufacturing sectors and the sample of US counties, Kang and Dall’erba
(2016) show that while both intra-sectoral (MAR) and inter-sectoral (Jacobian)
spillovers are significant determinants of knowledge creation, MAR spillovers play
a greater role than their corresponding Jacobian spillovers when they take place
within the county or across counties (for both short- and long-distance spillovers).
Their relative magnitude varies by sector also. For instance, intra-regional private
and academic MAR spillovers have a greater elasticity than localized interregional
spillovers in the Mechanical, Computer and Electrical sectors.

7.7 Conclusion

Much has already been accomplished in the field of spatial econometrics over the
last few decades (Anselin 2010). However, the large majority of applied works does
not derive their reduced-form model from a spatially-explicit theoretical framework
but from a set of diagnostic tests and goodness-of-fit values. Furthermore, the spatial
weight matrix at the core of the spillovers across spatial units is almost always
based on some measurement of geographical proximity which does not necessarily
capture the true nature, magnitude, asymmetry and directionality of these spillovers
(Corrado and Fingleton 2012; Pinkse and Slade 2010; McMillen 2012).

This chapter demonstrates that the seeds to moderate such criticisms have been
planted in at least one very active topic of regional science, namely the regional
knowledge production function literature. In the period of only three decades, this
literature has moved from Griliches’ (1979) early work, a seminal contribution in the
field but where the spatial organization of the data is completely ignored, to a set of
very sophisticated spatial econometric specifications. This chapter shows examples
of spatial models that are directly derived from theory, and a long list of weight
matrix specifications that go beyond the traditional proximity-based structure is
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reviewed. Because knowledge spillovers take many forms, we also suggest several
venues for the future.

While the regional knowledge production function has been the focus of this
chapter, we believe that similar lines of research should be adopted and applied to
many of the other exciting topics in regional science.
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Chapter 8
At the Frontier Between Local and Global
Interactions in Regional Sciences

Gary Cornwall, Changjoo Kim, and Olivier Parent

8.1 Introduction

Regional scientists have long stressed the importance of spatial spillover effects
on local economic outcomes. In his seminal work, Marshall (1890) emphasizes
that when economic agents locate in close proximity, they can take advantage
of market interactions, knowledge spillovers, and linkages between intermediate
and final goods producers. Due to such conveniences, people tend to cluster at
specific locations and benefit from the subsequent agglomeration of economies.
This clustering not only ends up providing conveniences in markets and economic
activity but also fosters, at some level, local growth and development. Measuring
the extent to which spillovers are localized remains a key challenge to empirical
work in the field. By considering the role of geographic proximity in evaluating
spillover effects, LeSage (2014) illustrates the fundamental role of appropriate
model specification.

A spatial spillover arises when the decision or outcome of an agent is influenced
by a corresponding decision or characteristic of some neighboring agent. Feedback
effects are observed when this influence is projected back upon the original agent
via a first order reaction to the neighbor’s new decision. Spillovers are said to be
global when endogenous feedback effects are present.

With the emergence of social network models (Manski 1993; Brock and Durlauf
2001; Bramoullé et al. 2014), researchers have been interested in new forms of
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local or group interactions based on spillovers and social distance. Economic agents
belonging to the same cluster tend to behave similarly. New spatial econometrics
models have been developed to incorporate intragroup interaction (Lee 2007).
Similar to the local spatial spillover effect, those models assume that interaction is
limited and does not spread across clusters. Interactions between agents do not spill
across cluster boundaries, and within a cluster the same weight is often attributed to
all individuals leaving aside geographical or social group-wise variations. A clear
distinction is made with local spatial spillovers which do not involve endogenous
feedback effects. LeSage (2014) discusses in detail the distinction between global
and local specifications, advocating respectively for the implementation of the
Spatial Durbin (SDM) and the Spatial Durbin Error Models (SDEM).

One of the primary challenges in analyzing interactions amongst economic
agents is the inherent complexity in their connectivity structure or network.
In standard peer effects models, the local interaction effects represent strategic
complementarity in effort across neighboring agents. An agent’s incentive to make a
particular decision increases as the number of neighboring agents making a similar
decision increases. Strategic complementarities correspond to positive partial cross-
derivatives. In addition to local complementarities, global interactions across all
agents have recently been introduced by Ballester et al. (2006) to reflect strategic
substitutability.

Interdependencies can take a variety of forms and little is currently known
about their structure. As researchers become more skilled at leveraging geographic
information system (GIS) technologies, new types of data will improve the under-
standing of spatial interactions. Defining a suitable topological structure for network
modeling can present a number of GIS challenges and, in general, empirical work
has yet to really analyze the transmission of interactions among economic agents.
Future research in regional science will greatly benefit from properly specifying
the endogenous process that makes economic agents connected. Assuming that
connections between agents are mainly explained by exogenous geographical
proximity is overly restrictive and could cast serious doubt on causal interpretations
of spillover effects. To evaluate the magnitude of local spillover effects, empirical
studies in regional science have been exclusively implementing either an SDEM or
the so-called SLX model containing exogenous interaction effects. Future research
will acknowledge that feedback effects could play an important role in explaining
local spillovers effects while being restricted to a limited set of observations or
neighborhoods. Moreover, new models will accommodate the possibility that local
externalities do not conform to administrative boundaries and will allow for more
heterogeneity in the level of spatial dependence.

The remainder of this chapter addresses these challenges as follows. The
following section presents modeling issues related to spatial network analysis
specifically oriented to GIS. Section 8.3 discusses the limit of a spatial interaction
model when regions or groups of society are well delineated. Section 8.4 questions
the central issue of endogeneity in the interaction structure. Section 8.5 proposes
new spatial mixture models allowing for parameters to be heterogeneous across
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clusters, and cluster membership is not known to the econometrician. Section 8.6
concludes and points at future work.

8.2 Identifying Networks Using GIS

Regional scientists have long been paying attention to whether agents in close
geographical, social, or virtual proximity interact with each other. Their interactions
create a conduit by which information is transmitted, and form the fabric of regional
development, all of which demands the attention of researchers. The combination
of mobile technology and comprehensive datasets have changed how agents interact
across space, and new approaches to both local and global interactions will be
developed in future regional science research. Today, data is available in exceptional
volume and easily accessed over current communication networks more than ever
before and has created a new dimension in the study of regional science. In addition
to the extended network, GIS has now advanced into new spheres, such as the
modeling and analysis of spatio-temporal networks facilitating the understanding
of decision making. Despite the great potential, Brugere et al. (2014) consider the
intersecting research between spatial networks in GIS and temporal networks in
related fields still in its infancy.

Mobile communication tools allow interactive data publishing, which tracks
how agents interact with each other and records under what dimensions they are
connected. No longer is this data restricted to geographic boundaries and often is
contextualized in network structures through social media (i.e. Twitter, Facebook,
LinkedIn, etc.). These platforms diminish the importance of traditional measures
of distance and, instead, create relationships that may be tangential to those same
measures but nevertheless of great importance. Geo-demographics generated in
these virtual environments have a great deal of potential when measuring spatial
spillover effects. It is now convenient to analyze populations based on who and
where under a less restrictive spatial paradigm.

Mobile telecommunications technologies are contributing significantly to the
voluminous amount of data being generated by daily online activities. Cameras,
phones, and cars have been, and are being, infused with location-aware software
designed in some capacity to give producers insights into consumer activities.
These devices have, in effect, begun to sense and communicate their absolute and
relative positions with locational tags providing a significant medium for organizing,
browsing, and retrieving interactions across space. Location-based services have
begun to make use of geographic position by identifying the local (global) network
of related devices and people across the world.

GIS can also generate social or virtual proximity that could help to detect spatial
dependence among individuals beyond physical boundaries as well as geographical
proximity. GIS has been playing a significant role in identifying and generating
a realistic network of spatial interaction of social processes. With the help of
GIS, networks can be developed at the resolution of individual people by their
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connections. This often requires that large amounts of interaction data are managed
and manipulated across scales. Identifying and building a network of massive and
hidden connections using GIS is potentially of great value in regional science in
providing new tools for advanced model building and in adding spatial dimension
and spatial thinking into regional science. Modeling interaction data in both physical
and virtual environments will be future challenges in dealing with local and global
interactions in regional science.

8.3 Groupwise Spatial Dependence and Spatial Fixed Effects

Researchers have recently recognized the importance of spatial econometric models
in identifying and estimating social interaction models. In the empirical literature of
regional science, a region, district, or a group of society can be considered a spatial
unit whose neighboring units could be defined in terms of a certain socio-economic
or physical distance.

One key challenge is to identify the main determinants of the correlation between
outcomes of those spatial units who interact with each other. In a seminal work,
Manski (1993) points out the difference between endogenous effects capturing the
influence of peer behavior and the contextual effects measuring the influence of
exogenous peer characteristics. He also mentions the importance of unobserved,
correlated effects capturing the likelihood of units to behave similarly due to the
similarity of characteristics and/or environment.

Consider some population of n spatial unit for which yi is the outcome of
individual i D .1 : : : ; n/. To model how individual units exert some influence
on each other, we assume that this influence could be mediated by a network of
peer relationships or any socio-economic or physical distances. To constrain those
influences, each spatial unit belongs to a group. The interaction between units may
occur within a group but not across. For each group r D .1; : : : ;R/, we observe nr

units, where n D PR
rD1 nr. As explained in Lee (2007), a group interaction model

based on a block diagonal matrix W D diag.W1; : : : ;WR/ for which each element
wij;r D 1 if i and j are direct neighbors or friends, and Wij D 0, otherwise.

Lee (2007) and Bramoullé et al. (2009) have rewritten the generic neighborhood
effects model described by Manski (1993) as the following Spatial Durbin Autore-
gressive specification for each group r as:

Yr D �WrYr C Xrˇ C WrXr� C �nr˛r C r (8.1)

where r is a nr-dimensional vector consisting of i.i.d. disturbances with zero mean
and a variance 
2. Xr is an nr � k matrix of explanatory variables and Yr is the
nr-dimensional vector of observation in the rth group.

The spatial weight matrix reflects in principle the structure of the interaction
process, and ignoring this process when one is present will induce a misspecified
model. The consequence of such a misspecification is that estimates will be biased
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and inferences will be misleading. To better understand the issue, the reduced form
of the spatial lag model can be rewritten as:

Yr D .Inr � �Wr/
�1.Xrˇ C WrXr� C �nr˛r/C .Inr � �Wr/

�1r (8.2)

where .Inr � �Wr/
�1r, is now a spatially correlated and heteroskedastic error term.

By using the Taylor’s series for the inverse matrix,

.Inr � �Wr/
�1 D Inr C �Wr C �2W2

r C : : :C �nWn
r (8.3)

Magnitude and significance of spillover effects are assessed via the partial
derivatives of the expectation of yr. LeSage and Pace (2009) show that direct effects
are based on the diagonal elements of (8.3), while the off-diagonal elements contain
the indirect or spillover effects. An important characteristic of these models is that
spillovers only spread within each group or neighborhood r. Unlike a traditional
model, they are not global anymore and do not spread across all neighborhoods.

One way to define the neighborhood structure is to assume that all individuals in
the same group are neighbors of each other. Each element wij;r of the spatial weight
matrix W is now equal to 1=.nr � 1/, and each nr � nr-dimensional block matrix Wr

can be rewritten as

Wr D Œ1=.nr � 1/�Jnr � Œ1=.nr � 1/�Inr (8.4)

where Jnr D �nr �
0
nr

, �nr is an nr � 1 dimensional vector of ones, and Inr is an identity
matrix of dimension nr. The reduced form of Eq. (8.1) would involve the following
inverted matrix for each block r:

.Inr � �Wr/
�1 D ı1;nr Jnr C ı2;nr Inr ; (8.5)

where ı1;nr D �=..nr �1C�/.1��// and ı2;nr D .nr �1/=.nr �1C�/. This model
has received substantial attention in the spatial econometric literature for social
interaction (Lee 2007). It is important to note that the spatially lagged dependent
variable Wy asymptotically becomes proportional to the unit vector. In this case, a
spatial fixed effects model is asymptotically equivalent to the SDM with group-wise
weights. Spatial correlation should disappear by removing the fixed effects.

A spatial fixed effects specification seems appropriate when individual observa-
tions are distributed across well-defined groups for which some characteristics ˛r

are unobserved. However, there are two main issues that are associated with the
use of spatial fixed effects. First, the fixed effects are influencing in an identical
fashion all observations within a group. If the data were to exhibit heterogeneity or
spatial interaction across neighboring individuals within a group, the result would
produce correlation in the error term. In this case, the spatial fixed effects would not
correct for the presence of spatial correlation, and the model would be misspecified.
Second, and more importantly, the spatial delineation of groups or neighborhood
is often ambiguous. There is no reason why administrative districts should be used
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to delineate spatial areas, except as a matter of convenience. Incorrect delineation
might exacerbate spatially correlated and heteroskedastic error terms and create
additional model misspecification. In other words, unless the structure of the model
results in a set of group-wise constants equivalent to the fixed effects, the inclusion
of spatial fixed effects will not be robust to the model misspecification.

8.4 Endogeneity in Dependence Within Groups

A key issue with the causal interpretation of estimates in the peer effect Eq. (8.1)
is that the connectivity structure between agents may be endogenous. Spatial
econometrics has typically been relying on the ad hoc assumption of exogeneity
for the spatial weight matrix. This very strong assumption might not be reasonable
when assessing the influence of decisions from neighboring agents. In assessing
fiscal policy interdependence and budget spillovers across states, Case and Rosen
(1993) underline that economic similarities between regions are more likely to
exert influence on each other rather that simply sharing a common border. Several
subsequent studies have questioned the narrowly defined connectivity structure that
relies exclusively on geographical proximity (see Kelejian and Piras 2014). The
main concern has become that estimates of regression that do not account for the
endogeneity of the spatial weight matrix should suffer from bias, casting doubt on
causal interpretations of the peer effects (Qu and Lee 2015).

By modeling group formation, Jackson (2008) makes the assumption that the
decision between two agents to form a link is the outcome of two choices. The net
utility stemming from the agreement to form a link can be seen as positive. The
utility for agent i to form a link with agent j can be defined as Ui. j/ and, therefore,
the interaction between both agents can be expressed as

Dij D 1Ui. j/>0 � 1Uj.i/>0 (8.6)

In this framework, each potential pair of neighboring agents evaluates the utility
of a link between them at the same point in time. The important implication is
that those individual utilities depend on the characteristics of the two individuals,
conditional on the network at the beginning of the period. Goldsmith-Pinkham
and Imbens (2013) propose a Bayesian estimation procedure that separates the
likelihood function of the network formation from the likelihood function of the
outcome. They find that indirect effects coming at least from the second order
neighbors (friends-of-friends) are hard to assess and largely driven by the functional
form assumption that ties these indirect effects. The main issue in developing
models that allow for endogeneity in the interaction structures between individuals
is to define a rule that keeps them separate from each other. As explained by
Qu and Lee (2015), estimating a connectivity structure that relies purely on
economic distance might be challenging. He underlines the importance of imposing
restrictions on the spatial weights, which depend not only on the ad hoc geographical
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distance but also the magnitude of neighboring effects through socio-economic
distance. Interesting extensions would include an examination of how endogeneity
over time might change the interaction structure. For all of those situations, the task
of properly estimating direct and indirect effects remains daunting.

8.5 Unobserved Dependence Across Groups

It is a common practice in regional science to adopt administrative boundaries for
convenience (e.g., census tract or census block boundaries). There is no reason,
however, to believe that social interactions will remain within such boundaries.
In fact, it is likely that generic neighborhood effects (such as crime, air quality,
employment search, etc.) will not conform to such boundaries and will have
heterogeneous areas.

As explained in Autant-Bernard et al. (2007), spatial spillovers may occur
through collaborative networks (social, scientific, technological, etc.) giving rise
to myriad forms of spatial interaction. The geographical dimension of spillover
effects appears to be closely related to other mechanisms that are barely measurable.
Clusters of individuals should not only rely on geographical proximity. We often
observe that across neighboring observations, two individuals might exhibit differ-
ent patterns or, more specifically, if we consider those patterns to be probabilistic
in nature, different distributions. In fact, an aspect that is often overlooked is the
considerable heterogeneity of behavior across individuals whether they belong to
the same neighborhood or not. Though unobserved heterogeneity across clusters
is more difficult to take into account, there is a rapidly growing literature in
econometrics using mixture models (see Keane and Wasi (2013) for a review). These
models account for unobserved heterogeneity by assuming the data are drawn not
from a single distribution but from a finite number of distributions. In fact, they
assume, different agents in the population have varying preferences and estimate
the proportion of each type.

Cornwall and Parent (2016) consider estimation of spatial data models when the
parameters are heterogeneous across groups, and group membership is not known
to the econometrician. Thus, they allow parameters to be homogeneous within a
group but heterogeneous across groups. This is a form of model-based clustering
which partitions a set of data, yi into G groups according to how near they are to one
another. This is easily distinguishable from the aforementioned analysis in which the
objective is to understand how the delineated groups differ. It is also important to
note that they are allowing the parameters to vary across groups rather than confining
themselves to marginal effects, which differ through splitting the sample based on
the values of regressors.

Model-based clustering takes as a starting point that a set of data with a group
structure is generated by a mixture of distributions such that an observation drawn
from sub-population g has density fg.yijˇg; 


2
g /. If zi is the identifying label, i.e.,

zi D g if unit i belongs to group g, then one can define the dependent variable yi as
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being drawn from g different normal distributions with probability p.zi D g/ D wg

and
PG

gD1 wg D 1. The normal mixture distribution has means and variances that
are different for each group g:

P.yijˇ; 
2; pg/ D
GX

gD1
wgN.Xiˇg; 


2
g /: (8.7)

We define by Ig D fi W zi D gg the set of agent belonging to the mixture
component g and whether an individual belongs to a mixture component g is not
known. Cornwall and Parent (2016) develop a spatial extension for which a new
dependent variable is defined as Qyi;r D yi;r � �

Pnr
jD1 wij;ryj;r , where wij;r represents

the neighborhood structure as defined in (8.4) that is typically based on geographical
proximity. This spatial model could be easily extended to the SDM presented
in (8.1). In fact, the spatial mixture would then take the following expression:

P.Qyi;rjˇ; 
2; pg/ D
GX

gD1
wgN.˛r;g C Xi;rˇg C

nrX
jD1

wij;rXj;r�g; 

2
g /: (8.8)

Bayesian estimation procedures can be adopted to estimate this model. The intro-
duction of spatial mixtures of distributions relaxes the assumption of independence
between observations whether they belong to the same mixture or not. Geographical
proximity generates spatial dependence across neighboring individuals even if they
exert different behavior and are not part of the same mixture.

8.6 Conclusion

With the increased interest in social interaction, research in regional science has
gradually moved from a pure spatial definition of neighboring effects toward a
multidimensional measure relying on a different form of socio-economic distances.
The emergence of social networking tend to show that agents belonging to a
network might not be in close geographical proximity. Moreover, there is no reason
why neighborhood effects should be delineated across well-defined groups. It is
possible for neighborhood effects to spill over administrative boundaries, and this
possibility must be accommodated when modeling such processes. The difficulty in
detecting and measuring spillover effects call for a stronger theoretical basis of the
interaction structure. Simple weight matrix based on geographical distance might
not be enough. Future work will need to rely on the endogeneity of those interactions
along with the heterogeneity of behavior that is influenced by physical and socio-
economic distance. Promising future direction in regional science will utilize GIS
to incorporate data-rich sources from physical and virtual networks to better assess
the magnitude of spillover effects.
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Chapter 9
Hierarchical Spatial Econometric Models in
Regional Science

Donald J. Lacombe and Stuart G. McIntyre

9.1 Introduction

Multilevel or hierarchical models (hereafter ‘hierarchical’) are becoming increas-
ingly important in regional science because the data that are being used are
often nested in nature and, thus, provide a natural hierarchy to the data. In the
United States, over 3000 counties are nested within 50 states. In a UK context,
11 Government Office Regions nest hundreds of local authorities. Indeed, in the
UK there is a further administrative hierarchy level with some parts of the country
having a two-tiered structure of local government with unitary and district councils.
More generally within the European Union (EU), data are regularly released at
different levels of the NUTS (Nomenclature of Territorial Units for Statistics)
hierarchy. The NUTS classification is designed to be consistent across the EU, for
example, having approximately the same number of residents in each NUTS 1, 2,
and 3 area in each country and be subject to infrequent revisions. Thus, there is a lot
of inherently nested data available to regional scientists.

The nested nature of the data poses problems for standard econometric tech-
niques, such as Ordinary Least Squares (OLS), which assumes that the data are
independent. In addition to the clustering issue, there may be hypotheses that are
explicitly designed to be answered at the second level of the hierarchy. For example,
minimum wage laws in the United States are set at the federal level, but states have
the flexibility to institute a minimum wage above the federally mandated minimum
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wage.1 If we have data on youth employment and other variables at the county
level but the minimum wage data is at the state level, a standard approach such
as OLS with fixed-effects will not be able to be utilised because including state-
fixed effects along with a state-level explanatory variable would introduce perfect
multicollinearity and a non-invertible design matrix. However, this complication
poses no difficulties for the hierarchical methodology, which allows for state-level
explanatory variables to be introduced into the model, allowing hypotheses explic-
itly at the second level of the hierarchy (e.g., states) to be empirically investigated.

Combined with the increasing availability of regional data and improvements in
statistical theory, advances in computation have enabled the estimation of a greater
variety of hierarchical models. The result has been an increased interest among
regional scientists in using hierarchical models in applied work. Most obviously
this interest has focussed on combining the advantages of hierarchical modelling
with the opportunities provided by spatial econometric methods. A number of recent
papers have sought to develop and implement such models (Fingleton 2001; Smith
and LeSage 2004; Parent and LeSage 2008; Corrado and Fingleton 2012; Lacombe
and McIntyre 2016). In this context, this chapter seeks to chart out areas for future
development in the use of hierarchical spatial econometric models.

In the next section, we begin by introducing the core model notation used
throughout the chapter. In order to do this, we first introduce the non-spatial
hierarchical models, then we present the standard nested spatial econometric models
before combining these to produce hierarchical spatial econometric models. We
then provide a brief review of the existing literature in this area. Thereafter, we
identify a number of areas where we feel further developments and improvements
should focus. These are: (1) model comparison improvements, (2) further investi-
gation of heteroskedasticity within these models, (3) the developments of limited
dependent variable models, (4) the development of random coefficient models
and (5) the development of hierarchical origin-destination models. Improvements
in data availability and computational methods are such that the estimation of
large and complex econometric models is increasingly straightforward. With these
improvements comes huge potential, but also important challenges; not least by
imposing a greater responsibility on the applied researcher to select the most
appropriate model for their work and to transparently document their results. This
chapter is intended to further encourage development of a suite of hierarchical
spatial econometric models.

9.2 Introducing Hierarchical Econometric Models

For ease of discussion and explanation in this chapter, we begin by establishing our
notation. For our purposes here, we will focus on two-level hierarchical models,
although that is not to exclude the inclusion of additional levels in the model.

1States must set the wage at or above the federal level but not below that level.
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Throughout this chapter, we will refer to the lower level of the hierarchy as ‘level
1’ and the upper level as ‘level 2’. There are two main types of hierarchical models,
referred to as random intercept and random coefficient models. In the former, the
hierarchy operates as a result of each individual area at the lower level (county, say)
having an intercept which is partly driven by the average of the dependent variable
for its group (states, say) and partly by something idiosyncratic to that lower level
area (hence, the nomenclature of ‘random’). In the latter case, the impact of the
covariates (‘X’s’) on the dependent variable (‘Y’) is composed of a group average
marginal effect and an idiosyncratic element specific to each lower level unit. For
example, in a model of air quality, the marginal impact of traffic congestion on
air quality may have a localised impact but also a statewide impact as a result of
common state regulation of vehicle emissions.

We now outline formally a non-spatial hierarchical random intercept model
(Raudenbush and Bryk 2002):

Level 1 W yij D ˛j C Xijˇ C "ij "ij � N
�
0; 
2

�
(9.1)

Level 2 W ˛j D Zj� C uj uj � N
�
0; �2

�
(9.2)

where y is a vector of observations on the dependent variable, ˛j are the intercepts
that are allowed to vary in the model, X is the matrix of explanatory variables at
level 1, and " is the error term. At level 2 [Eq. (9.2)] we specify the model for the
intercepts of the level one model. Here the intercepts ˛j are the dependent variable,
Zj is the matrix of explanatory variables (including intercept), and uj is the error
term for this level of the model.

This model can be rewritten in matrix form as:

y D Xˇ C�˛ C " (9.3)

˛ D Z� C u (9.4)

" � N
�
0; 
2In

�
(9.5)

u � N
�
0; �2Ij

�
(9.6)

where y is an N � 1 vector of observation on the dependent variable, X is an N � K
matrix of explanatory variables at the first level of the hierarchy, ˇ is a k � 1 vector
of coefficients, and " is an N � 1 vector of disturbances with mean 0 and variance

2In. The symbol � represents an N � J (where N represents the total number of
observations and J represents the number of groups) matrix that assigns each level
1 observation to a level 2 group. One can also think of the � matrix as the matrix
of dummy variables one would use in a standard fixed-effects model. The symbol
˛ represents the J � 1 vector of intercept terms, which is given its own model. The
second level of the hierarchical model is the model for the individual intercepts.
The dependent variables at this level is the J � 1 vector of intercepts ˛, Z represents
the J � m vector of explanatory variables (including a constant term), � is the J � m
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vector of coefficients, and u represents the J �1 vector of disturbances with variance
�2Ij for the level 2 part of the model.

This kind of hierarchical model contains the classical regression model as a spe-
cial case (Gelman and Hill 2006). The essential idea is that the intercepts, i.e. the ˛js,
come from a distribution with mean 	˛ and standard deviation 
˛ . A fully-pooled
model ignores any heterogeneity and assumes a common intercept for all upper-level
units. In other words, the fully-pooled model assumes a common intercept among
the groups. At the other extreme, we can posit a separate intercept for all upper level
units which is the so-called “no pooling” model and is operationalised by including
a dummy variable for each upper-level unit. However, as noted by Gelman and Hill
(2006, p. 258), the level 2 error variance can be estimated from the data and there
is “no reason (except for convenience) to accept estimates that arbitrarily set this
parameter to one of these two extreme values.” In other words, the use of a single
intercept (i.e. the “fully-pooled” model) or the individual-intercept model (i.e., the
“no-pooling” model) are models that make an assumption that may not be warranted
and, thus, a hierarchical model may be appropriate.

Note also that the estimates of the intercepts are a linear combination of the
“fully-pooled” and “no-pooling” models. Mathematically, this can be expressed as
follows (Subramanian 2010; Luke 2004)

ǪEB
j D �j ǪNP

j C �
1 � �j

� ǪFP
j

�j D �2�
�2 C 
2

ı
nj
�

where ǪNP
j is the “no-pooling” estimate of the intercept, i.e., the intercept one would

obtain if each level 2 group had its own indicator variable; ǪFP
j is the value of the

intercept from a “fully-pooled” model, i.e., a model with a single intercept for all
level 2 groups and ǪEB

j is the “empirical Bayes” or “shrinkage” estimate of the
intercept in the hierarchical model, which is a linear combination of the “no-pooled”
and “fully pooled” models. The weights assigned to the “no-pooled” and “fully
pooled” are given by �j and are a function of the level 2 and level 1 error variance
as well as the number of level 1 observation in each level 2 unit, i.e., nj.2 There

2The empirical Bayes or shrinkage estimates work as follows. If the number of level 1 observations
within an individual level 2 group is small (i.e. a small value of nj) then the estimate of the intercept
for that group will be “shrunk” towards the overall intercept in a “fully-pooled” model. As an
example, the state of Delaware in the United States has only three counties nested within it and
therefore we would expect there to be more shrinkage towards the overall intercept as opposed
to the case of the state of Texas, which has 254 counties. In the case of Texas, we would expect
the estimate of the intercept to be much more accurate and more weight would be placed on the
“no-pooled” estimate of the intercept for the state of Texas. Additional details regarding these
empirical Bayes or shrinkage estimates are available in Gelman and Hill (2006), Luke (2004), and
Subramanian (2010).
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is, therefore, a clear relationship between the hierarchical and non-hierarchical
specifications and good reason to question the selection of non-hierarchical models
in many regional science applications.

The second main type of hierarchical model is the random coefficient model.
This model can be expressed as follows:

Level 1 W yij D ˇ0j C .Xij � X1j/ˇ1j C "ij "ij � N
�
0; 
2

�
(9.7)

Level 2 W ˇ0j D �00 (9.8)

ˇ1j D �10 C u1j (9.9)

where �00 is the average intercept at the upper level, �10 is the average of the slopes
across the upper level areas, and u0j and u1j are the idiosyncratic contribution to
the intercept and slope. In this model, the coefficients on the level 1 variables are
allowed to vary based on the level 2 units, i.e., the slopes for each explanatory
variable are allowed to vary according to the level 2 context. It should be noted
that the random intercept and random coefficient models can be combined to allow
the intercepts and slopes to vary across the level 2 units as well.

9.3 Introducing Hierarchical Spatial Econometric Models

In extending these non-spatial hierarchical models in the previous section to incor-
porate spatial relationships, there are a number of different approaches one could
take. In this section we will outline four different combinations, which stand out as
being potentially very useful to the applied researcher. The decision about which
of these models to begin the analysis with will depend upon whether the process
under study is one characterised by a local or a global spillover process, consistent
with LeSage (2014). A spillover can be defined as where the rth characteristic of the
ith entity (local authority say) Xr

i has some influence upon the outcome Y of some
neighbouring local authority j, Yj. With this in mind, a local spillover process is one
where the impact of Xr

i is limited to impacting Yj with the js defined based on the
specification of the spatial weight matrix. In a global spillover process in contrast,
the impact of Xr

i not only impacts on Yj, defined according to the weight matrix, but
in turn impacts the Yk of js neighbours k. Thus the Xr

i impact upon all areas Yj where
j now includes higher order neighbours to i (i.e., neighbours to is neighbours, etc.)
We can think of these as endogenous feedback effects and representing system wide
change; hence, the global nomenclature. Before moving to the hierarchical case, we
must first briefly outline the standard non-hierarchical nested spatial econometric
models, embodying the local and global spillover process.

The nested SDEM model, representing a local spillover process, can be repre-
sented as:

y D ˛ C Xˇ C WX� C u (9.10)

u D �Wu C  (9.11)
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This model nests both the spatial lag of X model (SLX) and the spatial error model
(SEM). A test of whether � D 0 and � D 0 would determine whether the nested, or
a more specific model should be used. We can see that the SDEM model captures
the impact of the Xs in j on the y in i, as well as capturing spatial heterogeneity
in the error term u. However, there is no endogenous feedback in this model. The
spatial impacts are limited to each area impacting their immediate neighbours as
defined by the spatial weight matrix W. No scope is given for impacts on higher
order neighbours. In order to capture such impacts, we would use the SDM model,
which can be represented as follows:

y D ˛ C �Wy C Xˇ C WX� C  (9.12)

This model nests the spatial autoregressive model (SAR) and the SEM and the SLX
models. The SDM model incorporates endogenous feedback effects and, thus, a role
for changes in one area i to impact upon not only its neighbours, j, but the neighbours
of those areas k as well. To see how this happens in this model, one only needs to
consider the matrix of partial derivatives of the rth explanatory:

@Y

@x1r
: : :

@Y

@xnr
D .I � pW/�1ˇr (9.13)

which, when we expand .I � pW/�1 gives: .I � pW/�1 D I C�W C�2W2 : : : �nWn,
with the direct effects embodied in the first term and the indirect effects embodied in
the later terms, specifically the second term embodying the impact on the immediate
neighbours, and the third term embodying the impact on the neighbours of those
neighbours, and so on.

Thus, model selection in a non-hierarchical spatial econometric setting starts
with a decision about which type of spatial process characterises the object of
the study, global or local. In common with non-hierarchical spatial econometric
model selection, the choice of which general nested model to begin with will be
dictated by the type of spillovers believed to be present. Thereafter, the statistical
significance of the spatial parameters can be tested, and the model refined from one
of these nested models to a more specific model, if appropriate. For example, if
one believes that the phenomenon under study is one characterised by endogenous
feedback effects throughout the system, then a global spillover model, the SDM,
would be appropriate as a starting point. Similarly, where a local spillover is believed
to characterise the process under study, the SDEM model would be the appropriate
starting point.

In the hierarchical context, the additional complication is the selection of the
appropriate nested model at each level of the hierarchy. The models defined below
represent an exhaustive combination of these model combinations for the so-called
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random intercept model.3 The four possibilities for extending the hierarchical
random intercept model based on the SDEM and SDM specification are:

Level 1 W SDM y D �1W1y C Xˇ C W1X� C�˛ C "

Level 2 W SDM ˛ D �2W2˛ C Zı C W2Z� C u

Level 1 W SDM y D �1W1y C Xˇ C W1X� C�˛ C "

Level 2 W SDEM ˛ D Zı C W2Z� C u

u D �Wu C �

Level 1 W SDEM y D Xˇ C W1X� C�˛ C "

" D �W"C �

Level 2 W SDM ˛ D �W2˛ C Zı C W2Z� C u

Level 1 W SDEM y D Xˇ C W1X� C�˛ C "

" D �W"C �

Level 2 W SDEM ˛ D Zı C W2Z� C u

u D �Wu C �

where y is an N � 1 vector of observation on the dependent variable, X is an N � k
matrix of explanatory variables at the first level of the hierarchy,ˇ is a k�1 vector of
coefficients, W1 is an N � N spatial weight matrix, �1 is the spatial autocorrelation
coefficient at level 1, and " is an N � 1 vector of disturbances with mean 0 and
variance 
2In. � represents an N � J (where N represents the total number of
observations and J represents the number of groups) matrix that assigns each level 1
observation to a level 2 group. The second level of the hierarchical model is the
model for the individual intercepts. The dependent variables at this level is the
J � 1 vector of intercepts ˛, Z represents the J � m vector of explanatory variables
(including a constant), � is the J�m vector of coefficients, W2 is a J�J spatial weight
matrix, �2 is the spatial autocorrelation parameter for level 2, and u represents the
J � 1 vector of disturbances with variance �2Ij for the level 2 part of the model.

3The models outlined in this section could also be applied in the random coefficient context, which
we describe in Sect. 9.6.1.
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One of the most important aspects of these hierarchical spatial econometric mod-
els is the proper interpretation of the marginal effects. In non-spatial hierarchical
models, the coefficients represent how a change in a covariate affects the dependent
variable. This is also true in spatial econometric models where one does not have a
lagged dependent variable �Wsy or �Ws˛ term. Thus, in the final model combination
outlined above, the � and � coefficients can be interpreted in the traditional manner.
However, in the other models, at one or both levels of the hierarchy one must
calculate the proper marginal effects estimates following LeSage and Pace (2009)
to produce the correct marginal direct and indirect effects. Having outlined the
extension of the non-spatial hierarchical random intercept model, we will now
briefly review the existing empirical work in this area. This will help the reader
to understand the subsequent section outlining a number of areas for improvement
in these models and in their use.

