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1 Introduction

Clinical trials are conducted in many areas, including therapy, prognosis, and

prevention research, where they provide a well developed and powerful research

methodology. In order to apply this methodology in consumer product research, its

properties must be well understood and carefully adopted, and sometimes modified.

This contribution provides an overview of the historical developments and meth-

odological properties of clinical trials and points out aspects that require special

attention in the context of consumer product research.

2 Trying Conjectures

When a consumer product or service is assumed to lead to a specific effect, it can be

attempted to substantiate a claim by conducting an experimental study. The meth-

odology of conducting experiments in humans is most developed in drug therapy

research and is referred to as clinical research; clinical trial being the term to denote

a specific experimental clinical study—irrespective of whether or not the partici-

pants are healthy or diseased, as the “clinical” refers to “human”, not to “disease”.

Also, the “clinical” separates research conducted in humans clearly from

pre-clinical research (both in-vitro and in-vivo). The element “trial” points at

something being tried in some formal empirical investigation, which is already

the essence of clinical trials. Trying something means, in general, raising a

conjecture-based question to the world, let her speak, and then (through modus
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tollens) conclude whether what was conjectured is not the case or might be the case.

How we come to a conjecture in the first place is a fascinating but metaphysical

question, and this author agrees with intuitionistic views of the critical rationalistic

philosophy of science on the matter (Popper 1935, p. 208, simply speaks of “idea”

and “unjustified anticipation”), although this will not be further addressed in this

contribution.

How now do we try things? By flicking a switch, we can indeed turn the lamp on;

there being light. We have confirmed the conjecture empirically. This is straight-

forward, as the relationship between action and reaction is essentially deterministic,

and in case of doubt we can simply retry. If we want to know whether switching the

automatic transmission of our car from S (sporty) to E (economy) actually leads to a

reduced gasoline consumption, things are already getting a bit more complicated; as

the effect is not instantaneously visible (albeit possibly audible, but sound is not a

direct measure of fuel consumption but merely, at best, an indicator or proxy

variable) and it is also quite likely more confounded. Confounders might be our

driving style, the outdoor temperature, and the route we take. Due to the more

complicated, causally interwoven factors influencing our car’s fuel consumption,

which we might choose to view as being at least partially, but more likely mostly,

probabilistic by their nature and mode of action, and due to the gradual rather than

all-or-nothing effect (as with the lamp), we are this time quite unlikely to get away

with only one trial. We will need to retry, and finally, after a few weeks, to

aggregate the consumption data that we obtain from test driving periods with and

without the transmission set to E, using some statistics maybe. The good news is

that we do not really have to worry much about a complicated study design and

about sequence effects, or about the need to use a brand new car for every driving

period. A car is a car after all, and it should largely respond as any machine does, in

accordance to the parameters set, essentially irrespective of its mileage differing or

not by a few thousand.

With respect to generalizing the findings of our trials so far, we do not have

much of a problem either. Switching light switches and setting automatic trans-

missions to energy saving will, in the vast majority of cases, lighten up rooms and

reduce fuel consumptions respectively. Things get tougher though when what we

try does not relate to objects but to subjects, i.e., to human beings. As mentioned

above, the methodology of clinical trials has been, and still is, most developed in

therapy research, which is why this is where we will start, before moving on to

research on consumer products.

Trying something in humans is much more difficult than trying a light or a

transmission. Take a fictitious novel migraine pill for example. Based on the 2003

National Health Interview Survey, US migraine prevalence was 8.6% in males and

twice as high in females (17.5%), with prevalence peaking in the late teens and 20s

and around 50 years of age (Victor et al. 2010). A lot of research has been

conducted on biological, psychological, and environmental risk factors and mech-

anisms. For example, there is evidence that in about one out of ten migraine patients

the headache is associated with weather conditions (Hoffmann et al. 2015). Could

we simply pick, for example, a female 60-years old weather-sensitive migraine
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patient and try the pill with her?What might happen is that the pill would relieve the

headache on the first migraine day while on the subsequent episode, even four pills

would have no effect. In addition consider that, had we picked another patient, one

pill could have worked on both occasions—or on neither of them. Now, does the

pill work or not? This is impossible to say from the data obtained by our trial so far,

as obviously how humans respond to the same exposure can widely differ, both

across individuals and occasions. The epidemiology of migraine already points at

different subgroups and possibly different subtypes of migraine, related to sex, age,

and possibly weather sensitivity. Thus, if we want to know whether in general say

two of the novel pills relieve migraine headache, we can obviously not restrict

ourselves to a particular patient (or two), as even for our one patient the pills might

not work the same all the time. Rather, in order to be able to recommend the pill to

all adult migraine patients (i.e., to generalize our findings to the whole target

population of adult migraine patients), we need to investigate a whole sample of

them, making sure that not all of our study sample is female and/or older than

30 years of age, as this would imply missing out on men and/or younger patients.

There are other questions we have to address when we plan our trial. How do we

find the patients to participate in the trial? Sometimes there are attractive methods

that allow to conveniently fill the sample. For example, one could contact the

members of an online migraine support group that discusses their sensitivity to

weather conditions. While those patients might be quite motivated to participate,

this particular way of recruitment might select migraine patients that are not

representative of the whole population of migraine patients—as their migraines

are likely to be related to weather conditions whereas the majority of migraine

patients’ headaches are not. Also, the particular way of recruitment can lead to other

differences, both known and unknown, between the study participants and the

whole population of migraine patients. Also, should we provide pills on some

migraine days but not on others, and then compare the headache levels between

the two types of days? We could, but what if pills per se (i.e., irrespective of their
contents) would have an effect on migraine? One never knows. The problem is

indeed ubiquitous and referred to as placebo effect. If in our weather-sensitive study

sample the placebo effect of two white pills would be particularly strong, we might

conclude that the presumably active compound that is contained in the pills would

generally be efficacious, where it in fact is not. Could we mitigate this problem by

sometimes using a second set of identical pills that do not contain the compound,

and keep very careful track of which kind of pills were taken, when, and by whom?

We could. We could also split the total study sample upfront into two halves and

provide the active pills to one half and the placebo pills to the other. Of course, we

then would have to take precautions that the severity of migraine would be equally

distributed across the two groups, as well as other factors that could potentially

influence the response to the pills. Such factors include, but are not restricted to, the

duration of the disease, weather sensitivity, and age of the patients. Also, we would

be better not to tell our sample what kind of pills they take, as otherwise we could

introduce a differential placebo effect, most likely stronger in the active pill group.

