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Preface

Machine learning (ML) studies algorithms that can learn from data to gain knowledge
from experience and to make decisions and predictions. Health Informatics (HI) studies
the effective use of probabilistic information for decision making. Consequently, to
bridge these two fields is of eminent importance for improving human health and
well-being.

As a matter of fact, the discipline of health is increasingly turning into a data science
and health systems worldwide are confronted with big data. This may be beneficial, as
algorithms that improve through experience from large data sets can be of great help
here, and automatic ML (aML) approaches show impressive results. Moreover, much
health data are in arbitrarily high dimensions, where manual analysis is simply
impossible, hence fully automatic approaches by taking the human-out-of-the-loop
make great sense.

However, sometimes we are confronted with small data sets, or rare events, where
aML approaches suffer from insufficient training samples. Here interactive ML
(iML) may be of help, which can be defined as algorithms that can interact with agents
and can optimize their learning behavior through these interactions, where the agents
can also be human. Furthermore, such a human in the loop can be beneficial in solving
computationally hard problems. Particularly a doctor-in-the-loop can be helpful, e.g., in
subspace clustering, protein folding, or k-anonymization, where human expertise can
help reduce an exponential search space through heuristic selection of samples.
Therefore, what would otherwise remain an NP-hard problem, may decrease greatly in
complexity by making use of human intelligence and human intuition involved in the
ML pipeline.

Intelligence is the core topic of research and Demis Hassabis from Google Deep-
Mind summarizes it precisely within his mission statement: “Solve intelligence. Then
solve everything else.” A synergistic combination of methodologies and approaches
from two areas attack the challenge of “solving intelligence” from two perspectives:
Human Computer Interaction (HCI) and Knowledge Discovery and Data Mining
(KDD).

Consequently, this HCI–KDD approach fosters the successful application of
machine learning for health informatics, by encouraging an integrated approach, pro-
moting a concerted cross-disciplinary effort of experts from various disciplines,
including (1) data science, (2) algorithms, (3) network science, (4) topology,
(5) time/entropy, (6) data visualization, and last but not least (7) privacy, data pro-
tection, safety and security.

Hence, the mission of the HCI–KDD expert network is to bring together profes-
sionals from diverse areas with various backgrounds and different views, but who share
a common vision: “solving intelligence,” following the HCI–KDD motto “Science is to
test crazy ideas – engineering is to bring those ideas into business.”



The HCI–KDD expert network organizes special sessions, the first took place in
Graz (Austria), the second in Macau (China), the third in Maribor (Slovenia), the fourth
in Regensburg (Germany), the fifth in Lisbon (Portugal), the sixth in Warsaw (Poland),
the seventh in Banff (Canada), the eight in London (UK), the ninth in Salzburg
(Austria), and the tenth is planned to take place in Reggio di Calabria (Italy) in summer
2017.

Volume 9605 of the Lecture Notes in Computer Science series is a state-of-the-art
survey (SOTA) and an output of the international HCI–KDD expert network. The
volume features 22 carefully selected and peer-reviewed chapters on hot topics in ML
for HI. Each chapter discuss open problems and future challenges in order to stimulate
further research and international progress in this field.

To acknowledge here all those who contributed to the efforts and stimulating dis-
cussions would be impossible. Many people contributed to the development of this
volume, either directly or indirectly, and it would be simply impossible to list all
of them, so let me thank my international, national, and local colleagues, my family and
friends for all their nurturing and positive encouragement. Last but not least I thank the
Springer management team and the Springer production team for their smooth support;
a cordial thank you to all!

October 2016 Andreas Holzinger
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Organization

Scientific Committee: HCI–KDD Expert Network

I am grateful for the support of all members of the expert network HCI–KDD,
http://hci-kdd.org/international-expert-network

MED = medical doctor (“doctor-in-the-loop”); IND = industry member; ESR =
early-stage researcher, e.g., PhD student); 1 = data science; 2 = ML; 3 =
graphs/network science; 4 = topology; 5 = entropy; 6 = visualization; 7 = privacy,
data protection, safety and security.

Rakesh Agrawal, Microsoft Search Labs, Mountain View, California, USA
IND (1, 2, 7) <Data mining, Web search, privacy>

Beatrice Alex, Institute for Language, Cognition and Computation, School of
Informatics, University of Edinburgh, UK
(1) <text mining, information extraction, NLP, computational linguistics>

Amin Anjomshoaa, SENSEable City Laboratory, MIT – Massachusetts Institute of
Technology, Cambridge, MA, USA
(1, 2) <Semantic Web, cloud computing, linked open data>

Matthieu d’Aquin, Knowledge Media Institute, The Open University, Milton Keynes,
UK
(1) <Semantic Web, ontologies, linked open data, knowledge representation>

Joel P. Arrais, Centre for Informatics and Systems, University of Coimbra, Portugal
(1, 2) <Bioinformatics, biomedical informatics, computational biology>

John A. Atkinson-Abutridy, Department of Computer Science, Universidad de Concep-
cion, Chile
(1, 2) <Artificial intelligence, NLP, text Mining>

Chloe-Agathe Azencott, Centre for Computational Biology (CBIO), Mines Paris Tech,
France
ESR (1, 2, 3) <Machine Learning, Computational Biology, Personalized Health>

Alexandra Balahur, European Commission Joint Research Centre, Ispra, Italy
(1, 2) <Artificial Intelligence, NLP, computational linguistics>

Peter Bak, IBM Haifa Research Lab, Mount Carmel, Israel
IND (6) <information visualization, visual analytics, spatiotemporal data analysis>

Robert Baumgartner, Lixto Web Information Extraction, Vienna, Austria
IND (1, 2) Web information extraction
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Smaranda Belciug, Department of Computer Science, Faculty of Mathematics and
Computer Science, University of Craiova, Romania
(2) <Artificial intelligence, genetic algorithms, data mining, statistics, neural networks>

Andreas Bender, Unilever Centre for Molecular Science Informatics, Cambridge, UK
IND (3) <Cheminformatics, drug design, chemogenomics>

Mounir Ben Ayed, Research Group Intelligent Machines, Ecole Nationale d’Ingenieurs
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(1, 2) <Decision support systems, data mining, HCI, KDD>

Elisa Bertino, Department of Computer Science, Purdue University, West Lafayette,
USA
(1, 7) <database systems, computer security, data privacy>

Chris Biemann, Language Technology Group, FB Informatik, Technische Universität
Darmstadt, Germany
(1, 2) <information retrieval, natural language processing, computational linguistics,
cognitive computing>

Miroslaw Bober, Department of Electronic Engineering, University of Surrey,
Guildford, UK
(2, 6) <Computer vision, machine learning, multimedia>

Rainer Boehme, Security and Privacy Lab, Institute of Computer Science, Innsbruck
University, Austria
(7) <privacy, information security, digital forensics, privacy-enhancing technology>

Matt-Mouley Bouamrane, Institute of Health and Wellbeing, University of Strathclyde,
Glasgow, UK
(1, 6) <eHealth, health informatics, knowledge engineering, decision support systems,
HCI>

Francesco Buccafurri, Security and Social Networks Group, UniversitàMediterranea di
Reggio Calabria, Italy
(1, 3, 7) <Social Networks, Information security and privacy, artificial intelligence>

Andre Calero-Valdez, RWTH Aachen University, Aachen, Germany
ESR (3, 6) <Networks, Scientometrics, information visualization, HCI>

Mirko Cesarini, Department of Statistics and Quantitative Methods, Università di
Milano Bicocca, Milan, Italy
(1, 2) <data quality, data analysis, data integration, business intelligence, information
systems>

Polo Chau, School of Computational Science and Engineering, College of Computing,
Georgia Tech, Atlanta, USA
(2, 3, 6) <data mining, fraud detection, visualization, HCI>

Chaomei Chen, College of Information Science and Technology, Drexel University,
Philadelphia, USA
(6) <information visualization, visual analytics, scientometrics>
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Elizabeth S. Chen, Center for Biomedical Informatics, Brown University, Providence,
RI, USA
(1) <Biomedical informatics, electronic health records, standards, NLP, data mining>

Veronika Cheplygina, Biomedical Imaging Group, Erasmus Medical Center, Rotter-
dam, The Netherlands
ESR (1, 2) <machine learning, pattern recognition, medical image analysis, computer
aided diagnosis>

Nitesh V. Chawla, Data, Inference, Analytics and Learning Lab, University of Notre
Dame, IN, USA
(1, 2, 3) <Data mining, machine learning, network science, healthcare analytics>

Anni R. Coden, IBM T.J. Watson Research Center Hawthorne, NY, USA
IND (1, 2) <machine learning, text and image analytics>

Matthias Dehmer, University for Health and Medical Informatics Tyrol, Innsbruck,
Austria
(2, 3, 4, 5) <Systems biology, bioinformatics, complex networks>

Alexiei Dingli, Intelligent Systems Technologies Research Group, University of Malta,
Valletta, Malta
(1, 2) <Artificial intelligence, semantic Web, mobile technology>

Tomasz Donarowicz, Institute of Mathematics and Computer Science, Wroclaw
University of Technology, Poland
(4, 5) entropy, topological entropy

Mike Duerr-Specht, Emergency Doctor, Duke University Hospital, Durham, North
Carolina, USA
MED emergency doctor

Max J. Egenhofer, Center for Geographic Information and Analysis, University of
Maine, Orono, ME, USA
(3, 4) <spatial informatics, spatial reasoning, geographic information systems>

Kapetanios Epaminondas, Computer Science and Software Engineering Department,
University of Westminster, London, UK
(1, 2) <Knowledge engineering, ontologies, semantic computing, NLP>

Massimo Ferri, Department of Mathematics, University of Bologna, Italy
(3, 4) <computational topology, persistent homology>

Sara Johansson Fernstad, Computer Science and Digital Technologies, Northumbria
University, Newcastle, UK
(6) <Visualization, Visual Analytics, Biological Visualization>

Ana Fred, Communication Theory and Pattern Recognition Group, IST – Technical
University of Lisbon, Portugal
(2) <Pattern recognition, machine learning, biometrics, signal processing, biomedical
applications>
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Bogdan Gabrys, Smart Tech Research Centre, Computational Intelligence Group,
Bournemouth University, UK
(2) <Computational intelligence, data science, complex adaptive systems, machine
learning, predictive analytics>

Hugo Gamboa, PLUX Wireless Biosensors, and Universidade Nova de Lisboa,
Portugal
IND (1, 2) <machine learning, signal processing, instrumentation>

Aryya Gangopadhyay, UMBC Center of Cybersecurity, University of Maryland,
Baltimore County, USA
(1, 2, 7) <Health IT, data mining, privacy>

Panagiotis Germanakos, Department of Computer Science, University of Cyprus,
Cyprus
(2, 6) <Computational intelligence, adaptive cognitive systems, user modeling, HCI>

Marie Gustafsson Friberger, Computer Science Department, Malmö University,
Sweden
(1) <linked data, open data, semantic Web technologies, medical informatics>

Randy Goebel, Centre for Machine Learning, Department of Computer Science,
University of Alberta, Edmonton, Canada
(1, 2, 6) <machine learning, data mining, NLP, data visualization, visual analytics>

Bart Goethals, Advanced Database Research and Modelling, University of Antwerp,
Belgium
(1, 2) <data mining, machine learning, big data analytics, data science>

Venu Govindaraju, Department of Computer Science and Engineering, University at
Buffalo, Amherst, NY, USA
(1, 2) <Machine learning, biometrics, language technologies>

Leo Grady, Heart Flow Inc., Redwood, California, USA
IND (3, 6) <graph theory, medical imaging, computer vision>

Michael Granitzer, Media Computer Science, University of Passau, Germany
(1, 6) <Information retrieval, NLP, visual analytics>

Dimitrios Gunopulos, Knowledge Discovery in Databases Lab, Department of
Informatics, University of Athens, Greece
(1, 2) <Data mining, data management, big data, Web mining, sensor networks>

Siegfried Handschuh, Insight Centre for Data Analytics, NUI Galway, Ireland
(1,2) <Semantic Web, linked data, artificial intelligence, NLP>

Helwig Hauser, Visualization Group, University of Bergen, Norway
(6) <visualization>

Julian Heinrich, Biodata Visualization team, CSIRO, Australia
(6) <Visualization, parallel coordinates, bioinformatics>
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Kristina Hettne, BioSemantics group, Department of Human Genetics, Leiden
University Medical Center, The Netherlands
(1) <Text mining, Semantic Web, Bioinformatics, Cheminformatics>

Rainer Hofmann-Wellenhof, Division of General Dermatology, Graz University
Hospital, Austria
MED – Dermato-Oncologist

Andreas Hotho, Data Mining and Information Retrieval Group, University of
Würzburg, Germany
(1, 2) <Data science, data mining, information retrieval, Semantic Web mining>

Jun Luke Huan, Computational Knowledge Discovery Lab, University of Kansas,
Lawrence, USA
(1, 2) <machine learning, data mining, data science, big data, bioinformatics>

Anthony Hunter, Intelligent Systems Group, Department of Computer Science, UCL
University College London, UK
(1, 2) <knowledge representation, reasoning, argumentation, inconsistency>

Beatriz De La Iglesia, Knowledge Discovery and Data Mining Group, Computing
Sciences, University of East Anglia, UK
(2) <artificial intelligence, data mining, optimization, business intelligence, health
informatics>

Kalervo Jaervelin, School of Information Science, University of Tampere, Finland
(1) information retrieval, evaluation, interactive information retrieval

Igor Jurisica, IBM Life Sciences Discovery Centre, and Princess Margaret Cancer
Centre, Toronto, Canada
IND (1, 2, 6) <machine learning, knowledge discovery, bioinformatics, visualization,
cancer informatics>

Andreas Kerren, ISOVIS Group, Department of Computer Science, Linnaeus
University, Växjö, Sweden
(3, 6) <graph drawing, visualization, visual analytics>

Jiri Klema, Department of Cybernetics, Faculty of Electrical Engineering, Czech
Technical University, Prague, Czech Republic
(1, 2) <machine learning, data mining, bioinformatics>

Peter Kieseberg, SBA Research gGmbH – Secure Business Austria, Vienna, Austria
ESR (7) <data security, safety, privacy, IT security, forensics>

Negar Kiyavash, Department of Industrial and Enterprise Systems, University of
Illinois at Urbana-Champaign, USA
(1, 2, 5) <machine learning, statistical signal processing, information theory>

Gudrun Klinker, Computer Aided Medical Procedures and Augmented Reality,
Technische Universität Munich, Germany
(6) <augmented reality, virtual reality, 3D user interfaces, HCI>
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Lubos Klucar, Bioinformatics Lab, Institute of Molecular Biology, Slovak Academy of
Sciences, Bratislava, Slovakia
(1, 3) biological data bases, protein network science, protein function prediction
bioinformatics

David Koslicki, Mathematics Department, Oregon State University, Corvallis, USA
(3, 4, 5) <mathematical biology, genomics, metagenomics, entropy, compressive
sensing>

Patti Kostkova, eHealth Research Centre, Department of Computer Science, University
College London, UK
(1) <digital health, semantic Web, serious games, epidemic intelligence>

Damjan Krstajic, Research Centre for Cheminformatics, Belgrade, Serbia
(2) <statistical learning, applied statistics>

Natsuhiko Kumasaka, Center for Genomic Medicine (CGM), RIKEN, Tokyo, Japan
(1, 2, 6) <Bayesian Gaussian mixture model, statistics, data visualization, graphic
design>

