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Abstract Helicobacter pylori is a bacterial pathogen which commonly colonizes
the human gastric mucosa from early childhood and persists throughout life. In the
vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause
of peptic ulcer disease and gastric cancer, however, and these outcomes occur in
10–15% of those infected. Gastric adenocarcinoma is the third most common cause
of cancer-associated death, and peptic ulcer disease is a significant cause of mor-
bidity. Disease risk is related to the interplay of numerous bacterial host and
environmental factors, many of which influence chronic inflammation and damage
to the gastric mucosa. This chapter summarizes what is known about health and
disease in H. pylori infection, and highlights the need for additional research in this
area.
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1 Introduction

The bacterial pathogen Helicobacter pylori was discovered by Barry Marshall and
Robin Warren in the early 1980s, who first reported its presence on mucosal tissue
sections from the stomach of patients with gastritis and peptic ulcers (Marshall and
Warren 1984). It is a fastidious and microaerophilic Gram-negative bacterium
characterized by a curved rod morphology and positive reactions for catalase,
oxidase, and urease, the latter reaction being characteristically rapid and most
frequently used for initial identification. In the vast majority of cases, the infection
is completely asymptomatic; however, peptic ulcer disease or gastric cancer occurs
in 10–15% of those infected. The type and severity of disease depends on several
factors including characteristics of the colonizing strain, the host immune response,
as well as environmental factors such as smoking, a high-salt diet, and the presence
of other concurrent infections (Amieva and Peek 2016). It is important to charac-
terize the effects of these factors in order to understand why disease occurs, and
who may be at risk of developing disease in the future.

2 H. pylori Infection and Strategies of Persistence

H. pylori usually establishes colonization of the gastric mucosa during early
childhood, and it persists life long in the absence of an effective eradication
treatment. The organism has co-evolved with humans over at least 60,000 years
since their migration from Africa (Atherton and Blaser 2009), and is currently
estimated to colonize almost 50% of the world’s population. The prevalence of
H. pylori differs greatly around the world, with the highest infection rates in
developing countries. The prevalence of H. pylori is declining, with increased
urbanization and common use of antibiotics during childhood. H. pylori infection
rates in young children from developed countries are now very low and, since it is
unusual to acquire the infection as an adult, this creates a birth cohort effect. Of
those below 20 years of age residing in the USA, for example, only approximately
10% are H. pylori-positive, compared with 40% amongst the over 60s (Nagy et al.
2016).

H. pylori is almost exclusively found in humans. The presence of other
Helicobacter species in the human stomach is comparatively rare, and these are
thought to be acquired from domestic pets. The precise routes of transmission of
H. pylori are unclear; however, close person-to-person contact is required, and the
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faecal–oral and oral–oral routes are most likely. Strains of H. pylori are usually
isolated from gastric biopsy tissue specimens; however, it is also possible for the
bacterium to be recovered from saliva, gastric reflux fluid, diarrhoea, and vomitus.
The organism does not typically survive passage through the intestine into normal
faeces; however, its isolation and transmission from contaminated water supplies
and farm animals has also been reported (Breckan et al. 2016).

H. pylori inhabits the harsh, highly acidic environment of the stomach, and has
evolved several mechanisms in order to survive. This bacterium is not an acidophile
and can only survive for a short period at pH 2, quickly losing motility in a pH- and
pepsin-dependent manner. Whilst the basal acidity in the human stomach lumen is
usually below pH 2, this can increase to pH 5.5 following a meal in adults and as
high as pH 7 in breast-fed children. Furthermore, pepsin activity is exponentially
reduced at higher pH, thus allowing H. pylori a longer survival time in the gastric
lumen if infection occurs postprandial and in younger children compared to adults
(Schreiber et al. 2005). H. pylori possesses several important enzymes to enable
survival under acid shock conditions. 15% of H. pylori’s expressed protein is made
up of cytoplasmic urease, made up of two subunits, UreA and UreB. In an envi-
ronment below pH 6.5, a channel in the cytoplasmic membrane, encoded by the
ureI gene, opens to enable entry of host urea. This becomes hydrolysed by urease to
produce ammonia and carbon dioxide, buffering the cytoplasm (Weeks et al. 2000).
Another important enzyme is a-carbonic anhydrase. This is located within the
periplasm and catalyses the reversible hydration of carbon dioxide, diffusing into
the periplasm from the action of cytoplasmic urease, to bicarbonate, buffering the
periplasm. Both of these enzymes are regulated by the two component
acid-responsive signalling system, ArsRS (Pflock et al. 2005; Wen et al. 2007),
which also regulates other non-essential enzymes which aid acid tolerance: the
amidase AmiE; the formamidase AmiF; and the urea-producing arginase RocF
(Pflock et al. 2006).

