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Abstract Highly organized intercellular tight and adherens junctions are crucial
structural components for establishing and maintenance of epithelial barrier func-
tions, which control the microbiota and protect against intruding pathogens in
humans. Alterations in these complexes represent key events in the development
and progression of multiple infectious diseases as well as various cancers. The
gastric pathogen Helicobacter pylori exerts an amazing set of strategies to
manipulate these epithelial cell-to-cell junctions, which are implicated in changing
cell polarity, migration and invasive growth as well as pro-inflammatory and pro-
liferative responses. This chapter focuses on the H. pylori pathogenicity factors
VacA, CagA, HtrA and urease, and how they can induce host cell signaling
involved in altering cell-to-cell permeability. We propose a stepwise model for how
H. pylori targets components of tight and adherens junctions in order to disrupt the
gastric epithelial cell layer, giving fresh insights into the pathogenesis of this
important bacterium.
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1 Introduction

1.1 The Polarized Epithelium as the First Barrier for H.
pylori Colonization

Helicobacter pylori colonizes the gastric mucosal epithelium in the hostile envi-
ronment of the human stomach. This epithelium represents a highly organized and
essential cell monolayer controlling important digestive, absorptive and secretory
functions. However, this epithelium also forms a first barrier against the microbiota
and pathogenic microbes such as H. pylori. The discovery of H. pylori in gastric
biopsies by Robin Warren and Barry Marshall, more than 33 years ago, radically
changed the view on understanding and treatment of gastric disorders as an
infectious disease (Marshall and Warren 1984). Today, we know that about half of
the human world population carries H. pylori, causing chronic gastritis in all car-
rying persons, and more severe gastric disease in about 10–15% of infected indi-
viduals (Amieva and El-Omar 2008; Atherton and Blaser 2009; Polk and Peek
2010; Salama et al. 2013; Yamaoka and Graham 2014). Colonization by H. pylori
commonly appears early in childhood, and if not treated by antimicrobial therapy,
the bacteria can persist lifelong. Although H. pylori colonization is frequently
associated with a strong inflammatory reaction, which is controlled by the host
innate and adaptive immune systems, the bacteria are not eliminated. Various
mechanisms of immune evasion have been reported, and H. pylori became a prime
example of a persistent bacterial pathogen causing chronic infections (Ramarao
et al. 2000; Gobert et al. 2001; Wunder et al. 2006; Patel et al. 2013; Foegeding
et al. 2016). Evolutionary analyses revealed that H. pylori has been associated with
modern humans over at least 100,000 years, possibly after the bacterium was first
acquired by a single host jump from a yet unknown carrier (Moodley and Linz
2009). Because of this long time of coevolution, it has been proposed that H. pylori
colonization may have been beneficial for the human host and hence provided a
selective advantage (Backert and Blaser 2016). In the modern world, however,
these infections cause a heavy burden of morbidity and mortality as a consequence
of peptic ulcer disease, gastric adenocarcinoma and mucosa-associated lymphoid
tissue (MALT) lymphoma (Correa and Houghton 2007; Atherton and Blaser 2009;
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Salama et al. 2013). In the last few years, the cellular and molecular mechanisms
utilized by H. pylori to subvert host defences have been studied thoroughly
(Amieva and El-Omar 2008; Salama et al. 2013; Backert et al. 2015; Caron et al.
2015). These investigations showed that the clinical outcome of infection with H.
pylori is controlled by a highly sophisticated host–pathogen crosstalk. Multiple
factors determine disease outcome including the bacterial genotype, genetic sus-
ceptibility of the host as well as environmental parameters.

H. pylori strains are remarkably diverse both in their genetic content and
pathogenicity. Dozens of factors were identified to affect the pathogenesis of H.
pylori. These determinants can be classified as virulence factors and
pathogenicity-associated factors. There are two classical virulence factors encoded
by H. pylori, the vacuolating cytotoxin (VacA) and the effector protein CagA.
VacA is categorized as a pore-forming toxin, and many of its activities are asso-
ciated with the formation of membrane channels in target cells. The best studied
VacA activity is vacuole formation. However, the toxin has many other effects on
host cells including the induction of apoptosis in epithelial cells or blocking the
proliferation of immune cells (Foegeding et al. 2016). VacA genes are harbored by
virtually all H. pylori isolates worldwide, but exhibit considerable sequence vari-
ation. VacA is present in several alleles that have been identified in the signal region
(s1 and s2), mid-region (m1 and m2) and others, occurring in multiple combina-
tions. The type s1/m1 VacA molecules produce an extensive cell vacuolation
phenotype, while S2-type VacAs are inactive in such assays (Foegeding et al.
2016). The second factor is CagA, which is encoded by the cag (cytotoxin-
associated genes) pathogenicity island (cagPAI) present in highly virulent H. pylori
strains and being absent in less virulent isolates. The cagPAI encodes a type IV
secretion system (T4SS), which is induced upon host contact and forms a
syringe-like pilus structure for the export of virulence factors such as the CagA
effector protein into host target cells (Tegtmeyer et al. 2011a; Backert et al. 2015).
After delivery, CagA becomes tyrosine phosphorylated at EPIYA motifs by Src and
Abl kinases (Lind et al. 2014; 2016) and mimics a host cell factor for triggering
intracellular signaling cascades affecting membrane dynamics, disruption of cell–
cell junctions as well as pro-inflammatory, cell cycle-related and anti-apoptotic
transcriptional responses (Tegtmeyer et al. 2011b; Mueller et al. 2012; Zhang et al.
2015). Other known pathogenicity-associated phenotypes include flagella-driven
motility in the mucus layer, acid neutralization by the urease (UreA, UreB and
accessory proteins), adhesion to gastric epithelial cells mediated by adhesins
(BabA, SabA, OipA, AlpA/B, HopQ, HopZ and others) as well as proteolytic
targeting of host receptors such as E-cadherin by the secreted serine protease HtrA
(Aspholm et al. 2006; Dubois and Boren 2007; Roure et al. 2012; Posselt et al.
2013; Yamaoka and Graham 2014). In addition, specific polymorphisms in human
genes involved in inflammatory and immune-regulatory processes such as
interleukin-1b (IL-1b), Toll-like receptors (TLRs) or NOD (nucleotide oligomer-
ization domain) receptors as well as lifestyle properties (diet, smoking, alcohol
consumption, etc.) have also been linked to an increased risk of developing gastric
disease including cancer (Amieva and El-Omar 2008; Polk and Peek 2010).
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Disruption of the epithelial barrier and in particular opening the intercellular
adhesions is an important hallmark of H. pylori-dependent inflammation and
neoplastic transformation. In principle, these individual processes can interfere with
the functional cell-to-cell contacts independently of each other, but the combination
of diverse temporary and locally regulated mechanisms reveals a dynamic and
complex network. Here, we summarize our current knowledge on the multiple
functions of H. pylori factors on exploiting the epithelial barrier and discuss the
multitude of involved host signaling cascades with focus on their importance in
pathogenesis.

