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Abstract. A major challenge in precision medicine is the development
of biomarkers which can effectively guide patient treatment in a manner
which benefits both the individual and the population. Much of the dif-
ficulty is the poor reproducibility of existing approaches as well as the
complexity of the problem. Machine learning tools with rigorous statis-
tical inference properties have great potential to move this area forward.
In this chapter, we review existing pipelines for biomarker discovery and
validation from a statistical perspective and identify a number of key
areas where improvements are needed. We then proceed to outline a
framework for developing a master pipeline firmly grounded in statisti-
cal principles which can yield better reproducibility, leading to improved
biomarker development and increasing success in precision medicine.

Keywords: Biomarker discovery · Reproducibility · Data mining ·
Machine learning

1 Introduction

Biomarkers occupy a position of fundamental importance in biomedical research
and clinical practice. They can be employed for a variety of tasks, such as diag-
nostic tools or surrogate endpoints for clinical outcomes; Table 1 gives several
examples of biomarkers and their uses. In this chapter, we will primarily focus
on prognostic biomarkers, which provide information on the natural history
of a disease and help in estimating a patient’s overall outcome or prognosis, and
predictive biomarkers, which provide information on the likelihood that a
patient will respond to a therapeutic intervention and help in identifying the
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Table 1. Examples of biomarkers and their significance in medicine

Biomarker How it is measured Relevance

Body mass index (BMI) Person’s weight in kilograms

divided by the square of

height in meters

Associated with a

number of health outcomes,

including obesity [6] and death

[7]

Periodic variation of R-R

intervals (heart rate

variability)

Calculated from continuous

electrocardiogram record

Indicator of the activity of the

autonomic nervous system [8],

predictor of survival after heart

attack [8,9]

Glycosolated hemoglobin

(HbA1c)

Assayed from blood samples Diagnostic marker for

diabetes [10]; an indicator of

glycemic control in

patients with diabetes [11]

KRAS Somatic mutations Assayed from tumor samples Associated with

treatment response in colorectal

cancer [12]

BRCA1 Germline mutations Assayed from human buccal

cells or blood

Associated with the risk of

breast and ovarian cancer [13]

most effective course of treatment. Note that some biomarkers, such as estrogen
receptor status in breast cancer, can be both prognostic and predictive [1].

The emergence of “-omics” approaches has enabled new biomarkers to step
into the limelight, holding promise for precision medicine, an emerging field that
builds individual variability in biological and environmental factors into its app-
roach to treating disease [2]. Parallel advances in high-throughput technologies
have generated an unprecedented amount of data (“big data”). The sheer scale
and variety of information available, along with its structural and functional
heterogeneity and often its inconsistencies, have led to the current paradox: bio-
marker discovery is more possible than it has ever been before, but it is also more
problematic and inefficient. Of the hundreds of thousands of disease-associated
markers that have been reported, only a small fraction have been validated and
proven clinically useful [3–5].

It has become abundantly clear, given the current difficulties, that research
practices in biomarker discovery must be firmly grounded in statistical and bio-
medical practices. In this chapter, we outline a framework for developing a master
pipeline for biomarker discovery and validation that is aimed at increasing the
reliability and reproducibility of biomarker discovery experiments.

We will first review various approaches to study design, highlighting those
that are relevant to biomarker discovery trials. We will then discuss the chal-
lenges of ensuring data quality in the world of “big data” and propose strate-
gies for data collection and curation. We will introduce several statistical analy-
sis techniques, devoting special attention to the role of machine learning tech-
niques. We will emphasize the role of traditional statistical considerations, such
as power analysis, in biomarker studies, regardless of the specific analysis tech-
nique. We will then mention several approaches to the validation and evalua-
tion of biomarkers. We will conclude by discussing the clinical interpretation of
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biomarkers and the central role it plays, and by providing some directions for
future research.

2 Glossary

Accelerated Failure Time (AFT) Model: specifies the regression model λ(t|Z) =
e−β′Z(t)λ0

(
e−β′Z(t)

)
for the hazard function.

Biomarkers or biological markers: quantifiable, objectively measured and evalu-
ated indicators of physiological and pathogenic processes, responses to interven-
tions, and environmental exposures.

Biclustering: a clustering method which considers groupings of rows (experimen-
tal subjects) and columns (covariates) both together and independently.

Classification: a supervised learning method with a binary, ordinal, or multi-
category outcome variable. The focus of classification is placing observations
into the correct class based on covariates.

Cluster Analysis: aims to group together individuals who are more similar to
each other than the individuals assigned to other clusters. Examples include
k-means, hierarchical, and spectral clustering.

Cox Proportional Hazard Model: specifies the semiparametric regression model
λ(t|Z) = λ0(t)eβ′Z(t) for the hazard function.

Dimension Reduction: reduces the number of covariates and converts data to
a lower dimensional space that is easier to analyze. Examples include principal
component analysis (PCA), linear discriminant analysis (LDA), and classical
multidimensional scaling (MDS).

False Discovery Rate (FDR): The average proportion of false discoveries (V )
among all discoveries R, or rejections of the null hypothesis, in a study, i.e.
FDR = E[V/R].

Family-wise Error Rate (FWER): The probability that even one false discovery
(V ) will be made in a study, i.e. FWER = Pr(V ≥ 1).

G-Estimation: a method for estimating causal effects in structural nested models,
while accounting for time-varying confounders and mediators.

Least Absolute Shrinkage and Selection Operator (LASSO): an L1-penalized
regression technique for the linear model Y = Xβ + ε. The L1 penalization causes
the estimates of coefficients for unimportant covariates to shrink to exactly zero,
thereby performing model selection.

Machine Learning Methods: flexible, nonparametric methods derived from the
field of computer science, which arose from the study of pattern recognition in
artificial intelligence. Machine learning methods are well-suited for prediction in
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a variety of complex data scenarios, but many do not have well-studied inferential
properties.

Negative predictive value (NPV): the probability that a subject is disease nega-
tive given that they test negative.

Nonparametric Methods: assume that the data arise from a complicated process
whose set of explanatory parameters is not fixed. Offer flexibility at the expense
of interpretability and efficiency.
Non-penalized Methods: estimate parameters by directly maximizing a likelihood
function.

Outcome Weighted Learning: a machine learning method suited to identifying
predictive biomarkers within a randomized trial or observational study for binary
treatments with substantial treatment heterogeneity.

Parametric Methods: assume that the data arise from a known probability dis-
tribution that is determined by a small, fixed number of parameters. Offer inter-
pretability and efficiency at the expense of strong assumptions.

Penalized Methods: estimate parameters by maximizing a likelihood function
that is modified by a penalty term. Penalized methods are used to regularize
parameter estimates, which aids in prediction by reducing overfitting.

Positive predictive value (PPV): the probability that a subject is disease positive
given that they test positive.

Power: the probability that a null hypothesis that is actually false will correctly
be rejected.

Predictive Biomarker: a biomarker that helps in determining which of several
possible treatments will be most beneficial to a patient. Causal in nature.

Prognostic Biomarker: a biomarker that helps in ascertaining or predicting dis-
ease status. Not causal in nature.

Q-Learning: a regression-based machine learning method that estimates optimal
personalized treatment strategies by directly estimating the Q-functions.

Random Forests: nonparametric machine learning tools that combine decision
trees, which provide low bias without strong assumptions, bootstrap aggregation,
which reduces the variance of the tree-based estimate, and feature randomiza-
tion, which reduces the correlation between trees for further variance reduction.