Thus, we should keep the patients blind with regard to what kind of pills they
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receive, and even better also the study personnel, to avoid any sort of unforeseeable

influence (bias). Such a double-blind strategy can be implemented by randomly

allocating the type of pill (active vs. placebo) to each patient, and to make sure that

the groups are of equal size, we can deploy block randomization. Randomization

also reduces the chances of having, for example, migraine severity or some

unknown pill response predisposition differentially distributed across the sub-

groups. For these advantages, most clinical trials are actually designed as random-

ized clinical trials.

What this illustrates is that trialing something (i.e., some external intervention of

interest, as the pill in this example) with respect to some outcome (relieve of

migraine headaches) in some specified group of people (defined by inclusion- and

exclusion criteria, as adult patients with migraine but not with other types of

headaches in our example) is quite a bit more challenging than testing whether a

light bulb can be switched on or gasoline can be saved by changing the transmission

settings. Some careful thoughts are needed with respect to the target population and

how the study sample can be recruited from it in an unbiased manner, and how the

intervention of interest is planned and administered, so that the study results even

have a chance of being conclusive with respect to the research question. Clinical

trials thus require meticulous design, planning, and execution, and the devil is

definitely in the details. And there are many more details to consider than those we

have just lightly touched. For the taste of it: How, by the way, do we measure levels

of migraine headache and its reduction in a reliable manner? Pain is a private event,

and there is no direct and objective access to it, like for example to body temper-

ature through a thermometer. This being so: could we simply switch to body

temperature as our effect measure? We could. But it would not be meaningful.

Temperature is not a valid surrogate endpoint for migraine pain, even if it can be

measured at a high level of precision; in fact, it is a meaningless biomarker in this

context, and measuring it would tell us absolutely nothing about the efficacy of the

pill for relieving migraine headache. Some further thoughts must be given to even

more details of the study, like study duration: We could, for each patient, only treat

and record one migraine episode. However, it would probably be more relevant for

assessing the value of the pill if we would extend the treatment over a few months

and then look at the overall results—which of course raises the issue as to how to

integrate the findings from each individual episode. But then, would it be ethical

and/or scientifically smart to compare the novel pill to a placebo, or would it not be

a more reasonable approach to compare it with some existing therapy? If so, should

we attempt to demonstrate that the new pill is indeed better (superior) to the existing

one (the active comparator, in clinical research parlance) or would we be satisfied

with showing non-inferiority? We also must plan the statistical analysis of the study

data and, related to this, decide on the expected size and variability of the treatment

effect(s), considering of what magnitude such effects would need to be for them

being of any clinical relevance, and how many patients we should consequently

include in our study to make it sufficiently likely to find the expected effect when it

actually exists. And so on.
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As this short outline clarifies, designing good (i.e., conclusive) clinical trials is

cumbersome and requires profound knowledge, specific skills, experience and

diligence, let alone the huge amount of logistical planning and operative work for

the execution of the study, its documentation and quality control. Also, studies

conducted in humans require a lot of prerequisites, including the demonstration that

the product, or pill in our example, we want to assess is produced against well-

defined quality standards, evidence that the new drug is safe to take and that the

dose is reasonably chosen, approval of the study protocol by an ethics committee

and of course informed consent of the study participants.

3 Historical Developments

The current conceptualization, design, conduct and analysis of clinical experiments,

as implemented in medicine, public health, psychology, research in education,

consumer research, and many other areas, is largely based on the twentieth century

works of the English geneticist and statistician Sir Ronald Aylmer Fisher and his

compatriot, the epidemiologist Sir Austin Bradford Hill. Fisher conducted agricul-

tural field research and considered rigorous experimental design as the basis for

drawing valid inference on probabilistic hypotheses regarding the causal impact of

the deliberate variation of experimental exposures/factors (like fertilization) on

experimental units (plots of land; Fisher 1925) in terms of measured effects (crop

yield). Fisher deemed randomization the cornerstone of experiments, to warrant the

unbiased allocation of units to experimental groups (conditions, treatments, factor

levels), so rendering all residual error in the data unsystematic noise, achieved

through asymptotically balancing all background variables across the comparison

groups, irrespective of whether or not these individual (baseline) covariates are

even known or measured. Potential confounders so prevented from being system-

atically associated with the experimental manipulation renders the latter the only

possible explanation of the observed effects. Aside from considering the distribu-

tional properties of the individual variables for the choice of the appropriate

statistical calculations, no further prior assumption or multidimensional statistical

model is needed. Rather, the “likelihood” (Fisher’s “p-value” of the statistical “test
of significance”) of observing in the “dependent variable” (Tolman 1932) an effect

of at least the measured magnitude under the assumption of the experimental factor

(“independent variable”) having no effect (“null hypothesis”) can directly be

calculated. From an epistemological point of view, Fisher had proposed a probabi-

listic inductive inference method for concluding on a causal effect of the experi-

mental manipulation, by rejecting the opposing null hypothesis with a quantified

likelihood of this conclusion being erroneous. Even though it is not of particular

importance for the issues here addressed, it should be noted that the current practice

of frequentist statistical testing largely reflects a range of variants of inconsistent

amalgams of Fisher’s significance test logic and the method of hypothesis testing
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proposed by Neyman and Pearson (1933), and that neither party had ever intended

to merge the two methods.

The institution of the experimental design and analysis method in therapy

research is generally attributed to Austin Bradford Hill, who planned the first

modern blinded and properly randomized controlled trial (RCT) on the effects of

streptomycin in patients with pulmonary tuberculosis (launched in 1947 by the

Medical Research Council in the UK; MRC 1948). Probably less well-known, it

was also Hill who, seemingly in 1955, coined the expression “intention-to-treat”

(Lewis and Machin 1993), which will be addressed in more detail below. As not all

research questions on matters of human health relate to therapy effects and thus

often cannot be addressed through experiments (which are in many circumstances

impractical, irrelevant, unreliable, unethical, or a mixture thereof, coupled with the

notorious issue of the questionable generalizability of experimental findings to the

real world), Hill was strongly engaged in observational research and methods

development. Based on a case-control study in patients from 20 hospitals in

London, conducted together with Richard Doll, Hill concluded that smoking was

an important risk factor for lung cancer (Doll and Hill 1950), a finding subsequently

confirmed by the seminal prospective British Doctor’s cohort study which started in
1951 (Doll and Hill 1964). This etiologic endeavor, which included more than

40,000 physicians and measured chronic disease risk factors and long-term health

outcomes, was indeed far beyond the scope of an experimental design. Hill was

well aware of the methodological challenges of observational studies related to bias

and confounding. In 1965 he proposed “viewpoints” (sometimes denoted as “Hill’s
criteria for causation”) to consider in order to facilitate drawing inductive causal

inferences based on observational data. While John Stuart Mill, 1843 in his System

of Logic, had previously suggested methods of induction in the context of exper-

imental data, no such an attempt had yet been made for observational data (Morabia

2013).