1.2 Mechanisms of H. pylori-Triggered Reprogramming
of Epithelial Cell Differentiation

One virulence factor that clearly determines a high risk of gastric cancer development
is the cagPAI encoding CagA. CagA itself has originally been recognized as an
immuno-dominant antigen. Patients who are sero-positive for H. pylori and CagA
exhibit a 5.8-fold higher risk of developing intestinal and diffuse gastric adenocar-
cinoma as compared to uninfected persons, whereas individuals infected with
CagA-negative strains are only at a 2.2-fold higher risk of developing distal gastric
adenocarcinoma compared to uninfected control persons (Parsonnet et al. 1997).
Thus, the cagT4SS was established as a strong predictor of severe disease outcome.
CagA-positive wild-type H. pylori can induce pre-malignant and malignant
pathologies in the Mongolian gerbil infection model system. Four weeks after
infection, almost each animal exhibited gastric dysplasia, and by eight weeks about
two-thirds revealed gastric adenocarcinoma (Franco et al. 2005). Another straight-
forward experiment confirming the role of CagA in gastric cancer progression in vivo
was provided by establishing CagA-expressing transgenic C57BL/6 J mice (Ohnishi
et al. 2008). After 72 weeks, these transgenic mice developed gastric epithelial
hyperplasia, while some animals revealed polyps and adenocarcinomas in the
stomach. Moreover, systemic expression of CagA in mice leads to the development
of leukocytosis with IL-3/GM-CSF hypersensitivity, while various animals dis-
played B-cell lymphomas and myeloid leukemias (Ohnishi et al. 2008). Based on the
above findings, CagA was described as the first bacterial oncoprotein. These studies
were confirmed by two other transgenic model organisms. A transgenic drosophila
model demonstrated that CagA functions as a mimetic for the eukaryotic adaptor
protein Gab1 (Botham et al. 2008). Expression of CagA in drosophila and zebrafish
exhibited significantly enhanced levels of downstream c-Jun N-terminal kinase
(JNK) phosphorylation and Wnt target gene induction, leading to proliferation of
intestinal epithelial cells and growth of small cell carcinoma and adenocarcinoma
(Wandler and Guillemin 2012; Neal et al. 2013). Altogether, the above studies
established conclusively that H. pylori can induce the generation of gastric adeno-
carcinoma in gerbils and other model organisms. In addition, transgenic expression
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of CagA alone appears to be sufficient for the development of severe malignant
lesions in various transgenic animals.

A hallmark of gastric cancer development is the strong inflammatory response
phenotype (Backert and Naumann 2010). Chronic inflammation and late stages of
cancer are often accompanied by disruption of the proper architecture in the gastric
epithelium, and H. pylori have been found intercellular and intracellular in gastric
cancer biopsy samples (Necchi et al. 2007). In fact, infection with CagA-positive H.
pylori as an important disease-associated feature has been clearly implicated in the
disruption of the epithelial layer contributing to inflammatory gastric diseases (Polk
and Peek 2010; Salama et al. 2013; Yamaoka and Graham 2014; Caron et al. 2015).
Based on histology parameters, gastric cancer can be categorized into diffuse or
intestinal types and both are associated with chronic infection by H. pylori. While
we know very little about the pathogenesis of diffuse-type carcinoma, the intestinal
type usually comprises a set of well-known steps. In the latter model, chronic active
inflammation induced by H. pylori corresponds to the initial phase of disease
progression followed by the loss of gastric glands, development of atrophy and
hyperproliferation (Amieva and El-Omar 2008; Polk and Peek 2010). This might be
dominated by specific alterations in cell cycle, apoptosis rates and cell proliferation.
Finally, there is a progressive loss of differentiation leading to the invasive growth
of individual neoplastic cells.

2 Structure and Composition of Polarized Cell
Monolayers in the Healthy Epithelium

In order to understand how H. pylori can disrupt epithelial barrier functions, we
must first take a look at the organization of healthy epithelia. An intact epithelial
barrier requires tightly controlled cell architecture to provide effective protective
functions. A complex network of diverse regulatory structures is necessitated in the
establishment and maintenance of the protective epithelium. Besides a strictly
regulated intracellular cytoskeleton and cell-to-ECM (extracellular matrix) inter-
actions, epithelial cell-to-cell adhesions are crucially important and involve tight
junctions (TJs) and adherens junctions (AJs) (Yu and Elble 2016; Sumigray and
Lechler 2015; Rodriguez-Boulan and Macara 2014). The structure of the healthy
epithelium is normally maintained by the integrity of the apical–basal polarity, a
highly organized actin cytoskeleton and junctional complexes exhibiting
tumor-suppressive and/or anti-metastasis properties (Fig. 1a). Importantly, junc-
tional complexes are based on the extensively studied lateral cell-to-cell contacts
including TJs (Fig. 1b) and E-cadherin-based AJs (Fig. 1c) as well as desmosomes,
gap junctions and others, which are discussed elsewhere (Wei and Huang 2013). As
shown in Fig. 1, TJs mark the apical–basolateral border of polarized cells and
establish a highly selective barrier to prevent leakage and paracellular diffusion of
small molecules. Importantly, functional TJs build up cell polarity through
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impeding lateral diffusion of membrane proteins between the apical and basolateral
domains of the epithelium leading to special characteristics and functions of the cell
surface. Further functions include the control of epithelial proliferation and dif-
ferentiation (Balda and Matter 2016; Martin 2014; Aijaz et al. 2006). The structure
of TJs involves different transmembrane proteins (e.g., occludin, claudins, junc-
tional adhesion molecules [JAMs]) connecting adjacent cells (Fig. 1b). Occludin
consists of four transmembrane domains, two extracellular loops and two intra-
cellular domains. Their functions appear to be crucially important in epithelial
differentiation, but not in the establishment of the barrier (Schulzke et al. 2005).
Although no significant sequence similarity to occludin exists, claudin proteins also
contain four transmembrane domains, two extracellular loops and two intracellular
domains (Krause et al. 2015). The human claudin family contains 27 members
(Krause et al. 2015) and is important in the establishment and maintenance of the
barrier function (Inai et al. 1999). Members of the JAM family include JAM-A,
JAM-B, JAM-C and JAM4/JAML (Garrido-Urbani et al. 2014) and have a single
transmembrane domain, an extracellular domain with two Ig-like motifs, and a

