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Abstract Helicobacter pylori infection is the most important cause of human
gastric cancer worldwide. Gastric cancer develops over a long time after H. pylori
infection via stepwise accumulation of genetic alterations and positive selection of
cells with growth advantages. H. pylori itself and the resultant chronic inflammation
lead to the emergence of genetic alterations in gastric epithelial cells via increased
susceptibility of these cells to DNA damage. Reactive oxygen species (ROS) and
reactive nitrogen species (RNS) in inflammatory and gastric epithelial cells, as well
as the expression of cytidine deaminase in gastric epithelial cells, may link
H. pylori-related inflammation and DNA damage. Recent comprehensive analyses
of gastric cancer genomes provide clues for the possible molecular mechanisms of
gastric carcinogenesis. In this chapter, we describe how genetic alterations emerge
during gastric carcinogenesis related to H. pylori infection.
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1 Genetic Abnormalities in Gastric Cancer Tissues
Related to H. pylori Infection

Gastric cancer is generally classified by histologic classification systems, including
those of Lauren (1965) and the World Health Organization (WHO) (2010; www.
who.int/en/). The Lauren classification includes two subtypes of gastric cancer, the
intestinal type and the diffuse type, and the WHO classification has four subtypes,
including papillary, tubular, mucinous and poorly cohesive types. Intestinal-type
gastric cancers represent cohesive tumor cells with a glandular architecture. These
cancer types are typically generated from Helicobacter pylori-infected gastric
mucosa with chronic gastritis, atrophy and metaplastic changes (Correa 1988).
While intestinal metaplasia has been focused as a precursor to gastric cancer,
spasmolytic polypeptide-expressing metaplasia (SPEM) has also been highlighted
as another metaplastic lesion (Goldenring et al. 2010). SPEM generates via the
trans-differentiation of chief cells following parietal cell loss due to H. pylori
infection (Nam et al. 2010). In addition, SPEM gives rise to intestinal metaplasia in
animal models (Yoshizawa et al. 2007; Choi et al. 2016) and also progresses to
further aberrant and invasive phenotypes in H. pylori-infected Mongolian gerbil
models (Shimizu et al. 2016). Therefore, SPEM is thought to be the initial
pre-neoplastic metaplasia predisposing to gastric cancer. Diffuse-type gastric can-
cer, by contrast, is composed of scattered, poorly cohesive cells with poor cellular
differentiation. This type of cancer develops in H. pylori-infected mucosa with or
without atrophic and metaplastic changes, as well as in the mucosa unaffected by
H. pylori infection.

On the other hand, classification of gastric cancers based on comprehensive
genome analyses has been recently proposed (Cancer Genome Atlas Research
Network 2014; Cristescu et al. 2015). Cancer is a disease of genetic abnormalities
(Stratton et al. 2009). Whole-genome sequencing and whole-exome sequencing
which targets coding exons of genes using next generation technologies have been
conducted on various cancer types and have identified numerous genetic alterations
in cancerous tissues (Lawrence et al. 2013). The Cancer Genome Atlas (TCGA)
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project revealed that the gastric cancer genome has, on average, 11.4 mutations per
megabase (Cancer Genome Atlas Research Network 2014). Although most of these
genetic alterations may be passenger mutations that do not contribute to carcino-
genesis, 2–6 mutations on average per each cancer tissue could be oncogenic driver
mutations (Kandoth et al. 2013). Based on the abundant information of genetic
changes in tumors, TCGA research network demonstrated that gastric cancer is
subdivided into four subtypes: tumors positive for Epstein-Barr virus (EBV),
tumors with microsatellite instability (MSI), tumors with chromosomal instability
(CIN) and genomically stable (GS) tumors. EBV-positive cancer shows extreme
DNA hypermethylation, PIK3CA mutations and amplification of JAK2, PD-L1, and
PD-L2 genes. The characteristics of MSI tumors are epigenetic silencing of MLH1,
one of the DNA mismatch repair genes, in the context of a CpG island methylator
phenotype (CIMP). MLH1 silencing can lead to subsequent genetic changes in
hundreds to thousands of genes. The frequency of MSI is reportedly higher in
intestinal-type gastric cancer, older females and distal gastric cancer (Kim et al.
2011). Early gastric cancer genomes with MSI show a level of mutations compa-
rable to that of advanced MSI gastric cancer in terms of the number, sequence
composition, and functional consequences of mutations (Kim et al. 2014). These
findings suggest that genetic or epigenetic alterations characterized as MSI are
already present in early gastric cancer genomes. CIN tumors account for 50% of
gastric cancers, and most of them are histologically of the intestinal-type. This type
of cancer typically has tumor protein p53 (TP53) mutations and chromosomal
aberrations, including marked aneuploidy, and focal amplification, such as receptor
tyrosine kinases. TP53 mutations are frequently seen in non-cancerous gastritis
mucosa with H. pylori infection (Shimizu et al. 2014), and various chromosomal
aberrations are present in gastric adenoma (Uchida et al. 2010). These findings
suggest that TP53 mutations and various chromosomal alterations are early events
during H. pylori-related gastric carcinogenesis with atrophy-metaplasia-dysplasia
sequence. GS tumors that lack these specific features are predominantly of the
diffuse histologic subtype, and half of them harbor mutations or fusion in
E-cadherin (CDH1) or Rho GTPase family genes (Wang et al. 2014; Kakiuchi et al.
2014).