As well as surviving the acidic environment of the gastric lumen, H. pylori must
avoid clearance through frequent gastric emptying. The organism has unipolar
flagella, is highly motile, and is able to sense pH and bicarbonate ions. This allows
the bacteria to quickly migrate from the highly acidic gastric lumen into the mucus
layer overlying the epithelium. The secretion of bicarbonate ions by gastric
epithelial cells establishes a pH gradient through the mucus layer, from a near
neutral pH close to the epithelial cell surface to the highly acidic stomach lumen.
The viscosity of the mucus layer is pH-dependent and ranges from a thick, pro-
tective gel near the acidic lumen to a viscous solution near the epithelium. Upon
entering the mucus gel from the lumen, H. pylori is able to reduce the viscosity of
the mucus gel to aid its motility by increasing the local pH through the
urease-catalysed hydrolysis of urea to ammonia (Celli et al. 2009). The bacteria use
the pH gradient to orientate themselves in the gastric mucus, moving from the
acidic lumen to a more neutral environment deeper in the mucus layer. Histological
analysis has shown most of the bacteria to be free-swimming in the mucus close to
the epithelium, with some adhering to the surface of the epithelial cells or within the
gastric glands. This close proximity allows it to deliver bacterial products to the
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cells, either in the form of secreted or surface proteins, or in outer membrane
vesicles, for its own benefit. One example of this is the loosening of tight junctions
and release of interstitial fluid for access to nutrients and urea. H. pylori can sense
other important signals such as the essential amino acid arginine, urea, and the
quorum-sensing molecule autoinducer 2, and is repelled from conditions which
reduce electron transport (Keilberg and Ottemann 2016). Host urea appears to be
the main attractant that H. pylori uses to sense the epithelium (Huang et al. 2015).
Urea binds strongly to the chemoreceptor, TlpB, and coupled with the hydrolysis of
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urea within the immediate environment of the bacteria, and H. pylori is able to
sense levels of the molecule below the nanomolar range (Huang et al. 2015).
Interestingly, H. pylori has been shown to preferentially colonize sites of gastric
injury in mice, and this response is both rapid and requires a functional chemotactic
system (Aihara et al. 2014). Such areas of damage may be a good source of
nutrients for the bacteria. Whilst close interactions with the epithelium protect
H. pylori from the harsh environment of the stomach lumen and provide access to
nutrients, it comes at a cost: the activation of the immune response and increased
induction of bactericidal factors. In order to persist, a careful balance is struck
between the bacteria and the host.

H. pylori interacts with the gastric epithelium, stimulating the expression of
pro-inflammatory cytokines and chemokines in addition to antimicrobial peptides
such as beta-defensin 2 (Fig. 1a). The chemokine response recruits the migration of
immune and inflammatory cells. This includes neutrophils, which phagocytose the
bacteria. Macrophages also secrete reactive oxygen and nitrogen species to kill
bacteria, but also express pro-inflammatory cytokines which can induce epithelial
cell apoptosis. Macrophage-derived cytokines also have an important influence on
the development and balance of the adaptive immune response (Munari et al. 2014).
Dendritic cells (DCs) in a pro-inflammatory cytokine environment stimulate the
differentiation of T-helper 1 (Th1), Th17 and Th22 cells, which in turn secrete
cytokines to enhance the inflammatory response (Atherton and Blaser 2009).

JFig. 1 Pro- and anti-inflammatory responses to H. pylori in the gastric mucosa. a Interactions
between gastric epithelial cells and H. pylori result in activation of inflammatory signalling,
resulting in the expression of high concentrations of cytokines and chemokines including
interleukin-8 (IL-8), CCL20, and CXCL1–3. These chemokines stimulate the migration of
immune cells, including dendritic cells (DCs), neutrophils (N/), macrophages, and B and T
lymphocytes into the mucosa from capillary blood. Upon arrival, the cells respond to the local
cytokine milieu, becoming pro-inflammatory in nature. Macrophages and neutrophils phagocytose
bacteria that penetrate the mucosa. Bacterial components and outer membrane vesicles (OMVs)
pass through the epithelial barrier and further activate immune and inflammatory cells. DCs secrete
IL-12 and IL-23, which stimulate the differentiation of naïve T cells into T-helper 1 (Th1) and
Th17 cells, respectively. The cytokines secreted by these Th subsets act on macrophages to
stimulate their development into an M1 type, being highly bactericidal, secreting reactive oxygen
and nitrogen species (ROS, NO) and expressing inflammatory cytokines including IL-1b, IL-6,
and tumour necrosis factor alpha (TNFa). This results in damage to the epithelial barrier and the
induction of epithelial cell apoptosis. The presence of inflammatory cytokines also exacerbates the
chemokine response of gastric epithelial cells. b Less pathogenic (cagPAI-negative) strains of H.
pylori stimulate lower-level expression of cytokines and chemokines from gastric epithelial cells,
resulting in reduced recruitment of immune and inflammatory cells into the mucosa. Upon
penetration of the mucosal barrier (e.g. via OMVs), some bacterial components such as VacA and
GGT have a tolerizing effect on DCs. These DCs promote the differentiation of regulatory T cells
(Tregs), which express anti-inflammatory cytokines including IL-10, IL-35, and transforming
growth factor beta (TGFb). Macrophages in this environment express markers of an M2 type,
express IL-10 and perform wound-healing rather than inflammatory or bactericidal functions. The
presence of IL-10 suppresses chemokine expression from gastric epithelial cells
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Despite this potent inflammatory and bactericidal activity, H. pylori has multiple
mechanisms for evading immunity and directing the immune system towards a
suppressive response. It thereby minimizes damage and enables it to maintain per-
sistent, lifelong colonization of the host (Fig. 1b). Many components ofH. pylori are
modified so that they do not potently activate recognition receptors such as the
toll-like receptors, and its fucosylated ligands for the C-type lectin receptor
DC-SIGN stimulate anti-inflammatory cytokine responses including interleukin-10
(IL-10) (Salama et al. 2013). Some components have the ability to induce regulatory
immune responses (White et al. 2015) (reviewed in Chapters “Immune Evasion
Strategies and Persistence of Helicobacter pylori” and “Helicobacter pylori and
Extragastric Diseases”), for having a tolerizing effect on DCs and causing them to
promote the differentiation of naïve T cells into regulatory T cells (Tregs) (Oertli et al.
2012; Luther et al. 2011). These suppressive cells modulate inflammation by
secreting cytokines such as IL-10 and transforming growth factor beta (TGFb), or
they may act via a number of contact-mediated mechanisms (Ai et al. 2014). Such
effects result in reduced chemokine expression by gastric epithelial cells, and
therefore reduced migration of inflammatory cells into the mucosa and less tissue
damage. Macrophages responding to the cytokine milieu of the mucosa may express
markers of the M2 type, whose chief role is in wound-healing rather than having a
potent bactericidal and inflammatory function, which are attributes of M1 macro-
phages (Quiding-Jarbrink et al. 2010). H. pylori expresses enzymes such as catalase
and arginase to protect against the damaging effects of reactive oxygen and nitrogen
species (Ramarao et al. 2000; Gobert et al. 2001), and in addition, the bacterium is
known to downregulate the expression of some antimicrobial peptides by gastric
epithelial cells, including beta-defensins 1 and 3 (Patel et al. 2013; Bauer et al. 2012).
These mechanisms are also thought to contribute to the persistence of the infection.