JFig. 1 Model for the organization of polarized epithelial cells and composition of intercellular
junctions. a Simplified schematic presentation of the polarized cell layer in a healthy epithelium.
Two important types of intercellular junctions, the tight junctions (TJ, orange) and adherens
junctions (AJ, blue), are indicated and exhibit specific localization at the apical lateral borders. The
basal focal adhesions are composed of integrins such as a5b1 integrin and connect the
extracellular matrix with the intercellular actin cytoskeleton. Gap junctions and (hemi)desmosomes
are other examples, but they are not discussed in this chapter. b TJs are key protein complexes in
establishing and maintaining epithelial cell polarity. They are crucial for the tight sealing of the
cellular sheets, which control the paracellular ion flux and maintain tissue homeostasis. TJs are
localized at the apical side of the lateral membrane keeping barriers between the apical and basal
compartments of the plasma membranes as indicated. TJs comprise at least four types of
transmembrane proteins: junctional adhesion molecules (JAMs), claudins, occludin, tricellulin and
various indicated cytoplasmic proteins. While the transmembrane proteins mediate cell-to-cell
adhesion, the cytosolic TJ platform bears several other protein types (e.g., PDZ proteins, such as
the zonula occludens (ZO) protein-1/-2/-3, MUPP1 or cingulin) which connect the TJ
transmembrane proteins to the associated cytoskeleton. These molecules can also engage other
signaling factors, including small GTPases, kinases, phosphatases and transcription factors. The
integrity of TJs is maintained by a regulatory complex including atypical PKC (aPKC), Cdc42,
Rac1, Par3 and Par6. aPKC can phosphorylate and activate Par1b kinase at threonine residue 595.
Activated Par1b specifically localizes to the basal and lateral membranes to regulate cell polarity.
c AJs are positioned immediately below TJs and form a complex of membrane proteins and
associated factors which ensure the mechanical adhesion between two neighboring cells. AJs
assemble via calcium-dependent homophilic interactions between the extracellular domains of
E-cadherin connecting the cells as indicated. E-cadherin not only acts as an adhesive molecule, but
also plays important roles as a suppressor of growth development and carcinogenesis. The
calcium-dependent integrity of AJs is stabilized by binding of E-cadherin to intracellular catenins.
The proximal carboxy-terminal domain of E-cadherin interacts with the cytoplasmic protein
b-catenin. p120ctn can interact with the juxtamembrane part of E-cadherin, further stabilizing the
entire adherens junction platform. The E-cadherin–b-catenin complex is connected to the actin
cytoskeleton via binding to a-catenin, EPLIN (epithelial protein lost in neoplasm) and vinculin as
shown. Nectin and afadin contribute to the organization of E-cadherin-mediated AJ functions in
epithelial cells
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cytoplasmic domain (Kostrewa et al. 2001). JAM proteins are required for inter-
cellular adhesion as well as for maintaining cell polarization (Garrido-Urbani et al.
2014). In the cytoplasm, TJs form an intracellular plaque that is composed of a
complex network of scaffolding and adaptor proteins connecting the actin
cytoskeleton and intracellular signaling molecules (Fig. 1b). Zonula occludens-1
(ZO-1), ZO-2 and ZO-3 are scaffolding proteins that interact directly with claudins
and occludin (Runkle and Mu 2013). Other cytoplasmic proteins are cingulin,
Rab13, afadin, membrane-associated guanylate kinase with inverted orientation-1
(MAG proteins) and multi-PDZ domain protein 1 (MUPP-1), etc. A variety of
signaling molecules, such as small GTPases of the Rho family (Rho, Rac and
Cdc42), ZO-1-associated kinase, PKCf, etc., complete the functional structure of
TJs (Denker and Nigam 1998).

In a given polarized epithelium, AJs are located directly beneath TJs. The main
function of AJs is the formation of intercellular adhesions. The integrity of AJs is
established by the homophilic interactions of members of the cadherin family of
proteins (Niessen and Gottardi 2008; Gumbiner 2005). E-cadherin (Cdh1) is an
N-glycosylated transmembrane protein composed of an extracellular (EC) domain,
transmembrane domain and an intracellular (IC) domain. The extracellular domain
contains five repetitive amino acid sequences (EC1–EC5) with calcium-binding
motifs located between the individual EC domains (Ringwald et al. 1987; Harrison
et al. 2010). Binding of calcium ions is a requirement for the formation of inter-
actions between the EC domains. The flexible three-dimensional E-cadherin
structure is pushed into a rigid, while rod-like assembly upon calcium binding
allowing interactions of EC1 and EC3 in cis and in trans (Niessen and Gottardi
2008; Ozawa et al. 1990; Takeda et al. 1999; Pokutta et al. 1994). As shown in
Fig. 1c, the IC domain of E-cadherin interacts with members of the catenin family,
in particular b-catenin and p120-catenin (p120ctn). Binding of b-catenin to the IC
bridges E-cadherin to the actin cytoskeleton through the interaction with a-catenin.
In turn, a-catenin can bind actin either directly or via other proteins like EPLIN
(epithelial protein lost in neoplasm) or vinculin (Abe and Takeichi 2008; Hazan
et al. 1997; Meng and Takeichi 2009). Together with b-catenin, interaction of
p120ctn with the juxtamembrane part of E-cadherin stabilizes the integrity of AJs
and contributes to the regulation of the turnover of E-cadherin (Yap et al. 1998;
Gooding et al. 2004).

