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Abstract. Given its immense growth, scientific literature can be
explored to reveal new discoveries, based on yet uncovered relations
between knowledge from different, relatively isolated fields of research
specialization. This chapter proposes a bisociation-based text mining
approach, which shows to be effective for cross-domain knowledge discov-
ery. The proposed cross-domain literature mining functionality, including
text acquisition, text preprocessing, and bisociative cross-domain litera-
ture mining facilities, is made publicly available within a new browser-
based workflow execution engine TextFlows, which supports visual con-
struction and execution of text mining and natural language processing
(NLP) workflows. To support bisociative cross-domain literature min-
ing, the TextFlows platform includes implementations of several ele-
mentary and ensemble heuristics that guide the expert in the process
of exploring new cross-context bridging terms. We have extended the
TextFlows platform with several components, which—together with doc-
ument exploration and visualization features of the CrossBee human-
computer interface—make it a powerful, user-friendly text analysis tool
for exploratory cross-domain knowledge discovery. Another novelty of
the developed technology is the enabled use of controlled vocabularies to
improve bridging term extraction. The potential of the developed func-
tionality was showcased in two medical benchmark domains.

Keywords: Literature mining · Literature-based discovery · Cross-
context linking terms · Creativity support tools · Human-computer
interaction · Workflows

1 Introduction

Understanding complex phenomena and solving difficult problems often requires
knowledge from different domains to be combined and cross-domain associa-
tions to be taken into account. These kinds of context crossing associations,
called bisociations [1], are often needed for creative, innovative discoveries.
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Bisociative knowledge discovery is a challenging task motivated by a trend of
over-specialization in research and development, which usually results in deep—
but relatively isolated—knowledge islands. Scientific literature too often remains
closed and cited only in professional sub-communities. In addition, the informa-
tion that is related across different contexts is difficult to identify using asso-
ciative approaches, like the standard association rule learning [2] known from
the data mining and machine learning literature. Therefore, the ability of liter-
ature mining methods and software tools to support the experts in their knowl-
edge discovery processes—especially in searching for yet unexplored connections
between different domains—is becoming increasingly important. Cross-domain
literature mining is closely related to bisociative knowledge discovery as defined
in [3]. Assuming two different domains of interest, a crucial step in cross-domain
knowledge discovery is the identification of interesting bridging terms (B-terms),
appearing in both literatures, which carry the potential of revealing the links
connecting the two domains.

This chapter presents a powerful approach to literature based cross-context
knowledge discovery that supports the process of bridging term extraction. The
developed methodology helps the experts in searching for hidden links that con-
nect seemingly unrelated domains. The main novelty of the presented approach is
the combination of document acquisition and text preprocessing facilities with a
new facility for term extraction through ensemble-based ranking of terms accord-
ing to their bisociative potential, which may contribute to novel cross-domain
discoveries. The proposed methodology is implemented in a web-based text min-
ing platform TextFlows1. To this end, the TextFlows platform was connected to
the human-computer interface of system CrossBee [4,5]. In the methodology pre-
sented in this chapter, the CrossBee web application—which we originally devel-
oped as an off-the-shelf solution for finding bisociations bridging two domains—is
used as a user interface to facilitate bridging term discovery through sophisti-
cated document visualization and exploration. This work proposes a further
extension of the methodology by facilitating the use of controlled vocabularies,
enhancing the heuristics capability to rank the actual B-terms at the top of the
ranked term list. With all these features, the TextFlows platform, which now
includes the reusable text analytics workflows combined with the CrossBee doc-
ument exploration interface, has become a publicly available creativity support
tool (CST), supporting creative discovery of new cross-domain hypotheses.

The chapter is organized as follows. Section 2 provides a brief glossary of key
terms that will facilitate a common understanding of the main topics presented
here. Section 3 presents the state-of-the-art in the area of literature-based dis-
covery. Section 4 illustrates the problem of bridging term ranking and B-term
exploration through a use case scenario, followed by an overview of the method-
ology. Section 5 comprises the core contribution of this chapter. The TextFlows

1 Our new text mining platform, named TextFlows, is publicly available for use
at http://textflows.org. The source code (open sourced under the MIT Licence) is
available at https://github.com/xflows/textflows. Detailed installation instructions
are provided with the source code.

http://textflows.org
https://github.com/xflows/textflows


Bridging Term Discovery for Cross-Domain Literature Mining 61

platform, acting as the enabling technology for implementing the developed
cross-domain link discovery approach, is described in Sect. 5.1. The elemen-
tary and ensemble heuristics used in bridging term discovery are described in
Sect. 5.2. Section 5.3 presents details of document acquisition, text preprocessing
and literature based discovery workflows implemented in TextFlows. Controlled
vocabulary extension of the methodology is presented in Sect. 5.4. Evaluation of
the developed methodology on two medical benchmark problems is provided in
Sect. 6, Finally, Sect. 7 concludes with a summary of most important features of
the presented approach and some directions for further work.

2 Glossary

Bisociation: the combination of knowledge from seemingly unrelated domains
into novel cross-domain knowledge.

Bridging term: a term common to two disjoint domains, which is a candidate
for the discovery of new knowledge or for formulation of new hypotheses, acting
as a “bridge” between the two domains.

Literature-based discovery: using academic literature to find previously uncov-
ered connections in existing domain knowledge.

Outlier detection: finding irregular or unusual data instances (documents in the
case of literature mining) that do not conform to the expected distribution.

3 State-of-the-Art

According to Koestler [1], bisociative thinking occurs when a problem, idea, event
or situation is perceived simultaneously in two or more “matrices of though” or
domains. When two matrices of thought interact with each other, the result is
either their fusion in a novel intellectual synthesis or their confrontation in a
new aesthetic experience. He regarded many different mental phenomena that
are based on comparison (such as analogies, metaphors, jokes, identification,
anthropomorphism, and so on) as special cases of bisociation. More recently, this
work was followed by the researchers interested in so-called bisociative knowledge
discovery [6], where—according to Berthold—two concepts are bisociated if there
is no direct, obvious evidence linking them and if one has to cross different
domains to find the link, where a new link must provide some novel insight into
the problem addressed.

In the area of literature based discovery (LBD), Swanson [7] and
Smalheiser [8] developed an approach to assist the user in literature based discov-
ery by detecting interesting cross domain terms with a goal to discover unknown
relations between previously unrelated concepts. The online system ARROW-
SMITH [8] takes as input two sets of titles of scientific papers from disjoint
domains A and C and lists terms that are common to A and C; the resulting
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bridging terms (B-terms) are further investigated by the user for their potential
to generate new scientific hypotheses. They defined the so-called closed discovery
process, where domains A and C are specified by the expert at the beginning of
the discovery process.

Inspired by this early work, literature mining approaches were further devel-
oped and successfully applied to different problems, such as finding associations
between genes and diseases [9], diseases and chemicals [10], and others. [11]
describe several quality-oriented web-based tools for the analysis of biomedical
literature, which include the analysis of terms (biomedical entities such as dis-
ease, drugs, genes, proteins and organs) and provide concepts associated with
a given term. A recent approach by Kastrin et al. [12] is complementary to the
other LBD approaches, in that it uses different similarity measures (such as com-
mon neighbors, Jaccard index, and preferential attachment) for link prediction
of implicit relationships in the Semantic MEDLINE network.

Early work by Swanson has shown that databases such as PubMed can
serve as a rich source of yet hidden relations between usually unrelated top-
ics, potentially leading to novel insights and discoveries. By studying two
separate literatures—the literature on migraine headache and the articles on
magnesium—[13] discovered “Eleven neglected connections”, all of them sup-
portive for the hypothesis that magnesium deficiency might cause migraine
headache. Swanson’s literature mining results have been later confirmed by lab-
oratory and clinical investigations. This well-known example has become a gold
standard in the literature mining field and has been used as a benchmark in
several studies, including those presented in [14–16] as well as in our own past
work [17,18]. Research in literature mining, conducted by Petrič et al. [17,18],
suggests that bridging terms are more frequent in documents that are in some
sense different from the majority of documents in a given domain. For example,
[18] have shown that such documents, considered outlier documents of their own
domain, contain a substantially larger amount of bridging-linking terms than
the normal, non-outlier documents.

The experimental data used to test the methodology proposed in this work
are papers from the combined migraine-magnesium domain, studied extensively
by Swanson and his followers, as well as the combined autism-calcineurin domain
pair explored in [17,19].

Our contribution in this chapter follows two lines of our past research. First,
it continues the work on cross-domain document exploration in [17,18], which
explore outlier documents as means for literature based discovery. Note that
the problem of finding outliers has been extensively studied also by another
researcher [20] and has an immense use in many real-world applications. Second,
and most importantly, the chapter continues our work on cross-domain bisoci-
ation exploration with CrossBee [5], which is most closely related to the work
described here. CrossBee is an off-the-shelf solution for finding bisociative terms
bridging two domains, which—as will be shown—can be used as the default user
interface to the methodology presented in this chapter. Given that the Cross-
Bee user interface is an actual ingredient of the technology developed in this
work, its user interface is described in some more detail than other LBD systems
mentioned in this section.
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The CrossBee HCI functionality includes the following facilities: (a) Perfor-
mance evaluation that can be used to measure the quality of results, e.g., through
plotting ROC curves when the actual bridging terms are known in advance.
(b) Marking of high-ranked terms by emphasizing them, thus making them eas-
ier to spot throughout the application. (c) B-term emphasis can be used to mark
the terms predefined as B-terms by the user. (d) Domain separation colors all
the documents from the same domain with the same color, making an obvious
distinction between the documents from the two domains. (e) User interface cus-
tomization enables the user to decrease or increase the intensity of the following
features: high-ranked term emphasis, B-term emphasis and domain separation;
this facility was introduced to enable the user to set the intensity of these fea-
tures, given that in cooperation with the experts we discovered that some of
them like the emphasizing features while others do not.

Note that the CrossBee web interface was designed for end-users who are
not computer scientists or data miners and who prefer using the system by
following a fixed sequence of predefined methodological steps. However, for a
more sophisticated user of developer, the weakness of CrossBee is the lack of
possibility to experiment with different settings as well as the lack of possibility
to extend the methodology with new ideas and then compare or evaluate the
developed approaches. As another weakness, the CrossBee web application does
not offer a downloadable library and documentation distribution or extensive
help. These weaknesses were among the incentives for our new developments,
resulting in the TextFlows platform and its elaborate mechanisms for detecting
and exploring bisociative links between the selected domains of interest.