3 H. pylori Infection in Health and Disease

Chronic H. pylori colonization almost always leads to local inflammation of the
gastric mucosa (gastritis), but this does not usually result in any symptoms. The most
common disease outcomes of H. pylori infection include gastric and duodenal ulcer
disease, distal gastric adenocarcinoma, and primary gastric mucosal-associated
lymphoid tissue (MALT) lymphoma. Other conditions associated with H. pylori
infection include dyspepsia, atrophic gastritis, iron deficiency anaemia, and idio-
pathic thrombocytopenia purpura. Pathogenesis is linked with the level of gastric
inflammation, and interestingly the pattern of gastritis within the stomach is an
important determinant of disease outcome (see Chapters “Human and Helicobacter
pylori Interactions Determine the Outcome of Gastric Diseases” and “Pathogenesis
of Gastric Cancer: Genetics and Molecular Classification”). What dictates the dis-
tribution of gastritis remains unknown; however, antral-predominant gastritis is
associated with duodenal ulceration, whereas corpus-predominant or pan-gastritis is
associated with the development of gastric ulcers and gastric cancer (Atherton 2006).
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It has been proposed that the time of development of atrophic gastritis may an
important factor in deciding disease outcome. If atrophic gastritis is not acquired
early, high gastric acid output may result, with increased risk of duodenal ulcer later
in life. An earlier appearance of atrophic gastritis would cause low gastric acid
production, and consequently gastric cancer may occur (Ubukata et al. 2011).

Peptic ulcer disease is a fairly modern outcome of H. pylori infection, and the
reasons for its emergence are unknown. In the USA, gastric ulcers were described
from 1838 and duodenal ulcer disease reported a little later in 1931. Peak preva-
lence was in the early 1900s (Baron and Sonnenberg 2001). Possible theories for
the emergence of peptic ulcer disease include increased strain virulence, and
reduced transmission making infection with a single strain more common. Changes
in the immune response, due to environmental factors such as cigarette smoking,
diet, or exposure to other infections, are also important (Atherton and Blaser 2009).
The ancestry and co-evolution of the H. pylori strain and its host population has
also been shown to influence gastric cancer risk (Kodaman et al. 2014). Within
populations in Africa, Asia, and India, some anomalies in the prevalence of disease
have been reported, and these “enigmas” may provide clues about the circum-
stances of disease development. Much controversy surrounds whether these actu-
ally exist however (Graham et al. 2009), and the factors influencing the risk of
disease are extremely complex (Table 1).

On the other hand, a protective association between H. pylori infection and
disorders such as gastroesophageal reflux disease (GERD), oesophageal adeno-
carcinoma, inflammatory bowel disease, multiple sclerosis, and asthma has been
variously described (Robinson 2015) (described in Chapter “Helicobacter pylori
and Extragastric Diseases”).

Table 1 Factors influencing the risk of gastric carcinogenesis amongst H. pylori-infected
individuals

Factor Evidence References

Age of H. pylori
acquisition and
birth order

Earlier acquisition of H. pylori (most
likely from older siblings) increases the
risk of gastric cancer

Blaser et al. (2007)

Gender Gastric cancer prevalence rates in
women are half of that in men. This
effect may be mediated by sex
hormones since gastric cancer rates
increase more slowly in women up to
menopausal age, and thereafter at the
same rate as in men

Chen et al. (2016), Global
Burden of Disease Cancer
et al. (2015)

Life expectancy Gastric cancer is most commonly
diagnosed in those over 60 years of age,
and this may explain reduced gastric
cancer prevalence in some countries
where there is a low life expectancy

Global Burden of Disease
Cancer et al. (2015), Graham
et al. (2009)

Pattern of gastritis Those with pan-gastritis (rather than
antral-predominant gastritis) are at risk
of developing gastric cancer

Ubukata et al. (2011)

(continued)
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3.1 Gastritis

The surface of the gastric mucosa is covered by layers of protective mucus, whichH.
pylori swims through to avoid damage from gastric acid and digestive enzymes. H.
pylori is able to interact with the mucins via major adhesins the blood group
antigen-binding adhesin (BabA), sialic acid-binding adhesin (SabA), and the
lacdiNAc-specific adhesin, LabA (Ilver et al. 1998; Mahdavi et al. 2002; Rossez et al.
2014). Once in proximity to gastric epithelial cells, H. pylori activates inflammatory
gene expression via interactions with pattern recognition receptors, for example
Toll-like receptor 2 and NOD1 (Viala et al. 2004), and inflammasomes (Kim et al.
2013; Vanaja et al. 2015). Components of the H. pylori cytotoxin-associated gene

Table 1 (continued)

Factor Evidence References

H. pylori
eradication

Reduced incidence of gastric cancer
following eradication therapy,
particularly if administered prior to the
development of pre-malignant
pathology

den Hoed and Kuipers
(2016)

H. pylori
virulence type

More virulent strains (expressing CagA,
the s1/i1/m1 type of VacA, and others
including BabA, SabA, OipA) are
associated with an increased gastric
cancer risk

Amieva and Peek (2016)

Matching of host
and strain
ancestry

Those with a genetic mismatch between
their ancestry and that of their
colonizing strain (e.g. Amerindian
ancestry, but carrying a strain with a
high African genetic content) are more
likely to have severe pre-malignant
pathology

Kodaman et al. (2014)