3 Depolarization of Epithelial Cells by H. pylori Involves
Alterations in Tight and Adherens Junctions

Infections with H. pylori are accompanied by alterations of the cell architecture
leading to depolarization of the epithelium. In particular, the intercellular junctions
are direct targets. The functionality of AJs can be disrupted by multiple mecha-
nisms. Importantly, gastric cancer of the diffuse type is strongly correlated with

202 S. Backert et al.



severe interference of AJ function through loss of function mutations or (epi)ge-
netically downregulation of the cdh1 gene. Additionally, ectodomain shedding of
E-cadherin by upregulated matrix metalloproteases (MMPs) is intensively dis-
cussed in the literature to dysregulate E-cadherin and to increase the malignancy of
gastric cancer as the consequence of the loss of adhesive properties of AJs to
increase metastasis of tumor cells (Margineanu et al. 2008; Chan 2006). Upon
disruption of AJs, the catenins can aggravate this phenomenon. Besides their
function in the stability and integrity of AJs, b-catenin and p120ctn are implicated in
the tumor-suppressive function of E-cadherin. Destabilization of the AJ complex
can lead to the release of b-catenin and p120ctn. Non-junctional cytoplasmic
b-catenin is constantly degraded by the proteasome after phosphorylation by a
multiprotein complex comprising glycogen synthase kinase 3b (GSK-3b), casein
kinase 1 (CK1), adenomatous polyposis coli (APC) and axin to prevent nuclear
functions of b-catenin (He et al. 2004). An activated Wnt signaling pathway can
result in an inhibition of b-catenin phosphorylation followed by the stabilization of
b-catenin (MacDonald et al. 2009). Accumulated b-catenin can translocate into the
nucleus, where it interacts with T-cell-specific transcription factor/lymphoid
enhancer-binding factor (TCF/LEF) family to activate the expression of
cancer-associated Wnt target genes, such as c-myc or cyclin d1 (MacDonald et al.
2009; McCrea and Gottardi 2016). Similarly, nuclear p120ctn protein physically
interacts with Kaiso to relieve Kaiso-mediated inhibition transcription of canonical
Wnt target genes, including cyclin d1 or mmp-7 (Daniel and Reynolds 1999; Park
et al. 2005; Spring et al. 2005). In conclusion, intact AJ complexes are crucially
important in the establishment of intercellular adhesions and in tumor suppression.
However, H. pylori developed fascinating mechanisms to disrupt intercellular
adhesions (Wessler and Backert 2008), which are summarized in Table 1 and
discussed in the following text.

3.1 Direct Targeting of Tight Junction Factors by H. pylori
Effector Proteins

3.1.1 Selective Opening of Tight Junctions by H. pylori VacA

Early studies have provided hints that H. pylori can target TJs in the gastric
epithelium. The first implicated bacterial factor was VacA. Papini et al. (1998)
reported that treatment of various polarized cell lines with acid-activated VacA
increased the cell permeability for low molecular weight (<350–440 Dalton)
molecules and ions such as iron (Fe3+) and nickel (Ni2+). In accordance with these
data, the transepithelial electrical resistance (TER) was decreased by VacA treat-
ment. However, high-resolution immunofluorescence analyses of VacA-treated
cells failed to reveal alterations of junctional proteins, including ZO-1, occludin and
E-cadherin. The authors proposed that VacA induces a selective permeabilization of
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the paracellular epithelial route to certain molecules and ions, which may serve to
acquire nutrients to support H. pylori survival and growth in vivo (Papini et al.
1998). Further work showed that infection of Madin-Darby canine kidney (MDCK)
monolayers with H. pylori also resulted in a decrease in TER, while isogenic DvacA
mutants did not (Pelicic et al. 1999). A similar effect was observed with various
VacA-producing isolates, including those expressing m2-type toxins that exhibit no
vacuolating activity, suggesting that vacuole formation per se is not required for the
response. Later, it was postulated that VacA permeabilizes the apical membrane of
gastric parietal cells and induces hypochlorhydria (Wang et al. 2008). Using freshly
isolated rabbit gastric glands and cultured parietal cells, it was shown that VacA
induces an influx of extracellular calcium (Ca2+), followed by activation of the
protease calpain and subsequent cleavage of ezrin, a regulator of filamentous actin
(F-actin) in cell junctions (Selbach et al. 2004), which results in the liberation of
ezrin from the apical membrane of parietal cells (Wang et al. 2008). Electron
microscopic examination revealed that VacA treatment disrupts the radial
arrangement of F-actin filaments in apical microvilli due to the loss of ezrin
integrity in parietal cells (Wang et al. 2008). Further studies showed that
VacA-containing culture supernatants disrupt the actin cytoskeleton of epithelial
cell lines, leading to cell rounding and apoptosis through anoikis (Bebb et al.
2003a). However, the role of VacA is not yet fully clear as other data have shown
that isogenic DvacA mutants behaved like wild-type H. pylori and changed TER
during infection (Wroblewski et al. 2009).

3.1.2 Disruption of Tight Junctions by Ectopic CagA

Another bacterial effector protein involved in the alteration of TJs by H. pylori is
CagA. A pioneering study has shown that CagA mediated the redistribution of TJ
proteins in MDCK cells. Amieva et al. (2003) showed that translocated CagA
associates with ZO-1 and JAM, causing an ectopic assembly of TJ components at
sites of bacterial adherence, thus altering composition and function of the apical–
junctional complex. Further studies have indicated that ectopic expression of CagA
can disrupt the cell-to-cell junctions and this depends on the phosphorylation state of
CagA and specific CagA domains (Bagnoli et al. 2005). Transfection experiments
showed that CagA expression is not only sufficient to disrupt the apical junctions, but
also perturbs epithelial cell differentiation. CagA-expressing cells lose their polarity
and cell-to-cell adhesion, acquiring an invasive cell phenotype (Bagnoli et al. 2005).
Expression of the carboxy-terminal EPIYA-containing CagA domain stimulates
pseudopodial activity, but is not sufficient to trigger cell migration. Importantly, the
amino terminus of CagA targets the protein to the apical cell junctions. However,
neither domain alone is sufficient to change cell polarity or cell adhesion, but when
coexpressed in trans, the amino terminus determines the localization of both
polypeptide chains (Bagnoli et al. 2005). It appears that the first 200 amino acids of
CagA are implicated in an inhibition of certain CagA functions, in particular
diminishing cell elongation and apical surface constriction (Pelz et al. 2011).
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The detailed interplay between the inhibitory N-terminal part of CagA and the
tyrosine-phosphorylated C-terminal part needs to be investigated in future. Further
studies showed that CagA specifically interacts with PAR1/MARK kinase, which has
an essential role in controlling epithelial cell polarity (Saadat et al. 2007; Nesic et al.
2010; Zeaiter et al. 2008). Association of CagA inhibits PAR1 kinase activity and
prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which
dissociates PAR1 from the membrane, collectively causing junctional and polarity
defects (Fig. 2a). Taken together, these data suggest that CagA induces a