4 Methodology Overview

In cross-domain knowledge discovery, estimating which of the terms have a
high potential for interesting discoveries is a challenging research question. It is
especially important for cross-context scientific discovery such as understanding
complex medical phenomena or finding new drugs for yet not fully understood
illnesses.

In our approach we focus on the closed discovery process, where two dis-
jointed domains A and C are specified at the beginning of the discovery process
and the main goal is to find bridging terms (see Fig. 1) which support valida-
tion of the novel hypothesized connection between the two domains. Given this
motivation, the main functionality of the presented approach is bridging term
(B-term) discovery, implemented through ensemble based term ranking, where
an ensemble heuristic composed of six elementary heuristics was constructed for
term evaluation.

To ensure the best user experience in the process of bridging term discovery
we have combined the visual programming interface of the TextFlows workflow
construction and execution platform with the bridging term exploration system
CrossBee; CrossBee provides a user interface for term and document visualiza-
tion that additionally supports the expert in finding relevant documents and
exploration of the top-ranked bisociative terms.
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Fig. 1. Bridging term discovery when exploring migraine and magnesium document
corpora, with B-terms as identified in [13] in the middle.

4.1 Methodology Illustration

The ensemble based term ranking methodology (using the final ensemble heuris-
tic) is illustrated in Fig. 2.

Fig. 2. Term ranking approach: first, ensemble heuristics vote for terms, next, terms are
sorted according to their potential B-term (as shown on left). Consequently, bridging
terms with the highest bridging term potential should receive the highest scores (as
shown on the right side).

The user starts the bridging term discovery process in TextFlows by either
constructing a new workflow for cross-domain discovery or by opening an existing
workflow (such as the workflow shown in Fig. 4 of Sect. 4.2). In the first case,
the user is required to input either a PubMed query or a file with documents
from the two domains, where each line contains a document with exactly three
tab-separated entries: (a) document identifier, (b) domain acronym, and (c) the
document text. The user is able to tailor the preprocessing steps to his own needs
by simply altering the workflow using the TextFlows visual programming user
interface, which enables simple addition, connection and removal of components
from the workflow canvas. In this way, the user can also modify the ensemble of
elementary heuristics, outlier documents identified by external outlier detection
software, the already known bisociative terms (B-terms), and others. When the
user runs the workflows (by clicking the run button) the system starts with
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the process of text preprocessing, followed by the computation of elementary
heuristics, the ensemble bisociation scores and term ranking.

After performing the calculation of bisociative potentials for every term in
the vocabulary in TextFlows, the user is directed to the user-friendly tool Cross-
Bee where one can efficiently investigate cross-domain links pointed out by the
ensemble-based ranking methodology. CrossBee’s document focused exploration
empowers the user to filter and order the documents by various criteria, includ-
ing detailed document view that provides a more detailed presentation of a single
document including various term statistics. Methodology performance analysis
supports the evaluation of the methodology by providing various data which can
be used to measure the quality of the results, e.g., data for plotting the ROC
curves. High-ranked term emphasis marks the terms according to their bisoci-
ation score calculated by the ensemble heuristic. When using this feature all
high-ranked terms are emphasized throughout the whole application thus mak-
ing them easier to spot (see different font sizes in Fig. 3). B-term emphasis marks
the terms defined as B-terms by the user (yellow terms in Fig. 3). Domain sep-
aration is a simple but effective option which colors all the documents from the
same domain with the same color, making an obvious distinction between the
documents from the two domains (different colors in Fig. 3). User interface cus-
tomization enables the user to decrease or increase the intensity of the following
features: high-ranked term emphasis, B-term emphasis and domain separation.

Fig. 3. One of the useful features of the CrossBee interface is the side-by-side view of
documents from the two domains under investigation. The analysis of the “stress” term
from the migraine-magnesium domain is shown. The presented view enables efficient
comparison of two documents, the left one from the migraine domain and the right one
from the magnesium domain. (Color figure online)
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4.2 Methodology Outline

This section describes how the complex methodology was developed as a work-
flow in the TextFlows platform, by presenting the entire pipeline of natural lan-
guage processing (NLP) and literature based discovery (LBD) components. The
top-level overview of the methodology, shown in Fig. 4, consists of the following
steps: document acquisition, document preprocessing, heuristics specification,
candidate B-term extraction, heuristic terms scores calculation, and visualiza-
tion and exploration. An additional ingredient shown in Fig. 4—methodology
evaluation—is not directly part of the methodology, however it is an important
step of the developed approach.

Fig. 4. Methodological steps of the cross-domain literature mining process.

Top-level procedural explanation of the workflow shown in Fig. 4 is given
below, while detailed explanations of individual steps of the workflow are
described in Sect. 5.3.

1. Document acquisition is the first step of the methodology. Its goal is to acquire
documents of the two domains, label them with domain labels and pack both
domains together into the annotated document corpus format.

2. The document preprocessing step is responsible for applying standard text
preprocessing to the document corpus. The main parts are tokenization, stop-
word tagging, and token stemming/lemmatization.

3. The heuristic specification step enables detailed specification of the heuristics
to be used for B-term ranking. The user specifies one or more heuristics, which
are to be applied to evaluate the B-term candidates. Note that each individual
heuristic can be composed of other heuristics, therefore an arbitrary complex
list of heuristics can be composed in this step.

4. The candidate B-term extraction step takes care of extracting the terms which
are later scored by the specified heuristics. There are various parameters
which control which kind of terms are extracted from the documents (e.g.,
the maximal number of tokens to be joined together as a term, minimal term
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corpus frequency, and similar). The outputs are the BoW Dataset (i.e. the
documents in the standard Bag-of-Words (BoW) vector format) and a Bow
Model Constructor. The latter stores the list of all candidate B-terms along
with the information about the input documents from annotated document
corpus as well as the exact data how each document was parsed. This data is
needed e.g., by the CrossBee web application when displaying the documents
since it needs to be able to exactly locate specific words inside a document,
in order to color or emphasize such words.

5. Heuristic term score calculation is the most important step of the methodol-
ogy. It takes the list of extracted B-term candidates and the list of specified
heuristics and calculates a heuristic score for each candidate term for each
heuristic. The heuristics calculation is optimized so that common information
used by different heuristics is calculated only once. The output is structurally
still a list of heuristics, however now each of them contains a bisociation score
for each candidate B-term.

6. Visualization and exploration is the final step of the methodology. It has three
main functionalities. It can either take the heuristically scored terms, rank the
terms, and output the terms in the form of a table, or it can take the heuristi-
cally scored terms along with the parsed document corpus and send them both
to the CrossBee web application for advanced visualization and exploration.
Besides improved bridging concept identification and ranking, CrossBee also
provides various content presentations which further speed up the process of
bisociation exploration. These presentations include e.g., side-by-side docu-
ment inspection (see Fig. 3), emphasizing of interesting text fragments, and
uncovering similar documents.

7. Methodology evaluation was introduces as an additional step, which can be
used during the development of the methodology. Its purpose is to calcu-
late and visualize various metrics that were used to assess the quality of the
methodology. Requirement to use these facilities is to allow the actual (prede-
fined) B-terms of the domain of investigation to act as gold standard B-terms
available for evaluating the quality of B-term extraction and ranking.

Evaluation of the methodology was actually performed on two problems: the
standard migraine-magnesium problem well-known in LBD, and a more recent
autism-calcineurin literature mining problem. The evaluation of the methodology
(its results are presented in detail in Sect. 6) provides evidence that the users
empowered with the CrossBee functionality of term ranking and visualization
are able to perform the crucial actions in cross-domain discovery more effectively
than with conventional text mining tools.

Note that the described pipeline represents an actual executable workflow
implemented in the online cloud-based workflow composition and execution envi-
ronment TextFlows. The entire workflow, whose components are explained in
detail in Sect. 5.3, is available for public reuse2.

2 http://textflows.org/workflow/486/.

http://textflows.org/workflow/486/
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5 Methodology Implementation

After presenting the main functionality of the TextFlows platform, this section
presents the core mechanism of bisociative term detection, i.e., the designed
heuristics and the workflows implementing the methodology in TextFlows. The
section concludes by presenting the methodology empowered by using a con-
trolled vocabulary in the search for bridging term.

5.1 The TextFlows Platform

We developed the TextFlows platform3 as an open-source, web-based text min-
ing platform that supports the construction and execution of text mining and
natural language processing workflows. TextFlows was designed as a cloud-based
web application that can be accessed and controlled from anywhere while the
processing is performed in a cloud of computing nodes. TextFlows differs from
comparable text mining platforms by its design that allows that during run-
time the TextFlows platform resides on a server (or on a cluster of machines)
while its graphical user interface that allows workflow construction is served as
a web application accessible from any modern web browser. Furthermore, the
platform’s distinguishing feature is the ease of sharing and publicizing work-
flows constructed in TextFlows, together with an ever growing roster of reusable
workflow components and entire workflows. As completed workflows, data, and
results can also be made public by the author of the workflow, the platform was
used to serve as an integration platform for development of various components
supporting the literature based cross-domain discovery process, and for con-
struction and evaluation of workflows, implementing the methodology proposed
in Sect. 4.2.

Following a modular design, workflow components in TextFlows are
organized into packages which allows for easier distributed development.
The TextFlows packages implement several text mining algorithms from
LATINO4[22], NLTK [23] and scikit-learn [24] libraries. Moreover, TextFlows is
easily extensible by adding new packages and workflow components. Workflow
components of several types allow graphical user interaction during run-time,
and visualization of results by implementing views in JavaScript, HTML or any
other format that can be rendered in a web browser (e.g., Flash, Java Applet).

Below we explain the concept of workflows in more detail, describe the key
text mining concepts of TextFlows and present the newly implemented package
with workflow components supporting literature based discovery.
3 Our platform TextFlows is a fork of data mining platform ClowdFlows [21], adapted

to text mining and enriched with text analytics and natural language processing
algorithms. As a fork of ClowdFlows, it benefits from its service-oriented architec-
ture, which allows the user to utilize arbitrary web-services as workflow components.
In addition to the new functionality, its novelty is a common text representation
structure and the development of ‘hubs’ for algorithm execution.

4 LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under
the LGPL license—and is available at https://github.com/LatinoLib/LATINO/.

https://github.com/LatinoLib/LATINO/
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Workflows. Executable graphical representations of complex procedures can
be represented as workflows. The workflow model is the main component of the
TextFlows platform and consists of an abstract representation of workflows and
workflow components. The graphical user interface used for constructing work-
flows follows a visual programming paradigm which simplifies the representation
of complex procedures into a spatial arrangement of building blocks. The most
basic unit component in a TextFlows workflow is a processing component, which
is represented as a widget in the graphical representation. Considering its inputs
and parameters, every such component performs a task and stores the results on
its outputs. Different processing components are linked via connections through
which data is transferred from a widget’s output to another widget’s input. An
alternative widget input for a widget are parameters, which the user enters into
the widgets text fields. The graphical user interface implements an easy-to-use
way of arranging widgets on a canvas to form a graphical representation of a
complex procedure.