With the Nuremberg Code, written in 1947, and the Declaration of Helsinki,

established in 1964, the framework for conducting clinical trials was defined, with a

focus on protecting the rights and wellbeing of study participants by voluntary

participation, and setting standards like mandatory informed consent and the ability

to withdraw at any time from the study. In spite of the watershed amendments to the

American Food, Drug and Cosmetics Act in 1962, which made RCTs a requirement

for marketing authorization of novel drugs and providing the Food and Drug

Administration with regulatory authority, acceptance of the experimental therapy

research approach increased only gradually after the Second World War. Opposi-

tion towards RCTs by clinicians was driven by traditions of viewing medicine as

mainly experience-based and largely grounded in clinical judgment, a widespread

lack of statistical understanding, and ethical concerns against placebo arms. In his

memoires, Hill (1990) pointed out that he carefully avoided using the word “ran-

domization” in the streptomycin-trial study protocol, in order not to raise opposition

from collaborating physicians. The increasing acceptance of experimental studies

on treatment benefits, up to the present where the method has gained the status of a

“gold standard” (cf. Cartwright 2010), occurred in the 1970s, promoted by the
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formation of the evidence-based medicine-movement, materially pioneered by

David Sackett, who co-initiated the Cochrane-Collaboration. The collaboration

was named after the Scottish epidemiologist Archibald Cochrane, whose preoccu-

pation with closing the gap between what is known versus what is actually done in

clinical medicine and his lifelong call for RCT-based substantiation of any medical

intervention’s benefit outweighing its harm was thereby acknowledged. As was the

case with RCTs, evidence-based medicine was initially not easily accepted by all

parts of the medical establishment (e.g., Grahame-Smith 1995).

To help clinicians critically appraise the accumulating published evidence on the

benefits of therapies, Sackett (1989) had developed a first design-focused hierarchy

of evidence with “large randomized trials with clear-cut results (and low risk of

error)” on top of the hierarchy (p. 38). This and subsequent study-design evidence

hierarchies led to some confusion, as the logic originally proposed for therapy

studies was not infrequently simply generalized to other domains, including diag-

nostic and prognostic research, even though RCTs can, for example (as briefly

indicated above), contribute little or nothing to etiological research on chronic

disease risks. This has been clearly pointed out early on by Sackett and others,

but has not always been considered carefully. Sackett and Wennberg (1997) wrote

(p. 1536): “Evidence based medicine is not restricted to randomized trials and meta-

analyses. It involves tracking down the best external evidence with which to answer

our clinical questions. To find out about the accuracy of a diagnostic test, we need to

find proper cross sectional studies of patients clinically suspected of harboring the

relevant disorder, not a randomized trial. For a question about prognosis, we need

proper follow up studies of patients assembled at a uniform, early point in the

clinical course of their disease.” The widely believed misconception that RCTs

carry some special scientific weight in any context and would be necessary for true
(“hard”) science-based conclusions (cf. Worrall 2007) has recently been addressed

in a series of high-profile publications in medical journals (e.g. Ho et al. 2008), and

the message seems to be gradually reaching all clinical areas. For example, DeVries

and Berlet (2010), while pointing out the importance of high-quality RCTs in

therapeutic research, state that prognostic studies follow different criteria, as the

exposure variable being studied would not be researcher-controlled, cannot be

randomly assigned, and a RCT “is inherently not possible” (p. 207).

4 Epistemological Aspects

An underlying reason for the sometimes unclear weighing of RCT-based evidence

is possibly a lack of discriminating between the concepts of internal and external

validity (Campbell and Stanley 1963). Internal validity depends on the tightness of

built-in controls and essentially refers to the degree of certainty at which effects

observed in a particular study can be causally attributed unequivocally to the

experimental manipulation. This notion is reflected in Tolman’s dichotomy of

dependent and independent variables, reflecting the concepts of effects of causes
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and of causes of effects, respectively. It is clear from the rationale underlying

Fisher’s experimental method that for all non-deterministic cause-effect relation-

ships, well-controlled randomized experiments provide the highest level of inter-

nally valid evidence—at least as long as the analysis does not deviate from the

original study design, as for example in subgroup comparisons, where

randomization-based protection from baseline covariate imbalance is typically

lost. Obviously, high levels of experimental control are well in-line with

deductivism, rigorous hypothesis testing, and concerns about internal validity.

External validity is, in contrast, a very different concept, and tends to be “at

odds” with internal validity, although the latter is often considered the sine qua non
of the former (Campbell and Stanley 1963, p. 5; Steckler and McLeroy 2008).

External validity addresses the question as to whether research results can be

generalized to other, typically real-life contexts and populations. Due to the strict

and largely canonical error-prevention controls and restrictions that are applied to

maximize internal validity, external validity is the notorious Achilles heel of

experiments, including RCTs, in particular when research findings are to be

transported to conditions of usual clinical care practices. Many typical RCT fea-

tures aiming at maximizing internal validity and often referred to bluntly as

“rigorous” contribute to the problem of generalizability of study results. These

include highly selected patient samples free of comorbidities and concomitant

medications, high compliance levels, short study durations and more or less artifi-

cial and highly restricted settings and tight procedural controls. Even the best (i.e.,

most “rigorous”) RCT in the world, however, does not ensure infallibility nor does

it generate external validity without a strong set of assumptions regarding the

generalizability of the research to the real world. Thus utmost “rigor” (in terms of

maximized internal validity) and complete irrelevance (in terms of absence of

external validity) can easily coexist. Unless translated into specific hypotheses for

subsequent empirical testing (further research), other than with internal validity,

external validity cannot be achieved by rigorous adherence to methodological

standards built on deductive logic within a given experiment. As Gadenne (2013,

p. 5) has clearly pointed out, “the problem of external validity is the problem of

induction”. The complexity around the concepts of internal and external validity

points at the challenges related to assigning weights to sets of evidence provided by

different studies. It is obvious, however, that extrapolating study design-based

evidence hierarchies mindlessly beyond their contexts (e.g. clinical randomized

experiments to proof therapeutic concepts) and assuming their universal applica-

bility is careless and can result in fallacious inferences and misguided policy

decisions (cf. Rothman 2014).