Receiver Operating Characteristic (ROC) Curve: a plot of the sensitivity and
specificity of a diagnostic test over all possible cutoff values.

Regression: a supervised learning technique that poses a model for the mean of
an outcome variable that depends on the covariates of interest and the inherent
variability of the sample.
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Reproducibility: the ability of a study’s results to be corroborated or confirmed
by similar experiments in similar settings.

Semiparametric Methods: assume that the data arise from a process containing
a parametric piece and a nonparametric piece. Offer a middle ground between
the flexibility of nonparametric methods and the efficiency and interpretability
of parametric methods.
Sensitivity: the probability of a positive test given that a subject is disease
positive; also called the true positive fraction.

Singular Value Decomposition (SVD): the factorization of a data matrix X =
UDV T =

∑r
k=1 skukv

T
k , where r is the rank of X, U is a matrix of orthonormal

left singular vectors, V is a matrix of orthonormal right singular vectors, D
is a diagonal matrix with positive singular values on its diagonal. X can be
approximated X ≈ X(K) ≡ ∑K

k=1 ukskv
T
k where X(K) is the closest rank-K

approximation of X [14].

Specificity: the probability of a negative test given that a subject is disease
negative; one minus specificity is also called the false positive fraction.

Supervised Learning: a class of learning methods that explicitly incorporate an
outcome variable. Supervised learning methods can be used to predict future
values of the outcome, assess the effect of covariates on the outcome, or both.

Support Vector Machine (SVM): a supervised learning method that classifies
data points with a binary outcome based on the optimal separating hyperplane.

Unsupervised Learning: a type of machine learning that uses unlabeled data to
conduct statistical inference, where the covariates of interest are known but the
outcome variables are not given.

3 Biomarker Discovery and Validation Pipeline

3.1 Study Design

While the role a biomarker plays in a study—prognostic or predictive—is impor-
tant, trouble can arise if investigators focus too much on the details specific to
that role and lose sight of the fundamentals of study design. In Anna Karenina,
Leo Tolstoy wrote that “Happy families are all alike; every unhappy family is
unhappy in its own way.” A similar statement can be made about biomarker
studies. Successful studies will address similar minimal criteria at each phase
of development, while unsuccessful studies can fail to do so in any number of
unique and creative ways. Study objectives, outcome measures and their relia-
bility, availability of appropriate analysis methods, and the biomarker’s clinical
context should all play an essential role in determining the study design.

Studies involving prognostic biomarkers tend to focus on the development
and evaluation of clinical assays and screening tests for a disease. Pepe et al.
(2001) [15] suggest five phases for prognostic biomarker studies:
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1. Phase 1: Pre-clinical Exploratory Studies Phase 1 studies identify and
prioritize potentially useful biomarkers from a large pool of candidates. A bio-
marker’s utility is based on how significantly its levels differ between disease
cases and healthy controls, which are often matched to account for patient
heterogeneity.

2. Phase 2: Clinical Assay Development Phase 2 studies develop reliable
clinical assays based on the biomarkers identified in phase 1. Clinical assays
employ non-invasively obtained specimens that are simple to collect.

3. Phase 3: Retrospective Longitudinal Repository Studies Phase 3
studies assess how well a biomarker can be used for early disease detection
by examining whether levels of the biomarker in clinical specimens differ sig-
nificantly between disease cases and healthy controls during the time period
before the cases were diagnosed. Phase 3 studies can be used to define criteria
for a screening test, which is evaluated in future phases.

4. Phase 4: Prospective Screening Studies Phase 4 prospective studies
evaluate the performance and determine the operating characteristics (see
Sect. 3.6) of a screening test. Patients are screened with the proposed test,
and true disease status is ascertained with a “gold standard” diagnostic test.

5. Phase 5: Disease Control Studies Phase 5 confirmatory randomized tri-
als address whether biomarker-based screening reduces the actual burden of
disease. There is a distinction between success in phases 4 and 5: a biomarker
may screen for disease effectively but not lead to a decrease in mortality due
to other factors, such as lack of appropriate treatment.

While we have presented these phases as a straightforward progression, not
all prognostic biomarkers will progress linearly through the five phases, and some
study designs will combine elements of multiple phases.

Predictive biomarkers are typically incorporated into pivotal phase III trials
of experimental treatments. The reason is twofold. First, predictive biomarkers
assist in determining which of several treatments is likely to be more effective for
a given patient; this information can help clarify the treatment effect that a phase
III trial intends to estimate. Second, predictive biomarkers are causal in nature,
and the setting of a randomized clinical trial provides the most compelling evi-
dence to support claims of causation. Two simple questions can assist in selecting
the correct phase III biomarker design: how many candidate biomarkers are in
consideration, and how strong is the evidence that supports them?

Trials that incorporate one biomarker supported by strong evidence often
take the form of biomarker-enriched, biomarker-stratified, or biomarker-strategy
studies [16,17]. In all three cases, the study population is assayed for the
biomarker of interest before randomization. In biomarker-enriched trials, only
patients testing positive for the biomarker proceed to randomization; this scheme
is particularly appropriate when biological evidence suggests that the test-
negative population will not benefit from the treatment, raising concerns of
ethics and efficiency [18,19]. In biomarker-strategy trials, patients are random-
ized into either a biomarker-directed arm, in which their treatment is dic-
tated by the biomarker, or a control arm, where all patients receive control
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treatment; this scheme may be preferable when the biomarker-directed treat-
ment strategy is complex [16]. In biomarker-stratified trials, patients are split
into two groups, test-positive and test-negative, and then randomized normally
within these groups; biomarker-stratified designs, when logistically and ethi-
cally appropriate, offer a great deal of efficiency [16,17]. These designs can be
combined to address complex research questions—for instance, when a complex
experimental therapy is enriched by multiple biomarkers at once [17].

Extensions of these methods can accommodate weaker assumptions on the
biomarkers of interest by performing inference on biomarker properties in tan-
dem with estimation of treatment effect. Adaptive threshold designs use a single
biomarker without a pre-specified test-positive threshold, which reduces reliance
on phase II studies to correctly determine the threshold [20]. Adaptive biomarker
designs consider a relatively small pool of candidate biomarkers rather than a
single biomarker, selecting the most promising biomarker or biomarkers during
the course of the trial [18,20].

Even in the most restrictive setting, where investigators have a large pool
of candidate biomarkers with little to no prior evidence supporting them, clever
study designs enable valid statistical inference. One such design, the adaptive
signature design, employs two outcome stages [21]. The first outcome stage tests
for treatment efficacy at the α1 significance level in the overall population of
size N ; if this stage is successful, the drug is considered generally useful. If
the first stage does not find overall efficacy, the second stage uses the first N1

accrued patients to train a machine learning classifier that divides the final
N2 = N − N1 patients into two groups: those who are likely to benefit from the
experimental treatment, E, and those who are not likely to, C. Then treatment
efficacy is tested at the α2 significance level in the promising group E. If efficacy
is shown in phase 2, the drug is considered effective for the biomarker-selected
group, and the machine learning classifier can be used to predict group status
for future patients. Choosing α1 + α2 = α controls type I error at the α level;
see Sect. 3.4 for more details. Adaptive signature designs were proposed with
a simple machine learning classifier that aptly handled a variety of simulation
settings [21], but any number of the more sophisticated methods discussed in
Sect. 3.3 may prove useful in extending adaptive signature designs.