9.4 Existing Work in This Area

The nested structure of much of the data in regional science has long been known,
but in the context of spatial econometrics, the literature is not particularly well
developed.4 Anselin and Florax (1995) were the first, to our knowledge, to consider
spatial econometric models in an explicitly hierarchical context. They combined a
multi-state Kalman Filter approach and a hierarchical random intercept model to
take advantage of cross-sectional dependencies to ‘borrow strength’. This was then
used to backcast school district income tax revenues. Anselin and Florax (1995) did
not however incorporate explicitly spatial terms as we now understand them within
their model. While the broader spatial econometrics literature had some time ago
settled many of the issues around the error component problem, i.e., unobserved
heterogeneity, which had first been tackled in a spatial econometric context by
Kelejian and Robinson (1993), it was in the context of the modelling of disease
rates that the first attempt at embedding spatial terms into a hierarchical model
appeared (Langford et al. 1999). Thereafter, mention began to appear in the spatial
econometric literature of the overlap between these spatial econometrics approaches
and hierarchical modeling, e.g. Anselin (2001, 2002).

It was in Anselin and Cho (2002) that the concepts of hierarchical spatial
econometric modelling were first more fully discussed, although as Anselin et al.
(2004) subsequently noted, little had been done to incorporate advances in hier-
archical modelling into spatial econometric modelling. This began to change

4Although not central to our discussion here, it is worth noting that Wheeler and Paez in Fischer and
Getis (2009) (eds.), discuss geographically weighted regression methods in a Bayesian hierarchical
context. In addition, we note the work of Vanoutrive and Parenti (2009) in comparing spatial
econometric and hierarchical modelling approaches (which, perhaps confusingly, they refer to,
e.g., in Vanoutrive et al. (2009), as ‘spatial’ multilevel models), although they did not consider
combining these methods and focus instead on motivating the decision on which approach to use.
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slightly with the work of Smith and LeSage (2004) who introduced a hierarchical
spatial econometric probit model. Their model included upper level fixed-effects,
something which was commonly done in the non-spatial econometric literature,
but with the innovation that these fixed-effects were not modelled as independent
of each other. This enabled the estimation of region specific effects for each state
(say), but recognised that each of these state specific effects may depend upon the
state specific effect of their neighbours. This approach is a version of the spatial
random intercept model introduced above without the inclusion of covariates at the
upper level. A similar approach is taken in Parent and LeSage (2007) and in Jensen
et al. (2012). Dong et al. (2015) and Dong and Harris (2015) extend this model for
use with a continuous dependent variable as a spatial random intercept model but
without any covariates at the upper level of the hierarchy. The inclusion of covariates
at the upper level of the hierarchy was incorporated into the spatial random effects
model provided by Lacombe and McIntyre (2016). LeSage et al. (2007) and LeSage
and Llano (2013) took this literature in a slightly different direction by including
spatially structured fixed-effects into an origin-destination or ‘flow’ model and in
LeSage et al. (2007), they use it to examine knowledge spillovers using patent
data, although again no covariate information was included at the upper level of
the hierarchy.

Corrado and Fingleton (2012) restated the case for combining hierarchical
econometric models and spatial econometric models, demonstrating that the spatial
weight matrix at the heart of spatial econometric approaches is present as part of
the structure of hierarchical models. In Elhorst (2014), a short section on multilevel
modelling is provided, focussing on a mixed random and fixed coefficients model,
essentially enabling coefficients across regions (level 1 units) to vary but to be
fixed across countries (level 2 units). This is a presentation of the spatial random
coefficient model described earlier. To our knowledge, this short summary includes
most—if not all—of the work in this area. Given our earlier presentation of different
model ideas and combinations, there appears to be significant scope for further
development. These developments have two streams; firstly, developments that
apply to all the hierarchical spatial models that have been summarised in this section
and those detailed later in this chapter and secondly, model extensions that enhance
the ability of the hierarchical spatial econometric models currently available.

9.5 Improvements to Existing Spatial Hierarchical Models

Before discussing research frontiers in this area in more detail in the next section,
this section briefly documents some areas for improvements or different uses of the
spatial hierarchical models that already exist. While these are more ‘housekeeping’
items than research frontiers, they are nevertheless important in advancing the
development and use of these models.
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9.5.1 Model Comparison

The first area for improvement is in formalising the model selection process.
While it is true, as LeSage (2014) has argued, that the applied researcher ought
to know whether the process they are studying is one characterised by local or
global spillovers, the inherently subjective nature of this process can be improved
upon. This is particularly important given the presence of two potentially different
spillover effects being present in the same hierarchical model with the potential for
two different weight matrices to be used.

There are a number of model comparison techniques that can be used and we
highlight two possibilities within this section. Each of these needs to be further
investigated in an experimental setting to establish their relative performance in
selecting the correct model. The first method of choosing amongst the different
models is to utilize the Deviance Information Criterion (DIC) statistic first devel-
oped by Spiegelhalter et al. (2002). The DIC statistic is calculated for each model,
and the model with the lowest DIC value is determined to have the best model fit.
The DIC statistic is calculated as follows

pD D D .�/ � D
� N��

D .�/ D �2 log f p .y j� /g C 2 log f f . y/g

For each potential hierarchical spatial econometric model under consideration, the
DIC statistic could be calculated and the model with the lowest value of this test
statistic would then be chosen. Additional details regarding the development of the
DIC statistic for model choice is contained in Spiegelhalter et al. (2002).

Another potential avenue that one could take in terms of model comparison
would be to adopt a Bayesian perspective and calculate the marginal likelihood for
each model. The marginal likelihood for a model M takes the following form

p .y jM / D
Z

p .y j�;M / p .� jM / d�

where p .y j�;M / denotes the likelihood for model M and p .� jM / denotes the
prior distribution for the parameters for model M. Model comparison would involve
calculating the marginal likelihood (usually on the computationally convenient log
scale) for each model, exponentiate each of these values and then divide each
marginal likelihood value by this sum to obtain posterior model probabilities. Model
comparison then proceeds apace by choosing the model with the highest posterior
model probability. Although this procedure is straightforward to explain, there still
remains the difficulty of obtaining the marginal likelihood for these models due
to the fact that the integrals involved rarely have closed form solutions and thus
calculating the marginal likelihood is non-trivial in most cases. Further details
regarding Bayesian model comparison is contained in Koop et al. (2007) and in
the specific case of spatial econometric models, LeSage and Pace (2009).
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9.5.2 Heteroskedasticity

In addition to improving model selection procedures, little empirical investigation
of the test for and treatment of heteroskedasticity has so far been present in the
hierarchical spatial econometric literature. One potential avenue is to adopt the
technique of dealing with heteroskedasticity as outlined in LeSage and Pace (2009).
LeSage and Pace (2009, Sect. 5.6.1) make note of the fact that the Bayesian Markov
Chain Monte Carlo (MCMC) methodology can be extended “to include variance
scalars that can accommodate heteroscedastic and/or outliers”. The idea is an
extension of the one proposed in Geweke (1993) to various spatial econometric
models and involves estimating a set of variance scalars .v1; v2; : : : ; vn/ that
represent unknown parameters to be estimated as an additional step in the MCMC
algorithm. This formulation of the problem allows for the assumption that " �
N
�
0; 
2V

�
, where V is a diagonal matrix containing the parameters .v1; v2; : : : ; vn/.

The prior distribution for each of the vi scalar variance terms takes the form of a
set of n i:i:d �2 .r/

ı
r distributions, where r represents the single parameter of the

�2 distribution. We note that the various hierarchical spatial econometric models
that we have discussed so far are readily amenable to this extension of the basic
MCMC sampling scheme and, thus, each model is capable of accommodating
heteroskedasticity, however—to our knowledge—these are not captured in existing
routines.

9.5.3 Extending Beyond Two Level Models

In this chapter we have exclusively considered a two level hierarchy. In the statistics
literature there are a number of cases where more than two levels of the hierarchy
characterise the data. This is something true of regional science also. While we set
aside consideration of more than two levels in our discussions earlier in this chapter,
we would be remiss not to note that this is one direction of future research that
remains both very obvious and potentially very valuable in regional science. In the
EU, for instance, NUTS 1, 2, and 3 regions are all nested within each other. Many
studies have used these statistical geographies for research in regional science, yet
none to our knowledge have recognised the opportunity presented by the nested
geographical structure of the underlying data.

9.6 New Directions for Spatial Hierarchical Models

In this section, we describe some extensions to the spatial hierarchical models out-
lined earlier in this chapter. The number of possible models is quite extensive, and
we highlight only those models that have been utilized in a non-hierarchical setting.
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The models considered include a random coefficient spatial econometric model, lim-
ited dependent variable models, and hierarchical spatial origin-destination models.

9.6.1 Random Coefficient Models

The first, and most obvious, new direction for hierarchical spatial econometric
models is in the development of spatial hierarchical random coefficient models.
These models would be extensions to the hierarchical random coefficients models
detailed earlier in Sect. 9.2. In this case, what would be incorporated in addition to
what has already been outlined would be the explicit modelling of the ˇ1j in Eq. (9.9)
as a spatial function, for example:

ˇ1j D �Wˇ1j C �10 C u1j (9.14)

This would capture spatial dependence in these upper level average slope coef-
ficients. We realise that the notation is becoming increasingly complex at this
stage. With that in mind, a hypothetical tax example may help to provide some
intuition to both motivate and explain why this kind of model may be useful. In
modelling consumption of a particular good at the county level in the U.S. as
a function of,inter alia, the tax rates, one is interested in how consumption is
affected by changes in the county tax rate. With the proper transformations of
the variables, one way to think about this slope coefficient is as the elasticity of
consumption to the local tax rate. In the case of a hierarchical spatial model, this
level one covariate (tax rate) may be affected by state level decisions or restrictions,
motivating the hierarchical dimension and the introduction of a second level (state)
into the analysis. In addition, these state (level 2) restrictions or decisions may be
determined as a best response to policies in neighbouring states, meaning that the
group (level 2) average elasticity of consumption [�10 in Eq. (9.9) above] to the tax
rate may be dependent upon the average elasticity of consumption in neighbouring
states, motivating the exploration of potential spatial dependence in these slope
coefficients using a random coefficients model. It would be possible to extend these
effects to considering the nature of the spillover process as discussed earlier in this
chapter in the context of the spatial random intercept models.

9.6.2 Limited Dependent Variable Models

A number of applications in regional science make use of limited dependent variable
(i.e. probit, logit, tobit) models. In this section, we discuss some extensions to
the classic limited dependent variable models to incorporate hierarchical spatial
processes. While our focus here is on probit models, other limited dependent
variable models could be developed. An obvious starting point in spatial hierarchical
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limited dependent variable models would be a simple extension to Smith and LeSage
(2004) to include covariates at the upper level of the hierarchy. This would produce
a model of the following form:

y D �Wy C Xˇ C�˛ C "

˛ D Z� C u

" � N .0; 1/

u � N
�
0; �2Ij

�
where y is a binary (0,1) dependent variable and where 
2 is set to 1 for identification
purposes. This model is one of the simplest hierarchical spatial econometric models
possible. Beyond the addition of covariates at the upper level to the Smith and
LeSage (2004) framework, the next step would be to include the local and global
spillover models into this framework. This would produce hierarchical spatial
econometric models which were notationally very similar to those presented earlier
for the continuous dependent variable case. To give some idea of the potential
usefulness of such a model, the reader is directed to Holloway et al. (2014), who
examine passage of the 2001 Farm Bill in the U.S. Congress using a standard spatial
autoregressive probit model. However, because congressional districts are nested
within states, it is plausible that there are additional state level factors that should
be included in this kind of model. Estimation of the kind of model proposed here
would enable such an empirical investigation.

9.6.3 Hierarchical Origin-Destination Models

One final area where the further extension of hierarchical econometric models to
incorporate spatial processes would be useful is in the context of origin-destination
models (sometimes referred to as spatial interaction models). LeSage and Pace
(2008), in a highly influential study, developed the origin-destination flow model
and LeSage and Thomas-Agnan (2015) outline the special steps that need to be
taken in order to properly interpret the marginal effects in these origin-destination
models.

The OD Flow Model can also be adapted to handle hierarchical data structures
as follows

y D �dWdy C �oWoy C �wWwy C Xdˇd C Xoˇo C �g C�˛ C " (9.15)

˛ D Z� C u (9.16)

which takes into account origin (via Wo), destination (via Wd), and origin-to-
destination (via Ww) spatial dependence. The vectors ˇd and ˇo reflect the effect
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of covariates at the destination locations and origin locations, respectively, while �
reflects the effect of distance, and " is the standard N � 1 vector of disturbances. As
before,� represents an N � J (where N represents the total number of observations
and J represents the number of groups) matrix that assigns each level 1 observation
to a level 2 group, while Z is a level 2 covariate.

One area of study in which origin-destination spatial econometric models have
become popular is in the migration literature. For example, LeSage and Pace
(2009) illustrate the spatial econometric interaction model by examining population
migration flows between the 50 largest metropolitan areas from 1995 to 2000 in the
United States. The explanatory variables in their model include the population at the
origin and destination in 1990, the per-capita income at the origin and destination
in 1990, a variable that measures whether people resided in the same house at the
origin and destination in 1990, and a distance variable.

Although this group of explanatory variables is fairly exhaustive given the aims
of the modeling exercise, there may be factors operating at another level that could
affect migration flows. Each of the 50 largest metropolitan areas in the study are
nested within their own states; thus, state level factors may play a role in whether
or not people decide to migrate from one area to another. For example, it may
be that the state income tax rate (or whether or not a state even has an income
tax) might affect the decision to migrate. In the hierarchical setup that we posit
in this section, a measure of a state’s tax burden could be included as an upper-
level covariate in the empirical analysis to determine if this affects the migration
flow from metropolitan area to metropolitan area. Further empirical examples that
use origin-destination flow models are provided in LeSage and Polasek (2008) and
Marrocu and Paci (2013).

A final case to be considered here is incorporating these kinds of OD Flow
Models into a hierarchical random coefficients model. This would encompass the
origin and destination specific effects having two elements, one common to their
group, and one idiosyncratic to each flow. There are a number of cases where the
effect of a covariate in a flow model in regional science may be different across
different groups but also may be characterised by spatial dependence. One example
would be in modelling FDI flows where the impact of origin and destination
financial development on FDI flows may have both a common effect across
members of each group and where this common group effect is characterised by
spatial dependence across groups. Development of these kinds of models, combined
with the work LeSage and Pace (2008) and LeSage and Thomas-Agnan (2015) who
have developed spatial OD flow models and their interpretation, would be a huge
value to the field.

9.7 Conclusion

Spatial econometric modelling has increased rapidly in popularity among applied
regional scientists in the past few decades. The suite of spatial econometric models
and routines now available is large, and improvements to these models are frequent.
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Nevertheless, as we outlined in this chapter, the existing suite of hierarchical spatial
econometric models currently available is quite small. That is despite the fact that
many datasets of interest to regional scientists are nested in nature. While the
recent interest in hierarchical modelling is spawning new routines and modelling
approaches, there is still much to do. This chapter has sought to provide some
areas for immediate and future development and research in this area to bring
the advantages of hierarchical modelling and the insights of spatial econometric
modelling together more fully. While our suggestions are not exhaustive, we hope
that they provide some interesting ideas and stimulate further model development.
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Chapter 10
GIS in Regional Research

Alan T. Murray

10.1 Introduction

Geographic information systems (GIS) have come to be an important component
of regional science. This is not particularly surprising given the very characteristics
used by Walter Isard in establishing and defining regional science (see Isard 2003).
Namely, the use of rigorous analytical methods stemming from multiple disciplines
coming together to study real world problems and issues was generally noted as
foundational principles of regional science. Such approaches no doubt must be
supported by data of some sort, likely with a spatial/geographic orientation. And
it turns out that spatial data are messy and complicated, requiring specialized
techniques, methods, processes, etc. devoted to the creation and use of such data,
but also that spatial data often contain a wealth of implicit knowledge.

With the origins of regional science in the 1950s, there was a rather simplistic
view of geographic space and the phenomena associated with it. Computers were
just coming onto the scene and were far from accessible. Those fortunate enough
to get access encountered major computing limitations due to hard drive, memory
and processor components. A simplified view of a region or city was a necessity,
with objects of interest often being a point with one or more attributes. Further, the
number of points was traditionally kept to a minimum, again because computing
capabilities were limited. A common analytical processing need was to derive
distance, and often Euclidean (or straight line) travel was deemed sufficiently
representative of spatial interaction between two points.

Fast forward to present day. Computing is an afterthought, if even considered
at all. Computing power and supporting software exists on laptop and handheld
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devices (and watches). Data are plentiful, often with more data generated in real
time than can possibly be synthesized and understood. Monitoring devices are
everywhere: woven into clothing; on bracelets and cellular phones; embedded in
vehicles; scanning sensors recording purchases and spending behavior; and satellites
circling the earth measuring and recording any and everything. Regions and cities
are not assumed to be points but rather more complex areal features that can
be highly non-homogeneous in terms of attribute characteristics, response and
behavior. Limitations on the number of observations considered are substantially
relaxed as it is not uncommon to consider thousands or millions of spatial objects,
often managed and processed using GIS. And many sorts of geographic interactions
may be present, including agglomeration, unique paths of travel between objects,
neighboring impacts, etc.

Interests in regional science have evolved accordingly as well. A unit of analysis
is no longer assumed to be homogenous and static, but rather varied and changing
over time. We have witnessed a systematic reduction of simplifying assumptions
and a recognition of the importance of local detail. It is no surprise then that the
power and capabilities of GIS have only gained significance. In many ways, GIS
is becoming, or has become, a central approach used in regional science. However,
there remains a view that GIS is merely a tool for making maps. This chapter sets
out to provide an overview of GIS. In doing this, the intent is to highlight current
and future capabilities beyond map making, as GIS is specifically designed to deal
with geographic data creation and the analysis of this data.

10.2 GIS

A formal definition of GIS is that it is a combination of hardware, software and
procedures that support spatial analysis and decision making. GIS necessarily
requires capabilities for data capture, management, manipulation, analysis and
display associated with spatially referenced data (see Church and Murray 2009;
Longley et al. 2015). Collectively, this means that geographic space can be
abstracted as layers of information, as suggested in Fig. 10.1, enabling integration
and analysis within and across layers.

The process of data capture in GIS involves abstracting the earth, or a portion of
it, as a digital representation. This is often done as either a raster or a vector model.
The creation of data is possible using many approaches, possibly involving the use
of GPS, aerial sensing, drones and/or other sensing devices or may be based on
manual digitizing, automated conversion and/or geocoding. The data management
component of GIS is concerned with storage, access and query efficiency. The
operational response and processing capabilities of GIS software is dependent on
managing data efficiency.

The manipulation of data in GIS is necessary for many reasons. Transformation
of different layers of information to a consistent frame, or coordinate system,
is a very common manipulation approach. Another classic spatial manipulation
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Fig. 10.1 GIS based layers of spatial information

approach is projection of three-dimensional latitude and longitude referenced spatial
information into a two-dimensional coordinate system. Processing, calculation and
display, as an example, may require two-dimensional representation, depending
on the analysis setting. Other contexts, however, may require a three-dimensional
depiction. Various spatial manipulation approaches are considered standard in GIS,
including simplification and aggregation, among others. Examples of each of these
manipulation functions in regional science work is readily found. Simplification
may involve the derivation and use of a centroid to represent a county. Aggregation
might entail the spatial combination of two (or more) adjacent census tracts in order
to form one new polygon that represents the unit of analysis.

The data analysis capabilities of GIS have historically been perceived to be
limited. However, this is a bit unfair because there are actually many analytical capa-
bilities, ranging from attribute summary, spatial summary, containment assessment,
polygon overlay, map algebra, deriving distance and proximity, buffering, interpo-
lation, cluster detection, etc. In total, there is a wealth of analytical capabilities,
but has historically not included advanced statistical, geostatistical, geosimulation
and spatial optimization approaches (Anselin and Getis 1992; Fischer and Nijkamp
1992; Goodchild and Haining 2004). The major commercial packages gener-
ally include some access to geostatistical and spatial optimization methods, and
libraries/software like GeoDA offer advanced spatial statistical methods (Church
and Murray 2009; Murray 2010).

Finally, the display of spatial data in GIS has been a mainstay. Often this
has entailed the making of a map, either on screen or in a paper form. More
contemporary approaches have emerged to support geovisualization in 2D and 3D,
but also account for some aspects of temporal variability (see Maciejewski 2014;
Rey 2014; Longley et al. 2015).
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10.3 Representation and Data

GIS is special and important because the data managed corresponds to activities
and observations that exist/occur on the surface of the earth, and also because it has
the capability to interact, query, manipulate, etc., associated information in various
ways. Accordingly, representation issues are critical as the earth is not regularly
shaped nor easily specified in a digital environment. While a convenient, simplified
assumption is to consider the earth to be a sphere or an ellipsoid, it actually is neither.
Often a geoid may do a reasonable job of approximating the earth. Nevertheless,
there are always challenges in accurately and appropriately representing the surface
of the earth. Depending on the scale, location of interest and the purpose of a study,
a particular representation and associated datum(s) of the earth may be reasonable.
Care must therefore be taken with the underlying representation of the earth to
ensure that it is satisfactory for intended usages. Associated with an assumed
representation of the earth is the need for a referencing system so that attributes
and characteristics of places may be encoded, processed and analyzed. Referencing
may depend on the abstraction of geographic space, such as whether the interest is
in objects or fields. Objects typically consist of points, lines and polygons, whereas
a field is generally a regular discretization of continuous space, such as a raster grid
surface. The implication of referencing and objects/fields are many, but historically
two factors have figured prominently: storage and processing efficiency. System
response and computing needs are dependent on how data are stored. Access and
query of information are intrinsically linked to the storage of data.

Vast amounts of geographic data exist in a range of formats. Spatial information
and sources for obtaining it can be found in Church and Murray (2009) and
Longley et al. (2015), among others. Various attempts have been made or exist
that bring together publicly available spatial information, and are referred to as
Geolibraries or Geoportals (Longley et al. 2015). Some are the byproduct of federal,
state and/or local government efforts to ensure public access. An example at the
federal level is DATA.GOV. At the state level, California provides public access to
geospatial information through the state geoportal, http://gis.ca.gov/, as an example.
At a local level, agencies like SANDAG (http://www.sandag.org/) in San Diego
provide varying levels of access to certain geospatial data. Other communities, cities
and states have policies and data access portals meant for public consumption of
geographic information.

Historically the US Census has supplied important data about people and the
economy in the United States. To do this, the Census employs an army of people,
with primary products being the Decennial Census of Population and Housing
(every 10 years), Economic Census (every 5 years), Census of Governments (every
5 years) and the American Community Survey (annually). Of course, a valuable
component of census data is that digital records are available for at least a recent
history. While a very good source of information, there are issues with the data.
These issues can impact data quality, reliability, spatial and temporal accuracy,
etc. Particular issues include sampling bias, undercounts, variable ambiguity,

http://gis.ca.gov
http://www.sandag.org
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conflation, reporting delay/change, as well as others. From a spatial perspective,
the fact that census unit boundaries can change presents significant challenges,
and most importantly introduces further data uncertainty. Resolving attribute values
for reporting units across time periods means that various types of interpolation
(intelligent estimation/guessing) are necessary.

A wealth of spatial data now is obtained from sensing based platforms. This
includes aerial and ground based equipment ranging from Global Positioning
System (GPS), satellites, aircraft and drones to stationary and mobile video, images,
road counters and other sensors. While GPS, satellite imagery and aircraft LiDAR
are particularly commonplace and accessible, emerging technological capabilities
provided by drones offer potential for real time and continuously updated remotely
sensed information. On the ground, sensing equipment and technology abounds,
from Google Street View vehicles to red light cameras to security video to activity
detection devices, there is arguably more continuous sensor data than can be
processed and ingested.

Of course, one source of spatial information is to obtain it from private data
vendors, typically a byproduct of an assimilation effort on the part of the vendor
where various data are brought together through the scraping of digital and
print resources. Vendors such as Nokia (HERE), Walls and Associates (National
Establishment Time Series), Nielsen (PRIZM), etc. turn raw data into valuable
spatial information, often associated with the location of public and private goods
or services. Worth noting in particular is a significant reliance on geocoding in
the creation of vendor data. An example is National Establishment Time Series
produced by Walls & Associates that effectively converts Dun and Bradstreet
establishment data into digital, spatially referenced information. This is done by
interpreting the establishment/company street address as a global position. This
is known as geocoding, the formal process associated with taking a local street
address reference and identifying geographic coordinates for that address on the
surface of the earth, namely, a latitude and longitude (Murray et al. 2011). While
a very common process to produce digital information, there are a range of
issues associated with such data. Geocoding works by identifying a successful
address match in a street centerline database. Often match rates are high with
most commercial software, but not perfect. You can expect 5–10% of the address
data to not be successfully matched. Beyond this, a successful match does not
necessarily translate to spatially accurate information. The reason for this is that
address matching involves interpolation along street centerline segments to estimate
the location of an address number. Further, an offset distance is assumed to put the
point on the building, hopefully a “rooftop hit”. Ultimately, little is often known
about the actual spatial accuracy of geocoded data as the located point may not
be precisely on the house, business or building, nor necessarily in the associated
land parcel, neighborhood block or census tract. Errors in positional accuracy of a
few meters to a few kilometers are not unusual. Worth mentioning is that business
address data can be problematic. Often, records reflect headquarters only as a
registered place of business, but information on where employees undertake the
work is not known.
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Another class of spatial information is generated by individuals, possibly
solicited or unsolicited. This includes what is widely known as volunteered geo-
graphic information (VGI). Websites and software that facilitate VGI include
WikiMapia, OpenStreetMap and Map Maker, where individuals create, collect
and disseminate spatial data (Longley et al. 2015). Of course, other sources of
VGI could include Twitter feeds (when location is disclosed or inferred), Yelp,
Urbanspoon, etc. Noteworthy regarding such data is that it may be biased in many
ways, not reflective of all opinions, not representative of all social classes, lacking
consistency and objectivity, and may not have extensive spatial coverage. Further,
data standards and associated metadata often are lacking in many ways. Other
sources of user generated data are rather indirect sources, perhaps unknowingly
provided by an individual. Spatial location, time and behavior can be obtained
through the use of cellular phones and other electronic equipment as well as
through the use of customer loyalty card programs, among others. Cell phones
are typically GPS enabled, or location can be inferred from cellular towers and
satellites. Customer loyalty card programs represent a growing source of data where
companies like dunnhumby, Aimia, emnos, Nielsen, Symphony EYC, 5one and
Demandtec employ analytics to better understand our collective behavior and trends.
While not necessarily publicly available at this time, the data and information
extracted by cellular providers and companies with loyalty cards can be purchased
and used in various ways without any need for consent on the part of individuals.

10.4 Significance of GIS

There are many implications for regional science in the growth and evolution of GIS.
As suggested above, geographic data availability across a range of domains changes
how processes may be considered and the detail at which it can be conceived.
Not only with respect to more traditional concerns associated with residential
location, as an example, but now detailed information on movement and mobility
patterns throughout a day or week. Beyond this, there is ubiquitous monitoring
by sensors on the ground and in the sky. Big data associated with objects and
group or individual activities is generated daily, if not hourly. In many respects
this enables details about place and behavior to be considered, and also accounted
for explicitly in analysis and modeling efforts. While GIS does have considerable
mapping and analytical capabilities, the use of GIS based data and methods to
support advanced mathematical and statistical modeling continues to be noteworthy.
Thus, what makes GIS special is the ability to create, manage and use data in order
to derive and exploit spatial knowledge. Given that the data managed by GIS is
geographic in nature, there are many spatial relationships that result. Of note are
proximity, adjacency, connectivity, shape, direction, containment, concentration and
scale. From a database perspective, GIS is interesting and unique because these
spatial relationships are often implicit in that they are not computed in advance and
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stored as part of the database. Rather, these relationships may be inferred because
of geographic location and derived on the fly as needed.

There are many examples of regional science based work that has made use of,
or integrated with, GIS in order to carry out advanced modeling of some sort. A
prominent area of work is associated with land use planning. Supporting this is the
use and development of cellular automata approaches; and more recently, agent-
based methods. These approaches operate using some representation of a region,
often a regular raster, combined with current and past data on development in each
cell. Working on a rather informal model specification, rules are established that
reflect observed or inferred growth patterns that can be used to mimic or estimate
future patterns. Work in this area includes that of Clarke et al. (1997) and Ward
et al. (2000), among many others. What is noteworthy is that spatial relationships
have been found to be key to developing good land use transition/change rules. For
example, land use around a given area is particularly influential, but also current
and future infrastructure is an indicator of likely land use change. The advancement
of cellular automata and other related approaches for land use planning/analysis
has gone hand-in-hand with GIS proliferation and access to more detailed data.
Approaches have pursued greater specification and linkage to regional models
(Ward et al. 2003) but now also account for more features of land cover dynamics.
Recent discussion of these approaches can be found in Clarke (2014).

A prominent approach in regional science is assessment, evaluation and/or
detection of activity concentration. They may represent clusters, hot spots, cold
spots, neighborhoods, homogeneous response zones, etc. Identification of such areas
could be associated with response correlation or simply detecting agglomeration
of some sort. Factors associated with housing prices or foreclosure could be of
interest, as an example. Alternatively, one may want to detect whether there are
high rates of activity, such as crimes or industry mixes. To support this, a variety
of methods have been developed and applied in regional science, including local
and global measures of spatial autocorrelation as well as scan statistics. Spatial
information critical to most approaches is neighborhood structure, the so called
weights matrix or a scanning window depending on the methodological inquiry.
This is often based on adjacency or proximity relationships. GIS is invaluable in
deriving spatial relationships and details along these lines. A recent review of work
in this area can be found in Murray et al. (2014), but of note is the use of GIS
to specify more spatially relevant relationship structures, such as AMOEBA and
LOSH (Getis 2015) and irregular scan “windows” (Murray et al. 2014).

The direct measurement of proximity is fundamentally important to most
regional science based investigations. The interest is generally associated with the
spatial interaction between two locations, and in particular the shortest path. This
may represent a travel route taken by an individual or a cost/distance to travel. When
travel is not restricted to a road network, this is a continuous space problem that
offers an infinite number of travel path options. A popular choice for quantifying
proximity is to assume straight line (Euclidean) travel between two locations. This
can be problematic for many reasons but often does not reflect an actual travel path.
Greater realism means that obstacles must be taken into account, such as water
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Fig. 10.2 Convex hull for associated objects (A, B and Building)

bodies, bridges, structures, airports, mountains, canyons, etc. When travel is not
permitted through obstacles and/or buildings, the most efficient continuous space
route is known as the Euclidean shortest path. Of course, travel through geographic
space necessarily requires spatial information about movement options between a
given origin and destination. Beyond this, however, standard operations in GIS
dealing with spatial proximity and computational geometry are critical. In fact,
Hong and Murray (2013) report an approach to identify an optimal Euclidean short
path based on the use of a convex hull, readily identified using GIS. Figure 10.2
depicts the convex hull associated with three objects, two points and a building.
The convex hull represents a minimum length boundary containing all three objects.
What Hong and Murray (2013) proved is that the shortest path lies on this boundary,
assuming travel from point A to point B, effectively reducing the infinite number
of routes possible through continuous space to only a finite number of polygon
segments along the convex hull. A technique based on convex hulls was generalized
for the case of multiple obstacles. The significance of this is that one can identify
an obstacle avoiding shortest path in real-time using GIS, enabling navigation and
wayfinding as well as providing an ability to more accurately model travel behavior.

A fairly common spatial analytical method used in regional science is a location
model. In particular, coverage models have proven to be invaluable for addressing
many types of service situations (Murray 2016). Whether the circumstances involve
prescriptive plans or a descriptive understanding of an existing system, location
coverage models enable mathematical specification and solution derivation when
facilities are to be placed throughout a geographic service area. Facilities could
correspond to fire stations, clinics, cell towers, restaurants, etc. The geographic
service area may be based on travel time, distance, visibility and/or audibility, and
may be regular or irregular in shape. GIS is, therefore, invaluable for helping to
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Fig. 10.3 Skeleton of a polygon region

structure proximity, adjacency, contiguity, concentration, etc. in associated models.
Beyond this, Murray and Tong (2007), Murray et al. (2008) and Matisziw and
Murray (2009) have demonstrated that spatial knowledge and relationships can be
exploited through the use of GIS. In particular, Murray and Tong (2007) derived
finite dominating sets corresponding to locations where an optimal configuration
of facilities would be limited to for continuous space coverage problems. GIS
facilitates the identification by systematic evaluation of service areas using overlay
functions, reducing an infinite number of siting possibilities to a finite set. Murray
et al. (2008) and Matisziw and Murray (2009) proved that an optimal facility site
would be located along the skeleton (or medial axis) of a region. As an example,
a region is shown in Fig. 10.3 with demand for service distributed throughout.
The skeleton for this region is also shown, and we know that service coverage is
maximized when the facility is sited somewhere along the skeleton. Again, GIS
enables this property of a region with respect to coverage to be exploited in various
ways, providing a means of solutions based on the derived property.

10.5 Conclusions

This chapter serves many purposes. One is to provide an overview of GIS within
the context of regional science. Beyond this, the hope is that a characterization
of GIS based features will result in a greater understanding of what has been and
could be done to support regional science using GIS. Finally, a number of recent
developments associated with the integrated use of GIS in regional science were
discussed. Speculative discussion based on this overview are now possible.
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On the analysis side, much of what was discussed in this chapter reflects the
continued convergence of GIS and spatial analytics approaches, something noted
in Goodchild and Haining (2004), among others. This can be seen in much of
contemporary regional science work in that GIS is central to all facets of a study,
beginning with data management all the way to the application of particular analytic
approaches. The future of regional science will be one where GIS is increasingly
more central. This no doubt presents many research challenges for addressing issues
of integration as well as efficiently deriving/solving associated models.

What is abundantly clear at this time is that uncertainty abounds. GIS highlights
that this is, in fact, the case with digital information. Positional location of objects
stored in GIS is rarely without error or uncertainty. Further, even in cases where
there is a high level of positional certainty, various manipulation operations could
create resident uncertainty. A similar observation holds for model abstractions
that attempt to mimic observed regional systems and behavior. The model is a
simplification of an actual system, omitting certain features and nuances. Add to this
the fact that we may have a limited or biased understanding of systems, processes
and behaviors, then collectively there is much potential for all sorts of direct and
indirect uncertainty. As a result, this will continue to force researchers to rethink
and reevaluate how we approach regional science, and more importantly how we
can address issues of uncertainty and bias in the many forms that it may arise. While
GIS may highlight how resident uncertainty exists in data, it by no means offers a
roadmap on how to take uncertainty into account nor how analysis and planning can
be bolstered.