Robert S. Laramee, Data Visualization Group, Department of Computer Science,
Swansea University, UK
(6) <visualization>

Nada Lavrac, Department of Knowledge Technologies, Joszef Stefan Institute,
Ljubljana, Slovenia
(1, 2) <machine learning, data mining>

Sangkyun Lee, Artificial Intelligence Unit, Dortmund University, Germany
ESR (1, 2) <machine learning, large scale numerical optimization, statistical data
analysis>

Matthijs van Leeuwen, Machine Learning Group, KU Leuven, Heverlee, Belgium
(2, 6) <exploratory data mining, pattern mining, interactive data exploration>

Alexander Lex, Visualzation Design Lab, University of Utah, USA
(6) <visualization, bioinformatics>

Chunping Li, School of Software, Tsinghua University, China
(1, 2) machine learning, artificial intelligence, data mining, automated reasoning

Haibin Ling, Center for Data Analytics and Biomedical Informatics, Temple
University, Philadelphia, USA
(6, 7) <computer vision, medical image analysis, privacy, HCI>

Luca Longo, Knowledge and Data Engineering Group, Trinity College Dublin, Ireland
ESR (1, 2, 6) <Knowledge representation, artificial intelligence, decision making,
HCI>

Lenka Lhotska, Department of Cybernetics, Faculty of Electrical Engineering, Czech
Technical University of Prague, Czech Republic
(1, 2) <artificial intelligence, biomedical engineering>
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Andras Lukacs, Institute of Mathematics, Hungarian Academy of Sciences and Eoetvos
University, Budapest, Hungary
(1, 3) <data mining, network science, combinatorics, graph theory>

Avi Ma’ayan, Systems Biology Center, Mount Sinai Hospital, New York, USA
(3) <network science, computational biology, bioinformatics, systems pharmacoglogy>

Ljiljana Majnaric-Trtica, Department of Family Medicine, Medical School, University
of Osijek, Croatia
MED – family doctor, specialist in general/family medicine

Vincenzo Manca, Dipartimento di Informatica, University of Verona, Italy
(1, 2, 5) <Bioinformatics, computational systems biology, natural computing, discrete
mathematics>

Ernestina Menasalvas, Data Mining Group, Polytechnic University of Madrid, Spain
(1, 2) <big data, predictive analytics, data mining>

Yoan Miche, Nokia Bell Labs, Helsinki, Finland
IND – (2, 7) <machine learning, Network Security, Steganography, Malware/Anomaly
Detection>

Martin Middendorf, Institut für Informatik, Fakultät für Mathematik und Informatik,
University of Leipzig, Germany
(1, 2, 3, 5) evolutionary algorithms, bioinformatics, combinatorial optimization

Silvia Miksch, Centre of Visual Analytics Science and Technology, Vienna University
of Technology, Vienna, Austria
(6) <visualization, visual analytics, interaction methods, time, temporal reasoning>

Antonio Moreno-Ribas, Intelligent Technologies for Advanced Knowledge Acquisi-
tion, University Rovira i Virgili, Tarragona, Spain
(1, 2) <artificial intelligence, ontologies, multi-agent systems, semantics, decision
making>

Katharina Morik, Fakultät Informatik, Lehrstuhl für Künstliche Intelligenz, Technische
Universität Dortmund, Germany
(1, 2) <machine learning, data mining, big data, ubiquitous knowledge discovery,
industry 4.0>

Abbe Mowshowitz, Department of Computer Science, The City College of New York,
USA
(3, 5) <network science, graph theory, entropy>

Marian Mrozek, Computational Mathematics, Institute of Computer Science, Jagiel-
lonian University, Krakow, Poland
(4) <computational topology, homology, topological dynamics, morse theory>

Zoran Obradovic, Data Analytics and Biomedical Informatics Center, Temple
University, Philadelphia, PA, USA
(1, 2) <machine learning, artificial intelligence, data mining, bioinformatics>
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Daniel E. O’leary, School of Business, University of Southern California, Los Angeles,
USA
(1, 2) <artificial intelligence, knowledge management, decision support, information
systems>

Patricia Ordonez-Rozo, Department of Computer Science, University of Puerto Rico
Rio Piedras, San Juan, Puerto Rico
(1, 2, 6) <health informatics, machine learning, data mining, visual analytics>

Vasile Palade, School of Computing, Electronics and Mathematics, Coventry
University, UK
(2) <machine learning>

Jan Paralic, Department of Cybernetics and Artificial Intelligence, Technical University
of Kosice, Slovakia
(1, 2) <data mining, text mining, knowledge management, big data>

Valerio Pascucci, Scientific Computing and Imaging Institute, University of Utah, USA
(2, 4, 6) <data analysis, topological methods for image segmentation, visualization>

Gabriella Pasi, Laboratorio di Information Retrieval, Università di Milano Bicocca,
Milan, Italy
(1) <information retrieval, information filtering, fuzzy logic>

Armando J. Pinho, Departamento de Electrónica, Telecomunicações e Informática,
University of Aveiro, Portugal
(2, 5) <knowledge discovery, machine learning, bioinformatics, entropy>

Pavel Pilarczyk, Edelsbrunner Group, Institute of Science and Technology Austria,
Klosterneuburg, Austria
(1, 4) data mining, algebraic topology, homology theory, persistent homology

Margit Pohl, Human-Computer Interaction Group, Vienna University of Technology,
Vienna, Austria
(6) HCI, information visualization

Massimiliano Pontil, Centre for Computational Statistics and Machine Learning, UCL
London, UK
(2, 3) <machine learning, artificial intelligence, learning theory, statistics, applied
mathematics>

Raul Rabadan, Biomedical Informatics, Columbia University, New York, USA
(3, 4, 5) <network science, computational topology, entropy, biology, graph theory,
evolution>

Heri Ramampiaro, Data and Information Management Group, Norwegian University of
Science and Technology, Trondheim, Norway
(1) <information retrieval, text mining, data management>

Dietrich Rebholz, European Bioinformatics Institute, Cambridge and University of
Zurich, Switzerland
MED (1) <semantic Web, biomedical informatics, information representation>
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Chandan K. Reddy, Data Mining and Knowledge Discovery Lab, Wayne State
University, USA
(2) machine learning, health informatics

Gerhard Rigoll, Lehrstuhl Mensch-Maschine Kommunikation, Technische Universität
München, Germany
(1, 2, 6) machine learning, pattern recognition, usability engineering, multimodal
fusion, HCI

Jianhua Ruan, Computational Biology, Department of Computer Science, University of
Texas, San Antonio, USA
(1) <bioinformatics, computational biology, big data>

Lior Rokach, Department of Information Systems Engineering, Ben-Gurion University
of the Negev, Beer-Sheva, Israel
(1, 2, 7) <machine learning, data science, machine learning, recommender systems,
forecasting, cyber security>

Carsten Roecker, Fraunhofer IOSB-INA and Ostwestfalen-Lippe University of Applied
Sciences, Germany
(6) <HCI, smart environments, smart health, ambient assisted living>

Timo Ropinski, Visual Computing Research Group, Ulm University, Germany
(6) <visusalization, volume rendering, scientific visualization, visual computing>
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Reinhold Scherer, Graz BCI Lab, Institute of Neural Engineering, Graz University of
Technology, Austria
(1) <brain-computer interfacing, statistical signal processing, rehabilitation engineering>

Michele Sebag, Laboratoire de Recherche en Informatique, CNRS, Universite Paris
Sud, France
(2) <machine learning>

Paola Sebastiani, Department of Biostatistics, School of Public Health, Boston
University, USA
(2) <Bayesian statistics, statistical genetics, statistical genomicspertise, biostatistics>

Christin Seifert, Media Computer Science, University of Passau, Germany
(1, 6) <visualization, visual analytics, knowledge discovery>

Christian Claus Schiller, Nuclear Medicine and Endocrinology, St Vincent’s Hospital,
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Andrzej Skowron, Group of Mathematical Logic, Institute of Mathematics, University
of Warsaw, Poland
(1, 2) <artificial intelligence, approximate reasoning, rough sets, data mining, adaptive
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Neil R. Smalheiser, College of Medicine, Department of Psychiatry, University of
Illinois at Chicago, USA
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University of Regensburg, Germany
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University, Raleigh, USA
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(6) <visualization, visual analytics, biological data visualization>
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(6) <interactive visual analysis, visual analytics, biological data visualization>

A Min Tjoa, Information and Software Engineering Group, Vienna University of
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Shusaku Tsumoto, Department of Medical Informatics, Faculty of Medicine, Shimane
University, Japan
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Abstract. Machine Learning (ML) studies algorithms which can learn
from data to gain knowledge from experience and to make decisions and
predictions. Health Informatics (HI) studies the effective use of proba-
bilistic information for decision making. The combination of both has
greatest potential to rise quality, efficacy and efficiency of treatment and
care. Health systems worldwide are confronted with “big data” in high
dimensions, where the inclusion of a human is impossible and automatic
ML (aML) show impressive results. However, sometimes we are con-
fronted with complex data, “little data”, or rare events, where aML-
approaches suffer of insufficient training samples. Here interactive ML
(iML) may be of help, particularly with a doctor-in-the-loop, e.g. in sub-
space clustering, k-Anonymization, protein folding and protein design.
However, successful application of ML for HI needs an integrated app-
roach, fostering a concerted effort of four areas: (1) data science, (2) algo-
rithms (with focus on networks and topology (structure), and entropy
(time), (3) data visualization, and last but not least (4) privacy, data
protection, safety & security.

Keywords: Machine learning · Health informatics

1 Introduction and Motivation

Since the early days of Machine Learning (ML) in the 1950ies [1] the goal was
to learn from data, to gain knowledge from experience and to make predictions.
The field accelerated by the introduction of statistical learning theory in the
late 1960ies; although it was at that time a purely theoretical analysis of the
problem of function estimation from a given collection of data [2]. With the
introduction of new statistical learning algorithms (e.g. support vector machine
[3]) statistical learning theory became more and more interesting as a tool for
developing algorithms of practical use for the estimation of multidimensional
functions [4].

Today, ML is the most growing subfield in computer science and Health
Informatics (HI) is the greatest application challenge [5,6]. This is not surprising,
because in the health domain we are confronted with probabilistic, uncertain,
c© Springer International Publishing AG 2016
A. Holzinger (Ed.): ML for Health Informatics, LNAI 9605, pp. 1–24, 2016.
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unknown, incomplete, heterogenous, noisy, dirty, unwanted and missing data sets
which endangers the modelling of artifacts. Moreover, in the biomedical world
we are confronted with a further problem: time. Whilst most computational
approaches assume homogeneity in time, people and processes in the health
domain are not homogenous in time and cannot be forecasted, sometimes it
can happen the completely unexpected. That makes automatic solutions in this
domain difficult, yet sometimes impossible.

A grand challenge in HI is to discover relevant structural patterns and/or
temporal patterns (“knowledge”) in such data, which are often hidden and not
accessible to the human expert but would be urgently needed for better deci-
sion support. Another problem is that most of the data sets in HI are weakly-
structured and non-standardized [7], and most data is in dimensions much higher
than 3, and despite human experts are excellent at pattern recognition in dimen-
sions of ≤3, high dimensional data sets make manual analysis difficult, yet often
impossible.

The adoption of data-intensive methods can be found throughout various
branches of health, leading e.g. to more evidence-based decision-making and to
help to go towards personalized medicine [8]: A grand goal of future biomedicine
is to tailor decisions, practices and therapies to the individual patient. Whilst
personalized medicine is the ultimate goal, stratified medicine has been the cur-
rent approach, which aims to select the best therapy for groups of patients who
share common biological characteristics. Here, ML approaches are indispens-
able, for example causal inference trees (CIT) and aggregated grouping, seeking
strategies for deploying such stratified approaches. Deeper insight of personalized
treatment can be gained by studying the personal treatment effects with ensem-
ble CITs [9]. Here the increasing amount of heterogenous data sets, in particular
“-omics” data, for example from genomics, proteomics, metabolomics, etc. [10]
make traditional data analysis problematic and optimization of knowledge dis-
covery tools imperative [11,12]. On the other hand, many large data sets are
indeed large collections of small data sets. This is particularly the case in per-
sonalized medicine where there might be a large amount of data, but there is
still a relatively small amount of data for each patient available [13]. Conse-
quently, in order to customize predictions for each individual it is necessary to
build a model for each patient along with the inherent uncertainties, and to
couple these models together in a hierarchy so that information can be “bor-
rowed” from other similar patients. This is called model personalization, and is
naturally implemented by using hierarchical Bayesian approaches including e.g.
hierarchical Dirichlet processes [14] or Bayesian multi-task learning [15].

This variety of problems in the application of ML for HI requires a syner-
gistic combination of various methodological approaches which are combined in
the HCI-KDD approach, which is described in Sect. 3. In Sect. 4 an example
curriculum is briefly discussed and Sect. 5 provides an outlook to three future
challenges.
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2 Glossary and Key Terms

automatic Machine Learning (aML) in bringing the human-out-of-the-loop is
the grand goal of ML and works well in many cases with “big data” [16].

Big Data is a buzz word to indicate the flood of data today; however, large data
sets are necessary for aML approaches to learn effectively, the problem is rather
in “dirty data” and sometimes we have large collections of “little data”.

Cognitive Science mainly deals with questions of human intelligence, problem
solving and decision making and is manifested to a large extent in the field of
Human–Computer Interaction (HCI) [17].

Computer Science today has a large focus on machine learning algorithms and
these are manifested to a large part in the field of Knowledge Discovery/Data
Mining (KDD). Deep Learning allows models consisting of multiple layers to
learn representations of data with multiple levels of abstraction, e.g. in speech
recognition, visual object recognition, object detection, genomics etc. [6].

Dimensionality of data is high, when the number of features p is larger than the
number of observations n by magnitudes. A good example for high dimensional
data is gene expression study data [18].

Entropy quantifies the expected value of information contained in data and can
be used as a measure of uncertainty, hence it is of tremendous importance for
HI with many applications to discover e.g. anomalies in data [19].

Health has been defined by the World Health Organization (WHO) in 1946 as
“a state of complete physical, mental, and social well-being” and is undeniably
one of the most important aspects concerning every human [20].

Health Informatics is concerned with the use of computational intelligence for
the management of processes relevant for human health and well-being, ranging
from the collective to the individual [21].

interactive Machine Learning (iML) in bringing the human-in-the-loop is nec-
essary if we have small amounts of data (“little data”), rare events or deal with
complex problems [22,23].

Knowledge Discovery (KDD) includes exploratory analysis and modeling of data
and the organized process to identify valid, novel, useful and understandable pat-
terns from these data sets [24].

Topological Data Mining uses algebraic geometry to recover parameters of mix-
tures of high-dimensional Gaussian distributions [25].

Visualization can be defined as transforming the symbolic into the geometric
and the graphical presentation of information, with the goal of providing the
viewer with a qualitative understanding of the information contents [12,26].
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3 The HCI-KDD Approach

The original idea of the HCI-KDD approach [8,27,28] is in combining aspects of
the best of two worlds: Human–Computer Interaction (HCI), with emphasis on
cognitive science, particularly dealing with human intelligence, and Knowledge
Discovery/Data Mining (KDD), with emphasis on machine learning, particularly
dealing with computational intelligence [29].