The incorporation of biomarkers poses its fair share of challenges to com-
mon considerations in phase III trials. For one, biomarker-based designs may
complicate interim analyses, encouraging flexible stopping rules over rigid ones
[16]. For another, biomarkers may define subgroups of scientific interest to test
as secondary outcomes, making multiple comparisons adjustments (see Sect. 3.4)
especially relevant [18].

In addition, several study designs address the task of discovering predictive
biomarkers outside of phase III trials. Sequential multiple assignment random-
ized trial (SMART) designs offer a framework for applying predictive biomarkers
to dynamic treatment regimes, often in phase II trials [22]. Electronic health
record data, used in concert with causal inference, could give rise to efficient
observational and other non-randomized predictive biomarker studies [3,23].
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3.2 Ensuring Data Quality

Unlike in the myth of Athena’s birth, which depicts the goddess leaping from
Zeus’s forehead fully formed and armed for battle, a well-executed study yielding
reliable results does not spontaneously arise from a well-designed study. Data
management is a crucial step of a successful study—mishandling a study’s data
threatens the validity of everything that follows.

Often, when errors creep into a dataset, they do so at the phase of data col-
lection. Although human and measurement error will always lie outside an inves-
tigator’s control, investigators can limit the impact of these factors. A detailed
study protocol that lists how data collection should be carried out reduces ambi-
guity and lessens reliance on subjective judgments. Studies that utilize multiple
data collection sites carry an additional burden: measurements must be consis-
tent not only within sites, but across sites. For a much more thorough treatment
of the topic, see the Data Acquisition section of the Society for Clinical Data
Management’s GCDMP 4.0 [24].

Investigators must also pay close attention to how their data are stored and
linked. The optimal data management plan will vary from study to study based
on numerous factors, including the physical and institutional proximity of collab-
orators, the volume and frequency of data collected, and the data use guidelines
put in place by participating institutions. Extra care must be taken with “big
data,” which may tax the computing resources available to a research team.
What should not vary is the investigators’ approach to data management: data
management requires a clearly stated plan and thorough documentation of all
steps taken throughout the process. A data flow diagram may help clarify the
steps of data collection, processing, and storage, and potentially aid in identify-
ing problems [25]. Overall, investigators should balance two guiding principles:
ease of access and protection of privacy.

While the first of these principles is intuitively clear, the second deserves some
elaboration. In the course of data collection, investigators will have access to sen-
sitive personal information, and investigators have a solemn obligation to protect
the privacy of their participants to the greatest extent possible. This obligation
may be legal in addition to ethical, thanks to privacy-protecting statutes such
as HIPAA [26]. Investigators should familiarize themselves with statutes that
apply to their study and make sure their methods of data collection and storage
comply with all relevant guidelines.

Investigators should also be wary of losing sight of what their data mean
functionally—they should be able to describe the information contained in every
column of every dataset. Informative file and variable names can help, but they
are not enough. As standard practice, investigators should draw up a data dic-
tionary that explains each dataset and each variable the datasets contain.

3.3 Statistical Methods for Biomarkers

In this section, we provide a brief overview of statistical methods appropri-
ate for the analysis of biomarker data. We pay particular attention to machine
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learning methods, which offer an attractive combination of flexibility and desir-
able statistical properties.

While we present a variety of methods for both supervised and unsuper-
vised learning below, we wish to emphasize that the two are rarely as disjoint as
they may appear in this section. They are often used in concert: covariates are
often pre-processed through an unsupervised method before being employed in
a supervised method, for instance. The matter is further complicated by latent
supervised learning, which posits intermediate ground between supervised and
unsupervised methods based on latent subgroups [27], and semi-supervised learn-
ing, which trains a model on both data where the outcome variable is observed
and data where it is not [28].

Supervised Methods. The taxonomy of supervised methods is expansive—
supervised methods can accommodate data from a truly staggering variety of
studies. While the details of a specific biomarker study and data type are invalu-
able in selecting the correct method, the search for the appropriate method in
any study can be aided by two general questions. First, what is the goal of the
method? Second, what type of information does the method need to provide?
The questions are clearly related, and together they often point directly to a
small class of methods. For instance, if the investigators primarily care about
prediction of future values of the outcome, and they do not particularly care
about interpreting the effect of covariates, a nonparametric machine learning
method may prove their best option; but if their primary research question is
quantifying the relationship between a biomarker of interest and the outcome, a
parametric or semiparametric model will likely serve them better. The spectrum
of supervised methods offers a trade-off between flexibility and interpretability,
between what Kosorok (2009) [29] calls “the ability to discover and the ability
to generalize.”

1. Parametric Methods Parametric methods assume that the data are gen-
erated by a known probability distribution with a small, fixed number of
parameters (e.g. the mean and variance of a Gaussian random variable, or
the rate of an exponential). The parameters of that distribution provide a con-
cise way to summarize and interpret the data, and they serve as the target
of statistical inference. Another attractive property of parametric methods
is their efficiency: when the assumptions for a parametric method are truly
met, the estimates that method provides are highly precise.
Non-Penalized Methods Non-penalized methods estimate the parameters
directly from the form of the probability distribution, or likelihood function,
by finding the parameter values that maximize the likelihood. Several popu-
lar and widely-used methods belong to the class of non-penalized parametric
methods, among them linear regression, logistic regression, and the acceler-
ated failure time model for survival analysis.
Accelerated Failure Time (AFT) Model The AFT model poses a regres-
sion model on the scale of the hazard function, λ, of the failure time T . Let
Z denote the (potentially time-varying) covariates, and let λ(t|Z) denote the
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hazard function at time t conditional on the covariates. Then the AFT model
is given by λ(t|Z) = e−β′Z(t)λ0

(
e−β′Z(t)t

)
where λ0 represents the unob-

served baseline hazard function of T when all covariates equal zero. When
λ0’s parametric distribution is specified in advance, the AFT model is fully
parametric [30]; when λ0 is estimated nonparametrically, the AFT model is
semiparametric [31]. The parameter β is the target of inference, as it describes
the effect of the covariates on survival time. As an example, Altstein and Li
(2013) [31] used the AFT model to discover biomarker-based latent subgroups
in a melanoma trial.
Penalized Methods Penalized methods estimate model parameters by max-
imizing a likelihood function that is modified by a penalty term. The penalty
term is added in to regularize parameter estimates, which can reduce overfit-
ting and aid the model’s performance in prediction. Many penalty terms can
be chosen, each of which offer their own benefits; we present only one in this
chapter. For a more thorough treatment of penalized methods, see chapters 3
and 4 of Hastie, Tibshirani, and Friedman (2008) [32].
LASSO The least absolute shrinkage and selection operator (LASSO) is
among the most popular penalized methods, and is particularly useful for
high-dimensional data where the number of variables is much larger than the
number of data points. A primary reason is that the LASSO, in addition to
regularizing parameter estimates, also sets the estimates of many coefficients
exactly equal to zero—hence, the LASSO performs both regularization and
variable selection. If we let Yi denote the continuous outcome for patient i
and Xi denote that patient’s covariates, then the LASSO estimate of β mini-
mizes the function

∑n
i=1(Yi −β′Xi)2+λ

∑p
j=1 |βj |, where β = (β1, ..., βp) and

λ ≥ 0 is an L1-constrained penalty parameter. When λ is small, the LASSO
estimate of β resembles the result from ordinary least squares, but as λ grows,
increasingly many components of β are set equal to zero. Cross-validation is
typically used to specify the value of λ. Once λ is chosen, the optimization
problem simplifies to a quadratic programming problem, which can be solved
through an efficient sequential algorithm [33]. There are many extensions of
the LASSO which accommodate categorical data [33,34], survival data [35],
study designs with interactions [36], and mixed models [37,38].