JFig. 2 Model of H. pylori-induced epithelial barrier disruption by specific targeting of tight and
adherens junction proteins. Schematic presentation of two junctional complexes and particular
signaling pathways, which are induced during infection with H. pylori and/or treatment with
purified proteins. For simplification, only targeted factors are displayed. a TJs are hijacked by
purified VacA, which can selectively open the TJs by a yet unknown mechanism (1). H. pylori
translocates CagA proteins into the host cell cytoplasm via the T4SS pilus. CagA has been shown
to colocalize with ZO-1 and JAM proteins (2). The overall integrity of TJs is maintained by a
regulatory complex (gray circle) including atypical PKC (aPKC), Cdc42, Rac1, Par3 and Par6.
aPKC can phosphorylate Par1b kinase at threonine residue 595. Activated Par1b specifically
localizes to the basal and lateral membranes to regulate cell polarity (3). Transfected or
translocated CagA binds Par1b and thereby inhibits aPKC-mediated phosphorylation of Par1b (4).
The CagA-Par1b complex mislocalizes to TJs and apical membranes (4). This signaling results in
the disruption of TJs and loss of cell polarity (5). H. pylori also stimulates host nuclear responses
(6). In this way, various matrix metalloproteases (MMPs) are transcriptionally upregulated, which
can be secreted and cleave TJ proteins (7). Another target is transcription factor Cdx2, which
upregulates the expression of claudin-2 (8). H. pylori can also induce IL-1 receptor (IL-1R)
phosphorylation, playing a role in ROCK kinase activation (9) and subsequently claudin-4
disruption (10). The H. pylori urease enzyme also affects TJ proteins in two ways, first by
activating myosin light chain (MLC) phosphorylation by MLC kinase (11) or by elevating free
NH4+ levels resulting in occludin fragmentation by a yet unknown mechanism (12). b AJs are
targeted by H. pylori in multiple ways. The bacteria translocate CagA proteins into the host cell
which may interact with E-cadherin directly (1). This interaction results in the release of b-catenin
from the E-cadherin complex and subsequently translocation of b-catenin into the nucleus. In this
way, b-catenin acts as cofactors for TCF/LEF transcription factors to stimulate the expression of
various proliferative target genes such as the proto-oncogenes cyclin d1 and c-myc (2). This
response can be enhanced by p120-catenin (p120ctn) translocating to the nucleus where it interacts
with Kaiso to relieve Kaiso-mediated inhibition of TCF/LEF transcription (3). Deregulation of the
Wnt pathway including glycogen synthase kinase 3 beta (GSK-3b), adenomatous polyposis coli
(APC), casein kinase 1 (CK1) and Axin feeds into the same pathway, affecting b-catenin
phosphorylation, nuclear localization or degradation (4). Another report showed that CagA forms a
complex with E-cadherin, c-Met and p120ctn affecting cell migration and invasion (5). Intracellular
CagA can also bind GSK-3, resulting in reduced GSK-3 activity. In this way, CagA stabilizes
Snail, a transcriptional repressor of E-cadherin expression (6). H. pylori also activates MMP
transcription (7), leading to elevated MMP secretion and AJ protein cleavage (8). In addition, H.
pylori secretes the serine protease HtrA, which can cleave E-cadherin directly (9). It was also
shown that H. pylori activates the IL-1 receptor (IL-1R) by upregulating IL-1b, which results in
E-cadherin gene (cdh1) methylation (10), suppression of E-cadherin translation and downregu-
lation at the protein level (11). The result of these processes is a local epithelial disruption allowing
some H. pylori entering the intercellular space and reaching basal membranes (12). In this manner,
the bacteria could probably access the basal integrin receptor and translocate CagA. The position
of CagA translocation and the sequence of various indicated events are hypothetical in this model
and were not yet proven experimentally
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morphogenetic program in polarized epithelial cells resembling an epithelial mes-
enchymal transition (EMT) phenotype, which may be an early event in H. pylori-
induced carcinogenesis. Further support for these ideas came by studies on gastroids
that developed into a self-organizing differentiation axis. Infection of these gastroids
showed that H. pylori induced the mislocalization of claudin-7 and increased cell
proliferation in a CagA- and b-catenin-dependent fashion (Wroblewski et al. 2015).
In another publication, it was reported that CagA targets Cdx2 (caudal-related
homeobox 2) during an infection of AGS cells withH. pyloriwild type and DcagA as
control (Song et al. 2013). Cdx2 is an intestine-specific transcription factor highly
expressed in multistage tissues of dysplasia and cancer. One specific target of Cdx2,
claudin-2, is involved in the regulation of TJ permeability. It was shown that Cdx2
upregulated the expression of TJ factor claudin-2 both at transcriptional and at
translational levels (Song et al. 2013). However, AGS cells do not form polarized cell
monolayers due to the lack of proper junctions; thus, further studies with polarized
cell lines are required. In another study, it was demonstrated thatH. pylori can disrupt
claudin-4 by a Rho kinase (ROCK)-dependent pathway in human HGE-20 gastric
epithelial cell monolayers, but this occurs independently of CagA and VacA and
without altering claudin-4 transcription (Lapointe et al. 2010). Additional experi-
ments revealed that H. pylori induced IL-1 receptor type I (IL-1RI) phosphorylation
playing a role in ROCK activation and claudin-4 disruption. Taken together, these
findings identify a novel pathophysiological mechanism by which H. pylori disrupts
gastric epithelial barrier structure via IL-1RI-dependent activation of ROCK, which
in turn mediates claudin-4 disruption in TJs (Lapointe et al. 2010).