Somewhat along the same lines as internal and external validity, the distinction

of the two therapy research aspects of efficacy (i.e., whether a treatment can in

principle work under ideal circumstances) and effectiveness (i.e., whether it will

work under realistic circumstances) was popularized by Cochrane (1972). In line

with the above considerations regarding internal validity, RCTs can, when certain

assumptions hold, be the ideal approach for assessing the efficacy of drugs (Gupta

2011), and they can then be analyzed through a simple comparison of average
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outcomes between groups, not further adjusted for covariates, to draw causal

conclusions on the efficacy of the experimental variation. As usual, the devil is in

the detail or, more specifically, in the assumptions that are needed to draw valid

conclusions from experimental results, in addition to more general requirements

(related to the Duhem-Quine problem of required auxiliary assumptions) that need

to be fulfilled (e.g. construct validity, measurement accuracy or adequate and

correct data processing and analysis). From a counterfactual point of view (first

introduced to biostatistics by Neyman 1923), determining the average causal effect

of the novel product (a therapeutic drug, for example) would require exposing each

study participant simultaneously only once to both exclusively the drug with the

active substance and an indistinguishable version without that substance (placebo),
which is impossible (reflecting what is sometimes referred to as the “fundamental

problem of causal inference”). In any factual experiment, participants must instead

be randomized to active treatment or to placebo/control. The potential outcomes

model (Rubin 1974) provides a conceptual and formal framework of causal infer-

ence, grounded in counterfactual logic and accounting for the inter-individual

variability of treatment responses. It provides coherent definitions to describe

causal effects as they occur in empirical research. These include individual as

well as average causal treatment effects and specifications of key concepts like

randomization, selection bias, confounding, or compliance, and allow one to state

conditions and to specify assumptions, under which factual statistics provide valid

causal treatment effect estimates.

A key assumption for drawing valid conclusions from experiments (cf. West

et al. 2008) is ignorability (unconfoundedness), implying that potential outcomes

are independent of the assigned treatment. Even though sometimes neglected,

ignorability depends on a sufficient sample size for randomization to play out.

Other important assumptions are stable unit treatment value (SUTV—based on the

absence of treatment variation across units and on non-interference of treatment

effects across units), exclusion restriction (any effect of randomization is transmit-

ted through the experimental exposure/treatment, which often implies the require-

ment of blinding of personnel and participants with regard to the allocated

treatment to avoid performance bias), full compliance (post-randomization adher-

ence to treatment regimen) and completeness (i.e., no missing data, including no

post-randomization sample attrition). Fisher’s agricultural research fits, unsurpris-

ingly enough, remarkably well with these “ideal experiment” assumptions, which

his methodology in fact requires to yield valid conclusions. While indeed plots of

land rarely exhibit noncompliance, this is not necessarily so with all types of

experimental units, particularly not with humans, irrespective of whether they are

subjects, patients, or consumers.
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5 Treatment Effects

Evaluating the effects of a treatment (e.g., a drug) in a blinded manner (mainly to

avoid differential ascertainment) based on an ideal RCT relies basically on com-

paring it statistically, with regard to an endpoint, directly (i.e., without statistical

adjustment) to some control treatment (e.g., a placebo). Under the assumptions of

all baseline characteristics being equally distributed across the comparison groups

through randomization to the novel (R ¼ 1) or control treatment (R ¼ 0), no

noncompliance, and no missing data, the experimental results are automatically

(i.e., without the need for any mechanistic understanding, theory, or additional

assumptions) turned into evidence of a causal treatment effect, i.e., an efficacy

claim—the core strength of the randomized-experimental method in terms of

internal validity. The mechanism of randomization renders the impact of the actual

treatment (i.e., of A ¼ 1 as compared to no treatment or to an alternative treatment,

A ¼ 0) on the potential outcomes Y(A ¼ a) “ignorable” and participants

“exchangeable” across groups (Rosenbaum and Rubin 1983), i.e., Y(a)⊥A. Ideal

RCT is, however, a rather simplistic concept, as in real clinical trials compliance of

study participants and completeness of data is rarely one hundred percent. This

raises questions on how to deal with non-compliant participants (even treatment

crossover might occur, meaning that patients randomized to the experimental

treatment may have received (and actually taken) the control medication, R ¼ 0,

A ¼ 1, or vice versa, R ¼ 1, A ¼ 0) and incomplete data.

The intuitive response to broken randomization due to noncompliance (Ai 6¼ Ri

for some individuals i) and missing data would be to simply restrict the analysis to

compliant patients with complete records. This “per-protocol” analysis strategy can

provide “proof” of a therapeutic effect by answering the “can it work” (somewhere)

question (cf., Cartwright 2011), i.e., for a specific outcome (Y), study and context,

by demonstrating that here the outcomes were more pronounced in patients treated

with the novel treatment than in those treated with the control treatment,

i.e. E(Y|A ¼ 1, R ¼ 1)>E(Y|A ¼ 0, R ¼ 0), which corresponds to estimating

efficacy as it might occur under ideal circumstances (Fig. 1).

Unfortunately, per-protocol effect estimates can be biased, as the contrasted

groups are not any longer solely based on randomized treatment allocation, but also

on post-randomization compliance. As factors that determine compliance can also

influence the treatment effect (or can, in turn, be influenced by compliance and

treatment effect), the magnitude of the association between type of treatment and

effect can be confounded by such factors. The apparent benefit of the treatment can

therefore be biased (typically overestimated), as the target population would be

composed of a different, possibly less responsive and/or tolerant case mix than the

per-protocol study population. While a per-protocol analysis does not require

analyzing the details of noncompliance, it does bear the risk of introducing (self-

selection) bias as the ignorability assumption cannot be maintained, and rigidly

dismissing incomplete or noncompliant records always implies a loss of informa-

tion and power. Also, when otherwise protocol-adherent records have missing data
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only in variables of minor importance or if missingness can be assumed being

completely at random across participants, then excluding such records from the

analysis is not a very convincing strategy.

