Chapter 9
Smart Card Security

Michael Tunstall

Abstract In this chapter, the various attacks and countermeasures that apply to
secure smart card applications are described. This chapter focuses on the attacks
that could affect cryptographic algorithms, since the security of many applications is
dependent on the security of these algorithms. Nevertheless, how these attacks may
be applied to other security mechanisms is also described. The aim of this chapter is
to demonstrate that a careful evaluation of embedded software is required to produce
a secure smart card application.

Keywords Embedded software - Fault analysis - Side channel analysis - Smart card
security

9.1 Introduction

The implementation of secure applications on smart cards is different to the develop-
ment on other platforms. Smart cards have limited computing power, comparatively
small amounts of memory and are reliant on a smart card reader to provide power and
a clock. There are security considerations that are specific to smart cards, that need
to be taken into account when developing a secure smart card-based application.

In this chapter, attacks that are specific to smart cards, and other devices based
around a secure microprocessor, will be described. There are other considerations
that need to be taken into account when implementing a secure application, but these
are generic and beyond the scope of this chapter.

There are three main types of attack that are considered in smart card security.
These are:

1. Invasive Attacks: These are attacks that require the microprocessor in a smart
card to be removed and directly attacked through a physical means. This class
of attacks can, at least in theory, compromise the security of any secure micro-
processor. However, these attacks typically require very expensive equipment and

M. Tunstall (B<)
Cryptography Research, 425 Market Street, San Francisco, CA 94105, USA
e-mail: michael.tunstall @ cryptography.com

© Springer International Publishing AG 2017 217

K. Mayes and K. Markantonakis (eds.), Smart Cards, Tokens,
Security and Applications, DOI 10.1007/978-3-319-50500-8_9



218 M. Tunstall

a large investment in time to produce results. Invasive attacks are therefore con-
sidered to be primarily in the realm of semiconductor manufacturers and students
at well-funded universities.

An example of such an attack would be to place probes on bus lines between
blocks of a chip (a hole needs to be made in the chip’s passivation layer to allow
this). An attacker could then attempt to derive secret information by observing
the information that is sent from one block to another.

At its most extreme this type of attack could make use of a focused ion beam to
destroy or create tracks on the chips surface. In theory, this could, for example,
be used to reconnect fuses. Traditionally, chip manufacturers typically used a test
mode where it was possible to read and write to all memory addresses whilst a
fuse was present. Once the fuse was blown inside the chip (before the chip left
the manufacturer’s factory) this mode was no longer available. In modern secure
microprocessors this test circuit is typically removed when the chip is cut from
the die preventing the attack.

Further information on invasive attacks is available in [3, 32]. More recently,
Tarnovsky [52] has made videos on how these attacks are conducted publicly
available, and they should be easy to find.

2. Semi-Invasive Attacks: These attacks require the surface of the chip to be
exposed. An attacker then seeks to compromise the security of the secure micro-
processor without directly modifying the chip.

Some examples of this type of attack include injecting faults using laser or white
light [6, 50]. More details on these attacks are given in later sections, and further
information can be found in [27].

The first attempts at analysing the electromagnetic emanations around a micro-
processor required a suitable probe to be placed very close to the surface of a
targeted microprocessor [17, 45]. This has since been shown to be unnecessary
and such analyses can be classed as non-invasive.

3. Non-Invasive Attacks: These attacks seek to derive information without modi-

fying a smart card, i.e. both the secure microprocessor and the plastic card remain
unaffected. An attacker will attempt to derive information by observing informa-
tion that leaks during the computation of a given command, or attempts to inject
faults using mechanisms other than light.
Some examples of this type of attack would be to observe the power consumption
of a microprocessor [31], or to inject faults by putting a glitch into the power
supply [3]. Further descriptions of power analysis attacks can be found in [34],
and fault attacks in [27].

This chapter will focus on semi-invasive and non-invasive attacks, as the equip-
ment required to conduct these attacks is more readily available. Invasive attacks are
of interest, but are extremely expensive to conduct. This chapter will focus more on
what can be achieved in a reasonably funded laboratory. However, some information
is given on invasive attacks where relevant.



9  Smart Card Security 219

9.1.1 Organisation

Section 9.2 contains a description of the cryptographic algorithms that will be used
in later sections to give examples of attacks. Section9.3 describes certain hardware
security features that are typically included in a smart card. Section9.4 describes
the different forms of side channel analysis and how they can be applied to smart
card implementations of cryptographic algorithms. Section9.5 describes how fault
attacks can be applied to smart cards. Section 9.6 describes how the techniques given
in Sects. 9.4 and 9.5 can be applied to other security mechanisms. Section9.7 sum-
marises the chapter.

9.1.2 Notation

The base of a value is determined by a trailing subscript, which is applied to the
whole word preceding the subscript. For example, FE¢ is 254 expressed in base 16
and d = (dy—1,d¢—2, ..., dy)> gives a binary expression for the £-bit integer d.

In all the algorithms described in this chapter, ¢ represents Euler’s totient function,
where ¢ (N) equals the number of positive integers less than N which are coprime
to N. In particular, if N = p g is an RSA modulus then ¢(N) = (p — 1)(g — 1).

9.2 Cryptographic Algorithms

Some of the attacks detailed in later sections will assume a detailed knowledge of
some of the commonly used cryptographic algorithms. The Data Encryption Standard
(DES) and RSA, are detailed in this section to provide a reference, and to describe the
notation that will be used. For brevity, we do not describe the Advanced Encryption
Standard (AES) [43], but mention of how the AES affects security will be made
where required.

9.2.1 Data Encryption Standard

The Data Encryption Standard (DES) was introduced by NIST in the mid 1970s [42],
and was the first openly available cryptography standard. It became, and still is, a
worldwide de facto standard for numerous purposes. However, it has been practically
demonstrated that an exhaustive search is possible, leading to the introduction of triple
DES (see below).

DES can be considered as a transformation of two 32-bit variables (Lg, Ry),
i.e. the message block, through sixteen iterations of a round function, as shown
in Fig.9.1, to produce a ciphertext block (Li¢, Rj¢). The Expansion permutation



220 M. Tunstall

Fig. 9.1 The DES round
function for round n

selects eight overlapping six-bit substrings from R,,. The P-permutation is a bitwise
permutation on the 32-bit output of the S-box function. For clarity of expression,
these permutations will not always be considered and the round function will be
written as:

R, = S(Rn—l D Kn) ® L,

L =R, 9.1)
where S is the S-box function. The subkeys K, for 1 <n < 16, are each 48 bits
generated from a 56-bit secret key, by choosing 48 bits from the 56-bit key. This is
done by initially conducting a bitwise permutation on the key, referred to as Permuted
Choice 1 (PC1). Each round bit shifts are conducted on the key, and 48 bits are
chosen from this shifted key to form each subkey using the Permuted Choice 2
(PC2) function.

Eight different S-boxes are applied in each round to sets of six bits, thereby
reducing the 48-bit output of the XOR with K, to 32 bits. Each S-box is a substitution
table that is addressed using six bits of information, and each entry is a 4-bit number.

The algorithm also includes an initial and final permutation (these permutations
are referred to as IP and IP~! respectively), where the final permutation is the inverse
of the initial permutation. More precisely the permutation at the end of DES is con-
ducted on (Rj¢, Ljs) rather than (L6, Ry6). These permutations will be ignored in



9  Smart Card Security 221

this chapter, as they do not contribute to the security of the algorithm. The per-
mutations IP and IP~! were included because it was the most convenient way of
introducing the bits into the first chips used to calculate the DES algorithm (at the
time, software implementations were not considered because of the complexity of
the algorithm) [38].

9.2.1.1 Triple DES

In order to mitigate the aforementioned key length problem, a modification to DES
was proposed to make an exhaustive key search prohibitively complex. Triple DES
is a construction that uses two different DES keys and is defined in [42]. In the
algorithm below the two DES keys are denoted K; and K>, and in order to generate a
ciphertext block C from a plaintext block M the following calculation is performed:

C = DES (DES™! (DES (M, K)), K3), K)) 9.2)

where DES(M, K) denotes the output of the DES encryption algorithm applied to
message block M with key K. Deciphering the ciphertext block C uses the function,

M =DES~! (DES (DES™!(C, K)), K»), K}) 9.3)

The structure of triple DES allows for backward compatibility as if K; and K,
are equal the resulting ciphertext will the equivalent to that produced with a single
DES. The triple DES requires that three instantiations of the DES algorithm are used,
since it has been shown that two instantiations of DES only increase the security of
the algorithm by one bit (see meet-in-the-middle attacks [36]).

Another version of triple DES is also proposed in [42], in which three different
keys are used rather than two.

9.2.2 RSA

RSA was first introduced in 1978 [47], and was the first published example of a
public key cryptographic algorithm. The security of RSA depends on the difficulty
of factorising large numbers, meaning that RSA keys need to be quite large. Advances
in factorisation algorithms and the constantly increasing processing power available
in modern computers has led to constantly increasing key sizes. At the time of writing
RSA is typically used with 1024 or 2048-bit key sizes.