Combined histologic and genetic analyses are essential for understanding the
process of gastric cancer development. Although each cancer has a very different
profile, these analyses elucidate several possible processes from early genetic events
to progression in H. pylori-related gastric carcinogenesis. In addition to these
approaches for uncovering the process of gastric carcinogenesis, molecular mech-
anisms by which genetic alterations generate and accumulate during H. pylori
infection are also important. Two main types of factors can influence the generation
of genomic abnormalities: one that induces DNA damage and another that repairs
damaged DNA (Fig. 1), which will be discussed in this chapter.
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2 Genotoxic Mediators: ROS/RNS

2.1 ROS/RNS in H. pylori-Infected Gastric Mucosa

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated in
human tissues are considered potential genotoxic factors (Hussain et al. 2003). The
high expression levels of ROS and RNS in the gastric mucosa of H. pylori-infected
patients correlate well with histologic mucosal damage (Suzuki et al. 1996; Davies
et al. 1994). Sources of ROS and RNS are inflammatory cells such as neutrophils,
as well as gastric epithelial cells (Hardbower et al. 2014). In general, the oxidative
burst from phagocytes in neutrophils is the main innate mechanisms of immunity
against pathogenic bacteria (Naito and Yoshikawa 2002). In neutrophils, ROS
production is catalyzed by nicotinamide adenine dinucleotide phosphate oxidase on

DNA repair
function

ROS/RNSAID 

DNA damage

Inflammatory cells
(Neutrophil, Macrophage, etc) 

ROS/RNS 

Genetic alteration
(mutation, chromosomal aberration)

H. pylori

Fig. 1 The mechanisms how genetic alterations generate during H. pylori-related gastric
carcinogenesis. H. pylori itself and the resultant chronic inflammation induce DNA damages in
gastric epithelial cells via the expression of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) as well as activation-induced cytidine deaminase (AID). In addition to these
genotoxic or genome editing agents, the alteration of DNA repair function induced by H. pylori
infection also influences the generation of genetic alterations
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the membrane (Handa et al. 2011). Upon recognition of pathogenic bacteria,
neutrophils immediately engulf the bacteria, form phagosomes and kill the bacteria
by ROS production. In addition, nitric oxide (NO) is produced by macrophages as a
normal host immune response against H. pylori. In H. pylori-infected gastric
mucosa, however, ROS and RNS cannot kill these bacteria because of bacterial
defense mechanisms (Gobert and Wilson 2016). On the one hand, ROS and RNS
derived from neutrophils and macrophages increase in H. pylori-infected gastric
mucosa, and on the other hand, the bacterial cytotoxin-associated gene A(CagA)
protein stimulates multiple responses in gastric epithelial cells including oxidative
stress (Backert et al. 2015). In gastric epithelial cells, H. pylori CagA induces the
expression of spermine oxidase (SMOX), an enzyme for the back-conversion of
spermine to spermidine (Xu et al. 2004; Chaturvedi et al. 2011). This reaction leads
to the production of H2O2 as a by-product. Increased H2O2, however, causes ROS
accumulation via mitochondrial membrane depolarization and the activation of
caspase-mediated apoptosis (Chaturvedi et al. 2004). In fact, gastric epithelial cells
in individuals infected with CagA-positive H. pylori express high SMOX levels
(Chaturvedi et al. 2011).