2. Nonparametric Methods Nonparametric methods assume that the data
are not generated by a probability distribution with a fixed number of
parameters—rather, the number of parameters needed to explain the data
is allowed to grow to infinity as the sample size grows. While some non-
parametric methods are complex and computationally intensive, a number
of convenient nonparametric methods are available for data analysis. Many
machine learning techniques, which perform well at a variety of difficult
prediction tasks and are becoming increasingly well-studied from a statistical
perspective, fall under the umbrella of nonparametric methods.
Random Forests Random forest approaches, which are fully nonparamet-
ric machine learning tools, offer great predictive power in both regression
and classification. The technical details underlying random forests are rather
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complex, and a full treatment of them is beyond the scope of this chapter;
we simply mention that they combine the strengths of two well-known tech-
niques, decision trees and bootstrap aggregation [39]. Random forests offer
a measure of covariate importance, albeit a much less interpretable mea-
sure than a regression coefficient in a parametric model. Random forests
have inspired many extensions. Among them are Bayesian additive regres-
sion trees (BART), which marry the random forest and Bayesian nonpara-
metric approaches [40], and reinforcement learning trees (RLT), which use
reinforcement learning to select important variables while muting unimpor-
tant ones [41]. RLTs appear particularly promising, as several results about
their statistical inference properties have been shown [41]. As an example,
Gray et al. (2013) used random forests to classify patients into subgroups of
Alzheimer’s disease based on a variety of biomarkers, including MRI volumes,
cerebrospinal fluid measures, and genetic markers [42].
Deep Learning Deep learning methods have proven quite powerful in pre-
diction, both in the regression and classification setting, in a variety of diffi-
cult prediction contexts, such as speech recognition [43] and image process-
ing [44]. The most commonly used deep learning methods are deep neural
networks, which posit that the covariates are related to the outcome through
multiple hidden layers of weighted sums and nonlinear transformations. Some
deep neural networks, such as convolutional neural networks, build a spatial
dependency into the structure of the hidden layers. Deep neural networks can
be plagued by overfitting; the introduction of dropout, which reduces depen-
dencies among nodes in the hidden layers, appears to greatly reduce this
weakness [45]. Although deep learning techniques have met with great suc-
cess in application, their inferential properties are, as of yet, not well-studied,
though research in this area is currently active. As an example, Xiong et al.
(2015) used deep neural networks to predict disease status based on alterna-
tive genetic splicing [46].
Support Vector Machine Another popular machine learning method for
nonparametric classification is the support vector machine (SVM). The sup-
port vector machine considers each observation of covariates Xi as a point
in d-dimensional space with a class label Yi ∈ {−1, 1}. The SVM sets up a
classification rule by finding the d− 1-dimensional hyperplane that optimally
separates points with Yi = 1 and Yi = −1. This problem can be formulated
as a constrained optimization problem and analytically solved; for details, see
chapter 7 of Cristianini and Taylor (2000) [47]. The SVM can be extended
to nonlinear classification using reproducing kernel Hilbert spaces [48] and
regression settings using support vector regression [49].
Q-Learning Q-learning is a regression-based method for estimating an opti-
mal personalized treatment strategy, which consists of a sequence of clinical
decisions over time. Q-learning estimates a set of time-varying Q-functions,
Qt, t = 1, . . . , T , which take the current patient state St and the clinical
decision Dt as inputs and give the value, which is based on the clinical out-
come of interest, as an output. When the Q-functions have been estimated,
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the only information we need to determine the optimal future treatment
is the patient’s current state. Estimates of the Q-functions, {Q̂1, . . . , Q̂T },
are obtained through a backwards iterative algorithm [50]. The estimated
Q-functions allow us to estimate the optimal treatments:

π̂t = argmax
dt

Q̂t(st, dt) for t = 1, . . . , T,

That is, we select the treatment sequence {π̂1, . . . , π̂T } that maximizes the
sequence of Q-functions. Q-learning can be applied to complex, multi-stage
trials, such as sequential multiple assignment randomized trials [51].
G-Estimation Predictive biomarkers are often used to provide information
for several decisions over a period of time. Suppose that we are interested in
discovering a causal relationship between an exposure and an outcome over
time. If any time-varying confounder is also related to future exposure, stan-
dard methods for adjusting for confounders will fail. G-estimation, a method
for estimating a causal effect in structural nested models while accounting
for both confounders and mediators [52], is useful in this setting [53,54].
G-estimation has been applied in a number of settings where time-varying
covariates are of interest, such as cardiovascular disease [55] and AIDS [56].
Vansteelandt et al. (2014) [52] give a more thorough overview of G-estimation
and structural nested models.
Outcome Weighted Learning (OWL) OWL offers a method for identify-
ing predictive biomarkers in a randomized trial or observational study testing
binary treatments which have substantial treatment heterogeneity [57]. OWL
estimates the optimal individualized treatment rule by formulating it as a
weighted classification problem, which can be solved through a computation-
ally efficient algorithm. For ease of notation, we present the case of a two-
arm randomized trial in this chapter. Suppose we have a binary treatment
A ∈ {−1, 1}, and that the p biomarkers of the n patients are recorded in
the n × p covariate matrix X. Let R denote the clinical outcome, or reward,
that we wish to maximize. In this framework, an individualized treatment rule
(ITR) is a function that takes the covariates as an input and recommends one
of the two treatments as an output. The optimal ITR, then, is the function
that satisfies

D∗(x) = arg min
D

{
E

(
R · 1{A �= D(X)}

Pr(A)

)}
, (1)

where Pr(A) is the prime probability of being assigned to treatment A
[58]. Essentially, OWL finds the optimal ITR by matching the treatments
of patients with a high reward and mismatching patients who have small
rewards. Equation 1 with 0–1 loss yields an optimization problem that is non-
deterministic polynomial-time (NP) hard, and can be quite computationally
intensive to solve. To alleviate this difficulty, OWL employs the hinge loss
used in the Support Vector Machine. In addition, OWL uses regularization
to stabilize the estimate of the ITR based on the observed sample (xi, ai, ri),
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i = 1, · · · , n. Hence, OWL searches for the decision rule f that minimizes the
regularized optimization problem

1
n

n∑
i=1

ri

Pr(ai)
(1 − aif(xi))+ + λ||f ||2, (2)

where ||f ||2 is the squared L2-norm of f and λ is a tuning parameter used
to balance model accuracy and complexity. Once we have estimated f , the
OWL ITR is simply D̂(X) = sign(f). OWL has many attractive inferential
properties, including results for Fisher consistency and risk bounds [57].

Several methods extend the capabilities of OWL. Zhou et al. (2015) [59]
improve OWL model accuracy by fitting the reward function with the covari-
ates ahead of time and plugging the residuals into Eq. 2 instead of the reward.
Xu et al. (2015) [60] add an L1 penalty term to OWL, allowing OWL to per-
form variable selection. Zhao et al. (2015) [61] extend OWL from a single-stage
trial, as described above, into multiple-stage clinical trials, allowing OWL to
inform optimal dynamic treatment regimes.