To generate a key pair for use with RSA, two prime numbers, p and g, of a similar
bit length, are generated; they are then multiplied together to create a value N, the
modulus, whose bit length is equal to that desired for the cryptosystem. That is, in



222 M. Tunstall

order to create a 1024-bit modulus, 2°''5 < p, g < 2312 ! (if values of p or g are
chosen from the interval (23!, 2311) the product of p and ¢ is not guaranteed to
have a bit length of 1024 bits). A public exponent, e, is chosen that is coprime to
both p —land g — 1.

A private exponent, d, is generated from the parameters previously calculated,
using the formula:

ed=1 (mod (p—1)(g — 1)), orequivalently

ed=1 (mod ¢(N)) 9.4)

where ¢ is Euler’s Totient function.

9.2.2.1 The RSA Cryptosystem

In the RSA cryptosystem, to encrypt a message, M, and create ciphertext, C, one
calculates:
C=M° mod N 9.5

The value of e is often chosen as 3 or 2'° + 1, as these values are small, relative
to N, and have a low Hamming weight, which means that the encryption process is
fast (see below). To decrypt the ciphertext, the same calculation is carried out but

using the private exponent, d, which generally has a similar bit length as N:

M=C? mod N (9.6)

9.2.2.2 The RSA Signature Scheme
The RSA digital signature scheme involves the reverse of the operations used in the
RSA cryptosystem. The generation of a signature, S, uses the private exponent d.
By convention, this is expressed as:

S=M? mod N 9.7)

The verification therefore uses the public exponent and is expressed as:

M =S° mod N (9.8)

IThis is possibly overly strong, as it typically recommend that the bit lengths of p and ¢ are
approximately equal. However, it will provide the most security for a modulus of a given bit length
assuming that p — ¢ is sufficiently large to prevent an attacker from guessing their values by
calculating JN.



9  Smart Card Security 223
9.2.2.3 Padding Schemes

Applying the RSA primitive to a message, as described above, will not yield a secure
signature or encryption scheme (for reasons beyond the scope of this chapter). To
achieve a secure scheme it is necessary to apply the RSA operation to a transformed
version of the message, e.g. as can be achieved by hashing the message, adding
padding, and/or masking the result. This process is termed padding, and the interested
reader is referred to [36] for a treatment of padding schemes.

Some of the attacks presented in this chapter will not be realistic when a padding
scheme is used, since padding schemes mean that an attacker cannot entirely control
a message. However, it is important that an implementation of RSA is secure against
all possible attacks. If a given implementation does not use padding or, more real-
istically, contains a bug that allows an attacker to remove the padding function, the
implementation should still be able to resist all the attacks described in this chapter.

9.2.2.4 Computing a Modular Exponentiation

Many different algorithms can be used to calculate the modular exponentiation algo-
rithm required for RSA. In practice, a large number of algorithms cannot be imple-
mented on smart cards, as the amount of available memory does not usually allow
numerous intermediate values to be stored in RAM. The manipulation of large num-
bers is typically performed using a coprocessor (see Sect.9.3), as implementing a
multiplication on an 8-bit platform would not give a desirable performance level.

The simplest exponentiation algorithm is the square and multiply algorithm [36],
and is given in Algorithm 1 for an exponent d of bit length ¢:

Algorithm 1: The Square and Multiply Algorithm
Input: M,d = (de—1,d¢—2,...,dp)2, N
Output: S = M9 mod N
A<« 1;
fori =¢—1to0do
A< A2mod N ;

if (d; = 1) then
‘ A=A -MmodN ;
end

end

return A

The square and multiply algorithm calculates M? mod N by loading the value one
into the accumulator A and d is read bit-by-bit. For each bit a squaring operation
modulo N takes place on A, and when a bit is equal to one A is subsequently
multiplied by M. It is because of this multiplication that e is typically chosen as 3
or 2'6 4 1, as both values only have two bits set to one; therefore minimising the



224 M. Tunstall

number of multiplications required. It is not possible to only have one bit set to one
as it is necessary for e to be an odd number in order for it to have an inverse modulo
N. The most significant bit of a number will always be set to one, and the least
significant bit will need to be set to one to produce an odd number.

9.2.2.5 Using the Chinese Remainder Theorem

The RSA calculation using the private exponent (i.e. where S = M¢ mod N and
N = p - q) can be performed using the Chinese Remainder Theorem (CRT) [29].
Initially, the following values are calculated,

S, =M4 mdP=D mod p
SZ = M4 md @@= mod ¢ ©-9)
which can be combined to form the RSA signature S using the formula S =a S, +
b S, mod N, where:

a=1 (mod p) nd b=0 (mod p)
a=0 (modg) ™ b=1 (modq)

This can be implemented in the following manner:
S=58,+((S,—S;)g”" modp)-q (9.10)

This provides a method of calculating an RSA signature that is approximately
four times quicker than a generic modular exponentiation algorithm, i.e. two expo-
nentiations, each of which can be computed eight times faster than an exponentiation
using d (the bitlengthof d mod (p — 1) andd mod (p — 1) will be half that of d).
This advantage is offset by an increase in the key information that needs to be stored.
Rather than storing just the value of d and N, the values of (p, g, d mod (p — 1),d
mod (g — 1),¢~" mod p) need to be precalculated and stored.

9.3 Smart Card Security Features

This section will detail some of the features of smart cards that are pertinent when con-
sidering their security. Smart cards have traditionally been based on 8-bit Complex
Instruction Set Computer (CISC) architectures [40]. Usually built around a Motorola
6805 or Intel 8051 core, often with extensions to the instruction set. More sophisti-
cated smart cards are emerging based on 32-bit Reduced Instruction Set Computer
(RISC) architecture chips, containing dedicated peripherals (cryptographic coproces-
sors, memory managers, large memories, . . .) [39].



9  Smart Card Security 225

Fig. 9.2 The Contacts used
to power and communicate
with a smart card

9.3.1 Communication

A smart card has five contacts that it uses to communicate with the outside world
defined in the ISO/IEC 7816-2 standard [25]. Two of these are taken by the power
supply (usually 3 or 5 v), referred to as Vcc, and the ground used to power the
chip. Another contact is used to supply a clock, which is allowed to vary between 1
and 5 MHz but is typically set to 3.57 MHz. The remaining two contacts are used to
communicate with the microprocessor. A sixth contact was originally used to provide
a higher voltage to program the EEPROM (referred to as Vpp), but is no longer in
use for reasons described in Sect. 9.6. The location of the different contacts is shown
in Fig.9.2.

One of the contacts, referred to as the I/0O, is used for communication and to send
commands to the chip in a smart card. The protocols used to communicate with a
smart card are referred to as T =0 and T = 1 and are defined in the ISO/IEC 7816-3
standard [24]. This section will describe both protocols, as they are nearly identical.
The extra requirements of T = 1 are detailed where relevant.

The remaining contact is used to reset the smart card (there are a further 2 contacts
defined in the ISO/IEC 7816-3 standard but they are not currently used). Resetting a
smart card is a physical event (i.e. moving the voltage applied to this contact from 0
to 1) and it will always provoke a response from a smart card. A user can apply the
reset at any time. The smart card will respond by sending an Answer To Reset (ATR)
via the I/O contact, which is a string of bytes that defines the protocols the smart card
can use, the speeds at which the smart card can communicate and the order in which
bits are going to be sent during the session (i.e. most or least significant bit first).

9.3.2 Cryptographic Coprocessors

Traditionally, smart cards have been based around 8-bit architectures. In order to
manipulate large numbers, e.g. to calculate the RSA algorithm, dedicated coproces-
sors can be appended to the CPU. In more modern 32-bit chips [39] this is not



226 M. Tunstall

always necessary, as efficient software implementations can be achieved. However,
coprocessors are still often used for increased performance. DES and AES is also
often implemented in a coprocessor to help increase performance, where hardware
implementations of these secret key algorithms can typically be expected to require
one or two clock cycles per round of the block cipher. The inclusion of coproces-
sors increases the size of a microprocessor and the overall power consumption. This
means that chips with coprocessors are usually more expensive and are not always
ideal in environments where the amount of available current is limited.

9.3.3 Random Number Generators

Random number generators are usually included in smart cards, as unpredictable
numbers are an important element in many secure protocols. A “true” random number
generator is typically based on a signal generated by an analogue device which is then
treated to remove any bias that may exist, or has been induced, in the bits generated.
The correct functioning of all aspects of a smart card chip under varied environmental
conditions is important, but is critical for random number generation because the
quality of the generated random values can have a profound effect on cryptographic
schemes. Random number generators are therefore designed to function correctly in a
large range of environmental conditions, including temperature, supply voltage, and
so on. However, if an attacker succeeds in modifying the environmental conditions
such that the physical source of randomness is affected, the output is typically treated
such that an attacker will not be able to determine if the change in conditions had
any effect.