Given technological and computing advances, it is clear that big data will
continue to change what is done in regional science and what can be done. The level
of detail at which data are collected will necessitate changes in applied analytics,
often reflecting a relaxation of simplifying assumptions that have long been relied
upon. There is little doubt that this is a good thing as it will enable better modeling
and analysis to be carried out. This will translate into better insights, improved
plans and superior policy development. The challenges, of course, are how methods
will evolve accordingly. This will change perspectives and understanding. As a
result, fundamental assumptions likely will prove problematic, thereby needing to
be relaxed and/or modified.

While somewhat related to the previous point(s), it is a fact that changes over
time are really not well understood in general. Aspects of land use planning may
be an exception, as noted above. However, there are significant challenges for
relating change over time to actual behavior/response/operation. This can be said
for past and current systems, but also for future conditions. What will residential
land use patterns look like? To what degree will employment centers continue to
decentralize? How will travel and behavior patterns change? What technological
advances can we expect and what are implications for regional systems? These
questions and others simply highlight that cross sectional work has real limitations,
yet with a greater ability to use more detailed spatial information will come an
enhanced capability to simulate future conditions.
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In closing, this chapter has demonstrated the significance of GIS in regional
science to date, but likely this is merely a starting point. What GIS really tells us
at this point is that assumptions regarding sufficient data quality are actually very
problematic. The impacts and implications for analysis and planning are actually not
well understood at all. Couple with this increasing amounts of detailed data from a
variety of sources over time, and the suggestion is that there is much left to do in
regional science.
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Chapter 11
Exploratory Spatial Data Analysis: Tight
Coupling Data and Space, Spatial Data Mining,
and Hypothesis Generation

Trevor M. Harris

11.1 Introduction

Spatial data analysis and GIS are instrumental components for examining the
spatial dimension of regional science. As the role of geographical space has been
increasingly recognized in science, social science, and the humanities, partially
driven by the explosive growth of GIS, so spatial analysis has become progressively
embedded within statistical analysis and modeling. GIS has enabled ever greater
access to rapidly expanding quantities of digital spatial data. In a seminal paper
Anselin and Getis (1992) made a distinction between confirmatory and exploratory
data analysis where, although the edges of both were blurred, the former was largely
deductive and theory driven awhile EDA was inductive and data driven. In reality
this distinction should be questioned for it suggests that the EDA process begins
with little prior theoretical understanding of the problem or of the datasets and is
essentially a ‘fishing expedition’ of available databases before the real deductive
theory-driven analysis begins. Few reputable studies proceed in such a fashion. In
consigning EDA to a predominantly data driven, atheoretical approach using largely
descriptive techniques, the real power and insight that EDA provides is minimized to
a lesser role than it deserves. Goodchild (2010) alludes to this point in that the data
driven approach and the search for pattern was often viewed as being independent
of any theoretical framework and to some degree contributed to the social-theoretic
critique of GIS as being essentially not concerned with theory (Pickles 1995).

Importantly, however, Anselin and Getis recognized that to serve the spatial
needs of regional science, an integration of spatial analysis and GIS based on
computationally intensive approaches and visualizations was required. In recent
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decades, GIS and cyberinfrastructure have brought about a revolution in the
availability of spatial data. In addition, the spatial analytical power of GIS and
geospatial technologies have contributed to a substantial restructuring of regional
science. Many analog map collections have been converted to coordinate-based
digital form, and digitally-born spatially referenced data are now available in ever
increasing quantities and consumed through spatial data portals and across the
Internet. GIS has changed the spatial analysis landscape in many other ways as
well, “The geospatial world of today is clearly a much broader domain of data,
tools, services, and concepts than the limited GIS world of 1992” (Goodchild 2010,
55). In this respect, the statistical tool box proposed by Anselin and Getis is in many
respects a redundant notion, for many software systems are now hybridized and
enable sophisticated spatial data analysis to be performed. Significantly, however,
Anselin and Getis proposed a dynamic and iterative approach to data analysis in
the form of ESDA that, by drawing on EDA and the spatial data management
and processing power of GIS, facilitated a tighter interaction between the user and
spatial data analysis in a highly interactive and reflexive analytical and graphical
environment. Central to shaping ESDA and its spatial extension was the pioneering
work of John Tukey (1977).

11.2 Exploratory Data Analysis

Exploratory Spatial Data Analysis advances Tukey’s (1977) seminal work on EDA
through the tight coupling of geographical space to traditional EDA approaches.
While this antecedence to ESDA is often recognized and acknowledged, the unique
contribution of EDA to data analysis as espoused by Tukey is sometimes lost in the
flurry to examine the spatial dimensions of ESDA. EDA is a critical starting point to
research analysis, and there is a tendency to miss this exploratory step in the jump to
confirmatory and inferential statistics. Understanding Tukey’s work can be valuable
to regional scientists, for EDA represents both a philosophical and a methodological
approach to data analysis.

EDA stands in some contrast to confirmatory inferential statistics by its emphasis
on hypothesis generation rather than on hypothesis testing and confirmation.
Tukey’s work paved the way for an alternative, yet in many ways a complementary,
approach to inferential statistical data analysis. The ideas of Tukey concerning
EDA have been pursued and promoted by several authors who provide excellent
insight into the essential message of Tukey and his nuanced approach to data
analysis through EDA (Chatfield 1985, 1986; Cox and Jones 1981; Hartwig 1979;
Hartwig and Dearing 1983; Hoaglin et al. 1983, 1985, 1991; Mosteller 1985; Sibley
1988). At its core, EDA focuses on exploring the properties of data and to use
these findings to raise questions, pursue ideas, and generate hypotheses that can
be subsequently tested through confirmatory data analysis. Tukey (1977, 1) claimed
that, “Exploratory data analysis is detective work : : : numerical detective work : : : or
graphical detective work : : : that requires both tools and understanding” (italics
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added). Tukey questioned the ability of inferential statistics to uncover ideas and
hypotheses worthy of further investigation and that hypothesis testing alone often
ended in a dead-end and provided little guidance as to the directions that a study
should proceed. Ideas, Tukey suggested, came from data exploration more often
than from “lightning strokes”: “Finding the question is often more important than
finding the answer” (Tukey 1980, 23–24). Indeed to extend the premise still further,
Tukey argued that, “An approximate answer to the right problem is worth a good
deal more than an exact answer to the wrong question, which can always be made
precise” (Tukey 1962, 13).

Much of Tukey’s work in EDA represents a critique of traditional confirma-
tory inferential statistics and a resistance to the Neyman-Pearson approach to
confirmatory analysis and a seeming unwillingness to examine the data prior to pur-
suing inferential statistical analysis (Fernholz and Morgenthaler 2000, 84). Tukey
expressed concern from the outset about the ‘straight-line paradigm’ of confirmatory
statistics that seemed to proceed linearly from question, to design, to data collection,
to data analysis, and then to answer. One of his primary concerns was that this
sequential process neglected how the questions are generated in the first instance.
Furthermore, he questioned, how could the research design be guided, or the data
collection monitored, or analysis overseen to avoid inappropriate use of statistical
models if not by exploring the data before, during and after analysis (Tukey 1980,
23). To pursue confirmatory analysis, he argued, requires substantial exploratory
work coupled with quasi-theoretical insight. Tukey suggested reorganizing the early
stage of the straight-line paradigm such that a study proceeded from an idea, to
an iterative combination of question and analytical (re)design, and thence to data
collection, analysis, and outcome (ibid.). In this approach, the formulation of the
ideas and questions are critical, yet as Tukey argued, such questions are rarely
‘tidy’ but rather are inchoate and require extensive exploration of past data (ibid.,
24). Tukey saw the essential need for EDA to assist in formulating the questions
deserving of subsequent confirmation (ibid., 24). Tukey did not reject confirmatory
data analysis in favor of EDA for he argued that each on its own was insufficient:
“To try to replace either by the other is madness. We need them both” (ibid., 23). A
circular paradigm thus emerges, rather than a linear process, whereby theory defines
the problem and EDA provides a feedback loop between the analysis and theoretical
formation allowing for subsequent inferential analyses to be pursued or modified in
the light of such exploratory work. Thus, analysis and theoretical understanding are
enmeshed and not separate stages of an investigation. In this way, EDA emphasizes
a constant, but meaningful, return to the data ‘honeypot’ and, as Tukey remarked,
torturing the data until it has revealed all and has no more to confess.

Tukey argued against EDA being seen as comprising wholly descriptive statistics
but rather that EDA was an “attitude” and a “flexibility”, supported by visual
representations and “some helpful techniques” (ibid., 25). Tukey’s work in EDA
can be seen as providing two primary themes to data analysis. First, he presented
a practical philosophy as to how to proceed systematically through a data analysis
and especially how to begin that process (Good 1983; Tukey and Wilk 1970). In
my experience of teaching ESDA, this practical approach, which can be brought
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to bear on almost any data analysis, has been of greatest value to many students
who balk at where to begin and how to proceed through the data analytical process.
The acid test, of course, is to present students with a data set that is known to them
and to watch the barrage of inappropriate inferential statistics thrown at the data
that invariably fails to generate much understanding or substance from the analysis.
EDA more closely replicates the process followed by experienced researchers when
analyzing a dataset and provides a practical path through the data analysis process
than can be gained from any rigid adherence to standard statistical text books–in
geography or otherwise. Despite this valuable practical philosophy, however, Tukey
argued against EDA being seen as a kind of theory of data analysis (Fernholz and
Morgenthaler 2000, 84).

Second, EDA places considerable emphasis on techniques that are both robust
and resistant (Besag 1981; Mosteller 1985; Mosteller and Tukey 1977; Velleman
and Hoaglin 1981). Tukey suggested that invariably little is known about the data
to which we apply statistical models and, thus, there is a need to explore the
data using techniques that minimize prior assumptions about the data and the
model (which assumptions he suggested are often violated in practice) and allowed
exploration of the data to guide the choice of appropriate questions and analysis. His
focus on nonparametric statistics spurred the identification of innovative techniques
that were resistant to the effects of extraordinary data values that could unduly
influence the results of an analysis, and were robust and lessened the reliance
on the assumptions of the data distribution and were essentially distribution free.
Thus, the median, interquartile range and percentiles are preferred over the mean
and standard deviation because they are more resistant to extreme values and
outliers. Creative techniques for univariate, bi-variate, and hypervariate EDA such
as boxplots, stem-and-leaf diagrams, q-q plots and Tukey mean-difference plots,
parallel coordinate plots, lowess curves and local regression, multi-dot displays,
compound filter smoothers of running medians for resistant time series analysis,
resistant linear regression, scattergram matrices, and conditional plots provide a
diverse mix of robust and resistant EDA techniques that complement more ‘fragile’
and less resistant measures (Cleveland 1993; Velleman and Hoaglin 1981; Tukey
1977).

A further characteristic of EDA is its focus on the ‘five number’ summary
statistics of minimum, upper and lower quartiles, median, and maximum. This focus
on the shape, spread, and central tendency of a distribution and on identifying and
examining anomalies, outliers, trends, patterns, and residuals is central to EDA.
EDA uses techniques that resist reductionism and summary statistics but tries to
keep the original data present at all times. Thus, stem and leaf diagrams are preferred
over histograms whose bins ‘hide’ the original data values. EDA places heavy
emphasis on descriptive statistics, and it is here that it battles with the perception that
EDA and its statistics are somewhat obvious and trivial and that inferential statistics
and progressively more abstract statistical models represent greater legitimacy and
intellectual value. To claim a focus on a data distribution curve, for example, may
at first sight seem basic, yet the personal story of the eminent paleontologist Jay
Stephen Gould represents a powerful example of the importance of just one of these
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descriptive measures. In the Median isn’t the message, Gould (1985) recounts being
diagnosed with mesothelioma cancer of the abdomen and being told that the median
lifespan for people with this disease was 8 months. But Gould’s research fascination
with variation and his training as a scientist led him to determine that the distribution
curve was positively skewed and that for a number of reasons, including good health
care, early detection of the cancer, and no other healthcare problems, that he could
place himself well into the long tail of the distribution. Indeed Gould survived a
further 20 years and died of a different cancer. In a prefatory note Steve Dunn
calls Gould’s article “the wisest, most humane thing ever written about cancer and
statistics” (Dunn 2002).

Thus, EDA resists the allure of the ‘magic number syndrome’ whereby complex
distributions and patterns are reduced to summary numerical form that potentially
hides the real pattern or complexity of the data. For this and for other reasons, there
is a heavily reliance in EDA on graphical display. As Tukey (1977, vi) contended,
“The greatest value of a picture is when it forces us to notice what we never expected
to see”. The visualization work of Cleveland (1993) and Tufte (1983, 1990) has
added considerably to the emphasis on graphical representation in data analysis and
to the suite of techniques available in EDA. This focus on exploratory techniques
and lessened reliance by EDA on preconceptions and assumptions about data
stands in contrast to confirmatory statistics that seeks to make broad conclusions
and generalizations about a population based on the inferences drawn from the
relationships found in a random sample of that population. The focus of inferential
statistics on a priori hypothesis testing and probabilistic models and the derivation
of estimates and confidence levels points to the need for descriptive statistics of
the data as a preliminary step before a statistical model is applied or inferences
are generalized about a larger population. EDA is particularly suited to the creative
exploration of data and to generating questions and hypotheses, even though it often
does not provide definitive answers. As Tukey indicated, EDA is not the whole story
but, as he observed, if you took 1000 books on statistics in the 1970s, 999 would
be confirmatory. Arguably, the same assessment is probably not that much different
today except that to EDA might be added space to create ESDA and its additional
focus on understanding the spatial dimensions of data and hypothesis generation.

11.3 Spatial Extensions to Exploratory Data Analysis

If EDA is about using robust, resistant, and graphical techniques to identify,
understand, and gain insight into the essential properties of data, then ESDA
is an extension to that process that seeks to detect spatial patterns in the data,
to formulate hypotheses based on the geography of that data and to assess the
appropriateness and assumptions of spatial models (Haining 2009). ESDA utilizes
recent and dramatic advances in interactive desktop computer processing and com-
puter graphics to create an exploratory analytical environment capable of linking
EDA and spatial data analysis. ESDA provides a powerful idea and hypothesis
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generation platform with which to undertake complex spatial data analysis and
integrates well with recent advances in local spatial statistical techniques, GIS,
and geovisualization. The spatial and statistical modeling needs of regional science
coupled with ongoing advances in big data and spatial data mining suggests ESDA
will be of growing importance in geographical analysis and regional science in the
future. The growing availability of hybrid software systems capable of handling
spatial data have contributed markedly to the ability to perform ESDA. S-Plus was
an early software system equipped with a bridge to ESRI’s GIS system though
this was subsequently discontinued. Currently there are several analytics systems
capable of performing ESDA that include Tableau (www.Tableau.com), Carto-
vis (cartovis.com), ESRI’s Geostatistical Analyst (http://www.esri.com/software/
arcgis/extensions/geostatistical), GeoVista (http://www.geovista.psu.edu/), Weave
(https://www.oicweave.org/), and within the software environment R (https://www.
r-project.org/). Perhaps best well known within geography and regional science is
GeoDa (https://geodacenter.asu.edu/).

In addition to the work of Tukey and other researchers in EDA, ESDA has
been heavily influenced by the early work of Monmonier (1989) on the geographic
brushing of scatterplot matrices, Cleveland’s work on data visualization, and
Sibley’s spatial applications of EDA (1988). In particular, ESDA owes much to the
prescient work of Anselin (1993, 1999) who was not only early in identifying the
potential for combining advances in GIS and spatial data management with spatial
analysis and local spatial analysis but in providing the means to do so through
GeoDa. While the linkage between ESDA and GIS has been somewhat tenuous, in
reality the tight coupling of space and data analysis as evidenced by the development
of the GeoDa software has made the link between GIS and EDA apparent and
explicit. ESDA as envisaged by Anselin remains a subset of EDA rather than of
GIS and it focuses on exploring the distinguishing characteristics of spatial data
through a suite of techniques that specifically focus on spatial autocorrelation and
spatial heterogeneity.

ESDA usually contains a similar collection of EDA techniques capable of
exploring, describing and visualizing data, but with the additional capability of
being able to handle spatial data and mapping. Anselin’s particular focus has
been to make spatial autocorrelation and spatial heterogeneity central to his ESDA
software development and focus (Anselin 2005). As Anselin writes “ESDA is a
collection of techniques to describe and visualize spatial distributions, identify
atypical locations or spatial outliers, discover patterns of spatial association, clusters
or hot spots, and suggest spatial regimes or other forms of spatial heterogeneity.
Central to this conceptualization is the notion of spatial autocorrelation or spatial
association, i.e., the phenomenon where locational similarity (observations in spatial
proximity) is matched by value similarity (attribute correlation)” (Anselin 1999,
79–80). Thus, in addition to many of the robust and resistant techniques to be
found in EDA, and as outlined above, in ESDA the analyses are tightly coupled
with spatial data and mapping. This tight coupling of spatial and attribute data
occurs through brushing and linking of interconnected multiple dynamic window
panels. Brushing and linking provides for a powerful exploratory capability not
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Fig. 11.1 GeoDa in the Virtual Reality CAVE displaying multiple dynamically linked panels of
analyses linked via brushing and linking to each other and to the map display on the floor

just between tables and graphics, but with maps. Currently GeoDa and similar
systems dynamically link multiple panes or windows containing various analytical
techniques that includes a map display (Fig. 11.1). Anselin provided an important
step in ESDA in enabling EDA and spatial analysis to be tightly coupled. In
addition to linking panels containing multiple simultaneous analyses, the ability
to dynamically ‘brush’ individual or groups of data items in any panel or map
display and to see the corresponding data points or relationships highlighted in
the other panels creates a truly powerful exploratory tool. These compelling visual
and dynamic displays of multiple analyses are actively and dynamically linked to
enable spatial patterns and spatial relationships to be examined, as well as to identify
anomalies and outliers. Brushing not only allows for data points selected in one
analytical panel to be automatically identified and displayed across all panels, but it
is also possible to brush locations on a map to see the respective data displayed in
the other panels and vice versa.

In addition to brushing and linking, GeoDa enables both global spatial autocor-
relation to be examined using Moran’s I, and local spatial autocorrelation using
Local Indicators of Spatial Autocorrelation that indicate the specific location and
magnitude of spatial autocorrelation to be identified (Anselin 1993). In instances
where spatial patterns can be discerned, it is reasonable to assume that the
spatial data are related and not independent, and tests for spatial autocorrelation
using a spatial weights matrix can be applied based on locational contiguity to
test for positive similarity between adjacent spatial units or for negative spatial
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autocorrelation and dissimilar patterns. A focus on spatial outliers reinforces the
exploratory work of Tukey to not ignore anomalies but to embrace their study and
the insights that they provide. In tandem with Geographically Weighted Regression
(Fotheringham et al. 2002) that identifies the occurrence of spatial non-stationarity
and allows relationships to vary over space, the move toward local spatial statistics
lends itself well to ESDA. The empirical Bayesian kriging of ESRI’s Geostatistical
Analyst employs the semi-variogram to identify directional bias in correlations
between sample points, and using spatial covariance between data points adjusts the
weights of contributing sample points to optimize model interpolators for spatially
continuous fields. Thus, within ESDA concepts of distance, adjacency, interaction,
and neighborhood spatially enrich the field of statistics that has been relatively
insensitive and unsuitable to geographical investigation before the inclusion of
the spatial dimension. In overcoming the sampling of data points independent of
the characteristics of the data being interpolated, these local spatially adaptive
weighting functions are progressively embedding Tobler’s (1970) first law of
geography into contemporary spatial analysis and within the spatially enabled
ESDA in particular.

11.4 Discussion

It is suggested here that EDA, and its spatial counterpart ESDA, provide a powerful,
systematic and intuitive approach to spatial data analysis and a necessary precursor
to the use of inferential statistics. Despite the embeddedness of these exploratory
techniques within ESDA, the extent to which the premises and approaches of
Tukey’s EDA have been recognized and accepted within regional science as neces-
sary and complementary steps in the spatial data analysis process is not clear. EDA
is still seen as ‘descriptive’ and a ‘warm-up exercise’ to the real statistical analysis
using confirmatory techniques. This perception diminishes the real value of EDA
to understand the very nature of a data set. In particular, the potential for ESDA to
formulate ideas and hypotheses for pursuit either within the ESDA environment or
with confirmatory inferential statistics could represent missed opportunities. ESDA
does more than enhance the spatial analytical capabilities of GIS, it represents a
powerful approach to gain insight into the heart of the data.

Part of the reason for not fully embracing EDA may be, as others have pointed
out (Goodchild 2010; Haining 2009), that in the face of big data and the growing
availability of spatial data from GIS, the preference of some is to seek patterns and
anomalies automatically. This, of course, flies in the face of Tukey’s conception
and purpose for EDA. Barnes (2003) in his critique of American regional science
arguably suggests that the decline among regional science practitioners could have
been avoided. Barnes contends of regional science that, “It is unreflective, and
consequently inured to change, because of a commitment to a God’s eye view. It
is so convinced of its own rightness, of its Archimedean position, that it remained
aloof and invariant, rather than being sensitive to its changing local context”. The
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advent of ESDA may be one change that will resonate with regional science and that
by drawing on inductive reasoning (and arguably deductive as well through EDAs
circular reasoning) provides a reflective and exploratory environment that is creative
and open-ended. As Tukey would argue “Exploratory data analysis is an attitude, a
flexibility, NOT a bundle of techniques : : : ” (Tukey 1980, 23).

In the coming decades, and fueled by a potential avalanche of spatially rich
data repositories created from a combination of automatic data sensors and human
data generators, regional science will be challenged not only by data storage,
curation, search, and query issues, but by how meaningful spatial data analysis of
big data will be performed. The profile of ESDA could increase as its philosophy,
tools, and techniques are brought to bear on big data to gain an understanding
of extremely large and complex spatial datasets. Statistical analyses and visual-
ization technologies struggle with big data in handling the sheer high volume,
high velocity, high variety, and increasingly high veracity characteristics of these
data assets (Gandomi and Haider 2015). The application of intelligent machine
learning approaches replicate some of the early focus of spatial analysis in GIS
on automatically detecting patterns from complex data. Amidst assertions that big
data will spell the end of theory, a major challenge posed by big data is that little is
known about the underlying empirical micro-process that lead to the emergence of
the typical network characteristics of big data. And yet, such scenarios continue to
beg the question that Tukey laid out nearly four decades ago—how are meaningful
questions and hypotheses to be formed without an intensive exploration of the data?

Searching for plausible hypotheses, especially where the spatial pattern is not
common knowledge, is problematic. Shekhar and Chawla (2003) proposed the use
of interactive exploratory analysis to bring together a number of analytical panels
that closely mirror an ESDA approach. Spatial data mining, they suggest, differs
from spatial data analysis by its usage of techniques derived from spatial statistics,
spatial analysis, machine learning and databases. The output from an iterative spatial
data mining process, suggests Shekhar and Chawla, is typically a hypothesis (ibid.,
237). One way they suggest to view data mining is as a filter step that occurs
before the application of a rigorous statistical tool: “The role of the filter step is
to literally plow through reams of data and generate some potentially interesting
hypothesis which can then be verified using statistics” (ibid., 240). Thus, a key
part of spatial data mining of big data is to comb through big databases in order
to identify information that is relevant to building actionable models. As regional
science confronts ever larger and more complex spatial databases, these exploratory
techniques may take on greater importance in positioning the science and research
questions to be pursued.

In the days soon after the publication of Tukey’s seminal work, Cox and Jones
(1981, 142) made a plea that “it is to be hoped that quantitative geography : : :will
be less afflicted than in the past by a craving for the semblance of elegance,
exactness, and rigour exuded by inferential ideas, and that geographers will show
more willingness to engage in uninhibited exploration of their data, guided but not
dominated by the procedures devised by statisticians”. Ten years later and following
an NCGIA specialist meeting, Fotheringham (1992, 1676) reported that there might
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be instances “in certain circumstances” (italics in the original) where exploratory
spatial data techniques within GIS might be appropriate. These circumstances
appear to apply to spatial windowing to analyze data on the fly as the window is
moved around a set of locations, for detecting spatial outliers, for disaggregating
statistics spatially, and to visualize spatial data. In the wake of the GIS revolution,
the growing abundance of digital spatial data, the era of big data, the rise of
data mining, and the availability of ever more powerful computing and graphical
visualization resources and hybrid software solutions, such hopes for ESDA may be
closer to reality now than they were three or more decades ago.
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Chapter 12
Location Analysis: Developments on the Horizon

Daoqin Tong and Alan T. Murray

12.1 Introduction

Location analysis has deep roots in regional science and represents a classic
method in the discipline. Location analysis, in general, concerns the organization
or arrangement of goods, resources, services or activities in space. Such analysis
can be used to answer questions of why activities/phenomena occur at certain
places and how to best locate goods/services to achieve certain purposes. Early
location analysis work can be traced back to Johann Heinrich von Thünen, Walter
Christaller, August Lösch, Alfred Weber and Harold Hotelling, among others. von
Thünen (1826) proposed a location theory to explain the principles that account
for different agricultural land uses by linking locational rent with agricultural
production and transportation costs. Focusing on factory location, Weber (1909)
was interested in finding the best site on the continuous plane that minimizes
transportation costs, equivalent to profit maximization under production, labor
supply and demand assumptions. Hotelling (1929) examined the location strategies
of two firms and their price setting considering demand distribution, transportation
costs and competition. Using a linear city/market, Hotelling showed that with
fixed pricing and production costs both firms would ideally locate at the halfway
point, with each capturing/serving half the total market. Going beyond a single
area or region, Christaller (1933) conceived of human settlements as a system and
developed central place theory to explain the spatial organization of villages, towns
and cities. Building upon the interrelations of economic activities between places,
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this suggests that settlement patterns reflect a hexagon-shaped hierarchy, with
centers and their associated hinterlands. Lösch (1941) expanded on central place
theory to allow for sophisticated spatial arrangements that considered economies
of scale and specialization. These pioneering studies have laid the fundamental
foundation for the field of location analysis by connecting locational choices to
various economic activities.

Since these pioneering studies, locational analysis has flourished in regional
science and beyond. One stream of application and development has sought to
verify, extend and refine associated location theory. For example, Alonso (1964)
extended von Thünen’s agricultural land use theory to the urban setting and
developed bid-rent models of land use distribution as a function of the distance from
the central business district. Modern agriculture location theory has also evolved
to account for more realistic conditions (see Lucas and Chhajed 2004). Similarly,
central place theory has been extended to examine city size (Beckmann 1958),
hierarchy of villages (von Böventer 1963), and shopping centers (Eaton and Lipsey
1982), and account for customer shopping behavior (Ghosh and McLafferty 1987)
and agglomeration effects (Fischer 2011; Mulligan et al. 2012). Models have also
been used to interpret, test and/or verify various aspects of central place theory as
well as gain insights into underlying processes (Beaumont 1987; Curtin and Church
2007).

Another stream of activity has involved specification and solution of supporting
mathematical models. Initial work was devoted to solving and extending the Weber
problem (Wesolowsky 1993). Although the Weber problem appears rather simple,
solving the problem exactly has been challenging given the continuous nature
of the problem, where a firm (or firms) can be sited anywhere in geographic
space. Early studies focused on the geometric characteristics of the problem and
used a mechanical analogue device known as the Varignon frame. Later, iterative
algorithms, including the well-known Weiszfeld algorithm (Weiszfeld 1937), were
developed for model solution. Various extensions have also been made to the Weber
problem by introducing alternative distance metrics, including multiple facilities,
and allowing stochastic demand, among others (Drezner et al. 2002). The Weber
problem has also served as the inspiration for a range of contemporary modeling
efforts, some of which will be discussed in Sect. 12.2.

Building upon the foundation laid by the above work, location analysis and mod-
eling have evolved in terms of theoretical development and empirical application.
While originally focused on descriptive characteristics associated with why and
how activities/communities are organized in space, the field has advanced to be
more prescriptive in nature through the assistance of making locational decisions
for various purposes. A significant number of location models have been developed
to support real-world applications at the urban and regional scale for both the public
and private sectors. The following section briefly reviews the field with a focus on
a selected number of models and applications. This is followed by a discussion of
the challenges in location analysis. Looking forward, we highlight future research
directions associated with emerging applications, big spatial data and ways to
address computational challenges. Finally, concluding remarks are given.
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12.2 Analytical Approaches

As suggested above, much of the underlying economic and spatial theory associated
with location analysis has historically been descriptive in nature, seeking to develop
a better understanding of existing patterns and observed conditions. Examples
include bid-rent curves, regression models based on proximity to a city center
and distance-decay oriented interaction models. Evolving computing capabilities
have enabled description to be carried out using mathematical models, and also
support prescriptive decision making about where to best locate goods and services
in combination with responsible resource allocation.

12.2.1 Prescriptive Capabilities

While location theory has provided a comprehensive description/explanation of
various activities, prescriptive capabilities have come to characterize more con-
temporary location analysis (Murray 2010). In these studies, determining the best
locations for certain services or activities has proven beneficial for achieving overall
efficiency. Modern location analysis has therefore been operationalized through
development of mathematical models. Over the past few decades, literature on
location models and associated applications are prolific. Summaries of work in this
area can be found in articles including Chhajed et al. (1993), Brandeau and Chiu
(1989), Owen and Daskin (1998); ReVelle and Eiselt (2005), Smith et al. (2009),
Murray (2010), as well as books including Love et al. (1988); Drezner (1995),
Daskin (1995), Drezner and Hamacher (2002), Church and Murray (2009), Farahani
and Hekmatfar (2009), Eiselt and Marianov (2011), Laporte et al. (2015), and Eiselt
and Marianov (2015). These reviews have focused on various aspects of the field and
major achievements to date. This chapter will be forward-looking with elaboration
on important future research areas in the field.

As noted previously, a location model has generally been conceived to be
a bid-rent curve, regression model that includes distance and/or an interaction
model represented as an equation. The prescriptive approach extends descriptive
capabilities to allow for resource allocation and spatial decision making. In this
sense, a contemporary location model therefore consists of one or multiple objective
function(s) as well as a set of constraints. Objective functions are used to articulate
the goal(s) that a particular problem aims to achieve. An objective function may
reflect overall investment/operation costs or perhaps service benefits. These would
then be optimized accordingly, with decisions made to produce the best objective
function outcome. Constraints reflect the problem specific conditions that limit
activities in some manner, necessarily establishing a mathematical linkage between
decision variables.

Prescriptive oriented location models have been classified into different cat-
egories based upon a range of criteria. Categories of particular note include:
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continuous space, discrete space, network, stochastic, deterministic, single objec-
tive, multiple objective, number of facilities, service capacity, etc. Depending on
how space is treated in a location model, it may be considered either continuous,
discrete or network. The classic Weber problem is an example of a continuous
problem as the factory to be located can be anywhere on the continuous plane.
Alternatively, a discrete problem is one where there are only a finite number of
candidate sites, identified a priori, and a finite number of objects to be served.
Finally, a network problem could be discrete but may also be continuous, depending
on whether siting could occur along arcs or if demand is distributed along arcs.
Elaboration on these points and others follows in the subsequent sections.

12.2.2 Classic Models

There are a number of noteworthy location models that will serve to illustrate
prescriptive capabilities. The location-allocation problem and its variants have
arguably been among the most influential and widely relied upon prescriptive
models. The location-allocation problem was formally introduced in the seminal
work by Cooper (1963), extending the Weber problem to allow for multiple facilities
to be sited on the continuous plane. Hakimi (1964) considered a network version
of the problem where demand and service provision occur on a network with the
objective to minimize the overall travel costs along the network. Demand is assumed
to be at nodes, and facilities can be sited anywhere on the network. Although
no specific solution method is provided, Hakimi proved that nodes on a network
contain at least one optimal solution in the case of a network. Given this, the search
for the best configuration of facility can be narrowed to the finite set consisting
of only network nodes. This gives rise to the p-median problem: finding p sites
among n predetermined points to serve discrete demand such that total travel cost is
a minimum. ReVelle and Swan (1970) formulated the p-median problem. Location-
allocation problems, especially the p-median problem, have been widely applied
and extended to incorporate various problem specific conditions, including facility
capacity, hierarchical structure, stochastic demand and competition. A summary of
model development and application can be found in Mirchandani (1990), Marianov
and Serra (2011), ReVelle et al. (2008), and Daskin and Maass (2015), among
others.

Another category of prescriptive location models concerns regional coverage.
Critical then is the notion of “coverage”, which is often defined based on whether
demand can be served within a maximum acceptable travel distance/time. This
coverage standard corresponds to the “range” concept introduced in central place
theory. In contrast to location-allocation models, covering problems are driven
by different performance criteria. Toregas et al. (1971) introduced the location
set covering problem (LSCP) seeking to find the minimum number of facilities
(and where to locate them) needed to provide complete coverage to a region.
Recognizing that in many situations resources are not sufficient to ensure a full
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coverage of a region, Church and ReVelle (1974) proposed the maximal covering
location problem (MCLP) to locate a limited number of facilities in order to
achieve the greatest coverage of a region. These two classic covering problems
have been extended to incorporate various coverage standards, redundant coverage,
cooperative service provision and service capacity. A review of the covering
problems and associated applications can be found in Schilling et al. (1993), Murray
et al. (2010) and Farahani et al. (2012).

A third category of prescriptive location models is center problems. The concern
in this case involves locating one or more facilities/services so that the maximum
distance from a demand to its closest sited facility is as short as possible. Differing
from other location modeling approaches that focus on cost or system efficiency,
center problems seek equality by ensuring that the worst access provided to any
individual/place is as good as possible. The p-center problem was introduced by
Hakimi (1964) and often assumes that facilities can be located anywhere in a region
(continuous space) and that demand is concentrated at discrete points. Various
algorithms have been developed to solve center problems, including a Voronoi
diagram heuristic (Suzuki and Okabe 1995). The problem becomes a vertex p-center
problem if the candidate facility sites are also restricted to predefined sites (Daskin
1995). The p-center problem has also been extended to consider service capacity,
continuous demand and backup service provision. Refer to Drezner (2011), Tansel
(2011) and Calik et al. (2015) for further discussion of center problems.

A fourth category of prescriptive location models is competitive demand
approaches. Following the seminal work of Hotelling (1929), recognition of the
need to address competition for service has arisen, with approaches developed
to explicitly account for competition among sited facilities. In these problems,
the location of additional firms will not only affect new markets but those of
the competitors. Early theoretical studies have focused on modifying some of
the economic assumptions made in Hotelling (1929) and examining associated
equilibrium patterns. Subsequent competitive location models have shifted to
account for market share consideration. Various conditions have been explored,
including the type of service to be provided (e.g., convenience stores, shopping
malls, gas stations, hotels), space (e.g., network, discrete location or continuous
region), Nash and Stackelberg equilibria, consumers’ choices and market share
delineation approaches. Refer to the work of Friesz et al. (1988), Serra and ReVelle
(1995), Plastria (2001) and Drezner (2014) for more details.