Workflows in TextFlows are processed and stored on remote servers from
where they can be accessed from anywhere, requiring only an internet connection.
By default each workflow can only be accessed by its author, although the user
can also choose to make it publicly available. The TextFlows platform generates a
specific URL for each workflow that has been saved as public. The users can then
simply share their workflows by publishing the corresponding URL. Whenever
a public workflow is accessed by another user, a copy of the workflow is created
on the fly and added to his private workflow repository. The workflow is copied
with all the data to ensure the experiments can be repeated. This enables the
user to tailor the workflow to his needs without modifying the original workflow.

Key Text Mining Concepts in TextFlows. The key concepts in text min-
ing are a corpus or a document collection, a single document, and document
features [25]. Below we describe the model of corpora, documents and anno-
tations on documents in TextFlows, which are the fundamental parts of our
methodology. When designing TextFlows, the emphasis was on providing com-
mon representations which are passed among the majority of widgets:

Annotated corpus. A document collection is any grouping of text documents
to be used for text analytics purposes. In TextFlows the Python5 class that
represents a corpus of documents is called AnnotatedDocumentCorpus (ADC).
An ADC instance contains the collection of documents and its meta-data such
as the authors, creation date, facts and notes about the dataset, etc. Features
are stored in a simple key-value Python dictionary, where keys are strings and
the values can store any Python object.

Annotated document. A single textual data unit within a collection—a
document—is represented by the AnnotatedDocument class. An AnnotatedDoc-
ument instance may vary in size from a single sentence to a whole book. As with
5 https://www.python.org/.

https://www.python.org/
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ADC, AnnotatedDocument instances also contain meta-data, such as author,
date of publication, document length, assigned keywords, etc.

Annotation. Instances of the Annotation class are used to mark parts of the
document, e.g., words, terms or sentences. Each Annotation instance has two
pointers, one to the start and one to the end of the annotated stretch in the
document text. These instances also have a type attribute used for grouping
annotations of similar nature and contain key-value dictionaries of features, used
by taggers to annotate parts of document with specific tags, e.g., annotations of
type “token” that have a feature named “StopWord” with value “true”, represent
stop words in the document.

The Widget Repository. The following paragraphs present a subset of the
TextFlows repository of widgets, which will be used in the workflows that imple-
ment the methodology proposed in Sect. 4.2.

Corpus and vocabulary acquisition. Document acquisition is usually the first step
of every text mining methodology. TextFlows employs widgets which enable load-
ing document corpora, labeling of documents with domain labels and converting
them into the ADC structure. Document corpora can be loaded from files, where
the dataset can be either a single text file, with each line representing a separate
document, or a zip of files in which a document is represented as a file. Also
supported is the upload of Word (.doc or .docx) and PDF files. Together with
the text of the document the files may optionally contain document meta-data.

Corpus manipulation and visualization. TextFlows implements several widgets
for manipulation of ADC data objects. These widgets allow the user to add new
features, extract existing features from the document corpus, split document
corpora (by either specifying conditions or by indices), merge different corpora,
etc. A special widget in the platform is the Document Corpus Viewer widget,
which visualizes the ADC data objects (note that TextFlows design emphasizes
the importance of the ADC common document corpus representation which
is passed among the majority of widgets). The interactive Document Corpus
Viewer widget allows the user to check the results of individual widgets by
visualizing the ADC data object from their outputs.

Text preprocessing. Preprocessing is a very important part of any form of knowl-
edge extraction from text documents. Its main task is the transformation of
unstructured data from text documents into a predefined well-structured data
representation by extracting a high quality feature vector for every document in
a given document corpus.
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Our implementation employs the LATINO6 [22], scikit-learn [24] and NLTK7

[23] software libraries for its text preprocessing (and other processing) needs.
These libraries inter alia contain the majority of elementary text preprocessing
procedures as well as a large number of advanced procedures which support the
conversion of a document corpus into a table of instances, thus converting every
document into a table row representation of an instance.

The TextFlows preprocessing techniques are based on standard text min-
ing concepts [25] and are implemented as separate categories. Every category
possesses a unique hub widget, which has the task of applying a preprocessing
technique from its category to the ADC data object. Every such widget is library
independent, meaning that it can execute objects from either LATINO, NTLK
or scikit-learn libraries. A standard collection of preprocessing techniques imple-
mented in TextFlows includes: tokenization, stopword removal, Part-of-speech
(PoS) tagging, as well as stemming and lemmatization.

In the data mining modeling phase (i.e. document classification or heuristic
calculation), each document from the ADC structure needs to be represented as
a set of document features it contains. In TextFlows the Construct BoW Dataset
and BoW Model Constructor widget takes as an input an ADC data object and
generates a sparse BoW model dataset (which can then be handed e.g. to a
classifier). The widget takes as an input also several user defined parameters,
which are taken into account when building the feature dataset. Besides the
sparse BoW model dataset this widget also outputs a BowModelConstructor
instance. This additional object contains settings which allow repetition of the
feature construction steps on another document corpus. These settings include
the input parameters, as well as the learned term weights and vocabulary.

Literature based discovery. This category of widgets supports the literature based
discovery process. The package contains several widgets which specify different
elementary heuristics. As will be described in Sect. 5.2, the basic heuristics are
grouped into one of four categories: frequency-based, TF-IDF-based, similarity-
based, outlier-based. Each category is represented by its own widget and the user
is able to manually select its elementary heuristics through an interactive dialog.
The literature based discovery package also contains several widgets which spec-
ify operations between elementary widgets, such as minimum, maximum, sum,
norm, etc.

The library also contains two widgets which support the specification of
ensemble heuristics, which will be described in Sect. 5.2: Ensemble Heuristic
Vote and Ensemble Average Position widget. The first defines an ensemble vot-
ing heuristic (it calculates term votes according to Eq. 1 of Sect. 5.2), while the
latter specifies an ensemble that calculates normalized sum of term position
scores of the inputted heuristics (see Eq. 2 of Sect. 5.2).

6 LATINO (Link Analysis and Text Mining Toolbox library) is open-source—
mostly under the LGPL license—and is available at https://github.com/LatinoLib/
LATINO/.

7 Natural Language Toolkit.

https://github.com/LatinoLib/LATINO/
https://github.com/LatinoLib/LATINO/
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The most important widget from this package is the Calculate Term Heuris-
tic Scores widget which takes as an input several heuristics specifications and
performs the actual calculations. The decision for such an approach—having one
widget which calculates all the heuristics—is that several elementary heuristics
require the same intermediate results. These results can be cached and calcu-
lated only once, which results in faster computation. To this end, the TextFlows
platform uses Compressed Sparse Row (CSR) matrices8 to be able to store the
matrix of features in memory and also to speed up algebraic operations on vec-
tors and matrices.9

Literature based discovery package also contains the Explore in CrossBee
widget which exports the final ranking results and the annotated document
corpus into web application CrossBee, which offers manual exploration of terms
and documents. Also, the Rank Terms widget can be used to display the ranked
terms in the form of a table along with their respective scores.

5.2 Implemented Heuristics for Bridging Term Discovery

This section presents different groups of elementary and ensemble heuristics,
which are used for B-term ranking in the core step of the proposed methodology,
i.e. in the heuristic term score calculation step.

The heuristics are defined as functions that numerically evaluate the term
quality by assigning it bisociation score to a term (measuring the potential that a
term is actually a B-term). For the definition of an appropriate set of heuristics,
we define a set of special (mainly statistical) properties of terms, which aim
at distinguishing B-terms from regular terms; thus, these heuristics can also be
viewed as advanced term statistics. All heuristics operate on the data retrieved
from the documents in text preprocessing. Ranking all the terms using the scores
calculated by an ideal heuristic should result in ranking all the B-terms at the
top of a ranked list. This is an ideal scenario, which is not realistic; however,
ranking by heuristic scores should at least increase the proportion of B-terms
at the top of the ranked term list. Formally, a heuristic is a function with two
inputs, i.e. a set of domain labeled documents D and a term t appearing in these
documents, and one output, i.e. a score that represents the term’s bisociation
potential.

We will use the following notation: to state that the term’s bisociation score
b is equal to the result of a heuristic named heurX, we can denote it as b =
heurX(D, t). However, since the set of input documents is static when dealing
with a concrete dataset, we can—for the sake of simplicity—omit the set of input

8 Compressed Sparse Row (CSR) matrices are implemented in the scipy.sparse package
http://docs.scipy.org/doc/scipy/reference/sparse.html.

9 The Calculate Term Heuristic Scores widget also takes as input the BowModel-
Contructor object and the AnnotatedDocumentCorpus. The parse settings from the
BowModelConstructor object are used to construct Compressed Sparse Row (CSR)
matrices, which represents the BoW model. TextFlows uses mathematical libraries
numpy and scipy to efficiently perform the heuristics calculations.

http://docs.scipy.org/doc/scipy/reference/sparse.html
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documents from a heuristic notation and use only b = heurX(t). Whenever we
need to explicitly specify the set of documents to which the function is applied
(never needed for a heuristic, but sometimes needed for auxiliary functions used
in the formula for the heuristic), we write it as funcXD(t). For specifying the
function’s input document set, we have two options: either use Du that stands for
the (union) set of all the documents from all the domains, or use Dn : n ∈ {1..N},
which stands for the set of documents from the given domain n. In general, the
following statement holds: Du = ∪N

n=1Dn, where N is the number of domains.
In the most common scenario, when there are exactly two distinct domains, we
also use the notation DA for D1 and DC for D2, similarly to Swanson’s notation
of symbols A and C as representatives of the initial and the target domain in
the closed discovery setting, mentioned in Sect. 3.

Base Heuristics. We divide the heuristics into different sets for easier explana-
tion; however, most of the described heuristics work fundamentally in a similar
way—they all manipulate solely the data present in term and document vectors
and derive the terms bisociation score. The exceptions to this are the outlier-
based heuristics, which first evaluate outlier documents and only later use the
information from the term vectors for B-term evaluation.