Host gene
polymorphisms

The risk of gastric cancer is higher in
those with gene polymorphisms leading
to increased inflammation (e.g. IL-1b,
TNFa, IL-10, TLRs 1, 2, 4, 5, and 9)

El-Omar et al. (2008)

Diet A diet low in fruits and vegetables, high
in salt, and with high alcohol
consumption is associated with an
increased gastric cancer risk

Fang et al. (2015)

Smoking Data are not consistent; however, some
studies show that cigarette smoking
increases the risk of gastric cancer, and
quitting smoking delays the risk of
gastric cancer development and death

Ordonez-Mena et al. (2016)

NSAID use Regular NSAID use is an independent
protective factor for gastric cancer
development

Wu et al. (2010)
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pathogenicity island (cagPAI) encoded type IV secretion system (T4SS) activate
inflammatory signalling in gastric epithelial cells via a number of different mecha-
nisms (described briefly in Sect. 3.1, and in detail in Chapter “Structural Insights into
Helicobacter pyloriCag Protein Interactions with Host Cell Factors”), resulting in the
secretion of cytokines and chemokines, including interleukin-8 (IL-8), IL-1b, tumour
necrosis factor alpha (TNFa), IL-6, IL-12, CCL2-5, CCL20, and CXCL1-3 (Cook
et al. 2014). The presence of chemokines leads to the recruitment of neutrophils,
macrophages, mast cells, dendritic cells (DCs), innate lymphoid cells, and lympho-
cytes, a feature termed gastritis (Atherton and Blaser 2009).

The level and nature of gastritis varies, affecting the risk of disease development
(Macarthur et al. 2004). Innate cells including neutrophils, macrophages, and NK
cells contribute to gastritis via the secretion of inflammatory and tissue-damaging
factors including reactive oxygen and nitrogen species (ROS and RNS) (Italiani and
Boraschi 2014), perforin and granzymes (Yun et al. 2005).

It has recently been shown that human gastric epithelial cells and DCs produce
retinoic acid (RA), which regulates the level of inflammation. During H. pylori
infection, RA production is reduced, which leads to more intense inflammation and
mucosal damage (Bimczok et al. 2015). DCs also play an important role in regu-
lating the development of the adaptive immune response. They promote the
development of pro-inflammatory Th1 and Th17 cells, the numbers of which
correlate with the severity of gastritis (Hitzler et al. 2012). In the H. pylori-infected
gastric mucosa however, DCs are thought to be semi-mature and tolerogenic
(Rizzuti et al. 2015), stimulating the development of regulatory T cells (Tregs)
which suppress inflammation.

Molecular mimicry by H. pylori frequently induces autoreactive antibodies
against molecules such as the parietal cell H+, K+-ATPase. It is thought that these
antibodies may enhance inflammation and damage in the stomach (Smyk et al.
2014). In addition, Th1 cells secrete the cytokines interferon-gamma (IFNc) and
TNFa, which stimulate macrophages to secrete further pro-inflammatory factors.
Th17 cells secrete IL-17A, IL-17F, IL-21, and IL-22, which also stimulate the
expression of ROS, RNS, and chemokines, leading to further inflammation and
neutrophil recruitment (Hitzler et al. 2012).

3.2 Peptic Ulcer Disease

H. pylori is the leading cause of peptic ulceration, with 95% of duodenal ulcers and
70% gastric ulcers being attributable to the infection (Ford et al. 2016). The presence
of these breaks in the lining of the duodenal or gastric mucosa is associated with
significant mortality, for example from haemorrhage and perforation.

Chronic inflammation of the antrum resulting from H. pylori infection leads to
destruction of delta cells, and subsequent reduction in the level of somatostatin they
secrete. As somatostatin inhibits gastrin production from neighbouringG cells, reduced
levels of this hormone lead to hypergastrinemia. In the case of antral-predominant
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gastritis, elevated gastrin levels overstimulate the acid-producing parietal cells of the
undamaged corpus resulting in hyperchlorhydria. In some people with
antral-predominant gastritis, this increased gastric acid output results in gastric meta-
plasia of the duodenal epithelium. This permits H. pylori to colonize and cause
inflammation, possibly leading to duodenal ulceration. Gastric ulcers may develop in
those with corpus-predominant or pan-gastritis, where the acid output is normal or
reduced. Lowacid output can arise owing to loss of parietal cells resulting fromatrophic
changes to the corpus mucosa induced by chronic inflammation of this part of the
stomach. Despite increased gastrin production from the H. pylori-infected antrum, a
state of hypochlorhydria is established. This prevents the development of duodenal
ulcers; however, inflammation and damage to the gastric mucosa may result in the
development of gastric ulcers. Pre-malignant lesions and gastric adenocarcinoma may
also arise as a result of this gastritis pattern (Atherton and Blaser 2009;
Malfertheiner 2011).

Peptic ulceration is more frequently found in those with reduced numbers of
Tregs in their gastric mucosa, and thus impaired capacity to control inflammation
(Cook et al. 2014; Robinson et al. 2008). Gastric Th1 and Th17 cells from the
antrum of patients with peptic ulcer disease induce epithelial cells to express higher
levels of MHC class II, and exposure to their secreted cytokines leads to activation
of mitogen-activated protein (MAP) kinases and transcription factors AP-1 and
NF-jB, thereby enhancing the inflammation and damage (Zhou et al. 2007).

3.3 Gastric Adenocarcinoma

Gastric cancer is the fifth most common malignancy worldwide, and there are
approximately 100,000 new cases each year (Colquhoun et al. 2015). Most cases
are found in Asia, with over two-thirds of those reported in China (Ferlay et al.
2015). It is the third most common cause of cancer-related death, since initial
diagnosis is usually at a late stage (Herrero et al. 2014). It can be divided into two
subtypes depending on the location: cardia (arising from epithelial cells at the
gastroesophageal junction) and non-cardia (arising from the distal stomach). Cardia
gastric cancers have similar risk factors to those for oesophageal adenocarcinoma
and Barrett’s oesophagus, and are thought to be mostly unrelated to H. pylori
infection (Colquhoun et al. 2015). In contrast, non-cardia gastric cancer is strongly
associated with H. pylori, with up to 89% of cases attributed to the infection. H.
pylori has been classified as a carcinogen, and the risk of gastric cancer
development for an infected individual is 1–2% (Plummer et al. 2015).