Pseudo-random number generators are also often included in a secure micro-
processor. These are typically based on Linear Feedback Shift Registers (LFSRs)
that are able to generate a new pseudo-random value every clock cycle, but are
deterministic over time and are not usually used for critical security functions.

Where random values are required in cryptographic algorithms, a true random
number generator is used when the quality of the random value is important, e.g. for
use in a cryptographic protocol. Where the quality of the random value is less impor-
tant, a pseudo-random number generator can be used. In some secure microprocessors
only pseudo-random number generators are available. In this case, mechanisms that
combine a random seed (that can be inserted into the chip during manufacture) with
pseudo-random values can be used to provide random values.

An example of this latter type of random number generator is given in the ANSI
X9.17 [2, 22] standard, that uses DES to provide random values based on a ran-
dom seed generated during the initialisation of a given device and another source
of pseudo-random information. This functions by taking a 64-bit pseudo-random
input (X), a 64-bit random seed (S) and a DES key (K). X is usually generated by
calculating X = DES(D, K), where D is a the date and/or time, but this informa-
tion is not available to a smart card and is typically replaced with values provided



9  Smart Card Security 227

by a pseudo-random number generator. To output a random value R the following
calculation takes place:
R=DES(X & S, K), 9.11)

and the random seed is updated using:
S =DES(R® X, K). (9.12)

For increased security the DES function can be replaced with triple DES, as the key
length used by DES has proven to be too short to entirely resist an exhaustive key
search.

9.3.4 Anomaly Sensors

There are usually a number of different types of anomaly detectors present in smart
cards. These are used to detect unusual events in the voltage and clock supplied to the
card, and the environmental conditions (e.g. the temperature). These enable a smart
card to detect when it is exposed to conditions that are outside the parameters within
which it is known to function correctly. When unusual conditions are detected, the
chip will cease to function until the effect has been removed (i.e. initiate a reset
or execute an infinite loop when the sensor is activated). However, it is considered
prudent not to rely solely on these sensors and to implement further countermeasures
(see Sect.9.5).

9.3.5 Chip Features

The surface of the chip used in a smart card can be uncovered by removing the plastic
body of the card and using fuming nitric acid to remove the resin used to protect
the microprocessor. Once the chip has been revealed the easiest form of analysis is
to simply look at it under a microscope. The various different blocks can often be
identified, as shown in Fig.9.3.

Reverse engineering can target the internal design to understand how a given chip
or block functions. An attacker can use such information to improve their knowledge
of chip design and find potential weaknesses in the chip, which may allow them to
compromise the chip’s integrity.

In modern smart cards, various features used to inhibit reverse engineering are
implemented using glue logic: important blocks are laid out in a randomised fash-
ion that makes reverse engineering difficult. This technique increases the size of
the block, and is therefore not used in the design of large blocks such as Read-
Only Memory (ROM) and Electrically Erasable Programmable Read-Only Memory
(EEPROM).



228 M. Tunstall

Fig. 9.3 A chip surface with
readily identifiable features

EEPROM

Another common technique to prevent this sort of identification and targeting is
to overlay the chip with another metal layer that prevents the chip’s features being
identified. This can be removed using hydrofluoric acid that eats through the metal
layer; this reaction is then stopped using acetone before further damage is done and
the chip surface can be analysed. The chip becomes non-functional but the layout of
the chip can be determined, so that other chips of the same family can be attacked.
The result of such a process is shown in Fig.9.4.

Discovering the layout and functioning of a chip is particularly important when
using a laser as a fault injection mechanism (see Sect.9.5). Different areas of a
chip can be targeted through the metal layer once the layout of a chip is known.
Tarnovsky [52] has made videos on how these attacks are conducted publicly avail-
able and they should be easy to find.

Fig. 9.4 A chip with a shield present and removed



9  Smart Card Security 229

9.4 Side Channel Analysis

Side-channel attacks are a class of attacks, where an attacker will attempt to deduce
what is occurring inside a device by observing information that leaks during the
normal functioning of the device. If this information can be related to any secret
information being manipulated the security of the device can be compromised. It
should be noted that side channel analysis is a passive form of attack, i.e. an attacker
will simply observe what is occurring when a device is functioning. In the case of
smart cards the message being manipulated can be controlled, but this is not necessary
to construct a valid side channel attack.

The first publication that mentions a side-channel attack is described in [53]. In
1956, MI5 mounted an operation to decipher communications between Egyptian
embassies. The communications were enciphered using Hagelin machines [28].
These machines did not function using a key value as described in Sect. 9.2. Encipher-
ing occurred by routing electronic signals from a keyboard through seven rotating
wheels to generate a ciphertext. The “key” was the initial setting of these seven
wheels. The machine was reset every morning by the clerk who would be sending
messages. MI5 managed to plant a microphone in close proximity to one of these
machines. This allowed the initial settings to be determined by listening to the ini-
tial settings being made every morning. This would have allowed them to decipher
intercepted communications with another Hagelin machine set to the same key. In
practice, MI5 was only able to determine a certain amount of wheel settings because
of the difficulty of distinguishing the noise of the wheels being set from background
noise. This made deciphering more complex, but not impossible, as the number of
possible keys was significantly reduced by the partial information.

9.4.1 Timing Analysis

The first modern example of a side channel attack was proposed in [30]. This involved
observing the differences in the amount of time required to calculate an RSA signature
for different messages to derive the secret key. This attack was conducted against a
PC implementation, but a similar analysis could potentially be applied to smart card
implementations. It would be expected to be more efficient against a smart card as
more precise timings can be achieved with an oscilloscope or proprietary readers.
An example of a trace acquired with an oscilloscope that would provide this sort of
information is shown in Fig.9.5. The I/O events on the left-hand side of the figure
represent the reader sending a command to the smart card. The I/O events on the
right hand side of the figure show the response of the smart card. The time taken by
a given command can be determined by observing the amount of time that passes
between these two sets of events.



230 M. Tunstall

Time

Fig. 9.5 The I/O of a smart card command

9.4.2 Power Analysis

The most common form of side-channel attack, when considering smart cards, is
the analysis of the instantaneous power consumption [31]. This is measured by
placing a resistor in series with a smart card and the power supply (or ground),
and measuring the potential difference across the resistor with an oscilloscope. The
acquired information can be analysed a posteriori to attempt to determine information
on what is occurring within a secure microprocessor. There are two main types
of power attack; these are Simple Power Analysis (SPA) and Differential Power
Analysis (DPA).

9.4.2.1 Simple Power Analysis

A powerful form of power analysis is to search for patterns within an acquired power
consumption trace. An attacker can attempt to determine the location of individual
functions within a command. For example, Fig.9.6 shows the power consumption
of a smart card during the execution of DES. A pattern can be seen that repeats 16
times, corresponding to the 16 rounds that are required during the computation of
DES.

This analysis can be further extended by closely inspecting the power consumption
during the computation of one round, to attempt to determine the individual functions
within each round. This is shown in Fig. 9.7, where the functions in the second round
of a DES implementation are evident in the power consumption trace. This may not



9 Smart Card Security 231

MAX

MRk Y ! \ T
§ ‘M\Mmm‘whu .:;Hw\':a\.mn.«‘nm"m.

IP PC1 16 rounds 1P

> e L 4

AVERAGE, 16 petions
f w-u.»- wo-»' r-«-"«-o"'-r— g »Jw-"w«f‘-u-‘r‘ -.'M-ww‘-.-n'- ---'ww \.rv"
A ke i i YT I ¥ ¥r &y

Fig. 9.6 The power consumption of a DES implementation showing the rounds of the algorithm

2nd round | 3rd rDl-H'ld
. ‘ _[] i
| |
Key PC2 E Perm & XOR S-Boxes P Perm Key Key |
Shift (8 patterns) (8 pattemns) (4 patterns) Shlﬁ Shift

T e

Key: Key Shift A bitwise shift applied to the key each round.
PC2 PC2 used to generate a 48-bit round key each round.
E Perm Expansion permutation applied to R;,
for 1 <i< 16, to produce a 48-bit output.
XOR The XOR with the round key.
S-boxes Eight substitution tables reducing 48 bits to 32 bits.
P Perm The P permutation, a bitwise transformation.

Fig. 9.7 The power consumption of a DES implementation showing the round functions



232 M. Tunstall

be immediately apparent, as close inspection of the trace’s features is necessary to
identify the individual functions. For example, if an attacker is seeking to determine
where the compression permutation (PC2) is computed, they will look for eight
patterns of six events. This is because the compression permutation selects 48 bits
from the 56-bit DES key, where the 48-bit result is divided into segments of 6 bits
(for use in the S-box function). The natural method of implementing this permutation
will, therefore, be to construct a loop that will repeat eight times. Each loop will move
6 bits from the DES key to the 48-bit output. This should therefore produce eight
patterns of six events because of the individual bits being selected and written.