Thus, it might be considered preferable to analyze participants according to the

treatment that they have actually received, i.e., according to the “as-treated”

analysis strategy, aiming at demonstrating a treatment effect on outcome Y in a

specific study and context by showing that E(Y|A ¼ 1)>E(Y|A ¼ 0). As-treated is

the only viable analysis of non-randomized (observational) cohort studies, and

RCT-based safety data are usually also analyzed according to treatment received.

Also, as-treated is the standard approach for analyzing preventive vaccine trials

(Hudgens et al. 2004). When randomization cannot be relied on (or is absent in the

first place) it is usually attempted to establish conditional exchangeability, i.e.,

Y(a)⊥A|C by conditioning the effect estimation on measured potential confounders

(C). Conditioning can be achieved by some form (or combination of) adjustment,

stratification, standardization, or matching. In order to correctly specify actual

treatment (exposure) groups, an as-treated analysis necessitates the need to analyze

the details of noncompliance with regard to whether treatment has simply not been

Fig. 1 Generic randomized two-arm parallel group therapy superiority study example, assuming

one-sided non-compliance (patients in the control group are assumed not having access to the

novel treatment). Half of the sample is randomized to the novel treatment (R¼ 1), the other half to

the control treatment (R ¼ 0). There is a chance that the observed treatment effect is biased by

non-compliance, as 25% of the patients randomized to the novel treatment actually take the control

treatment (R ¼ 1, A ¼ 0). There are three options to assess the effect of the novel treatment:

(i) Taking into account both randomization and compliance—the per-protocol analysis;

(ii) ignoring randomization—the as-treated analysis; (iii) ignoring compliance—the intention-to-

treat (ITT) strategy. In an ITT analysis, patients are analyzed according to their randomized

treatment, irrespective of whether they take it or not
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taken, has been taken, but not according to the protocol, has been replaced

(or supplemented) by alternative treatment(s), the correct dosing and timing of

the treatment has been followed, and whether possibly physicians were

noncompliant as well. The details of this pre-analysis depend to a large degree on

the particular research question and circumstances, including whether or not com-

pliance was measured in the control group and whether or not the active drug was

accessible to the control group or some (active) control treatment was accessible to

the treatment group. The likelihood of such complications is increased in large,

long, and complex studies, in non-prescription settings, when the treatment under

investigation is already on the market, under open-label treatment, and when the

study is ambulatory rather than conducted in confinement.

Another classic response to protocol violations is to abstain from comparing

groups according to the treatment actually received, but according to the intention-

to-treat (ITT) principle. ITT analyses compare all participants according to the

group to which they were randomized. Even though the approach is generally

straightforward, in reality methodological problems are often encountered, as for

example the need to deal with missing outcome data when participants are lost to

follow up. As previously with the RCT methodology in general, the ITT approach

faced considerable opposition, in particular by clinicians. This might have possibly

been related to the need to statistically treat noncompliant patients as if they had

taken the investigational drug, which from a clinical point of view could indeed

appear being a “bizarre assumption” (Sheiner 1991, p. 4). Again like with RCTs,

ITT is to date often referred to as a “gold standard”, and sometimes—less

flattering—as having become gospel (Salsburg 1994). In 1990, the International

Conference on Harmonisation of Technical Requirements for Registration of Phar-

maceuticals for Human Use (ICH), in which regulatory authorities of Europe, Japan

and the United States and experts from the pharmaceutical industry participate, set

out to harmonize regulation on the evaluation of medicinal products for market

approval. Their 1996 E6 Good Clinical Practice guidance on clinical trials to

demonstrate efficacy and safety of medicinal products acknowledges the role of

statistics in trial design and analysis, which is detailed in the E9 guidance aimed at

harmonizing the principles of clinical trial statistical methodology. It supports (ICH

1998, p. 28) the “intention-to-treat ideal” and states that “Preservation of the initial

randomization in analysis is important in preventing bias and in providing a secure

foundation for statistical tests. In many clinical trials, the use of the full analysis set

provides a conservative strategy. Under many circumstances, it may also provide

estimates of treatment effects that are more likely to mirror those observed in

subsequent practice.” The authors of the Consolidated Standards of Reporting

Trials (CONSORT; Schulz et al. 2010) recommend ITT analysis of parallel group

RCTs for unbiased treatment effect estimates. Similarly, the Cochrane Collabora-

tion (Higgins and Green 2011, Sect. 16.2.1) points out that “ITT analyses are

generally preferred as they are unbiased, and also because they address a more

pragmatic and clinically relevant question.” Modifications of the ITT approach,

e.g. by excluding, after randomization, patients that were misdiagnosed or never

72 R. Weitkunat



had received any treatment, have been criticized for possibly introducing bias

(Montedori et al. 2011).

From a causal effect estimation point of view, ITT is a form of instrumental

variable analysis. In fact, the instrument (randomized treatment allocation) satisfies

the key prerequisites for the validity of an instrumental variable (Greenland 2000),

i.e., it is clearly linked to the actual treatment, but is unrelated to observed or

unobserved prognostic factors as well as to the outcome (other than through the

actual treatment; “exclusion restriction”, i.e., Y(R,A) ¼ Y(A)). In this case, any

confounding of the association between actual treatment and outcome is rendered

irrelevant with respect to the association between the instrument (randomization R)

and the potential outcomes, i.e., Y(a)⊥R. The reason is, based on causal-analytical

considerations (Greenland and Pearl 2011), that the backdoor-path from the out-

come to the instrument is blocked by the actual treatment, on which the effects of

randomization and potential confounders collide; unless (incorrectly so), the ITT

effect estimation would be conditioned on the actual treatment, which would open

the backdoor path and (re)introduce confounding.

As pointed out above, the ITT principle to analyze the data of all participants as

randomized has gained the status of the de facto standard (or even “gold standard”;
Armijo-Olivo et al. 2009) for the primary analysis of randomized superiority

clinical therapy trials and is broadly supported by regulatory and other authoritative

bodies (Ten Have et al. 2008). There are downsides, however. The counterintuitive

aspect of ITT is to some degree supported by an inherent asymmetry, which is that a

treatment might be efficacious without being effective (due to a large nonadherence

level). From this it can be deduced that an analysis which is exclusively based on

ITT cannot provide sufficient insight into treatment effects. This is related to the

fact that an ITT estimate, while avoiding confounding by self-selection through

ignoring compliance, is by no means independent of compliance. In superiority

settings, ITT estimates of treatment effects are being increasingly biased towards

the null, i.e., diluted (compared to compliance-based estimates) as noncompliance

increases. The simplicity of conducting an ITT analysis is largely restricted to

parallel-group superiority designs, while deviations (e.g. crossover-designs) pose

substantial conceptual and methodological problems. Moreover, for safety analyses

ITT appears to be generally inappropriate (Robins and Greenland 1994). When

post-randomization drop-outs occur, the ITT approach obliges some form of

adjustment to avoid selection bias due to differential loss to follow-up. One of the

simplest and most frequently applied forms of adjustment is by simply replacing

missing outcome data points by the last known value (LOCF) of the participant.