Cognitive science (CS) studies the principles of human learning from data to
understand intelligence. The Motto of Demis Hassabis from Google Deepmind
is “Solve intelligence - then solve everything else” [30]. Our natural surrounding
is in R

3 and humans are excellent in perceiving patterns out of data sets with
dimensions of ≤3. In fact, it is amazing how humans extract so much knowledge
from so little data [31] which is a perfect motivator for the concept of iML.

The problem in HI is that we are challenged with data of arbitrarily high
dimensions [7,18,32]. Within such data, relevant structural patterns and/or tem-
poral patterns (“knowledge”) are hidden, difficult to extract, hence not accessible
to a human. A grand challenge is to bring the results from high dimensions into
the lower dimension, where the health experts are working on 2D surfaces on
different devices (from tablet to large wall-displays), which can represent data
only in R

2.
Machine Learning (ML) studies the principles of computational learning from

data to understand intelligence [5]. Computational learning has been of general
interest for a very long time, but we are far away from solving intelligence:
facts are not knowledge and descriptions are not insight. A good example is the
famous book by Nobel prize winner Eric Kandel “Principles of Neural Science”
[33] which doubled in volume every decade - effectively, our goal should be to
make this book shorter!

HCI and KDD did not harmonize in the past. HCI had its focus on specific
experimental paradigms, embedded deeply in Cognitive Science; and aimed to
be cognitively/neutrally plausible. KDD had its focus on computational learning
problems and tried to optimize in the range of 1% because it was embedded in
Computer Engineering, and aimed to have working systems to solve practical
problems - whether mimicking the human brain or not.

Consequently, a concerted effort of both worlds and a comprehensive under-
standing of the data ecosystem along with a multi-disciplinary skill-set, encom-
passing seven specializations: (1) data science, (2) algorithms, (3) network sci-
ence, (4) graphs/topology, (5) time/entropy, (6) data visualization and visual
analytics, and (7) privacy, data protection, safety and security can be highly
beneficial for solving the aforementioned problems (Fig.1).

3.1 Research Track 1 DAT: Data Preprocessing, Integration, Fusion

Understanding the data ecosystem is of eminent importance in HI. Considering
the context in which the data is produced, we can determine between four large
data pools: (1) Biomedical research data (e.g. clinical trial data, -omics data
[10]), e.g. from genomic sequencing technologies (Next Generation Sequencing,
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Fig. 1. The big picture of the HCI-KDD approach: The horizontal process chain (blue
box) encompasses the whole machine learning pipeline from physical aspects of raw
data, to human aspects of data visualization; while the vertical topics (green box)
include important aspects of structure (graphs/networks), space (computational topol-
ogy) and time (entropy); privacy, data protection, safety and security are mandatory
topics within the health domain and provide kind of a base compartment (Color figure
online) (Image taken from hci-kdd.org)

NGS etc.), microarrays, transcriptomic technologies, proteomic and metabolomic
technologies, etc., which all plays important roles for biomarker discovery and
drug design [34,35]. (2) Clinical data (e.g. patient records, clinicians documen-
tations, medical terminologies (e.g. ICD, SNOMED-CT), medical surveys, labo-
ratory tests, clinical and physiological parameters, ECG, EEG etc.), (3) Health
business data (e.g. costs, utilization, management data, logistics, accounting,
billing, resource planning, prediction etc.), and (4) private patient data, pro-
duced by various customers and stakeholders outside the clinical context (e.g.,
wellness data, Ambient Assisted Living data, sport data, insurance data, etc.)
[36]. The US Department of Health and Human Services (HHS) created a tax-
onomy of health data with the following dimensions [37]: (1) Demographics and
socio-economic Data: age, race, sex, education, etc. (2) Health Status Data:
Health status of the patient, e.g., morbidities, problems, complaints, disabili-
ties, diagnoses, symptoms, etc. (3) Health Resources Data: Characteristics and
capacity of the health system, etc. (4) Healthcare Utilization Data: Characteris-
tics(e.g., time, duration, tests, procedures, treatment) about medical care visits
like discharge, stay, use of healthcare services, etc. (5) Healthcare Financing and
Expenditure Data: Costs, charges, insurance status, etc. (6) Healthcare Out-
comes of current and past prevention, treatments, etc. (7) Other data: -omics
data, environmental exposures, etc.

http://hci-kdd.org/
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Technically, there exist various levels of data structures [38] from physical
level as basic indissoluble unit (bit, Shannon) to the logical level (Booleans,
integers, floating-point numbers, strings, etc.) and conceptual (abstract) Level
(arrays, lists, trees, graphs, etc.). Finally the technical level is the application
data (text, graphics, images, audio, video, multimedia) an the Hospital Level
includes narrative (“free text”) patient record data (structured/unstructured
and standardized/non-standardized), -omics data (genomics, proteomics,
metabolomics, lipidomics, transcriptomics, microbiomics, fluxomics, phenomics,
cytomics, connectomics, environomics, exposomics, exonomics, foodomics, topo-
nomics, etc.), numerical measurements (physiological data, lab results, vital
signs, etc.), recorded signals (ECG, EEG, EOG, etc.), Images (standard X-ray,
MR, CT, PET, SPECT, microscopy, confocal laserscans, ultrasound imaging,
molecular imaging, etc.)

Data preprocessing is often a required first step for machine learning because
ML algorithms learn from data and the learning outcome for problem solving
heavily depends on the proper data needed to solve a particular problem. Data
preprocessing, however, inflicts a heavy danger, e.g. during the preprocessing
data can be inadvertently modified, e.g. “interesting” data may be removed.
Consequently, for discovery purposes it would be wise to have a look at the
original raw data first.

Data integration is a hot topic generally and in health informatics specifi-
cally and solutions can bridge the gap between clinical and biomedical research
[39]. This is becoming even more important due to the increasing amounts of
heterogeneous, complex patient related data sets, resulting from various sources
including picture archiving and communication systems (PACS) and radiologi-
cal information systems (RIS), hospital information systems (HIS), laboratory
information systems (LIS), physiological and clinical data repositories, and all
sorts of -omics data from laboratories, using samples from Biobanks. The latter
include large collections of DNA sequence data, proteomic and metabolic data;
resulting from sophisticated high-throughput analytical technologies. Along with
classical patient records, containing large amounts of unstructured and semi-
structured information, integration efforts incorporate enormous problems, but
at the same time offers new possibilities for translational research. However,
before starting any data integration or machine learning task, it is necessary
to get a deep understanding of the underlying physics of the available data. In
this paper we provide an overview about the modern data landscape in a clini-
cal and biomedical research domain, with a focus on typical clinical/biomedical
research, imaging and -omics data-sources, and the structure, quality and size
of the produced patient related health information.

Whilst data integration is on combining data from different sources and pro-
viding users with a unified view on these data (e.g. combining research results
from different bioinformatics repositories), data fusion is matching various data
sets which represent one and the same object into a single, consistent, and clean
representation [40]; in health informatics these unified views are particularly
important in high-dimensions, e.g. for integrating heterogeneous descriptions of
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the same set of genes [41]. The main expectation is that fused data is more
informative than the original inputs.

Capturing all information describing a biological system is the implicit objec-
tive of all -omics methods, however, genomics, transcriptomics, proteomics,
metabolomics, etc. need to be combined to approach this goal: valuable informa-
tion can be obtained using various analytical techniques such as nuclear magnetic
resonance, liquid chromatography, or gas chromatography coupled to mass spec-
trometry. Each method has inherent advantages and disadvantages, but are com-
plementary in terms of biological information, consequently combining multiple
data sets, provided by different analytical platforms is of utmost importance.
For each platform, the relevant information is extracted in the first step. The
obtained latent variables are then fused and further analyzed. The influence of
the original variables is then calculated back and interpreted. There is plenty of
open future research to include all possible sources of information [42].

3.2 Research Track 2 ML: Machine Learning Algorithms

There are uncountable future challenges in the design, development, experimen-
tation and evaluation of ML algorithms generally and in the application to health
informatics specifically. The ultimate goal ever since is to develop algorithms
which can automatically learn from data, hence can improve with experience
over time without any human-in-the-loop. Most colleagues from the ML commu-
nity are concentrating on automatic Machine Learning (aML), with the grand
goal of excluding humans, hence to make it fully automatic and best practice
real-world examples can be found in speech processing [43], recommender sys-
tems [44], or autonomous vehicles [45], just to mention a few.

However, the application of such aML approaches in the complex health
domain seems elusive in the near future and a good example are Gaussian
processes, where aML approaches (e.g. standard kernel machines) struggle on
function extrapolation problems which are trivial for human learners. Conse-
quently, interactive ML-approaches, by integrating a human-into-the-loop (e.g.
a human kernel [46]), thereby making use of human cognitive abilities, is a
promising approach for solving problems in the complex health domain. iML
can be defined as algorithms that can interact with both computational agents
and human agents and can optimize their learning behaviour through these
interactions [22]. In Active Learning such agents are referred to as oracles [47].

iML-approaches can be of particular interest to solve problems, where we are
lacking big data sets, deal with complex data and/or rare events, where tradi-
tional learning algorithms suffer due to insufficient training samples. Here the
doctor-in-the-loop can help, where human expertise and long-term experience
can assist in solving problems which otherwise would remain NP-hard; exam-
ples include subspace clustering [48], protein folding [49], or privacy preserving
ML, which is an important issue, fostered by anonymization, in which a record is
released only if it is indistinguishable from k other entities in the data, but where
k-anonymity is highly dependent on spatial locality in order to effectively imple-
ment the technique in a statistically robust way. In high dimensionalities data
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becomes sparse, hence the concept of spatial locality is not easy to define. Con-
sequently, it becomes difficult to anonymize the data without an unacceptably
high amount of information loss [50] - here iML could be of help.

Despite these apparent findings, so far there is little quantitative evidence
on effectiveness and efficiency of iML-algorithms. Moreover, there is practically
no evidence, how such interaction may really optimize such algorithms. Even
though such “natural” intelligent agents are present in large numbers on our
world and are studied by cognitive scientists for quite a while [51]. One possible
explanation for the dominance of aML-approaches could be, that these are much
better to evaluate and therefore are more rapidly publishable. In iML approaches
methodically correct evaluations are not only much more difficult and time-
consuming, but also very difficult or even impossible to replicate, due to the fact
that human agents are subjective, individual and therefore can not be copied -
in contrast to data, algorithms and computational agents. Robustness of iML is
an open question.

3.3 Research Track 3 GDM Graph-Based Data Mining

Graph-Theory [52] provides powerful tools to map data structures and to find
novel connections between single data objects [53,54]. The inferred graphs can
be further analyzed by using graph-theoretical, statistical and machine learning
techniques [55]. A mapping of already existing and in medical practice approved
knowledge spaces as a conceptual graph (as e.g. demonstrated in [56]) and a sub-
sequent visual and graph-theoretical analysis can bring novel insights on hidden
patterns in the data, which exactly is the goal of knowledge discovery. Another
benefit of a graph-based data structure is in the applicability of methods from
network topology and network analysis and data mining, e.g. small-world phe-
nomenon [57,58], and cluster analysis [59,60]. However, the first question is “How
to get a graph?”, or simpler “How to get point sets?”, because point cloud data
sets (PCD) are used as primitives for such approaches. The answer to this ques-
tion is not trivial (see [61]), apart from “naturally available” point clouds, e.g.
from laser scanners, protein structures [62], or text mapped into a set of points
(vectors) in R

n. Sticking on the last example, graphs are intuitively more infor-
mative as example words/phrase representations [63], and graphs are the best
studied data structures in computer science, with a strong relation to logical
languages [64]. The beginning of graph-based data mining approaches was two
decades ago, some pioneering work include [65–67]. According to [64] there are
five theoretical bases of graph-based data mining approaches such as (1) sub-
graph categories, (2) subgraph isomorphism, (3) graph invariants, (4) mining
measures and (5) solution methods. Furthermore, there are five groups of differ-
ent graph-theoretical approaches for data mining such as (1) greedy search based
approach, (2) inductive logic programming based approach, (3) inductive data-
base based approach, (4) mathematical graph theory based approach and (5)
kernel function based approach [68]. However, the main disadvantage of graph-
theoretical text mining is the computational complexity of the graph represen-
tation, consequently the goal of future research in the field of graph-theoretical
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approaches for text mining is to develop efficient graph mining algorithms which
implement effective search strategies and data structures [63].

In [69] a graph-theoretical approach for text mining is used to extract relation
information between terms in “free-text” electronic health care records that are
semantically or syntactically related. Another field of application is the text
analysis of web and social media for detecting influenza-like illnesses [70].

Moreover there can be content-rich relationship networks among biological
concepts, genes, proteins and drugs developed with topological text data mining
like shown in [71]. According to [72] network medicine describes the clinical
application field of topological text mining due to addressing the complexity of
human diseases with molecular and phenotypic network maps.

3.4 Research Track 4 TDM Topological Data Mining

Closely related to graph-based methods are topological data mining methods;
for both we need point cloud data sets - or at least distances - as input. A
set of such primitives forms a space, and if we have finite sets equipped with
proximity or similarity measure functions simq : Sq+1 → [0, 1], which measure
how “close” or “similar” (q + 1)-tuples of elements of S are, we speak about a
topological space. A value of 0 means totally different objects, while 1 corresponds
to equivalent items. Interesting are manifolds, which can be seen as a topological
space, which is locally homeomorphic (that means it has a continuous function
with an inverse function) to a real n-dimensional space. In other words: X is a
d -manifold if every point of X has a neighborhood homeomorphic to B

d; with
boundary if every point has a neighborhood homeomorphic to B or B

d
+ [73].

A topological space may be viewed as an abstraction of a metric space,
and similarly, manifolds generalize the connectivity of d-dimensional Euclidean
spaces B

d by being locally similar, but globally different. A d-dimensional chart
at p ∈ X is a homeomorphism φ : U → R

d onto an open subset of Rd, where
U is a neighborhood of p and open is defined using the metric. A d-dimensional
manifold (d-manifold) is a topological space X with a d-dimensional chart at
every point x ∈ X [74].

For us also interesting are simplicial complexes (“simplicials”) which are
spaces described in a very particular way, the basis is in Homology. The rea-
son is that it is not possible to represent surfaces precisely in a computer system
due to limited computational storage; thus, surfaces are sampled and represented
with triangulations. Such a triangulation is called a simplicial complex, and is a
combinatorial space that can represent a space. With such simplicial complexes,
the topology of a space from its geometry can be separated. Zomorodian [74]
compares it with the separation of syntax and semantics in logic.