The use of this information is not necessarily immediately apparent; an attacker
can use this information to improve the effectiveness of other attacks. The efficiency
of the statistical treatment required for Differential Power Analysis (DPA) [31] can
be increased by taking more precise acquisitions. This is because the area that needs
to be analysed can be defined, and therefore reducing the amount of data that needs
to be acquired. A more detailed analysis is given below.

The same is true for fault injection techniques, detailed in Sect.9.5, as it is often
necessary to target specific events. If arbitrary functions can be identified using the
power consumption, the point in time at which an attacker wishes to inject a fault can
be discovered. This can greatly decrease the time required to conduct a successful
attack, as less time is wasted injecting faults into areas of the computation that will
not produce the desired result.

The examination of the power consumption can also be used to determine infor-
mation on the private/secret keys used in a naive implementations of cryptographic
algorithms. For example, if the power consumption of a smart card during the gen-
eration of an RSA signature using the square and multiply algorithm is analysed, it
may be possible to determine some bits of the private key. An example of the power
consumption during the generation of an RSA signature is shown in Fig.9.8.

f "JI

: It AT Iy I"' I.':-If'-"‘r;'ll'.l..1'. { ANy A
i W YU .I[l 1 ‘ ‘n ‘Jlrl ;~‘| .':|,|.| i 1‘ f ‘I, .|‘|,1|H

Fig. 9.8 The power consumption of an RSA implemented using the square and multiply algorithm



9  Smart Card Security 233

Looking closely at the acquired power consumption, a series of events can be
seen. There are two types of events at two different power consumption levels, with
a short dip in the power consumption between each event. This corresponds well
to the square and multiply algorithm described in Sect.9.2. Given the ratio of the
two features, it can be assumed that the feature with the lower power consumption
represents the squaring operation and the higher power consumption represents the
multiplication. From this, the beginning of the exponent can be read from the power
consumption, in this case the exponent used is FOOFO0O0FF00 6.

It should be noted that all the examples given in this section have been taken
from chips that display the differences in an obvious manner. Modern secure micro-
processors rarely display the functions being executed as clearly as in the examples
given.

9.4.2.2 Differential Power Analysis

The idea of statistically treating power analysis traces was first presented to the
cryptographic community in [31], and is referred to as Differential Power Analysis
(DPA). DPA is based on the relationship between the power consumption and the
data being manipulated at a given point in time. The differences in power consump-
tion are potentially extremely small, and cannot be interpreted individually, as the
information will be lost in the noise incurred during the acquisition process. The
small differences produced can be seen in Fig. 9.9, where traces were taken using a
chip where the acquisition noise is exceptionally low. Different power levels, corre-
sponding to different Hamming weights of the data being manipulated, are clearly
visible.

Fig. 9.9 Overlaid acquisitions of the power consumption produced by the same instruction but
with varying data



234 M. Tunstall

Differential Power Analysis (DPA) can be performed on any algorithm in which
an intermediate operation of the form 8 = S(« @ K) is calculated, where « is known
and K is the key (or some segment of the key). The function S is typically a nonlinear
function, usually a substitution table (referred to as an S-box), which produces an
intermediate output value .

The process of performing the attack initially involves running a microprocessor
N times with N distinct message values M;, where 1 <i < N. The encryption of
the message M; under the key K to produce the corresponding ciphertext C; will
result in power consumption traces w;, for 1 <i < N. These traces can be captured
with an oscilloscope, and sent to a computer for analysis and processing.

To find K, one bit of 8 is chosen, which we will refer to as b. For a given hypothesis
for K, this bit will classify whether each trace w; is a member of one of two possible
sets. The first set Sy will contain all the traces where b is equal to zero, and the second
set S1 will contain all the remaining traces, i.e. where the output bit b is equal to one.

A differential trace A, is calculated by finding the average of each set and then
subtracting the resulting values from each other, where all operations on traces are
conducted in a pointwise fashion, i.e. this calculation is conducted on the first point
of each acquisition to produce the first point of the differential trace, the second point
of each acquisition to produce the second point of the differential trace, etc.

A _ zwiES() wi _ Zwiesl wi
n —
|Sol |11

A differential trace is produced for each value that K can take. In DES the first
subkey will be treated in groups of six bits, so 64 (i.e. 2%) differential traces will
be generated to test all the combinations of six bits. The differential trace with the
highest peak will validate a hypothesis for K, i.e. K = n corresponds to the A,
featuring a maximum amplitude. An example of a differential trace produced by
predicting one bit of the output a DES S-box, with a correct key guess, is shown in
Fig.9.10.

The differential trace in Fig. 9.10 shows a large difference in the power consump-
tion at five different points, which are referred to as DPA peaks. The first peak

P L, I—— - e gy 2 TN T —— TV TTTY T PR TR PR

Fig. 9.10 A differential trace



9  Smart Card Security 235

corresponds to the output of the S-box, i.e. where the output of the S-box function
is determined and written to memory. The four subsequent peaks correspond to the
same bit being manipulated in the P-permutation. This occurs because the output of
each S-box consists of four bits, and the memory containing those four bits will be
accessed each time one of those bits is required in the output of the P-permutation.

A more complete version of this attack uses Pearson’s correlation coefficient to
demonstrate the correlation between the Hamming weight and the instantaneous
power consumption. This can be used to validate key hypotheses in an identical
manner to DPA. Details of this method are beyond the scope of this chapter, but the
interested reader is referred to [11].

9.4.3 Electromagnetic Analysis

An alternative side channel to measuring the power consumption of a smart card is to
measure the instantaneous electromagnetic emanations as a cryptographic algorithm
is being computed [17, 45]. This is typically implemented using a small probe, an
example of which can be seen in Fig.9.11. Such probes can measure the electromag-
netic emanations for different blocks of a chip, as such probes are an equivalent size
to the chip’s features. This means that the probe can be placed just above a given
feature to try and get a strong signal from that part of the chip, e.g. the bus between
two areas of the chip, while excluding noise from other areas of the chip.

Measuring the electromagnetic field can be done using a handmade probe (such as
that shown in Fig.9.11), although commercially available probes are also sufficient
(and has the advantage that the frequency response is defined). The signals from a
probe is passed through an amplifier and can be acquired using an oscilloscope in
the same way one would acquire a power consumption trace.

Fig. 9.11 Electromagnetic
probing of a chip




236 M. Tunstall

{ | o, AV o Ay A |
¥ VI | v . v v T

Key: The upper traces represents the power consumption, and the lower traces
represent the electromagnetic emanations during the same command. The
black traces were taken were FF ¢ is being manipulated, and the grey traces
where 00;¢ is being manipulated.

Fig. 9.12 Power and electromagnetic measurements

The initial descriptions of attacks were based on acquired traces of the electromag-
netic emanations of a microprocessor, as shown in Fig. 9.11. More recent descriptions
have shown that at attacker can find low frequency leakage in complex System-on-
Chip microprocessors [33] and even the metal case of a Hardware Security Module
(HSM) or PC [18]. In these cases, an attack was realised by extracting a signal at a
well-chosen frequency by filtering the signal before acquisition with an oscilloscope.

The signals that are acquired using this method are also different to those acquired
by reading the instantaneous power consumption. The signals acquired during two
executions of a selected command by an 8-bit microprocessor is shown in Fig.9.12.
The black traces show the acquired power and electromagnetic signals when the chip
manipulates FF6, and the grey traces shows the same command where the micro-
processor is manipulating 00,¢. The difference in the black and grey traces repre-
senting the power consumption can be seen as a increase in the power consumption
for short periods. The difference in the traces representing the electromagnetic ema-
nations is caused by sudden changes in the electromagnetic field, shown by spikes
in the signal at the same moment in time the difference in the power consumption
can be observed.

The traces acquired from measuring the instantaneous electromagnetic emana-
tions can be treated in exactly the same way as power consumption acquisitions
[17, 45]. The acquisitions can be analysed individually, referred to as Simple Elec-
troMagnetic Analysis (SEMA), or treated statistically, referred to as Differential
ElectroMagnetic Analysis (DEMA).



9  Smart Card Security 237
9.4.3.1 Leakage Detection

Differential power analysis, and similar attacks, target specific intermediate values
generated during the computation of a cryptographic algorithm. When developing a
side channel resistant implementation of a cryptographic implementation one needs
to be able to determine that no attack is possible from any intermediate state. Ini-
tial methods to determine if an implementation could be attacked via side-channel
analysis would attempt to attack the commonly targeted intermediate states.

Recentresults have suggested that an implementation of a cryptographic algorithm
can be tested, by determining if the leakage acquired during the processing of a fixed
input can be distinguished from the leakage acquired during the processing of a
random input [20].

One of the tests in the Test Vector Leakage Assessment (TVLA) methodology is
to determine whether there are statistically significant differences in the mean traces
of two sets of traces, one acquired with a fixed plaintext and the other with random
plaintexts. In applying this, one would take two sets of data, and conduct Welch’s ¢-
test point-by-point to determine whether there is evidence against the null hypothesis
that the sets are the same.