We can thus define four sets of base heuristics: frequency based, TF-IDF
based, outlier based and similarity based heuristics. In following sections we
describe each set in more detail.10

Frequency-based heuristics. We first define two auxiliary functions:

– countTermD(t): counts the number of occurrences of term t in a document
set D (called term frequency in TF-IDF related contexts),

– countDocD(t): counts the number of documents in which term t appears in
document set D (called document frequency in TF-IDF related contexts).

We define the following base heuristics:

– freqTerm(t) = countTermDu
(t): term frequency in the two domains,

– freqDoc(t) = countDocDu
(t): document frequency in the two domains,

– freqRatio(t) = countTermDu (t)
countDocDu (t)) : term to document frequency ratio,

– freqDomnRatioMin(t) = min( countTermD1 (t)

countTermD2 (t)
,
countTermD2 (t)

countTermD1 (t)
): minimum of

term frequencies ratio of the two domains,
– freqDomnProd(t) = countTermD1(t) ·countTermD2(t): product of term fre-

quencies of the two domains,
– freqDomnProdRel(t) = countTermD1 (t)·fcountTermD2 (t)

countTermDu (t) : product of term fre-
quencies of the two domains relative to the term frequency in all domains.

10 Due to a large number of heuristics and auxiliary functions, we use the so called
camel casing multi-word naming scheme for easier distinction; names are formed by
word concatenation and capitalization of all non first words (e.g., freqProdRel and
tfidfProduct).
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TF-IDF-based heuristics. TF-IDF is a standard measure of term’s importance in
a document, which is used heavily in text mining research [26]. In the following
heuristics definitions, we use the following auxiliary functions:

– tfidfd(t) stands for TF-IDF weight of term t in document d,
– tfidfD(t) represents TF-IDF weight of term t in the centroid vector of all

documents d, d ∈ D, where the centroid vector is defined as an average of
all document vectors and thus presents an average document of document
collection D.

Heuristics based on TF-IDF are listed below:

– tfidfSum(t) =
∑

d∈Du
tfidfd(t): sum of all TF-IDF weights of term t in the

two domains; this heuristic is analogous to freqTerm(t),
– tfidfAvg(t) =

∑
d∈Du

tfidfd(t)

freqDocDu (t) : average TF-IDF weights of term t across all
domains,

– tfidfDomnProd(t) = tfidfD1(t) · tfidfD2(t): product of TF-IDF weights of
term t in the two domains,

– tfidfDomnSum(t) = tfidfD1(t)+ tfidfD2(t): sum of term TF-IDF weights of
term t in the two domains.

Similarity-based heuristics. Another approach to construct a relevant heuristic
measure is to use the cosine similarity measure that is frequently used in text
mining to compute the similarity of documents. We start by creating a repre-
sentational BoW model as a document space and by converting terms into BoW
document vectors. Next, we get the centroid vectors for both domains in the
document space representation. Finally, we apply TF-IDF weighting on top of
all the newly constructed vectors and centroids. We define the following auxiliary
function:

– simCosD(t): calculates the cosine similarity of the document vector of term t
and the document vector of a centroid of documents d ∈ D.

The base heuristics are the following:

– simAvgTerm(t) = simCosDu
(t): similarity of term t to an average term, i.e.

the distance from the center of the cluster of all terms,
– simDomnProd(t) = simCosD1(t)·simCosD2(t): product of similarity of term
t to the centroids of the two domains,

– simDomnRatioMin(t) = min( simCosD1 (t)

simCosD2 (t)
,
simCosD2 (t)

simCosD1 (t)
): minimum of term’s

frequency ratios of the two domains.

Outlier-based heuristics. Outlier detection is an established area of data min-
ing [20]. Conceptually, an outlier is an unexpected event, entity or—in our case—
an irregular document. We are especially interested in outlier documents since
they frequently embody new information that is often hard to explain in the con-
text of existing knowledge. Moreover, in data mining, an outlier is occasionally a
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primary object of study as it can potentially lead to the discovery of new knowl-
edge. These assumptions are well aligned with the bisociation potential that we
wish to optimize, thus, we have constructed several heuristics that harvest the
information possibly residing in outlier documents.

We concentrate on a specific type of outliers, i.e. domain outliers, which are
the documents that tend to be more similar to the documents of the opposite
domain than to those of their own domain. The techniques that we use to detect
outlier documents [18] is based on using classification algorithms to detect outlier
documents. First we train a classification model for each domain and afterwards
classify all the documents using the trained classifier. The documents that are
misclassified—according to their domain of origin—are declared as outlier doc-
uments, since according to the classification model they do not belong to their
domain of origin.

We defined three different outlier sets of documents based on three classifi-
cation algorithms utilized. These outlier sets are:

– DCS : documents misclassified by the Centroid Similarity (CS) classifier,
– DRF : documents misclassified by the Random Forest (RF) classifier,
– DSVM : documents misclassified by the Support Vector Machine (SVM) clas-

sifier.

Centroid similarity is a basic classifier model implemented in our system. It
classifies each document to the domain whose centroid’s TF-IDF vector is the
most similar to the document’s TF-IDF vector. The description of the other
two classification models is beyond the scope of this chapter, as we used exter-
nal procedures to retrieve these outlier document sets; a detailed description is
provided by [18].

For each outlier set we defined two heuristics: the first counts the frequency
of a term in an outlier set and the second computes the relative frequency of a
term in an outlier set compared to the relative frequency of a term in the whole
dataset. The resulting heuristics are listed below:

– outFreqCS(t) = countTermDCS
(t): frequency of term t in the CS outlier set,

– outFreqRF (t) = countTermDRF
(t): frequency of term t in the RF outlier set,

– outFreqSVM(t) = countTermDSV M
(t): frequency of term t in the SVM out-

lier set,
– outFreqSum(t) = countTermDCS

(t) + countTermDRF
(t) + countTermDSV M

(t): sum of frequencies of term t in all three outlier sets,
– outFreqRelCS(t) = countTermDCS

(t)

countTermDu (t) : relative frequency of term t in the CS
outlier set,

– outFreqRelRF (t) = countTermDRF
(t)

countTermDu (t) : relative frequency of term t in the RF
outlier set,

– outFreqRelSVM(t) = countTermDSV M
(t)

countTermDu (t) : relative frequency of term t in the
SVM outlier set,

– outFreqRelSum(t) = countTermDCS
(t)+countTermDRF

(t)+countTermDSV M
(t)

countTermDu (t) :
sum of relative term frequencies of term t in all three outlier sets.
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Ensemble Heuristics Construction. Ensemble learning is a known approach
used in machine learning for combining predictions of multiple models into a final
prediction. It is well evidenced [27] that the resulting ensemble model is more
accurate than any of the individual models used to build it as long as the models
are similarly accurate, are better than random, and their errors are uncorrelated.
There is a wide variety of known and well tested ensemble techniques, such
as bagging, boosting, majority voting, random forest, naive Bayes, etc. [28].
However, these approaches are usually used for the problem of classification
while the core problem presented in this work is ranking. Nevertheless, with the
rise of the areas like information retrieval and search engines’ web page rankings,
ensemble ranking is also gaining attention in the ranking community [29].

One possible—and probably the most typical—approach to designing an
ensemble heuristic from a set of base heuristics consists of two steps. In the
first step, the task is to select member heuristics for the ensemble heuristic
using standard data mining approaches like feature selection. In the second step,
equation discovery is used to obtain an optimal combination of member heuris-
tics. The advantage of such approach is that the ensemble creation does not
require manual intervention. Therefore, we performed several experiments with
this approach; however, the results of an ensemble were even more overfitted to
the training domain. Consequently, we decided to manually—based on experi-
ence and experimentation—select appropriate base heuristics and construct an
ensemble heuristic. As the presentation of numerous experiments, which support
our design decisions, is beyond the scope of this chapter, we describe only the
final solution, along with some reasoning about choosing the heuristics.

The ensemble heuristic for bridging term discovery, which we constructed
based on the experiments, is constructed from two parts: the ensemble voting
score and the ensemble position score, which are summed together to give the
final ensemble score for every term in the corpus vocabulary. Each term score
represents the term’s potential for joining the two disjointed domains.

The ensemble voting score (svotet ) of a given term t is an integer, which
denotes how many base heuristics voted for the term. Each selected base heuristic
hi gives one vote (svotetj ,hi

= 1) to each term, which is in the first third in its
ranked list of terms and zero votes to all the other terms (svotetj ,hi

= 0). The
voting threshold one third (13 ) was set empirically grounded on the evaluation of
the ensemble heuristic on the migraine-magnesium domain and is based on the
number of terms that appear in both domains (not one third of all the terms).
Formally, the ensemble voting score of term tj that is at position pj in the ranked
list of n terms is computed as a sum of individual heuristics’ voting scores:

svotetj =
k∑

i=1

svotetj ,hi
=

k∑

i=1

{
1, pj < n/3
0, otherwise

(1)

Therefore, each term can get a score svotetj ∈ {0, 1, 2, ..., k}, where k is the number
of base heuristics used in the ensemble. The ensemble position score (spost ) is
calculated as an average of position scores of individual base heuristics. For each



Bridging Term Discovery for Cross-Domain Literature Mining 77

heuristic hi, the term’s position score spostj ,hi
is calculated as n−pj

n , which results
in position scores being in the interval [0, 1). For an ensemble of k heuristics,
the ensemble position score is computed as an average of individual heuristics’
position scores:

spostj =
1
k

k∑

i=1

spostj ,hi
=

1
k

k∑

i=1

n − pj
n

(2)

The final ensemble score is computed as:

st = svotet + spost (3)

Using the proposed construction we make sure that the integer part of the ensem-
ble score always presents the ensemble vote score, while the ensemble score’s
fractional part always presents the ensemble position score. An ensemble posi-
tion score is strictly lower than 1, therefore a term with a lower ensemble voting
score can never have a higher final ensemble score than a term with a higher
ensemble voting score. Consequently, every final ensemble score falls into interval
[0, k + 1), where k is the number of base heuristics used in the ensemble.

The described method for ensemble score calculation is illustrated in
Tables 1–5. In Table 1 the base heuristics scores are shown for each term. Table 2
presents terms ranked according to the base heuristics scores. From this table,
the voting and position scores are calculated for every term based on its posi-
tion, as shown in Table 3. For example, all terms at position 2, i.e. t1, t6, and
t6, get voting score 1 and position score 4/6. Table 4 shows the exact equation
how these base heuristics voting and position scores are combined for each term.
Table 5 displays the list of terms ranked by the calculated ensemble scores.