3.1.3 Urease-Dependent Targeting of Tight Junctions via MLCK
and MLC

Urease is another effector protein of H. pylori, which has been shown to target TJs,
presumably by two independent mechanisms. The urease produces ammonium
(NH3/NH4

+), which is elevated in the gastric aspirates of H. pylori-infected patients
and has been implicated in the disruption of TJ functional integrity and the
induction of gastric mucosal damage during infection. Lytton et al. (2005) have
reported that acute exposure to ammonium salts or NH3/NH4

+ derived from urea
metabolism by wild-type H. pylori resulted in a 20–30% reduction in TER. In
contrast, cultures that were exposed to supernatants derived from Durease mutant
H. pylori, showed no significant decrease in TER. Occludin-specific immunoblots
revealed the expression of a low molecular weight form of occludin at 42 kDa after
NH3/NH4

+ treatment, but its origin is yet unknown (Lytton et al. 2005). A few years
later Wroblewski et al. (2009) demonstrated that phosphorylation of myosin reg-
ulatory light chain (MLC) by MLC kinase (MLCK) regulates TJ function during H.
pylori infection. MLCK was activated by H. pylori and the progressive loss of
barrier function that was attenuated by inactivation of ureB, but not cagA, cagE or
vacA genes (Wroblewski et al. 2009). Decrease in TER was also dependent on
functional urease activity, and this was significantly decreased by inhibition of
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MLCK or Rho kinase or by loss of UreB. In addition, H. pylori infection of either
cultured monolayers or hypergastrinemic INS-GAS mice induced occludin endo-
cytosis, reflecting the disruption of TJs. Taken together, these results indicate that
modulation of TJ functions by H. pylori involves various bacterial factors which
target individual TJ components by different pathways.

3.2 H. pylori Actively Disrupts Adherens Junctions
to Induce an EMT-like Phenotype

The loss of E-cadherin functionality is associated with the EMT process through
which epithelial cells can convert to motile and invasive growing cells during the
progression of gastric carcinogenesis (Yilmaz and Christofori 2010; Huang et al.
2015). Early studies indicated that H. pylori infections are significantly associated
with the loss of E-cadherin expression and/or functions. Several modes of action
have been described that trigger both intracellular signal transduction through the
translocated CagA effector and extracellular modifications of E-cadherin through
proteases epithelial and bacterial origin. Implicated bacterial factors and altered
signaling pathways are highlighted in Fig. 2b and summarized in the following
section.

3.2.1 Interference of H. pylori CagA with the Integrity of Adherens
Junctions

The early observation that H. pylori induces a CagA-dependent EMT-like scattering
phenotype led to the initial suggestion that CagA is directly responsible for the
disruption of lateral AJs through the regulation of intracellular signal transduction
pathways. Correspondingly, a physical interaction between ectopically expressed
CagA and the IC domain of E-cadherin was shown. CagA binding to the IC domain
of E-cadherin was proposed to compete with b-catenin interaction in a CagA
phosphorylation-independent manner leading to an increase of cytoplasmic
b-catenin (Murata-Kamiya et al. 2007). Mislocalization of b-catenin and internal-
ization of E-cadherin in the cytoplasm upon infection with H. pylori wild type, but
not with the DcagA mutant strain, indicated a pleiotropic effect by CagA through
binding to Crk adaptor proteins (Suzuki et al. 2005). In addition to the
CagA/E-cadherin interaction, it was further postulated that CagA can bind to p120ctn

and c-Met, which leads to a suppression of the H. pylori-driven cell-invasive
phenotype (Oliveira et al. 2009). Ectopically expressed CagA requires the EPIYA
motif-containing sequence for binding to E-cadherin, which has been also identified
as a multimerization domain within the CagA molecule (Kurashima et al. 2008; Ren
et al. 2006). However, it is not entirely clear if there is a direct interaction betweeen
CagA and the IC domain of E–cadherin, but may involve additional signaling
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molecules such as the PAR1 kinase (Kurashima et al. 2008; Saadat et al. 2007). These
data are partly in accordance with a previous work showing the release of b-catenin
from the membrane after infection with a CagA-positive H. pylori strain in the
Mongolian gerbil infection model (Franco et al. 2005). Once released from the AJ
complex, b-catenin is constantly degraded by the proteasome after phosphorylation
by GSK-3b/CK1/APC/axin complex (He et al. 2004). InH. pylori-colonized MDCK
cells, suppression of b-catenin phosphorylation and degradation was observed as a
CagA-independent process that was regulated by GSK-3b and Akt1 kinases
(Sokolova et al. 2008), indicating that b-catenin is not only released from the AJ
complex, but exhibits additional functions in the nucleus as a cofactor of TCF/LEF
transcription factors, which are discussed in Sect. 3.3.

The intracellular CagA-mediated deregulation of AJ functions is controversial in
the literature. Analysis of the EMT-like phenotype of H. pylori-infected cells
revealed that cell motility and elongation are induced via different signal transduction
pathways. Obviously, cell motility and loss of cell-to-cell adhesion are independent
of CagA delivery, while cell elongation requires CagA translocation and tyrosine
phosphorylation (Moese et al. 2004, Tegtmeyer et al. 2009). Biopsy samples of H.
pylori-positive patients also demonstrated a cagPAI-independent reduction of
junctional b-catenin expression (Bebb et al. 2006). Accordingly, the disintegration of
E-cadherin-mediated AJs was shown as a CagA-independent process as demon-
strated by isogenic H. pylori mutants (Sokolova et al. 2008; Weydig et al. 2007).
These data imply that CagA-independent mechanisms must exist which can dereg-
ulate AJ functions in gastric epithelial cells in response to H. pylori infections.
Further studies are necessary to clarify these important questions.

3.2.2 Disruption of E-Cadherin-Mediated Adherens Junctions
by Secreted HtrA

Apart from possible destabilization of the E-cadherin complex by intracellular
CagA (Murata-Kamiya et al. 2007; Oliveira et al. 2009), downregulation of
E-cadherin expression or promoter hypermethylation (Chan et al. 2003), also
proteolytic cleavage of E-cadherin upon infection with H. pylori has been consis-
tently reported (Weydig et al. 2007; Schirrmeister et al. 2009). Ectodomain shed-
ding represents an important mechanism in E-cadherin regulation of the healthy
epithelium, but is also a very frequent event in cancer progression and is often
associated with a poor prognosis due to the high capability to metastasize. Several
host cell proteases have been described to cleave E-cadherin on the cell surface,
including matrix metalloprotease (MMP)-3, 7, 9 and ADAM (a disintegrin and
metalloprotease)-10 and 15 as well as plasmin and kallikrein 7 (Maretzky et al.
2005; Ryniers et al. 2002; Johnson et al. 2007; Davies et al. 2001; Noe et al. 2001;
Covington et al. 2005; Symowicz et al. 2007). In fact, H. pylori has been shown to
upregulate several E-cadherin proteases, including MMP-1 (Pillinger et al. 2007),
MMP-3 (Sougleri et al. 2016), MMP-7 (Ogden et al. 2008; Yin et al. 2010;
Bebb et al. 2003b), MMP-9 (Kundu et al. 2006), MMP-10 (Costa et al. 2016) or
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ADAM-10 (Hoy et al. 2010; Schirrmeister et al. 2009). Correspondingly, an
increase in serum level of the extracellular domain of E-cadherin has been detected
in H. pylori-infected patients by O’Connor et al. (2011), which might serve as a
biomarker or prognostic marker of gastric cancer.