Consider two sets of acquisitions, of n; and n, samples, respectively. We can
compute their respective sample means, X; andX», and respective sample standard
deviations, o} and 0,. One can then compute a ¢-statistic using Welch’s ¢-test:

X — X,
O’]z 0'22
T

where the result is distributed over a z-distribution with v degrees of freedom, i.e.
a ~ t(v). In practice, one would use the asymptotic result where the ¢-distribution
is equivalent to the standard normal distribution, so v does not need to be defined.
Goodwill et al. use @ > 4.5 to indicate the presence of leakage. Specifically, an
a > 4.5 gives the probability of indicating leakage where no leakage is present, often
referred to as a Type I error, of ~ 1 x 1079,
Further results on how this type of test can be used are given in [49].

9.4.4 Countermeasures

There are several countermeasures for protecting cryptographic algorithms against
side-channel attacks. Some countermeasures can either be implemented in hardware
or software; only software implementations are considered here for simplicity. These
countermeasures are listed below:

Constant Execution can be used to fix the time taken by an algorithm, so that no
deductions on secret information can be made though timing analysis or SPA. This
extends to individual processes being executed by a smart card. If a process takes



238 M. Tunstall

different lengths of time depending on some secret information and the difference in
time is made up by a dummy function, there is a good chance that this will be visible
in the power consumption or electromagnetic emanations. It is, therefore, important
that an algorithm is written so that the same code is executed for all the possible
input values.

Random Delays can be inserted at different points in the algorithm being executed,
i.e. a dummy function that takes a random amount of time to execute can be called.
The algorithm can no longer be said to comply with the constant execution criteria
given above, but any variation is completely independent of any secret information.
This does not prevent any attacks, but creates an extra step for an attacker. In order to
conduct any power analysis, an attacker needs to synchronise the power consumption
acquisitions a posteriori. The problem of attempting to conduct side-channel attacks
in the presence of random delays is described in [14].

Randomisation (or data whitening) is where the data is manipulated in such a way
that the value present in memory is always masked with a random value. This ran-
domisation remains constant for one execution, but will vary from one acquisition to
another. This mask is then removed at the end of the algorithm to produce the cipher-
text. Some ideas for implementing this countermeasure were proposed in [12], and an
example of this sort of implementation applied to block ciphers can be found in [1].

The size of the random value used in block ciphers is generally limited as S-boxes
need to be randomised before the execution of the block cipher. This is generally
achieved by creating an alternative S-box in memory for each execution of the cryp-
tographic algorithm using the algorithm given in Algorithm 2.

Algorithm 2: Randomising S-box Values
Input: S = (so, 51, 2, . . ., Sp)x containing the S-box, R arandom € {0, 1,...,n},andr a
random € {0, 1,...,x — 1}
Output: RS = (rso, rS1, 782, ..., Sp)x

for i = 0ton do

‘ rs;i < Si@R) DT ;
end
return RS ;

The random value used for masking the input data can be no larger than n, and the
random value used for the output value can be no larger that x. In an implementation
of DESR € {0, 1,...,63}andr € {0, 1, ..., 15}, the rest of the algorithm needs to
be a carefully designed to produce values masked with R, and to be able to manipulate
returned values masked with r.

This is not possible in the case of RSA, where the calculation methods do not
facilitate the method described above. A method for randomising the calculation of
an RSA signature is given in [26], where the signature generation can be calculated
using the formula:



9  Smart Card Security 239
S=(M+r;-N)*?™N mod (r; - N)) mod N (9.14)

where ¢ is Euler’s totient function and, rq, r, and r3 are small random values. The
effect of the each of the small random values does not change the outcome, but
the order of the squaring operations and multiplications required to compute S is
randomised. This does not provide a totally secure algorithm as the modular expo-
nentiation itself also has to be secured against SPA attacks. A discussion of these
algorithms is given in [13].

Randomised Execution is the manipulation of data in a random order so that an
attacker does not know what is being manipulated at a given moment in time. If, for
example, n bytes are being XORed with n key bytes then it is prudent to do it in
a random order. If an attacker wishes to determine which byte has been XORed at
any particular time this will be infeasible given that the order that bytes are being
manipulated is unknown.

This also inhibits any statistical analysis of a side channel (i.e. using DPA), as
this relies on the same unknown variable being treated at the same point in time.
As an attacker cannot know the order in which the data has been treated, this pro-
vides an extremely efficient countermeasure when combined with randomisation. A
discussion of this technique applied to DES is described in [37].

Limiting Key Usage can prevent an attack, since conducting a statistical attack, such
as Differential Power Analysis, requires a certain number of traces with a fixed
key. An effective countermeasure is to limit the number of uses of a given key to a
threshold lower than that required to conduct a side channel attack. However, using
this countermeasure places a burden on the smart card as keys need to be updated and
some mechanism for synchronising the key with a server needs to be implemented.
We refer the reader to [15] for further discussion of this countermeasure.

94.4.1 Remarks

The above list gives the countermeasures that would need to be applied to a cryp-
tographic algorithm to render it secure against side-channel analysis. An attacker
would, therefore, have to overcome the combination of all these countermeasures.
For an extensive treatment of side-channel analysis, the interested reader is referred
to [34].

9.5 Fault Analysis

The problem of faults occurring in microprocessors has existed for a relatively long
time. One of the initial observations of faults being provoked in microprocessors was
accidental. It was observed that radioactive particles produced by elements naturally



240 M. Tunstall

present in packaging material caused faults in chips [35]. Specifically, these faults
were caused by Uranium-235, Uranium-238 and Thorium-230 residues present in
the packaging decaying to Lead-206 and releasing « particles. These particles were
energetic enough to cause bits stored in RAM to change.

Further research involved the analysis of the effect of cosmic rays on semiconduc-
tors [54]. While cosmic rays are very weak at ground level, their effect in the upper
atmosphere and outer space is important for the aero-spacial industry. This provoked
research into integrity measures that need to be included in semiconductors used in
the upper atmosphere and space.

In 1997, it was pointed out that a fault present in the generation of an RSA signa-
ture, computed using the Chinese Remainder Theorem, could reveal information on
the private key [10] (this attack is detailed below). This led to further research into
the effect of faults on the security of implementations of cryptographic algorithms
in secure microprocessors, and the possible mechanisms that could be used to inject
faults in a microprocessor.

9.5.1 Fault Injection Mechanisms

There are a variety of different mechanisms that can be used to inject faults in
microprocessors. These are listed here:

Variations in Supply Voltage [3, 9] during execution may cause a processor to mis-
interpret or skip instructions.

Variations in the External Clock [3, 4, 32] may cause data to be misread (the circuit
tries to read a value from the data bus before the memory has time to latch out the
correct value) or an instruction miss (the circuit starts executing instruction n + 1
before the microprocessor has finished executing instruction n).

Extremes of Temperature [10, 21] may cause unpredictable effects in microproces-
sors. When conducting temperature attacks on smart cards, two effects can be
obtained [6]: the random modification of RAM cells due to heating, and the exploita-
tion of the fact that read and write temperature thresholds do not coincide in most
Non-Volatile Memories (NVMs). By tuning the chip’s temperature to a value where
write operations work but read operations do not, or the other way around, a number
of attacks can be mounted.

Laser Light [16, 23, 44] can be used to simulate the effect of cosmic rays in micro-
processors. Laser light is used to test semiconductors that are destined to be used in
the upper atmosphere or space. The effect produced in semiconductors is based on
the photoelectric effect, where light arriving on a metal surface will induce a current.
If the light is intense, as in laser light, this may be enough to induce a fault in a
circuit.



9  Smart Card Security 241

White Light [3] has been proposed as an alternative to laser light to induce faults in
microprocessors. This can be used as arelatively inexpensive means of faultinduction
[50]. However, white light is not directional and cannot easily be used to illuminate
small portions of a microprocessor.

Electromagnetic flux [48] has also been shown to be able to change values in RAM,
as eddy currents can be made strong enough to affect microprocessors. However,
this effect has only been observed in insecure microprocessors.

9.5.2 Modelling the Effect of a Fault

The fault injection methods described above may have many different effects on
silicon. They can be modelled in ways that depend on the type of fault injection that
has been used. The following list indicates the possible effects that can be created
by these methods:

Resetting Data: an attacker could force the data to the blank state, i.e. reset a given
byte, or bytes, of data back to 00 or FF¢, depending on the logical representation
of, for example, RAM cells.

Data Randomisation: an attacker could change the data to arandom value. However,
the adversary does not control the random value, and the new value of the data is
unknown to the adversary.

Modifying Opcodes: an attacker could change the instructions executed by the chip’s
CPU, as described in [3]. This will often have the same effect as the previous two
types of attack. Additional effects could include removal of functions or the breaking
of loops. The previous two models are algorithm dependent, whereas the changing
of opcodes is implementation dependent.