OWL is not the only approach to finding predictive biomarkers in tri-
als with treatment heterogeneity. Other approaches examine the interaction
between treatment and candidate predictive biomarkers, including recent
work in tree-based methods that provide flexible models for determining
variable importance [62]. Zhang et al. (2012) take a similar approach based
on a semiparametric model that uses inverse-probability weighting to ana-
lyze observational studies [63]. Tian et al. (2014) [64] model the interactions
between the treatment and modified covariates in a variety of settings, includ-
ing the setting with a large pool of biomarkers about which little is known
and only a subset of patients expected to benefit from treatment.

3. Semiparametric Methods Semiparametric methods contain a parametric
piece and a nonparametric piece, offering a trade-off between the flexibility
offered by nonparametric methods and the efficiency offered by parametric
methods. Although some semiparametric models are in wide use, others which
offer the same attractive balance have found adoption much slower. In this
section, we only discuss the most commonly used semiparametric model: the
Cox proportional hazards model.
Cox proportional hazards model The Cox proportional hazards model,
like the AFT model, poses a regression model on the scale of the hazard func-
tion [65]. If we let Z denote the potentially time-varying covariates, and we
let λ(t|Z) denote the hazard function at time t conditional on the covariates,
the Cox model can be expressed as λ(t|Z) = λ0(t)eβ′Z(t), where λ0 denotes
the unobserved baseline hazard function, which can be estimated nonpara-
metrically or assumed to follow a parametric distribution. The former is more
common, and leads to a semiparametric model. The parametric piece of the
Cox model is eβ′Z(t), and β is estimated through maximum partial likeli-
hood. As an example, Kalantar-Zadeh et al. (2007) used the Cox model to
show an association between levels of A1C and mortality risk after controlling
for several demographic characteristics [66].
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Latent Supervised Learning. Latent supervised learning, a novel approach
that exists in the middle ground between supervised and unsupervised learn-
ing, simultaneously handles parameter estimation and the problem of unlabeled
subgroups. To illustrate: suppose that the patient population in a clinical trial
consists of several underlying subgroups, and treatment efficacy differs accord-
ing to these latent subgroups. Ignoring these subgroups can cause a supervised
method to produce poor estimates [27]. Let Y denote the outcome and X denote
the covariates. Wei and Kosorok (2013) proposed the following model for binary
classification using latent supervised learning [27]:

Y = μ1,01{ωT
0 X − γ0 ≥ 0} + μ2,01{ωT

0 X − γ0 < 0} + ε

The model posits that an unknown linear function of the covariates determines
the mean value of the outcome—patients with different signs of ωT

0 X − γ0 have
different means (μ1,0 vs. μ2,0). The underlying subgroup structure is assumed
to be linear. When ε is Gaussian, model parameters can be estimated through
maximum likelihood [27]. These model parameters provide not only an estimate
of the treatment effect, but also subgroup predictions based on covariates.

The assumption of latent subgroups that depend on biomarkers is not only
reasonable, but often of primary scientific interest. Methods that can accommo-
date this assumption and simultaneously provide estimates of its effect, as the
emerging field of latent supervised learning does, offer a great deal of promise
for future research.

Unsupervised Methods. In some settings, it may be impractical to observe
the outcome due to logistics or cost, or the exact nature of the outcome may
not be known. More commonly, investigators may wish to perform some sort
of data pre-processing before plugging their data into a supervised method. In
these settings, unsupervised learning techniques assist in conducting statisti-
cal inference about the underlying structure of the data. Identifying the underly-
ing structure can provide valuable insight into different classes that exist among
the data, and which subset of variables determines those classes [67].

Dimension reduction reduces the number of effective covariates and brings
data into a lower-dimension space that is easier to analyze. The most com-
monly used dimension reduction techniques are principal component analysis
(PCA), linear discriminant analysis (LDA), and classical multidimensional scal-
ing (MDS). While these methods are widely used, they may fail to capture
the underlying structure of complex data. In these situations, nonlinear dimen-
sion reduction methods may prove more fruitful. Isometric feature mapping, or
Isomap, builds a weighted graph using data points as nodes and calculates the
geodesic distance between data points as the sum of weights along the shortest
path between points. The geodesic distance is then used in place of Euclid-
ean distance in MDS, which allows for Isomap to handle points that lie on
a nonlinear manifold [68]. Another popular technique is t-Stochastic Neighbor
Embedding, or t-SNE, which finds a low dimensional mapping to minimize the
Kullback–Leibler divergence between the distributions of the data in low and
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high dimensional spaces [69]. t-SNE commonly employs a normal distribution
in the high dimensional space and a t-distribution in the low dimensional space.
Many other nonlinear dimension reduction methods are available, such as Locally
Linear Embedding (LLE) [70] and diffusion maps [71].

Traditional clustering methods, such as k-means and hierarchical clustering,
treat covariates of interest as a monolithic collection, which proves ineffective
if only a subset of the covariates is truly informative. Biclustering methods
address this issue by considering clusters among both subjects and covariates
simultaneously. We present several methods for biclustering.

Let X denote the overall data matrix. Large Average Submatrix (LAS) finds
K constant, potentially overlapping submatrices of X via maximum likelihood,
then poses X as the sum of these submatrices and random noise [72]. Sparse clus-
tering imposes a Gaussian likelihood on the biclusters of X, where the biclusters
have unique means and common variance. The means are estimated through
L1-penalized least squares, which sets many bicluster means identical to zero,
inducing sparsity [73].

Several biclustering methods use singular value decomposition (SVD)
for dimension reduction. Sparse SVD (SSVD) additionally shrinks small nonzero
singular vectors to zero through an L1 penalty on the squared Frobenius norm of
X, meaning only a checkerboard pattern of influential rows and columns remains
nonzero [14]. Heterogeneous sparse SVD (HSSVD) functions in the case where
biclusters vary in both mean and variance. HSSVD has the advantages of scale
and rotation invariance, and has an improved capacity for detecting overlapping
biclusters compared to classic SVD, as well as improved performance relative to
several methods even in the case where the biclusters have homogeneous variance
[74]. Currently, HSSVD has limited utility in handling count data and data that
arise from more than one “-omics” platform.

Example: The following example comes from a lung cancer dataset with the
expression levels of 12,625 genes from 56 patients discussed in [74]. The inves-
tigators performed HSSVD, classifying patients’ lung cancer subtype (normal
lung, pulmonary carcinoid tumors, colon metasteses, and small-cell carcinoma).
They then compared the results of HSSVD with those of FIT-SSVD, LSHM, and
SVD. The comparison is visualized in the checkerboard plots in Fig. 1. Successful
biclustering is expected to produce the checkerboard appearance exhibited by
HSSVD and FIT-SSVD, but not LSHM and SVD. The biclusters are identified
as the rows divided by the white lines.

3.4 Power

Machine learning techniques appear prominently in biomarker discovery stud-
ies, especially in genomics settings [75,76]. While machine learning techniques
are well-suited to analyzing large, heterogeneous datasets, many core statistical
concepts—such as power calculations—are essentially absent from the machine
learning literature [77]. In this section, we emphasize that power should play a
central role in any biomarker study, regardless of the analysis method selected.
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Fig. 1. Checkerboard plots produced by four different SVD biclustering methods on
12,625 genes from 56 patients with four levels of lung cancer [74].