Although this is often considered to be a very conservative approach, it can

introduce bias in either direction and always leads to overestimating the precision

of the ITT effect estimates (Altman 2009). Under open-label conditions, the

assumption that ITT provides pure estimates of effects of treatment offer/allocation

does not hold anymore, as expectation effects can then introduce bias (e.g.,

Rosenthal, Hawthorne, and/or placebo effects). Due to the dilution of treatment

effects by extending the assessment to noncompliant participants, ITT effect esti-

mates are usually smaller than those of per-protocol and as-treated analyses, which
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increases the likelihood of underestimating or even failing to confirm a real effect

(increased false negative/type II error rate). As a consequence, the conservativeness

of ITT, compared to per-protocol and as-treated, does not extend to non-inferiority

or equivalence studies, where it tends to favor equality of treatments and therefore

to increase the type I (false positive) error. This becomes evident in a hypothetical

study where perfect equivalence would be guaranteed under complete

non-compliance of all study participants, at least as long as no additional success

criterion (e.g., a minimal effect magnitude) is implemented. Even in superiority

trials, to warrant external validity (generalizability, transportability) of ITT esti-

mates, the assumption of similar levels and patterns of noncompliance under study

and real-world conditions is required to hold.

Probably more importantly, however, the ITT approach addresses a different

research question than non-ITT approaches. While per-protocol provides answers

with respect to the effect of receiving a treatment as assigned to and in line with the

protocol, and as-treated on the effect of receiving a treatment (irrespective of

randomization and protocol-adherence), both are providing efficacy measures

aiming at explaining effects. In contrast, ITT aims at quantifying the effect of

being assigned to a treatment, regardless of whether it is received. ITT therefore

does not address treatment efficacy and clinical meaning, but rather pragmatically

quantifies the effectiveness of treatment allocation. This has in fact been considered
an asset with regard to similarity to the real-world clinical practice and its value for

informing policy decisions. However, the properties of RCT-based ITT estimates

need to be handled with great care and assessed in context, in particular when

comparing them to results from observational studies. An example is the contro-

versy on the impact of hormone replacement therapy on the risk of coronary heart

disease, where an observational cohort study (the Nurses Health Study) looking at

more than 30,000 postmenopausal women suggested a substantial risk reduction,

which was not confirmed by two subsequent RCTs (cf. Tannen et al. 2008). As

Hernán et al. (2008) demonstrated, the results from the observational study esti-

mated a different effect in a different population, and when reanalyzed by calcu-

lating an ITT-analogue effect in the sub-cohort of new hormone users and

accounting for time since menopause and length of follow-up, the apparent dis-

crepancies vanished.

While the conservativeness of ITT is often considered a major advantage, as it

would protect against overestimating therapy effects, this very property might

increase the risk of seriously disadvantageous public health strategies. Feinman

(2009) has illustrated this point based on data from the Artery Bypass Surgery trial

(Newell 1992). ITT analysis suggested a modest mortality advantage of surgery

over medical treatment (5.3% vs. 7.8% mortality, respectively), while per-protocol

and (more pronounced) as-treated showed a more than twofold higher mortality

under medical treatment. An indifferent clinical practice regarding the therapy

decision, in-line with the ITT results, might miss out on the potentially highly

relevant option of embarking on an orchestrated action plan that would aim at

allocating as many patients as possible to surgery. Not doing so effectively implies

assuming that noncompliance rates and patterns cannot be influenced and will

necessarily remain at what had been seen in the trial.
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6 Consumer Products

In the medical world, treatment allocations are to a large degree made by clinicians,

and patients are largely restricted to following this external allocation; they are in

need of therapy and are being made an offer that they cannot easily decline. Thus,

randomization appears to be an appropriate model of the external real-world. This is

reflected in Fig. 2a, where the typical situation for an RCT on a therapeutic drug is

summarized prior to the drug being marketed. Study participants selected from the

target population in accordance with pre-specified inclusion and exclusion criteria

are randomized to the novel drug (R¼ 1) or to some comparator (R¼ 0). If there is

Fig. 2 Basic causal diagrams of (a) pre-launch effects of therapeutic drugs or consumer products

in randomized parallel-group studies, of (b) clinical practice effects of prescription drugs, and of

(c) in-market effects of consumer products. In the drug-therapy context, a close structural match

between pre-launch clinical therapy research and post-launch clinical practice of components S,

P, R, A, C, and E, to be justified on a case-by-case basis, provides support for the generalizability

of the in-study findings (external validity). In consumer product contexts, the correspondence

between pre-launch research and post-launch market is far more questionable, in particular with

regard to the absence of external product allocation (component R) in consumer product contexts
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(i) no access to the novel product in those randomly allocated to the control group,

i.e. a zero probability of actually taking the novel product, Pr(A ¼ 1|R ¼ 0)¼ 0,

(ii) allocation to either group is equally probable through Pr(R ¼ 1) ¼ 0.5, and (iii)

in-study exposure occurs in a double-blind and non-discriminable manner, then the

effect in the study sample is essentially a function of actual treatment (exposure)

and, as pointed out above, compliance.

By comparing this with Fig. 2b, denoting the situation after the therapeutic drug

is on the market and can be prescribed by doctors, it becomes clear that the causal

relationships are quite similar. The in-study randomization (R) corresponds to the

post-market allocation of the drug by the doctor (D). All things being, while not

fully equal but largely comparable, it can be expected that the study results have a

good potential of predicting the real-world effectiveness of the drug once it is being

marketed. Of course, in order to generalize study effects to real world effectiveness,

the requirement of C1¼C2 is critical: If real-world adherence to prescription differs

from in-study compliance, then the study simply does not reflect the real world in

that respect, and the in-study findings cannot accurately predict the post-market

situation.