2.2 DNA Damage Induced by ROS/RNS
in H. pylori-Infected Gastric Mucosa

ROS and RNS induce various types of DNA damage, including point mutations,
DNA adducts and single- or double-strand DNA breaks (DSBs). Among these,
8-hydroxydeoxyguanosine (8-OHdG), which is the main oxidatively modified
product of DNA, is significantly expressed in gastric cancer tissues as well as in
adjacent tissues in humans (Lee et al. 1998). Also, NO produced in H. pylori-
infected gastric mucosa is highly reactive and rapidly reacts with superoxide (O2

−) to
produce highly toxic peroxynitrite (ONOO−), inducing nitrative and oxidative DNA
damage, such as the formation of 8-oxo-7,8-dihydro-2’-deoxyguanosine and
8-nitroguanine, which are used as biomarkers of oxidative or nitrative DNA damage
(Handa et al. 2011; Borrego et al. 2013). These damaged guanines preferentially lead
to G > T transversion mutations during the genome replication process, although
repair systems are closely involved in this formation as described later (Bruner et al.
2000). ROS and RNS are considered to induce single- or double-strand DNA breaks.
Indeed, H. pylori infection leads to significantly increased levels of phosphorylated
histone H2A variant X (H2AX), a marker of DSBs in gastric epithelial cells (Toller
et al. 2011). In addition to ROS or RNS, the involvement of some repair systems is
needed for the formation of DSBs as well as resultant chromosomal aberrations.

Oxidative stress also induces apoptosis or autophagy in gastric epithelial cells
(Cover and Blanke 2005; Tsugawa et al. 2012). Therefore, oxidative stress has a
mutagenic role as well as a preventive role in carcinogenesis. Recent studies
demonstrated that cancer stem cells possess enhanced mechanisms for protection
against oxidative stress (Tsugawa et al. 2012). Expression of a variant 9 form of the
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receptor CD44 (CD44v9), a possible cancer stem cell surface marker (Lau et al.
2014) contributes to ROS defense via up-regulation of the synthesis of reduced
glutathione (GSH), the primary intracellular antioxidant. CD44v9 interacts with and
stabilizes xCT, a subunit of the cysteine-glutamate transporter xc(-), and thereby
promotes cysteine uptake for GSH synthesis (Ishimoto et al. 2011). Cancer stem
cells able to defend against ROS due to CD44v9 expression are thus thought to
drive tumor growth, chemoresistance and metastasis. In H. pylori-infected gastric
mucosa, SPEM, which is considered a precancerous lesion, expresses high levels of
CD44v9 (Wada et al. 2013). These findings suggest that the balance of the accu-
mulation of genetic alterations by ROS and cell survival via protection against ROS
is important for the generation of cancer cells in H. pylori-infected gastric mucosa.

3 Genome Editing Enzyme: Cytidine Deaminase

3.1 APOBEC Family

Human beings have several kinds of genome editing enzymes. Among them, the
apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC)
family, represents cytidine deaminases that convert cytosine (C) to uracil
(U) (Cascalho 2004). Most APOBEC family members act against foreign genomes,
such as those of some intruding viruses. For example, APOBEC3G inactivates the
viral function of human immunodeficiency virus (HIV) or hepatitis B virus
(HBV) via editing their genomes (Harris et al. 2003; Noguchi et al. 2005). In
contrast, activation-induced cytidine deaminase (AID), APOBEC3A, and
APOBEC3B induce genetic alterations in human DNA sequences. AID is normally
expressed in activated B cells and is a key molecule for generating immune diversity
via inducing both somatic hypermutation, which occurs in variable regions of the
immunoglobulin genes, and class-switch recombination, which occurs in switch
regions of the immunoglobulin genes. AID appears to act on single-stranded DNA
that is generated during the transcriptional stage (Matsumoto et al. 2015a, b) in the
form of transcription bubbles, resulting in the conversion of C to U. The generated
U:G mismatches can usually be repaired to C:G by the high-fidelity repair system
(Liu and Schatz 2009). If the U:G mismatch is not repaired before the onset of DNA
replication and is replicated, it gives rise to C:G to T:A transitions. Alternatively, the
removal of the uracil by uracil-DNA glycosylase (UNG) or the recognition by
mismatch repair proteins such as MSH2 and MSH6 and error-prone translesion
polymerases can induce various types of mutations. Various mutations in variable
regions of the immunoglobulin genes result in increased antigen-binding affinity. In
addition, nicks in the near sites of both strand sequences of switch regions are
generated by the repair process of AID-induced U:G mismatches, resulting in
DNA DSB (Stavnezer 2011). Recombination of DSB by non-homologous end
joining (NHEJ) contributes to the class-switch recombination. APOBEC3A and 3B
also have the capacity to edit the human genome. Although their functions in normal
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conditions are unknown, recent reports demonstrated that high expression of
APOBEC3A and 3B is linked with the mutation signatures of several cancer types,
including breast cancer and lung cancer (Burns et al. 2013a, b). In fact, in vitro
experiments showed that these enzymes induce mutations in human genomes
(Shinohara et al. 2012; Burns et al. 2013a, b). As with AID, deamination of these
enzymes and subsequent repair processes induce various mutations. The target
sequences of these enzymes differ: APOBEC3A and 3B favor C residues flanked by
5′-T, and AID exhibits a strong preference for deaminating C residues flanked by a
5′-purine (G or A) (Schmitz and Petersen-Mahrt 2012; Beale et al. 2004). Although
recent detailed analyses of these mutation signatures identified more complicated
target motifs (Chan et al. 2015), mutator enzymes as well as various repair processes
are deeply related to mutation patterns.