The exact definition of power relevant to a biomarker study depends on the
study’s goal. Phase III trials incorporating predictive biomarkers revolve around
one or more hypothesis tests that address whether the experimental treatment
has a significant effect. In this setting, the traditional definition of power—the
probability that, if the null hypothesis is truly false, it will be rejected—is appro-
priate. Trials evaluating a screening test based on a prognostic biomarker require
a modified definition of power: the probability that the screening test correctly
classifies a high proportion of patients, e.g. 90%. It is immediately apparent that
both formulations of power are eminently desirable—without power, an unac-
ceptably high number of results are likely to be false positives. Sample size is
one of the drivers of power; in a typical study, investigators should aim for a
sample size that enables at least 80% power.

Unacceptably high rates of false positives, or type I errors, threaten the
validity of a study’s conclusions. This concern is especially relevant when many
hypotheses are tested simultaneously, as multiple comparisons inflate the type
I error if they are not controlled for. Investigators can choose between many
well-studied methods to limit type I error rate to a low level, conventionally 5%,
in the presence of multiple tests, most commonly family-wise error rate (FWER)
or false discovery rate (FDR). The FWER is the probability that we incorrectly
reject even one true null hypothesis. FDR, meanwhile, is the expected propor-
tion of falsely rejected hypotheses. FWER offers a stronger control than FDR, in
the sense that if we control FWER at a certain level, we automatically also con-
trol FDR at that level. FWER and FDR may be preferred in different settings:
FWER is used in many confirmatory studies [78], while FDR may be more logi-
cal in exploratory and other settings [79]. The most popular procedure for con-
trol of FWER is the Bonferroni correction [80]; despite this method’s numerical
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simplicity, however, it is not recommended in light of Holm’s step-down pro-
cedure [81], which is uniformly more powerful than the Bonferroni correction
at the same level of control. The Benjamini-Hochberg step-up procedure offers
control of FDR [82,83]. For a more detailed overview of multiple comparisons,
we direct the reader to Dudoit and van der Laan’s book [84].

We now present a general algorithm for calculating sample size in biomarker
studies via simulation. The crux of the algorithm is the generation of realistic
data scenarios, simulated datasets that incorporate information about the study
design, method, and biomarkers in question. Information needed for all study
designs includes the maximum allowable type I error rate, α, the multiple com-
parisons adjustment method, the desired power, β, the number of simulations
to be run, B, an initial guess of the sample size, n0, and the study’s minimal
clinical measure of importance. The specific measure of importance will vary by
study. In a biomarker-stratified study, for instance, the measure of importance
would be the expected change in effect size for the experimental treatment from
the biomarker-positive to biomarker-negative groups. In an adaptive signature
study, the measure of importance would be the change in effect size between over-
all and biomarker-specific groups, and additional necessary information would
include the expected proportion of biomarkers that are true predictive biomark-
ers (likely below 1%). In a phase 4 prospective study of a screening test based on
a prognostic biomarker, the measure of importance would be the misclassification
proportion of the test compared to gold standard (e.g. 10%), and other neces-
sary information would include the expected operating characteristics of the test,
which may be based on information from a phase 3 prognostic biomarker study.
While the details vary, the philosophy remains constant: investigators should not
be excessively optimistic when generating realistic data scenarios. Most values
should represent a worst-case scenario—e.g., the minimum effect size the investi-
gators could observe and still conclude that a drug has a meaningful effect worth
pursuing.

Algorithm 1. Power calculations through simulation
1 Run B simulations adjusting for a type I error rate of at most α, under a

realistic data scenario with sample size n0. This will entail simulating the
correct number of biomarkers necessary for the study, under the assumption
that they attain only the minimum clinical measure of importance.

2 Calculate the proportion of times the simulated biomarkers were detected
and/or the hypotheses of interest were correctly rejected. This proportion is the
estimated power of the test.

3 If the estimated power is ε less (or more) than the prespecified β, then increase
(or decrease) n0 by 1 and go back to step 1.

4 Otherwise, stop the algorithm and the desired sample size is n0.
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3.5 Validation

When candidate biomarkers have been identified, they must be validated through
an external dataset. At times, it is appropriate to consider truly exogenous
data—data from a previous study that have evaluated the same outcome and bio-
markers, for instance. At other times, this is infeasible or inappropriate; in these
cases, researchers should plan to collect a secondary dataset. Researchers should
consider the same issues listed above when determining the sample size for the
validation set, but the set of assumptions should be less restrictive—namely, the
number of biomarkers will be smaller and the proportion of biomarkers believed
to be true will be higher. Algorithm 1 once again provides a convenient way to
calculate sample size under these new assumptions.

3.6 Evaluation

In most real-world applications, it is not enough for a candidate biomarker to
exist—it must also be useful. Once researchers have identified and validated a
candidate biomarker, they can turn their attention to the issue of evaluating
a biomarker’s utility, whether that utility is in diagnosis, risk prediction, or
any of a variety of functions in clinical practice. There are many statistical
methods available for evaluating both the relationship between a biomarker and
the disease area of interest and the usefulness of a biomarker when applied
to specific populations; we outline only a few of these methods. Researchers
should choose evaluation methods based on the specifics of their experiment
while putting together their analysis plan, before data are collected. For a more
in-depth introduction to some of the techniques mentioned in this section, see
Pepe (2003) [85].

Measures of Accuracy. Biomarkers are often used in diagnostic medicine
to classify patients as diseased or non-diseased. In this setting, evaluating the
performance of a candidate biomarker is informed by the typical measures of
accuracy for any diagnostic test. Let X be a candidate biomarker, and let Y =
1{X > c} be an indicator equal to one when the biomarker exceeds a certain
threshold, c, and zero otherwise. Suppose that a researcher intends to diagnose
disease based on Y . Let D be an indicator of disease, so that D is equal to
one for diseased subjects and zero otherwise. We define the sensitivity of Y
as se = Pr(Y = 1|D = 1). The specificity of Y is sp = Pr(Y = 0|D = 0).
Sensitivity is also referred to as the true positive fraction (TPF) and one minus
specificity as the false positive fraction (FPF). Sensitivity and specificity give
the probability of correct classification, conditional on disease status.

Two additional accuracy measures are the positive predictive value (PPV)
and negative predictive value (NPV), given by PPV = Pr(D = 1|Y = 1) and
NPV = Pr(D = 0|Y = 0). That is, the positive and negative predictive values
give the probability of correct disease classification, conditional on test result.
Although PPV and NPV are related to sensitivity and specificity, there is an
important distinction between them. Sensitivity and specificity are functions of
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the test alone–they do not vary when the test is applied to different populations.
Positive and negative predictive values, on the other hand, are highly dependent
on the disease prevalence in the population the test is applied to: the same test
may have wildly different positive and negative predictive values when applied
to different populations. As such, the positive and negative predictive values
cannot be estimated using data from studies that lack an estimate of disease
prevalence, such as case-control studies. Accuracy measures are typically esti-
mated empirically, and confidence regions for these measures can be constructed
using the methods outlined in chapter 2 of Pepe (2003) [85].