Table 1. Base heuristic
scores

Term h1 h2 h3

t1 0.93 0.46 0.33

t2 0.26 0.15 0.10

t3 0.51 0.22 0.79

t4 0.45 0.84 0.73

t5 0.41 0.15 0.11

t6 0.99 0.64 0.74

Table 2. Terms
ranked by base
heuristics

Pos. h1 h2 h3

1 t6 t4 t3
2 t1 t6 t6
3 t3 t1 t4
4 t4 t3 t1
5 t5 t2 t5
6 t2 t5 t2

Table 3. Voting and position
scores based on positions in
the ranked lists

Pos. svotetj ,hi
spostj ,hi

1 1 (6−1)/6 = 5/6

2 1 (6−2)/6 = 4/6

3 0 (6−3)/6 = 3/6

4 0 (6−4)/6 = 2/6

5 0 (6−5)/6 = 1/6

6 0 (6−6)/6=0/6

Note that at the first sight, our method of constructing the ensemble score
looks rather intricate. An obvious way to construct an ensemble score of a term
could be simply to sum together individual base heuristics scores; however, the
calculation of the ensemble score by our method is well justified by extensive
experimental results on the migraine-magnesium dataset described in Sect. 6.
The final set of elementary heuristics included in the ensemble is the following:
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Table 4. Calculation of ensemble heuristic score

( svotetj ,h1 + svotetj ,h2 + svotetj ,h3 ) + ( spostj ,h1
+ spostj ,h2

+ spostj ,h3
)/k = svotetj + spostj

= stj
st1 = ( 1 + 0 + 0 ) + ( 4/6 + 3/6 + 2/6 )/3 = 1 + 9/18 = 1.50
st2 = ( 0 + 0 + 0 ) + ( 0/6 + 1/6 + 0/6 )/3 = 0 + 1/18 = 0.06
st3 = ( 0 + 0 + 1 ) + ( 3/6 + 2/6 + 5/6 )/3 = 1 + 10/18 = 1.56
st4 = ( 0 + 1 + 0 ) + ( 2/6 + 5/6 + 3/6 )/3 = 1 + 10/18 = 1.56
st5 = ( 0 + 0 + 0 ) + ( 1/6 + 0/6 + 1/6 )/3 = 0 + 2/18 = 0.11
st6 = ( 1 + 1 + 1 ) + ( 5/6 + 4/6 + 4/6 )/3 = 3 + 13/18 = 3.72

Table 5. Ranked list of terms produced by the ensemble

t6 (3.72), [t2, t3] (1.56), t1 (1.50), t5 (0.11), t2 (0.06)

– outFreqRelRF
– outFreqRelSVM
– outFreqRelCS

– outFreqSum
– tfidfDomnSum
– freqRatio

Detailed justification is presented in [30].

5.3 Workflows Implementing Individual Steps of the Methodology

The workflow for cross-domain literature mining, presented in Sect. 4.2, is pub-
licly available for sharing and reuse within the TextFlows platform. The workflow
integrates the computation of heuristics, described in Sect. 5.2, and is connected
to the term exploration interface of the online system CrossBee, which supports
the user in advanced document exploration by facilitating document analysis
and visualization.

Document Acquisition Workflow (Step 1). The first step of the workflow
from Fig. 4 is composed of several components described below. The components
are responsible for the following tasks:

1.1. load literature A into annotated document corpus data structure
1.1.1. load raw text data from a file (this component could be replaced by load-

ing documents from the web or by acquiring them using web services),
where each line contains a document with exactly three tab-separated
entries: (a) document identifier, (b) domain acronym, and (c) the docu-
ment text,

1.1.2. build the annotated document corpus from the raw data, i.e. parse the
loaded raw text data into a collection of documents and assign a domain
label (e.g., literature A, docsA, migraine) to the documents to enable
their identification after merging with literature B,

1.2. load literature B into the annotated document corpus data structure (indi-
vidual components are aligned with the components 1.1),
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1.3. merge the two literatures into a single annotated document corpus
structure,

1.4. optional check of document acquisition by visual inspection of the created
corpus.

The document acquisition workflow is shown in Fig. 5. The output is the
annotated document corpus consisting of the acquired documents labeled with
domain labels.

Fig. 5. Document acquisition workflow.

Text Preprocessing Workflow (Step 2). The document acquisition step is
followed by the text preprocessing step, which is itself a workflow implemented as
shown in Fig. 6. The main components here are tokenization, stopwords labeling
and token stemming or lemmatization. The output of this step is structurally
equal to the input; however every document in the annotated document corpus
now contains additional information about tokens, stopwords and lemmas.

Fig. 6. Document preprocessing workflow.

The individual components perform the following tasks:

2.1 split documents to tokens (the basic units for further text processing),
2.1.1. create tokenizer object (simple tokenizer based on regular expressions),
2.2. tag stopword tokens by using a stopword tagger (component 2.2.2),
2.2.1. load standard English stopwords,
2.2.2. define the stopword tagger using the standard English stopwords only

(the detected stopwords are used in candidate B-term extraction step),
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2.3. lemmatize tokens by applying the LemmaGen lemmatizer11 [31],
2.3.1. create an instance of LemmaGen lemmatizer.

Heuristics Specification Workflow (Step 3). While the heuristics specifi-
cation step is the core part of our methodology, this step only specifies which
heuristics are selected and how these heuristics should be combined into the
ensemble heuristic. The actual calculation is performed later in the heuristic
term score calculation step.

Fig. 7. Heuristic specification.

Heuristic specification displayed in Fig. 7 is the outcome of our research about
the base term heuristics and their combination into the ensemble heuristic pre-
sented in Sect. 5.2. Which heuristics to use and how to combine them is based
on the experiments on the real data that we performed as a part of the research
presented in this chapter—these experiments are presented in more detail in
[30]. The findings resulted in the setting shown in Fig. 7, which is a good choice
when applied on new data. Nevertheless, the setting and the choice of the base
heuristics is fully customizable and can be freely configured to better suit the
needs of new applications.

The output of this procedure is a specification of a complex ensemble heuris-
tic, which computes the term bisociation scores. The components in the heuristic
specification perform the following tasks:

3.1. define base heuristics (see Sect. 5.2 for details about the base heuristics
selection),

3.1.1. define TF-IDF based heuristic tfidfDomnSum,
3.1.2. define term frequency based heuristic freqRatio,
3.1.3. define outlier based heuristics outFreqRelRF, outFreqRelSVM, outFre-

qRelCS, outFreqRelSum
3.2. for every inputted heuristic defines a new heuristic that normalizes the

scores to the range [0,1) and outputs a list of new heuristic specifications,
11 LemmaGen is an open source lemmatizer with 15 prebuilted european lexicons. Its

source code and documentation is publicly available at http://lemmatise.ijs.si/.

http://lemmatise.ijs.si/
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3.3. combine the six heuristics into a single ensemble heuristic
3.3.1. define an ensemble voting heuristic that includes votes of the six heuristics

(ensemble voting score, see Eq. 1),
3.3.2. define a calculated heuristic that calculates normalized sum of position

scores of the six heuristics (ensemble position score, see Eq. 2),
3.4. define the final ensemble heuristic by summing the ensemble voting heuris-

tics, which results in the number of terms heuristics’ votes in the range
from 0 to 6 (integer value), and the calculated normalized sum of heuristics
scores in the range from 0 to less than 1 (final ensemble score, see Eq. 3).

Candidate B-term Extraction Workflow (Step 4). Another core step of
the workflow is candidate B-term extraction, shown in Fig. 8. Although it con-
tains only one component, it has a very important and complex goal of trans-
forming the inputted annotated document corpus into the BoW model in order
to represent documents in the form of feature vectors of term occurrences in
the documents (for the purpose of visualization of documents and the need of
highlighting and emphasizing of specific terms). Another task of this step is to
capture the exact parsing procedure, which is needed in order to perform var-
ious computations which are performed in the advanced heuristic term scores
calculation step. The outputted BowModelContructor object also contains the
vocabulary of all terms.

Fig. 8. Candidate B-term extraction.

Heuristic Term Score Calculation Workflow (Step 5). Figure 9 shows a
structurally simple methodological step of heuristic term score calculation that
contains only one component. The inputs to the procedure are the annotated
document corpus, the BoWModelContructor and the heuristics specification.
Based on the information present in the BoWModelContructor, the algorithm
calculates various frequency and TF-IDF document features vectors, which are
used to calculate the specified heuristics scores for all the terms. The calculation
results in the same heuristic structure as defined in the heuristic specification
step, however the ensemble heuristic at the top level, as well as all elementary
heuristics, now contain their calculated scores of the terms. The scores of the
top-level heuristic are intended to represent terms’ bisociation scores and are
typically used as a basis for the final term ranking.
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Fig. 9. Heuristic term score calculation.

B-Term Visualization and Exploration Workflow (Step 6). This step
of the methodology implements a workflow shown in Fig. 10. It enables visual-
ization and exploration of the ranked list of B-terms. There are four inputs to
this step. The first and the most important are the ensemble heuristic scores
of the extracted candidate B-terms. Inputs Annotated Document Corpus and
BoW Dataset are used by the online application for cross-context bisociation
exploration CrossBee, which needs the exact information about term extraction
from documents to be able to align the terms back with the original documents
in order to visualize them; while the BoW Model Constructor provides the con-
structed vocabulary. The goals of the created components are the following:

Fig. 10. B-term visualization and exploration.



Bridging Term Discovery for Cross-Domain Literature Mining 83

6.1. explore the final results in a web application CrossBee, which was designed
specifically for the purpose of bisociativity exploration (expressed either
through terms or through documents),

6.1.1. optional expert specified B-terms may be provided to CrossBee in order to
emphasize them in the text and to deliver a feedback about the bisociative
quality of the provided ranking. If available, these terms are loaded and
preprocessed using the same preprocessing techniques as described in the
document preprocessing step,

6.2. rank the terms
6.2.1. display the ranked terms in the form of a table along with their respective

scores.

Fig. 11. Methodology evaluation.

Methodology Evaluation Workflow (Step 7). The last step of the proposed
methodology is the methodology evaluation step, implemented as a workflow
shown in Fig. 11. There are three inputs to the process: the heuristic scores of
one or more evaluated heuristics (which presents the result of all the preced-
ing methodological steps), the BowModelContructor (which contains the corpus
vocabulary) and additional information about the actual B-terms (required in
order to assess any kind of quality measures). Note that, in order not to overflow
the overall methodology workflow of Fig. 4 with additional information, the list
of actual bridging terms was not shown as an additional step of the methodology.
Instead, it is implemented as a separate subprocess in the methodology evalu-
ation workflow, which is responsible for loading and preprocessing the actual
B-terms.