It is conceivable that listing of categories could continue, likely numbering in
the hundreds to account for the significant location model nuances. Rather than
continue further, we leave it at the above major categories, but note that issues of
dispersion (Goldman and Dearing 1975; Church and Garfinkel 1978; Moon and
Chaudry 1984; Kuby 1987; Murray and Church 1995; Verter and Erkut 1995), hubs
(O’Kelly 1986; Alumur and Kara 2008), interdiction (Scaparra and Church 2015),
etc. are no less important or significant. However, due to space limitations, further
review and discussion is not possible.
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12.3 Challenges

There are numerous challenges confronting the use and application of location
models. One issue noted here has to do with decision making processes unique
to particular application contexts. A second issue concerns computing capabilities
associated with solving structure models.

12.3.1 Application Contexts

Location analysis and modeling have been applied to solve a wide range of urban
and regional problems. These applications include public facility siting (such as
libraries, schools, post offices, and police stations), emergency facility placement
(fire stations, ambulance), districting (political districting, service districting, police
districting), healthcare facility and service planning, network design and routing
(telecommunication, transportation), business locations (such as bank branches,
retail facilities), military operations, agricultural management (production, storing,
processing and distribution of agricultural products) as well as environmental
problems (such as nature reserve site selection, wildlife management). A number of
classic and modern applications have also been summarized in Lucas and Chhajed
(2004) and Eiselt and Marianov (2011).

In a location model, mathematical abstraction is very critical as improper speci-
fication of the objective function or constraining relationships/conditions can result
in locational decision making that is far from the best. The diverse applications of
location analysis present challenges to problem formulation and model construction.
Depending on the particular problem of interest, an existing location model might
not be applicable, and constructing a new location model is sometimes necessary.
Such a new model will involve identifying and formulating one or multiple goals and
specifying the associated constraining conditions. Even for problems where an exist-
ing location modeling framework applies, oftentimes the existing model may need to
be modified to account for application specific goals or constraining conditions, such
as different cost functions, specific capacity requirement and special relationships
among facilities or between demand and facilities. In other cases, when problems
cannot be mathematically articulated or formulated, heuristic approaches will be
needed to solve the problems approximately. These heuristic based approaches will
be discussed below. Due to problem variety and complexity, constructing location
models requires some level of creativity to accurately abstract real-world problems
as well as the ability to link components/relationships mathematically.
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12.3.2 Problem Solution

Beyond the abstraction process is the need for identifying, comparing and under-
standing alternative solutions. Decision making often involves a host of constitutes,
particular for public section contexts. Different groups or individuals may have
differing concerns and objectives. Further, they may have their own ideas about good
alternatives to consider. Generating solutions remains a challenge. Understanding
strengths and weaknesses and being able to communicate them is essential.

As mentioned earlier, predictive approaches for location analysis and modeling
have mainly focused on identifying the best locational decision(s) for serving
certain purpose(s). Solving these problems necessitates a search for the best set of
locations, either in a continuous region or limited to predefined discrete sites. While
a continuous problem usually means it is difficult to solve as there exists an infinite
number of candidate sites to select from, searches confined to a finite number of
sites may be nontrivial as well. In general, two strategies have been used to solve
location models: exact methods and heuristic methods.

Exact methods are those producing a provably optimal solution. That is, solutions
identified by these methods can be shown to be superior to all others, found
in a process or not found. Enumerating all the possible solutions is sometimes
relied upon, enabling identification and evaluation of associated objective function
values. The method guarantees the best solution to be identified because all are
explicitly considered. However, when the problem size grows in terms of the number
of different configurations, solutions to consider, the computational requirements
can be prohibitive, making enumeration impractical. Enumeration in the case of
continuous space problems is generally infeasible given that an infinite number
of siting configurations would need to be considered. For this reason, other exact
methods have been developed, including linear programming, integer programming,
branch-and-bound, dynamic programming, Lagrangian relaxation based methods
as well as specialized algorithms that exploit geometric characteristics of certain
problems (Elzinga and Hearn 1972; Matisziw and Murray 2009).

Irrespective of whether we have a continuous or discrete location problem, many
are known to be NP-hard (Kariv and Hakimi 1979; Megiddo and Supowit 1984).
This means that solving these problems exactly can be difficult or impossible,
especially for large sized ones. For these problems as well as problems that are
difficult to mathematically formulate, heuristic approaches are widely used for
problem solution. Heuristic methods are often rule of thumb, ad-hoc strategies.
Compared with exact methods, heuristic approaches can often solve a problem faster
but problem solution quality is not known or guaranteed. Various heuristics have
been used to solve location models, including the “alternate” method (Cooper 1963;
Maranzana 1964), greedy based search (Church and ReVelle 1974), and vertex
substitution or interchange (Teitz and Bart 1968). While many early heuristics focus
on iterative improvement based on a local search neighborhood, high level modern
metaheuristics represent a family of methods that often allow other solution spaces
to be considered simultaneously, resulting in solutions less likely to be trapped
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in local optima (Brimberg et al. 2000). Modern metaheuristics have been widely
applied to solve various location problems, including tabu search (Murray and
Church 1995; Rolland et al. 1996), simulated annealing (Murray and Church 1996;
Chiyoshi and Galvao 2000), and genetic algorithms (Bozkaya et al. 2002).

12.4 Looking Forward

The field of location analysis has evolved tremendously with continued visibility
within and outside of regional science. Looking forward, we believe location
analysis will continue to be essential for helping address future regional challenges.
Future applications may require closer interaction/collaboration of researchers
in location analysis with experts in other fields in order to enhance problem
understanding and develop efficient problem solution strategies. Although GIS
(geographic information system) continues to be recognized as important in loca-
tion analysis, a wider adoption and integration of GIS into location analysis is
expected. The advent of big data has the potential to revolutionize location analysis
theoretically and practically. Additional insights gained from big data may help
refine existing modeling frameworks and motivate novel solution approaches. With
increased complexity and detail in location models due to big data, high perfor-
mance computing will be an integral component of future analytical frameworks.

12.4.1 New Application Contexts

In years to come, location analysis will be used to help solve emerging challenges
and issues at regional and national scales. Closer collaboration with scholars in
other disciplines is expected for solving these challenges. One example concerns
sustainable development. For example, moving towards a more sustainable envi-
ronment, US EPA (2015) requires significant annual CO2 reductions: “22%–23%
below 2005 levels in 2020; 28–29% below 2005 levels in 2025, and 32% below
2005 levels in 2030”. The CO2 reduction goal necessitates an increased use of
renewable energy resources to substitute the conventional coal resources for future
electricity generation. Solar has been identified as one of the important emerging
renewable resources for future energy supply. Location analytical studies of future
solar energy power plants and the distribution network presents an important
application that will contribute to CO2 reduction goals. However, such an analysis
requires collaboration with climate scientists, environmental experts, economists,
and geographers to take into account future weather uncertainty, environmental
impacts, economic development and population growth. Other likely applications
relate to the challenges brought about by climate change. Extreme weather events
such as droughts and floods are expected to occur more frequently in some local
regions, leading to countless economic losses. Howitt et al. (2015) estimate that
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the recent drought in California has caused an economic loss of 2.7 billion dollars
in 2015. Incorporating location analysis into efficient water allocation and flood
mitigation strategies presents a sound way to help mitigate losses due to climate
change. Of course, there are many other areas as well.

For some new regional applications, existing modeling frameworks can be
used but might need substantial revisions to account for problem complexity. For
example, interdiction approaches detailed in Scaparra and Church (2015) provide
ways to identify critical components or locations in a region in order to prioritize
fortification efforts when preparing for a future disaster. However, such location
models have mainly focused on a certain type of service or facility. As for disaster
management, many aspects need to be addressed simultaneously (such as lives,
properties, transportation infrastructures, communication networks, etc.) and the
consequent location analysis can be much more complicated. Scaparra and Church
(2015) also noted that even though existing models are already complex, they have
not been able to adequately address the interconnection of various components in a
system. This also calls for interdisciplinary collaboration for a better understanding
and modeling of interdependence and complexity of relevant elements in a region.
Driven by the new applications, revisions of existing models or sometimes new
modeling frameworks might be needed to address problem specific requirements
and complexity. Overall, location analysis as an evolving field will continue to make
contributions to regional science and help solve new regional challenges.

12.4.2 GIS

Location analysis often involves various types of data, ranging from demographics
(e.g., population distribution), the built environment (e.g., transportation networks,
land uses) to the natural environment (e.g., terrain information). Many of these data
tend to be spatially explicit, but do give rise to various sorts of implicit information.
For example, population is associated with specific cities in a region and roads
connect certain places in an area. Given that GIS is a special information system
designed to store, manage, process, analyze and display spatial and non-spatial
data, there is a natural linkage between GIS and location analysis. In recent years,
GIS has been increasingly used to support location analysis and has been widely
recognized as important due to its powerful capabilities in data acquisition (as
many data are readily available in the GIS form), management and processing. For
example, GIS has been directly employed to conduct suitability analysis for various
location decisions, including hospitals, roads and utility lines. Murray (2010) also
highlighted the critical role of GIS in theoretical development of location analysis
that goes beyond simple data support or manipulation. Reviews by Church (1999),
Murray (2010) and Bruno and Giannikos (2015) all note the various contributions
GIS has made to location analysis.

A wider adoption of GIS by location analysts and modelers will continue to help
the field of location analysis advance. The integration of GIS into location analysis
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can further refine current models and broaden the applications. New location models
or variants of existing models better reflecting a problem of interest might emerge
due to finer details or alternative representation schemes available in GIS (Murray
2010). Also, GIS can be used to gain insights into the uncertainty associated with
spatial data, scale, and modeling practices (Tong and Church 2012). Meanwhile,
constructing location models requires certain level of mathematical skills, which
is often beyond the knowledge of a general planner or analyst. The incorporation
of location models in GIS software helps location analysis and modeling to
reach a wider audience. In fact, some GIS commercial software has started to
incorporate some of the classic location models. For example, the Esri ArcGIS
software provides a location-allocation module that includes the p-median problem,
location set covering problem and maximal covering location problem with optional
considerations of service capacity and competition.

12.4.3 Big Data

Compared with decades ago when availability of locational data was an issue,
big data has revolutionized the amount and detail of information available about
human activities and the environment. Such data are collected through a range of
technologies, such as cell phones, wearable devices, GPS, social media, cameras
and various sensors, and provide an enormous amount of information about
people’s movement and activities. For example, in 2014 New York City shared
with the public the information about 173 million taxi trips. The data provided
information about where and when individuals were picked up and dropped off. The
unprecedented spatial-temporal coverage, as well as the richness and granularity
of big data, allow researchers to gain new knowledge about human activities. It is
estimated that big data will have a transformative impact on almost all fields (Shaw
2014). We also expect that the advent of big data will bring about new opportunities
to further advance the field of location analysis.

We anticipate that the integration of big data into location analysis will enhance
the resolution and accuracy of data input. Conventional data input in many location
models relies upon field work or a number of data collection agencies, such as the
Census Bureau. Often these data come in an aggregate form, e.g., total population at
the census tract level, so how individuals are distributed within the aggregation unit
is unknown. Depending on the specific aggregation scheme and scale used in the
aggregation, solutions given by a location model may vary substantially (Francis
et al. 2009). When continuous regional demand is assumed in location models,
uniform or some theoretical distributions are often used, which may differ from
where people are in reality. Such a discrepancy will also lead to solutions that may
be far from the best. With increased data resolution and accuracy, big data has the
potential to help location problems generate better results.

Also, evidence provided by big data will help us revise some assumptions made
in existing location models to better reflect the reality. For example, in many location
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problems demand is often assigned to the closest facility when capacity allows.
Insights gained from big data about individuals’ preferences can be incorporated
into current location models to draw allocations more accurately. Also, in many
location models demand is assumed to be fixed (often originate at home). Building
on big data, location modelers can also take into account individual level movement
dynamics into the locational decisions of the intended service. An incorporation of
such travel-activity patterns in location analysis will significantly enhance modeling
accuracy. Although in the past few decades a number of empirical studies have been
conducted to examine individuals’ patron patterns as well as how trips are chained,
most were based on conventional data collection such as travel diaries with a very
limited number of individuals for a minimal number of days. Big data allows one to
do such an examination with a much larger sample size for a longer time period.

While modern location analysis has mainly focused on prescription of the best
locations for certain activities/services, the variety of big data offers researchers the
opportunity to revisit the location theories. For example, geotagged big data mining
can be used to help reveal meaningful distributions of activities or patterns in space.
These findings may provide empirical evidence to verify or modify location theories.
This also points to a new direction for future research.

Overall, big data will bring new opportunities to advance the field of location
analysis. The large scale, fine resolution information provided by big data will
help refine exiting models and inspire new approaches/models to better reflect real-
world problems. Meanwhile, the large volume of big data will inevitably increase
problem complexity tremendously, and solving the associated problems optimally
may become extremely difficult. This will necessitate development of new efficient
solution approaches and incorporation of high performance computing for problem
solution. Additional discussion on these issues will be provided in the following
section.

12.4.4 Efficient Solution Approaches and High Performance
Computing

As mentioned earlier, solving problems exactly presents an important challenge in
location analysis. The increased level of model complexity and big data will add
more difficulty to problem solution. Solving these problems may involve tremen-
dous amount of computation, especially for large sized problems. One the one
hand, novel solution approaches will be needed to solve these problems efficiently.
For example, considering that solving small sized problems are often much easier
than large sized ones, novel strategies can be developed to decompose certain
large problems into smaller sub-problems without sacrificing problem optimality.
On the other hand, more efficient and effective heuristics will be continuously
sought to solve large sized location problems approximately. Recent development of
hybrid metaheuristics combining strengths of metaheuristics and classical solution
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techniques, such as branch and bound, has shown promise for location problem
solution (Blum et al. 2008).

In addition to developing efficient approaches to solve problems, future efforts
will be needed to focus on taking the advantage of high performance computing
(HPC), which consists of a cluster of computers or processors known as nodes.
In HPC, individual nodes can work together to solve complex problems more
efficiently than can an individual computer. When solving a problem, workload
of solving the entire problem needs to be divided and distributed to a number
of nodes simultaneously in a parallel fashion. Using HPC to solve a problem
requires an understanding of the computing hardware as the associated parallel
architecture may differ, leading to different computational performances. More
importantly, in HPC a scalable and efficient procedure is essential for performing
the parallel computing. This often involves a customized process of division and
synchronization of sub-tasks as well as information interchange (communication)
among multiple processors. Studies have started to incorporate HPC to solve
large sized, challenging location problems. For example, Redondo (2008) proposed
evolutionary algorithm based heuristic approaches in a HPC setting to solve a
competitive facility location problem on the continuous plane. However, to achieve
the best HPC performance in terms of both solution quality and efficiency, the design
of the parallel computing process can be challenging as it often varies with the
problem to be solved and the specific solution approaches used. This points to an
important area where more research is needed in the future.

12.5 Conclusions

Location analysis represents one of the core fields of regional science. Building
upon the classic location theories, location analysis has evolved considerably in
the few past decades. While early studies focused on an understanding of the
distribution pattern and associated mechanism of human settlements and activities,
contemporary location analysis has evolved to assist the locational decision making
in various regional problems. Looking forward, the field of location analysis will
continue to be relevant and influential in regional science. Location analysis will
be used to help solve emerging issues concerning sustainability and environmental
challenges. The big data age presents great opportunities for researchers to revisit
location theories as well as further advance location modeling frameworks and the
applications. We also anticipate a continued integration of GIS into location analysis
for data support, model refinement and efficient problem solution. With increased
problem complexity, future research will consist of development of computationally
efficient solution approaches and an incorporation of high performance computing.
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Chapter 13
Structural Decomposition and Shift-Share
Analyses: Let the Parallels Converge

Michael L. Lahr and Erik Dietzenbacher

13.1 Introduction

Both structural decomposition analysis (SDA) and shift-share analysis (SSA) have
been widely applied in multi- and inter-regional input-output (I-O) studies. This
paper shows how elements from SSA can be integrated in SDA. This adds a novel
spatial perspective to decomposing the change over time in an endogenous variable
into the changes in its constituent exogenous factors.

Rose and Casler (1996) forwarded the idea that the structural decomposition of
input-output (I-O) tables was not unlike shift-share analysis (SSA). (Incidentally,
they likened it to growth accounting and index number analysis as well.) Intuitively,
structural decomposition analysis (SDA) demonstrates strong similarities to SSA.
Both examine the effects of industry shifts due to growth (or decline) and some
sort of difference in industry shares. But SSA works its shares across space while
SDA works its shares again across industries via technology change (fabrication
effects). Interestingly, using a set of multiregional I-O tables from Spain over
6 years and without drawing parallels to either SSA or SDA, Oosterhaven and
Escobedo-Cardeñoso (2011) demonstrated that regional I-O tables can be forecasted
fairly well. One innovation they applied was lagging the “remainder” from the
biproportional adjustment technique. This remainder looks remarkably like the
“regional component” (also termed the “competitive effect”) in SSA. More recently,
Arto and Dietzenbacher (2014) performed what might be termed a “dynamic” SDA
to examine the effect of trade changes on the growth of global CO2 emissions. This
harkens parallels to dynamic SSA (Thirlwall 1967; Barff and Knight 1988).
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Suffice it to say, SDA and SSA are related and this chapter formally combines
the two disparate strands of literature. In particular, it shows how changes in
regional growth differentials can be included into a structural decomposition
analysis. Moreover, the present availability of a large number of I-O table panels
appears to enable the detection of even more parallels between the two approaches.
Between the formalization of the SSA-SDA relationship and the available I-O data,
a wide range of new, policy-relevant empirical applications is possible. The method
proposed in this chapter may be useful for several avenues of research.

13.2 Background

The notion of shift-share analysis (SSA) has been around since at least Creamer
(1943).1 SSA disaggregates regional change by industry (on a particular economic
measure, generally employment) in order to identify the relative influence of
components of that change. It is roughly predicated on the concept of regional
comparative advantage. Consequently, it is used to decompose growth into (a)
general national trends, (b) nationwide industry deviations from that general trend,
and (c) some remainder that is identified as the “regional component” of the
industry’s change. Occasionally, when the region of focus is a very small geographic
unit, some interim political-geography growth trend differentials—both regional
and industrial—are also applied. Key points of the continued popularity of the
approach are its minimal data requirements and technical simplicity. Of course,
it helps that despite these potential oversimplifications, SSA tends to do a fairly
good job in identifying the relative importance of factors that influence industrywise
change in a region’s economy (Nazara and Hewings 2004).

In addition to the parallels drawn by Rose and Casler (1996) between SDA and
SSA, SDA has been used to disaggregate economic change, more generally, into its
proximate change components. The larger count of economic indicators available in
I-O tables, as opposed to the SSA convention of using just employment or wage
data, enables more variation in the analyses. But the lower frequency and time
delay of I-O table production for a fixed geographic space has made available fewer
data points of analysis. At its outset, SDA controlled for the three components of
change—activity level and industry mix (as in SSA), plus technology change. But
as many as 14 different components of change have been analyzed simultaneously
using the approach (Rose and Chen 1991). And while regional and multiregional
SDAs have been performed, both have only used pairs or multiple pairs of regional
or multiregional tables to perform the analysis.

1Victor Fuchs (1959), Edgar Dunn (1960), Lowell Ashby (1964), and Anthony Thirlwall (1967)
were major players in the technique’s early development, and the prominence of these authors in
the field of regional science and planning certainly induced SSA’s popular appeal.
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In summary, while SSA and SDA have similar roots, it is clear that, as yet, no
SDA analysis has examined how a regional economy differs from its nation parent
over time, which is the point of SSA. The purpose of the present paper is to lay out
an SDA approach for performing such an analysis.

Of course, this then begs the question of why it might be desirable to perform
SSA in an SDA context. SSA reveals how well a region’s industries are performing
relative to the nation, or other economy that contains the salient region, along a
dimension of change. Thus, the focal quantities of SSA are the “regional compo-
nents,” which show the distance of actual regional performance from expectations.
The expected values are derived by assuming regional industries grow at the national
average rates. In this vein, the actual and relative distances from expectations for
industries can help reveal a region’s competitive strengths and weaknesses relative
to national performance. This feature can be important in developing strategic
regional development initiatives. As presently formulated, SDA does not offer this
sort of result.

While the above explains why SSA-type findings are of value, it does not
explain why performing them in an SDA context could be worthwhile. Analysts
have used the myriad of different economic indicators available in input-output
accounts to good effect. But less sophisticated sets of indicators have generally
been applied within SSA. Still, theoretical underpinnings of SSA, as articulated
by Casler (1989), have been extended by Graham and Spence (1998) to unfold
employment-based SSA’s “regional component” further into partials related to
input-price- and technology-related trends by using regression analysis to develop
a productivity-growth decomposition within SSA. But their approach requires a
panel of regional data on wage rates and output as well as employment, albeit a
shallow one. And most countries do not release such panels of data by region.
Meanwhile, an SDA equivalent would demand similar data for any region that is
analyzed, but for only two points in time. Moreover, only data for the focal region
and the nation of the analysis are needed. That is, given that I-O tables pre-exist,
the data needs of SDA-based SSA should be far less demanding than that of the
standard, regression-based SSA with equivalent complexity insofar as the array of
applied indicators is concerned. Recall that, along with its intuitive implications,
SSA’s low data requirements have been key to its popularity. It would seem that
SDA could minimize data requirements in certain shift-share settings and yet enable
sophistication in the approach’s theoretical underpinnings.

Yet another feature of SDA over conventional SSA is that it is able to measure the
contribution of indirect (spillover and feedback) effects across regions. This is not
to say that such effects cannot be measured by SSA. Indeed, Nazara and Hewings
(2004) account for three components of change rather than the conventional two:
the first is the usual national average growth component, and the second accounts
for national sectoral growth differentials, and the third accounts for differential
between the national sectoral growth and the weighted average sectoral growth rate
for neighboring regions. Some spatial statistical approaches also have been applied
to examine interregional spillover effects of shift-share components (Le Gallo and
Kamarianakis 2011; Li and Haynes 2011).
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A limitation of conventional shift–share that parallels the interregional aspect
mentioned above is its omission of intersectoral relationships. Using an approach
parallel to that of Nazara and Hewings (2004), Ramajo and Márquez (2008)
and Màrquez et al. (2009) have suggested an extension that accounts for such
interindustry shift-share contributions to change. That is, they define and use as the
interindustry structure component for a particular referent industry the difference
between the weighted-average growth rate of all other industries within the referent
region and the weighted-average national growth rate of those same industries.

But like most extensions of SSA, the data demands for each additional compo-
nent can be quite extensive. Moreover, as more variables are added, more degrees of
freedom are consumed by the analysis, which in turn require more data observations
(years and regions). This is not so much the case on SDA.

In summary then, in this paper we undertake a sort of technical reconnaissance
into the potential of SDA for performing SSA. SDA can simultaneously account
for interregional and interindustry effects while also accounting for nationwide and
industrywide trends. In the original vein of SSA, SDA also has the potential to
provide solid insight using few data points. But SDA has not examined regional
trends in light of national trends in the manner that SSA does. We hope we
sufficiently demonstrate how such an approach might be formulated. We conclude
by pointing out the myriad types of analyses that might follow based on the SDA-
based SSA that we formulate.

13.3 The Input-Output Framework

SDA works on I-O accounts. So let us start with an interregional I-O table. For our
purposes, we use the accounts shown in Table 13.1, which are for a country with
three regions (R, S, and T).2

Here, ZRS is an n � n matrix and its element zRS
ij gives the intermediate

deliveries from industry i in region R to industry j in region S; fRS is
an n-element (column) vector with typical element f RS

i indicating the final
demand (including household consumption, private investments, and government
expenditures) by region S for the produce of industry i in region R; eR is an
n-element (column) vector with typical element eR

i indicating the exports by
industry i in region R; xR is an n-element (column) vector with typical element
xR

i indicating the output of (or total amount of production by) industry i in region
R; (vR)0 is an n-element (row) vector with typical element vR

j indicating the value
added generated in industry j in region R; and (mR)0 is an n-element (row) vector
with typical element mR

j indicating the imports of industry j in region R. In addition,
information from satellite accounts is often available. For example, the use of labor

2There is no reason this could not be four or even more regions. But three regions typically takes
any analysis beyond a trivial case.
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Table 13.1 An interregional input-output table

Intermediate deliveries Final demands Total

R S T R S T Exp

R ZRR ZRS ZRT fRR fRS fRT eR xR

S ZSR ZSS ZST fSR fSS fST eS xS

T ZTR ZTS ZTT fTR fTS fTT eT xT

VA (vR)0 (vS)0 (vT )0

Imp (mR)0 (mS)0 (mT )0

Total (xR)0 (xS)0 (xT )0

Labor (cR)0 (cS)0 (cT )0

(say in hours worked). In that case, (cR)0 is an n-element (row) vector with typical
element cR

j indicating the use of labor in industry j in region R.
Following the recent discussion on global value chains and trade in value added

(or trade in emissions), one of the questions at the regional level is: “Who works (or
emits) for whom?” (Serrano and Dietzenbacher 2010; Koopman et al. 2014). That
is, how much labor is (directly and indirectly) necessary in region R for the final
demand bundle of region T? Using an interregional I-O model, the answer is given
by the element �RT of the 3�3 matrix …, which is defined as

… D
2
4�RR �RS �RT

�SR �SS �ST

�TR �TS �TT

3
5 D HF D

2
4
�
hRR

�0 �
hRS
�0 �

hRT
�0�

hSR
�0 �

hSS
�0 �

hST
�0�

hTR
�0 �

hTS
�0 �

hTT
�0
3
5
2
4 fRR fRS fRT

fSR fSS fST

fTR fTS fTT

3
5 (13.1)

Note that H is a 3�3n matrix with labor multipliers and F is a 3n � 3 matrix with
regional final demands. The elements of the matrix H are obtained as follows

H D
2
4
�
dR
�0

0 0

0
�
dS
�0

0

0 0
�
dT
�0
3
5
2
4LRR LRS LRT

LSR LSS LST

LTR LTS LTT

3
5 (13.2)

The vector (dR)0 contains the direct labor input coefficients and is defined as�
dR
�0 D �

cR
�0 	bxR


�1
or dR

j D cR
j =xR

j . The second matrix on the right-hand side

of (13.2) gives the partitioned Leontief inverse, i.e., L D (I � A)�1. A is the 3n � 3n
matrix with input coefficients, which in partitioned form is given by

A D
2
4ARR ARS ART

ASR ASS AST

ATR ATS ATT

3
5

where the input coefficients are defined as ARS D ZRS
	bx S


�1
or aRS

ij D zRS
ij =xS

j .



214 M.L. Lahr and E. Dietzenbacher

Note that the jth element of the vector (hRS)0, i.e. hRS
j , gives the total amount of

labor used in region R that is necessary for one dollar of final demand for product
j from region S. The scalar (hRS) 0 fST then gives the total amount of labor used in
region R that is embodied in the final demand of region T for products from region S.
The element �RT D (hRR)

0

fRT C (hRS)
0

fST C (hRT) 0 fTT then gives the total amount of
labor used in region R that is necessary for all final demands by region T.

Observe that our calculations take indirect linkages and interregional feedback
effects into account, as far as they are national. For example, final demands in
T require inputs from S that require inputs from R. Indirectly, final demands in
T require production and, therefore, labor use in R. What is not included in our
analysis are feedback effects that run through foreign countries. Exactly the same
example can be used with region S replaced by a foreign country.

13.4 Adding Shift-Share Elements

The next step is to introduce shift-share elements into the equation (13.1). To this
end write the first n rows of the 3n � 3 matrix F as follows.
h
fRR fRS fRT

i
D
n
TR ˝ † ˝ S

o
Rf NAT

D ˚�
tRR tRS tRT

�˝ �
¢R ¢S ¢T

�˝ �
sNAT sNAT sNAT

�24 rR 0 0

0 rS 0

0 0 rT

3
5 f NAT

(13.3)

Going through the equation from right to left, the scalar fNAT indicates the total
amount of national final demand. That is, f NAT D P

IDR;S;T

P
JDR;S;T

Pn
iD1f IJ

i , the
sum of all elements in the matrix F. The diagonal elements of the 3 � 3 matrix
R give the share of the regional total final demand in the national final demand.
For example, rR D P

IDR;S;T

Pn
iD1f IR

i =f NAT and observe that rR C rS C rT D 1. The
n � 3 matrix S consists of three times the vector sNAT with the national final
demand mix. Note that the final demand mix does not distinguish between
the region of origin; it matters, for example, what households consume of
(domestically produced) good i, not where the consumer goods come from. That
is, sNAT

i D P
IDR;S;T

P
JDR;S;T f IJ

i =f NAT and note that the shares add to one (i.e.Pn
iD1sNAT

i D 1).
The regional final demand shares (for example for region R) are obtained asP
IDR;S;T f IR

i =
P

IDR;S;T

Pn
iD1f IR

i . The discrepancies between the regional and the
national shares of final demands are given by the elements of the n � 3 matrix †.
That is, 
R

i D P
IDR;S;T f IR

i =
�
sNAT

i

P
IDR;S;T

Pn
iD1f IR

i

�
. The operator ˝ stands for the

Hadamard product of elementwise multiplication. The element in row i and column
R of the matrix † ˝ S thus equals 
R

i sNAT
i D P

IDR;S;T f IR
i =

P
IDR;S;T

Pn
iD1f IR

i , the
share of good i in the total final demands of region R. Finally, the elements of the
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n � 3 matrix TR give the trade coefficients, indicating the share of a region’s final
demand for product i that originates from region R. For example, the ith element of
the n-element vector tRS yields tRS

i D f RS
i =

P
IDR;S;T f IS

i .
The expression for the full 3n � n matrix F then becomes

F D
2
4 fRR fRS fRT

fSR fSS fST

fTR fTS fTT

3
5 D

8<
:
2
4TR

TS

TT

3
5˝

2
4†

†

†

3
5˝

2
4S

S
S

3
5
9=
;Rf NAT D ˚

T ˝ x† ˝ xSRf NAT

(13.4)

A similar distinction can be made for the 3�3n matrix H with labor multipliers.
That is,

H D
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hNAT;S
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hNAT;T

�0�
hNAT;R

�0 �
hNAT;S
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hNAT;T

�0
3
5 D � ˝ HNAT

(13.5)

The elements of the matrix HNAT give the national labor multipliers. For example,
hNAT;S

j gives the total amount of labor that is used nationally for the final demand of
one dollar of good j produced by region S. This amount equals the sum of the labor
use in each region, i.e., hNAT;S

j D P
IDR;S;T hIS

j . The elements of the matrix � then
give the shares of the national labor use that take place in each of the regions. That

is, �RS
j D hRS

j =hNAT;S
j and note that the shares add to one

	P
IDR;S;T �

IJ
j D 1, for

J D R , S , T and j D 1 , : : : , n



.

Combining Equations (13.1), (13.4), and (13.5), yields

… D �
� ˝ HNAT� �T ˝ x† ˝ xS�RfNAT (13.6)

13.5 The Structural Decomposition

Structural decomposition analysis splits the growth in some variable (here, the
matrix …) into the contributions of the growth in its components (here, the matrix �

is one of these components). That is, one decomposes�… D …1 � …0, the change
in … between two points in time, indicated by 0 and 1. Its element ��RS gives the
change in labor usage in region R that is embodied in the final demands in region S.
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One possible decomposition is

�… D …1 � …0

D �
�1 ˝ HNAT

1
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Or, in more compact form:
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The change variable in parentheses (recognized by the� symbol) identifies how

to interpret each of the seven terms or components.

(1) The first shows the contribution from the change in regional shares in national
labor use (�),

(2) the second reveals the effects of change in the national labor multipliers (H),
(3) the third identifies the effects due to changes in the supplying region’s share of

the regional final demand (T),
(4) the fourth reveals the effects due to changes in the differences between regional

and national final demand mixes ( x†



,

(5) the fifth reports the effects due to changes in the national final demand mix (xS



,

(6) the sixth shows the effects due to changes in the shares of regional total final
demand in the national final demand (R), and

(7) the seventh reports the effects due to changes in total national final demand
(f NAT).
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Clearly, this is just one decomposition of many that we could have expressed
to analyze the change. Fortunately, Dietzenbacher and Los (1997) have noted
that a simple average of the above decomposition and its polar opposite very
reasonably represents the average of all possible decompositions. Moreover,
while the above is an additive decomposition, multiplicative decompositions are
also conceivable (e.g., Dietzenbacher et al. 2001; Dietzenbacher et al. 2004).

A key point to be made here is that the sort of analyses we suggest here would
be hampered by roughly estimated final demand accounts. If performed using a
multiplicative approach, the analyses could be even more compromised if value
added components were also only roughly estimated. In this vein, analyses of
national I-O tables, for which extraordinary care has been taken to formulate the
input-output accounts, within a broader framework of nations—perhaps those
sharing a trade agreement (e.g., EU, BRICs, NAFTA)—could be ideal targets
for the sort of SSA-SDA analyses that we are suggesting. In such instances,
regions R and S in the framework described above would be representative
of countries in the trade group to be analyzed (effectively the “nation” in our
framework), and T reflecting relationships with countries outside of it. Still, the
basic form of the equations would remain the same, but the number of regions
and, hence, partitions composing the matrices would generally be greater and
require specific adaptations.

13.6 Conclusions

Structural decomposition analysis (SDA) and shift-share analysis (SSA) bear some
similarities. In essence, both disaggregate economic change into its proximate
change components. Both examine the effects of industry shifts due to economic
change as well as differences in industry shares. But SSA works its shares across
space while, to date at least, SDA has worked its shares across industries via
technology change. Literature on the two approaches suggests that the data demands
of SSA tend to make it less tractable for incorporating more than just one or two
control variables. On the other hand, as long as two or more input-output tables
exist for an economy, SDA is quite adept in analyses for which controlling for many
variables is desired. Until the present paper, however, no SDA analysis has examined
how a regional economy differs from its nation parent over time, which is the point
of SSA.

In this paper we derive an SDA-based SSA, and we use a general, but simple,
three-region multiregional I-O model to do so. That is, the approach we outline
presumes access to two periods of national I-O accounts models that are already
spatially decomposed into at least three regions. In this vein, our approach is quite
general. We somewhat arbitrarily focused our analysis on the change in regional
labor use since it parallels the main outcome in traditional SSA. We decompose
regional change in labor usage into seven components. Results of a practical analysis
using the decomposition, which we presented, would demonstrate the proximate
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contribution of each of the seven components to the change in labor use. Traditional
SSA roughly accounts for just the second and seventh components. The first, third,
and sixth components examine sources of interregional shifts over time. The fourth
component identifies effects that emanate from regional differences in final demand
expenditures. In SDA, by adding explanatory variables the effects of pre-existing
ones are often diluted, similar to the case of exploratory regression analysis. The
implication of this is that through the use of more explanatory variables in SDA
SSA, both national mix and trend effects, may well turn out to be less crucial to
regional economic growth than traditional SSA tends to have us surmise.