These three types of attack cover everything that an attacker could hope to do
to an implementation of an algorithm. It is not usually possible for an attacker to
create all of these possible faults in any particular implementation. Nevertheless, it is
important that algorithms are able to tolerate all types of fault, as the fault injection
methods that may be realisable on a given platform are unpredictable. While an
attacker might only ever have a subset of the above effects available, if that effect is
not taken into account then it may have catastrophic consequences for the security
of a given implementation.

In the literature one-bit faults are often considered. This is a useful model for
developing theoretical attacks, but has proven to be extremely difficult to produce on
a secure microprocessor. The model given above is based on published descriptions
of implementations of fault attacks.



242 M. Tunstall

9.5.3 Faults in Cryptographic Algorithms

The faults mechanisms and fault model described above can be used to attack numer-
ous cryptographic algorithms. Two examples of fault attacks on cryptographic algo-
rithms are described below.

9.5.3.1 Faults in RSA Signature Generation

The first published fault attack [10], proposed an attack focused on an implementation
of RSA using the Chinese Remainder Theorem (CRT). The attack allows for a wide
range of fault injection methods, as it only requires one fault to be inserted in order
to factorise the RSA modulus.

The technique requires an attacker to obtain two signatures for the same message,
where one signature is correct and the other is the result of the injection of a fault
during the computation of S, or S, (see above). That is, the attack requires that one
of §, and S, is computed correctly, and the other is computed incorrectly.

Without loss of generality, suppose that §' =aS$, + bS; mod N is the faulty
signature, where S, is changed to Sf; # ;. We then have:

A=S—-S5 (mod N)
(aSp +bSy) — (aS, +bS;) (mod N) (9.15)
b(Sy —S,) (mod N) .

Asb =0 (mod p)andb =1 (mod q), it follows that A = 0 (mod p) (but A #= 0
(mod ¢)) meaning that A is a multiple of p (but not of ¢). Hence, we can derive the
factors of N by observing that p = gcd(A mod N, N) andg = N/p.

In summary, all that is required to break RSA is one correct signature and one
faulty one. This attack will be successful regardless of the type or number of faults
injected during the process, provided that all faults affect the computation of either
S, orS,.

Although initially theoretical, this attack stimulated the development of a variety
of fault attacks against a wide range of cryptographic algorithms. One of the first
descriptions of an implementation of this attack is given in [5].

9.5.3.2 Faults in DES

A type of cryptanalysis of ciphertext blocks produced by injecting faults into DES
was proposed in [8], based on using techniques used in differential cryptanalysis [36].
One-bit faults were assumed to occur in random places throughout an execution of
DES. The ciphertext blocks corresponding to faults occurring in the fourteenth and
fifteenth round were taken, enabling the derivation of the key. This was possible as
the effect of a one-bit fault in the last three rounds of DES is visible in the ciphertext



9  Smart Card Security 243

block when it is compared with a correct ciphertext block. This allowed the key to be
recovered using between 50 and 200 different ciphertext blocks. It is claimed in [8]
that, if an attacker can be sure of injecting faults towards the end of the algorithm, the
same results could be achieved with only ten faulty ciphertext blocks, and that, if a
precise fault could be induced, only three faulty ciphertext blocks would be required.

This algorithm was improved upon in [19]. When searching for a key, the number
of times a given hypothesis is found is counted. This means that faults from earlier
rounds can be taken into account. It is claimed in [19] that faults from the eleventh
round onwards can be used to derive information on the key, and that in the ideal
situation only two faulty ciphertext blocks are required.

The simplest case of a fault attack on DES involves injecting a fault in the fifteenth
round, and such an attack is well-known within the smart card industry.

The last round of DES can be expressed in the following manner:

Ris = S(R15® K1) ® Lis
= S8(L16® K1) ® L1s

If a fault occurs during the execution of the fifteenth round, i.e. R;s is randomised
by a fault to become R, then

Ris = S(R}s® Ki6) ® Lys
= S(L)s ® Ki6) ® L5

and

Ris® Rig = S(Lic D K16) ® L15D S(Lx D K16) ® L1s
= S(L16® K16) ® S(L¢ ® Ki6) -

This provides an equation in which only the last subkey, K¢, is unknown. All
of the other variables are available from the ciphertext block. This equation holds
for each S-box in the last round, which means that it is possible to search for key
hypotheses in sets of six bits, i.e. the 48-bit output after the XOR is divided into eight
groups of six bits before being substituted with values from the S-boxes.

All 64 possible key values corresponding to the XOR just before each individual
S-box can be used to generate a list of possible key values for these key bits. After
this, all the possible combinations of the hypotheses can be searched though, with
the extra eight-key bits that are not included in the last subkey, to find the entire key.

If R5 is randomised by a fault, then the expected number of hypotheses that
are generated can be predicted using the methods given in [7]. Table9.1 shows the
statistically expected number of key hypotheses E; that would be returned by a fault
producing a difference across each S-box in the last round. This is an average of the
non-zero elements in the expected number of hypotheses that are generated using
the tables defined in [7].



244 M. Tunstall

Table 9.1 The expected
number of hypotheses per
S-box for one faulty
ciphertext block

-box Ex
7.54
7.67
7.58
8.36
7.73
7.41
7.91
7.66

XX | N W=

The expected number of hypotheses for the last subkey will be the product of all
eight expected values Ej; this gives an expected number of around 22*. This is just
for the last subkey, an actual exhaustive search will need to take into account the eight
bits that are not included in the last subkey, giving an overall expected keyspace size
of 232,

This substantially reduces the number of possible keys that would need to be
tested to try and determine the secret key used. The size of the keyspace can be
further reduced if the fault attack is repeated and the intersection of the two resulting
keyspaces is determined.

The same attack can also be applied if small faults occur in the last five rounds
of DES, but the treatment is statistical in nature and requires many more faults to
determine information on the key. Further details of this attack, and a brief description
of an implementation, are given in [19]. A more detailed analysis of how DES can
be attacked using faults is given in [46].

9.5.4 Countermeasures

The countermeasures that can be used to protect microprocessors from fault attacks
are based on methods previously employed for integrity purposes. However, counter-
measures only need to be applied in processes where an attacker could benefit from
injecting a fault, although a careful analysis of a given application is required to deter-
mine where countermeasures are required. This has proven to be true even where
algorithms are based on one-time random numbers, as it has been shown that the
manipulation of the random number can compromise the security of a cryptographic
algorithm [41]. The list of countermeasures is given below:

Checksums can be implemented in software or hardware. This prevents data (such
as key values) being modified by a fault, as the fault can be detected followed by
appropriate action (see below).



9  Smart Card Security 245

Execution Randomisation can be used to change the order in which operations in an
algorithm are executed from one execution to another, making it difficult to predict
what the machine is doing at any given cycle. For most fault attacks this counter-
measure will only slow down a determined attacker, as eventually a fault will hit the
desired instruction. However, this will thwart attacks that require faults in specific
places or in a specific order.

Random Delays can be used to increase the time required to attack. As with execution
randomisation, a determined attacker can attempt to inject a fault until the moment
the fault is injected coincides with the target. However, this can take significantly
more time than would otherwise be required, especially if an attacker is able to
identify a target through a side channel (e.g. using Simple Power Analysis).

Execution Redundancy is the repeating of algorithms and comparing the results to
verify that the correct result is generated. This is most effective when the second
calculation is different to the first, e.g. the inverse function, to prevent an attacker
from trying to inject an identical fault in each execution.

Variable Redundancy is the reproduction of a variable in memory. When a variable
is tested or modified the redundant copy is also tested or modified. This is most
effective when the copy is stored in a different form to the original, e.g. the bitwise
complement, to avoid a fault being applied to each variable in the same way.

Ratification Counters and Baits can be included to prevent an attacker from suc-
cessfully completing a fault attack by rendering a microprocessor inoperative once
a fault attack is detected. Baits are small (<10 byte) code fragments that perform
an operation and test its result. A typical bait writes, reads and compares data, per-
forms XORs, additions, multiplications and other operations whose results can be
easily checked. When a bait detects an error it increments a counter in Non-Volatile
Memory (NVM), and when this counter exceeds a tolerance limit (typically three)
the microprocessor ceases to function.

9.54.1 Remarks

Many of the countermeasures in this list can be implemented in either hardware or
software. A more complete list of the countermeasures (in hardware and software),
along with a description of certain fault attacks is given in [27].

9.6 Embedded Software Design

The attacks described in the previous sections of this chapter have focused on attack-
ing cryptographic algorithms to determine a secret or private key. In this section some
example of how the attack methods presented in Sects. 9.4 and 9.5 can be applied to



246 M. Tunstall

other security mechanisms are described. This is to demonstrate that implementing
a secure application on a smart card is not trivial, and requires the careful evaluation
of every implemented function. It should also be noted that the attacks described
below are only possible where no specific countermeasures are implemented.

9.6.1 PIN Verification

As described in Sect. 9.3, the first smart cards included a contact that was called Vpp
used to supply power to the microprocessor so that it could program the EEPROM
present in the chip. At the time, the voltage supply (Vcc) did not supply enough
power to allow a microprocessor to modify EEPROM and a higher voltage needed to
be applied to the Vpp contact. The Vpp contact is no longer used as it led to security
problems, as described below.