The two most popular techniques are homology and persistence. The con-
nectivity of a space is determined by its cycles of different dimensions. These
cycles are organized into groups, called homology groups. Given a reasonably
explicit description of a space, the homology groups can be computed with lin-
ear algebra. Homology groups have a relatively strong discriminative power and
a clear meaning, while having low computational cost. In the study of persistent
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homology the invariants are in the form of persistence diagrams or barcodes [75].
For us it is important to extract significant features, and thus these methods are
useful, since they provide robust and general feature definitions with emphasis
on global information, e.g. Alpha Shapes [76]. A recent example for topologi-
cal data mining is given by [77]: Topological text mining, which builds on the
well-known vector space model, which is a standard approach in text mining
[78]: a collection of text documents (corpus) is mapped into points (=vectors) in
R

n. Moreover, each word can be mapped into so-called term vectors, resulting
in a very high dimensional vector space. If there are n words extracted from
all the documents then each document is mapped to a point (term vector) in
R

n with coordinates corresponding to the weights. This way the whole corpus
can be transformed into a point cloud data set. Instead of the Euclidean metric
the use of a similarity (proximity) measure is sometimes more convenient; the
cosine similarity measure is a typical example: the cosine of the angle between
two vectors (points in the cloud) reflects how “similar” the underlying weighted
combinations of keywords are. Amongst the many different text mining methods
(for a recent overview refer to [79]); topological approaches are promising, but
need a lot of further research. One of the main tasks of applied topology is to
find and analyse higher dimensional topological structures in lower dimensional
spaces (e.g. point cloud from vector space model as discussed in [80]). A com-
mon way to describe topological spaces is to first create simplicial complexes,
because a simplicial complex structure on a topological space is an expression of
the space as a union of simplices such as points, intervals, triangles, and higher
dimensional analogues. Simplicial complexes provide an easy combinatorial way
to define certain topological spaces [81]. A simplical complex K is defined as a
finite collection of simplices such that σ ∈ K and τ , which is a face of σ, implies
τ ∈ K, and σ, σ′ ∈ K implies σ∩σ′ can either be a face of both σ and σ′ or empty
[82]. One way to create a simplical complex is to examine all subsets of points,
and if any subsets of points are close enough, a p-simplex (e.g. line) is added to
the complex with those points as vertices. For instance, a Vietoris-Rips complex
of diameter ε is defined as V R(ε) = σ|diam(σ) ≤ ε, where diam(ε) is defined as
the largest distance between two points in σ [82]. A common way a analyse the
topological structure is to use persistent homology, which identifies cluster, holes
and voids therein. It is assumed that more robust topological structures are the
one which persist with increasing ε. For detailed information about persistent
homology, see [82–84].

3.5 Research Track 5 EDM Entropy-Based Data Mining

Information Entropy can be used as a measure of uncertainty in data. To date,
there have emerged many different types of entropy methods with a large num-
ber of different purposes and applications; here we mention only a few: Graph
Entropy was described by [85] to measure structural information content of
graphs, and a different definition, more focused on problems in information and
coding theory, was introduced by Körner in [86]. Graph entropy is often used for
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the characterization of the structure of graph-based systems, e.g. in mathemati-
cal biochemistry, but also for any complex network [87]. In these applications the
entropy of a graph is interpreted as its structural information content and serves
as a complexity measure, and such a measure is associated with an equivalence
relation defined on a finite graph; by application of Shannons Eq. 2.4 in [88] with
the probability distribution we get a numerical value that serves as an index of
the structural feature captured by the equivalence relation.

Topological Entropy (TopEn), was introduced by [89] with the purpose to
introduce the notion of entropy as an invariant for continuous mappings: Let
(X,T ) be a topological dynamical system, i.e., let X be a nonempty compact
Hausdorff space and T : X → X a continuous map; the TopEn is a nonnegative
number which measures the complexity of the system [90].

Hornero et al. [91] performed a complexity analysis of intracranial pressure
dynamics during periods of severe intracranial hypertension. For that purpose
they analyzed eleven episodes of intracranial hypertension from seven patients.
They measured the changes in the intracranial pressure complexity by applying
ApEn, as patients progressed from a state of normal intracranial pressure to
intracranial hypertension, and found that a decreased complexity of intracranial
pressure coincides with periods of intracranial hypertension in brain injury. Their
approach is of particular interest to us, because they proposed classification
based on ApEn tendencies instead of absolute values.

Pincus et al. took in [92] heart rate recordings of 45 healthy infants with
recordings of an infant one week after an aborted sudden infant death syndrom
(SIDS) episode. They then calculated the ApEn of these recordings and found
a significant smaller value for the aborted SIDS infant compared to the healthy
ones.

3.6 Research Track 6 DAV Data Visualization

Visualization is a very important method of transforming the symbolic into the
geometric, offers opportunities for discovering knowledge in data and fosters
insight into data [26]. There are endless examples for the importance of visual-
ization in health, e.g. Otasek et al. [12] present a work on Visual Data Mining
(VDM), which is supported by interactive and scalable network visualization and
analysis. Otasek et al. emphasize that knowledge discovery within complex data
sets involves many workflows, including accurately representing many formats
of source data, merging heterogeneous and distributed data sources, complex
database searching, integrating results from multiple computational and mathe-
matical analyses, and effectively visualizing properties and results. Mueller et al.
[93] demonstrate the successful application of data Glyphs in a disease analyser
for the analysis of big medical data sets with automatic validation of the data
mapping, selection of subgroups within histograms and a visual comparison of
the value distributions. A good example for the catenation of visualization with
ML is clustering: Clustering is a descriptive task to identify homogeneous groups
of data objects based on the dimensions (i.e. values of the attributes). Clustering
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methods are often subject to other systems, for example to reduce the possibil-
ities of recommender systems (e.g. Tag-recommender on Youtube videos [94]);
for example clustering of large high-dimensional gene expression data sets has
widespread application in -omics [95]. Unfortunately, the underlying structure
of these natural data sets is often fuzzy, and the computational identification of
data clusters generally requires (human) expert knowledge about cluster num-
ber and geometry. The high-dimensionality of data is a huge problem in health
informatics general and in ML in particular, and the curse of dimensionality is
a critical factor for clustering: With increasing dimensionality the volume of the
space increases so fast that the available data becomes sparse, hence it becomes
impossible to find reliable clusters; also the concept of distance becomes less
precise as the number of dimensions grows, since the distance between any two
points in a given data set converges; moreover, different clusters might be found
in different sub spaces, so a global filtering of attributes is also not sufficient.
Given that large number of attributes, it is likely that some attributes are cor-
related, therefore clusters might exist in arbitrarily oriented affinity sub spaces.
Moreover, high-dimensional data likely includes irrelevant features, which may
obscure to find the relevant ones, thus increases the danger of modeling artifacts.
The problem is that we are confronted with subjective similarity functions; the
most simplest example is the grouping of cars in a showroom: a technician will
most likely group the cars differently than a mother of three kids (cylinder capac-
ity versus storage capacity). This subspace clustering problem is hard, because
for the grouping very different characteristics can be used: highly subjective
and context specific. What is recognized as comfort for end-users of individual
systems, can be applied in scientific research for the interactive exploration of
high-dimensional data sets [96]. Consequently, iML-approaches can be beneficial
to support finding solutions in hard biomedical problems [48]. Actually, humans
are quite good in comparison for the determination of similarities and dissimilar-
ities - described by nonlinear multidimensional scaling (MDS) models [97]. MDS
models represent similarity relations between entities as a geometric model that
consists of a set of points within a metric space. The output of an MDS routine
is a geometric model of the data, with each object of the data set represented as
a point in n-dimensional space.

3.7 Research Track 7 DAP Privacy

Privacy aware machine learning and privacy preserving machine learning is an
important issue [98,99], fostered by anonymization concepts, in which a record
is released only if it is indistinguishable from k other entities in the data.
k-anonymity is highly dependent on spatial locality in order to effectively imple-
ment the technique in a statistically robust way and in high dimensions data
becomes sparse, hence the concept of spatial locality is not easy to define. Conse-
quently, it becomes difficult to anonymize the data without an unacceptably high
amount of information loss [50]. Consequently, the problem of k-Anonymization
is on the one hand NP-hard, on the other hand the quality of the result obtained
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can be measured at the given factors (k-Anonymity, l-diversity, t-closeness, delta-
presence), but not with regard to the actual security of the data, i.e. the re-
identification through an attacker. For this purpose certain assumptions about
the background knowledge of the hypothetical enemy must be made. With regard
to the particular demographic and cultural clinical environment this is best done
by a human agent. Thus, the problem of (k-)Anonymization represents a natural
application domain for iML.

4 Example Curriculum

Most universities offer excellent courses on machine learning, neural networks,
data mining, and visualization, so a course on ML for HI should be complemen-
tary and follow a research-based teaching (RBT) style, showing the students
state-of-the-art science and engineering example from biomedicine and the life
sciences for discussing the underlying concepts, theories, paradigms, models,
methods and tools on practical cases and examples (Fig. 2). For practical rea-
sons the exercises can be done with Python [100], which is to date still the

Fig. 2. The top level view of the contents of the Machine Learning for Health Infor-
matics course at Vienna University of Technology, developed by A. Holzinger. Besides
from focusing on practical examples from biology, biomedicine, clinical medicine and
healthcare, issues including privacy, safety, security, data protection, validation, eval-
uation, social and economic impact, acceptance and trust are important parts of this
course



14 A. Holzinger

most used ML-tool worldwide, and probabilistic programming [101] should be
fostered (with at least a short touch on, e.g., Anglican, Church, or PyMC).
The course 183.A83 at Vienna University of Technology (http://hci-kdd.org/
machine-learning-for-health-informatics-course/) is consisting of twelve lectures
plus practicals for a one-semester course on Master level with the following
contents:

Lecture 01: Introduction and Overview of ML and HI explains the HCI-KDD
approach, shows the complexity of the application area health informatics,
demonstrates what aML can do and shows the limitations of aML, and the
usefulness iML with a human-in-the-loop on practical examples and outlines
some future challenges.

Lecture 02: Fundamentals of Data and Information discusses the underlying
physics of data and biomedical data sources, taxonomy of data, data struc-
tures, data integration, data fusion, and a clinical view on data, information
and knowledge; focuses then on probabilistic information, information theory,
cross-entropy, mutual information and Kullback-Leibler Divergence.

Lecture 03: Dimensionality Reduction and Subspace Clustering provides an intro-
duction into classification vs. clustering, feature spaces, feature engineering, dis-
cusses the curse of dimensionality and methods of dimensionality reduction, and
demonstrates the usefulness of subspace clustering with the expert-in-the-loop;
finally discusses the hard question “what is interesting?” by showing projection
pursuit.

Lecture 04: Human Learning vs. Machine Learning: Decision Making starts with
reinforcement learning and discusses the differences of humans and machines
on the example of decision making under uncertainty, shows then multi-armed
bandits and applications in health and finally gives an outlook on the importance
of transfer learning.

Lecture 05: Probabilistic Graphical Models I starts with reasoning under uncer-
tainty and expected utility theory, highlights the importance of graphs and
knowledge representation in network medicine, shows some basic metrics and
measures and discusses practical examples of graphical model learning and how
to get graphs.

Lecture 06: Probabilistic Graphical Models II continues with graphical models
and decision making, shows factor graphs, graph isomorphism and applications,
Bayes nets, ML on graphs, similarity and correspondence, and probabilistic topic
models for natural language to get insight into unknown document collections,
concluded by Graph bandits.

Lecture 07: Evolutionary Computing for HI I poses medical decision making as
search problem and shows evolutionary principles (Lamarck, Darwin, Baldwin,
Mendel) and applications of evolutionary computing with the special case of
genetic algorithms and k-armed bandits and genetic algorithms (global opti-
mization problem).

http://hci-kdd.org/machine-learning-for-health-informatics-course/
http://hci-kdd.org/machine-learning-for-health-informatics-course/


Machine Learning for Health Informatics 15

Lecture 08: Evolutionary Computing for HI II continues with examples from
medical applications for EA, discusses natural computing concepts and their
usefulness in principle, focuses then on Ant Colony Optimization and the travel-
ing salesman problem with motivation on protein folding, simulated annealing,
and the human-in-the-loop, and finalizes with multi-agents and neuro evolution.

Lecture 09: Towards Open Data Sets: Privacy Aware Machine Learning moti-
vates privacy, data protection safety and security and discusses anonymization
methods (k-Anonymization, l-diversity, t-closeness, delta-presence, pertubative
approaches, differentially private kernel learning, etc.), and how iML can help
anonymization.

Lecture 10: Active Learning, Multi-Task Learning and Transfer Learning dis-
cusses the principles of active learning, preference learning, active preference
learning with an excursion on PAC-learning, and programming by feedback,
highlights some problems of the human-in-the-loop and continues with MTL
and TL, where humans are still better than machines.

Lecture 11: Machine Learning from Text focuses on natural language under-
standing and the problems involved, and highlights word vectors for sentiment
analysis (continous bag-of-words model, skip-gram model, global vectors for word
embedding) with giving an outline on neural probabilistic language models and
alternative models.

Lecture 12: Discrete Multi-Agent Systems on the topic of stochastic simulation
of tumor kinetics and key problems for cancer research, tumor growth modeling,
cellular potts model, tumor growth visualization and towards using open tumor
growth data for machine learning in the international context [102].

5 Future Challenges

Much future research has to be done, particularly in the fields of Multi-Task
Learning and Transfer Learning to go towards Multi-Agent-Hybrid Systems as
applications of the iML-approach.

5.1 Future Challenge 1: Multi-task Learning

Multi-task learning (MTL) aims to improve the prediction performance by
learning a problem together with multiple, different but related other problems
through shared parameters or a shared representation. The underlying principle
is bias learning based on probable approximately correct learning (PAC learning)
[103]. To find such a bias is still the hardest problem in any ML task and essen-
tial for the initial choice of an appropriate hypothesis space, which must be large
enough to contain a solution, and small enough to ensure a good generalization
from a small number of data sets. Existing methods of bias generally require the
input of a human-expert-in-the-loop in the form of heuristics and domain knowl-
edge to ensure the selection of an appropriate set of features, as such features
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are key to learning and understanding. However, such methods are limited by
the accuracy and reliability of the expert s knowledge (robustness of the human)
and also by the extent to which that knowledge can be transferred to new tasks
(see next subsection). Baxter (2000) [104] introduced a model of bias learning
which builds on the PAC learning model which concludes that learning multiple
related tasks reduces the sampling burden required for good generalization and
bias that is learnt on sufficiently many training tasks is likely to be good for
learning novel tasks drawn from the same environment (the problem of transfer
learning to new environments is discussed in the next subsection). A practical
example is regularized MTL [105], which is based on the minimization of reg-
ularization functionals similar to Support Vector Machines (SVMs), that have
been successfully used in the past for singletask learning. The regularized MTL
approach allows to model the relation between tasks in terms of a novel kernel
function that uses a taskcoupling parameter and largely outperforms singletask
learning using SVMs. However, multi-task SVMs are inherently restricted by the
fact that SVMs require each class to be addressed explicitly with its own weight
vector. In a multi-task setting this requires the different learning tasks to share
the same set of classes. An alternative formulation for MTL is an extension of
the large margin nearest neighbor algorithm (LMNN) [106]. Instead of relying
on separating hyper-planes, its decision function is based on the nearest neigh-
bor rule which inherently extends to many classes and becomes a natural fit
for MTL. This approach outperforms state-of-the-art MTL classifiers, however,
much open research challenges remain open in this area [107].

5.2 Future Challenge 2: Transfer Learning

A huge problem in ML is the phenomenon of catastrophic forgetting, i.e. when
learned one task and transferred to another task the ML algorithm “forgets”
how to perform the learned task. This is a well-known problem which affects ML-
systems and was first described in the context of connectionist networks [108];
whereas natural cognitive systems rarely completely disrupt or erase previously
learned information, i.e. natural cognitive systems do not forget “catastrophi-
cally” [109]. Consequently the challenge is to discover how to avoid the problem
of catastrophic forgetting, which is a current hot topic [110].