There is no reason that the focus of an SDA SSA has to be on the change in
jobs count. We could just as easily have formulated an SDA SSA that focuses some
other economic variable availed via an I-O table—like, say, the change in regional
productivity, labor’s share of GDP, or household consumption. Also the additive
decomposition that we articulated could be expressed with more components—for
example, the household consumption component of final demand could be broken
out into different household classes. Further, we could have formulated a multiplica-
tive decomposition to examine the same focal variable. A typical feature of a multi-
plicative approach is that it expresses the growth rate in some variable as the multi-
plication of the growth rates of its constituent parts. A pitfall of the SDA approach
to SSA, of course, is its requirement of component data at the regional level.

At the outset of this paper, we mention in passing that several panels of I-O
tables are now available to examine the veracity and value of new approaches like
SDA SSA. In addition to the series of multiregional I-O tables for Japan, China,
and Spain, some global panels of I-O tables have been constructed and analyzed
in recent years. Several are briefly introduced in an issue of Economic Systems
Research introduced by Tukker and Dietzenbacher (2013)—EORA, EXIOPOL,
GTAP, IDE-JETRO, and WIOD. Of course, the decomposition proposed herein
implicitly assumes spatially constant technology. Due to this assumption, it makes
sense to use as a proxy for the “nation” meta-region in our decomposition countries
that have similar labor skills and hence, technological capability. Thus, if one were
limited to using these data sets, it would make sense to center an SDA SSA analysis
on some subset of any one of these databases—i.e., all ASEAN nations, the set of
countries in the EU, or perhaps the union of European nations and the G7 nations,
which adds the U.S., Canada, Russia, and Japan.

In a similar vein, our framework only identifies two periods. Clearly, more
periods could be analyzed using the framework we have outlined. They need only
be studied serially, following the example of traditional dynamic SSA (Thirlwall
1967; Barff and Knight 1988). Indeed, many authors have already applied SDA in
such a fashion. Perhaps the best example is Arto and Dietzenbacher (2014), who
performed what might be termed a “dynamic” SDA to examine the effect of trade
changes on the growth of global CO2 emissions. Indeed, armed with this SSA-SDA
approach and a panel of interregional I-O tables, it might be interesting to revisit
the aims of Oosterhaven and Escobedo-Cardeñoso (2011) who demonstrated that
regional I-O tables can be forecasted fairly well, using a set of multiregional I-O
tables over a number of years.
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As we see it, the set of possible applications of the general technique that we
outline in this paper is potentially diverse. Indeed, the possibilities are presently
bounded only by the sets of multiregional I-O tables available and the imagination
of researchers. As more tables become available, the set of potential applications
will diversify with them. Be imaginative and fruitful with our germ of an approach!
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Chapter 14
A Synthesis of Spatial Models for Multivariate
Count Responses

Yiyi Wang, Kara Kockelman, and Amir Jamali

14.1 Introduction

Spatial data are central to regional science applications and many other disciplines.
Location attributes for each observation reveal where events occur or other informa-
tion (pollution levels [Goodkind et al. 2014], land values [Du and Mulley 2012], and
crimes [Levine 2009]) exists, often at fine spatial resolution. There are three types
of spatial data: geostatistical data, areal or lattice data, and point data.

• Geostatistical data are innate to the landscape or environment (such as soil
mineral levels, rainfall, and pollutant levels) and span continuously over space.
Given their continuous nature, such variables need to be collected by sampling at
different locations (Deutsch and Journel 1997). The goal of geostatistical analysis
is to predict values at unknown locations using sampled/observed values. For
this purpose, kriging is often used: it spatially interpolates unknown values using
nearby observations (Krige 1951).

• Areal or lattice data are observed at certain geographic units (e.g., vehicle
registration data across counties and land use changes across parcels). These
geographic units divide up the study area into small tiles (tessellations) like
census tracts. The goal of areal data analysis is usually to detect and explain
spatial patterns, as opposed to predicting unknown values, since there is typically
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no gap in the area of interest. Areal data are usually analyzed by spatial
econometric methods (LeSage and Pace 2009; Anselin 2010).

• Point data note the location of many specific occurrences like crashes or species
sightings over a period of time. “Hot Spot” analysis is often used to identify
clustering patterns of these points (Lu 1998). An array of metrics can be used to
portray the magnitude of clusters, like Moran’s I, Geary C’s Location Quotient,
and the nearest neighbor index (NNI). Point data can be converted to areal data
by tessellating the study area into zones and aggregating the points at each zone.

14.1.1 Motivations for Spatial Models

This chapter focuses on spatial models for analyzing areal data, in a multivariate
count format (like vehicle ownership across census tracts, number of crimes across
zones, and patent applications across counties). Spatial models are attractive for
two reasons that are rooted in geospatial theory: spatial dependence and spatial
heterogeneity.

Spatial dependence (autocorrelation) describes correlations across the same
variable observed at different locations (zones). A positive spatial autocorrelation
implies clustering, so values observed at nearby locations are more similar than
values observed at distant locations. A negative spatial autocorrelation portrays
a dispersed pattern, in which a value at one location tends to be surrounded by
dissimilar values (for the same variable). Spatial heterogeneity is defined as uneven
distribution of a variable over space (Vinatier et al. 2011). Spatial heterogeneity
arises due to structural instability: each zone/location subscribes to a different
process to generate the variable of interest. Spatial heterogeneity can be expressed
in an analytical model either as heteroscedastic (non-constant) error variance
or regression coefficients that vary across observational units (Anselin 2001).
Simoes and Natario (2016) provide a summary of statistical tests to detect spatial
heterogeneity.

Conventional econometric models do not work for data that exhibit spatial
dependence and/or heterogeneity. These models assume that the error terms are
distributed normally (Gaussian), retain the same variance (which violates spatial
heterogeneity), and are independent across observations (which conflicts with
spatial dependence). To address spatial dependence, models that recognize cor-
relations (such as spatial autoregressive models) have been rather effective in
various contexts, like crash and crime prediction (Levine et al. 1995a, b; Miaou
et al. 2003; Wang and Kockelman 2013), home prices (Case et al. 2003), land
use dynamics (Chakir and Parent 2009; Wang and Kockelman 2009; Wang et al.
2014), and technology innovations (LeSage and Pace 2009). To tackle spatial
heterogeneity, geographically weighted regression (GWR) is regularly used through
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locally estimating coefficients, rendering a contextual layer of coefficient estimates
that vary over space. Examples of GWR span many fields, such as ecology, wealth
and epidemics (Platt 2004, Ognev-Himmelberger et al. 2009, Atkinson et al. 2003,
and Nagaya et al. 2010), traffic count and crash count predictions across road
networks (Zhao and Park 2004; Hadayeghi et al. 2009), and land use (Páez 2006;
Wang et al. 2011).

14.1.2 Geo-Referenced Multivariate Count Data

One form of areal/lattice data is geo-referenced count data, data that take on non-
negative integer values and record the number of items or events in zones of interest
(e.g., number of vehicles owned across zones, crime counts across block groups,
and crash counts by intersection and/or road segment). For a generic count variable,
multiple levels of that variable are often observed: for example, number of vehicles
by fuel economy category or number of crimes by type. These are multivariate count
data. It is often of interest to gauge correlations among the different levels of a
count (response) variable in addition to incorporating spatial dependence and/or
heterogeneity across locations. The correlations reveal interactions among different
levels of the response variable.

This chapter provides a synthesis of spatial models for analyzing count responses
that have location attributes. The synthesis begins with a discussion of univariate
count responses before presenting methods for multivariate settings.

14.2 Spatial Models for Univariate Count Data

Techniques for analyzing spatial count data broadly diverge depending on the type
of spatial interaction one wishes to control for. As noted earlier, there are two types
of spatial interactions: spatial heterogeneity and spatial dependence. GWR seeks to
address spatial interactions shown as contextual variations in coefficient estimates
over space (i.e., spatial heterogeneity). Hadayeghi et al. (2009) developed a GWR-
Poisson model to explain traffic crashes using transportation planning factors while
controlling for spatial variations across zones. For each zone, a weighted Poisson
regression model was estimated using the part of the data set observed in that zone’s
neighborhood. Weights are assigned to all neighbors, to reflect their importance in
predicting counts in the zone of interest. The weights fall as the (straight-line or
network-based) distance between zones increases.

For spatial dependence, many methods exist for analyzing univariate count data.
They generally fall into three categories, as follows.
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14.2.1 Log-linear Spatial Models

Standard spatial models (e.g., spatial autoregressive [SAR] models or spatial error
models [SEM], LeSage and Pace 2009) were developed for data generated from a
Gaussian process, in which the response variable takes on a continuous form. While
not inherently designed to analyze count data, these models are sometimes used for
analyzing count responses that are high in magnitude (e.g., hourly traffic volumes
and employment counts). To apply these models in a count response setting, the
count variable is artificially transformed into a quasi-continuous variable. A count
variable (e.g., species abundance or counts) is typically normalized by an exposure
term so that the resulting variable represents the rate at which things happen (e.g.,
species abundance per square mile or an approximation of crime counts per capita).
Then, the rate variable is log-transformed, to produce a new response variable. The
log transformation is important because it allows for the possibility of negative
predictions. Examples include Weir et al.’s (2009) study on pedestrian crashes
across San Francisco census tracts and Aufhauser and Fischer’s (1985) study on
migration patterns.

However, the log transformation will not work when low or zero counts exist,
since their logarithms are mathematically ill-defined. In addition, a Gaussian process
falls short of describing discrete events (e.g., crime or traffic crashes) that have
low counts (rates), making it more attractive to use a discrete random process
(e.g., Poisson). Two general approaches for discrete data analysis exist: these
are conditional autoregressive (CAR) Poisson models and autoregressive Poisson
models. Their difference lies in where spatial autocorrelation occurs: across the error
terms (as in the CAR-Poisson) or the response terms (in the autoregressive-Poisson).

14.2.2 Conditional Autoregressive (CAR) Poisson Models

A CAR-Poisson model assumes that the count variable follows a Poisson process:
yi � Poisson (�i), where yi represents the number of events observed in zone i,
and �i denotes the expected/mean count for that zone. The expected mean relates
to the explanatory variables (xi), their coefficients, and an exposure term (E): �i D
E˛ ˘ exp

�
x0

iˇ C �i
�
. The nuisance term, � i, represents noise or uncertainty that is

unexplained by the control variables and is assumed to follow a CAR specification.
CAR specifications were first used by Besag et al. (1991), and are mostly

estimated using Bayesian methods. A CAR model is built from a series of
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conditional distributions,1 as shown in Equation 14.1 (Cressie 1991):

�i

ˇ̌̌
�¤i � N

h
	i C

Xn

jD1 cij
�
�j � 	j

�
; 
2i

i
(14.1)

where � i indicates the spatially autocorrelated variable (e.g., spatial random effects
centered onzero, or a response variable—like traffic flows or household incomes),
��i denotes such variables at neighboring locations (other than location i), 	i is
the expected/mean value of � i (i.e., E(� i) D	i) and assumed to be zero, 
2i is the
conditional variance, and cij are weights (either known or unknown) describing the
proximity or closeness between locations i and j.

The CAR specification permits contiguity and distance-based weight matrices,
but precludes the Kth-nearest-neighbor weighting scheme because such weights
violate the symmetry condition. First-order contiguity weights are defined such that
wij D 1 if i and j share a common border (else wij D 0), and W’s diagonal elements
are all zeros by construction (Cressie 1991). This type of CAR model is called
a proper CAR model2, and is commonly estimated using Bayesian techniques in
the open-source WinBUGS software package (Spiegelhalter et al. 2003), where
“BUGS” stands for Bayesian inference Using Gibbs Sampling.

1These conditional distributions lead to a multivariate normal (MVN) joint distribution of the
spatially correlated variables (shown in Equation 14.2), based on the factorization theorem (Besag
et al. 1991).

� � MVNn

h
�; .I � C/�1M

i
(14.2)

where the column vector � is a stacked version of the n �i’s (as is the vector �), I is an identity
matrix, C is an n by n weight matrix (defined by site contiguity or inter-observation distances), with
C D [cij], and M is a diagonal matrix, with Mii D 
2i . This joint distribution is used along with
the likelihood function of the data set to implement the Gibbs sampler to estimate the posterior
distributions of all parameters. Note that the Equations (14.1) and (14.2) are often referred to as a
Markov random field (MRF) because of the way they are derived: achieving a closed-form joint
distribution by first specifying a set of conditional distributions (Banerjee et al. 2004).

The validity of the MVN distribution shown in Equation 14.2 requires that its covariance
matrix, (I � C)�1M, be symmetric and positive-definite (like any covariance matrix must), thereby
necessitating certain constraints on the forms of the matrices C and M. For example, one may let
C D�W and 
2i D 
2

wiC
, where � is referred to as the spatial autocorrelation coefficient, W is a

row-standardized weight matrix (i.e., W D
h
w�

ij

i
and w�

ij D wij

wiC
), and wiC is the ith row sum

of W.
2This is not the “intrinsic” CAR model, because the latter does not have a spatial autocorrelation
coefficient, �, which measures the overall strength of spatial interactions. Due to the absence of
the spatial autocorrelation coefficient, its joint distribution is improper or unbounded in the sample
space (Gelfand and Vounatsou 2003).
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14.2.3 Spatial Autoregressive Poisson Models

While the CAR-Poisson model captures spatial dependence in error terms, SAR-
type models describe spatial dependence in response variables. Lagrange multiplier
tests can be used to discern which type of spatial dependence prevails in a spatial
data set (whether spatial dependence occurs across the error terms or the responses)
(Simoes and Natario 2016). Intuitively, a spatially-lagged error term represents
subtle spatial dependence due to missing variables that trend in space, whereas
a spatially-lagged response term implies more direct spatial interactions in which
the response observed at one zone is in part predicted by its neighbors’ values in
addition to its own covariates.

Cressie (1991) introduced the auto-Poisson model, in reference to models
in which the mean rate, �, involves autocorrelated response variables, i.e.,
�Dexp(XˇC�Wy). More recently, Griffith (2000) and Chun (2008) developed a
Poisson-based spatial filtering approach to estimate auto-Poisson models. However,
these types of Poisson models permit only negative autocorrelation, an unwanted
result arising from the peculiar way spatial autocorrelation enters the specification,
as shown in the following equation: � D exp(Xˇ C �Wy), where � denotes a
vector of expected mean rates, X is an n by k covariate matrix, ˇ is a k by 1 vector
of unknown coefficients, y represents a vector of observed (count) responses, W an
n by n weight matrix, and � the spatial autocorrelation coefficient. In addition, the
joint likelihood function under an auto-Poisson assumption requires a non-closed-
form solution for the normalizing constant (in order for the joint likelihood function
under the auto-Poisson specification to be proper, or integrate to 1), which impedes
successful estimation (Griffith 2000).

Liesenfeld et al. (2015) developed a new method to estimate spatial models for
a wide range of non-Gaussian response variables including discrete choices, count,
and other limited dependent variables (e.g., truncated, censored, or self-selected).
This method combined Efficient Important Sampling (EIS) and sparse matrix
algorithms to achieve accurate estimation of the likelihood function associated
with spatially-interacted data and can handle a large number of observations.
Liesenfeld et al. (2015) provided two such demonstrations: a spatial probit model for
understanding U.S. voters’ decisions in the 1996 presidential election, and a spatial
count model for anticipating the prevalence of start-up companies across 3,110 U.S.
counties.

For count responses, the model is formulated as:

f . y j�;X/ D
Yn

iD1 f .yi j�i/ (14.3)

ln .�/
ˇ̌̌
X � MVN

�
m;H�1� (14.4)
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where, y is the response variable (e.g., counts), f (˘) is the likelihood function
(e.g., f . y/ D �ye��

yŠ for a Poisson process), œi is a latent variable measuring
the expected mean counts, i is an index for observation unit. The latent vector,
ln(�), follows a multivariate normal distribution centered at m with a variance-
covariance matrix, H�1, i.e., the inverse of a Hessian matrix, H. When a direct
spatial interaction is anticipated among neighbors, the latent variable at location
i is influenced by the latent variables observed at its neighbors: mathematically,
ln(�) D �W ln (�) C XˇC ". Under this construct, the mean (m) and the Hessian
matrix are defined by

m D (I � �W)�1Xˇ and H D (1/
2) (In��W)’ (In��W). The rest of the parame-
ters (� and W) are as defined previously.

14.3 Spatial Models for Multivariate Count Data

While univariate count models address spatial dependence for a single outcome
across zones, many empirical studies are interested in gauging the interactions
among multiple outcomes while controlling for spatial effects. For example, the
prevalence of one disease can coincidentally affect other diseases due to shared
risk factors; the growth rate of new business establishment from one industry can
correlate with those of other industries in nearby areas as a result of knowledge
flows and transportation accessibility; and traffic crashes often show correlations
among different severity levels because of shared influence of certain infrastructure
or environmental factors that are latent/unobserved in the data. To control for these
interactions among more than one outcome, multivariate (MV) count models are
used to simultaneously anticipate the prevalence of multiple levels of outcomes
while controlling for spatial effects.

In general, four methods exist for predicting MV count data over space in the
literature. Table 14.1 summarizes research studies that utilized (spatial) MV count
models in light of sample size, estimation method, statistical tools used, and model
specifications.

14.3.1 Multivariate Conditional Autoregressive (MCAR)
Models

The conditional autoregressive (CAR) model is the most commonly used method to
handle spatial count data (e.g., Jin et al. 2005; Kramer and Williamson 2013; Barua
et al. 2014; Boulieri et al. 2016). Its popularity is fueled by open-source software
such as WinBUGS and its twin package OpenBUGS (Spiegelhalter et al. 2003),
which code and estimate the CAR specification and its extensions (e.g., a time-space
CAR model and moving-average models) with hierarchical Bayesian methods.
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A multivariate CAR structure builds upon the univariate CAR-Poisson structure
noted earlier and was enhanced by studies in genome analysis (Gelfand and
Vounatsou 2003), disease mapping (Jin et al. 2005), traffic safety (Wang and
Kockelman 2013; Aguero-Valverde et al. 2016), alternative-fuel vehicles (Chen
et al. 2013; Bansal et al. 2015), and location decisions of new business establishment
(Wang and Kockelman 2013).

The CAR structure defines the spatial random term for response type k observed
in zone i (� ik) by a multivariate normal distribution. For an example involv-
ing two levels of responses, �2 � N(0, [(D �˛2W)£2]�1) and �1j�2 N(A�2,
[(D �˛1W)£1]�1), where £1 and£2 scale up or down the variance-covariance
matrices; ˛1 and ˛2 measure the strength of spatial dependence; W is the spatial
weight matrix (defined by contiguity or distance, though the former is more common
in empirical studies, thanks to the computational benefits of sparse matrices); and D
is a diagonal matrix with the ith diagonal element denoting the ith row sum of the
weight matrix W. More details are deferred to Wang and Kockelman (2013) for a
two-level response setting and Bansal et al. (2015), Gelfand and Vounatsou (2003),
and Aguero-Valverde et al. (2016) for response variables involving three or more
levels.

14.3.2 Finite Mixture Models with Spatial Dependence

A standard finite mixture model provides a flexible alternative to analyze hetero-
geneous data and is typically estimated by the expectation-maximization (EM)
algorithm (Gupta and Chen 2010). In a finite mixture model, the probability
density function for a population (data) is expressed by a weighted average of the
distribution functions of its sub-populations:

p . yj‚/ D w1 f 1 . yj�1/C w2 f 2 . yj�2/C � � � CwK f K . yj�K/ (14.5)

where ‚D (�1, �2, � � � , �K ; w1, w2, � � � , wK) represents the parameter space; the
weights are positive and sum to numeral one; and f .˘/ represents a distribution
function (e.g., Poisson distribution with a latent parameter, �k, to measure the
mean/expected level for a sub-population, if y is count). The model captures hetero-
geneity by compartmentalizing the probability density function of the population
into discrete components associated with the sub-populations (Park 2010).

For spatial data, these discrete components can serve as proxies for the geo-
graphical clusters that exhibit unique trends or coefficients, hence controlling for
area-specific heterogeneity (Alfo et al. 2009). Alfo et al. (2009) extended a standard
finite mixture to control for spatial dependence within each cluster using the
convolution method (also known as the Besag-York-Mollie [BYM] model, Besag
et al. 1991) and the correlations among two levels of outcomes (e.g., two diseases).
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Specifically, the log-transformed mean is decomposed into three parts:

log .�k1/ D ˛1 C 	k C ˇk1 (14.6)

log .�k2/ D ˛2 C 	k=ı C ˇk2 (14.7)

where, ˛1 and ˛2 are constant terms representing the base-line risks associated with
each disease, 	k represents the shared factors that influence both outcomes, and
ˇk1 and ˇk2 represent factors specific to each outcome. In addition to area-specific
heterogeneity (a fortuitous property of all finite mixture-type models), this model
specification also allows for spatial dependence across clusters by imposing a CAR
structure on the three random terms, 	k, ˇk1, and ˇk2.

The model was applied to estimate the prevalence of two heart diseases across
375 boroughs in Italy’s Lazio region (Alfo et al. 2009), among other applications in
health geography (see, e.g., Anderson et al. 2014). While the finite mixture models
can define clusters in a meaningful way, the models can incur excessive computation
time and are considered a special type of the generalized MCAR models (Alfo et al.
2009).

14.3.3 Generalized Ordered-Response Models

Some researchers have modeled spatial count data from an ordered response
perspective that is rooted in utility-maximization choice theory. For example, in the
context of intersection pedestrian crashes, Castro et al. (2012) utilized a continuous
latent variable to proxy for traffic crash propensity and defined cut-off values
to divide the latent variable into mutually exclusive intervals, with each interval
representing a certain level of crash frequency. The model was cast in an ordered
probit setting and estimated by a composite marginal likelihood approach.

Bhat et al. (2014) enhanced the model by permitting multivariate correlations
through a multinomial probit (MNP) kernel. A MNP model is traditionally used
in consumer choice or decision science to anticipate the influences of external
variables on a person’s choices (e.g., voting decision, vehicle purchase choice, etc.).
In the context of multivariate count data modeling, each choice alternative can be
used to represent each level of outcome. This method takes advantage of the quasi-
concave property of the utility function and associated computational benefits. The
model was estimated using the maximum composite marginal likelihood (MACML)
approach (Bhat 2011).
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14.3.4 Spatiotemporal Models

Aldor-Noiman et al. (2013) accounted for spatial and temporal dependencies in
modeling weekly counts of different violent crimes across 188 Washington D.C.
census tracts. Four crime types were analyzed simultaneously: rape, robbery, arson,
and aggravated assault. The data present two challenges: low counts and irregular
spatial structure. In the study area, two disjointed zones have crime rates that
are correlated and nearby zones have opposite crime rates (due to heterogeneous
demographics and natural boundary), diverging from a regular spatial data with clear
spatial clustering. An integer-valued first-order autoregressive process, INAR(1),
was used to capture temporal correlations among weekly crime rates. The use of
INAR(1) is innovative because it incorporates two latent factors: a random term for
seasonal effects and a zone-specific rate function that carries spatial dependence
through a Dirichlet prior. A nonparametric Bayesian approach was used to estimate
the multivariate Poisson-INAR(1) model, coupled with multiple shrinkage to handle
the large sample size. “Bayesian nonparameteric methods have previously been
studied as tools for data-driven clustering analysis” (Aldor-Noiman et al. 2013, p. 4)
and appear to be as an effective way to analyze multiple correlated low-count time
series (e.g., wild fires and earthquakes). The Dirichlet process also offers advantages
by presenting a sparse neighborhood structure, similar to how a sparse spatial weight
matrix functions in a Bayesian parametric setting.

14.4 Conclusions

This chapter describes the various spatial models that have been used to analyze
univariate and multivariate count responses with location attributes. Two types of
spatial effects are generally considered: spatial dependence (i.e., interactions among
neighbors directly through spatially correlated response terms or indirectly through
spatially lagged nuisance terms) and spatial heterogeneity (to describe contextual
differences via spatially variable coefficient values).

For univariate count data, many spatial models exist, including a CAR model
to explain spatial dependence in the error terms, a Poisson autoregressive model
to convey more direct influence among neighbors through the response terms, and a
GWR-Poisson model to allow coefficients that vary across locations. Goodchild and
Haining (2003) suggested that the CAR model best applies to regions having more
“local” spatial effects, like first-order-neighbor influence, whereas other spatial
stochastic processes (which include the SAR and spatial error models [SEMs]) are
more suitable for situations with higher-order dependencies, and thus exhibit more
“global” spatial effects or relationships/interactions.

For multivariate count data, spatial effects enter the models chiefly through CAR-
type interactions across error terms. The multivariate CAR structure is the most
common approach to analyze such data due in part to the wide usage of open-
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source statistical software. However, such models only describe spatial interactions
across the error terms and fall short when a more direct representation of spatial
interaction is desired. By comparison, generalized ordered response (GOR) models
(Bhat 2011), the spatial autoregressive Poisson model (Liesenfeld et al. 2015), and
the Poisson mixture models (e.g., Schmidt and Rodriguez 2010) offer more flexible
specifications: e.g., the spatial autoregressive Poisson models allow for direct spatial
interactions of a variety of limited dependent variables, and the GOR models and
the Poisson mixture models permit both negative and positive correlations among
response levels. Future research should consider testing among these methods with
respect to prediction accuracy, transferability, and computation. Efforts could also
be spent to explore new ways to expand the computation of multivariate count
models as large-scale spatial data (e.g., GPS traces and naturalistic driving data)
become more regularly recorded and used in geography, transportation, and regional
science.

The future of spatial multivariate count modeling presents both challenges and
opportunities. The foremost challenge is small sample size as seen in the moderate
number of observation units used in many of the reviewed studies. With the
advent of crowdsourcing and voluntary geographic information, comes the need
for analytical tools that can handle thousands of data points made over a large
geography (e.g., pavement cracks observed across a road network, public opinions
on designs or prototypes of a commercial product [Brabham 2008], and GPS
traces of trips made by millions of households across a region) while portraying
complex spatial (and temporal) interactions. The most common tool used so far is
OpenBUGS, an open-source software that implements a number of complex spatial
and time-series models through Bayesian MCMC methods (e.g., Gibbs sampling
and Metropolis-Hastings algorithms). It is a variation of WinBUGS, which can
also handle spatial models but is restricted to only one sampling method (Gibbs
sampling).

Another challenge relates to computing issues (e.g., long run time and conver-
gence) that complex models frequently encounter. While models involving moderate
sample size (e.g., hundreds of data points) can be estimated within minutes, models
with large sample size (e.g., more than thousands of data points) require excess
run times, see, e.g., Aguero-Valverde and Jovanis (2010) reported that two days
elapsed for their multivariate CAR model to converge after completing two chains,
each with 100,000 Bayesian draws (for each parameter); and Boulieri et al. 2017
spent 20–27 hours to complete the 50,000 Bayesian draws (for each parameter)
before reaching convergence for their Poisson Log-normal CAR model with a BYM
structure. Both models were run in OpenBUGS. Run time is chiefly influenced
by how fast the parameter draws converge to a stable value (if using Bayesian
method) or how fast the algorithms locate the optimal solution of the likelihood
function (if using maximum likelihood estimation or expected moment method). To
improve computation efficiency, an analyst can consider reducing the complexity of
spatial weight matrices (e.g., through sparse matrix algorithm [Finley et al. 2013])
and enhance convergence property, e.g., tweaking the acceptance rate of the M-
H (so that chains converge at a faster rate) or improving parameter identification
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(Waller et al. 1997) by using an appropriate value for the precision parameters
associated with spatial (and heterogeneity) error terms or assigning hyperpriors for
these precision parameters (Eberly and Carlin (2000).

In terms of emerging opportunities, a potentially transformative one is seen in
extending advanced spatial models in settings that use geo-referenced, real-time
input data to make forecasts about current or near-future values (i.e., nowcasting
[e.g., Lampos et al. 2015, Preis and Moat 2014]). Recent years have seen a
rapid growth of real-time data with location attributes, from Google’s influenza
reports (which exploit Internet users’ search queries), through pedestrian or cyclist
route and volume data collected from smart-phone applications (Smith 2015), to
vehicle and driver information streamed from connected and instrumented vehicles.
Coupled with nowcasting technology, these data offer critical information for
developing a real-time advisory system, such as anticipating a flu trend and offering
insight for medical surveillance, or anticipating crash risk of pedestrians (or cyclists)
and forewarning road users of collision risk as they navigate the network. Spatial
models can enhance the regression techniques used in the nowcasting literature by
controlling for spatial dependence and other interactions typically found in geo-
referenced data.
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Chapter 15
Modeling of Infectious Diseases: A Core
Research Topic for the Next Hundred Years

I Gede Nyoman Mindra Jaya, Henk Folmer, Budi Nurani Ruchjana,
Farah Kristiani, and Yudhie Andriyana

15.1 Introduction

Incidence of disease is an under-researched topic in regional science. This is
unfortunate because it frequently has far-reaching welfare impacts at household,
regional, national, and even international levels. For the individual, health problems
may range from minor nuisance to death. However, not only the victims but also
their family members are affected if they fall ill (e.g., because of an increase in their
household tasks or loss of income). Other, mainly financial, implications are related
to seeing a doctor or buying medicine. Incidence of disease may also lead to loss of
leisure or school days. Another nuisance is restriction of the movement of people to
prevent the spread of a disease.
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Regional impacts of disease incidence consist in the first place of the impacts on
the households that are directly or indirectly affected. However, in addition, there
are costs caused by precautionary actions and production losses. In the case of
epidemics, such as the Ebola virus disease, a regional system may be paralyzed.
Given its welfare impacts and soaring incidence, inter alia, because of climate
change, increasing population density, higher mobility, and increasing immunity
to several common medicines, the incidence and spread of diseases should become
regular research topics in regional science. For recent studies in regional science
devoted to the topics, we refer to Ando and Baylis (2013) and Congdon (2013).

Methodological reasons also explain why regional scientists should pay (more)
attention to the analysis of the incidence of diseases and its consequences. Although
both regional science and epidemiology analyze the spatial distributions of their
research topics and apply spatial analytical techniques, interesting methodological
differences between them open possibilities for cross-fertilization. Whereas the
units of analysis in regional science usually are administrative entities, such as the
US states or counties with “large” populations, the spatial units in epidemiology
are “small,” such as neighborhoods, as required by the effective application of
prevention or control measures. Given that the interest in regional science in small
region phenomena, such as crime or the development of housing prices at the
neighborhood level, is growing, the methods applied in epidemiology may turn out
to be applicable in regional science as well. On the other hand, spatial spillover,
which is a core issue in regional science for which a large variety of econometric
approaches has been developed, has played a less significant role in epidemiology.
Considering that infectious diseases tend to spatially spill over, epidemiology may
benefit from the spatial spillover models and econometric approaches in regional
science.

An important step in the analysis of regional impacts of a disease is the prediction
of its incidence. The main objective of this study is to present an overview of the
most common statistical methods to predict incidence of infectious diseases, to
outline their pros and cons and the conditions under which they can be applied.
The paper is restricted to infectious diseases. Typical for this type of diseases
is that they are transmitted in space (see Sect 15.2). The key concepts in the
analysis and prediction of the incidence of an infectious disease are the standardized
mortality/morbidity ratio (SMR) and its standard error. In the paper, we discuss
three types of approaches that have been used to estimate the key parameters of
infectious disease incidence: maximum likelihood (ML), Bayesian methods, and
nonparametric methods.

The paper is organized as follows: In Sect. 15.2, we discuss the types of infectious
diseases and the basic model used to describe their occurrence. In Sect. 15.3,
we discuss the main estimators that have been developed and applied to model
the incidence of infectious diseases, i.e., ML, Bayesian smoothing, nonparametric
methods, and econometric methods). In Sect. 15.4, we summarize the main findings
and present conclusions, including a research agenda.
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15.2 Basic Characteristics of Infectious Diseases

Infectious or transmissible diseases are caused by pathogenic microorganisms and
transmitted from person to person by direct or indirect contact. Bacteria, viruses, or
fungus are examples of the pathogenic agents.

Based on incidence, four types of infectious diseases are usually distinguished. A
disease that occurs occasionally in a population is classified as sporadic; if it occurs
constantly, it is endemic; if a large number of victims are infected in a short period,
it is epidemic; and if it occurs worldwide in a short period, it is pandemic.

Infectious diseases have three transmission mechanisms: contact, vehicle, and
vector transmission. In the first mechanism, the transmission is by direct person-to-
person contact or indirect by contact with nonliving objects (such as contaminated
soils) or by mucus droplets in coughing, sneezing, laughing, or talking. In the
second mechanism, media, such as air (airborne), food (food-borne), or water
(waterborne), are the transmitting agents. Finally, a vector is a mechanism that
transports infectious agents from an infected person or animal to susceptible
individuals. Vectors consist of two types: biological and mechanical. In the case
of a biological vector, the agent reproduces in the vector’s body that carries it to the
susceptible person. Examples of biological vectors are mosquitoes, ticks, and bugs.
A mechanical vector picks up and transports the agent outside of its body. The vector
itself is not infected by the agent. An example is a housefly. Vector transmission is
the most common transmission mechanism. For more details about transmission and
its mechanisms, we refer to, e.g., Chen et al. (2015).