The components of the methodology evaluation workflow perform the follow-
ing tasks:

7.1. prepare pairs of actual and predicted values, which are used to calculate
different information retrieval measures in step 7.2,
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7.1.1. if available, load the actual (expert identified) B-terms, which present
the gold standard terms used to evaluate the quality of the methodology
and preprocess them using same techniques as in document preprocessing
step,

7.2. calculate different measures, such as precision, recall, and the F1-measure,
ROC curves and the AUC (Area Under Curve) values,

7.2.1. display ROC curves graphically,
7.2.2. compare information retrieval measures in the form of a table,
7.2.3. compare information retrieval measures in the form of a bar chart,
7.2.4. display and compare the F1-scores in the advanced VIPER performance

evaluation chart [32] component.

The methodology evaluation functionality presented in this section is not
part of the actual workflow for cross-domain knowledge discovery; however, it
is indispensable when developing a new approach. Description of this step con-
cludes the section presenting the key parts of the methodology.

5.4 Methodology Empowerment with Controlled Vocabulary

This section describes a new ingredient of the methodology: the use of a con-
trolled vocabulary for improving B-term detection and ranking. The motivation
for using predefined controlled vocabularies is to reduce the heuristic search
space which, consequently, reduces the running times of B-term discovery algo-
rithms. Controlled vocabularies ensure consistency and resolve ambiguity inher-
ent in normal human languages where the same concept can be given different
names. In this way, they improve the quality and organization of retrieved knowl-
edge, given that they consist of predefined, authorized terms that have been
pre-selected by the designers of the vocabulary that are experts in the subject
area. Controlled vocabularies solve problems of homographs and synonyms by a
bijection between concepts and authorized terms.

MeSH (Medical Subject Headings) is a controlled vocabulary used for index-
ing articles for PubMed, designed by The National Library of Medicine (NLM).
Figure 12 shows a top-level example of the MeSH structure and hierarchy. The
2015 version of MeSH contains a total of 27,455 subject headings, also known as
descriptors. Each descriptor is assigned a unique tree number (shown in square
brackets in Fig. 12) that facilitates search and filtering. Most of the descriptors
are accompanied by a short description or definition, links to related descriptors,
and a list of synonyms or very similar terms (known as entry terms). Because of
these synonym lists MeSH can also be viewed as a thesaurus.

We have implemented a vocabulary construction tool called MeSH filter as
an interactive widget in the TextFlows platform. This implementation uses syn-
onym lists from the MeSH 2015 database, available online12. The interface to
the developed interaction widget is designed to enable the selection of descrip-
tors of interest from the hierarchy of descriptors. Its final output is a text file

12 http://www.nlm.nih.gov/mesh/filelist.html.

http://www.nlm.nih.gov/mesh/filelist.html
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Fig. 12. Example of MeSH structure and hierarchy.

containing all the terms that belong to the user selected descriptors from the
MeSH hierarchy.

This section describes how we have upgraded the proposed methodology
with the ability to use a predefined controlled vocabulary for reducing the B-
term search space. This not only increases efficiency of the heuristic calculation
algorithms, but also tends to improve the relevance of top ranked B-terms due to
reduced ambiguities in human languages. The upgraded methodology is shown in
Fig. 13. Compared to the initial methodology shown in Fig. 4, the new workflow13

includes two new steps: vocabulary acquisition and vocabulary preprocessing.

Fig. 13. Methodological steps of the cross-domain literature mining process.

In order to ensure the proper matching between terms from the vocabu-
lary and document corpus, the vocabulary file must be preprocessed using the
preprocessing techniques, described in Sect. 5.3, which were also used for pre-
processing the document corpus in Step 2. After vocabulary preprocessing in

13 This workflow is publicly available at http://textflows.org/workflow/497/.

http://textflows.org/workflow/497/
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Step 4, the produced vocabulary file is used in Step 5 to filter out terms from
the document corpus that do not appear in the vocabulary. A procedural expla-
nation of the new steps of the upgraded workflow of Fig. 13 is presented.

Vocabulary Acquisition (Step 3)

– One term per line: Every single line in the text file represents one separate
term. Only terms which appear in this file are later used in the heuristic
calculation steps of the methodology.

– Synonym format : Additionally, term synonyms are listed after the term, sep-
arated by commas.

term1 → synonym1a, synonym1b...

Every synonym in the document corpus is then substituted with the term,
which appears at the first position in the corresponding line.

Vocabulary Preprocessing (Step 4). This step is responsible for applying
the same standard text preprocessing to the predefined vocabulary that is used
also to preprocess the document corpus. Similarly, the main components here
are tokenization, stopwords labeling and token stemming or lemmatization.

Candidate B-Term Extraction (Step 6). After completing the preprocess-
ing steps, the resulting whitelist output is used in Candidate B-term Extraction
step for filtering out terms that are not part of the controlled vocabulary.

6 Experiments and Results

This section presents the evaluation of the presented literature based discov-
ery methodology. We have applied different base and ensemble heuristics on
two problems: the standard migraine-magnesium literature mining benchmark
problem used in the Swanson’s experiments [13], and a more recent example of
using literature mining for uncovering the nature of relations that might con-
tribute to better understanding of autism, originated in [19,33]. In both cases,
our methodology successfully replicated the results known from the literature.

6.1 Experimental Setting

The evaluation was performed based on two datasets (or two domain pairs,
since each dataset consists of two domains)—the migraine-magnesium dataset
[13] and the autism-calcineurin [33] dataset—which can be viewed as a training
and test dataset, respectively. The training dataset is the dataset we employed
when developing the methodology, i.e. for creating a set of base heuristics as
well as for creating the ensemble heuristic. The results of the evaluation on
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the training dataset are important, but need to be interpreted carefully due
to a danger of overfitting the dataset, as described in [30]. The test dataset
is used for the evaluation of the methodology in a real-life setting. The well-
researched migraine-magnesium domain pair [13] was used as a training set. In
the literature-based discovery process Swanson managed to find more than 60
pairs of articles connecting the migraine domain with the magnesium deficiency
via 43 bridging concepts (B-terms), which are listed in Table 6.14 In testing the
developed methodology we aimed at rediscovering the 43 B-terms by ranking
them as high as possible in the ranked list of potential B-terms that include
Swanson’s B-terms and terms that are not in the Swanson’s B-term list.

Table 6. B-terms for the migraine-magnesium dataset identified in [13].

1 5 ht 16 convulsive 31 prostaglandin
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity
5 anti inflammatory 20 epilepsy 35 seizure
6 anticonvulsant 21 epileptic 36 serotonin
7 antimigraine 22 epileptiform 37 spasm
8 arterial spasm 23 hypoxia 38 spread
9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 inflammatory 40 stress
11 calcium blocker 26 nifedipine 41 substance p
12 calcium channel 27 paroxysmal 42 vasospasm
13 calcium channel blocker 28 platelet aggregation 43 verapamil
14 cerebral vasospasm 29 platelet function
15 convulsion 30 prostacyclin

Table 7. B-terms for the autism-calcineurin dataset identified in [33].

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin
4 radiation 9 asbestos
5 working memory 10 deletion syndrome

For the test dataset we used the autism-calcineurin domain pair [33]. Like
Swanson, Petrič et al. also provide B-terms, 13 in total (listed in Table 7),
whose importance in connecting autism to calcineurin (a protein phosphatase)
is discussed and confirmed by the domain expert. In view of searching for B-
terms, this dataset has a relatively different dimensionality compared to the
migraine-magnesium dataset. On the one hand it has only about one fourth of
the B-terms defined, while on the other hand, it contains more than 40 times
14 Note that Swanson did not state that this was an exclusive list, hence there may

exist other important bridging terms which he did not list.
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Table 8. Comparison of some statistical properties of the two datasets used in the
experiments.

migraine-magnesium autism-calcineurin

Retrieval Source PubMed PubMed

Query terms “migraine”-“magnesium” “autism”-“calcineurin”

Additional conditions Year < 1988 /

Part of paper used Title Abstract

Document Statistics Number 8,058 (2,415–5,633) 15,243 (9,365–5,878)

Doc. with B-term 394 (4.89%) 1,672 (10.97%)

Avg. words per doc 11 180

Term statistic Avg. term per doc. 7 173

Distinct terms 13,525 322,252

B-term candidates 1,847 78,805

Defined B-terms 43 13

as many potential B-term candidates. Therefore, the ratio between the actual
B-terms and the candidate terms is substantially lower—approximately by fac-
tor 160, i.e. the chance to find a B-term among the candidate terms if picking
it at random is 160 times lower in the autism-calcineurin dataset then in the
magnesium-migraine dataset. Consequently, finding the actual B-terms in the
autism-calcineurin dataset is much more difficult compared to the migraine-
magnesium dataset.

Both datasets, retrieved from the PubMed database using the keyword query,
are formed of titles or abstracts of scientific papers returned by the query.
However, we used an additional filtering condition for selecting the migraine-
magnesium dataset. For fair comparison we had to select only the articles pub-
lished before the year 1988 as this was the year when Swanson published his
research about this dataset and consequently making an explicit connection
between the migraine and magnesium domains.

Table 8 states some properties for comparing the two datasets used in the
evaluation. One of the major differences between the datasets is the length of
an average document since only the titles were used in the migraine-magnesium
dataset, while the full abstracts were used in the autism-calcineurin case. Conse-
quently, also the number of distinct terms and B-term candidates is much larger
in the case of the autism-calcineurin dataset. Nevertheless, the preprocessing of
both datasets was the same. We can inspect higher numbers in the migraine-
magnesium dataset which points to the problem of harder classification of doc-
uments in this dataset, which is also partly due to shorter texts.

6.2 Evaluation Procedure

The key aspect of the evaluation is the assessment of how well the proposed
ensemble heuristic performs when ranking the terms. Two evaluation measures
were used in the evaluation of the developed methodology: the standard Area
under the Receiver Operating Characteristic analysis and the amount of B-terms
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found among the first 5,10, 20, 100, 500 and 2,000 terms in the heuristics’ ranked
list of terms.

First, we compared the heuristics using the Area under the Receiver Operat-
ing Characteristic (AUROC) analysis [34]. The Receiver Operating Character-
istic (ROC) space is defined by two axes, where the horizontal axis scales from
zero to the number of non-B-terms, and the vertical axis from zero to the num-
ber of B-terms. An individual Receiver Operating Characteristic (ROC) curve,
representing a single heuristic, is constructed in the following way:

– Sort all the terms by their descending heuristic score.
– For every term of the term list do the following: if a term is a B-term, then

draw one vertical line segment (up) in the ROC space, else draw one horizontal
line segment (right) on the ROC space.