According to Pan & Yang (2010) [111] a major assumption in many ML
algorithms is, that both the training data and future (unknown) data must be
in the same feature space and required to have the same distribution. In many
real-world applications, particularly in the health domain, this is not the case:
Sometimes we have a classification task in one domain of interest, but we only
have sufficient training data in another domain of interest, where the latter data
may be in a completely different feature space or follows a different data distrib-
ution. In such cases transfer learning would greatly improve the performance of
learning by avoiding much expensive data-labeling efforts, however, much open
questions remain for future research [112].
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5.3 Future Challenge 3: Multi-agent-Hybrid Systems

Multi-Agent-Systems (MAS) are collections of many agents interacting with each
other. They can either share a common goal (for example an ant colony, bird
flock, or fish swarm etc.), or they can pursue their own interests (for exam-
ple as in an open-market economy). MAS can be traditionally characterized by
the facts that (a) each agent has incomplete information and/or capabilities
for solving a problem, (b) agents are autonomous, so there is no global system
control; (c) data is decentralized; and (d) computation is asynchronous [113].
For the health domain of particular interest is the consensus problem, which
formed the foundation for distributed computing [114]. The roots are in the
study of (human) experts in group consensus problems: Consider a group of
humans who must act together as a team and each individual has a subjec-
tive probability distribution for the unknown value of some parameter; a model
which describes how the group reaches agreement by pooling their individual
opinions was described by DeGroot (1974) [115] and was used decades later for
the aggregation of information with uncertainty obtained from multiple sensors
[116] and medical experts [117]. On this basis Olfati-Saber et al. (2007) [118] pre-
sented a theoretical framework for analysis of consensus algorithms for networked
multi-agent systems with fixed or dynamic topology and directed information
flow. In complex real-world problems, e.g., for the epidemiological and ecological
analysis of infectious diseases, standard models based on differential equations
very rapidly become unmanageable due to too many parameters, and here MAS
can also be very helpful [119]. Moreover, collaborative multi-agent reinforcement
learning has a lot of research potential for machine learning [120].

6 Conclusion

There are uncountable future challenges in ML generally and in the application of
ML to health informatics specifically. The ultimate goal is to design and develop
algorithms which can automatically learn from data, hence can improve with
experience over time without any human-in-the-loop. However, the application
of such aML approaches in the complex health domain seems elusive in the near
future and a good example are Gaussian processes, where aML approaches (e.g.
standard kernel machines) struggle on function extrapolation problems which
are trivial for human learners. Consequently, iML-approaches, by integrating a
human-into-the-loop (e.g. a human kernel [46]), thereby making use of human
cognitive abilities, seems to be a promising approach. iML-approaches can be
of particular interest to solve problems in HI, where we are lacking big data
sets, deal with complex data and/or rare events, where traditional learning algo-
rithms suffer due to insufficient training samples. Here the doctor-in-the-loopcan
help, where human expertise and long-term experience can assist in solving prob-
lems which otherwise would remain NP-hard. A cross-domain integration and
appraisal of different fields provides an atmosphere to foster different perspec-
tives and opinions and is an ideal think-tank and incubator to foster novel ideas
and a fresh look on different methodologies to put these ideas into Business.
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Abstract. The decision tree is one of the earliest predictive models in
machine learning. In the soft decision tree, based on the hierarchical
mixture of experts model, internal binary nodes take soft decisions and
choose both children with probabilities given by a sigmoid gating func-
tion. Hence for an input, all the paths to all the leaves are traversed
and all those leaves contribute to the final decision but with different
probabilities, as given by the gating values on the path. Tree induction
is incremental and the tree grows when needed by replacing leaves with
subtrees and the parameters of the newly-added nodes are learned using
gradient-descent. We have previously shown that such soft trees gener-
alize better than hard trees; here, we propose to bag such soft decision
trees for higher accuracy. On 27 two-class classification data sets (ten
of which are from the medical domain), and 26 regression data sets, we
show that the bagged soft trees generalize better than single soft trees
and bagged hard trees. This contribution falls in the scope of research
track 2 listed in the editorial, namely, machine learning algorithms.

Keywords: Decision trees · Regression trees · Regularization · Bagging

1 Introduction

Trees are frequently used in computer science to decrease search complexity from
linear to log time. In machine learning too, decision trees are frequently used
and unlike other non-parametric methods such as the k-nearest neighbor where
an input test pattern needs to be compared with all the training patterns, the
decision tree uses a sequence of tests at internal decision nodes to quickly find
the leaf corresponding to the region of interest. In classification, a leaf carries the
class label and in regression, it carries a constant which is the numeric regression
value [1,2].

In the canonical hard binary decision tree, each decision node applies a test
and depending on the outcome, one of the branches is taken. This process is
repeated recursively starting from the root node until a leaf node is hit at which
point the class label or the numeric regression value stored at the leaf constitutes
c© Springer International Publishing AG 2016
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the output. In the hard decision tree, therefore, a single path from the root to
one of the leaves is traversed and the output is given by the value stored in that
particular leaf.

There are different decision tree architectures depending on the way deci-
sion is made at a node: The most typical is the univariate tree where the
test uses a single input attribute and compares it against a threshold value
[2]. In the multivariate linear tree, the test defines a linear discriminant in the
d-dimensional space [3,4]. In the multivariate nonlinear tree, the test can use a
nonlinear discriminant—for example, a multilayer perceptron [5]. In the omni-
variate tree, the test can use any of the above, chosen by a statistical model
selection procedure [6].

So from a geometrical point of view, in the d-dimensional input space, each
univariate split defines a boundary that is orthogonal to one of the axes; a
multivariate linear split defines a hyperplane of arbitrary orientation, and a
multivariate nonlinear split can define a nonlinear boundary.

In the hierarchical mixture of experts, Jordan and Jacobs [7] replace each
expert with a complete system of mixture of experts in a recursive manner.
Though it can also be viewed as an ensemble method, this architecture defines
a soft decision tree where gating networks act as decision nodes. The soft gating
function in a binary decision node chooses both children, but with probabilities
(that sum up to 1). Hence, the node merges the decision of its left and right
subtrees unlike a hard decision node that chooses one of them.

This implies that in a soft tree for a test input, we are traversing all the
paths to all the leaves and all those leaves contribute to the final decision, but
with different probabilities, as specified by the gating values on each path. In our
proposed extension [8], the tree structure is not fixed but is trained incrementally
one subtree at a time, where the parameters of the node and the leaf values are
learned using gradient-descent.

Because the soft decision tree is multivariate and uses all input attributes in
all nodes, it may have high variance on small data sets. As a variance reduction
procedure, in this paper, we use bagging [9] which has been used successfully
to combine hard decision trees in many applications; in our case of soft decision
trees too, the use of bagging corresponds to averaging over soft trees trained
with different data splits and initial parameter values in gradient-descent, and
hence leads to a more robust estimate.

This paper is organized as follows: In Sect. 3, we review the soft decision
tree model and its training algorithm. We discuss bagging soft decision trees in
Sect. 4. We give our experimental results in Sect. 5 and conclude in Sect. 6.

Our work on extensions of decision trees falls in the scope of research track
2 of the editorial, namely machine learning algorithms.

2 Glossary and Key Terms

Bagging is an ensemble method where from a single training set, we draw multi-
ple training sets using bootstrapping, with each of these sets we train a different
model, and then combine their predictions, for example, using voting.
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Bootstrapping is a resampling method where we randomly draw from a set with
replacement.

Decision tree is a hierarchical model composed of decision nodes applied to the
input and leaves that contain class labels.

Ensemble contains multiple trained models that are trained separately. In bag-
ging, each of these models is trained on a slightly different data sets and hence
may fail on slightly different cases, so accuracy can be increased by combining
these multiple predictions.

Multivariate model uses all of the input attributes in making a decision whereas
a univariate model uses only one of the input attributes.

Soft decision is different from a hard decision in that if there are m outcomes,
in a hard decision we choose one of the m and ignore the remaining m − 1; in a
soft decision, we choose all m but with different probabilities–these probabilities
sum up to 1.

3 Soft Decision Trees

3.1 The Model

As opposed to the hard decision node which directs instances to one of its chil-
dren depending on the outcome of the test at node m, gm(x), a soft decision
node directs instances to all its children with probabilities calculated by a gating
function gm(x) [7]. Without loss of generalization, let us consider a binary node
where we have left and right children:

Fm(x) = FL
m(x)gm(x) + FR

m(x)(1 − gm(x)) (1)

This is a recursive definition where FL
m(x) for example corresponds to the

value returned by the subtree whose root is the left child of node m. Recursion
ends when the subtree is just a leaf, in which case the value stored in the leaf is
returned.

In the case of a hard tree, the hard decision node returns gm(x) ∈ {0, 1},
whereas in a soft tree, gm(x) ∈ [0, 1], as given by the sigmoid function:

gm(x) =
1

1 + exp[−(wT
mx + wm0)]

(2)

Separating the regions of responsibility of the left and right children can be
seen as two-class classification problem and from that perspective, the gating
model implements a discriminative (logistic linear) model estimating the poste-
rior probability of the left child: P (L|x) ≡ gm(x) and P (R|x) ≡ 1 − gm(x).

In a hard tree, because gm(x) returns 0 or 1, in Eq. (1), the node copies the
value of its left or right child, whereas in a soft tree because gm(x) returns a
value between 0 and 1, the node returns a weighted average of its two children.
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This allows a smooth transition at the decision boundary, leads to a smoother fit
and hence better generalization. Because the tree is traversed recursively, Eq. (1)
is defined recursively and as a result, all the paths to all the leaves are traversed
and at the root node, we get a weighted average of all the leaves where the weight
of each leaf is given by the product of the gating values on the path to each leaf.

Incidentally, this model can easily be generalized to m-ary nodes where each
node has m > 2 children, by replacing Eq. (1) with a convex combination of the
values of the m children and the sigmoid of Eq. (2) by the softmax.

3.2 Training

Learning the soft decision tree is incremental and recursive, as with the hard
decision tree [8]. The algorithm starts with one node and fits a leaf. Then, as
long as there is improvement, it replaces the leaf by a subtree of a node and its
two children leaves. This involves optimizing the gating parameters at the node
and the values of its children leaves.

The error function is cross-entropy for classification and square loss for regres-
sion (In classification, the final output should be a probability and that is why
for a two-class task, the final output at root is filtered through a sigmoid):

E =

⎧
⎪⎨

⎪⎩

∑

t

(r(t) − y(t))2 Regression
∑

t

r(t) log y(t) + (1 − r(t)) log(1 − y(t)) Classification
(3)

At each growth step, node m, which was previously a leaf is replaced by a
decision node and its two children leaves. The gating parameters (wm) of the
decision node and the numeric leaf values of the children nodes (zLm, zRm) are set
to small random values initially and are then updated using gradient-descent:

Δwmi = −η
∂E

∂wmi
= η(r − y)[FL

m(x) − FR
m(x)]αmgm(x)(1 − gm(x))xi

ΔzLm = −η
∂E

∂zLm
= η(r − y)αmgm(x)

ΔzRm = −η
∂E

∂zRm
= η(r − y)αm(1 − gm(x))

where η is the learning factor,

αm =
n�=root∏

n=m,p=n.parent

δn,p.leftgp(x) + δn,p.right(1 − gp(x))

and δi,j is the Kronecker delta.
Note that only the three nodes of the last added subtree (current decision node

and the leaf values of its children) are updated and all the other nodes are fixed.
But since soft trees use a soft gating function, all the data points have an effect
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on these parameters, whereas in a hard tree, only those data points that fall in
the partition of the current node have an effect. Any input instance should pass
through all the intermediate decision nodes until it reaches the added node and its
leaves and the error should be discounted by all the gating values along the way
to find the “back-propagated error” for that instance (denoted by α above). This
value is then used to update the gating parameters and the leaf values.

In the hierarchical mixture of experts [7], the tree structure is fixed and
the whole tree is learned using gradient-descent or expectation-maximization,
whereas in our case, the tree is built incrementally, one subtree at a time. One
recent work by Ruta and Li [10] is the fuzzy regression tree which is differ-
ent from our work in several aspects. First, their splits are defined over kernel
responses, hence, are univariate (one-dimensional), whereas our gating functions
are multivariate and defined directly over the input space. Second, they apply an
exhaustive search to learn the parameters (as in the hard univariate tree, which
is possible because the splits use a single dimension) whereas we use gradient-
descent.

For cases where the input dimensionality is high, we have previously proposed
to use L1 and L2-norm regularization where we add a model complexity term
to the usual misfit error of Eq. (3) to get an augmented error [11]:

E′ = E + λ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d∑

i=0

|wmi| L1-norm

d∑

i=0

w2
mi L2-norm

and then we use the partial derivative of the augmented error in gradient-descent.
λ trades off data misfit and model complexity. wmi are the gating parameters of
all nodes m in the tree for all attributes i = 1, . . . , d.

Especially as we go down the tree, we localize in parts of the input space
where certain dimensions may not be necessary or when certain dimensions are
highly correlated; at the same time, as we go down the tree, we have fewer data
that reach there; so, regularization helps.

4 Bagging Soft Decision Trees

Bagging, short for bootstrap aggregating, was introduced by Breiman [9]. The
idea is to generate a set of training data from an initial data by bootstrapping,
that is, drawing with replacement, then train a predictor on each training data,
and then combine their predictions. Because drawing is done with replacement,
certain instances may be drawn more than once, and certain instances not at
all.

Different training data will differ slightly and the resulting trained predic-
tors can be seen as noisy estimates to the ideal discriminant; combining them
removes noise and leads to a smooth estimator with low variance, and hence
better generalization [12].
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Decision trees are frequently used in bagging and here we use soft decision
trees to see if we also have the advantage due to bagging when we combine
soft trees. The soft decision tree has multivariate splits and risks overfitting
when the input dimensionality is high and data set is small; hence averaging by
combination will have a regularizing effect.

Additional to the randomness due to data, there is also the randomness due
to the initialization of parameters before gradient-descent; averaging over trees
will also average this randomness out. A single soft tree may overfit due to noisy
instances in the data or a bad initialization, but we expect the majority of the
models to converge to good trees and hence by combining their predictions, we
get an improved overall estimate.

Figure 1 shows the pseudocode of the algorithm BaggedSoftTree that creates
B soft trees for a data set X containing N instances. For each, first we build a
bootstrap sample Di of size N by drawing with replacement from the original
X (Line 2). Because the new set also contains N instances and drawing is done
with replacement, the new set may contain certain instances multiple times and
certain instances may not appear at all. Therefore, Di will be similar to X but
also slightly different. Then on each Di, we learn a soft tree Ti (Line 3).

These trees will be similar but also slightly different due to the randomness in
training, both due to their sampled data and also the initialization of parameters.
As the last step, for any new given test data, we combine the predictions of these
soft trees using a committee-based procedure, such as voting.

BaggedSoftTree(X , B)
1 for i = 1 to B
2 Di = BootStrap(X )
3 Ti = LearnSoftTree(Di)
4 end for
5 Return prediction by aggregating classifiers Ti

Fig. 1. The pseudocode of the algorithm that creates bagged soft trees consisting of B
soft trees for a data set X .

5 Experiments

5.1 Setup

We compare single and bagged soft decision trees with single and bagged hard
decision trees on classification and regression data sets. Our methodology is as
follows: We first separate one-third of the data set as the test set over which we
evaluate the final performance. With the remaining two-thirds, we apply 5× 2-
fold cross-validation, i.e. we randomly separate the data into two stratified parts
five times, and for each time, we interchange the roles of the parts as training
set and validation set, which gives a total of 10 folds for each data set.
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In bagging, we train and combine 100 models. In combining the output of the
100 trees to get the overall output, in regression we use the median of the 100
predictions, and in classification we take a vote over the 100 class predictions.