The two histological types of gastric cancer are classed as intestinal and diffuse.
The intestinal type develops along a stepwise progression driven by inflammation.
H. pylori infection leads to chronic gastritis which, after several decades, leads to
gastric gland atrophy, intestinal metaplasia, dysplasia, and finally adenocarcinoma.
H. pylori eradication therapy reduces the incidence of atrophic gastritis, but does
not reduce the risk of gastric cancer development unless the eradication is
administered prior to pre-malignant changes (Malfertheiner et al. 2006).
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Gastric carcinogenesis is associated with ROS/RNS-mediated DNA damage, the
silencing of tumour suppressor genes via DNA methylation, histone epigenetic
modifications, and epithelial–mesenchymal transition (Na and Woo 2014) (see
Chapters “Exploiting the Gastric Epithelial Barrier: Helicobacter pylori’s Attack on
Tight and Adherens Junctions” and “Helicobacter pylori-Mediated Genetic
Instability and Gastric Carcinogenesis”). Gene polymorphisms associated with a
higher risk of gastric adenocarcinoma tend to result in more severe inflammation,
mediated by genetically determined high expression of pro-inflammatory cytokines
(IL-6, IL-8, TNFa, IL-1b), low expression of anti-inflammatory cytokines (IL-10,
TGFb), or enhanced responsiveness to bacterial components (Toll-like receptors 1,
2, 4, 5, and 9) (Ramis et al. 2015; El-Omar et al. 2008). High-level Th17 and Th22
responses are associated with increased gastric cancer progression and poor survival,
probably because the cytokines that they secrete favour angiogenesis and increased
tumour invasiveness (Liu et al. 2012). The Th1 response also contributes to car-
cinogenesis, but there is evidence that this includes stronger anti-tumour immunity,
and thus a better prognosis for gastric cancer patients. Treg responses are important
for controlling inflammation; however, as they inhibit anti-tumour immunity, having
high levels of these cells is an indication of poor prognosis (Hou et al. 2014).

3.4 MALT Lymphoma

H. pylori infection is present in virtually all patients with gastric MALT lymphoma,
but this outcome occurs rarely (approximately 0.8 per 100,000 per year). Around
10% of cases are thought to be independent of H. pylori, but may be due to an
undiagnosed H. pylori infection, or perhaps gastric non-pylori Helicobacters.
H. pylori-mediated inflammation induces the formation of lymphoid follicles in the
gastric mucosa, which are not present in the uninfected stomach (Genta et al. 1993).
Uncontrolled expansion of marginal zone B cells in these lymphoid follicles occurs
as a consequence of chronic inflammation and continuous antigenic stimulation (Du
and Atherton 2006). The tumour cells are commonly disseminated throughout the
gastric mucosa and often remain localized to this site. Spread to regional lymph
nodes and more distant mucosal sites, however, occurs in approximately 40% of
cases. Low-grade MALT lymphomas may transform into more aggressive diffuse
large B cell lymphomas (DLBCL). This occurs in around half of gastric lymphoma
cases, which have a considerably worse prognosis (Du and Atherton 2006).

Low-grade B cell MALT lymphomas usually regress following H. pylori
eradication treatment. Chromosomal translocation t(11; 18), the most common
genetic aberration in gastric MALT lymphoma, is found in one-quarter of cases,
and more frequently when advanced to stage II or above. This chromosomal
breakage and translocation results in fusion between the activator protein-12
(AP-12) and MALT-1 genes, and the product of this stimulates activation of the
transcription factor NF-jB, which regulates the expression of anti-apoptotic genes
and cell survival (Du and Atherton 2006). The presence of t(11; 18) also predicts
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the non-responsiveness of gastric MALT lymphoma to H. pylori eradication ther-
apy (Fischbach 2014). Mutations in immunoglobulin heavy chain variable region
(IGHV) genes are also frequently present, and there is a bias in the usage of certain
IGHV gene families, suggesting that tumour cells have undergone antigen selection
in germinal centres (Zucca and Bertoni 2016). Bacterial virulence factors do not
seem to greatly influence the risk of developing gastric MALT lymphoma; how-
ever, there is growing evidence that host genetic factors play an important role.

4 H. pylori Virulence Factors and their Association
with Disease

H. pylori expresses several factors that are strongly associated with increased risk of
disease development. These include toxins, adhesins, and chemoattractants. Many
are highly polymorphic, phase variable, and have diverse functions. For further
information, see Chapters “Human and Helicobacter pylori Interactions Determine
the Outcome of Gastric Diseases”, “Immune Evasion Strategies and Persistence of
Helicobacter pylori” and “Structural Insights into Helicobacter pylori Cag Protein
Interactions with Host Cell Factors”.