15.3 Infectious Disease Modeling

The basic concept in modeling the relative risk of an infectious disease is the SMR.
It is used to identify high-risk regions. It is defined as follows: assume yi and
ei are the observed and expected number of cases in region i, (i D 1, 2, 3, : : : , N),
respectively. The SMR is then defined as follows:

SMRi D yi

ei
; (15.1)

where ei defined as

ei D Ni �
Pn

iD1 yiPn
iD1 Ni

; (15.2)

and Ni is the size of the population at risk in region i. A larger than one (15.1) SMR
means that the region concerned has a larger actual incidence than its expectation;
such region is classified as a high-risk region. By contrast, a region with a smaller
than one (15.1) SMR is a low-risk region (Tango 2010).
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15.3.1 ML

The traditional estimator of relative risk is ML (Shaddick and Zidek 2016). For
count data and yi, a “small” non-negative, discrete number, the Poisson distribution
is typically chosen to model infectious disease incidence. With mean and variance
ei� i respectively, where � i is the relative risk parameter in region i, the following is
obtained:

yi

ˇ̌̌
ei� i � Poisson .ei� i/ : (15.3)

The simplest model assumes no covariate and random term in the model. The
ML estimator of � i is

b�ML

i D yi

ei
; (15.4)

which is unbiased. The variance is

3

V

�

b�ML

i

�

D
b�ML

i

ei
: (15.5)

For small ei, (15.4) and (15.5) are “large” which leads to imprecise estimation of
relative risk. For example, two similar regions, A and B, have the same population
at risk, that is, they have the same expected number of cases, ei. Suppose that ei

is 0.1 and that in region A one case is found and in B, zero. Hence,b�ML

i in region

A is 10 and in region B, zero. Region A has extreme b�ML

i compared with region
B, while the number of cases differs by 1 only. It follows that the ML-estimated
relative risk may be very unstable and lead to wrong conclusions (Pringle 1996).
Consequently, more appropriate methods for disease modeling and mapping are
required. One class of such methods is smoothing. Smoothing techniques exploit
information from neighboring regions to adjust the estimate for a given region. The
basic principle is shrinkage. That is, ML estimates with small expected rates or
high variances will be “shrunk” toward the overall mean, whereas those with small
variances will essentially remain unchanged. Smoothing thus decreases the mean
squared error (Anselin et al. 2006). Bayesian and nonparametric techniques are two
popular smoothing methods used in disease modeling and mapping.

15.3.2 Bayesian Smoothing

Bayesian smoothing methods are statistical approaches to update unknown
parameters using information from observations. As a first step, prior information
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on the parameter of interest is specified in terms of a probability distribution. Next,
empirical evidence (data) is obtained and combined with the prior information
using Bayes’ theorem, which leads to a posterior probability distribution of the
parameters. The posterior becomes the basis for statistical inference (Congdon
2010). Specifically, the observed data y D (y1, : : : , yn)T is assumed to be
generated from a probability distribution f (yij � i) with unknown parameters
� D (�1, : : : , �n)T . The unknown parameters � , in turn, are assumed to be random
variables with prior f (� ij �) with unknown hyperparameter � D (�1, : : : , � k)T . The
posterior density of � i, given the data yi, the conditional density f (yij � i), and the
conditional density f (� ij �), is

f .�ijyi;�/ D f .yij�i/ � f .�ij�/
f .yij�/ ; (15.6)

where f (yij �) is the marginal likelihood of the data given hyperparameter � . To
ensure that the posterior distribution, f (� ij yi), is a proper density, the marginal
likelihood, f (yij �), is taken as a normalizing constant, which is found by integrating
the likelihood, f (yij � i), over the joint prior density:

f .yij�/ D
Z

f .yij�i/ � f .�ij�/ d�i: (15.7)

Based on the above mentioned description, (15.6) can be written as follows:

f .�ijyi;�/ / f .yij�i/ � f .�ij�/ : (15.8)

The estimated posterior density f .�ijyi;b�/ is used to make inferences about � i,
whereb� is an estimate of � .

Bayesian approaches are composed of two classes: empirical Bayes (EB) and full
Bayes (FB). Each is made up of several types. In the case of EB, parameters � are
replaced by point estimates of hyperparameter based on the marginal distribution
of yi. In the case of FB, a prior distribution f (�1) , . . , f (� k), is specified for the
hyperparameter � (Hog et al. 2005).

A typical example of each case is presented below.

15.3.2.1 Empirical Bayes Poisson-Lognormal Model1

The empirical Bayes Poisson-lognormal (EBPLN) model was introduced by Clay-
ton and Kaldor (1987). It can be summarized as follows: The prior distribution of
the relative risk, � , is assumed to have a multivariate lognormal distribution. That

1Other EB models are the Poisson-Gamma model and the linear empirical Bayes model. See, e.g.,
Clayton and Kaldor (1987) and Lawson et al. (2000) for details.
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is, the log of the relative risk, � D log (�) ; � D (�1, .., �n)T ,is assumed to follow a
multivariate normal distribution with mean �and covariance matrix †. Hence, the
density function of � is as follows:

f .�j�;†/ D .2�/�
1
2n .�1 : : : �n/

�1j†j� 1
2 exp

�
�1
2
.log� � �/0†�1 .log� � �/

�
:

(15.9)

The EB estimator is obtained from the expectation of the relative risk � given y,
E(� j y). However, the posterior distribution of the Poisson-lognormal is not a closed
form, that is, it has no analytical solution for E(� j y). As a way out, Clayton and
Kaldor (1987) proposed a quadratic approximation by substituting � i for exp(� i) to
construct the Poisson likelihood � given y. The likelihood thus is

L .�jy/ D
nY

iD1
f .yij�i/ D

nY
iD1

�
exp .�eiexp .�i// .eiexp .�i//

yi

yiŠ

�
: (15.10)

The EB estimator using the quadratic approximation requires the estimate of
the vector of parameters �. Clayton and Kaldor (1987) proposed ML to estimate

�. The ML estimator of
�
� i D log

	
yi
ei



:However, this solution does not hold for

yi D 0. Therefore, Clayton and Kaldor (1987) suggested to add the constant 0.50 to
yi, that is,

�
� i D log

�
yi C 0:5

ei

�
: (15.11)

Equation (15.11) is an explicit solution of the EB estimate of � based on quadratic
approximation. However, the solution is not based on the expectation of the posterior
distribution of the Poisson-lognormal model, f (�j y , � , †). With the quadratic
approximation of the likelihood function over the lognormal prior, the posterior
distribution of � given the data y is

f .�jy;�;†/ / f .yj�/ f .�j�;†/ ; (15.12)

which follows a multivariate normal with mean � and variance † (Leonard 1975;
see Clayton and Kaldor 1987, for details). Estimating � and † is thus necessary to
obtain an explicit solution for � based on f (�j y , � , ˙ ). The EM algorithm can be
used for this purpose. In the simplest case, the � i are taken as i . i . d N(	, 
2). Given

that the distribution of the � i has two parameters, 	 and 
2, the EBPLN,b� EBPLN

i ,
becomes (Meza 2003):

b� EBPLN

i D b	Cb
2 .yi C 0:5/
�
� i � 0:5b
2

1Cb
2 .yi C 0:5/
; (15.13)
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with

b	 D 1

n

nX
iD1
b� EBPLN

i ; (15.14)

b
2 D 1

n

 
b
2 nX

iD1

h
1Cb
2 .yi C 0:5/

i�1 C
nX

iD1

	b� EBPLN

i �b	
2
!
: (15.15)

The EBPLN estimator of the relative risk isb� EBPLN

i D exp
	b� EBPLN

i



.

The EM algorithm to (iteratively) obtain the estimates of 	 and 
2 using
Equations (15.13), (15.14), and (15.15) is as follows:

(1) Obtain the initial values of
nb� i,b	;b
2o :

(a) b� i D log
	

yiC0:5
ei



(b) b	 D 1

n

Pn
iD1b�

(c) b
2 D 1
n

Pn
iD1
	b� �b	
2

(2) Expectation (E) Step: Estimate the relative risk using Equation (15.13).
(3) Maximization (M) Step: Update the parameter estimates b	 and b
2 using

Equations (15.14) and (15.15).

(4) Repeat Steps 2–3 until a predetermined precision is obtained, e.g.,jb� EBLN.tC1/
i �b� EBLN.t/

i

ˇ̌̌
� 1e � k, with k a positive integer.

15.3.2.2 Full Bayesian Poisson-Lognormal Model2

Full Bayesian (FB) estimation is more widely used in Bayesian disease modeling
than EB because it is more flexible in defining the prior hyperparameter
� D (�1, : : : , � k)T , and because it can provide a measure of uncertainty of the
estimates of relative risks (Maiti 1998). The quality of the FB estimates depends on
the accuracy in determining a hyperprior distribution.

In FB, the posterior parameters can be estimated using Markov chain Monte
Carlo (MCMC) simulation, such as the Gibbs sampler and Metropolis-Hastings (M-
H) or integrated nested Laplace approximation (INLA). The procedure is as follows:
As in the case of EBPLN, FBPLN assumes the log relative risk, � i, to follow a
normal distribution, that is, � i � i . i . d Normal(	,
2).

2Another FB model is the Poisson Gamma model. See, e.g. Lawson (2006) for an overview.
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The basic FBPLN model may be written as follows (Meza 2003):

(i) yi

ˇ̌̌
�i

iid
� Poisson .ei�i/

(ii) �i D log .�i/
ˇ̌̌
	; 
2

iid
� N

�
	; 
2

�
(iii)

f
�
	; 
2

� / f .	/ f
�

2
�

with
f .	/ / 1I 
�2 � Gamma .a; b/ I a � 0; b > 0

Commonly, the prior parameters (a, b) are assumed to be known. Obtaining the
posterior distribution of � ijyi involves high-dimensional integrals that are difficult
to sample directly from. However, sampling from the full conditional distribution
of each parameter is often easy. The Gibbs sampler can be used to estimate the
posterior distribute on (Maiti 1998). The full conditional distribution to implement
Gibbs sampling can be written as follows:

(i) f
�
�ij	; 
2; yi

� / �
yi�1
i exp

h
�ei�i � 1

2
2
.�i � 	/2

i
(ii)

�
	j�i; 


2; yi
� � N

	
1
n

P
i�i;


2

m



(iii)

�

2j�i; 	; yi

� � G
	

n
2

C a; 1
2

P
i.�i � 	/2 C b



MCMC samples can be directly generated from (ii) and (iii) using the M-H

algorithm. Several software programs can be used to estimate the FBPLN. The
WinBUGS software program is generally used.

For computational purposes, � i is decomposed into two components, ˇ0 and ui.
ˇ0 is the overall level of the log relative risk, whereas ui is the residual.

log .�i/ D ˇ0 C ui; (15.16)

ui � i:i:d Normal
�
0; 
2u

�
:

The parameters ˇ0 and ui have a hyperprior distribution as follows:

ˇ0 � i:i:d Normal
	
0; 
2ˇ0



;

1=
2u � Gamma .a; b/ :

Using noninformative prior, the value of 
2ˇ0 is usually replaced by a large number,

for example, 
2ˇ0 D 105 and for a D 0.5 and b D 0.0005 (Tango 2010).
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15.4 The Besag, York, and Mollie (BYM) FB Model

ML and the traditional Bayesian approaches do not accommodate spatial trend,
covariates, and spatially uncorrelated and spatially correlated heterogeneity. The
FBPLN model can be extended to include those components. To consider spatially
correlated heterogeneity, Clayton and Kaldor (1987) proposed the conditional
autoregressive (CAR) model for the log relative risk. The CAR model is defined
as follows:

E
�
�ij�j.j¤i/

� D 	i C �
X

j

wij
�
�j � 	j

�

Var
�
�ij�j.j¤i/

� D 
2; (15.17)

where wijis an element of the spatial weights matrix W. To simplify computations,
	i is assumed to be equal to 	.

The “complete” FBLN model to estimate the relative risk was developed by
Besag et al. (1991), denoted BYM. Considering its “completeness”, it has become a
popular model in Bayesian disease modeling and mapping, especially of infectious
diseases. The BYM model reads as follows (Lawson et al. 2000):

log .�i/ D ti C ui C vi; (15.18)

where ti denotes the spatial trend and covariates, ui denotes the spatially uncorre-
lated heterogeneity, and vi denotes the spatially correlated heterogeneity (Lawson et
al. 2000). A typical spatial trend regression model reads as follows:

ti D
HX

hD1

�
ahxh

i C bhyh
i

�C
KX

kD1
ckzk; (15.19)

where f(xi, yi)g are the centroids of the i-th region, H is the degree of the trend (e.g.,
h D 1: linear trend; h D 2:quadratic trend), K is the number of covariates, and z is
the vector of covariates.

In the case of count data, over-dispersion frequently occurs, that is, the variance
observed is greater than the mean. Over-dispersion has two types: spatially uncorre-
lated and spatially correlated heterogeneity (Lawson 2006). Spatially uncorrelated
heterogeneity occurs because of observations with small or zero cases, differences in
the number of subpopulation, and omitted environmental or ecological factors, such
as pollution, rainfall, humidity, temperature, and radiation. Spatially uncorrelated
heterogeneity is accommodated by defining a non-informative prior3 for ui, usually

3A noninformative prior is used to denote lack of information about the parameter of interest
(Lawson 2013).
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the normal distribution (Lawson et al. 2003):

ui � i:i:d Normal
�
0; 
2u

�
: (15.20)

Spatially correlated heterogeneity, vi, occurs because of spatial clustering or
spatial autocorrelation (Lawson 2006). It can be considered using information
relating to adjacent regions, based on the assumption that adjacent regions with
similar spatial characteristics have similar relative risks.

A conditional autoregressive (CAR) prior is usually used to capture spatially
correlated heterogeneity. Besag et al. (1991) proposed the following CAR prior:

vi

ˇ̌̌
vj¤i � Normal

 P
j wijvjP

j wij
;

2vP
j wij

!
; (15.21)

where wij denotes spatial dependence between regions i and j.
A limitation of the Besag prior is that it is only appropriate for strong spatial

autocorrelation. If weak spatial autocorrelation exists, the CAR prior produces
random effects that are overly smooth (Lee 2013). To overcome this limitation,
spatially uncorrelated heterogeneity ui should be used. To accommodate varying
strengths of spatial autocorrelation, Leroux et al. (1999) and Stern and Cressie
(1999) proposed alternative CAR priors. The Leroux et al. (1999) CAR prior reads
as follows:

vi

ˇ̌̌
vj¤i � N

 
�
P

jwijvj

�
P

jwij C 1 � �
;


2v
�
P

jwij C 1 � �

!
; (15.22)

The Stern and Cressie (1999) CAR prior is as follows:

vi

ˇ̌̌
vj¤i � N

 
�
P

jwijvj

�
P

jwij
;


2v
�
P

jwij

!
: (15.23)

In both cases, � is the spatial autocorrelation parameter. Using the Leroux or
Stern and Cressie prior renders spatially uncorrelated heterogeneity uiredundant.

The FBPLN model, including spatial effects, may be written as follows (Rao
2003):

(i) yij� i � Poisson (ei� i)

(ii) �i

ˇ̌̌
�j.j¤i/; �; 


2 � N
�
	C �

P
il wil .�l � 	/ ; 
2

�
(iii)

f
�
	; 
2; �

� / f .	/ f
�

2
�

f .�/ with
f .	/ / 1I 
�2 � Gamma .a; b/ I a � 0; b > 0; � � U .0; �0/
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where �0 denotes the maximum value of � in the CAR model and WD (wil) is the
“adjacency” matrix. Maiti (1998) proposed Gibbs sampling combined with the M-H
algorithm to estimate the model.

The BYM model can be summarized as follows:

�i D ˇ0 C XT
i ˇ C ui C vi; (15.24)

where �i D log (� i), ˇ0is the overall relative risk, XT
i D .Xi1; ::;XiK/ is a vector

covariates, ˇ D (ˇ1, ..,ˇK)T is a vector regression coefficients, and ui and videnote
are spatially uncorrelated and spatially correlated heterogeneity, respectively. The
following hyperparameter distributions of ˇ0, ui and vi are usually applied:

ˇ0; ˇ1; ::; ˇk � i:i:dNormal
	
0; 
2ˇ



;

1=
2u � Gamma .a; b/ ;

1=
2v � Gamma .a; b/ :

As a non-informative prior, large values for 
2ˇ are usually taken, for example,


2ˇ D 105 and for a D 0.5 and b D 0.0005 (Tango 2010).
The above-mentioned model only accounts for the spatial pattern of diseases but

does not incorporate temporal variation. A model that includes temporal variation
is a spatio-temporal model. Spatio-temporal modeling has been widely applied to
analyze the spatial distribution of disease incidence and its trend, notably to detect
hotspots (Lawson 2014). The most common approach is based on the assumption
that a log-linear relationship exists between the relative risk and the calendar time
within regions, that is, that the time trend varies from region to region (Lawson
2014). Thus

yit

ˇ̌̌
eit™it � Poisson .eit™it/ ;

˜it D “0 C XT
it“ C ui C vi C ¨t C §t C ¥it; (15.25)

where �it D log (� it)ui and vi denote spatially uncorrelated and spatially corre-
lated heterogeneity, respectively; !j and  t denote temporally uncorrelated and
temporally-correlated heterogeneity, and � ij is a spatio-temporal interaction effect.
This model varies based on the structure of the space-time structure. Model (15.25)
is commonly estimated using Bayesian techniques.
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15.4.1 Nonparametric Estimation

The most popular nonparametric smoothing technique is the Nadaraya-Watson
kernel smoother. It is defined as the weighted average of the ML estimates of the
other regions (Lawson et al. 2000):

�NP
i D

nX
j¤i

!j�
ML
j ; (15.26)

with !j weights for values of neighboring regions defined as follows:

!j D
K
		
�ML

i � �ML
j



=h



Pn
i K

		
�ML

i � �ML
j



=h

 ; (15.27)

where K(.) is a zero mean, radially symmetric probability density function, usually
the standard Gaussian distribution:

K.z/ D .2�/�1=2exp

�
� z2

2

�
; (15.28)

with h the bandwidth based on the minimum value of the least squares cross-
validation criteria (Simonoff 1999):

CV.h/ D 1

n

nX
iD1

	b�NP

i � O�ML
.�i/


2
; (15.29)

Where O�ML
.�i/ denotes the average relative risk estimate using ML without the ith

observation.
For an application to relative risk estimation, see Kesall and Diggle (1998).

The nonparametric model can be extended to include time variation and spatial
dependence as follows:

log .�itjyit/ D log .nit/C log.m/C S0.t/C ˛i C Si.t/; (15.30)

where �it is a mean of Poisson distribution; nit is the population count for the region
i in year t; m is the overall mean of the relative risk; S0(t) is the fixed global of the
relative risk trend; ˛i is the random spatial effect, which may be spatially correlated;
and Si(t) is the random temporal effect for the region i (MacNab and Dean 2002).



15 Modeling of Infectious Diseases: A Core Research Topic for the Next. . . 251

15.4.2 Spatial Econometric Models

The models discussed in the previous sections (explicitly) do not consider spatial
dependence even though spatial spillovers are typical for infectious diseases.
Particularly, the response variable in one region usually depends on the values of
the response variable in neighboring regions (Lawson 2014; Chen et al. 2015), as in
the case of dengue fever. Similarly, the status of covariates (e.g., vegetation or water
quality) in one region may affect the response variable not only in that region but
also in neighboring regions. Finally, spatial dependence may occur among the error
terms.

One of the reasons that spatial econometric models have received little attention
in epidemiology is that these models have been developed for continuous data
rather than count data, especially with respect to the dependent variable. Following
Lambert et al. (2010) and Bivand et al. (2014), we specify the spatially lagged
(SL) mixed Poisson regression model of relative risk for count data with spatially
lagged dependent variable, spatially uncorrelated (ui) and spatially correlated
(vi) heterogeneity as components of the error term ("i), as follows:

	 D �LagW	 C ˇ01n C Xˇ C " (15.31)

where 	 D (�1, .., �n)T with �i D log (� i), ˇ0 is the overall relative risk, 1n is a unit
vector of length n, X is a matrix of covariates of size (nxK), ˇ D (ˇ1, ..,ˇk)T is a
vector of coefficients, and W is a symmetric adjacency matrix with zero diagonal
elements, �Lag is the spatial lag parameter that measures infectious disease spillover
among regions.

A more general model with wider applicability is the spatial Durbin-Poisson (SD-
Poisson) model that allows for spatial spillovers of the covariates in addition to a
spatially lagged dependent variable. The SD-Poisson model reads as follows:

	 D �LagW	 C ˇ01n C Xˇ C WXı C "; (15.32)

where ı D (ı1, : : : , ıK)T denotes a vector of coefficients for the spatially lagged
covariates WX (Bivand et al. 2014).

From models (15.31) and (15.32), the direct and indirect (spillover) effects can be
calculated. To estimate the SL-Poisson model, Lambert et al. (2010) proposed two-
step limited information maximum likelihood, and Bivand et al. (2014) developed a
Bayesian estimator using INLA.

15.5 Summary and Research Recommendations

Incidences of infectious diseases have been soaring. According to the World Health
Organization (2005), climate change, extreme weather, and environmental factors,
such as lack of access to clean water and poor sanitation facilities, have contributed
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to the outbreaks. Socioeconomic conditions, including income, employment, educa-
tion, and health behavior, are also important factors that influence the transmission
of infectious diseases. Increasing urbanization, higher population density, higher
mobility, and increasing resistance to several common medicines accelerate the
transmission from one location to another because of more contacts between
infected and susceptible people (Fong 2013).

Infectious diseases often have serious direct and indirect effects at the individual,
household, and regional levels ranging from increased morbidity and mortality
to the paralysis of an entire region or even a country. Early identification of an
endemic is an important first step to prevent its transmission and to reduce its
effects. Implementation of such early warning systems (EWSs), including roadmaps
to prevent or restrict the spread of an infectious disease, is still in its infancy in
most (developing) countries (Lowe et al. 2011). Therefore, the development and
implementation of EWSs based on information about when and where outbreaks
will occur and what factors influence transmission is a high-priority research topic.
A related research topic is how to use EWS information in taking appropriate and
efficient actions to manage transmission and to prevent epidemics. The development
and implementation of an EWS requires intensive interaction between natural and
social regional scientists.

An important component of an EWS is the identification of high-risk regions
and spatial clustering. For this purpose, predictive models are required (Chen
et al. 2015). In this paper, an overview of the most common approaches in
disease incidence modeling has been presented. Four types of approaches have
been discussed, namely, ML, Bayesian smoothing, nonparametric smoothing, and
spatial econometric methods. An important conclusion that emerges from the
overview presented in Sect. 15.3 is that the first three types of models do not
adequately account for the basic characteristic of infectious diseases, i.e., spatial
spillover. Admittedly, several of the approaches that have been commonly applied
in infectious disease modeling account for similarities among spatial units, notably
climate and environmental conditions, which significantly affect habitat suitability
and distribution of vectors. However, this is not the same as accounting for spatial
spillover. Spatial spillover means that the sheer presence of an infectious disease
in one region, at present or in the past, increases the likelihood of occurrence in
neighboring regions. Another type of spatial dependence relates to the covariates in
that covariates in one region affect the response variable not only in that region but
also in neighboring regions.

A major research topic for the immediate future is the development of models
that can explain and predict the spatio-temporal distribution of infectious diseases.
For that purpose, epidemiological and spatio-temporal econometric models could
be combined. The basic structure of such a model that links the log of the relative
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risk to its predictors is as follows:

�it D ˇ0 C �1

nX
jD1

wij�jt C �2

nX
jD1

wij�jt�1 C �3�it�1 C
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ˇ1kXkit C

KX
kD1

ˇ2kXkit�1

C
KX

kD1
ˇ3k

nX
jD1

wijXkjt C
KX

kD1
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(15.33)

where �it D log (� it); �1 and �2 denote the spatial lag coefficients of the log relative
risk without and with time lag, respectively; �3 denotes a temporal lag coefficient of
the log relative risk; ˇ1k and ˇ2k denote the regression coefficients with and without
temporal lag of the kth covariates, respectively; ˇ3k and ˇ4k denote the spatial lag
coefficients of the covariates with and without temporal lag, respectively; ui and
vi denote spatially uncorrelated and spatially correlated heterogeneity, respectively;
!j and  t denote temporally uncorrelated and temporally correlated heterogeneity
and � it is a spatio-temporal interaction effect. Correlated heterogeneity is variability
that occurs because of spatial or temporal dependence; uncorrelated heterogeneity
is variability that occurs because of random spatial or temporal variation (Lawson
2006; Bernardinelli et al. 1995).

Model (15.33) is a complex model with a discrete (Poisson distributed) depen-
dent variable, involves many covariates, and is influenced by location and time
heterogeneity. Spatial panel econometrics comes to mind to estimate model (15.33).
However, spatial panel econometrics has been developed for continuous response
variables, while epidemiological data are commonly measured in count format.
Therefore, models such as (15.33) cannot be estimated by conventional approaches.
The development of appropriate estimators of such models is an important topic
for further research. We expect that Bayesian statistics will be increasingly used in
epidemiology and regional science models of count data (see also Congdon 2013).
For complex models, such as the spatio-temporal varying coefficient model, the
calculation of the likelihood function, along with the problem of identifiability of the
parameters, is very difficult. The Bayesian method can solve this problem (Martinez
and Achcar 2014).

We also expect the random effect generalized linear mixed model and Bayesian
inference with INLA to become popular in infectious disease modeling. INLA is a
relatively new approach to Bayesian statistical inference for latent Gaussian Markov
random fields. The main advantage of the INLA approach over MCMC is that it can
compute significantly faster (Rue et al. 2007).
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Part III
Open Source and Open Science



Chapter 16
Object Orientation, Open Regional Science,
and Cumulative Knowledge Building

Randall Jackson, Sergio Rey, and Péter Járosi

16.1 The Future of Regional Science Modeling

Integrating human and physical systems is a daunting challenge that spans a
great many problem domains, including social and economic production systems,
residential behaviors, environmental exchange, and resource and land use. Because
so much current research continues to be focused within rather than across these
areas, our cumulative knowledge in many respects is little more than a simple
summation of various disciplinary and sub-disciplinary learning curves, rather
than a truly integrated, synergistic base of understanding. Indeed, a complete
understanding of any subdomain may not even be possible in the absence of domain
integration. Even within some subdomains, there may be very few instances of
truly cumulative science, where one scholar’s work adopts another’s directly as the
foundation for a new and tightly integrated cumulative model. If it were possible
to speed the diffusion of modeling innovations and research findings within and
among subdomains, the cumulative frontiers of knowledge could be expected also
to advance apace.

We believe that the future of research in regional science, and indeed in all
social science modeling, will be based on a research infrastructure that leverages
the power of networked individuals focusing their collective intellect on problem
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solving in a community effort as we move science from the domain of individual
ivory towers and research silos to a fully integrated common workplace. The
research environment we envision stands to accelerate research integration and
cumulative knowledge-building within and across human and physical systems
problem domains.

16.2 OS2: Open Science and Open Source

Open science and open source are strongly related but not identical concepts. Open
science refers to a scientific field that moves forward as a collective and is open
to all participants. Open source refers to equal public access to and development
of problem domain content, primarily the computer code that supports modeling
and solution algorithms applied within a given problem domain. We refer to this
powerful combination of open science and open source development as OS2.

16.2.1 Open Science

The rise of the open science movement is a recent phenomenon, and as such,
regional modeling has been slow to engage (Rey 2014). A key tenet of open science
is that for the traditional error-detection and self-correction mechanisms to be fully
effective, all aspects of the scientific process need to be open. In theory, open access
to the data, models, and workflow that underly a scientific study should allow
other researchers to reproduce its findings. Reproducibility removes the veil from
scientific findings and eliminates the need for blind faith in science and the scientist.

Reproducibility is vital to the integrity of the scientific process and assumes a
central position in the open science movement, yet open science is about much
more than enhancing reproducibility. New forms of open collaboration and open
publishing hold the potential to advance the pace of scientific discovery and to
ensure the provenance of scientific knowledge. While collaboration has always been
central to scientific progress, the scale of collaboration afforded by new technologies
is now on the brink of a radical transformation. Advances in high performance
computing (HPC) in the form of distributed systems provides unprecedented
opportunities for addressing scientific problems once viewed as beyond reach.
However, realization of this potential will require collaboration among domain
scientists and with computer scientists with HPC expertise. That collaboration,
in turn, will require open computing frameworks with well-developed application
programming interfaces (API). Scaling existing regional modeling software to take
advantage of advances in modern HPC architectures is one area where this form of
collaboration will have high payoff.

In many ways, the lineage of these “new” open science practices can be traced
to the open source movement. Community innovation networks are already com-
monplace in open source software development, where legions of developers often
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contribute to evolutionary community resource infrastructures such as XWindows,
the Linux operating system, and the Python language and its numerous graphical
and numerical processing libraries. Indeed, the suggestion that this kind of approach
should be adopted in social sciences dates back at least two decades to Jackson’s
“Object-Oriented Modeling in Regional Science: An Advocacy View” (1994); a
call to action that failed to gain momentum for two main reasons. First, object
orientation, essential to the success of the proposed approach, was still in the
early stages of development and was not stably supported in widely used and
freely accessible computer software. This has changed dramatically in recent years,
especially notable in the popular and widely used open source Python programming
language. Second, the notion of collaborative innovation networks (Gloor 2002,
2006; Gloor et al. 2004) and associated support infrastructures had not yet been
formally recognized or well established.

Common workplaces such as GitHub.com, which provides controlled access,
version control, and other mechanisms, such as code repositories and community
forums that rationalize the development process are now much more common, more
effective, and well supported. The development and convergence of these tools,
along with a winnowing of methods for modeling national and regional economic
systems makes this a perfect time to move from silo-based research efforts to a mode
of collective open science knowledge building.

16.2.2 Open Source

Our choice of open source software and development practices in implementation
of the modeling framework also reflects the philosophy of open science that informs
our project. Recent developments in the Python programming language make
it an ideal platform for the development of these models. Python is an object-
oriented scripting language that facilitates rapid prototyping of software. Because
the structure of Python’s numerical functions and algorithms (e.g., in NumPy
and SciPy) will be readily recognizable by those who program using traditional
econometric modeling software (e.g., GAUSS and MatLab), leveraging legacy
code written in those languages and porting to an object-oriented design becomes
feasible.

The Python scientific community also has been at the forefront of the recent drive
for reproducible research. Tools such as the Jupyter Notebook (http://jupyter.org)
allow modelers to combine live code with narrative text, equations, visualizations
and other media to encode a complete and reproducible record of computation.
These notebooks can be made available to other researchers via GitHub repositories,
to facilitate open collaboration.

By relying on public GitHub repositories, collaboration on regional modeling
projects not only becomes more efficient, but also may achieve currently unpar-
alleled scalability. Any interested regional modeler can now “fork” the project to
begin their own exploration of the underlying code base. That exploration can take

http://jupyter.org
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place without the modeler having to first receive permission for copying the project.
Thus, the entry costs for engaging with the modeling project fall dramatically.

Not only does OS2 allow for an expansion of the modeling community, but
it does so in a highly efficient way. Individual efforts undertaken as part of the
community receive rapid feedback, often virtually at the moment of the newly
shared contribution. This can include the user tests, bug reports, new feature
requests, etc. In this way, the research work flow can become a nearly continuous
iterative process among any collaborators, anywhere.

Wallach (2016) has argued that research at the frontier of the social sciences is no
longer a choice between computer science or social science but must be a synergy
of the two moving forward. We see OS2 as an integrating framework that addresses
this call by fusing the practice of regional modeling together with modern principles
of computer science.

16.3 Object Orientation

Object orientation is an abstraction mechanism that is used to focus on the essential
problem domain constructs to eliminate the complexities of non-essentials. Object-
oriented (OO) modeling is a conceptual device that can be used to better understand
a problem domain. It is analogous in this sense to general systems theory in its
provision of a recipe to follow in defining and understanding a problem. Object-
oriented analysis focuses first on the identification and enumeration of the objects
that compose the system, rather than on system functionality. Constructed first,
object models describe as fully as possible the objects, their attributes and behaviors,
and the information they can exchange with their environments (Rumbaugh et al.
1991). A functional model complements the object model, defining interactions
and associations among objects. These behaviors are defined by transformation
rules, functions, and mappings, and may conform to constraints and follow various
patterns of dependency. A dynamic model is the final complement, defining the
sequencing and control of the problem domain. Object-oriented analysis involves
the systematic construction of these three “orthogonal views” of a problem domain,
as shown in Fig. 16.1. An object-oriented model includes an enumeration of its
objects, the ways in which a system transforms its values, and an elaboration of
the timing, sequencing and control of events.

There are many reasons to pursue the object-oriented approach. First, if a model
is to form the foundation of experimental research, that foundation should be as
stable as possible. The objects of most problem domains are much more stable
than is their functionality. Indeed, most research focuses precisely on the effects of
specified changes on a system’s objects and operation. Object-oriented modeling
establishes a solid foundation that provides a stable reference for subsequent
use, reuse, and extension. Second, the modeling sequence is both rearranged and
structured more explicitly than in relational modeling. Whereas most relational
modeling focuses first on functionality, object-oriented modeling focuses first on
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Fig. 16.1 An object-oriented
model’s orthogonal views

the model’s objects. Because the recipes that we follow to build our understandings
shape the processes and outcomes of inquiry, new recipes often lead to new
questions, new hypotheses, and ultimately to a more comprehensive understanding
of a problem domain.

A third reason for exploring object-oriented modeling is the potential to benefit
from increased interaction. Scientists each have specialized areas of expertise.
Adopting a common modeling approach and foundational reference model can
enhance and facilitate communication of the essence of each application subdomain.
Extensibility is a fourth and exceptionally strong reason for adopting object-oriented
modeling. Object classes can be extended easily and independently without the need
to modify interactions among class objects because of the encapsulated nature of
class data and behavior.

Importantly for the present context, models can be developed incrementally.
All problem domain modules need not be fully specified to productively develop
subdomain modules. Teams of researchers can begin to collaborate much more
effectively. A model of a production system, for example, might use a naïve
representation of households until another researcher, with expertise in household
consumption or residential choice behavior, develops a more comprehensive and
realistic household module.

Finally, alternative behavioral propositions can be represented in class speci-
fications. Suppose, for example, that a researcher wanted to isolate the systemic
environmental impacts of introducing two alternative power-generating technolo-
gies. He or she could then design one new class for each technology, run the
model simulation first with the existing technology class, and then once with
each of the alternative technologies and compare the outcomes. This simulation
approach parallels the “plug and play” design characteristics of modern personal
computers, where parts with slightly different functionality (e.g., sound cards) can
be interchanged freely. Because they have the same system interface, their inner
workings can differ in important ways, yet still be compatible with the overall
system.
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16.3.1 The Case for Objects

Many model integration strategies have been less successful than they could
have been, partly due to the failure of modelers to recognize the advantages of
object-based modeling paradigms and more recently available supporting modeling
platforms. Whereas most attempts at model integration link modules through
aggregate and summary variables, module integration can be facilitated by the
explicit recognition of individual object integration as a mechanism for linking
modeling subdomains. As a simple example, consider that laborers who earn
wages and salaries are the same individuals who shop, commute, migrate, choose
residences that consume electricity and water, have children, etc. The cars they
purchase are the ones they use in their journeys to work, and are the same ones that
pollute the atmosphere. Laborers, therefore, constitute one logical class of objects
in models of any of these activities. Thus, when modeling two of these problem
subdomains together, maintaining the identity of individual laborers (among other
objects) can be the integration linkage mechanism. With the exception of the related
class of agent-based models (ABM), there are very few models that explicitly
incorporate object identity.