Receiver Operating Characteristic Curves. Often, investigators will wish
to evaluate a continuous biomarker. Receiver operating characteristic (ROC)
curves are frequently used to do so, and they can be applied to a wide variety
of tasks: comparing two biomarkers, constructing single-number summaries of
biomarker performance, and selecting the screen positive threshold, c, among
others. Roughly speaking, the ROC curve for a biomarker, X, is a plot of the
true positive fractions and false positive fractions as functions of the threshold
c. That is, if TPF(c) and FPF(c) are the true and false positive fractions for the
test 1{X > c}, respectively, then ROC(·) = {(FPF(c),TPF(c)),−∞ < c < ∞}.
If we let SD and SD̄ denote the survival functions for X in the diseased and
non-diseased populations, respectively, then the ROC curve can be equivalently
defined as ROC(t) = SD(SD̄(t)) for 0 < t < 1. ROC curves boast well-developed
theory, and the literature contains many procedures for ROC curve estimation
and inference, both parametric and semiparametric [86–90]. Pepe (2000) [91]
proposes a method to adjust ROC curves for covariates.

An advantage of the ROC framework is the ability to construct single number
summaries that can be used to evaluate biomarkers. One such summary is the
area under the ROC curve (AUC). A test that classifies perfectly yields AUC
= 1, while a test that is no better than random chance has AUC= 0.5. If we
let XD and XD̄ denote observed biomarkers from the diseased and non-diseased
populations, respectively, then AUC has an attractive interpretation as the prob-
ability of correctly ordered biomarkers—that is, AUC = Pr(XD > XD̄). Two
candidate biomarkers can be compared by testing whether the corresponding
AUCs differ, as in chapter 5 of Pepe (2003) [85].

Alternative Methods. While AUC is often a useful summary of a biomarker’s
performance, other methods may be more relevant for risk prediction models.
Consider a risk prediction model that contains several biomarkers, and suppose
we add a new biomarker to the model. Ware (2006) [92] observed that doing
so may result in many subjects being placed in new risk categories, even if the
change in AUC is small. Pencina et al. (2008) [93] propose using reclassification
statistics to more adequately capture the effect of the new biomarker. Specifi-
cally, net reclassification improvement (NRI) measures how much an additional
biomarker improves model-predicted probabilities of disease. When a strongly
predictive biomarker enters the model, subjects with disease are reclassified into
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higher risk categories while subjects without disease are reclassified into lower
risk categories, resulting in a large NRI. Pencina et al. (2011) [94] present a
number of extensions to reclassification statistics.

Pencina et al. (2008) [93] propose a second alternative to AUC for evaluating
biomarkers called integrated discrimination improvement (IDI). IDI measures
how much a new biomarker increases the values of sensitivity and specificity,
integrated over all possible thresholds. IDI also has a useful interpretation as
the change in average TPF corrected for any increase in average FPF.

Predictive Biomarkers. The evaluation of predictive biomarkers requires spe-
cial care. Predictive biomarkers are often evaluated by considering the interaction
between the biomarker and treatment in a regression analysis [95,96]. While a
strong interaction between a biomarker and treatment is consistent with the role
of a predictive biomarker, it is not sufficient: predictive biomarkers are causal
in nature, and causal evidence is needed to truly support them. The potential
outcomes framework may help overcome this pitfall. Huang et al. (2012) [97] use
the potential outcomes framework to evaluate a predictive biomarker under the
assumption of monotone treatment effect, while Zhang et al. (2014) [98] propose
a method that relaxes the assumption of monotonicity. For a general discussion
of the evaluation of predictive biomarkers, see Polley et al. (2013) [99].

3.7 Reproducibility

“Non-reproducible single occurrences are of no significance to science.”
- Karl Popper

Reproducibility is not just a criterion for a research study or manuscript to
be accepted—it is a central, guiding tenet of the scientific method, an aim that
every study should seek to attain. The Oxford English Dictionary defines repro-
ducibility as “the extent to which consistent results are obtained when produced
repeatedly.” Applied to the setting of biomarker studies, reproducibility is the
principle that experiments conducted under similar conditions should give sim-
ilar results. Reproducibility is a crucial goal: if a study is not reproducible, its
results will be difficult, and perhaps inappropriate, to apply to other settings.

In practice, to validate whether results can be reproduced, researchers may
carry out a new experiment under similar conditions. The results of the new
experiment can be compared to those of the original using a variety of methods,
such as the Pearson correlation coefficient, the paired t-test, the intraclass cor-
relation coefficient or the concordance correlation coefficient (CCC) [100]. When
researchers wish to compare multiple outcomes, they should be careful to correct
for multiple comparisons, as described in Sect. 3.4.

To clarify a subtle point: there is a distinction between reproducibility
and replicability. An experiment need not be exactly replicated to qualify as
reproducible–in fact, it may be very difficult to achieve perfect replication. A
reproducible study’s results can recur, or be reaffirmed, under similar but not
identical settings–researchers at different labs testing the same biomarker, for
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instance [101]. A replicable study, on the other hand, would lead to identical
results when it is conducted under the same conditions [102]. Whether strict
replicability is necessary or not is currently the topic of some debate. To return
to the biomarker example, Drummond [101] notes that such experiments can
easily be affected by gene-deficient variants of the biomarkers in question, as
these could lead independently synthesized gene segments to have significantly
differing effects. As a consequence, it is unlikely for researchers to achieve a pre-
cise replication of the original experiment–but it may be unimportant to do so
as long as the results of the experiments are consistent.

A natural question to ask is how many times an experiment should be
repeated before it is considered trustworthy enough to publish. The answer to
this question depends on expense and ethical considerations. Generally speak-
ing, an experiment should be repeated several times before it is reported. This
recommendation can be relaxed in some settings when it would prove overly
restrictive, for instance when replication is excessively costly or when a repeated
experiment’s ethics would be questionable [102]. An illustration of the latter
comes from the guidelines for experimentation on vertebrate animals, which dis-
courages the use of unnecessary duplication. Casadevall [102] and Laine [103]
suggest that, in order to make full use of each experiment, researchers “strive
for reproducibility instead of simple replicability.” For example, if the original
experiment tests the efficacy of a drug on controlling glucose level in a certain
time period, a second experiment could test for a dose-response relationship
while simultaneously confirming the original conclusion of efficacy.

While external confirmation is the gold standard for establishing the repro-
ducibility of a result, investigators can ensure substantial levels of reproducibility
simply by choosing appropriate methods. The inferential properties of a statisti-
cal method, such as consistency and power (see Sect. 3.4), are directly connected
to the reproducibility of that method’s results. Large, well-designed studies,
equipped with inferentially sound methods and powered appropriately for the
questions of scientific interest, are inherently highly reliable. Investigators can
save a great deal of time and effort by striving for such studies initially.

4 Clinical Interpretation

Ultimately, statistical validation and evaluation of a biomarker can only go so
far. A biomarker’s long-term worth depends heavily on its clinical interpretation
and utility. Investigators should also take care not to dramatically depart from
standardized, consistent definitions and properly executed methods. Inconsisten-
cies across studies can hinder research producing robust conclusions.