4.1 The cag Pathogenicity Island

As described in detail in Chapter “Structural Insights into Helicobacter pylori Cag
Protein Interactions with Host Cell Factors”, the cagPAI is a 40 kB horizontally
transmitted segment of DNA. It encodes a type IV secretion system (T4SS), with
many of the expressed subunits forming a pilus through which CagA, peptidoglycan
peptides, and other components are transferred into the host cell cytoplasm. CagL is
found at the tip of the T4SS pilus structure and binds a5b1 integrin on epithelial cells
(Kwok et al. 2007). Upon interaction of CagL with the integrin, and transfer of CagA
and peptidoglycan peptides into cells via the pilus, the transcription factor NF-jB is
activated, enters the nucleus, and induces the expression of pro-inflammatory
cytokines and chemokines, most notably IL-8 and CCL20 (Cook et al. 2014; Gorrell
et al. 2013). CagA rapidly interacts with signalling molecules in the cell cytoplasm.
It is tyrosine-phosphorylated at its EPIYA (Glu-Pro-Ile-Tyr-Ala) motifs by Src
kinases and interacts with SHP-2 phosphatase, leading to cytoskeletal changes,
NF-jB activation and further pro-inflammatory gene expression (Tegtmeyer et al.
2011; Mueller et al. 2012). Unphosphorylated CagA interacts with the tight junction
protein ZO-1, causing disruption of tight junctions between epithelial cells, and with
E-cadherin, promoting the a-catenin-mediated upregulation of genes with oncogenic
potential (Amieva et al. 2003; Franco et al. 2005).

The cagPAI may be fully complete and functional, or it may be partially present
or absent. Strains with a functional cag T4SS are strongly associated with increased
gastric cancer risk. The cagA gene is polymorphic, with EPIYA motifs categorized
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as EPIYA-A, B, C, or D depending on their flanking sequences (Backert et al.
2010). EPIYA-A, EPIYA-B, and EPIYA-C motifs are usually present in Western
CagA strain types whilst EPIYA-A, EPIYA-B, and EPIYA-D motifs are commonly
found in East Asian CagA (Lind et al. 2014, 2016). A larger number of EPIYA-C
motifs or the presence of an EPIYA-D increases the strength of SHP-2 interactions,
and is associated with a higher risk of intestinal metaplasia and gastric cancer
(Amieva and Peek 2016).

4.2 Vacuolating Cytotoxin (VacA)

VacA is a pore-forming toxin, originally named for its ability to induce vacuolation
in gastric epithelial cells in vitro [recently reviewed by Foegeding et al. (2016)].
A wide range of functions have now been identified, including the induction of
epithelial cell apoptosis, autophagy, and inhibition of T cell activation, and many of
these effects depend on its formation of anion-selective channels (Kim and Blanke
2012; Terebiznik et al. 2009; Gebert et al. 2003). The vacA gene is present in almost
all strains, and is highly polymorphic, with two alternative allelic variants for the
signal (s1/s2), intermediate (i1/i2), and mid (m1/m2)-regions. The mid-region type
is important for binding to epithelial cells, with m1 forms binding to a wider range
of cell types than m2 forms of the toxin. s2 and i2 types of VacA also have reduced
vacuolating activity compared to the s1 and i1 variants (Atherton et al. 1995; Rhead
et al. 2007). All forms of VacA appear to be important in the tolerization of
dendritic cells, promoting the differentiation of Treg cells and protecting against
asthma in a mouse model (Oertli et al. 2013).

The vacA s1 and i1 alleles are associated with increased risk of peptic ulceration,
atrophy, and gastric adenocarcinoma; however, the amount that is expressed is also
important. A genetic determinant of increased vacA expression has recently been
reported, consisting of a putative stem-loop structure in the 5′ untranslated region of
the transcript (Amilon et al. 2015). The presence of this stem-loop region in col-
onizing strains is associated with more severe inflammation and pre-malignant
pathology in the human gastric mucosa (Sinnett et al. 2016).

Genotypic analysis ofH. pylori clinical isolates from around the world has shown
that the majority of cagPAI-positive strains are vacA s1/i1 type whilst cagPAI-
negative strains are usually vacA s2/i2 type. This makes it difficult to definitively
determine the contribution of each individual factor to gastric disease. This associ-
ation is not due to clonality or genetic linkage, and a simple functional dependence is
not responsible either, as cagA knockouts still retain vacuolating activity (Tummuru
et al. 1994), and a vacA null mutant strain still delivers CagA into AGS cells inducing
a hummingbird phenotype and IL-8 secretion (Argent et al. 2008). However,
mutagenesis studies suggest that CagA and VacA may downregulate each other’s
effect on epithelial cells presumably to avoid excessive damage to host gastric cells
during infection (Argent et al., 2008). Both CagA and VacA localize to lipid rafts
(Asahi et al.2003; Nakayama et al. 2006), where CagA associates with
tyrosine-phosphorylated GIT1/Cat-1 (G protein-coupled receptor kinase-interactor
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1/Cool-associated, tyrosine-phosphorylated 1). GIT1 is an important scaffold protein
involved in signalling mechanisms that regulate cytoskeletal dynamics and mem-
brane trafficking, processes central to hummingbird formation and vacuolation. GIT1
is phosphorylated by Src and FAK (focal adhesion kinase) kinases, the latter inac-
tivated by phosphorylated CagA (Tsutsumi et al. 2006), and is dephosphorylated by
receptor-like protein–tyrosine phosphatase-b (RPTPb), the receptor for VacA.
Studies have shown that CagA decreases the tyrosine phosphorylation of GIT1
(Asahi et al. 2003) whilst VacA binding to RPTPb increases it (Fujikawa et al. 2003).
Thus, functional interaction between CagA and VacA may be acting through
GIT1-regulated signalling. There may also be interaction between these two viru-
lence factors acting through NFAT (nuclear factor of activated T cells) signalling.
CagA upregulates the expression of NFAT-regulated genes through stimulation of
calcineurin (Yokoyama et al. 2005). However, the anion channel properties of VacA
interfere with the calcium ion influx required for calcineurin activity, reducing NFAT
activation (Boncristiano et al. 2003; Gebert et al. 2003). In addition to differential
effects on signalling pathways, CagA inhibits the endocytosis of VacA, reducing the
toxin’s ability to induce vacuolation and apoptosis (Akada et al. 2010; Oldani et al.
2009). If VacA channels in the epithelial cell plasma membrane benefit the bacteria
by releasing nutrients or urea, there may be a selective advantage in inhibiting its
endocytosis. CagA can also increase the uptake of transferrin across the basolateral
surface of polarized epithelial cells, whilst VacA redirects the internalized
transferrin/transferrin receptor complex to the apical surface of the cell (Tan et al.
2011). In this way, CagA and VacA may work together to modify iron trafficking to
support the growth of H. pylori microcolonies on the epithelial surface.