Transposing the above from pharmacotherapy to consumer product clinical trial

settings is difficult. The first problems become evident when it comes to sampling

study participants. In any research area, for generalizability, a study sample is

required that represents some specific real-world population of interest. Conse-

quently, a prerequisite of any study is that by some adequate selection mechanism S

on a certain target population, a representative sample of participants P is included

in the study, i.e., a sample having the same joint probability distribution over all

relevant variables as the target population. Identifying and selecting participants

into high-quality RCTs is in either case based on prudently defined procedures and

inclusion/exclusion criteria. Drug trials typically build on the additional criterion of

a confirmed medical diagnosis as well as related restrictions regarding

co-morbidities and concomitant medications. Also, in particular when patients

expect to benefit from the novel treatment, participation rates, i.e. Pr(P ¼ 1|

S ¼ 1), are likely higher than when consumer products are tested for which

potential study participants feel no immediate need. Target populations of drug

trials are therefore likely to be more narrowly defined than those of consumer

product trials. This implies that the representativeness of therapy study populations

tends to be better warranted than under consumer product premises. When the rate

and severity of adverse events under novel drug treatment is low and a lack of

effects is not easily discernable by patients in the control group, compliance, i.e. Pr

(A ¼ R), might in general also be higher in drug as compared to consumer product

trials.

Some consumer products aim at alleviating symptoms and conditions (like a

cream aimed at moisturizing dry skin or a standardized diet, fitness program, or

massaging device to address obesity). However, most health-related issues that are

linked to consumer products are related to whether or not the use of (or exposure to)

a certain consumer product is associated with improved wellbeing (rather than
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disease proper), or with increased or decreased risks of future adverse health-effects
in currently healthy consumers. The range of consumer products and product

categories that may be subjected to health-related research questions is quite

broad and fuzzy, bordering on matters of lifestyle patterns, “alternative therapies”,

and over-the-counter drugs. Examples are specific diets, certain fast-food items,

snacks, ready-made nutrition products, sugar-enhanced soft drinks, functional food

supplements, fitness programs, cosmetic products, sunglasses, alcoholic beverages,

bicycle helmets, toothpaste, or tobacco products such as cigarettes. Depending on

the type of consumer product tested in an RCT as outlined in Fig. 2a with regard to

its health-impact, the feasibility of blinding or concealing the actual exposure is

very likely generally lower (and often non-existent) than in a typical pharmaco-

therapy context. Also, the access to the (active) control product, which may already

be on the market and then is typically freely accessible, depends very much on the

study design, duration, and procedures. If the study is conducted in an ambulatory

manner, all study participants typically would have access to the control product

(other than in research on prescription drugs). For tobacco products, for example,

this implies that all (presumably adult) noncompliant study participants randomized

to the novel product (e.g., a candidate modified risk tobacco product, MRTP) would

be able to obtain and consume the control product (e.g., conventional cigarettes),

whereas the reverse would not be possible, as long as the novel product would not

be on the market.

A key aspect of transposing research concepts from pharmacotherapy to con-

sumer products is that prescription drugs are just that: prescribed, i.e., externally

allocated. Even when consumer product RCTs follow the principles of a pharma-

cotherapy trial as laid out in Fig. 2a, pretty much the opposite of external allocation

takes place under consumer market conditions, with largely unmediated and

unrestricted product access through self-selection, i.e., consumer-internal product

exposure allocation (Fig. 2c). Compared to the clinical practice world of prescrip-

tion drugs, in the post-market consumer product world there are typically no

diseases, no doctors, no treatments, and no patients, and products are not prescribed

but freely chosen. The lack of anything only barely resembling prescription renders

ITT and per-protocol based effect estimates meaningless, as there is nothing in the

consumer product world that would correspond with the underlying concepts; all

there is in the post-launch consumer product world is actual use (cf. Weitkunat et al.

2016, for a more detailed assessment of ITT estimates in the context of consumer

product trials). In order to render an RCT-based as-treated effect estimate a valid

predictor of the effect of actual use in the consumer market, it would be required

that S, P, C, A, and E are identical under study and market conditions. As a

comparison of Fig. 2(a) and (c) clarifies, this essentially necessitates that

R1 ¼ S3, i.e., that the self-selection to A ¼ 1 and A ¼ 0 under consumer market

conditions is an unbiased version of what would be achieved by randomization.
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7 Allocation vs. Preference

How can the problem of in-RCT randomization possibly not reflecting in-market

self-selection in consumer product research be consolidated? It appears that

accounting for consumer preferences is at the core of the issue. Even in the context

of therapy research, concerns have been raised against randomization when exter-

nal treatment allocation conflicts with patient preferences. In particular in contexts

of impractical or incomplete blinding, external but also internal validity may be

compromised through preference-related recruitment and compliance (King et al.

2005), and consequently preference-incorporating study designs have been pro-

posed (e.g. Brewin and Bradley 1989; Zelen 1990; Wennberg et al. 1993).

Irrespective of its relevance in therapy research, considering preference in the

design of consumer studies might provide a possibility to reconcile randomization

with relevance to and correspondence with the real world. By randomizing not the

allocation to a certain product per se, but rather (as in the preference arm of the

Wennberg et al. design) the option to choose a novel product to replace a previously

used comparator product, the consumer market situation would be mirrored by the

study design. Data obtained from this randomized choice option (RCO) design

would lend themselves to an ITT-analogue analysis, which could be denoted as

option-to-use or (for the sake of terminological similarity) intention-to-use (ITU)

analysis. What ITU would estimate is actually the effect of offering a consumer

product in a consumer market—something that cannot be achieved by an ITT

analysis which is based on participants being externally allocated to a certain

product through direct randomization. As with ITT in the therapy-research context,

ITU would have the advantage of being randomization-protected against

confounding by baseline variables, which of course requires analysis strictly

according to randomization, irrespective of actual product choice. A critical pre-

requisite of ITU to provide valid effectiveness estimates is evidently the correspon-

dence of in-study and real-world self-selection patterns and levels, which is in fact a

rather strong assumption, although it can in principle be validated after the product

has been launched by comparing in-study users with in-market consumers of the

novel and of the comparator product. In addition to effectiveness (through ITU

analysis), efficacy can be estimated from RCO data by analyzing actual use (AU)–

outcome associations in the choice-option arm, necessarily by accounting for

potential confounding (which corresponds to a classical observational cohort

study).