3.2 The Role of AID in Gastric Carcinogenesis

AID protein is aberrantly expressed in a substantial proportion of H. pylori-asso-
ciated human gastric epithelium and gastric cancer tissues, although no AID
expression is observed in normal gastric mucosa (Matsumoto et al. 2007). In par-
ticular, mononuclear cell infiltration and intestinal metaplasia correlate with AID
expression (Nagata et al. 2014). After eradication of H. pylori, AID expression is
significantly decreased but still higher than that in H. pylori-negative gastric
mucosa. Intriguingly, infection with cagPAI-positive H. pylori ectopically induces
high expression of AID in human gastric epithelial cell lines, but cagPAI-negative
H. pylori has no effect on AID expression (Matsumoto et al. 2007). Also, inflam-
matory cytokines such as tumor necrosis factor (TNF)-α increase the expression of
endogenous AID protein in gastric epithelial cells via the nuclear factor (NF)-κB
pathway. Furthermore, aberrant AID expression in gastric epithelial cells induced
by these stimuli causes a number of somatic mutations in tumor-related genes,
including the tumor-suppressor gene TP53, and knockdown of endogenous AID
significantly reduces the number of TP53 mutations observed in H. pylori-infected
cells. AID transgenic mice that have constitutive and ubiquitous AID expression
develop malignant lymphoma as well as various epithelial tumors, including gastric
cancer (Okazaki et al. 2003; Morisawa et al. 2008). These findings suggest that
aberrant AID expression in gastric epithelial cells induces mutations via a genome
editing function. In addition, AID expression in gastric epithelial cells causes
chromosomal aberrations, mainly submicroscopic deletions, at various chromoso-
mal loci (Matsumoto et al. 2010). Among these deleted loci, the recurrently deleted
chromosomal regions harbor the tumor-suppressor cyclin-dependent kinase inhi-
bitor genes CDKN2A/CDKN2B. In H. pylori-infected wild-type mice, the copy
numbers of the Cdkn2b-Cdkn2a locus in the gastric mucosa are reduced, whereas
no such changes are observed in the gastric mucosa of H. pylori-infected
AID-deficient mice. These findings suggest that AID induces point mutations as
well as chromosomal aberrations in gastric epithelial cells.
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4 Guardian of DNA Damage: DNA Repair System

4.1 Overview of the DNA Repair System

In general, the high-fidelity DNA repair system in humans has an important role in
preventing the generation of genetic abnormalities. The spontaneous mutation rate
during DNA replication is very low, typically <10−9 per base pair per cell division
(Lange et al. 2011). Defects in DNA repair function, however, can induce many
mutations that result in cancer initiation (Lange et al. 2011; Eso et al. 2015). In fact,
individuals with mutations of the mismatch repair gene MUTYH develop familial
adenomatous polyposis and multiple cancers in the gastrointestinal tract (Nielsen
et al. 2007). Some types of cancer have mutations or methylated silencing of DNA
repair genes such as MLH1 and polymerase ε (POLE) (Imai and Yamamoto 2008;
Rayner et al. 2016).