4.3 DupA and tfs4

Duodenal ulcer-promoting gene A, dupA, is present in the tfs4 gene cluster along
with other vir gene homologues which are thought to encode a type IV secretion
system. As the name indicates, this was initially described as associated with
duodenal ulcer disease, and dupA+ strains were reported to induce increased IL-8
expression in the antral gastric mucosa. dupA− clinical isolates and null mutants
were also impaired in their ability to stimulate IL-12 production from peripheral
blood mononuclear cells and monocytes, compared to dupA+ isolates and wild-type
strains (Lu et al. 2005; Hussein et al. 2010). Not all studies have been able to
demonstrate an association with duodenal ulcer disease, however. This is probably
because an intact tfs4 gene cluster is required for virulence rather than dupA alone.

4.4 NapA

H. pylori neutrophil activating protein (NapA, sometimes also called HP-NAP) is a
highly conserved dodecameric 150-kDa protein, which is able to stimulate the
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activation and production of oxygen radicals by neutrophils. The protein is a
neutrophil chemoattractant, stimulating these cells to produce pro-inflammatory
cytokines and chemokines, and it has been shown to induce a strong Th1 response.
NapA may therefore play a central role in H. pylori pathogenesis (de Bernard and
D’Elios 2010).

4.5 Adhesins

H. pylori expresses several major adhesins including BabA, SabA, LabA, OipA,
and AlpAB. It is thought that adhesins mediate a closer association of the bacteria
with the epithelium, and thus enhances exposure to other virulence factors, resulting
in increased inflammation and damage to the gastric mucosa. BabA (blood group
antigen-binding adhesin) binds to difucosylated Leb blood group antigens on host
epithelial cells and mucins, and is the major adhesin involved in the colonization
process (Ilver et al. 1998). The babA genes exist in two allelic forms: babA1,
lacking the translational start site and signal peptide, and babA2, encoding the
full-length, active protein. Expression of functional BabA protein can be modulated
by recombination between babA alleles and a closely related locus babB. The
babA2 allele has been associated with increased H. pylori colonization density,
higher inflammation, and more severe gastric disease, particularly in combination
with other virulence determinants such as cagA and the vacA s1 allele (Yu et al.
2002). The increased adherence of babA2-type H. pylori may enhance the virulent
actions of CagA- and VacA s1-type toxin. SabA (sialic acid-binding adhesin),
which becomes the predominant adhesin in the chronically inflamed stomach, binds
to sialylated Lewis antigens (Mahdavi et al. 2002). The expression of functional
SabA adhesin is subject to phase variation owing to the presence of dinucleotide
repeats near the start of the gene (Mahdavi et al. 2002). Colonization with
SabA-expressing strains is associated with an increased risk of gastric cancer
(Yamaoka et al. 2006). LabA (lacdiNAc-binding adhesin) is a recently discovered
adhesin, which binds a N,N′-diacetyllactosediamine (lacdiNAc) motif on MUC5AC
mucin (Rossez et al. 2014). The expression of OipA (outer membrane inflammatory
protein) is also controlled by phase variation. OipA-expressing strains are associ-
ated with increased risk of duodenal ulcer and gastric cancer, but these are also
likely to be cagPAI-positive (Yamaoka and Graham 2014). oipA was originally
identified as a gene required for the induction of IL-8 production by epithelial cells.
An oipA null mutant strain failed to induce full phosphorylation and activation of
FAK in gastric epithelial cells, preventing H. pylori-induced actin stress fibre for-
mation and changes in cell morphology (Tabassam et al. 2008). Interestingly, the
effects of oipA mutagenesis on FAK phosphorylation were greater than those
observed for a cagPAI deletion mutant. Two further adhesins encoded by adjacent
genes alpA and alpB have been shown to be involved in binding to human gastric
tissue, and are required for colonization of animal models. AlpAB adhesins from
East Asian and Western H. pylori strains have been found to differ in their ability to
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modulate pro-inflammatory signalling cascades, which may relate to geographical
differences in disease outcome (Lu et al. 2007; Odenbreit et al. 2002).

5 Environmental Factors and their Association
with Disease

In epidemiological studies, factors including diet, alcohol consumption, and
cigarette smoking have been found to influence the risk of developing peptic ulcer
disease and gastric cancer (Fang et al. 2015).

Smoking is well known to increase the risk of morbidity from many diseases and
cancers outside the respiratory tract (Ordonez-Mena et al. 2016). Cigarette smoke
contains hundreds of toxic and carcinogenic compounds, and within the mucosa of
the gastrointestinal tract, these are reported to decrease blood flow, increase gastric
acid output, skew immune responses, cause cell death, and inhibit cell turnover (Li
et al. 2014). Smokers are more likely to be H. pylori-positive, and to develop peptic
ulcer disease with ulcers that are frequently more difficult to heal. There is a strong
association between smoking and the development of gastric cardia adenocarci-
noma, but the association between smoking and non-cardia adenocarcinoma is less
convincing as unfortunately most studies have not investigated H. pylori status
(Malfertheiner et al. 2012). Investigations of the mechanisms in vitro have shown
that nicotine enhances the proliferation and epithelial–mesenchymal transition of
gastric epithelial cells; however, cigarette smoke extract and nicotine exposure is
reported to have conflicting pro- or anti-inflammatory effects (Goncalves et al.
2011).