– If a heuristic outputs the same score for many terms, we cannot sort them
uniquely. In such case, we draw a line from the current point p to the point
p+(nb, b), where nb is the number of non-B-terms and b is the number of terms
that are B-terms among the terms with the same bisociation score. In this way
we may produce slanted lines, if such an equal scoring term set contains both
B-terms and non-B-terms.

AUROC is defined as the percentage of the area under ROC curve, i.e. the
area under the curve divided by the area of the whole ROC space.15 Besides
AUROC we also list the interval of AUROC which tells how much each heuristic
varies among the best and the worst sorting of a possibly existing equal scoring
term set. This occurs due to the fact that some heuristics do not produce unam-
biguous ranking of all the terms. Several heuristics assign the same score to a
set of terms—including both the actual B-terms as well as non B-terms—which
results in the fact that unique sorting is not possible.16 In the case of equal
scoring term sets, the inner sorting is random (which indeed produces different
performance estimates), however the constructed ROC curve corresponds to the
average ROC curve over all possible such random inner sortings.

From the expert’s point of view, the ROC curves and AUROC statistics are
not the most crucial information about the quality of a given heuristic. While
in general it still holds that a higher AUROC reflects a better heuristic, we
are more interested in the ranking from the perspective of the domain expert
(the end-user of the our system) who is usually more interested in questions like:
15 If a heuristic is perfect (it detects all the B-terms and ranks them at the top of

the ordered list), we get a curve that goes first just up and then just right with
an AUROC of 100%. The worst possible heuristic sorts all the terms randomly
regardless of being a B-term or not and achieves AUROC of 50%. This random
heuristic is represented by the diagonal in the ROC space.

16 In such cases, the AUROC calculation can either maximize the AUROC by sorting
all the B-terms in front of all the other terms inside equal scoring sets or minimize it
by putting the B-terms at the back. The AUROC calculation can also achieve many
AUROC values in between these two extremes by using different (e.g., random)
sortings of equal scoring sets. Preferable are the heuristics with a smaller interval
which implies that they produce smaller and fewer equal scoring sets.



90 M. Perovšek et al.

(a) how many B-terms are likely to be found among the first n terms in a ranked
list (where n is a selected number of terms the expert is willing to inspect, e.g., 5,
20 or 100), or (b) how much one can trust a heuristic if a new dataset is explored.
Therefore, we also performed an evaluation using an alternative user oriented
approach, which evaluates the ranking results adapted to the user’s needs. This
evaluation estimates how many B-terms can be found among the first 5, 10, 20,
100, 500 and 2,000 terms on the ranked list of terms produced by a heuristic.

6.3 Results on the Migraine-Magnesium Dataset

Table 9 shows the comparison of ranking performance for the ensemble and all the
base heuristics on the migraine-magnesium dataset. The heuristics are ordered by
their AUROC. The second and third column in the table represent heuristics’
average AUROC score17 and its AUROC interval, respectively. When looking
at the ensemble heuristic scores in Table 9, we notice that it achieves higher

Table 9. Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset.

Heuristic name AUROC Number of B-terms among top n ranked terms

Average Interval 5 10 20 50 100 200 500 1,000 2,000

outFreqRelSvm 58.78% 1.26% 0.12 0.24 0.48 1 1.63 5.88 14.44 29 43

outFreqRelSum 58.19% 0.65% 0 0.28 0.83 1.82 3.68 6 15 27 43

freqDomnRatioMin 57.34% 4.71% 0.14 0.28 0.57 1.42 2.83 5.66 14 28 43

outFreqRelRf 56.85% 1.50% 0.24 0.48 0.95 2 4.15 6.94 14 29 43

outFreqSum 55.41% 4.06% 0 0 0 0 0 2.44 15.06 27.16 43

outFreqRf 55.20% 11.07% 0 0 0 0 0.4 5.15 14.86 26.34 43

outFreqSvm 55.19% 9.38% 0 0 0 0 0.35 3 14.14 26.12 43

outFreqRelCs 54.29% 1.50% 0 0 1 1 2.69 5.07 11 27 43

freqDomnProdRel 53.23% 3.08% 0 0 0 0 0 6 14 27 43

outFreqCs 52.34% 10.51% 0 0 0 0 0 1.43 15.62 24.67 43

tfidfDomnSum 52.11% 2.69% 0 0 0 0 1 2 11 26.14 43

tfidfAvg 51.31% 3.63% 0 0 1 1.79 3.11 5.75 11.84 20.9 43

freqDomnProd 51.20% 3.36% 0 0 0 0 1 3 13.17 27.16 43

tfidfDomnProd 51.18% 2.69% 0 0 0 0 1 3 13.5 27 43

freqRatio 50.51% 39.26% 0 0 1 1 4 5 11.65 23.09 43

appearInAllDomains 50.00% 50.00% 0.11 0.23 0.46 1.15 2.3 4.6 11.49 22.98 43

tfidfSum 49.65% 3.63% 0 0 0 0 0 1 9 25.36 43

freqTerm 49.60% 3.78% 0 0 0 0 0 1 8.91 25.49 43

freqDoc 49.55% 3.82% 0 0 0 0 0 1 8.03 24.79 43

ensemble 59.05% 0.26% 1 1 1 5 6 9 18.57 28 43

17 In contrast to the results reported in [4,5], the AUROC scores presented in this
chapter take into account only the terms which appear in both domains. This results
in lower AUROC scores, which are thus not directly comparable between the studies.
The reason for this approach is in the definition of a bridging term, where the term
is required to appear in both domain, as it cannot form a connection otherwise.
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AUROC value and lower AUROC interval compared to all the other heuristics.
As mentioned in Sect. 5.2, the ensemble was constructed using also two not
so well performing heuristics (tfidfDomnSum and freqRatio) in order to avoid
overfitting on the training domain. This could have had a negative effect to
the ensemble performance, however, the ensemble performance was not seri-
ously affected which gives evidence of right decisions made when designing the
ensemble.

As mentioned, such AUROC evaluation does not necessarily aligns well with
the methodology evaluation from a user’s perspective. Therefore, the right side
of Table 9 shows the results of an alternative user oriented evaluation approach,
which shows how many B-terms were found among the first 5, 10, 20, 50, 100, 200,
500, 1,000 and 2,000 terms on the ranked list of terms produced by a heuristic.
The ensemble heuristic, described in Sect. 5.2, performing ensemble voting of six
elementary heuristics, resulted in very favorable results on the training migraine-
magnesium domain (as seen in Table 9), where one B-term among the first 5
terms, one B-term (no additional B-terms) among the first 20 terms, 6 B-terms
(5 additional) among the first 100 terms, 22 B-terms (16 additional) among first
500 terms and all the 43 B-terms (21 additional) among the first 2,000 terms.
Thus, e.g., if the expert limits himself to inspect only the first 100 terms, he
will find 6 B-terms in the ensemble ranked term list. These results confirm that
the ensemble is the best performing heuristics also from the user’s perspective.
Even though a strict comparison depends on the threshold of how many terms
an expert is willing to inspect, the ensemble is always among the best.

6.4 Results of Using a Controlled Vocabulary
on the Migraine-Magnesium Dataset

In this section we demonstrate that by using a predefined controlled vocabulary
we can increase the heuristics’ capabilities to rank the B-terms at the beginning
of the term list. We have repeated the experiments on the migraine-magnesium
domain, described in Sect. 6.3, except that we now used a predefined vocabulary
constructed from MeSH using the “MeSH filter” widget. As we were particularly
interested in the bridging terms between migraine—a disease—and magnesium—
a chemical element—as well as the circumstances and processes observed between
them, we only selected categories [C] Diseases, [D] Chemicals and drugs and [G]
Phenomena and Processes. In the experiment we used the workflow shown in
Fig. 13. The generated vocabulary was used in the candidate B-term extraction
step as a whitelist filter.

The results of the methodology using a controlled vocabulary on the
migraine-magnesium domain are presented in Table 11. The comparison of the
heuristics’ capabilities to rank the B-terms at the beginning of the term list in
the migraine-magnesium domain from Tables 9 and 11 shows an advantage of
using the controlled vocabulary. By inspecting the number of B-terms found
in the ranked first n terms, we notice that using the controlled vocabulary
in the migraine-magnesium domain resulted in a much higher concentration of
Swanson’s B-terms among the best ranked terms.
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Table 10. B-terms for the migraine-magnesium dataset identified in [13]. The 17 terms
which are crossed out were not part of the used controlled vocabulary, therefore heuris-
tics were unable to identify them as B-term candidates.

1 5 ht 16 convulsive 31 prostaglandin
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity
5 anti inflammatory 20 epilepsy 35 seizure
6 anticonvulsant 21 epileptic 36 serotonin
7 antimigraine 22 epileptiform 37 spasm
8 arterial spasm 23 hypoxia 38 spread
9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 inflammatory 40 stress
11 calcium blocker 26 nifedipine 41 substance p
12 calcium channel 27 paroxysmal 42 vasospasm
13 calcium channel blocker 28 platelet aggregation 43 verapamil
14 cerebral vasospasm 29 platelet function
15 convulsion 30 prostacyclin

As explained in Sect. 5.4 a predefined controlled vocabulary can greatly
reduce the B-term search space. As a side effect, we were unable to: (a) per-
form AUROC evaluation comparison due to different number of terms in the
vocabulary—As a result, Table 11 provides only evaluation which lists the num-
ber of B-terms found in the ranked first n terms, (b) detect all B-terms, identified
by Swanson (the crossed out B-terms in Table 10 were not part of the used con-
trolled vocabulary); this could be solved using larger controlled vocabularies,
though we must be careful not to overfit the vocabulary to the expected results.

On the other hand, results show that using a predefined controlled vocab-
ulary not only increases the efficiency of the heuristic calculation algorithms,
but also tends to improve the relevance of top ranked B-terms. Consequently,
the described approach enables the user to perform the exploration task more
effectively, potentially leading to new discoveries.

6.5 Results on the Autism-Calcineurin Dataset

In this section we show how our methodology performs on a new independent
test dataset—the autism-calcineurin domain—which was not used in the devel-
opment of the methodology. As discussed, the dimensionality of the autism-
calcineurin dataset is considerably different and less favorable compared to the
migraine-magnesium dataset.

Table 12 shows that the performance of individual base heuristics significantly
changes compared to the migraine magnesium dataset (Table 9), however, the
ensemble heuristic is still among the best and exposes small uncertainty. This
gives us the final argument for the quality of the ensemble heuristic since it out-
performs all the other heuristics (except for the freqRatio base heuristic) when
comparing the AUROC scores, as well as the numbers of B-terms found in the
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Table 11. Comparison of base and ensemble heuristics capacity to rank the B-terms
at the very beginning of the term list for the migraine-magnesium dataset using a
controlled vocabulary.