The DNA repair system generally involves the removal of damaged or incorrect
bases and DNA re-synthesis by DNA polymerases (Lange et al. 2011). Briefly, base
excision repair (BER) mediates the removal of a single base residue by a specific
DNA glycosylase, the incision of the resultant abasic site by an apurinic/
apyrimidinic (AP) endonuclease, and DNA re-synthesis by DNA polymerase β.
Nucleotide excision repair (NER) can remove various helix-distorting adducts
caused by ultraviolet (UV), cisplatin, and others, followed by the re-synthesis of the
resulting 27–29 nucleotide gap by polymerase δ, ε or κ. Mismatch repair (MMR) is
an excision repair process that removes mismatched bases. Some mismatch repair
proteins such as MSH2 and MSH6 can recognize mismatch regions, and a segment
of DNA is excised between the mismatch and a nearby nick, followed by filling of
the resultant gap by DNA polymerase δ.

DNA DSBs are cytotoxic lesions that promote carcinogenesis or are lethal if they
are left unrepaired or inappropriately repaired. The presence of DSBs is first rec-
ognized by the MRE11-RAD50-NBS1 (MRN) complex (Stracker and Petrini
2011), and this complex and activated ataxia telangiectasia mutated kinase
(ATM) induce the activation of downstream DNA repair genes and a cell cycle
checkpoint such as checkpoint kinase 2 (CHK2) (Shiloh and Ziv 2013; Bartek and
Lukas 2003). DSBs are repaired by two major pathways: homologous recombi-
nation (HR) and NHEJ (van Gent et al. 2001). HR occurs between two homologous
sequences, usually two sister chromosomes, after DNA replication, and the
BRCA2-RAD51 complex has a central role in HR (Esashi et al. 2005). On the one
hand, HR is relatively error-free, while on the other hand, NHEJ is the simple
ligation between two DNA ends independently of the chromosome locus, and is
therefore relatively error-prone and sometimes results in chromosomal aberrations.
In fact, NHEJ contributes to class-switch recombination in the immunoglobulin
gene loci of activated B cells. Therefore, in addition to genotoxic factors, the
alteration of some repair functions can contribute to the induction of genetic
aberrations or chromosomal aberrations during tumorigenesis.

312 T. Shimizu et al.



4.2 Dysfunction of the DNA Repair System
in H. pylori-Infected Gastric Epithelial Cells

H. pylori infection has several effects on alterations of the DNA repair function.
H. pylori infection in cultured gastric epithelial cells down-regulates the proteins
involved in MMR and BER (Machado et al. 2009; Kim et al. 2002). In addition,
down-regulation of MMR proteins occurs both in an H. pylori-infected mouse
model and in human cases (Machado et al. 2009; Park et al. 2005). A combination
of reduced expression of these repair genes with increased expression of genotoxic
factors could enhance the accumulation of somatic mutations in gastric epithelial
cells. A recent paper demonstrated that DSBs are introduced by NER, including
endonucleases XPG and XPF, rather than BER (Hartung et al. 2015). Also, DSBs
trigger a damage signaling and repair response involving ATM and its downstream
target genes such as 53BP1 and MDC1 (Hanada et al. 2014; Toller et al. 2011), but
H. pylori infection induces the down-regulation of some components of several
DNA repair pathways such as ATR, ATRIP, MRE11, and NBS1, which are
involved in DSB repair (Koeppel et al. 2015). Interestingly, H. pylori-induced
DSBs are repaired via NHEJ rather than HR, possibly due to the up-regulation of
NHEJ-related genes and the down-regulation of HR-related genes (Hartung et al.
2015). These findings suggest that various alterations of DNA repair functions are
closely linked with the formation of DSBs as well as chromosomal aberrations
during the development of H. pylori-associated gastric cancers.