We compare soft and hard trees, single and bagged, in terms of their error on
the left-out test set. We give a table where for each data set separately we show
the average and standard deviation error for all compared tree algorithms. To
compare the overall performance on all data sets, we use Nemenyi’s test in terms
of average ranks on all data sets and check for statistically significant difference
[13]: On each data set, we rank the methods in terms of their average error so
the first one gets the rank of 1, the second rank 2, and so on. Then we calculate
the average rank of each method and Nemenyi’s test tells us how much difference
between ranks in significant.

5.2 Classification Data Sets

We compare the soft tree (Soft) with C4.5 tree (Hard), linear discriminant tree
(Ldt) (which is a multivariate hard tree) [4], and the bagged versions of Soft,
Hard, and Ldt trees (SoftB , HardB , LdtB) on 27 two-class classification data
sets from the UCI repository [14].

Ten of these classification data sets are from the medical domain: Breast is
a breast cancer database obtained from the University of Wisconsin Hospitals,
Madison, Haberman contains cases from a study on the survival of patients who
had undergone surgery for breast cancer, Heart is a database concerning heart
disease diagnosis, Parkinsons is composed of a range of biomedical voice mea-
surements from 31 people, 23 with Parkinson’s disease, Pima contains patients
with diabetes who are females at least 21 years old of Pima Indian heritage, Pro-
moters contains E. coli promoter gene sequences (DNA) with associated imper-
fect domain theory, Spect describes diagnosing of cardiac Single Proton Emission
Computed Tomography (SPECT) images. Acceptors and Donors are splice site
detection data sets and the trained models should distinguish ‘GT’ and ‘AG’
sites occurring in the DNA sequence that function as splice sites and those that
do not [15]. Polyadenylation datasets contains polyadenylation signals in human
sequences [16].

Table 1 shows the average and standard deviation of test errors of Hard,
Ldt, Soft, HardB , LdtB , and SoftB on the separate data sets, where we see that
bagged soft tree most of the time has the smallest error. Figure 2 shows the result
of post-hoc Nemenyi’s test applied on the average ranks of these algorithms in
terms of their error on all data sets.

We see that the bagged soft tree has the lowest average rank (slightly above
1) and is significantly better than all other tree variants. The bagged versions
of Ldt and Hard are only as good as a single soft tree. The single soft tree is
significantly more accurate than single Ldt or hard tree. Ldt is also multivariate
but uses hard splits; the fact that the soft tree (bagged or single) is more accurate
than Ldt shows that it is the softness of the split that leads to higher accuracy
rather than whether the split is uni or multivariate.
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Table 1. On two-class classification data sets, the average and standard deviation of
test errors of Hard, Ldt, Soft, and their bagged versions, HardB , LdtB , and SoftB .

Dataset Hard Ldt Soft HardB LdtB SoftB

acceptors 16.1 ± 2.0 9.6 ± 0.8 8.7 ± 0.7 18.2 ± 0.1 8.7 ± 0.5 8.1 ± 0.5

artificial 1.1 ± 1.8 1.5 ± 1.9 1.1 ± 1.8 1.1 ± 1.8 0.7 ± 1.6 0.7 ± 1.6

breast 6.7 ± 1.1 4.9 ± 0.6 3.5 ± 0.7 4.7 ± 0.8 4.7 ± 0.7 3.1 ± 0.4

bupa 38.6 ± 4.1 39.1 ± 3.4 39.7 ± 4.2 35.4 ± 3.6 38.2 ± 2.3 36.5 ± 2.7

donors 7.7 ± 0.4 5.4 ± 0.3 5.7 ± 0.4 7.2 ± 0.4 5.4 ± 0.2 5.3 ± 0.3

german 29.9 ± 0.0 25.8 ± 2.0 24.0 ± 3.0 29.9 ± 0.0 27.0 ± 2.8 23.2 ± 0.8

haberman 26.6 ± 0.3 27.2 ± 1.5 25.9 ± 1.8 26.5 ± 0.0 26.5 ± 0.0 24.7 ± 1.6

heart 28.3 ± 4.7 18.4 ± 2.3 19.7 ± 3.4 24.7 ± 6.0 18.4 ± 2.2 15.7 ± 1.3

hepatitis 22.1 ± 4.4 20.4 ± 2.9 20.2 ± 2.4 20.8 ± 1.2 20.2 ± 1.6 18.7 ± 2.4

ironosphere 13.1 ± 1.9 12.3 ± 2.2 11.5 ± 2.0 9.4 ± 3.2 12.4 ± 1.9 11.6 ± 1.3

krvskp 1.2 ± 0.4 4.5 ± 0.7 1.8 ± 0.6 1.2 ± 0.5 4.7 ± 0.7 1.8 ± 0.2

magic 17.5 ± 0.6 16.9 ± 0.1 14.7 ± 0.5 16.4 ± 0.3 16.7 ± 0.2 13.9 ± 0.1

monks 12.8 ± 7.8 23.8 ± 8.2 0.0 ± 0.0 11.9 ± 4.6 24.0 ± 2.0 0.0 ± 0.0

mushroom 0.0 ± 0.1 1.8 ± 0.5 0.1 ± 0.0 0.1 ± 0.1 0.9 ± 0.2 0.1 ± 0.1

musk2 5.5 ± 0.6 6.4 ± 0.3 4.3 ± 0.7 5.3 ± 0.1 6.3 ± 0.2 3.8 ± 0.3

parkinsons 13.8 ± 2.3 13.5 ± 2.5 14.3 ± 2.7 14.0 ± 3.1 14.8 ± 4.1 10.9 ± 0.9

pima 27.9 ± 3.4 23.1 ± 1.4 24.9 ± 2.0 24.2 ± 1.2 22.6 ± 1.0 23.6 ± 1.0

polyaden 30.5 ± 1.3 22.6 ± 0.6 22.9 ± 0.5 29.2 ± 0.5 22.4 ± 0.4 22.1 ± 0.3

promoters 26.1 ± 9.9 34.4 ± 9.4 15.3 ± 6.7 14.7 ± 9.7 31.7 ± 5.9 10.8 ± 4.0

ringnorm 12.2 ± 1.1 22.8 ± 0.3 9.9 ± 1.7 7.2 ± 0.7 22.7 ± 0.3 5.1 ± 0.3

satellite47 15.4 ± 1.5 16.7 ± 1.4 12.4 ± 1.4 12.2 ± 0.5 16.7 ± 0.6 11.5 ± 0.6

spambase 9.9 ± 0.7 10.1 ± 0.7 7.5 ± 0.5 8.1 ± 0.4 9.8 ± 0.4 7.2 ± 0.3

spect 19.1 ± 2.8 20.1 ± 2.4 19.6 ± 2.4 20.4 ± 2.1 21.1 ± 0.0 17.4 ± 3.3

tictactoe 23.8 ± 2.2 31.9 ± 2.4 1.8 ± 0.3 22.1 ± 2.5 29.4 ± 1.0 1.6 ± 0.0

titanic 21.8 ± 0.5 22.4 ± 0.4 21.5 ± 0.2 22.1 ± 0.0 22.7 ± 0.2 21.5 ± 0.2

twonorm 17.0 ± 0.7 2.0 ± 0.1 2.1 ± 0.2 4.8 ± 0.7 2.0 ± 0.1 2.0 ± 0.1

vote 5.2 ± 0.7 6.7 ± 2.6 5.1 ± 0.9 4.9 ± 0.2 6.4 ± 1.1 4.6 ± 0.6

5.3 Regression Data Sets

We also compare soft regression trees (Soft) with the univariate regression tree
(Hard) and their bagged versions, SoftB and HardB , on 26 regression data sets
[17].
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HardB
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Fig. 2. On two-class classification data sets, the result of Nemenyi’s test applied on the
ranks of Hard, Ldt, Soft, HardB , LdtB , and SoftB in terms of error. Indicated points
are the average ranks and a thick underline implies no significant difference.

Table 2. On the regression data sets, the average and standard deviation of errors of
Hard and Soft trees and their bagged versions, HardB , and SoftB .

Dataset Hard Soft HardB SoftB

abalone 0.53 ± 0.01 0.41 ± 0.01 0.50 ± 0.02 0.41 ± 0.01

add10 0.24 ± 0.01 0.08 ± 0.01 0.19 ± 0.00 0.05 ± 0.00

bank32fh 0.50 ± 0.01 0.40 ± 0.01 0.46 ± 0.01 0.40 ± 0.01

bank32fm 0.12 ± 0.00 0.04 ± 0.00 0.10 ± 0.00 0.04 ± 0.00

bank32nh 0.59 ± 0.01 0.45 ± 0.01 0.56 ± 0.01 0.43 ± 0.00

bank32nm 0.41 ± 0.02 0.20 ± 0.00 0.34 ± 0.01 0.19 ± 0.00

bank8fh 0.30 ± 0.01 0.26 ± 0.01 0.28 ± 0.01 0.26 ± 0.01

bank8fm 0.08 ± 0.00 0.04 ± 0.00 0.08 ± 0.01 0.04 ± 0.00

bank8nh 0.69 ± 0.02 0.56 ± 0.02 0.65 ± 0.02 0.56 ± 0.02

bank8nm 0.37 ± 0.03 0.12 ± 0.01 0.35 ± 0.02 0.10 ± 0.01

boston 0.34 ± 0.09 0.23 ± 0.03 0.27 ± 0.05 0.24 ± 0.02

comp 0.03 ± 0.00 0.02 ± 0.00 0.08 ± 0.00 0.02 ± 0.00

concrete 0.93 ± 0.05 0.23 ± 0.02 0.67 ± 0.03 0.22 ± 0.01

kin32fh 0.73 ± 0.03 0.32 ± 0.01 0.64 ± 0.01 0.32 ± 0.01

kin32fm 0.61 ± 0.02 0.08 ± 0.00 0.51 ± 0.01 0.07 ± 0.00

kin32nh 0.94 ± 0.02 0.75 ± 0.03 0.92 ± 0.03 0.75 ± 0.02

kin32nm 0.90 ± 0.01 0.62 ± 0.03 0.87 ± 0.01 0.60 ± 0.01

kin8fh 0.54 ± 0.02 0.26 ± 0.00 0.42 ± 0.02 0.26 ± 0.00

kin8fm 0.32 ± 0.01 0.03 ± 0.00 0.22 ± 0.01 0.03 ± 0.00

puma8fh 0.42 ± 0.01 0.38 ± 0.01 0.39 ± 0.01 0.38 ± 0.01

puma8nh 0.40 ± 0.02 0.36 ± 0.01 0.37 ± 0.01 0.35 ± 0.01

puma8fm 0.07 ± 0.00 0.05 ± 0.00 0.08 ± 0.00 0.05 ± 0.00

puma8nm 0.06 ± 0.01 0.05 ± 0.00 0.08 ± 0.00 0.04 ± 0.00

puma32fh 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01

puma32fm 0.04 ± 0.00 0.07 ± 0.01 0.08 ± 0.01 0.06 ± 0.00

puma32nh 0.39 ± 0.01 0.43 ± 0.02 0.36 ± 0.01 0.41 ± 0.01
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Table 2 shows the average and standard deviation of errors of Hard, Soft,
HardB , and SoftB on each data set separately. Figure 3 shows the result of
Nemenyi’s test applied on the ranks of the error rates of these algorithms.

We see again that the bagged soft tree has the lowest rank; the bagged
soft tree is significantly more accurate than the single soft tree and they are
significantly better than both the hard tree and bagged hard tree. Bagging the
hard tree leads to some improvement in terms of average rank but the difference is
not significant here. Note that this does not mean bagging hard trees is useless,
it is only with respect to the others that the difference between them seems
insignificant—single and bagged hard trees rank mostly in 3rd and 4th ranks.

1 2 3 4

HardSoft

HardBSoft B

Fig. 3. On the regression data sets, the result of Nemenyi’s test applied on the ranks
of errors of Hard and Soft trees and their bagged versions, HardB , and SoftB .

6 Conclusions and Future Outlook

The soft tree has several advantages: First, it provides a continuous fit whereas
the hard tree has a discontinuous response at the leaf boundaries. This enables
the soft tree to have smoother fits and hence lower bias around the split bound-
aries. Second, the linear gating function enables the soft tree to make oblique
splits in contrast to the axis-orthogonal splits made by the univariate hard tree.

In our previous experiments [8], we see that these two properties improve
accuracy and also reduce the number of nodes required to solve a regression or
a classification problem. Soft trees seem especially suited to regression problems
where the gating function allows a smooth interpolation between the children of
a node.

Here, we build on top of the soft decision tree model and show how its
accuracy can be further improved by bagging. We see that on both classification
and regression problems, we get significant improvement in terms of accuracy
by bagging soft decision trees.

Bagging averages over both the randomness in sampling of data and the
randomness in the initialization of parameters (before gradient-descent) and this
leads to a smoother fit and better generalization.

Bagging is only one way to build an ensemble. We previously worked on meth-
ods for training and pruning an ensemble [12] and combining them to construct
uncorrelated metaclassifiers [18] and these ensemble construction approaches can
also use soft decision trees as the base learner.
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Another possible future direction is in combining multiple sources: In some
applications, there are multiple views or representations associated with each
instance that complement each other and one possible future work is to train
different soft trees with different views and then combine their predictions.

Even with a single representation, different soft trees can use different ran-
domly chosen subsets of the features [19] and we can have soft random decision
forests—these are possible future research directions.
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Abstract. The paper reviews a new perspective to discover and com-
pute discrete dynamics, which is based on MP grammars. They are a
particular type of multiset rewriting grammars, introduced in 2004 for
modeling metabolic systems, which express dynamics in terms of finite
difference equations. MP regression algorithms, providing the best MP
grammar reproducing a given time series of observed states, were intro-
duced since 2008. Applications of these grammars to the analysis of bio-
logical dynamics were developed, and their flexibility to model complex
and uncertain phenomena was apparent in the last years. In this paper
we recall the main features of this modeling framework, by stressing
their peculiarity to afford complex situations, where classical continuous
methods cannot be applied or are computationally prohibitive. Moreover,
the computational universality of MP grammars of a very simple type
is shown, and one of the most relevant cases of MP biological models is
shortly presented.

Keywords: Discrete dynamics · Dynamics inverse problem · MP
grammar · MP regression · Metabolic computing · Machine Learning ·
Biomedical informatics

1 Introduction

If we consider the emergence of computability, since the years around 1930,
and its relationship with classical mathematical concept of algorithm, we eas-
ily realize that, from an initial logical mathematical kernel of concepts (related
to famous Hilbert’s program), the notion of computation continued to enlarge
its perspectives, by including technical and conceptual aspects, where informa-
tion, inference, and uncertainty become essential notions of any computation
engine, in a wide sense, or shortly, (informational) machine. In fact, the initial
idea underlying the Leibnitz-Hilbert research line, aimed at discovering a uni-
versal calculus ratiocinator, almost contemporarily, found the limitative Gödel
result, and strictly related to it, Turing’s computational universality. Therefore,
machines able to run any possible algorithm exist, but they cannot deduce all
the theorems of powerful theories (e.g. including all arithmetic truths).