From a practical point of view, the RCO design has the advantage that only those

participants who are randomized to the product choice option need to be informed

of the novel product, whereas the control group would reflect a market to which the

novel product would never have been introduced. In addition, the RCO design

provides use prevalence rate estimates based on real volitional behavior rather than

solely relying on proxies of behaviors, like attitudes or intention-to-use declara-

tions. As it may be adequate in many contexts to randomize a distinctly smaller

number of consumers to the no-choice-option condition, the efficiency of an RCO
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design is likely comparable to a traditional RCT with direct (individual-level)

randomization to a certain product. It appears worthwhile to point out that reversing

the order of RCO events by first selecting participants based on their preference for

the novel product (or, a weaker variant, their willingness to being randomized to it),

while possibly leading to higher in-study adoption and compliance rates, will not

achieve the same study-to-real-world correspondence and will lead to a very

different (i.e., preference-selected) sample of participants (even though the

ITT-analogue effect of product use allocation in those preferring the product can

then be estimated, under the usual randomization-based protection from baseline

confounding). A sensible extension of the RCO design appears to be adding a

second randomization step to the scheme, allocating participants of the choice

option arm who had previously expressed their preference for the novel product

to actual product access versus to no access. Estimating the ITU effect of offering

the product as well as estimating the AU effect would still be possible (by a slightly

more complicated combination of the comparison groups), but now also a

randomization-protected product effect could be estimated in those choosing the

product offer and having versus not having actual access to the product.

8 Real World

Although it is often claimed that ITT would provide an effect estimate reflecting the

real-world effectiveness of an intervention, this must, even under circumstances

where the underlying logic applies, not be confused with population health impact

estimation; ITT is restricted to quantifying effectiveness at the individual level. To

quantify population-level effects, population impact measures are required, which

can be based on estimates of the risk (cumulative incidence or prevalence) or rate

(incidence rate) difference between the actually exposed and unexposed study

groups. To estimate the population attributable risk (PAR), this risk difference

(or attributable risk) is multiplied by the proportion of the total population that is

actually exposed (i.e., is actually taking the drug that is investigated, or is actually

using the consumer product under consideration). By multiplication with the

population size, the PAR can be converted to a headcount estimate. To obtain

valid PAR estimates, these calculations must be conducted in accordance with the

exposure and risk strata that actually occur in the target population. If, for example,

the impact of an exposure/therapy/consumer product on the outcome depends on

sex, age, dose, or other factors, then stratum-specific risks as well as stratum-

specific exposure prevalence estimates must be obtained in order to estimate the

integrative population attributable risk (cf. Weitkunat et al. 2015).

When the generalization of therapy study results to the target population as a

whole is assumed to be valid, then—in theory—a study-based ITT effect might be

considered being a valid estimate of the attributable risk as it will occur in the target

population, when the proportion of patients randomized to the drug in the study

corresponds to the proportion of patients that the treatment will later be prescribed
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to and when in-study compliance corresponds to clinical practice adherence pat-

terns and levels. Based on the considerations given to the generalizability of

findings from therapy RCTs to target populations, this is, even under very favorable

circumstances, a dauntingly long shot. For consumer products, it appears to be an

impossible one. Here, but probably also for drug contexts, a population health

impact assessment based on actual use effect estimates appears to be much more

logical. What is required are stratum-specific AU estimates, based on studies where

exposure-response data have been obtained for all strata (or contexts) of relevance,

in particular with regard to various levels of dose, as they occur in the real world, as

well as prevalence data regarding the size of all strata of relevance in the total

population.

Even though this is somewhat beyond scope, contemplating the logic of how to

analyze consumer product RCTs ultimately raises the question as to how useful this

design is in the first place. It appears that for biomarkers of exposure or other

objective short-term effects, the advantages of a randomized experimental approach

apply essentially in full, even though the usually unquestioned assumption of

baseline covariate balance being quasi-automatically achieved by randomization

is somewhat problematic with regard to a single RCT (cf. Worrall 2007). Whenever

the exposure period exceeds a few days or weeks, and whenever the outcomes are

more complex (including subjective and behavioral endpoints, let alone long-term

health outcomes), the question arises about what is actually being achieved through

randomization. Seligman (1995, p. 974) has voiced the concern that random

treatment allocation may be “less than useless” in mental disorder therapy research.

In such circumstances, the likelihood of protocol deviations, allocated exposure

contamination, and participants dropping out in a non-ignorable manner increases

markedly, and both efficacy and effectiveness become ambiguous concepts, imply-

ing that valid analyses of outcomes cannot be conducted without accounting for

post-randomization bias. Factually, the described complications render studies that

have been conceived as experiments essentially observational in nature, necessitat-

ing the application of bias-correcting analysis methods, rather than a simple (some-

times denoted “naı̈ve”) endpoint comparison across study groups. Such approaches

aim at establishing conditional independence through unconfounding and include,

by considering dynamic exposure as well as baseline and time-varying covariates,

adjustment, inverse probability of treatment weighting, stratification for actual use

patterns (irrespective of randomization), matching, propensity-score weighting

(or adjustment), instrumental variable analysis, marginal structural modeling, or

g-estimation (Schafer and Kang 2008, for an overview). According to Hernán and

Hernández-Diaz (2012) and Hernán et al. (2013), outpatient therapy RCTs on

effects of sustained interventions over long periods in real-world clinical care

settings (“pragmatic trials”) conducted in large samples tend to suffer from

non-differential noncompliance and sample attrition, and effectively become obser-

vational studies that require analyses beyond ITT; the authors suggest to analyze

them as observational studies. It might, depending on the degree of deviation from

the ideal RCT, indeed be more adequate to designate them as closed prospective

cohort studies with baseline randomization.
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To summarize: Clinical trials can contribute to consumer product assessment

and research related to the health and wellbeing of consumers. The methodology

was originally developed for and is most widely deployed in therapy research. It

cannot be simply copied for consumer product research. Rather, careful consider-

ation is required as to whether it can indeed provide sensible answers to the specific

research questions at hand. Many of the critical aspects of using clinical research

methods in consumer product research relate to the specific conditions of con-

sumer’s access to freely available products. Other than patients with serious

diseases, consumers usually do not have an inevitable need to use or consume a

certain product and their sovereignty to choose is largely unrestricted. Such differ-

ences have far-reaching methodological implications, including the meaning of

statistical data analysis strategies. To account for consumer preferences, behaviors,

and contexts, study designs may more likely than not need to be adopted or even

newly developed in rather unconventional ways. In general, planning and

conducting research must be guided by considering whether a specific set of

methods actually addresses the scientific questions at hand. Only then then col-

lected data can have meaning, i.e., can provide evidence.
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