5 Molecular Mechanisms of DNA Aberrations

5.1 Footprint of Carcinogenesis Process Determined
by Comprehensive Genome Analyses

Comprehensive cancer genome analyses reveal not only genetic abnormalities of
the cancer genome, but also footprints of its carcinogenesis process. Each cancer
type has its own specific dominant mutation signatures. Recent studies revealed that
the mutation signature that accumulates in tumor tissues provides a clue to iden-
tifying the cause of genetic alterations during tumor development (Alexandrov et al.
2013; Helleday et al. 2014; Matsumoto et al. 2015a, b). Loss of function in DNA
repair genes represents specific patterns of genomic alterations. As mentioned
above, tumors with MSI in many cancer types have numerous substitutions, and
small insertions and deletions due to defects of mismatch repair functions (Imai and
Yamamoto 2008; Shah et al. 2010). Tumors with mutations in POLE or POLQ,
which produce DNA polymerases with proofreading functions, have very large
numbers of mutations (Heitzer and Tomlinson 2014). In tumors with inactivating
mutations of HR-related genes BRCA1 or BRCA2, such as some pancreatic cancers,
substantial numbers of larger deletions (up to 50 bp) with overlapping
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microhomologies at breakpoint junctions are found (Alexandrov et al. 2013). By
contrast, some extrinsic mutagens have specific mutation signatures. UV light, a
well-known extrinsic mutagen, induces mainly C:G > T:A transitions in the
dipyrimidines. This mutation pattern is predominantly observed in melanoma and
basal cell carcinoma, providing evidence that UV light plays a role as a causative
factor in the development of these tumors (Krauthammer et al. 2012; Jayaraman
et al. 2014). Benzo[a]pyrene, one of the convincingly established carcinogens
contained in tobacco, typically causes C:G > A:T transversions. This mutation
pattern is dominantly observed in lung cancers, especially those associated with
smoking (Pfeifer et al. 2002; Alexandrov et al. 2013). As described above, intrinsic
mutagens such as oxidative factors and APOBEC family members also have
specific mutation signatures. Oxidative stress generally causes C:G > A:T
transversions (Bruner et al. 2000). APOBEC3A, APOBEC3B, and AID are prob-
ably related to the development of various cancer types based on their expression
levels and mutation signatures (Burns et al. 2013a, b; Schmitz and Petersen-Mahrt
2012). Thus, comprehensive cancer genome analyses can reveal the actual mech-
anisms of carcinogenesis in human tissues, which cannot be identified in cultured
cells or animal models. Several mutation patterns, however, currently have
unknown origins and may eventually elucidate novel mechanisms of carcinogenesis
(Alexandrov et al. 2013).

5.2 Exploring the Molecular Mechanisms of Gastric
Carcinogenesis According to Mutation Signature
(Fig. 2)

In gastric cancers, the most common mutation pattern is the C:G > T:A transition,
more than half of which occurs in XpCpG trinucleotides (Wang et al. 2011; Zang
et al. 2012; Nagarajan et al. 2012; Cancer Genome Atlas Research Network 2014;
Shimizu et al. 2014). This pattern is the prominent mutation signature in many
cancer types and is probably related to the spontaneous deamination of
5-methylcytosine (Alexandrov et al. 2013; Pfeifer 2006). In particular, this mutation
signature is prominently observed in gastrointestinal cancers and therefore seems to
be linked with inflammation-associated carcinogenesis (Burns et al. 2013a, b). In
addition, gastric cancers have numerous C:G > T:A transitions at non-CpG sites
that occur preferentially at GpCpX or ApCpX sequences (Nagarajan et al. 2012;
Shimizu et al. 2014). This mutation pattern corresponds well with the mutation
signature induced by AID activity (Olivier et al. 2014), suggesting the involvement
of AID-mediated cytidine deamination in the induction of somatic mutations during
gastric carcinogenesis. As mentioned above, DNA repair systems are deeply
involved in the formation of mutations after DNA damage by AID activity, sug-
gesting that MSI status could contribute to preserve the mutation signature induced
by AID activity. Consistently, C:G > T:A transitions are more prominently
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observed in MSI gastric cancers and occur preferentially at XpCpG as well as at
GpCpX or ApCpX sequences that are target sequences preferred by AID (Cancer
Genome Atlas Research Network 2014, Shimizu et al. 2014). Recent reports
demonstrated that the AID/APOBEC family also deaminates 5-methylcytosine
or 5-hydoxymethylcytosine during the process of DNA demethylation (Bhutani
et al. 2010; Popp et al. 2010). The deamination of 5-methylcytosine can induce
C:G > T:A transitions in XpCpG sequences if the subsequent repair system does
not work. Therefore, overexpression of AID also seems to be related to the
emergence of C:G > T:A transitions in XpCpG sequences. More recently, deep
sequencing of selected cancer-related genes, such as TP53 in non-tumorous gastritis
mucosa, revealed that C:G > T:A transitions at GpCpX sequences were strongly
preferred, like those in gastric cancer tissues (Shimizu et al. 2014). Interestingly,
human TP53 knock-in (Hupki) mice with AID overexpression also had TP53
mutations that led to C:G > T:A transitions at GpCpX sequences (Shimizu et al.
2014). Taken together, these findings indicate that AID is deeply involved in the
emergence of mutations during gastric cancer development.