In many instances, biomarkers are used as substitutes, or surrogates, for clini-
cal endpoints. Surrogates may improve the feasibility of a trial through reduction
in sample size or trial duration, and they are especially attractive when there are
ethical concerns with the clinical endpoint, such as invasive procedures. Deter-
mining whether or not a biomarker is an appropriate surrogate endpoint relies
on knowledge of the disease process and the causal pathways the biomarker lies
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in. However, disorders are often complex, clinically heterogeneous, and subject
to large inter-individual variation, with the same disorder appearing drastically
different at distinct points along the continuum between severe pathology and
non-disease state. As such, investigators should be wary of jumping to belief of
a causal link between a biomarker and a clinical outcome, even when they find
a statistical and temporal association: the biomarker may affect a causal path-
way present in only a small number of patients, or may not play a role in the
relevant causal pathway at all [104]. Even when the biomarker is in the correct
causal pathway, its effect on the biological process may be of insufficient size
or duration to significantly affect the clinical outcome [104]. Hence, while sur-
rogate biomarkers can be useful tools, relying solely on surrogates may lead to
misleading conclusions and even harm to patients. For example, the use of ven-
tricular premature depolarization (VPD) suppression as a primary outcome in
clinical trials had led to the approval of antiarrhythmic drugs for patients with
myocardial infarction [105]. Subsequent studies, however, found that, despite
being effective in suppressing VPD, some antiarrhythmics actually increased
mortality [106]. Prentice (1989) proposes an operational criterion to validate
surrogate endpoints in clinical trials comparing two or more interventions: the
surrogate endpoint should fully capture the net effect of the intervention on the
clinical endpoint conditional on the surrogate endpoint [107]. The Prentice cri-
terion is not universally accepted: some argue that it does not allow for valid
inference on the effect of the intervention on the clinical endpoint [108].

Similarly, biomarkers that perform well in a narrow context may not be
applicable to other settings [109]. Patient heterogeneity is among the most
important factors to account for in biomarker studies; we recommend employ-
ing matching or stratification based on relevant characteristics, such as age,
race/ethnicity, or body mass index, to help account for it. For example, there
are consistent gender differences in patients with acute myocardial infarction:
elevation of troponins are less common and lower in women than in men, while
natriuretic peptides and C-reactive protein are more elevated in women than
men [110]. The heterogeneity in symptoms between genders may contribute to
the poorer prognosis of myocardial infarction in women, as well as demonstrating
a facet of the “Yentl syndrome,” the gender bias against women in the identifi-
cation and management of coronary heart disease [111].

Finally, whether a biomarker is used for clinical prediction and screening
should be based heavily on the benefits and risks involved. For example, the
utility of prostate cancer screening that relies on the prostate-specific antigen
(PSA) is controversial [112]. A substantial proportion of PSA-detected cancers
are benign enough that they would not cause clinical problems during a man’s
lifetime. In these cases, the potential benefits of PSA testing may not outweigh
the harms of the invasive diagnostic procedures and unnecessary treatment,
including urinary, sexual, and bowel complications [112].
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5 Limitations

This chapter was constructed to be general enough to appeal to a wide audience
of researchers working in biomarker discovery. Moreover, we are attempting to
provide an overall pipeline. As such, we could not address individual parts of this
pipeline in sufficient detail, and we may have left out some important specifics.
This section is meant primarily to serve as a safeguard for readers against known
potential issues so they can avoid errors in advance.

While having a data management plan and protocol is necessary, it is rarely
completely sufficient—issues always arise during data cleaning and management
that were not anticipated by the plan. For this reason, we recommend having
a research team member specializing in data management, whose expertise can
help tackle unexpected issues.

While we have suggested several supervised and unsupervised methods for
biomarker discovery, this review only scratches the surface of the sum total of
methods available. Domain expertise is necessary to select appropriate methods;
such knowledge is not provided in this chapter (due to limited space).

Power analysis was defined in very general terms, and we provided an all-
purpose algorithm for its calculation through simulation. Our exposition may
leave readers with the false impression that power calculations are an easy busi-
ness with few complications. Nothing could be farther from the truth. Power
calculations should, if possible, be left to a senior statistician well-versed in mul-
tiple comparisons, and adequate time should be allowed for them.

While sensitivity, specificity, and ROC curves are useful methods for bio-
marker evaluation, great care needs to be taken when specifying what magnitude
of improvement is useful. Biomarkers might lead to an incremental improvement
in the operating characteristics we have presented, but only at the expense of
prohibitive cost. We recommend consulting with a physician with expertise on
the particular application when considering this trade-off.

6 Conclusion

The rapid increase of available data—a process that is only accelerating—
provides immense opportunities for improving the health of both individuals
and populations. Fields that can harness “big data” to make health care deci-
sions that take patient heterogeneity into account, as precision medicine seeks
to do, have the potential to advance human health dramatically. However, the
rise of “big data” presents not only opportunities, but a whole host of complica-
tions and challenges. The discovery and validation of biomarkers that can guide
treatment decisions is more relevant than it has ever been, and methodologies
that accomplish this task in a reliable, reproducible, and statistically rigorous
way are of utmost necessity.

The discovery and validation of biomarkers is a complex process. Statistical
issues are inherent to every step of the process, and they must be carefully
considered as they are encountered. We propose the following master pipeline to



282 S.J.T. Hidalgo et al.

help ensure the reproducibility of research related to biomarker discovery. For
each step in the pipeline, we provide questions that researchers should answer
affirmatively before proceeding.

1. Consider research goals to choose an appropriate design. Does the study design
reflect the role the biomarkers are expected to play in a clinical setting? Is the
study design consistent with the current state of knowledge for the biomarkers
being analyzed?

2. Design data analysis plan. Consider both supervised and unsupervised statis-
tical methods. Are the method’s assumptions consistent with the study design?
Is the method suited to the research question at hand?

3. Conduct power calculations to determine the appropriate sample size. Did
you correctly define a minimum clinical measure for calculating power? Is
your minimum clinical measure chosen to represent a worst case scenario?
Did the power calculation adjust for multiple comparisons? Did the power
calculation incorporate prior knowledge effectively?

4. Collect and curate data. Are the data collected consistently and reliably? Are
the data stored and linked in a way that respects patients’ privacy?

5. Conduct planned analyses and validate on an external data set. Were the
candidate biomarkers discovered in the initial analysis confirmed by the vali-
dation analysis?

6. Evaluate the usefulness of the biomarker in practice. Do the biomarkers offer
a clinically relevant improvement in TPF and FPF?

7. Consider clinical implications. Is the cost of the proposed biomarker justified
by its benefits?

The above pipeline will need to be modified on a case-by-case basis, but it should
provide a useful guide for any researcher and starting point for any study in the
biomarker discovery field.

Many areas of research pertaining to the discovery of biomarkers are fervently
active. The optimal approach for incorporating predictive biomarkers into mod-
ern, multi-stage study designs, such as SMARTs, is an area of open research,
as is the proper use of electronic health record data and causal inference for
observational and other non-randomized biomarker studies. The development of
machine learning techniques with desirable inferential properties is an ongoing
task, as is the use of these inferential properties to derive formal power calcula-
tions. Note that automatic approaches, such as many of the approaches described
above, greatly benefit from “big data” with large training sets. However in some
health informatics settings, we can be confronted with a small amount of data
and/or rare events, where completely automatic approaches may suffer from
insufficient training data. In these settings, interactive machine learning (iML)
may be applicable, where a “doctor-in-the-loop” can help to refine the search
space through heuristic selection of samples. Therefore, what would otherwise be
an almost intractable problem, reduces greatly in complexity through the input
and assistance of a human agent involved in the learning phase [113]. In all of
these developments, proper attention to statistical considerations will enhance
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the ability of biomarker discovery studies to demonstrably improve clinical care
through precision medicine.
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