It is unequivocally clear that host proteases are upregulated and activated in
response to H. pylori infection, which are implicated in E-cadherin shedding.
However, siRNA-mediated downregulation and pharmacological inhibition of
various MMPs and ADAM proteases revealed that additional proteases must be
involved in this process (Hoy et al. 2010; Schirrmeister et al. 2009). Interestingly, it
was found that a soluble factor of H. pylori is sufficient to efficiently disrupt
E-cadherin-based AJs (Weydig et al. 2007). The serine protease
high-temperature-requirement A (HtrA) of H. pylori was finally identified as a
secreted serine protease that directly and selectively targets E-cadherin in vitro and
on gastric epithelial cells (Hoy et al. 2010). Generally, HtrA is expressed as a
periplasmic protein, but is also secreted into the environment and was found in
outer membrane vesicles (Bumann et al. 2002; Lower et al. 2008; Hoy et al. 2010;
Olofsson et al. 2010; Boehm et al. 2013; Turner et al. 2015). Interacting with
E-cadherin at the molecular level, HtrA targets amino acid stretches containing the
[VITA]#[VITA]-x-x-D-[DN] motif within the E-cadherin molecule as preferred
cleavage positions (Schmidt et al. 2016b). HtrA cleavage sites are positioned
between the five individual extracellular repeats (EC1-EC5), which are important
calcium-binding motifs. Functional E-cadherin-mediated AJs require calcium
binding to form functional homophilic interactions between the EC domains in cis
and trans. Therefore, in a physiological context, these sites are only partially
accessible in calcium-bound E-cadherin. It is hypothesized that calcium binding to
the HtrA-targeted E-cadherin cleavage sites limits the HtrA-mediated E-cadherin
and explains why a stable 90-kDa fragment is observed during infection with H.
pylori instead of a fragment ladder (Schmidt et al. 2016a). These data point to a
tightly controlled E-cadherin shedding mechanisms probably involving both host
and bacterial proteases.

If HtrA-mediated E-cadherin shedding does not only open intercellular adhesion,
but also destabilize the intracellular E-cadherin complex to release b-catenin,
p120ctn has not been investigated yet. However, the consequences of the disruption
of AJs by H. pylori are potentially substantial for the gastric epithelium and might
be one aspect to permit H. pylori transmigration across this barrier (Hoy et al. 2010,
2012; Schmidt et al. 2016b). In H. pylori, HtrA showed a remarkable stability under
extreme conditions (high temperature, high salt concentrations, etc.), which is
certainly beneficial in the gastric environment (Hoy et al. 2013). The HtrA protease
is highly conserved in H. pylori strains across the world and is absolutely essential
for H. pylori survival (Tegtmeyer et al. 2016) underlining the importance of HtrA in
H. pylori physiology and pathogenesis. In contrast to many other bacteria, it was
not yet possible to create an htrA-deletion mutant in H. pylori (Tegtmeyer et al.
2016; Salama et al. 2004). Hence, the development and optimization of HtrA
inhibitors are currently of high interest (Geppert et al. 2011; Lower et al. 2011;
Perna et al. 2014, 2015). The application of an HtrA-specific small molecule
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inhibitor indicated that HtrA significantly contributes to H. pylori-mediated
E-cadherin ectodomain shedding and consequently, bacterial transmigration across
an intact epithelial barrier (Hoy et al. 2010; Boehm et al. 2012). Based on the above
HtrA cleavage sites in E-cadherin, a substrate-derived peptide inhibitor was also
developed that selectively bound and inhibited HtrA, thereby blocking transmi-
gration of H. pylori (Schmidt et al. 2016b). These studies imply that HtrA-mediated
E-cadherin cleavage is a crucial step in the infection of H. pylori by opening
intercellular adhesions locally allowing H. pylori access to the basolateral mem-
branes of a polarized epithelium, where it can interfere with different host factors,
which are necessary to promote the infection.

3.3 Direct Targeting of Tight and Adherens Junction
Proteins by Changing Nuclear Responses

In H. pylori-infected patients with early-onset gastric cancer, somatic cdh1 gene
mutations and cytoplasmic b-catenin localization were observed indicating that
E-cadherin-mediated AJs in gastric cancer patients were disrupted (Saito et al.
1999). Mislocalization of E-cadherin and catenins was also found in cultured and
primary human epithelial cells through the detection of E-cadherin, b-catenin,
a-catenin and p120ctn in intracellular vesicles upon infection with H. pylori leading
to a destabilization of cell adherence (Conlin et al. 2004; Weydig et al. 2007;
Krueger et al. 2007). This might be further supported by alterations of the
E-cadherin expression. In patients, downregulation of E-cadherin expression was
significantly associated with H. pylori infection in antral biopsy sections (Terres
et al. 1998). Similar observations were made for a-catenin. Associated with an
infection with H. pylori, mRNA levels of a-catenin were reduced in gastric cancer
tissues (Yu et al. 2000). Together with additional cell adhesion molecules,
E-cadherin expression was downregulated as monitored by RT-PCR and Western
blot analyses (Lim et al. 2003). The downregulation of E-cadherin was further
connected with promoter methylation in gastric mucosae from intestinal metaplasia,
primary and metastatic cancer indicating that H. pylori-mediated promoter
methylation might occur early in carcinogenesis (Chan et al. 2003; Perri et al.
2007). Eradication of H. pylori by antibiotics reverted hypermethylation in patients
with chronic gastritis (Chan et al. 2006) and gastric cancer (Leung et al. 2006). The
transcriptional downregulation of E-cadherin expression was also observed in cells,
which were infected for 24 h with H. pylori in vitro (Lee et al. 2014b). Long-term
infections stabilized the zinc-finger transcription factor and EMT marker protein
Snail, which has been implicated in E-cadherin suppression via its binding to
E-cadherin proximal promoter (Lee et al. 2014a). In MKN28 cells, H. pylori
induced the suppression of claudin-7 that was regulated by elevated b-catenin and
Snail levels. Comparably, Snail expression was elevated and claudin-7 levels were
downregulated in H. pylori-infected gastric patients (Wroblewski et al. 2015).
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Mechanistically, the transcriptional repressor Snail is stabilized in response to
CagA/GSK-3 interaction through which GSK-3 activity is inactivated (Ngo et al.
2016; Sougleri et al. 2016).