However, the following research in computer science, made widely available
complex computational tools of increasing efficiency, and determined a rich inte-
gration of results and knowledge from different fields such as cybernetics, artifi-
cial intelligence (solution spaces and algorithms for exploring them), numerical
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-50478-0 3
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analysis, optimization, statistics (see [1] for a more detailed analysis of the field).
This situation radically changed the terms of “Leibnitz’s dream”, passing from
the goal of discovering machines that deduce the truths of rich mathematical
theories, to machines that can help us to infer theories that explain the data
collected from a given phenomenon. This is the essence of Machine Learning
(ML) and the reason of its centrality in the historical development of com-
puter science, along the tracks of its founders, Wiener, Shannon, Turing, and
von Neumann.

From a technical point of view, a common aspect to many “inferential”
approaches are the so called inverse problems, which also played a central role
in many mathematical fields. In general terms, the objective of these problems
is not that of finding particular solutions satisfying some constraints, but con-
versely, discovering constraints that underly to data collected in a given context.
Let us provide a basic example, a Chomsky grammar generates a set of strings,
by means a suitable process of string manipulation. Therefore, in this case, an
inverse problem arises when a set of strings is given and a grammar is required
that is able, possibly within an error threshold, to generate the given strings. In
this sense the MP theory, which we are going to introduce, provides methods
for automatically, and approximately, solving a wide class of inverse problems
(especially, from biological contexts), discovering some dynamical laws that rule
an observed dynamics. For this reason, statistics, optimization, and numerical
analysis are implicitly internalized in the MP regression algorithms, which yield
the inferential motor of MP theory. This perspective motivates the pertinence
of MP theory to the wider field of Machine Learning.

MP grammars are discrete dynamical systems arisen in the context of mem-
brane computing [2]. They introduce a deterministic perspective where multiset
rewriting rules are equipped with state functions that determine the quantities
of transformed elements. The attribute MP comes from the initial context sug-
gesting MP grammars, focused on expressing metabolic processes in the context
of P systems (multiset rewriting rules distributed in compartments) introduced
by Păun [3–6]. Applications in modeling biological systems were developed in
the last years [7–16], as well as, methods of MP regression, were defined, in order
to determine MP grammars able to generate observed time series of given phe-
nomena (MP-Dynamics Inverse Problems, shortly MP-DIP). Very often, such
kind of inverse process, unravels possible MP grammars, underlying real sys-
tems that make evident hidden mechanisms inherent to deep internal logics. MP
regression algorithms use a wide spectrum of techniques, from algebraic manipu-
lation and Least Square Evaluation, to statistical methods, and to genetic algo-
rithms, by obtaining, in many cases, high levels of accuracy in the solutions
[2,7,11,13,17–25]. A great number of concepts and algorithms developed within
MP theory were implemented in public software platforms equipped with exam-
ples and technical documentation [26,27] (see also some related links: http://
mptheory.scienze.univr.it/, http://mplab.sci.univr.it/plugins/mpgs/index.html,
http://mplab.sci.univr.it/, http://www.cbmc.it/software/Software.php).

http://mptheory.scienze.univr.it/
http://mptheory.scienze.univr.it/
http://mplab.sci.univr.it/plugins/mpgs/index.html
http://mplab.sci.univr.it/
http://www.cbmc.it/software/Software.php
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2 Glossary

2.1 Multiset:

Is a set of elements each considered with a positive integer occurrence multiplic-
ity. If we generalize the usual brace set-theoretic notation, then {a, a, b, b, b, c}
denotes a multiset with two occurrences of a, three occurrences of b, and one
occurrence of c. In the notation above, the order of occurrence of a, b, c is not
relevant, but only the number of times they occur. Other equivalent notions are
very often used in literature. A molecule is a multiset of atoms. Many basic
chemical laws are easy consequences of this definition of molecule.

2.2 MP Variable

Is an entity assuming values, in a given set, in dependence on some contexts.
Very often contexts are instants of time.

2.3 MP State

Are the current values assumed by some variables (w. r. t. state is considered).

2.4 MP Grammar

Is a set of rules of type “left-side” → “right-side” : “regulator”. Right and left
sides are multisets of variables, and regulator is a function defined on the states
of some variables. At any step, each rule decreases the current values of each left
variable instance and increases the current value of each right variable instance.
The amount of increase/decrease, called flux, is the value that the regulator
assumes in the current state of its variables.

2.5 MP Graph

Is a representation of an MP grammar by means of a two level graph (nodes,
multi-edges, and inter-edges), where edges connect a set of source nodes to a set
target nodes, and inter-edges connect a set of source nodes to only one target
node (sets of nodes may be empty) (Fig. 1).

2.6 Time Series

Is a sequence of states. The states of this sequence are assumed to be located
along a discrete and oriented line of time. Starting from an initial state, by
iteratively applying all the rules of an MP grammar, we get a time series of
states.
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2.7 Discrete Dynamical System

Is a set S of states and a function δ from S to S [28]. From an initial state, by
applying iteratively the function δ, a time series is generated. Therefore an MP
grammar is a particular kind of Discrete Dynamical System.

2.8 Discrete Dynamics Inverse Problem

Is the search for an MP grammar that generates a given time series.

3 State of the Art

3.1 MP Grammars

An MP grammar G is a discrete dynamical system based on a set X of variables,
and a state space constituted by the assignments of values to variables X. Let N
be the set of natural numbers. Assuming variables in some order, if X is a finite
set of n ∈ N variables, the set of possible states of G coincides with the set R

n

of real vectors of dimension n. A dynamics function δG is associated to G that
provides a next state function, which changes the variable values, according
to an increase-decrease variations specified by all the rules (if a variable does
not occur in a rule, its value remains unchanged). Namely, a reading of “MP”
is the basic Minus-Plus mechanism of the rules of an MP grammar. A formal
definition follows.

Definition 1. An MP grammar G is given by a structure [11]:

G = (X,R,Φ)

where:

1. X is a finite set of real variables;
2. R is a finite set of rules (usually we denote by n is the number of variables

and m the number of rules). Each rule r ∈ R is expressed by αr → βr with
αr, βr multisets over X (a multiset over X is functions assigning a natural
number, called multiplicity, to every x ∈ X). Therefore, αr(x) and βr(y)
denote the multiplicities of x and y in αr and in βr, respectively;

3. Φ = {ϕr | r ∈ R} is the set of regulators, or flux functions

ϕr : Rn → R

from states of variables to real numbers. A regulator ϕr associates to any state
s ∈ R

n a positive or null value u = ϕr(s), called “flux”, that establishes an
updating of the current state of variables, by decreasing any variable x occur-
ring in αr by the value u · αr(x), and by increasing any variable y occurring
in βr by the value u · βr(y).
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A variation function ΔG(s)x is associated to every variable x ∈ X of G, such
that:

ΔG(s)x =
∑

r∈R

(βr(x) − αr(x))ϕr(s).

and
ΔG(s) = (ΔG(s)x)T

x∈X

(superscript T denotes transposition, so that ΔG(s) is viewed a column
vector).

The dynamics δG of G is given by (subscript G is omitted when it is implicitly
understood):

δG(s) = s + ΔG(s)

When an initial state s0 is given, then an MP grammar G, starting from it,
generates a time series of states

(
δi
G(s0)

)

i≥0
, by iteratively applying the dynamics

function δ. ��
An MP grammar is completely defined by its rules and regulators (variables are
those occurring in the rules). When variables are equipped with measurement
units (related to their interpretation), and a time duration is associated to each
step, the MP grammar is more properly called an MP system.

It is easy to show that the dynamics of an MP grammar can be naturally
expressed by a system of (first-order) recurrent equations, synthetically repre-
sented in matrix notation (see [11] for details). In fact, rules define the following
matrix, called rule stoichiometric matrix.

A = (βr(x) − αr(x))x∈X,r∈R.

If fluxes are given by vector U(s) (superscript T stands for transposition):

U(s) = (ϕr(s))T
r∈R

and the vector of variable variations Δ(s) is given by:

Δ(s) = (Δx(s))T
x∈X

then, the system of variable variations can be expressed by (× is the usual matrix
product):

Δ(s) = A × U(s).

This formulation of MP grammar dynamics, introduced in [17], is called EMA
(Equational Metabolic Algorithm) and allows us to generate a sequence of states
from any given initial state.

Example 1. It is easy to verify that the following MP grammar generates, as
values of variable x, the Fibonacci sequence, starting from the initial state x = 1,
y = 0 (∅ denotes the empty multiset of variables).

∅ → y : x (1)
y → x : y (2)
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(x = 1, y = 0) ⇒ (x = 1, y = 1) ⇒ (x = 2, y = 1) ⇒ (x = 3, y = 2) ⇒ (x =
5, y = 3) . . .

Example 2. The following grammar provides a predator-prey dynamics.

∅ → x : 0.061 · x + 0.931
x → y : 0.067 · x + 0.15 · y (3)
y → ∅ : 0.154 · y + 0.403,

Matrix A below is the stoichiometric matrix of MP grammar in Example 2.

A =
(

1 −1 0
0 1 −1

)

(4)

MP grammars have an intrinsic versatility in describing oscillatory phenom-
ena [11,14].

The schema of MP grammars given in Example 2, called bicatalyticus [11],
has an input rule r1 and an output rule r3 (incrementing and decrementing the
variable x and y, respectively). Both rules are regulated by the same variable
that they change (a sort of autocatalysis), while the transformation rule r2 from
x to y is regulated by both variables (bicatalysis). An MP grammar of this type
provides a simple model for predator-prey dynamics firstly modeled in differential
terms by Lotka and Volterra [29]. The model assumes a simple schema ruling the
growth of the two populations x, y (preys and predators): preys grow by eating
nutrients taken from the environment (according to some reproduction factor)
and die by predation, while predators grows by eating preys and naturally die
(according to some death factor). When predators increase then preys are more
abundantly eaten and therefore they decrease. But prey decrease results in a
minor food for predators which start to decrease (by providing a consequent
increase of preys). This means that the increase of predators produces, after
a while, their decrease (and symmetrically, a corresponding inverse oscillation
happens for preys) (Fig. 2).

Example 3. The following grammar, obtained by using MP regression (see next
subsection), provides sine and cosine dynamics with linear regulators (x = 0,
y = 1 is the initial state). It was proved in [30] that this is exactly the grammar
deduced from the classical analytical and geometric definitions of sine and cosine
functions. In other words, the MP regression algorithm, which we will introduce
in the next section, is able to discover the logic implied by deep mathematical
properties of circular functions.

r1 : ∅ → x : k1 · x
r2 : x → y : k2 · (x + y)
r3 : y → ∅ : k3 · y

(5)

where k1 = 0.000999499833375, k2 = 0.000999999833333 and k3 =
0.001000499833291 (the coefficient estimates are truncated to the 15th decimal
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Fig. 1. The structure of MP graphs.

digits, according to the accuracy of the computer architecture used during the
computation). MP grammar (5) provides a very precise sine/cosine oscillator,
with maximum absolute error of order 10−14.

A natural way of expressing MP grammars by means of graphs, called MP
graphs, was introduced in [31]. In an MP graph rules (or reactions) are multi-
edges connecting variables nodes (sources) to other variable nodes (targets)
entering and exiting, respectively, from a rule node. Moreover a regulation inter-
edge goes from some variable nodes, called tuners, to a rule node, for indicating
the variable nodes regulating the rule, according to a function, called regula-
tor, which is put as label of the regulation inter-edge. Input and output nodes
are considered in correspondence to rules with left and right parts consisting of
the empty multi-set. From this representation, an interesting interplay results
among the notions of membrane, object, and variable. In fact objects can be

Fig. 2. The MP graph of the prey-predator grammar.
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considered as membranes including all the same type of matter, where the quan-
tity corresponds to the multiplicity (if matter are tokens) or to some measure
associated to the object. But at same time, membranes are particular objects,
and variables are membranes when the (positive) value assumed by them, are
seen as the quantities of matter that they include.

Dynamics inverse problems were the beginning of modern science aimed at
discovering the motion laws of planets around the sun. In general, a typical
problem of mechanics is the determination of motion laws: from the observed
motion to the underlying equations deduced from the knowledge of the forces
acting on bodies. The approach we will outline here is similar, but here the
forces as “causes of motion changes” are not assumed. Rather, we are interested
in inferring a possible (approximate) internal logic regulating how (instead that
why) changes of variables are cooperatively organized in a given system. This of
course is a solution less precise and less explicative than the classical approach
(usually based on ordinary differential equations). However, very often, in very
complex systems with poor information about the causes acting in a system, it
is the only possibility that can be realistically investigated. In the context of
MP theory, a DIP can be formulated in the following way. Given a time series
S = (si)i=0,1,...t of observed states (equally spaced in time), find the MP grammar
able to generate S within a given approximation threshold. In formal terms this
means to solve, with the best approximation, the following equation where G is
the unknown value:

(
δi
G(s0)

)

i=0,1,...t
= S.

General and specific cases of DIP were intensively investigated, in the context
of the MP theory, in the last ten years (see [11] for a detailed account, and [14–
16,25–27,32] for new developments and applications to biological modeling).

3.2 MP Regression

Let us suppose that we observe some time series of states. Very often the time
series related to an inverse dynamics problem is not sampled at regular time
intervals. In this case a preprocessing phase is appropriate for determining an
interpolation curve fitting the observed values along the observation points, by
obtaining a time series uniformly spaced in time:

(s[i]|i ≤ t ∈ N)

then, we can read the equation EMA by reversing the known values with the
unknown ones. In fact, by writing the variation vector:

s[i + 1] − s[i] = Δ[i]
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and, assuming n variables and m rules, then we get the following system (see [7]),
where fluxes U [i] are the unknown values:

A × U [i] = Δ[i]. (6)

For the determination of the regulators that provide the best approximate
solution of Eq. (6), we apply a procedure we call stoichiometric expansion (see
[19,22,23]).

Given a positive integer t, let us assume that the regulators we are searching
for can be expressed as linear combinations of some basic regressors

g1, g2, . . . , gd

which usually include constants, powers, and products of variables, plus some
basic functions which are considered suitable in the specific cases under investi-
gation:

ϕ1 = c1,1g1 + c1,2g2 + . . . + c1,dgd (7)
ϕ2 = c2,1g1 + c2,2g2 + . . . + c2,dgd

. . . = . . . . . . . . . . . .

ϕm = cm,1g1 + cm,2g2 + . . . + cm,dgd.

Equation (7) can be written, in matrix notation, in the following way, where
U [i] is the column vector of regulators evaluated at state si, G[i] the column
vector of regressors evaluated at the same state, and C is the matrix m × d of
the unknown coefficients of regressors:

U [i] = C × G[i]. (8)

Substituting the right member of Eq. (8) in Eq. (6), we obtain the following
system of equations (A is the stoichiometric matrix):

A × C × G[i] = Δ[i]. (9)

Now, if we consider t systems of type (9), for 1 ≤ i ≤ t, and if n is the num-
ber of variables, we obtain nt equations with md unknown coefficients of C. If
nt > md and the system has maximum rank, then we can apply a Least Square
Evaluation which provides the coefficients that minimize the errors between left
and right sides of the equations. These coefficients provide the regulator repre-
sentations that we are searching for.

By elaborating on Eq. (9) it is proved that matrix C is given by the following
equation (see [11,23]), where the stoichiometric expansion is joint to the Least
Square Approximation method and ⊗ denotes the Kronecker product defined in
Table 1, and vec(C) is matrix C after the vectorization operation, where all the
colums of C are concatenated in a single column vector.