A common modeling language can also promote cumulative and integrated
model building. Mathematical formalization plays this role with some success,
but mathematics is a low-level formalization, in the same sense that assembly
language is a lower level programming language than is FORTRAN or Matlab®.
Commonalities among subdomains, as a consequence, are not always readily
apparent from their formal representations. Quite often, even subtle differences
in modeling notation can be a barrier to effective cross-domain fertilization and
integration. In the absence of a common modeling language, specialists in one
subdomain often find it difficult to grasp quickly the essentials of a model in another.

The most frequently used objects of mainstream economic models are deter-
ministic and stochastic equations, endogenous and exogenous variables, recursive
and simultaneous blocks of equation systems, etc. In stark contrast, the object-
oriented economic model comprises objects like households, firms, industries, and
markets, that represent the entities of the economy more directly. The object-
oriented model can be designed around objects along a continuum from individual
agents to aggregates. Financial sectors or industries, for example, could either be
modeled as aggregates or as individual banks or establishments, emphasizing the
opportunities of object-oriented modeling for both micro level and macro levels. In
an object-oriented program, a class of objects can represent anything from a typical
agent to an entire interregional interindustrial system.

Fortunately, human and physical systems modelers can benefit from the experi-
ence of software engineers who have had to model increasingly complex computer-
related systems that would quickly overwhelm any individual programmer. Com-
puter and information sciences have made great strides in developing common
workplaces and computer languages with effective diagrammatic toolkits that
support a variety of conceptual representations, including object orientation. Most
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graphical user interfaces, e.g., are built with windows, panels, dialog boxes, text
fields, dropdown lists and the like, which are modeled as objects with specified
attributes and event-driven behaviors and that send and receive signals to and from
other objects and algorithms. As a result of their efforts, computer modeling of
complex systems via collaboration and teamwork is now commonplace.

16.3.2 Object-Oriented Modeling Fundamentals1

Object orientation is a systematic approach to modeling that can improve our
conceptual understanding of research problem domains. Its modeling constructs,
coupled with an intuitive graphical notation, provide an expressive set of conceptual
descriptors that can enhance the model clarity. While object-oriented modeling
shares much in common with a number of other approaches, such as Entity-
Relationship (ER) modeling, ABM and simulation, and micro-simulation generally,
the advantages of object-oriented modeling, per se, include its precise and easily
understood terminology, its orthogonal object, functional and dynamic conceptual
frames, graphical tools for depicting objects and associations, and its parallels with
programming language terminology. Below, we review the fundamentals of object-
oriented modeling, beginning with a more formal definition of objects.

Objects are the fundamental entities of the object-oriented model. They are
abstractions of the essential aspects of a problem domain and are easily distin-
guished from one another in form and function. Objects are of various types, or
classes, and are individual instances of the classes to which they belong. They
are described by their properties: attributes and behaviors. An object’s attributes
are quantifiable characteristics that can take on data values. Its behaviors capture
its functionality, and include the operations it can perform and the services it can
provide, including self-contained operations and signals it can send and receive.
Conducting a residential search, e.g., is a part of a household’s functionality and is
therefore one of several household object behaviors. Other behaviors can be much
simpler, such as setting or reporting the value of an attribute to another object in
response to an event.

Identity, classification, inheritance, aggregation, polymorphism, and encapsula-
tion define the essence of an object-oriented model. Identity is established when
an object is created (instantiated). Without identity, objects, classification, and
encapsulation lack meaning. With identity, they can come into or go out of existence.
Business establishments start up and shut down, can adopt and adapt managerial
schemes, and can adopt new and abandon old technologies; individuals are born
and die, and can change residences; and governments can implement, modify, or

1Parts of this section draw heavily on Jackson (1994, 1995). Seminal contributions and more
complete descriptions can be found, inter alia, in Booch (1994), Rumbaugh et al. (1991), Coad
and Yourdon (1991a), Coad and Yourdon (1991b), and Jackson (1995).
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retract policies, all while maintaining their respective identities throughout their
lifetimes. Because of object identity, all objects, as members or instances of classes,
are distinct even if all of their attribute values and behaviors are identical. An object
can change its attribute values, but still be identified as the same object.

Classification is an abstraction mechanism fundamental to human understand-
ing. In object-oriented modeling, objects with identical properties belong to classes.
A class is an invariant description of object structure. All establishment objects, for
example, have “number of employees” as an attribute. The value of this attribute
will differ from object instance to object instance, but all establishment objects will
have this and other attributes in common. The act of classifying forces focus onto
the essential, inherent aspects of the problem domain and its elements and provides
a structured context within which modeling abstractions can be placed and ordered.

Inheritance refers to the class–subclass relationship. A subclass inherits the
properties of, and is distinguished from, its super-class by new and distinctive
properties. The inheritance mechanism is used to implement the is a (or is a kind
of ) relationship and serves to reduce repetition and complexity in model building.
Subclasses at lower levels in a class hierarchy are derived from their antecedents,
or superclasses. Inheritance allows different classes to share fundamental structure,
which enhances the conceptual clarity of a model by reducing the number of distinct
cases to be understood and analyzed. Inheritance also promotes model extensibility.
Given a particular class hierarchy, extending it to model similar objects that have
additional essential attributes or behaviors is straightforward.

A simple example of inheritance can be found in Járosi and Jackson’s (2015)
proof of concept technical document. They defined a household superclass (parent
object) with a default Cobb-Douglas utility function, and from it derived a Stone-
Geary type household subclass (child object). The child/parent analogy is apt, as
children and subclasses inherit the attributes and behaviors of their parents and
superclasses, respectively. Like children, subclass properties may be redefined and
overwritten, and other properties (attributes and behaviors) can be added.

Objects are related through a variety of associations. Aggregation is a special
type of association for which all objects of a given class are parts of a composite
object. Actions taken on the composite can be automatically taken on the component
parts. As an example, where no information is available, an industry might
be modeled as a single entity, but where data are available and intra-industry
variation is important, individual establishment objects might compose an industry
aggregate. When the industry receives a signal to satisfy accumulated demand,
its establishments receive the signal to provide their contributions to the industry
response. Whereas generalization and inheritance describe the relationships among
an object’s associated classes and superclasses, aggregation relates objects of two
distinct classes, one of which is a part of the other.

With polymorphism, an operation of the same name can behave differently on
objects of different classes, and an identically named attribute of two classes may
be represented by different data structures. Operations of different classes can share
the same semantics, but be implemented in a fashion appropriate to each. As an
operation, for example, multiplication has a clear meaning, but its implementation
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differs with the nature of the operands. We can apply polymorphism to such
concepts as industrial plant vs. human aging, service vs. manufacturing production,
and wetland vs. cropland conversion. As a more concrete example, in traditional
computable general equilibrium (CGE) models, it can be difficult to replace a one
kind of production function by another, or to have industry specific functional
forms. Even a small change in a single equation can cause unexpected, unintended,
and even undetected consequences for the whole equation system. This happens
because traditional modeling effectively forces researchers to think relationally
rather than in terms of objects and behaviors. The one-two punch of encapsulation
and polymorphism combines to underscore the advantages of the object-oriented
approach.

Encapsulation refers to the process of hiding the internal details of object
properties and behavioral implementations from view and tightly binding (or cou-
pling) attributes and behaviors to objects. It reduces unnecessary interdependencies
among objects in a problem domain and localizes any system changes. Through
encapsulation, objects become virtually self-contained entities. They can be used
confidently in one or many modules (and ultimately, models) in which they play
an essential role. As long as the interface for an object is not diminished, it can be
used, reused, modified and extended without fear of altering either the data values
of other objects or the ability of other objects to access object data or trigger object
behavior. Should a household object from a production model be integrated into a
housing stock model, for example, it would be appropriate to add to it attributes such
as square footage, but without altering other roles played by the household object
in integrated problem domains. Likewise, should an industry switch technologies,
only properties within that object need to be altered.

Class and inheritance relationships are consistent with the way in which humans
organize information to understand better the world around them. Object identity
provides a mechanism for linking different subdomains to capture interdependencies
that surpass our ability to express analytically. Encapsulation ensures the integrity of
data and behavior of objects, modules, and models, and protects against unintended
consequences that are more likely to occur in classical structural programming
approaches. Object models and associated class hierarchies are extensible. Encap-
sulation and extensibility should facilitate the cumulative science enterprise.

16.4 Object-Oriented OS2 in Action

Systems models are ideal candidates for object-oriented open source development.
They often comprise multiple subsystems, and subsystems also may comprise
additional subsystems. The subsystems comprising each level can be simple additive
collections or they can be interacting. Figure 16.2 conveys this idea graphically,
where the larger system, represented by the gray circle, comprises three relatively
independent subsystems, and three heavily interacting subsystems. Three of the
first level subsystems are further composed of second level subsystems, and three
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Fig. 16.2 Models as systems of systems

of these have third level subsystems. Each of these systems might correspond to
distinct problem domains, and the larger system might span multiple disciplines.

As we progress in the knowledge building enterprise, each subsystem might
well represent a problem domain that would encompass the entire knowledge base
of a domain specialist. Likewise, a specialist in a system at any of these levels
might well be required to make substantive improvements to a model of that
system. Subsystem changes and their impact on the model of the whole system,
however, can sometimes only be fully understood in the context of a larger and
more comprehensive system model. Historically, modelers who wished to work
on subsystems of larger comprehensive systems would have two options. The first
is to become familiar enough with the encompassing system to develop a model
that could be used as a kind of “backbone” that would provide at least a skeletal
framework of salient system behaviors. They would then demonstrate the backbone
model behavior with and without subsystem modifications to gain an understanding
of partial effects. The second option is to identify a backbone model that is already
in use, then attempt to gain access to it from the model’s owners, and if successful,
attempt to integrate their behavioral modeling improvements into the borrowed
framework.
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The first option has the disadvantage of requiring subsystem experts to devote
time, energy, and intellectual capital to activities that lie outside of their primary
fields of expertise. If there are multiple scientists working on the same problem
domain, this clearly results in duplication of effort, since each must work outside
their areas of expertise on backbone development, when, if there were an open
source backbone available, none of them would need to redirect their efforts, and the
time saved could instead be focused on researchers’ own specialties. Perhaps less
obvious is that if multiple experts develop subsystem modeling alternatives along
with their own backbone models, then the difference in overall system behaviors will
be a function not only of differences in subsystems, but also of the system backbones
they have developed. This renders subsystem model comparisons difficult if not
impossible, and further, it makes replication unlikely or even impossible.

The second option has its own disadvantages. First, it can be difficult to gain
access to backbone models, either because such models are proprietary (either
commercial or public laboratories where intellectual property is closely guarded),
or because such models are so extensive that thousands of lines of code support
the system models and transferring the models is difficult due to place or modeler
dependency. The second drawback becomes apparent when the subsystem domain
specialist is faced with the often daunting task of identifying specific mechanisms
for integrating the new subsystem behavior within the larger modeling framework,
and doing so without unintended consequences that often result when models are not
developed with the kinds of modularity that supports extensions and enhancements.
And third, models extended in this way remain closed to public view. Replicability
under this option is also difficult if not impossible.

Object-oriented OS2 modeling paves the way. Those with appropriate expertise
can focus on developing the backbone. The wisdom of the crowd ensures that the
salient backbone features are present and that each new backbone enhancement
has endured the scrutiny of numerous others with similar expertise. Object-
oriented OS2 modeling can accommodate competing perceptions of appropriate
system representations by providing an interface from which users can customize
model features (e.g., endogenous vs. exogenous government sectors, various model
closure assumptions, etc.). Such customizations can be documented in metadata
configuration files, enabling replicability and simplified comparisons of outcomes
from competing models. Because of the encapsulation and modularity of object
orientation, modules with differing behavior can be substituted easily one for
another in “plug-and-play” fashion, further facilitating model comparisons. Object-
oriented OS2 provides a foundation for ceteris paribus modeling.

In the remainder of this section, we present a model we are developing to serve
as an exemplar for object-oriented OS2 regional modeling. We review our problem-
specific motivation, provide a description of the general class of models to which
the exemplar belongs, and compare our model development and implementation
approach to other modeling paradigms.
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16.4.1 Motivation: Technology, Economy, and Environment

Environmental and socio-economic consequences of technological transitions are
beginning to dominate scientific and policy discussions. Deepening our under-
standing of human and physical systems and their complex interactions has been
a federal-level goal since the formation of the Committee on Human Dimensions
of Global Change in 1989 by the National Research Council and other supporting
agencies, and a great many related federal agency programs and initiatives have
emerged since. Examples include the U.S. Department of Agriculture National
Institute of Food and Agriculture program that targets improved economic, envi-
ronmental, and social conditions, and National Science Foundation programs such
as the Science, Engineering, and Education for Sustainability initiative aimed at
informing “the societal actions needed for environmental and economic sustain-
ability and human well-being”, and the Environment, Society, and the Economy
initiative to “encourage productive interdisciplinary collaborations between the
geosciences and the social, behavioral, and economic sciences.” Likewise, a recent
Congressional Research Service report (Carter 2013) on the Water-Energy Nexus
highlights the interdependencies among energy and water systems and calls for a
more integrated approach to the challenges of confronting related issues that impact
human welfare so forcefully.

Instead of comprehensive systems integration research, however, all too often
what we see are models that, despite often achieving some level of integration, are
developed and used only for specific problems and problem domains without the
benefits of reuse and extension that would lead to cumulative science and effective
knowledge building. Far too many scientific explorations begin with modelers
reestablishing their own variations of modeling foundations that others already have
formulated, on which their own conceptual and theoretical extensions and advances
will be built. The commonalities among models that result from such individual
research efforts are low, and model comparability and interoperability become
excruciatingly difficult or simply impossible. What should be a steady march in
a community-wide cumulative knowledge-building enterprise instead becomes an
atomistic process where countless hours and substantial resources are wasted in
foundation-building activities that duplicate the efforts of others. As a consequence,
knowledge accumulates much more slowly than it otherwise could and should.

Because increasing specialization is now more common than expanding breadth
of knowledge across domains, it is unlikely that individual researchers will be
able to achieve these science integration goals on their own, so changing the
current modus operandi is likely only by shifting to a more cooperative and
collaborative knowledge-building environment that forms a scientific milieu in
which researchers build on, incorporate, and benefit mutually from others’ expertise
through participation in a collaborative innovation network. Our vision of the future
centers around OS2 knowledge-building enterprises, with object-orientation as the
foundation for organizing and managing the development of modeling applications
across a range of problem domains. We now describe the Object-oriented Analysis
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Fig. 16.3 Interlocking hierarchical systems

and Simulation of Industrial Systems (OASIS) model, which will be our foray into
this kind of development in the economic and environmental systems modeling
context. We envision a team of researchers working in a community-wide knowledge
building enterprise by developing the underlying OS2 modeling framework that will
provide a common modeling foundation for future integrated systems research.

For an increasing number of research problem domains, subnational regions are
the appropriate analytical units. That this is true for economic systems is evidenced
by regionally focused programs of the U.S. Economic Development Administration
(http://eda.gov/oie/ris/), and the CRS report on the energy-water nexus referenced
above provides similar evidence for environmental, resource, and water issues. Of
course, processes at the regional level often feed back, shape, and influence their
national counterparts, just as regional economies compose their aggregate national
counterparts, as in Fig. 16.3. Environmental systems and processes can operate
locally, but not in isolation from the global. Energy, environment, and even health

http://eda.gov/oie/ris/
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policy models are often developed without the benefits of integration with easily
accessible and reproducible economic models, while those who do recognize the
need to link other systems to regional and national economy very often resort to
proprietary, commercial sources.

OASIS will model the U.S. and its regions, providing current and forecast input
in the form of macroeconomic, household, and industry-level trends and constraints
that establish the context for national economic systems models, nationally driven
regional models, and integrating mechanisms for interregional and regional-to-
national integration and feedbacks. The modeling platform will be open source
and evolutionary, systematically embedding behaviors and characteristics of the
backbone model that are deemed by the broader research community to be
essential and stable, and weeding out those aspects that can be replaced by better
representations. Its implementation will enable researchers to select from among
system features that have yet to earn consensus approval, and from those that
have been sanctioned by the user community but that might represent alternative
behavioral assumptions. Indeed, an eventual suite of alternative modeling variations
with explicitly identifiable commonalities and differences will promote direct and
replicable model comparisons and contrasts.

A class of models that is particularly well suited to object-oriented modeling
is known as space-time economic (STE) models. STE models can be calibrated
and parameterized to represent the existing structure of an economy, and to
forecast, incorporate, and respond to changes in that structure. In the process,
temporal changes in prices, interest and wage rates, output, employment, income
and the like are determined, carrying clear implications for socio-economic impacts
across different groups in the economy. Barker (2004) has provided an excellent
discussion of the relative strengths of the STE framework in the context of modeling
the transition to sustainability. Unlike existing relational models, OASIS will be
engineered from scratch as an object-oriented STE model. Its initial character will
be influenced by existing STE models, but its implementation and eventual form
will reflect not only the adaptability and flexibility of object orientation, but also
the benefits of conceptual refinements by the initial project team and ultimately the
broader research community.

Essential elements of the initial OASIS model will parallel many of the most
common dynamic hybrid macroeconomic interindustry models developed and
reported in the literature.2 While model implementations differ, an idealized STE

2Some who have developed and used relational STE models include Dick Conway, who has used
these models productively for decades in Washington State, Hawaii, and elsewhere; Geoffrey
Hewings with models of Chicago, St. Louis, and the U.S. Midwest states region; Randall Jackson
with models of Ohio, and the U.S., José Manuel Rueda-Cantuche and Kurt Kratena for the EU-
27, Sergio Rey for various California regions; Clopper Almon, Douglas Meade and others at the
University of Maryland with the INFORUM model of the U.S. and many other countries; and
Guy West, who has applied interindustry econometric models to policy issues in Australia and its
regions (for a small selection of related literature, see Conway 1990; Donaghy et al. 2007; Kim
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Fig. 16.4 Idealized structure of STE models

model structure is shown in Fig. 16.4. These models most commonly include
econometrically specified forecasts of key economy-wide variables such as interest
rates, unemployment rates, final demand activities, and population. Some regional
models rely on exogenous national forecasts, while others generate national fore-
casts endogenously. Coupled, linked, or fully integrated with these economic drivers
are industrial system relationships that tie economy-wide forecasts to industry-
specific activity, and to households and household consumption activities through
payments to labor. Payments to governments by industry and returns to capital are
also tracked by industry, and labor and non-labor income can feed back to savings,
investment, and additional consumption behavior. Models developed for different
purposes have focused on specific aspects of system behavior, so while there is much
in common across these models, there can be substantial differences. This allows
for results that illuminate different system behaviors, but it also results in great
difficulty in comparing the outcomes of different models. The OASIS backbone
will facilitate the isolation of impacts of specific model behaviors by providing a
common foundation on which behavioral extensions will be built.

Because of their position at the nexus of economy and environment, industries
and their technologies will be represented explicitly as a primary class, providing
a mechanism for linking systems. Technology plays a central and potentially
unifying role in virtually all of the most critical issues that give rise to the
need for integrated systems modeling. Human–environmental exchange takes place
primarily through the operation of various technologies, be they transportation,

et al. 2016; Israilevich et al. 1996, 1997; Kratena et al. 2013; Rey 1997, 1998, 2000; Rey and
Jackson 1999; West 1991; West and Jackson 1998, 2014).
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agriculture, manufacturing, consumption, or power generation, and many of the
most important such exchanges reside in the technologies used by industries in
economic systems. Industrial processes use inputs from one another and from the
environment, and their production activities alter air, water, and land characteristics.
Hence, models that promise to integrate human and physical systems virtually
all rely on mechanisms that provide meaningful representations of the economy,
industry, technology, and environmental relationships.

Early OASIS subsystem enhancements will focus on industry and household
objects. Industries are key to the modeling system because they dominate uses of
the technologies that can be tied to both social and physical systems. Households
are also key to system integration because of their critical role in driving economic
activity via expressed demands, because they are the central providers of labor and
are explicitly linked to industrial activity, and because differential demographic
characteristics of households are dynamic and have been shown to have highly
significant impact on consumption, housing, health, and environment (see e.g., the
chapter by Hewings in this volume, and Kim et al. 2016). Developing alternative
classes of households and industries will demonstrate key aspects of the object-
oriented modeling approach and ways in which it speeds the knowledge building
process.

The advantages of the object-oriented framework will be clear immediately. The
OASIS model will have commodity supply- and demand-pool market objects that
act as clearinghouses for commodities produced and demanded by industry and
other economic entities. Indicative of the increased adaptability and extensibility
of the object-oriented approach, consider the necessary actions to be taken when, as
a simple example, a new industry is established in a region. In relational dynamic
interindustry models, each industry’s intermediate demand equation includes a term
for demand from each and every other industry. Hence, adding one new industry
to a traditional economic model with 200 industries necessitates determining and
making corresponding changes to the existing 200 demand equations, and then
adding the 201st equation—for the output module alone. Employment, income, and
potentially other equations would have to be adjusted similarly. In the OASIS model,
encapsulated behaviors and interfaces of industry objects will mean that adding a
201st industry will be a matter of object instantiation, since it is already a part the
industry aggregation makes up the economic system. Default production behaviors
production functions can optionally be replaced by alternative forms, e.g., allowing
for economies of scale and input substitution, and each industry can have its own
unique production functional form if and as desired.3

Another advantage derives from flexibility in terms introducing exchanges
among industries and the environment. Water, resources, and emissions accounting
can be added to or modified within the system on an industry by industry basis as
new and improved data become available. As in other systems modeling frameworks

3A step further would allow for an industry to comprise collections of establishment level agents
with more or less autonomous behaviors.
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(commonly commercially based), environmental stores for accounting can be added
to the OASIS model simply by creating those objects and modifying globally
the respective industry class properties and object attributes. Additional system
elements, such as environmental remediation processes, can be introduced as new
classes and objects, with interfaces to environmental stores (as one approach).
These simple examples demonstrate dramatically the advantages of encapsulation
in object-oriented modeling frameworks.

16.4.2 STE Feasibility and Data Requirements

As a proof-of-concept exercise, we recently designed and implemented a CGE
model of a small (3-sector) economy based on a hypothetical social accounting
matrix (SAM). The model we developed recasts the conceptual basis of the
SAM to model industries and households as objects, and the industrial system
as an aggregation of industries. See Járosi and Jackson (2015) for details and
accompanying computer code.

STE models are calibrated using a fairly extensive and wide-ranging base of
supporting data. All of the data required for early versions of the OASIS model,
however, are publicly available. Nearly all of the data are secondary data published
by U.S. government agencies, and there is a variety of sources that make these data
series available electronically. In addition to government agency websites, other
groups compile and provide access to these data. Much of the data for an existing
WVU hybrid econometric interindustry relational model, for example, are compiled
and made available as a resource accompanying the freely and publicly available
Fair econometric model.

16.4.3 Object Orientation vs. Other Modeling Approaches

Adopting the object-oriented approach in no way supplants established theory. On
the contrary, object-oriented modeling provides a consistent foundation on which
established theory can build. Even in cases where no simulation model might ever
be implemented, the conceptual process of placing existing models within a single
integrated framework (1) forces the exploration of relationships among problem
domains that currently are unspecified, (2) potentially identifies inconsistencies
among models, and (3) identifies directions for profitably extending existing model
specifications.
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16.4.3.1 Early Systems Microsimulation Modeling

Although there is a natural similarity between the object-oriented approach outlined
and the microsimulation approaches of the early and mid-1960s, object-oriented
modeling has much greater potential for success, and for many reasons. First,
neither the hardware capacity nor the software tools were available then to model
social science simulation aggressively. Today, there are graphical tools for designing
software that not only assist us at the stage of conceptual design but in some cases
can even automatically generate skeletal code in selected computer programming
languages. Object-oriented programming languages now allow the simple expres-
sion of constructs that once required intensive and meticulous project oversight and
programming efforts. An object-oriented conceptual model is a very short step from
programming language code.

16.4.3.2 Modern MicroSimulation

There also is a separate body of literature founded on microsimulation methods.
Caldwell (1983), Clarke and Wilson (1986), Clarke and Holm (1987), and Amrhein
and MacKinnon (1988), for example, have used micro-simulation approaches in
early urban and regional labor market and planning models, while Birkin and Clarke
(2011) provide an overview and prospective of spatial microsimulation methods and
applications. While the experiences and results of microsimulation efforts can help
to identify critical model formulation and evaluation issues, microsimulation and
object orientation are fundamentally different conceptually and operationally.

16.4.3.3 Agent-Based Modeling

Agents in ABM share a conceptual heritage with objects in object-oriented models.
Although there are some strong commonalities, agents are generally autonomous
entities that often require no external control mechanisms to initiate or govern their
behaviors. Odell (2002, p. 42) explains that among their fundamental distinguishing
attributes, agents are capable of watching “out for their own set of internal
responsibilities,” and “when and how an agent acts is determined by the agent.”
In contrast, he continues, “objects are considered passive because their methods
are invoked only when some external entity sends them a message.” Control in
an object-oriented model is thus more centralized, which makes representation of
a system of interrelated systems a much more tractable problem. Ultimately, of
course, objects can comprise agents, and certain object behaviors might eventually
take on characteristics of agents in ABM. There are other differences in terms of
scope and computational requirements that lead us to prefer object orientation for
our higher-level organizing structure.
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16.4.3.4 Computable General Equilibrium (CGE) Modeling

CGE modeling is a well-established framework for impacts assessment research.
It is founded squarely on neoclassical economics and produces outcomes from
economic and policy shocks that correspond to values from restored equilibria in
product, factor, and capital markets, optimizing with respect to firm and household
behaviors. What distinguishes object-oriented models from CGE models is the
focus on individual objects rather than relations. Object-oriented modeling allows
us to specify as many different classes of elements in multiple systems as deemed
appropriate and to track the behavior and status of individual elements within
these classes—including, e.g., how household structures change and how the size
composition of industries evolves. Although Barker (2004) and Scrieciu (2007) have
cautioned against the use of CGE as a single integrated framework for sustainability
impact assessment, behaviors similar to classical CGE models, including household
utility maximization and firm profit maximization, or cost minimization could be
incorporated into future versions of OASIS by modifying class behaviors. However,
mechanisms available for linking a CGE model to transportation networks, land
uses, and physical systems are much more limited, constrained, and opaque than
they will be in the OASIS model. The focus on object identity provides options for
specific mechanisms for subsystem model linkage and extensions. CGE modeling
requires a relatively high level of economics training and computer programming
skills to be used effectively, which could in turn limit the size of the community
innovation network were CGE models to form the basis of an OASIS-like effort.
Nevertheless, parallel object-oriented OS2 CGE modeling could be pursued by
researchers so inclined.

16.4.3.5 Inforum InterDyme

Of all of the STE models we have identified, the Inforum InterDyme system may
be conceptually the closest to the modeling strategy proposed here. The INFORUM
group has been among the most continually active and innovative in the U.S. Its
InterDyme software is a package of programs for building interindustry dynamic
macroeconomic models, developed by INFORUM and written in C++. Online doc-
umentation (http://www.inforum.umd.edu/papers/inforum/software/dyme.pdf) and
personal correspondence with Inforum personnel suggests that the object-based
character of their model lies primarily in algorithmic aspects like matrix, vector,
equation, and time series objects, so the object-oriented conceptualizations in
Inforum are fundamentally different from those of the proposed OASIS model. The
Inforum models are viable econometric interindustry modeling options for certain
analysts with strong and diverse programming and modeling skills, but our vision
for OASIS is that of a much more easily accessible and user-friendly platform for a
wide range of analysts.

http://www.inforum.umd.edu/papers/inforum/software/dyme.pdf
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16.4.4 Synergies and Flexibility

The long-run vision for OASIS is that of a flexible modeling foundation with
a range of modeling options. We envision a graphical user interface for stable
model versions that will present modeling default and alternative options to
users in menu-like fashion. Industrial production function alternatives, household
behavior options, model closure rules, and other modeling choices consistent
with researchers’ individual conceptual preferences will be selectable, and model
metadata describing in detail the model characteristics and assumptions will be
generated with each model simulation run. Depending on user selections, the model
implemented might be closely aligned with CGE-type optimization models and
features, or one with more linear input-output like behaviors, or a hybrid model
wherein better known object behaviors are modeled with more sophistication, while
less well-understood objects’ behaviors are modeled more simply. Irrespective of
model configuration, simulation and impacts forecasting research will be replicable
and will form the basis for direct comparison of alternative futures with differences
directly attributable to explicitly identifiable model differences.

16.5 Challenges and Opportunities

Shifting from a traditional to a new knowledge building paradigm will not be with-
out its challenges. The first challenge will be communicating the benefits to science
of the new paradigm well enough to attract a critical mass of researchers willing
to invest their time and effort into building the initial modeling infrastructures—the
system backbones—for various problem domains. The transition will begin with the
development of backbones for easily identifiable systems of systems models, which
will be vitally important platforms for demonstrating the advantages of working
in a new way, including ease of model extension and use and speed of scientific
advancement.

A second challenge will be overcoming objections from vested interests. Those
with commercialized models may at first feel threatened by encroachment of “”free”
alternatives. However, many individual consultants and even large companies
provide licensed and supported versions of software that originally developed—
and in many cases continues to develop—in open source communities. As just
one example, RedHat® is a highly successful commercial distributor of the Linux
operating system, which continues to be developed and available as a free and open
source operating system. Other consultants will be in demand for their expertise in
application and use of OS2 modeling systems.

A third challenge will be arguments that stem from what we call modeling
religions. Within regional science and economic impacts modeling, for example,
there are those who belong to the CGE church, those who belong to the STE
church, those that belong to the church of input-output and social accounting, the
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church of cost-benefit analysis, and so on. There will be cases where some of these
might co-exist peacefully as alternative options within the same system of systems
modeling project, but there will also be as much room as individuals choose to take
for developing multiple projects. Ideally, there also will be subsystems that can be
integrated with multiple projects. With the adoption of a consistent object-oriented
approach and the appropriate attention to encapsulation and consistently defined
object interfaces, domain experts can develop subsystems as modules for adoption
and use in any cognate project. Class libraries grouped by problem domain will
develop to support multiple application development goals.

The last challenge we address here concerns implications for the publication
process, which is a foundation for merit determinations in several environments,
and certainly for promotion and tenure decisions in academia. To be sure, journals
like the Journal of Statistical Software satisfy the need for developers of R code,
and we expect these and additional outlets to fill such needs. It will be possible to
associate the progenitor of new object-oriented classes to be identified as such in
the metadata that accompanies object-oriented libraries. Domain experts also will
be able to publish analytical results that compare outcomes of baseline simulations
to those that incorporate their new model behaviors. Further, they will be able
to devote much more time than every before to the areas of their own expertise
because they will be freed from having to develop their own super-system backbones
to focus more directly on their own problem domains. The results they publish
will be replicable and immediately open to evaluation—and hence, validation—
by the larger user community. And once open to the user community, they will
also be immediately available as the basis for further development, refinement, and
enhancement.

16.6 Summary

The future of modeling in regional research, and indeed the majority of integrated
human and physical modeling, will be one of networked individuals contributing
to problem domains in which they share common interests, and advancing more
specific knowledge in which their particular expertise lies. We believe that this
future will take the form of an object-oriented OS2 modeling paradigm that will
accelerate the knowledge-building enterprise and deepen our understanding of
the complex interactions among human and physical systems. Open science is
an inclusive environment, open to participation by users and developers from all
groups without reference to age, creed, or color. Therefore, it will include and
serve underrepresented populations. It has the potential to contribute to deeper
understanding and to inform policy across a wide array of human and physical
problem domains, and because these domains can be integrated, it can do so in
ways that identify unanticipated ecological impacts of changes in one system on
others previously assumed to be largely independent.
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The structure and operation of object-oriented OS2 models like OASIS will move
beyond initial formulations to embody the best conceptual developments of the
participating community. This kind of modeling will dramatically reduce the need
for researchers to duplicate foundational modeling backbones and data bases for
integrated systems simulations, allowing scarce research resources to be directed
instead to specific advances in knowledge and understanding. It will facilitate
replication and comparative analysis and will clarify and make explanations for
alternative futures from different simulations more transparent.

Object-oriented OS2 will provide a common foundation for extensions to
research across numerous problem domains and will allow valuable resources
otherwise devoted to recreating and reinventing such foundations to be used much
more effectively. It will significantly enhance the ability of regional modelers
to generate reproducible research. It will enhance infrastructure for research and
education, and it will accelerate knowledge creation. It will support policy analysis
by providing comprehensive integrated models that are fully open and well docu-
mented and that reflect the state of the science. Object-oriented OS2 will establish a
modeling support infrastructure to accelerate scientific advancement in integrative
systems modeling research, enhancing the productivity of individual researchers
and building a cumulative body of knowledge more rapidly than is possible under
today’s more fragmented approaches.

Our OASIS project and the paradigm it represents will radically transform the
way regional modeling and integrative science are conducted in many areas of
social, behavioral, and even physical sciences. The results will be distinguished
not only by the collective wisdom of the modeling community, but also by careful
attention to the mechanisms that support replication and reproducibility. With the
advantage of twenty first century technology, object-oriented OS2 will deepen our
understanding and radically accelerate the pace of knowledge building in coming
decades. We see this as a fundamentally new knowledge building paradigm that will
dominate future integrated systems research.
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Chapter 17
Looking at John Snow’s Cholera Map
from the Twenty First Century: A Practical
Primer on Reproducibility and Open Science

Daniel Arribas-Bel, Thomas de Graaff, and Sergio J. Rey

17.1 Introduction

In the fall of 2015 Ann Case and Economics Nobel Prize winner Agnus Deaton
published a very influential paper in the Proceedings of the National Academy
of Sciences (Case and Deaton 2015) concerning the increasing and alarmingly
high mortality rates of white Americans aged 45–54. As possible reasons for this
phenomenon, they suggested the devastating effects of suicide, alcohol and drug
abuse. This article caused quite a great deal of upheaval, and political analysts and
columnists even linked this with the electoral unrest amongst the white middle class.
However, a comment of an anonymous blogger caused Andrew Gelman to rethink
and recalculate the results of Case and Deaton. Namely, what if a shift within the
age cohort of 45–54 would have happened now with more people being closer to 54
than to 45? Indeed, it turns out that, when correcting for age shifts within cohorts,
the results of Case and Deaton are severely less pronounced (although the mortality
rates of the white middle aged in the US still stand out compared to other countries).

The example above signifies that, even for Nobel Laureates, there is always a
need to be able to reproduce and rethink scientific analyses, especially when the
results are this influential. Mistakes can be made, and anecdotes like the above

D. Arribas-Bel (�)
Department of Geography & Planning, University of Liverpool, Liverpool, UK
e-mail: D.Arribas-Bel@liverpool.ac.uk

T. de Graaff
Department of Spatial Economics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
e-mail: t.de.graaff@vu.nl

S.J. Rey
School of Geographical Sciences and Urban Planning, Arizona State University,
Tempe, AZ, USA
e-mail: srey@asu.edu

© Springer International Publishing AG 2017
R. Jackson, P. Schaeffer (eds.), Regional Research Frontiers - Vol. 2,
Advances in Spatial Science, DOI 10.1007/978-3-319-50590-9_17

283

mailto:D.Arribas-Bel@liverpool.ac.uk
mailto:t.de.graaff@vu.nl
mailto:srey@asu.edu


284 D. Arribas-Bel et al.

are abundant across all sciences. The scientific process is traditionally designed to
correct itself, although this adjustment can be quite sluggish. To facilitate this self-
correcting process and to minimize the number of errors within the data preparation,
data analysis and results presentation phase, we argue that a proper workflow is
needed: namely, one that facilitates reproducibility and Open Science.