Besides the transcriptional control of E-cadherin expression, impairing the
E-cadherin-mediated AJ complex function activates cancer-associated signal
transduction pathways. Cytoplasmic accumulated b-catenin can translocate into the
nucleus where it can function as a cofactor for TCF/LEF transcription factors.
Nuclear localization of b-catenin in H. pylori-infected AGS cells and after over-
expression of CagA indicated that CagA might have a regulating effect in
b-catenin-dependent signal transduction (Franco et al. 2005). Whether this reflects a
physiological effect is questionable as AGS cells do not express E-cadherin, but
show abnormal b-catenin localization. However, enhanced transactivation of cdx1
in MKN28 cells (Murata-Kamiya et al. 2007) or cyclin d1 in MDCK cells
(Sokolova et al. 2008) was described acting as proliferation markers indicating that
H. pylori infection can induce b-catenin-mediated TCF/LEF transactivation in
E-cadherin-positive cells. However, the majority of reports indicate that CagA is
not implicated in this process. Accordingly, b-catenin-mediated up-regulation of
TCF/LEF-dependent transcription in MDCK cells was described as T4SS depen-
dent, but CagA independent (Sokolova et al. 2008). A similar observation was
made in a study investigating p120ctn functions in H. pylori-infected cells. Nuclear
translocation of p120ctn relieved Kaiso-mediated transcriptional repression of mmp-
7. This mechanism required a functional cagPAI, but not CagA expression (Ogden
et al. 2008). If the increase of MMP-7 expression enhances E-cadherin shedding
needs to be investigated in future, but represents a possible scenario.

In summary, these data imply that not only the function of E-cadherin within the
AJ complex can be affected, but also its expression at the transcriptional level. Loss
of function and downregulated expression of E-cadherin are strongly associated with
invasive growth of gastric tumor cells, and H. pylori can deregulate various factors
controlling E-cadherin and catenin functions. These findings indicate a coordinated
deregulation of E-cadherin expression and function in H. pylori-infected gastric
epithelial cells.

4 Multistep Model for H. pylori-Induced Epithelial
Barrier Disruption

Through the expression of manifold pathogenic and virulence factors, H. pylori can
colonize the gastric epithelial cells and interfere with host cell functions at several
levels. Early events, such as bacterial motility, adherence and colonization, are
indispensable as very first steps in the infection process and are discussed in other
excellent reviews (Caron et al. 2015; Aspholm et al. 2006; Dubois and Boren
2007). Importantly, the progression of gastric cancer in H. pylori-infected patients
is accompanied by the loss of cell polarity and the disruption of the epithelial
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architecture, processes which are closely linked with cancer-associated signal
transduction pathways. In this context, disruption of TJs and AJs is a hallmark of H.
pylori infections and involves a combination of different bacterial factors that
interact with host cell elements in a locally coordinated and phased manner
assembling a complex multistep infection process.

Depolarization of H. pylori-infected epithelial cells requires efficient
T4SS-mediated translocation of the oncoprotein CagA. The question whether CagA
translocation occurs apically or basolaterally is still not answered. In vivo CagA
translocation is difficult to prove. Hence, most studies describe an epidemiological
association between CagA presence and H. pylori-dependent disorders. The
knowledge of CagA-triggered depolarization and disruption of the epithelial barrier
function mainly came from a series of studies on cultured non-polarized or only
partially polarized tumor cells limiting the functional investigations of CagA. Until
very recently, it was assumed that H. pylori can translocate CagA at the apical
surface of non-polarized epithelial tumor cells without the requirement of a host
receptor. In agreement with this idea, apical CagA delivery via phosphatidylserine
and cholesterol was suggested as a possible mechanism (Murata-Kamiya et al.
2010) that together with infection and transfection studies in vitro implicated that
CagA can directly target and disrupt intercellular junctional functions (Fig. 2).
However, tyrosine-phosphorylated CagA reflecting its intracellular occurrence was
primarily connected with the interaction of the T4SS adhesin CagL with the
basolateral receptor a5b1-integrin leading to the hypothesis that H. pylori needs to
contact the basolateral membrane (Kwok et al. 2007; Saha et al. 2010; Tegtmeyer
et al. 2010, 2014; Conradi et al. 2012a, b; Barden et al. 2013, 2014). Later on,
additional T4SS components (CagY, CagI and CagA) were identified as b1-
integrin-interacting proteins (Jimenez-Soto et al. 2009) further supporting this
hypothesis. However, whether apical and/or basolateral CagA translocation occurs
in combination remains yet unknown. In this review, we proposed a complex
multistep model covering several sophisticated processes to open intercellular TJs
and AJs allowing the access of H. pylori to a5b1-integrins summarizing
CagA-dependent and CagA-independent mechanisms contributing to the loss of
intercellular adhesions and epithelial depolarization.

5 Concluding Remarks

Gastric carcinogenesis is associated with H. pylori-induced signaling leading to
depolarization of the epithelium. According to the multistep model, we hypothesize
that the loss of intercellular adhesion is an important event and facilitates invasive
growth of tumor cells. Mechanistically, disruption of TJs and AJs might allow
efficient injection of the bacterial effector and oncoprotein CagA to derail
cancer-associated signal transduction. Of course, H. pylori’s attack on intercellular
adhesion is only one piece in the complex pathogenesis scenario, and the knowl-
edge about the mechanisms is steadily increasing. It would also import to inves-
tigate in future whether and how other TJ and AJ components such as ZO-2, ZO-3,
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cingulin, MUPP1, a-catenin, EPLIN, nectin or afadin may be affected during
infection (Fig. 1). A combination of different bacterial factors is involved in gastric
barrier disruption, and the direct interference of soluble H. pylori factors with
components of the TJs and AJs came to attention in the last years as they represent
highly attractive drug targets for novel intervention strategies to combat H. pylori
infections. In addition to the apical–junctional complex, desmosomes and gap
junctions are also important constituents, which impact to cell-to-cell interactions
(Wei and Huang 2013). Future studies should also consider the investigation of
these junctional protein platforms and their potential role in H. pylori infections.
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