If the Vpp contact was masked (e.g. covered with nail varnish) then no power
would be available for the microprocessor to program the EEPROM, but power
would be available through the Vcc to run every other function of the smart card.
This meant that an attacker could try every single PIN number without decrementing
the PIN counter (typically a PIN counter is set to three and decremented with every
false PIN presentation, once the PIN number is zero a smart card will render itself
non-functional). This process could be automated using a standard PC and a smart
card reader to determine a PIN number in matter of minutes.

After the Vpp contact was removed further problems were encountered. The most
natural way to implement a PIN verification would be as shown in Algorithm 3.

Algorithm 3: Insecure PIN Verification Algorithm

Input: PIN
Output: Whether the PIN is valid, true or false.

if (PINcounter > 0) then
| PIN < RequestPIN();
else
‘ return false ;
end
if PIN # UserPIN then
PINcounter <— PINcounter — 1 ;
return false ;
else
\ return true ;
end

The PIN entered by a user is returned by the RequestPIN function and compared
with the PIN in Non-Volatile Memory (NVM). If the entered PIN is not equal to the
stored PIN, the PINcounter will be decremented.



9  Smart Card Security 247

It was observed that the power consumption increased when a smart card modified
the value of the PIN counter, i.e. it was visible using the SPA techniques described
in Sect. 9.4 as an increase in the power consumption. Attackers then developed tools
to cut the power being supplied to a microprocessor once this increase in power con-
sumption was detected. This allowed automated tools to attempt every PIN number
until the correct PIN was found. The correct PIN would be the only value where
the command would finish as the microprocessor would not attempt to modify the
NVM.

This made it necessary to change the algorithm used to verify a PIN number.
Typically, a secure PIN verification will be implemented in the following manner:
where the PINcounter is decremented before it is tested, and only incremented if
the PIN is entered correctly. The power supply can be removed at any point during
the command without producing a security problem. However, further modifications
would need to be made to render it resistant to fault attacks. An example of a fault
attack against an operating system is described in Algorithm 4.

Algorithm 4: Secure PIN Verification Algorithm

Input: PIN
Output: Whether the PIN is valid, true or false.

if (PINcounter > 0) then
‘ PIN <« RequestPIN() ;
else
| return false ;
end
PINcounter <— PINcounter — 1; if (PIN = UserPIN) then
\ PINcounter <— PINcounter + 1; return true ;
else
| return false ;
end

9.6.2 File Access

Another possible target within a smart card operating system is the file structure.
All personalisation information, e.g. PIN numbers etc., is stored in a file structure
situated in NVM. Each file will have a set of access conditions that determine who
can read and write to each file or directory. For example a user’s PIN number on
a SIM card, unless intentionally disabled, will grant access to the files that contain
SMS messages once verified. If the PIN is not verified access to these files will be
denied. There are often administrator identification codes (essentially eight digit PIN
numbers) that grant access to more files and allow the modification of files that the
end user is not able to directly modify, e.g. the user’s PIN number.



248 M. Tunstall

| 1
mmll,‘Jm‘ue,mwit,:_uu’«wn‘;'-*;ﬁ'ﬂmuh..iu.m'w.vuun,uuummwuf-iHUl'i,",e.‘,’uur.u.r:‘w_hiu.g--l.- T {'1 LALLL)
'y I Lk 1!!..Ilt._lll[ILl|i|||
R SRR

v

TEST

Key: Black Power consumption where file access is denied.
Grey Power consumption where file access is granted.

Fig. 9.13 Determining the moment file access is granted using the power consumption

If an attacker wishes to attempt to access information stored in files without any
of the codes mentioned above, a fault attack could be attempted. An attacker can
attempt to inject a fault at the moment a smart card is evaluating whether the right
to read a file, for example, should be granted. If successful, the evaluation will be
erroneous and the right to access the file will be temporarily granted.

In order to determine the point in which a fault would need to be injected, an
attacker can use SPA (see Sect.9.4). An attacker could compare a trace of the power
consumption where file access is granted with a trace where file access has been
denied. An example of this is shown in Fig.9.13. The black trace represents the
power consumption where access has been denied. The grey trace represents the
power consumption where access has been granted. It can be see at the point indicated
in the figure that the two traces diverge. This should represent the moment at which
the access conditions are evaluated and will, therefore, be the targeted area for a fault
attack.

On a smart card there are typically files that contain serial numbers and such
information, which can be read by anyone. Finding two files to attempt to read in
order to generate traces, as shown in Fig. 9.13, should be straightforward.

This type of fault attack means that the access conditions to files, and other security
mechanisms such as PIN verification, need to include redundancy in their tests to
ensure that a fault attack is not possible. The various countermeasures that can be
implemented are described in Sect.9.5.

9.7 1In Conclusion

This chapter presents the particular security considerations that need to be taken into
account when implementing a secure smart card-based application. Implementations
of all the commands on a smart card need to be subjected to careful analysis to prevent
power analysis and fault injection techniques from compromising the security of the
smart card.



9  Smart Card Security 249

Research in the domain of smart card security is typically a cyclic process. New

attacks are developed against algorithm implementations, standards, etc. and coun-
termeasures are proposed. The modifications are then reviewed for potential vulner-
abilities and further countermeasures proposed if required. The aim of this process
is to remain sufficiently ahead of what can be achieved by an individual attacker that
smart cards remain secure throughout the period that they are active.

References

10.

11.

12.

13.

14.

. Akkar, M.-L. and Giraud, C. (2001). An implementation of DES and AES secure against

some attacks. In Kog, C. K., Naccache, D., and Paar, C., editors, Cryptographic Hardware and
Embedded Systems—CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages
309-318. Springer-Verlag.

. American National Standards Institute (1985). Financial Institution Key Management (Whole-

sale). American National Standards Institute.

. Anderson, R. and Kuhn, M. (1996). Tamper resistance—a cautionary note. In Proceedings of

the Second USENIX Workshop of Electronic Commerce, pages 1-11.

. Anderson, R. and Kuhn, M. (1997). Low cost attacks on tamper resistant devices. In Christian-

son, B., Crispo, B., Lomas, T. M. A., and Roe, M., editors, Security Protocols, volume 1361
of Lecture Notes in Computer Science, pages 125-136. Springer-Verlag.

. Aumiiller, C., Bier, P., Hofreiter, P., Fischer, W., and Seifert, J.-P. (2002). Fault attacks on

RSA with CRT: Concrete results and practical countermeasures. In Kaliski, B. S., Kog, C. K.,
and Paar, C., editors, Cryptographic Hardware and Embedded Systems—CHES 2002, volume
2523 of Lecture Notes in Computer Science, pages 260-275. Springer-Verlag.

. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and Whelan, C. (2006). The sorcerer’s

apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370-382.

. Biham, E. and Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. In

Menezes, A. and Vanstone, S., editors, Advances in Cryptology—CRYPTO ’90, volume 537
of Lecture Notes in Computer Science, pages 2?-21. Springer-Verlag.

. Biham, E. and Shamir, A. (1997). Differential fault analysis of secret key cryptosystems. In

Kaliski, B. S., editor, Advances in Cryptology—CRYPTO ’97, volume 1294 of Lecture Notes
in Computer Science, pages 513-525. Springer-Verlag.

. Blomer, J. and Seifert, J.-P. (2003). Fault based cryptanalysis of the advanced encryption

standard (AES). In Wright, R. N., editor, Financial Cryptography—FC 2003, volume 2742 of
Lecture Notes in Computer Science, pages 162—181. Springer-Verlag.

Boneh, D., DeMillo, R. A., and Lipton, R. J. (1997). On the importance of checking com-
putations. In Fumy, W., editor, Advances in Cryptology—EUROCRYPT 97, volume 1233 of
Lecture Notes in Computer Science, pages 37-51. Springer-Verlag.

Brier, E., Clavier, C., and Olivier, F. (2004). Correlation power analysis with a leakage model.
In Joye, M. and Quisquater, J.-J., editors, Cryptographic Hardware and Embedded Systems—
CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 16-29. Springer-Verlag.
Chari, S., Jutla, C. S, Rao, J. R., and Rohatgi, P. (1999). Towards approaches to counteract
power-analysis attacks. In Wiener, M., editor, Advances in Cryptology—CRYPTO ’99, volume
1666 of Lecture Notes in Computer Science, pages 398—412. Springer-Verlag.
Chevallier-Mames, B., Ciet, M., and Joye, M. (2004). Low-cost solutions for preventing simple
side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers, 53(6):760—
768.

Clavier, C., Coron, J.-S., and Dabbous, N. (2000). Differential power analysis in the presence
of hardware countermeasures. In Kocg, C. K. and Paar, C., editors, Cryptographic Hardware



250 M. Tunstall

and Embedded Systems—CHES 2000, volume 1965 of Lecture Notes in Computer Science,
pages 252-263. Springer- Verlag.