In general, the need for more emphasis on research reproducibility and Open
Science is increasingly recognised by universities, government institutions and even
the public at large. Strangely, however, virtually no training is provided on workflow
design and choice of appropriate tools. Students and researchers receive no guidance
as to why or how they should adopt habits that favor Open Science principles in their
research activity.1 This applies as well to regional science where, given the emphasis
on spatial data, maps and quantitative approaches, the need for a reproducible
workflow is probably even more challenging than in most other social sciences. This
chapter, therefore, focuses on the concept of workflows, reproducibility and Open
Science, and how to apply them in a very practical sense. Moreover, it illustrates
these concepts by providing a completely reproducible environment and hands-on
example.

The next section deals with the concept of workflow, reproducibility and Open
Science, introduces some specific workflows and tackles the question of why these
approaches are relevant. In the third section, we give an example of a completely
open and reproducible analysis of John Snow’s famous cholera map from the
nineteenth century. Although a proper workflow does not revolve around one
single tool, but instead consists of a coherent set of tools and methodologies, we
have chosen to use for this purpose the programming languages R and Python in
combination with the Jupyter Notebook environment, because of its relative ease
of use, accessibility and flexibility. The chapter concludes with a discussion of the
advantages and the (perceived) disadvantages of our approach.

17.2 Workflow, Reproducibility and Open Science
in Regional Science

The Business Dictionary (BusinessDictionary 2016) states that a workflow is a

progression of steps (tasks, events, interactions) that comprise a work process, involve two
or more persons, and create or add value to the organization’s activities.

So a workflow in science is a set of steps (such as data gathering, data
manipulation, analyses, presenting results), usually taken by multiple researchers,
which leads to an outcome (the research findings). Reproducibility requires that
the materials used to make a finding are available and that they are sufficient for

1See for notable exceptions Healy (2011) in the social sciences, and Rey (2014) and Arribas-Bel
and de Graaff (2015) in regional science.
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an independent researcher (including the original researcher herself) to recreate the
finding. Open Science requires that all researchers have free and easy access to all
materials used to make such a finding. Unfortunately, making your research open
and reproducible often requires additional effort, and one may wonder whether it is
worth it. Indeed, adopting a workflow directed at reproducibility and openness can
often be costly in terms of time. However, there are significant gains to be made.

First, and the most obvious of all, the research becomes reproducible. This brings
great benefits to the scientific community at large. Sharing code for estimations,
figures and data management leads to a faster dispersion of knowledge. Secondly, it
leads to larger transparency, and thus a higher probability of early error detection.
Thirdly, research becomes more modular and portable, so that it is easier to
cooperate with colleagues at a distance and to continue with parts of the research
where others have left it. Fourthly, one of the most salient advantages of a
reproducible workflow is that, in the long term, it makes the scientist more efficient.
However, this will show up at the end of the research cycle, when somebody—
an editor, a supervisor, a referee, a colleague, your own future self—may ask to
redo (parts of the) analysis with slight modifications. In this context, having an
automated process that prepares your data, analyses them and presents the final
results is of great help. An additional benefit of a reproducible workflow is self-
sanity. The effort put to explain to others what steps were taken and how they were
approached provides an additional degree of confidence over the traditional case-
scenario where documentation is scarce and unclear. Finally, reproducibility and
especially openness increases the visibility of the research. Most notably, when code
for a complex estimation is available alongside a paper, others will not only be more
convinced of the results, but they also will be more likely to use it and give it proper
credit.

Often, complete reproducibility in regional science is hard to achieve. Proprietary
data, qualitative methods such as interviews and case studies and sampling issues in
surveys often prohibit others from perfectly mimicking a study’s results. However,
by choosing appropriate tools, one can strive to work as reproducibly as possible.
Making available coding books for surveys and interviews, protocols for case
studies and data management code for proprietary data often significantly helps
others to understand how the results have been obtained.

Recent years have seen a remarkable increase in tools and attention to repro-
ducibility and openness. Unfortunately, most of these tools come from the realm of
computer science and have not yet permeated into other domains, such as regional
science. In general, there is not a particular set of tools that we advocate. However,
there are some types of tools that in general are unavoidable when striving for an
open and reproducible workflow, including:

• Data analysis and programming applications. For quantitative data analyses, one
needs tools for data management and statistical analysis, such as the two most
popular data science tools at the moment, R and Python.

• Typesetting applications. These are used to convey the text and results, whether
on paper (typically using the pdf format) or on screen (using the html
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language). Typically, LaTeX is often used for scientific purposes, especially
because it is scriptable and produces high quality results. Nowadays, however,
Markdown seems to be growing in popularity, mostly because of its very
accessible and easy to learn syntax.

• Reference managers. These typically are combined with typesetting applications
and form a database of references and a system to handle citations and reference
lists. BibTex, Mendeley, and Endnote are popular applications.

• Version control systems. These enable the archiving of older file versions, while
only one copy is ever in use (this avoids the usual awkward naming conventions
for files, such as FinalDraftVersion3.3.doc.final.really.docx).
In combination with central repositories, these version control systems act as well
as backup applications. Dropbox is an example of a version control system,
just as is the popular open source version control system Git.

• Literate programming environments. These are typically applications able to
weave code, text and output together. At the moment, there are not many general
literature programming environments. The most popular are probably the knitr
package for R2 and the Jupyter notebook for a multi-language environment.
Moreover, these environments are able to write output to different formats
(usually, html, Markdown, LaTeX/pdf, and the Open Office .odt format).

In general, tools for reproducible research need to be preferably open source
and particularly scriptable. The lack of the latter makes it very difficult for other
applications to communicate and “cooperate” with the tools used.

17.3 John Snow’s Cholera Map

To demonstrate some of the ideas discussed above, we use a classic dataset in
the history of spatial analysis: the cholera map by Dr. John Snow. His story is
well known and better described elsewhere (Hempel 2006). Thanks to his mapping
exercise of the location of cholera deaths in nineteenth century London, he was
able to prove that the disease is in fact transmitted through contaminated water
(associated to a specific pump), as opposed to the conventional thinking of the
day, which stated that transmission occurred through the air. In this section, we
will support Snow’s view with the help of Exploratory Spatial Data Analysis
(ESDA) tools. In the process, we will show how a reproducible and open workflow
can in fact be applied by including the code required to produce the results
presented.3 In fact, the entire content, as well as its revision history, have been
tracked using the Git version control software and can be downloaded from

2See for further information how to use R to make your research as reproducible as possible
Gandrud (2013) and Stodden et al. (2014).
3Part of this section is based upon Lab 6 of Arribas-Bel (2016), available at http://darribas.org/
gds15.

http://darribas.org/gds15
http://darribas.org/gds15
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https://bitbucket.org/darribas/reproducible_john_snow. Equally, the code required
to carry out the analysis is closely integrated in the paper and will be shown inline. A
reproducible notebook version of this document, available from the online resource,
allows the reader to not only see the code but to interactively execute it without
decoupling it from the rest of the content in this chapter.

17.3.1 Point Pattern Exploration

This analysis will be performed using a combination of both the Python and R
programming languages. In addition to both being free and open-source, they have
become essential components of the data scientist’s toolkit and are also enjoying
growing adoption within academia and scientific environments. Thanks to the
Jupyter Notebook (Perez 2015), both can be included alongside each other and the
best of both worlds can be leveraged. We start with a visual map exploration by using
data stored in the R package HistData. We then use this data for an analysis in
the Python language. To do this, we need to import the Python interface to R.

import rpy2.robjects.conversion

import rpy2 as r
import rpy2.robjects

import rpy2.interactive as r
import rpy2.interactive.packages

The data for the original John Snow analysis is available in R as part of the
package HistData, which we need to import together with the ggplot2 package
to create figures and maps.

r.packages.importr(’HistData’)
r.packages.importr(’ggplot2’)

In order to have a more streamlined analysis, we define a basic ggplot map
using the data from HistData that we will call on later:

%%R

Snow_plot <- ggplot(Snow.deaths, aes(x = x, y=y)) +
geom_point(data=Snow.deaths, aes(x=x, y=y),

col="red", pch=19, cex=1.5) +
geom_point(data=Snow.pumps, aes(x=x, y=y),

col="black", pch=17, cex=4) +
geom_text(data=Snow.pumps,

aes(label = label, x = x, y = y+0.5))+
xlim(6, 19.5) + ylim(4, 18.5) +
geom_path(data=Snow.streets,

https://bitbucket.org/darribas/reproducible_john_snow
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aes(x=x,y=y,group=street), col="gray40") +
ggtitle("Pumps and cholera deaths\n

in 19th century London")+
theme(panel.background = element_rect(fill = "gray85"),
plot.background = element_rect(fill = "gray85"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
plot.title = element_text(size = rel(2), face="bold"))

At this point, we can access the data:

%R head(Snow.deaths$x)

which produces the following results:

array([13.58801, 9.878124, 14.65398, 15.22057, 13.16265,
13.80617])

And move the coordinates from R to Python:

X = %R Snow.deaths$x
Y = %R Y=Snow.deaths$y

A first visual approximation to the distribution of cholera deaths can then be
easily produced:

%R plot(X,Y)

which gives Fig. 17.1.
A more detailed map can also be produced by calling on the map we defined

earlier:

%%R Snow_plot

which gives the spatial context of the coordinates as in Fig. 17.2.
We can start moving beyond simple visualization and into a more in-depth

analysis by adding a kernel density estimate as follows:

%%R
## overlay bivariate kernel density contours of deaths
Snow_plot + geom_density_2d()

and overlaying it on top of our death locations map as in Fig. 17.3.
This already allows us to get a better insight into Snow’s hypothesis of a

contaminated pump (the one in Broad Street in particular). To further support this
view, we will use some of the most common components of the ESDA toolbox.
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Fig. 17.1 X and Y coordinates of cholera deaths

Fig. 17.2 Spatial point of map of cholera deaths
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Fig. 17.3 Kernel estimation of cholera deaths

17.3.2 ESDA

Although the original data were locations of deaths at the point level, for this section
we will access an aggregated version that reports cholera death counts at the street
level. Street segments (lines, topologically) are the spatial unit that probably best
characterizes the process we looking at; since we do not have individual data on
house units, but only the location of those who passed away, aggregating at a unit
like the street segment provides a good approximation of the scale at which the
disease was occurring and spreading.

In addition, since the original data are raw counts, we should include a measure
of the underlying population. If all maps are the events of interest, unless the
population is evenly distributed, the analysis will be biased because high counts
could just be a reflection of a large underlying population (everything else being
equal, a street with more people will be more likely to have more cholera deaths).
In the case of this example, the ideal variable would be to have a count of the
inhabitants of each street. Unfortunately, these data are not available, so we need
to find an approximation. This will inevitably imply making assumptions and
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potentially introducing a certain degree of measurement error. For the sake of this
example, we will assume that, within the area of central London covered by the
data, population was evenly spread across the street network. This means that the
underlying population of one of our street segments is proportional to its length.
Following this assumption, if we want to control for the underlying population of a
street segment, a good approach could be to consider the number of cholera deaths
per (100) metre(s)—a measure of density—rather than the raw count. The polygon
file includes building blocks from the Ordnance Survey (OS data l’ Crown copyright
and database right, 2015).

This part of the analysis will be performed in Python, for which we need to
import the libraries required:

%matplotlib inline
import seaborn as sns
import pandas as pd
import pysal as ps
import geopandas as gpd
import numpy as np
import matplotlib.pyplot as plt

17.3.2.1 Loading and Exploring the Data

Data in this case come from Robin Wilson.4

# Load point data
pumps = gpd.read_file(’data/Pumps.shp’)
# Load building blocks
blocks = gpd.read_file(’data/polys.shp’)
# Load street network
js = gpd.read_file(’data/streets_js.shp’)

To inspect the data and find out the structure as well as the variables included, we
can use the head function:

print js.head().to_string()

with the following output
Deaths Deaths_dens geometry segIdStr seg_len
0 0 0.000000 LINESTRING (529521 180866, 529516 180862) s0-1 6.403124
1 1 1.077897 LINESTRING (529521 180866, 529593 180925) s0-2 92.773279
2 0 0.000000 LINESTRING (529521 180866, 529545 180836) s0-3 38.418745
3 0 0.000000 LINESTRING (529516 180862, 529487 180835) s1-25 39.623226
4 26 18.079549 LINESTRING (529516 180862, 529431 180978) s1-27 143.808901

Before we move on to the analytical part, we can also create choropleth maps for
line data. In the following code snippet, we build a choropleth using the Fisher-Jenks

4See: http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/.

http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/
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classification for the density of cholera deaths in each street segment, and style it by
adding a background color, building blocks and the location of the water pumps:

# Set up figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot building blocks
for poly in blocks[’geometry’]:
gpd.plotting.plot_multipolygon(ax, poly, facecolor=’0.9’)
# Quantile choropleth of deaths at the street level
js.plot(column=’Deaths_dens’, scheme=’fisher_jenks’,

axes=ax, colormap=’YlGn’)
# Plot pumps
xys = np.array([(pt.x, pt.y) for pt in pumps.geometry])
ax.scatter(xys[:, 0], xys[:, 1], marker=’^’, color=’k’, s=50)
# Remove axis frame
ax.set_axis_off()
# Change background color of the figure
f.set_facecolor(’0.75’)
# Keep axes proportionate
plt.axis(’equal’)
# Title
f.suptitle(’Cholera Deaths per 100m.’, size=30)
# Draw
plt.show()

which produces Fig. 17.4.

17.3.2.2 Spatial Weights Matrix

A spatial weights matrix is the way geographical space is formally encoded into a
numerical form so it is easy for a computer (or a statistical method) to understand.
These matrices can be created based on several criteria: contiguity, distance, blocks,
etc. Although usually spatial weights matrices are used with polygons or points,
these ideas can also be applied with spatial networks made of line segments.

For this example, we will show how to build a simple contiguity matrix, which
considers two observations as neighbors if they share one edge. For a street network
as in our example, two street segments will be connected if they “touch” each other.
Since lines only have one dimension, there is no room for the discussion between
“queen” and “rook” criteria, but only one type of contiguity.

Building a contiguity matrix from a spatial network like the streets of London’s
Soho can be done with PySAL, but creating it is slightly different, technically. For
this task, instead of the ps.queen_from_shapefile, we will use the network module
of the library, which reads a line shapefile and creates a network representation of it.
Once loaded, a contiguity matrix can be easily created using the contiguity weights
attribute. To keep things aligned, we rename the IDs of the matrix to match those
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Fig. 17.4 Choropleth map of cholera deaths

in the table and, finally, we row-standardize the matrix, which is a standard ps.W
object, like those we have been working with for the polygon and point cases:

# Load the network
ntw = ps.Network(’data/streets_js.shp’)
# Create the spatial weights matrix
w = ntw.contiguityweights(graph=False)
# Rename IDs to match those in the ‘segIdStr‘ column
w.remap_ids(js[’segIdStr’])
# Row standardize the matrix
w.transform = ’R’
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Now, the w object we have just created comes from a line shapefile, but it is of the
same type as if it came from a polygon or point topology. As such, we can inspect
it in the same way. For example, we can check who is a neighbor of observation
s0-1:

w[’s0-1’]
{u’s0-2’: 0.25, u’s0-3’: 0.25,
u’s1-25’: 0.25, u’s1-27’: 0.25}

Note how, because we have row-standardized them, the weight given to each of the
four neighbors is 0.25, which, all together, sum up to one.

17.3.2.3 Spatial Lag

Once we have the data and the spatial weights matrix ready, we can start by
computing the spatial lag of the death density. Remember, the spatial lag is the
product of the spatial weights matrix and a given variable and that, if W is
row-standardized, the result amounts to the average value of the variable in the
neighborhood of each observation. We can calculate the spatial lag for the variable
Deaths_dens and store it directly in the main table with the following line of
code:

js[’w_Deaths_dens’] = ps.lag_spatial(w, js[’Deaths_dens’])

Let us have a quick look at the resulting variable, as compared to the original one:

toprint = js[[’segIdStr’, ’Deaths_dens’, ’w_Deaths_dens’]].head()
# Note: next line is for printed version only. On interactive mode,
# you can simply execute ‘toprint‘
print toprint.to_string()

which yields:

segIdStr Deaths_dens w_Deaths_dens
0 s0-1 0.000000 4.789361
1 s0-2 1.077897 0.000000
2 s0-3 0.000000 0.538948
3 s1-25 0.000000 6.026516
4 s1-27 18.079549 0.000000

The way to interpret the spatial lag (w_Deaths_dens) for the first observation is
as follows: the street segment s0-2, which has a density of zero cholera deaths per
100 m, is surrounded by other streets which, on average, have 4.79 deaths per 100 m.
For the purpose of illustration, we can check whether this is correct by querying the
spatial weights matrix to find out the neighbors of s0-2:

w.neighbors[’s0-1’]
[u’s0-2’, u’s0-3’, u’s1-25’, u’s1-27’]
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And then checking their values:

# Note that we first index the table on the index variable
neigh = js.set_index(’segIdStr’).loc[w.neighbors[’s0-1’],

’Deaths_dens’]
neigh

segIdStr
s0-2 1.077897
s0-3 0.000000
s1-25 0.000000
s1-27 18.079549
Name: Deaths_dens, dtype: float64

And the average value, which we saw in the spatial lag is 4.79, can be calculated as
follows:

neigh.mean()
4.7893612696592509

For some of the techniques we will be seeing below, it makes more sense
to operate with the standardized version of a variable, rather than with the raw
one. Standardizing means to subtract the average value and divide by the standard
deviation each observation of the column. This can be done easily with a bit of basic
algebra in Python:

js[’Deaths_dens_std’] = (js[’Deaths_dens’] -
js[’Deaths_dens’].mean())/js[’Deaths_dens’].std()

Finally, to be able to explore the spatial patterns of the standardized values,
sometimes called z values, we need to create its spatial lag:

js[’w_Deaths_dens_std’] =
ps.lag_spatial(w, js[’Deaths_dens_std’])

17.3.2.4 Global Spatial Autocorrelation

Global spatial autocorrelation relates to the overall geographical pattern present in
the data. Statistics designed to measure this trend thus characterize a map in terms of
its degree of clustering and summarize it. This summary can be visual or numerical.
In this section, we will walk through an example of each of them: the Moran Plot,
and Moran’s I statistic of spatial autocorrelation.

The Moran plot is a way of visualizing a spatial dataset to explore the nature
and strength of spatial autocorrelation. It is essentially a traditional scatter plot
in which the variable of interest is displayed against its spatial lag. To be able to
interpret values as above or below the mean and their quantities in terms of standard
deviations, the variable of interest is usually standardized by subtracting its mean
and dividing it by its standard deviation.



296 D. Arribas-Bel et al.

Technically speaking, creating a Moran Plot is very similar to creating any other
scatter plot in Python, provided we have standardized the variable and calculated its
spatial lag beforehand:

# Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot values
sns.regplot(x=’Deaths_dens_std’, y=’w_Deaths_dens_std’,

data=js)
# Add vertical and horizontal lines
plt.axvline(0, c=’k’, alpha=0.5)
plt.axhline(0, c=’k’, alpha=0.5)
# Display
plt.show()

which produces Fig. 17.5.

Fig. 17.5 Moran plot of cholera deaths
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Figure 17.5 displays the relationship between Deaths_dens_std and its spa-
tial lag which, because the W that was used is row-standardized, can be interpreted
as the average standardized density of cholera deaths in the neighborhood of each
observation. In order to guide the interpretation of the plot, a linear fit is also
included in the post, together with confidence intervals. This line represents the
best linear fit to the scatter plot or, in other words, what is the best way to represent
the relationship between the two variables as a straight line. Because the line comes
from a regression, we can also include a measure of the uncertainty about the fit in
the form of confidence intervals (the shaded blue area around the line).

The plot displays a positive relationship between both variables. This is associ-
ated with the presence of positive spatial autocorrelation: similar values tend to be
located close to each other. This means that the overall trend is for high values to be
close to other high values, and for low values to be surrounded by other low values.
This, however, does not mean that this is the only pattern in the dataset: there can
of course be particular cases where high values are surrounded by low ones, and
vice versa. But it means that, if we had to summarize the main pattern of the data
in terms of how clustered similar values are, the best way would be to say they are
positively correlated and, hence, clustered over space.

In the context of the example, the street segments in the dataset show positive
spatial autocorrelation in the density of cholera deaths. This means that street
segments with a high level of incidents per 100 m tend to be located adjacent to
other street segments also with high number of deaths, and vice versa.

The Moran Plot is an excellent tool to explore the data and get a good sense of
how many values are clustered over space. However, because it is a graphical device,
it is sometimes hard to condense its insights into a more concise way. For these
cases, a good approach is to come up with a statistical measure that summarizes the
figure. This is exactly what Moran’s I is meant to do.

Very much in the same way the mean summarizes a crucial element of the
distribution of values in a non-spatial setting, so does Moran’s I for a spatial dataset.
Continuing the comparison, we can think of the mean as a single numerical value
summarizing a histogram or a kernel density plot. Similarly, Moran’s I captures
much of the essence of the Moran Plot. In fact, there is an even closer connection
between the two: the value of Moran’s I corresponds with the slope of the linear fit
overlayed on top of the Moran Plot.

In order to calculate Moran’s I in our dataset, we can call a specific function in
PySAL directly:

mi = ps.Moran(js[’Deaths_dens’], w)

Note how we do not need to use the standardized version in this context as we will
not represent it visually.
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The method ps.Moran creates an object that contains much more information
than the actual statistic. If we want to retrieve the value of the statistic, we can do it
this way:

mi.I
0.10902663995497329

The other bit of information we will extract from Moran’s I relates to statistical
inference: how likely is it that the pattern we observe in the map and Moran’s I is
not generated by an entirely random process? If we considered the same variable but
shuffled its locations randomly, would we obtain a map with similar characteristics?

The specific details of the mechanism to calculate this are beyond the scope of
this paper, but it is important to know that a small enough p-value associated with
the Moran’s I of a map allows rejection of the hypothesis that the map is random.
In other words, we can conclude that the map displays more spatial pattern that we
would expect if the values had been randomly allocated to a particular location.

The most reliable p-value for Moran’s I can be found in the attribute p_sim:

mi.p_sim
0.045999999999999999

That is just below 5% and, by standard terms, it would be considered statistically
significant. Again, a full statistical explanation of what that really means and what
its implications are is beyond the discussion in this context. But we can quickly
elaborate on its intuition. What that 0.046 (or 4.6%) means is that, if we generated
a large number of maps with the same values but randomly allocated over space,
and calculated the Moran’s I statistic for each of those maps, only 4.6% of them
would display a larger (absolute) value than the one we obtain from the real data,
and the other 95.4% of the random maps would receive a smaller (absolute) value of
Moran’s I. If we remember again that the value of Moran’s I can also be interpreted
as the slope of the Moran plot, what we have in this case is that the particular spatial
arrangement of values over space we observe for the density of cholera deaths is
more concentrated than if we were to randomly shuffle the death densities among
the Soho streets, hence the statistical significance.

As a first step, the global autocorrelation analysis can teach us that observations
do seem to be positively correlated over space. In terms of our initial goal to find
evidence for John Snow’s hypothesis that cholera was caused by water in a single
contaminated pump, this view seems to align: if cholera was contaminated through
the air, it should show a pattern over space—arguably a random one, since air is
evenly spread over space—that is much less concentrated than if this was caused by
an agent (water pump) that is located at a particular point in space.

17.3.2.5 Local Spatial Autocorrelation

Moran’s I is a good tool to summarize a dataset into a single value that informs
about its degree of clustering. However, it is not an appropriate measure to identify
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areas within the map where specific values are located. In other words, Moran’s I
can tell us whether values are clustered overall or not, but it will not inform us about
where the clusters are. For that purpose, we need to use a local measure of spatial
autocorrelation. Local measures consider each single observation in a dataset and
operate on them, as opposed to on the overall data, as global measures do. Because
of that, they are not good at summarizing a map, but they do provide further insight.

In this section, we will consider Local Indicators of Spatial Association (LISAs),
a local counter part of global measures like Moran’s I. At the core of these methods
is a classification of the observations in a dataset into four groups derived from the
Moran Plot: high values surrounded by high values (HH), low values nearby other
low values (LL), high values among low values (HL), and vice versa (LH). Each of
these groups are typically called “quadrants”. An illustration of where each of these
groups fall into the Moran Plot can be seen below:

# Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot values
sns.regplot(x=’Deaths_dens_std’, y=’w_Deaths_dens_std’, data=js)
# Add vertical and horizontal lines
plt.axvline(0, c=’k’, alpha=0.5)
plt.axhline(0, c=’k’, alpha=0.5)
ax.set_xlim(-2, 7)
ax.set_ylim(-2.5, 2.5)
plt.text(3, 1.5, "HH", fontsize=25)
plt.text(3, -1.5, "HL", fontsize=25)
plt.text(-1, 1.5, "LH", fontsize=25)
plt.text(-1, -1.5, "LL", fontsize=25)
# Display
plt.show()

which gives Fig. 17.6.
So far we have classified each observation in the dataset depending on its value

and that of its neighbors. This is only halfway into identifying areas of unusual
concentration of values. To know whether each of the locations is a statistically
significant cluster of a given kind, we again need to compare it with what we would
expect if the data were allocated in a completely random way. After all, by definition
every observation will be of one kind of another based on the comparison above.
However, what we are interested in is whether the strength with which the values
are concentrated is unusually high.

This is exactly what LISAs are designed to do. As before, a more detailed
description of their statistical underpinnings is beyond the scope in this context, but
we will try to shed some light into the intuition of how they go about it. The core
idea is to identify cases in which the comparison between the value of an observation
and the average of its neighbors is either more similar (HH, LL) or dissimilar (HL,
LH) than we would expect from pure chance. The mechanism to do this is similar to
the one in the global Moran’s I, but applied in this case to each observation, results
in as many statistics as the original observations.
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Fig. 17.6 Moran plot of cholera deaths with “quadrants”

LISAs are widely used in many fields to identify clusters of values in space. They
are a very useful tool that can quickly return areas in which values are concentrated
and provide suggestive evidence about the processes that might be at work. For that,
they have a prime place in the exploratory toolbox. Examples of contexts where
LISAs can be useful include: identification of spatial clusters of poverty in regions,
detection of ethnic enclaves, delineation of areas of particularly high/low activity of
any phenomenon, etc.

In Python, we can calculate LISAs in a very streamlined way thanks to PySAL:

lisa = ps.Moran_Local(js[’Deaths_dens’].values, w)

All we need to pass is the variable of interest—density of deaths in this context—
and the spatial weights that describes the neighborhood relations between the
different observation that make up the dataset.
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Because of their very nature, looking at the numerical result of LISAs is
not always the most useful way to exploit all the information they can provide.
Remember that we are calculating a statistic for every single observation in the data
so, if we have many of them, it will be difficult to extract any meaningful pattern.
Instead, what is typically done is to create a map, a cluster map as it is usually called,
that extracts the significant observations (those that are highly unlikely to have come
from pure chance) and plots them with a specific color depending on their quadrant
category.

All of the needed pieces are contained inside the LISA object we have created
above. But, to make the map making more straightforward, it is convenient to pull
them out and insert them in the main data table, js:

# Break observations into significant or not
js[’significant’] = lisa.p_sim < 0.05
# Store the quadrant they belong to
js[’quadrant’] = lisa.q

Let us stop for second on these two steps. First, look at the significant column.
Similarly as with global Moran’s I, PySAL is automatically computing a p-value for
each LISA. Because not every observation represents a statistically significant one,
we want to identify those with a p-value small enough that to rule out the possibility
of obtaining a similar situation from pure chance. Following a similar reasoning
as with global Moran’s I, we select 5% as the threshold for statistical significance.
To identify these values, we create a variable, significant, that contains True if the
p-value of the observation has satisfied the condition, and False otherwise. We can
check this is the case:

js[’significant’].head()
0 False
1 False
2 False
3 False
4 True
Name: significant, dtype: bool

And the first five p-values can be checked by:

lisa.p_sim[:5]
array([ 0.418, 0.085, 0.301, 0.467, 0.001])

Note how only the last one is smaller than 0.05, as the variable significant correctly
identified.

The second column denotes the quadrant each observation belongs to. This one
is easier as it comes built into the LISA object directly:

js[’quadrant’].head()
0 3
1 3
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2 3
3 3
4 4
Name: quadrant, dtype: int64

The correspondence between the numbers in the variable and the actual quadrants
is as follows:

• 1: HH
• 2: LH
• 3: LL
• 4: HL

With these two elements, significant and quadrant, we can build a typical LISA
cluster map.

# Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot building blocks
for poly in blocks[’geometry’]:
gpd.plotting.plot_multipolygon(ax, poly, facecolor=’0.9’)
# Plot baseline street network
for line in js[’geometry’]:
gpd.plotting.plot_multilinestring(ax, line, color=’k’)
# Plot HH clusters
hh = js.loc[(js[’quadrant’]==1) & (js[’significant’]==True),

’geometry’]
for line in hh:
gpd.plotting.plot_multilinestring(ax, line, color=’red’)
# Plot LL clusters
ll = js.loc[(js[’quadrant’]==3) & (js[’significant’]==True),

’geometry’]
for line in ll:
gpd.plotting.plot_multilinestring(ax, line, color=’blue’)
# Plot LH clusters
lh = js.loc[(js[’quadrant’]==2) & (js[’significant’]==True),

’geometry’]
for line in lh:
gpd.plotting.plot_multilinestring(ax, line, color=’#83cef4’)
# Plot HL clusters
hl = js.loc[(js[’quadrant’]==4) & (js[’significant’]==True),

’geometry’]
for line in hl:
gpd.plotting.plot_multilinestring(ax, line, color=’#e59696’)
#gpd.plotting.plot_multilinestring(ax, line, color=’#e59696’,

linewidth=5)
# Plot pumps
xys = np.array([(pt.x, pt.y) for pt in pumps.geometry])
ax.scatter(xys[:, 0], xys[:, 1], marker=’^’, color=’k’, s=50)
# Style and draw
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Fig. 17.7 LISA cluster map cholera deaths

f.suptitle(’LISA for Cholera Deaths per 100m.’, size=30)
f.set_facecolor(’0.75’)
ax.set_axis_off()
plt.axis(’equal’)
plt.show()

which yields Fig. 17.7.
Figure 17.7 displays the streets of the John Snow map of cholera and overlays on

top of it the observations that have been identified by the LISA as clusters or spatial
outliers. In bright red we find those street segments with an unusual concentration
of high death density surrounded also by high death density. This corresponds with
segments that are close to the contaminated pump, which is also displayed in the
center of the map. In light red, we find the first type of spatial outliers. These are
streets with high density but surrounded by low density. Finally, in light blue we
find the other type of spatial outlier: streets with low densities surrounded by other
streets with high density.

The substantive interpretation of a LISA map needs to relate its output to the
original intention of the analyst who created the map. In this case, our original idea
was to find support in the data for John Snow’s thesis that cholera deaths were
caused by a source that could be traced back to a contaminated water pump. The
results seem to largely support this view. First, the LISA statistic identifies a few
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clusters of high densities surrounded by other high densities, discrediting the idea
that cholera deaths were not concentrated in specific parts of the street network.
Second, the location of all of these HH clusters centers around only one pump,
which in turn is the one that ended up being contaminated.

Of course, the results are not entirely clean; they almost never are with real data
analysis. Not every single street segment around the pump is identified as a cluster,
while we find others that could potentially be linked to a different pump (although
when one looks at the location of all clusters, the pattern is clear). At this point it is
important to remember issues in the data collection and the use of an approximation
for the underlying population. Some of that could be at work here. Also, since this
is real world data, many other factors that we are not accounting for in this analysis
could also be affecting this. However, it is important to note that, despite all of
those shortcomings, the analysis points into very much the same direction that John
Snow concluded more than 150 years ago. What it adds to his original assessment
is the power and robustness that comes with statistical inference and does not with
visualization only. Some might have objected that, although convincing, there was
no statistical evidence behind his original map, and hence it could have still been the
result of a purely random process in which water had no role in transmitting cholera.
Upon the results presented here, such a view is much more difficult to sustain.

17.4 Concluding Remarks

This chapter deals with reproducibility and Open Science, specifically in the realm
of regional science. The growing emphasis on geographically referenced data of
increasing size and interest in quantitative approaches leads to an increasing need for
training in workflow design and guidance in choosing appropriate tools. We argue
that a proper workflow design has substantial benefits, including reproducibility
(obviously) and efficiency. If it is possible to easily recreate the analysis and the
resulting output in presentation or paper format, then slight changes induced by
referees, supervisor or editors can be quickly processed. This is not only important
in terms of time saving, but also in terms of accountability and transparency. In more
practical terms, we illustrate the advocated approach by reproducing John Snow’s
famous cholera analysis from the nineteenth century, using a combination of R and
Python code. The analysis includes contemporary spatial analytic methods, such as
measuring global and local spatial autocorrelation measures.

In general, it is not so much the reproducible part but the openness part that
some researchers find hard and counterintuitive to deal with. This is because the
“publish or perish” ethos that dominates modern academic culture also rails against
openness. Why open up all resources of your research so that others might benefit
and scoop you in publishing first? A straightforward rebuttal to this would be: “Why
publish then after all if you are hesitant to make all materials public?” And if you
agree about this, why open up not only after the final phase when the paper has been
accepted, but earlier in the research cycle? Some researchers are so extreme in this
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that they even share the writing of their research proposals with the outside world.
Remember, with versioning control systems, such as Git, you can always prove, via
timestamps, that you came up with the idea earlier then someone else.

Complete openness and thus complete reproducibility is often not feasible in the
social sciences. Data could be proprietary or privacy-protected and expert interviews
or case studies are notoriously hard to reproduce. And sometimes, you do in fact
face cutthroat competition to get your research proposal rewarded or paper accepted.
However, opening up your research, whether in an early, late or final phase definitely
can reward you with large benefits. Mostly, because your research becomes more
visible and is thus recognized earlier and credited. However, and most importantly,
the scientific community most likely benefits the most as results, procedures, code
and data are disseminated faster, more efficiently and with a much wider scope. As
Rey (2009) has argued, free revealing of information can lead to increased private
gains for the scientist as well as enhancing scientific knowledge production.
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