The composition of the human diet has an important influence on disease risk.
High-salt diets predispose to gastric cancer (Fang et al. 2015), probably because of
an exacerbated inflammatory response, and this has also been demonstrated in
H. pylori-infected Mongolian gerbils (Loh et al. 2015). The increased risk of dis-
ease may be due to the effects on the bacteria as well as the host, since H. pylori
expresses increased levels of CagA and VacA when cultured in the presence of high
sodium chloride concentrations (Amilon et al. 2015). On the other hand, diets that
are high in fruits and vegetables tend to be inversely associated with gastric cancer
risk (Fang et al. 2015; Amieva and Peek 2016). A number of clinical trials have
demonstrated some significant protective effects from antioxidants, vitamins, and
high dietary fibre [reviewed by den Hoed and Kuipers (2016)].

The human gastric mucosa is colonized by bacterial phyla, predominantly
including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (including
Helicobacter). The composition of the gastric microbiota differs markedly
according to the presence or absence of H. pylori and gastric pathology, particularly
as these changes result in alterations of acid production and mucosal mucin
expression [reviewed by He et al. (2016)]. Mouse studies have demonstrated that
H. pylori infection influences the microbiome of the intestinal tract as well as the
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stomach, and that the composition of the gastric microbiota influences disease
development (He et al. 2016). The main focus of studies on human gastroduodenal
disease has thus far centred on the interaction of H. pylori with host cells and
mucosal tissue; however, the contributions of the other components of the gastric
microbiota are only just beginning to come to light (see Chapter “Impact of the
Microbiota and Gastric Disease Development by Helicobacter pylori”).

6 Treatment of H. pylori and Prospects for a Vaccine

Patients with persistent dyspeptic symptoms are normally referred for endoscopy,
and gastric biopsies routinely taken for H. pylori infection diagnosis by a rapid,
commercial CLO (Campylobacter-like organism) test based on urease activ-
ity, and/or culture of the organism. Breath tests using 13C-labelled urea, serology,
and stool antigen testing are also alternative, non-invasive diagnostic methods
employed for determining H. pylori status. H. pylori is sensitive to a variety of
antibiotics in vitro, but the efficacy of single-drug therapy is limited by the local-
ization of the bacterium within the low pH, viscous environment of the gastric
mucus layer. The standard treatment for H. pylori consists of a triple therapy, with
two antibiotics (typically clarithromycin and amoxicillin or metronidazole) and a
proton pump inhibitor to suppress gastric acid output. This regimen has been
proved effective in healing existing ulcers and preventing their recurrence, and it is
recommended in various consensus reports and clinical guidelines (Sugano et al.
2015; Malfertheiner et al. 2012). Unfortunately, resistance to clarithromycin and
metronidazole is a growing problem, resulting in more numerous treatment failures.
The prevalence of antibiotic resistance varies widely around the world and is linked
to the consumption of these drugs in each region. Metronidazole resistance is the
most common problem, being present in approximately 75% of strains in Africa,
46% in Asia, and around 30% in Europe and the USA. For treatment regimens to be
effective, it is therefore recommended that they should be chosen based on sus-
ceptibility testing in that region (Sugano et al. 2015).

With such antibiotic resistance issues, vaccination appears the logical approach
to control H. pylori; however, progress in this area has not been straightforward
despite using a wide range of approaches over the past 30 years. These include
formulations of whole cell lysates, outer membrane vesicles, single or multiple
purified antigens (e.g. urease, catalase, NapA, VacA, CagA, and heat–shock pro-
teins) and DNA vaccines, with mucosal or parenteral delivery systems and adju-
vants (Blanchard and Nedrud 2010). The search for new vaccine antigens is
continuing using genomic and proteomic approaches (Walduck et al. 2015).

Since H. pylori infections are usually acquired in early childhood, it would be
difficult to ensure that prophylactic vaccines are administered at an early enough
stage. The most practical alternative is therefore to administer a therapeutic vaccine
to eradicate the infection in people who are already colonized. In Helicobacter-
infected animal models, therapeutic immunization has been shown to reduce the
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bacterial load as well as protecting against a subsequent reinfection (Ikewaki et al.
2000; Rossi et al. 2004). A commonly identified problem with therapeutic vaccines
in particular, however, is the phenomenon of post-immunization gastritis. This has
been reported in mice (Garhart et al. 2002; Sutton et al. 2001), rhesus monkeys
(Solnick et al. 2000), and gnotobiotic piglets (Krakowka et al. 1991), and seems to
result from the inflammatory response to residual colonizing bacteria. In humans,
phase 1 trials have been conducted and the vaccine formulations tested appear safe
and immunogenic (Michetti et al. 1999; Kotloff et al. 2001). An avirulent H. pylori
strain has been developed so that immunization-challenge studies can be carried out
in humans (Graham et al. 2004).

Trials in H. pylori-infected adult humans have been rather disappointing [re-
viewed in Anderl and Gerhard (2014)]. Recently, however, a phase 3 clinical trial
of a H. pylori vaccine based on recombinant urease B subunit fused to heat-labile
enterotoxin B subunit showed an efficacy of 71.8% in preventing H. pylori infection
in H. pylori-naïve children aged 6–15 years within 1 year post-immunization (Zeng
et al. 2015). This study demonstrates that continued development of effective
vaccines coupled with early immunization of young children could be an effective
approach to prevent H. pylori-related disease in future generations.

7 Concluding Remarks

Themost commonoutcomeofH.pylori infection is chronic asymptomatic gastritis, and
this is probably because the bacteria have adapted to evade and suppress the immune
response. Disease outcome is determined by the complex interplay of multiple host,
bacterial and environmental factors. The chronic inflammatory response is undoubtedly
of extreme importance in disease pathogenesis; however, the mechanisms are not yet
completely understood. As research progresses, it may become possible to develop
prognostic tests, based on the important risk factors, to predict who might develop
gastric cancer in the future. It will be important to ensure that effective antibiotic
treatments or vaccines are available for these individuals in particular.
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