15. Dobraunig, C., Eichlseder, M., Mangard, S. and Mendel, F. (2014). On the Security of Fresh
Re-keying to Counteract Side-Channel and Fault Attacks. In Joye, M. and Moradi, A., editors,
Smart Card Research and Advanced Applications—13th International Conference, CARDIS
2014, volume 8968 of Lecture Notes in Computer Science, pages 233-244. Springer-Verlag.

16. Fouillat, P. (1990). Contribution a I’étude de I’interaction entre un faisceau laser et un milieu
semiconducteur, Applications a I’étude du Latchup et a ’analyse d’états logiques dans les
circuits intégrés en technologie CMOS. PhD thesis, University of Bordeaux.

17. Gandolfi, K., Mourtel, C., and Olivier, F. (2001). Electromagnetic analysis: Concrete results.
In Kog, C. K., Naccache, D., and Paar, C., editors, Cryptographic Hardware and Embedded
Systems—CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 251-261.
Springer-Verlag.

18. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E. (2015). Stealing Keys from PCs Using
a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation. In Giineysu, G. and
Handschuh, H., editors, Cryptographic Hardware and Embedded Systems—CHES 2015, vol-
ume 9293 of Lecture Notes in Computer Science, pages 207-228. Springer-Verlag.

19. Giraud, C. and Thiebeauld, H. (2004). A survey on fault attacks. In Deswarte, Y. and Kalam,
A. A. El, editors, Smart Card Research and Advanced Applications VI—I18th IFIP World
Computer Congress, pages 159—-176. Kluwer Academic.

20. Goodwill, G., Jun, B., Jaffe, J. and Rohatgi, P. (2011). A testing methodology for side-channel
resistance validation. In The Non-Invasive Attack Testing Workshop—NIAT 2011.

21. Govindavajhala, S. and Appel, A. W. (2003). Using memory errors to attack a virtual machine.
In IEEE Symposium on Security and Privacy 2003, pages 154—165.

22. Gutmann, P. (2004). Security Architecture. Springer.

23. Habing, D. H. (1992). The use of lasers to simulate radiation-induced transients in semicon-
ductor devices and circuits. IEEE Transactions On Nuclear Science, 39:1647-1653.

24. International Organization for Standardization (1997). ISO/IEC 7816-3 Information
technology—Identification cards—Integrated circuit(s) cards with contacts — Part 3: Electronic
signals and transmission protocols. International Organization for Standardization.

25. International Organization for Standardization (1999). ISO/IEC 7816-2 Identification cards—
Integrated circuit cards—Part 2: Cards with contacts—Dimensions and location of the contacts.
International Organization for Standardization.

26. Joye, M. and Olivier, F. (2005). Side-channel attacks. In van Tilborg, H., editor, Encyclopedia
of Cryptography and Security, pages 571-576. Kluwer Academic Publishers.

27. Joye, M. and Tunstall, M., Eds (2015). Fault Analysis in Cryptography. Springer.

28. Kahn, D. (1997). The Codebreakers: The Comprehensive History of Secret Communication
from Ancient Times to the Internet. Simon & Schuster Inc., second edition.

29. Knuth, D. (2001). The Art of Computer Programming, volume 2, Seminumerical Algorithms.
Addison—Wesley, third edition.

30. Kocher, P. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Koblitz, N., editor, Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture
Notes in Computer Science, pages 104-113. Springer-Verlag.

31. Kocher, P, Jaffe, J., and Jun, B. (1999). Differential power analysis. In Wiener, M. J., editor,
Advances in Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 388-397. Springer- Verlag.

32. Kommerling, O. and Kuhn, M. (1999). Design principles for tamper resistant smartcard proces-
sors. In USENIX Workshop on Smartcard Technology, pages 9-20.

33. Longo Galea, J., De Mulder, E., Page, D. and Tunstall, M. (2015). SoC It to EM: ElectroMag-
netic Side-Channel Attacks on a Complex System-on-Chip. In Giineysu, G. and Handschuh,
H., editors, Cryptographic Hardware and Embedded Systems—CHES 2015, volume 9293 of
Lecture Notes in Computer Science, pages 620—-640. Springer-Verlag.

34. Mangard, S., Oswald, E., and Popp, T. (2007). Power Analysis Attacks—Revealing the Secrets
of Smart Cards. Springer-Verlag.



9  Smart Card Security 251

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

May, T. and Woods, M. (1978). A new physical mechanism for soft errors in dynamic memories.
In 16¢h International Reliability Physics Symposium.

Menezes, A., van Oorschot, P., and Vanstone, S. (1997). Handbook of Applied Cryptography.
CRC Press.

Messerges, T. S. (2000). Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois, Chicago.

Meyer, C. (2000). Private communication. Carl Meyer was one of the designers of the DES
algorithm.

MIPS-Technologies (2001). MIPS™ architecture for programmers volume I: Introduction to
the MIPS32™ architecture. Technical Report MD00082, Revision 0.95.

Murdocca, M. and Heuring, V. P. (2000). Principles of Computer Architecture. Addison-Wesley.
Naccache, D., Nguyen, P. Q., Tunstall, M., and Whelan, C. (2005). Experimenting with faults,
lattices and the DSA. In Vaudenay, S., editor, Public Key Cryptography—PKC 2005, volume
3386 of Lecture Notes in Computer Science, pages 16-28. Springer-Verlag.

NIST (1999). Data Encryption Standard (DES) (FIPS-46-3). National Institute of Standards
and Technology.

NIST (2001). Advanced Encryption Standard (AES) (FIPS-197). National Institute of Standards
and Technology.

Pouget, V. (2000). Simulation expérimentale par impulsions laser ultra-courtes des effets des
radiations ionisantes sur les circuits intégrés. PhD thesis, University of Bordeaux.
Quisquater, J.-J. and Samyde, D. (2001). Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In Attali, I. and Jensen, T. P., editors, Smart Card Program-
ming and Security, International Conference on Research in Smart Cards—E-smart 2001,
volume 2140 of Lecture Notes in Computer Science, pages 200-210. Springer-Verlag.
Rivain, M. (2009). Differential Fault Analysis on DES Middle Rounds. Clavier, C. and Kiris,
G., editors, Cryptographic Hardware and Embedded Systems—CHES 2009, volume 5747 of
Lecture Notes in Computer Science, pages 457—469. Springer-Verlag.

Rivest, R., Shamir, A., and Adleman, L. M. (1978). Method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120-126.

Samyde, D., Skorobogatov, S. P., Anderson, R. J., and Quisquater, J.-J. (2002). On a new way
to read data from memory. In Proceedings of the First International IEEE Security in Storage
Workshop, pages 65-69.

Schneider, T. and Moradi, A. (2015). Leakage Assessment Methodology—A Clear Roadmap
for Side-Channel Evaluations. In Giineysu, G. and Handschuh, H., editors, Cryptographic
Hardware and Embedded Systems—CHES 2015, volume 9293 of Lecture Notes in Computer
Science, pages 495-513. Springer-Verlag.

Skorobogatov, S. and Anderson, R. (2002). Optical fault induction attacks. In Kaliski, B. S., C.
K. Kog, and Paar, C., editors, Cryptographic Hardware and Embedded Systems—CHES 2002,
volume 2523 of Lecture Notes in Computer Science, pages 2—12. Springer-Verlag.
Skorobogatov, S. P. (2005). Semi-Invasive Attacks—A New Approach to Hardware Secu-
rity Analysis. PhD thesis, University of Cambridge. available at http://www.cl.cam.ac.uk/
TechReports/.

Tarnovsky, C., (2015) https://en.wikipedia.org/wiki/Christopher_Tarnovsky. Accessed 16
November 2015.

Wright, P. (1987). Spycatcher. Heineman.

Ziegler, J. (1979). Effect of cosmic rays on computer memories. Science, 206:776-788.



http://www.cl.cam.ac.uk/TechReports/
http://www.cl.cam.ac.uk/TechReports/
https://en.wikipedia.org/wiki/Christopher_Tarnovsky

	9 Smart Card Security
	9.1 Introduction
	9.1.1 Organisation
	9.1.2 Notation

	9.2 Cryptographic Algorithms
	9.2.1 Data Encryption Standard
	9.2.2 RSA

	9.3 Smart Card Security Features
	9.3.1 Communication
	9.3.2 Cryptographic Coprocessors
	9.3.3 Random Number Generators
	9.3.4 Anomaly Sensors
	9.3.5 Chip Features

	9.4 Side Channel Analysis
	9.4.1 Timing Analysis
	9.4.2 Power Analysis
	9.4.3 Electromagnetic Analysis
	9.4.4 Countermeasures

	9.5 Fault Analysis
	9.5.1 Fault Injection Mechanisms
	9.5.2 Modelling the Effect of a Fault
	9.5.3 Faults in Cryptographic Algorithms
	9.5.4 Countermeasures

	9.6 Embedded Software Design
	9.6.1 PIN Verification
	9.6.2 File Access

	9.7 In Conclusion
	References