C:G > A:T transversion is also a mutation pattern frequently seen in gastric
cancer genomes. This is the typical pattern induced by oxidative stress (Bruner et al.
2000). Considering the experimental data just discussed, oxidative stress is also an

C:G>T:A 
in XpCpG 

C:G>A:T 

T:A>G:C 
in XpTpTC:G>T:A 

in ApCpX  
or GpCpX others

Unknown

ROS/RNS 

Spontaneous
deamination

(methylation-related)

AID-related
deamination

Fig. 2 Gastric carcinogenesis process according to mutation signatures of gastric cancer genome.
Mutation signatures of gastric cancer genome represent the footprint of carcinogenesis. C:G > T:A
transitions in XpCpG are most common pattern, indicating methylation-related spontaneous
deamination. C:G > T:A transitions in ApCpX or GpCpX and C:G > A:T transversions suggest
the involvement of AID-related deamination and ROS/RNS, respectively. Some patterns,
including T:A > G:C transversions in XpTpT, suggest that unknown mechanisms still remain
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important factor for inducing DNA damage during gastric carcinogenesis. In
addition, T:A > G:C transversions at XpTpT sequences are unique patterns of
gastric cancer genomes (Cancer Genome Atlas Research Network 2014).
Esophageal adenocarcinoma has the same mutation patterns (Agrawal et al. 2012;
Dulak et al. 2013; Nones et al. 2014), but another type of esophageal cancer,
squamous cell carcinoma, for which the risk factors are tobacco and alcohol, does
not have this mutation pattern (Song et al. 2014; Lin et al. 2014; Gao et al. 2014).
Because esophageal adenocarcinoma is caused by duodeno-gastro-esophageal
reflux, T:A > G:C transversions at XpTpT sequences may be linked with a cur-
rently unknown mediator of mutation induction.

Chromosomal aberrations are very important genetic alterations in gastric can-
cer, particularly CIN-type gastric cancer. As mentioned above, ROS and AID are
possible inducers of DSBs during gastric carcinogenesis. In addition, the DNA
repair system is deeply involved in the emergence of DSBs as well as in the repair
of DSBs. Interestingly, CIN-type gastric cancers often have TP53 mutations in
addition to various chromosomal aberrations (Cancer Genome Atlas Research
Network 2014). Many reports indicate that the functions of TP53 include the
regulation of HR, repair genes, cell cycles, and others (Nicolai et al. 2015; Wang
et al. 2015). Therefore, loss-of-function mutations of TP53 could accelerate the
emergence of DSBs as well as chromosomal aberrations.

6 Concluding Remarks

To fully understand the process of gastric carcinogenesis, precise molecular
mechanisms of malignant transformation from gastric epithelial cells to cancer cells
should be elucidated. Thus, we must know “what cells” are the origin of cancer,
“what mutations” must occur, and “how” these cells can obtain these mutations.
Recent comprehensive genome analyses revealed “what mutations” the gastric
cancer genome possesses; however, it remains unknown “what cells” acquire “what
mutations” for malignant transformation. Some reports demonstrated that normal
stem cells can become cancer-initiating cells, while other reports indicated that
differentiated cells may be better candidates for the origin of cancer cells (Beck and
Blanpain 2013; Rycaj and Tang 2015; Brungs et al. 2016). The dynamic changes in
the gastric glands during long-term H. pylori infection complicate the under-
standing of this process. Another difficulty is the lack of animal models that mimic
human gastric carcinogenesis, although H. pylori- or H. felis-infected animal
models are well established for the study of gastritis (Hayakawa et al. 2013).
Mutation signatures in gastric cancer tissues can also provide information to help
uncover actual mechanisms, showing “how” gastric epithelial cells acquire muta-
tions. Some mutators, such as cytidine deaminase and oxidative stress, have been
well investigated as key molecules involved in gastric carcinogenesis, but it is clear
that unknown mechanisms still remain. For example, why are C:G > T:A transi-
tions at CpG sites frequently observed? What induces T:A > G:C transversions at
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XpTpT sites? How does the DNA repair system influence on the acquisition of
mutations? Epigenetic alterations in gastric epithelial cells could also be involved in
the induction of mutations. Further investigations will provide new insights toward
understanding the whole process of gastric carcinogenesis.
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