Heuristic Name Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000

freqDomnRatioMin 0.59 1.18 2.37 5.92 13.25 20 26 26 26

outFreqSum 0 1 2.75 5 15.53 17.06 26 26 26

freqDomnProdRel 0 1 2 5.67 9 20 26 26 26

outFreqRf 1 1 2 6.28 12.16 17.5 26 26 26

outFreqSvm 1 1 2.5 5.16 11.74 16.79 26 26 26

outFreqCs 0 0 2.45 5.6 10.22 17.06 26 26 26

tfidfDomnSum 0 1 1 4 10 19 26 26 26

freqDomnProd 0 1 1 4 9 19 26 26 26

tfidfDomnProd 0 1 1 4 9 19 26 26 26

outFreqRelRf 0.67 1.33 2 5 7 14.75 26 26 26

freqDoc 0 0 1 2.5 7.82 17.1 26 26 26

tfidfSum 0 0 1 2.25 7.5 17.35 26 26 26

freqTerm 0 0 1 2.25 7.56 17.43 26 26 26

appearInAllDomains 0.39 0.78 1.56 3.9 7.81 15.62 26 26 26

outFreqRelSum 0.42 0.83 1.29 4 9 15 26 26 26

tfidfAvg 0 1.42 2.47 5.63 7 13 26 26 26

outFreqRelSvm 0.45 0.91 1.82 3.25 10 15 26 26 26

outFreqRelCs 0.31 0.63 1 5 7.06 14 26 26 26

freqRatio 0 1 1 2 5.96 14.56 26 26 26

ensemble 1 3 4 9 13 19 26 26 26

most interesting ranked list lengths (up to 20, 100, 500 terms). The ensem-
ble finds one B-term among 10 ranked terms, 2 among 200 and 3 among 500
ranked terms out of the total of 78,805 candidate terms that the heuristics have
to rank. The evidence of the quality of the ensemble can be understood if we
compare it to a baseline, i.e. the appearInAllDomn heuristic which denotes the
performance achievable without developing the methodology presented in this
work. The baseline heuristic discovers in average only approximately 0.33 B-
terms before position 2,000 in the ranked list while the ensemble discovers 6;
not to mention the shorter term lists where the ensemble has even a better ratio
compared to the baseline heuristic.

6.6 Results of Using a Controlled Vocabulary
on the Autism-Calcineurin Dataset

In this section we replicated the experiments, described in Sect. 6.4, using a
predefined controlled vocabulary on the autism-calcineurin dataset. Similarly,
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Table 12. Comparison of base and ensemble heuristics capacity to rank the B-terms
at the very beginning of the term list for the autism-calcineurin dataset.

Heuristic Name AUROC Number of B-terms among top n ranked terms

Average Interval 5 10 20 50 100 200 500 1,000 2,000 5,000 all

freqRatio 95.10% 0.16% 1 1 1 1 1 1 1 3 5 8.99 13

tfidfSum 88.78% 0.05% 0 0 0 0 1 1 1 2 4 5 13

tfidfDomnProd 88.61% 0.05% 0 0 0 0 0 0 1 1 4 6 13

tfidfDomnSum 88.33% 0.02% 0 0 0 0 1 1 2 2 4 5 13

freqTerm 87.80% 0.80% 0 0 0 0 1 1 1 2 3 5 13

freqDomnProd 87.69% 0.73% 0 0 0 0 0 0 0 1 2 6 13

freqDomnProdRel 85.77% 0.69% 0 0 0 0 0 0 0 1 1 6 13

outFreqRf 85.05% 7.91% 0 0 0 0 0 1 1 1.34 4.37 7.4 13

outFreqSum 84.33% 5.80% 0 0 0 0 0 1 1 3 4 8.4 13

outFreqCs 80.50% 10.05% 0 0 0 0 0 1 1 1 4 7.17 13

freqDoc 79.01% 2.53% 0 0 0 0 0 1 1 2 2 5 13

outFreqSvm 75.15% 17.55% 0 0 0 0 1 1 1.46 4 4.67 5.44 13

tfidfAvg 73.56% 0.05% 1 1 1 1 1 1 1 1 3 6 13

outFreqRelRf 72.44% 0.03% 0 0 0 0 1 1 1 1 1 2 13

outFreqRelSum 67.24% 0.03% 0 0 0 0 0 1 1 2 2 2 13

outFreqRelCs 64.40% 0.19% 0 0 0 0 0 0 0 0 0 1.49 13

outFreqRelSvm 58.39% 0.17% 0 0 0 0 0 0 0 0 1.25 2 13

appearInAllDomains 50.00% 50.00% 0 0 0 0.01 0.02 0.03 0.08 0.17 0.33 0.83 13

freqDomnRatioMin 24.93% 1.12% 0 0 0 0 0 0 0 0 0 0 13

ensemble 90.10% 0.00% 0 1 1 1 1 2 3 4 6 8 13

Table 13. B-terms for the autism-calcineurin dataset identified by [33]. The four terms
which are crossed out were not part of the used controlled vocabulary, therefore heuris-
tics were unable to identify them as B-term candidates.

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin
4 radiation 9 asbestos
5 working memory 10 deletion syndrome

we wanted to increase the heuristics’ capabilities (in the workflow illustrated
in Fig. 13) to rank the B-terms at the beginning of the term list. We used the
same predefined vocabulary as with the migraine-magnesium domain, which
was constructed from MeSH using the following categories: [C] Diseases, [D]
Chemicals and drugs and [G] Phenomena and Processes were used for building
the controlled vocabulary (Table 13).

Inspecting the heuristics’ capabilities to rank the B-terms at the beginning
of the term list in the autism-calcineurin domain (Tables 12 and 14) shows the
advantage of using a controlled vocabulary. The increase in the number of B-
terms found in the ranked first n terms when using the controlled vocabulary
is even more significant than in the migraine-magnesium domain. The ensemble
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Table 14. Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset using a controlled
vocabulary.

Heuristic Name Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000 5,000

outFreqSvm 0 0 0 0.5 2 4 4.8 7 8.92 9

outFreqSum 0 0 0 0 0 4 5.56 7 8 9

tfidfDomnProd 0 0 0 0 0 3 4 7 9 9

freqDomnProd 0 0 0 0 1 3 4 7 9 9

freqRatio 1 1 1 1 2 3 3.6 6.01 9 9

freqDomnProdRel 0 0 0 0 0 1 4 7 9 9

outFreqCs 0 0 0 0 0 2 6.59 7 7.82 9

tfidfSum 0 1 1 1 1 2 3 7 9 9

tfidfDomnSum 0 1 1 1 1 2 3 7 9 9

freqTerm 0 1 1 1 1 2 3 6.21 9 9

freqDoc 0 1 1 1 1 2 3 6 8 9

outFreqRf 0 0 0 0 0 1 2.65 5.59 6.99 9

outFreqRelSvm 0 0 1 1 1 1 2 3 9 9

tfidfAvg 1 1 1 1 1 2 2 4 7 9

outFreqRelCs 0 0 0 0 0 0 2 3 7 9

outFreqRelSum 0 0 0 0 0 1 1 3 7 9

appearInAllDomains 0.01 0.03 0.06 0.14 0.28 0.55 1.38 2.76 5.52 9

outFreqRelRf 0 0 0 0 0 0 0 2 6 9

freqDomnRatioMin 0 0 0 0 0 0 1 2 6 9

ensemble 1 1 1 2 2 2 4 6 8 9

heuristic finds the first B-term among the top 5 ranked terms (before only among
top 10) and the second B-term among the top 50 ranked terms (before only
among 200). These results confirm the findings that controlled vocabularies can
increase the heuristics’ capacities to rank the B-terms at the beginning of the
term list and, thus, provide a more efficient exploration task to the end-user of
the platform.

7 Conclusions and Future Outlook

This chapter presents the TextFlows platform together with its cross-context lit-
erature mining facility, which in combination with the term exploration engine
CrossBee supports the expert in advanced document exploration, aimed at facil-
itating document retrieval, analysis and visualization. The combination of the
two systems forms a creativity support tool, helping experts to uncover not yet
discovered relations between seemingly unrelated domains from large textual
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databases. As estimating which terms have a high bisociative potential is a
challenging research question, we proposed a complex methodology which was
developed as a pipeline of natural language processing an literature based dis-
covery components in the TextFlows platform. The visual programming user
interface of TextFlows not only enables the user to tailor the methodology steps
to his own needs but also allows experiment repeatability and methodology reuse
by other users and developers.

This chapter contributes also the evaluation of a number of specially designed
heuristic functions that provide a bisociation score quality estimate for each
term. These base heuristics can be—based on the type of term features they
exploit—divided into the following sets: frequency based, TF-IDF based, sim-
ilarity based, and outlier based. Another contribution is the development of
the improved ensemble-based heuristic, which employs a set of base heuristics
to ensure robustness and stable performance across the datasets. We evalu-
ated the ensemble based methodology on two domains, migraine-magnesium
and autism-calcineurin, showing that the proposed methodology substantially
reduces the end-user’s burden in terms of the length of the term list that needs
to be inspected to find some B-terms. Furthermore, it was shown that by using
a predefined vocabulary we can increase the heuristics’ capacities to rank the
B-terms at the beginning of the term list. Indeed, by applying this approach in
the migraine-magnesium and autism-calcineurin domains we got a higher con-
centration of B-terms among the best ranked terms. Consequently, the user is
presented with a simpler exploration task, potentially leading to new discoveries.

In future work we will introduce additional user interface options for data
visualization and exploration as well as advance the term ranking methodology
by adding new sophisticated heuristics which will take into account also the
semantic aspects of the data. Besides, we will apply the system to new domain
pairs to exhibit its generality, investigate the need and possibilities of dealing
with domain specific background knowledge, and assist researchers in different
disciplines in their explorations which may lead to new scientific discoveries.

This research perfectly demonstrated the importance of the HCI-KDD [35]
approach of combining the best of two worlds for getting insight into complex
data, which is particularly important for health informatics research, where the
human expertise (e.g. a doctor-in-the-loop) is of great help in solving hard prob-
lems, which cannot be solved by automatic machine learning algorithms other-
wise [36]. There is much research in this area necessary in the future.
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21. Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: a cloud based scientific work-

flow platform. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012.
LNCS (LNAI), vol. 7524, pp. 816–819. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33486-3 54
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