Theorem 1. The coefficients of regressors that best approximate regulators are
given by the following equation:

vec(C) =
(
(A ⊗ G)T × (A ⊗ G)

)−1 × (A ⊗ G)T × vec(D). (10)
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Table 1. Kronecker product of two real matrix A,B of dimension n × m and t × d
respectively, having dimension nt×md, and constituted by nm blocks Bi,j , such that,
if A = (ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m), then (A ⊗ B)i,j = ai,jB (all the elements of B
are multiplied by ai,j).

A ⊗ B =

⎛
⎜⎜⎜⎜⎝

a1,1B a1,1B . . . a1,mB

a2,1B a2,2B . . . a2,mnB

. . . . . . . . . . . .

an,1B an,2B . . . an,mB.

⎞
⎟⎟⎟⎟⎠

(11)

3.3 Algorithms of MP Regression

MP regression can be realized with different kinds of algorithms. The first
method of regression was based on a kind of inductive method, where the sys-
tem EMA for computing the dynamics is extended in a kind of system, called
OLGA, determining the fluxes of each step [17,33]. From the fluxes for a num-
ber of steps, regulators can be approximated. The weak point of this method is
that it relies on the evaluation of the initial values of fluxes. This evaluation, in
general, is not easy to be obtained, therefore errors in the initial values of fluxes
can determine a bad evaluation of regulators. However, this was the initial algo-
rithm from which the following ones emerged. Other two methods overcome the
limitation of OLGA by means of a direct evaluation of regressors by using some
initial functions called regressors. LGSS is an algorithm [11,19,22,23] based on
the stoichiometric expansion that applies methods of statistical regression, by
using a stepwise methodology. In fact, stoichiometric expansion is a powerful
method to get regulators, by Least Square Estimation, but it is efficient only if
the right regressors are provided as input. Therefore stepwise strategy is a mech-
anism devoted to the best choice of regressors that have to be given as input of
the stoichiometric expansion. The main idea of stepwise is to start by a small
set of regulators (for example constant and linear functions), then step by step
a new regressor (from a fixed set of possible functions) is added to be evaluated
(together with those of the previous step) and its addition is performed only if
it improves the dynamics approximation. Moreover, after an addition of a new
regressor another trial is executed, by trying to remove one regressor from the
previous set (apart the last one inserted), in the case this removal could melio-
rate the dynamics approximation. The evaluations of insertion and deletion are
based on classical statistical tests (related to Fischer distribution and variance
analysis). Another MP regression method, MP-GenSynth, also uses the stoichio-
metric expansion, but tries to obtain the best regressors for this expansion, by
using a genetic algorithm approach [24–26], that is, by replacing statistics by
an evolutionary strategy. Specific mechanisms are used for the tuning of the
evolutionary process and for improving the adaptability and the robustness of
the method. Both LGSS and MP-GenSynth were developed in public domain
platforms available in the sites mentioned in the introduction. It is whorthwile
to remark that LGSS is a multi-platform software including several components
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for comparing and integrating MP regressions with classical methods of regres-
sion (ordinary differential equations, non linear optimization methods, graphical
tools, components for random generations, and so on).

3.4 Input-Output and Positive MP Grammars

Any MP grammar has an equivalent grammar (providing the same dynamics)
where rules have an input or output form (with the empty multiset ∅ on the
right or on the left of the rule) [11]. Equivalence is intended in dynamical terms,
that is, two MP grammars are (dynamically) equivalent, with respect a set of
variables common to the two grammars, when these variables change in the same
way in the two MP grammars.

The following theorem holds.

Theorem 2. Any MP grammar can be equivalently represented in terms of
input-output rules. Moreover, any system of (first order) recurrent equations
can be expressed in terms of some MP grammar with input-output rules.

Proof. In fact, any rule α → β : ϕ that is not an input-output rule can be
transformed into the set of rules x → ∅ : ϕ (output rule) for every x ∈ α, and
∅ → y : ϕ (input rule) for every y ∈ β. Of course the effect of applying α → β : ϕ
is the same of applying all these input-output rules.

Conversely, Any system of (first order) recurrent equations (where values of
variables at step n+1 depend on values of variables at step n) can be expressed
by a system of equations, for j = 1, 2, . . . , n:

Δj(s) = P1,j(s) + . . . + Pk,j(s) − Q1,j(s) . . . − Qh,j(s)

then we can consider n variables x1, . . . , xj , . . . xn with rules ∅ → xj : Pi,j for
i = 1, 2, . . . k and j = 1, 2, . . . n; and rules xj → ∅ : Qi,j for i = 1, 2, . . . h. ��

For example, Fig. 3 shows the MP graph of an MP input-output grammar
equivalent to that given in Fig. 2, where in the input-output grammar ϕ2 = ϕ3

is equal to ϕ2 of the previous grammar, while ϕ4 of the input-output grammar
is equal to ϕ3 of the previous grammar.

The notion of input-output can be applied not only to the rules, but also
to the variables. An external variable (called parameter in [11]) is a variable of
an input rule without flux, therefore, a time series of values is assumed to be
associated to it, in order to compute the dynamics of the grammar. Variables are
called internal if they are not external. An MP grammar with external variables
is also called open. It is not a generator of time series, but a function transforming
the time series of its external variables into the time series of its internal variables.

An MP grammar is non-cooperative when in it each rule has at most one left
variable, and it is monic when this variable occurs at most with multiplicity one.
The following lemma can be proved in a similar way as the previous theorem [11].

Lemma 1. For any MP grammar there exists a monic MP grammar that is
dynamically equivalent to it.
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Fig. 3. The MP graph of a prey-predator input-output grammar.

An MP grammar is positive when, starting from a state where all variables
are positive, then in all the following states variables and fluxes are always pos-
itive. Given an MP grammar G a positive grammar G′, called the positively
controlled grammar associated to G, is defined in the following manner.
The grammar G′ has the same variables and the same rules as G. Moreover, a
regulator ϕ′ is defined in G′ in correspondence to each regulator ϕ of G in the
following way. Let s(x) be the value of variable x in the state s, and let ϕ+(s) =
max{ϕ(s), 0}. If we denote by Φ−(x) the regulators of rules decreasing the vari-
able x, then regulators ϕ′ are defined from the regulators of G by requiring, for
any variable x and for any state s, and for every ϕ ∈ Φ−(x), that:

ϕ′(s) = 0 if
∑

ϕ∈Φ−(x)

ϕ+(s) > s(x) (12)

ϕ′(s) = ϕ+(s) otherwise. (13)

A class of positive MP grammars, called reactive MP grammars, can be
defined, by means of reaction weight functions and variable inertia functions.
Namely, if we restrict to the case of monic grammars, this means that in any
state s, for each rule r of type x → y, the regulator is given by:

ϕr(s) = fr(s)/

⎛

⎝
∑

l∈R−(x)

fl(s) + hx(s)

⎞

⎠

where R−(x) is the set of rules consuming x, f are the reaction weight func-
tions (indexed by the rule symbols) and hx is the inertia function of variable x
(for input rules, regulators coincide with their reaction weight functions). The
following theorem is proved in [11].

Theorem 3. For any positive MP grammar there exists a dynamically equiva-
lent reactive MP grammar and vice versa.
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3.5 MP Computability

In this section, we extend previous results (see [34,35]) by showing that the class
of positively controlled MP grammars is computational universal, and moreover,
a particular simple form for regulators ensures the computational universality.

Let us consider a definition of register machine which is a variant of the
Minsky’s model given in [36]. It is a construct:

M = (R, I,O,P)

where R is a set {R1, ..., Rn} of registers, I ⊆ R is the set of input registers,
while O ⊆ R is the set of output registers. P is a program, that is, a sequence of
instructions I1, ..., Im of the following types:

– Increment of register R, denoted with Inc(R).
– Decrement of register R, denoted with Dec(R).
– Go-to instruction Ik if register Rj = 0, denoted with Jnz(Rj , lk).
– Halt, stopping the computation.

A computation of M is obtained by putting positive integers in the input registers
(all the other registers implicitly contain zero) and by executing the instructions
of the program in the order they are, apart the go-to instructions that specify
as next instruction to execute one which possibly is not the following one in
the sequential order. When the Halt instruction is executed, the results of the
computation are the numbers put in the output registers.

For example the sum of two numbers greater than zero, which are put in
registers R1 and R2, is given by the content of register R1 at the end of the
computation of the following program:
1 : Inc(R1)
2 : Dec(R2)
3 : Jnz(R2, 1)
4 : Halt

Theorem 4. For any Register Machine M there exists a monic positive MP
grammar GM equivalent to M .

Proof. Given a register machine M with a program of m instruction, we consider
an MP grammar GM with an instruction variable for each instruction Ih of M,
plus an extra instruction variable H, and a register variable for each register Rj

of M (register variables are denoted in the same way registers are denoted in M).
All register variables are initialized with the same values that the registers have
in M , and all instruction variables are zero. If M has the program consisting of
instruction I1, I2, . . . , Im, then GM has the set of rules RM translating into MP
rules the program of M , according the following procedure.
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Transtation Algorithm from Register Machines to MP Positive
Grammars

1. RM := {∅ → I1 : 1}
2. for h = 1 to m do
3. begin
4. if Ih = Halt then add to RM the rule Ih → H : Ih

5. if Ih = Inc(Rj) then add to RM the rules ∅ → Rj : Ih and Ih → Ih+1 : Ih

6. if Ih = Dec(Rj) then add to RM the rule Rj → ∅ : Ih and Ih → Ih+1 : Ih

7. if Ih = Jnz(Rj , k) then add to RM the rules specified below.
8. end

The translation of Halt, Inc,Dec is very clear. In order to translate
Jnz(Rj , k), which is the more complex instruction to translate, we follow a
step-by-step method. First, we assume that (the content of) register Rj is either
0 or 1. In this case Ih = Jnz(Rj , k) is translated by the two following rules
(where exponent + is in the sense of Eq. (13)):

1. Ih → Ik : (Rj)+

2. Ih → Ih+1 : (Rj + Ih)+

In fact, if Rj = 0 the first rule does not change its variables and the second rule
applies that produces Ih+1 = 1. Otherwise, if Rj = 1 the first rule is active and
the second one is blocked by the control of positivity because its flux is 2, but
Ih = 1.

If Rj can contain any null or positive value, the idea of the translation above
needs to be realized in a more complex way, and some auxiliary variables have to
be introduced: Hj , Lh, Fh, Fh+1, and these MP rules are added to our translation
of the register program (for simplicity sake, in fluxes of rules symbol ()+ is
omitted, but implicitly intended).

1. Rj → Hj : Ih

2. Ih → Lh : Ih

3. Lh → Fk : Hj

4. Lh → Fh+1 : Lh + Hj

5. Hj → Rj : Fk

6. Hj → Rj : Fh+1

7. Fk → Ik : Fk

8. Fh+1 → Ih+1 : Fh+1

Here, (if Rj > 0), the value 1 from Ih and 1 from Rj are moved, with the
same flux, to the auxiliary variables Hj , Lh respectively. In this manner, the
same strategy of the translation above can be applied to these copy variables,
by means of the rules (3) and (4). Then, the original value of register Rj (that
possibly was decremented) has to be restored, by means of the rules (5) and (6).
In conclusion, the values of copy variables have to be transferred to the original
ones, by means of the rules (7) and (8). In this manner, any register machine
program is translated into a set of MP rules.
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However, we want go a step further, by giving a translation where the MP
rules are regulated by single variables. To this end, rule (4) is replaced by other
rules, where sum of variables does not appear. Namely, an auxiliary variable Kh

is added, such that, rules (4) and (5) put in Kh the sum of Hj and Lh, and rule
(4) of the translation above is replaced by rule (6) of the new translation. The
overall translation becomes as follows:

1. Rj → Hj : Ih

2. Ih → Lh : Ih

3. Lh → Fk : Hj

4. Hj → Kh : Hj

5. Lh → Kh : Lh

6. Lh → Fh+1 : Kh

7. Hj → Rj : Fk

8. Hj → Rj : Fh+1

9. Fk → Ik : Fk

10. Fh+1 → Ih+1 : Fh+1.

Now, let us consider the dynamics of GM , starting from the initial state
(I1 = 1, the remaining instruction variables are set equal to zero), and with the
register variables having as values the contents that the corresponding registers in
M . According to the rules given in GM , we can easily verify that in GM , register
variables change according to the program of machine M , and the dynamics of
GM halts in the configuration that corresponds to the halting configuration of
the machine M (with the same contents of registers). It is easy to verify that
the obtained MP grammar is positive, because, when rules consuming a variable
are more than one, we can check that only one of them has a flux different from
zero. ��

The last part of the proof of previous theorem provides the following general
result ensuring the computational universality for an extremely simple class of
MP grammars (Fig. 4).

Theorem 5. For any Register Machine M there exists a monic positive MP
grammar GM (dynamically) equivalent to M where regulators are single vari-
ables.

A result given in [11], which is related to the MP grammars as comput-
ing devices, shows that in an MP representation of an algorithm, the notion
of program, as sequence of instructions, it completely replaced by a graph. In
fact when some input tokens are placed in some input membranes, then the
computation flux is determined by the topology of the MP graph. This implies,
that, as far as, efficient realizations of MP graphs are available, they become a
sort of “universal computational circuits”. This possibility suggest to investigate
about possible physical implementations of computational MP graphs (based on
photon movements?) (Fig. 5).
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Fig. 4. The basic module of a (monic) MP grammar where regulators are single vari-
ables (the analogy with an electronic valve is clearly apparent).

Fig. 5. The MP graph of an MP grammar variable regulated. Inputs are on the left
and outputs on the right. The whole graph consists of a networks of ternary modules:
left and right variables of an MP monic rule with a variable regulating the rule.

A second aspect of MP computing (or metabolic computing) is related to the
natural representation of circular functions by means of MP grammar [18,30]. In
this way computing with (approximate) real numbers can be done in the same
framework used for integer based computations. Moreover, according to Fourier
representation by trigonometric series, we could reformulate, in terms of MP
grammars, DFT Discrete Fourier Transforms and investigate about the possible
advantages of applying MP grammars to this field.

3.6 Complex Oscillations

MP grammars providing exact periodical dynamics, such as those of circular
functions, can be defined by means of simple rules [18]. However, it is really sur-
prising that when we apply MP regression to time series of sine and cosine func-
tions, we get essentially regulators that are implied by the classical definitions
of these functions, according to their geometrical or analytical characterization
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[30]. This is strong proof the capacity of MP regression of discovering the MP
logic responsible of an observed dynamics.

In [11,14,32] analyses of MP grammars with oscillating behaviors were devel-
oped. Oscillations are a key features of biological phenomena. At end of Chap. 3
in [11] it is argued that this aspect is intrinsically related to the open membrane
organization of life, and to the natural orientation of chemical reactions. MP
grammars allow us to express in rigorous terms this aspect and to investigate on
some important features of oscillations. For example, a precise definition of oscil-
lating system shows that this concept has to be carefully distinguished from the
notion of periodic system. In fact, the oscillator Vega, an MP grammar defined
in [11], is surely oscillating in a very wide interval, but it is shown in [14] that
it is never passes twice on the same point of its state space, and that complex
MP oscillators can be obtained by MP grammars where rules are organized in
overlapping cycles (chains of rules sharing variables, of kind depicted in Fig. 6),
where the more is the number of these cycles, the more is complex the resulting
oscillatory dynamics.

Fig. 6. An example of overlapping cycles in the structure of an MP grammar.

Elaborating on this idea of overlapping cycles, it was possible to design MP
grammars exhibiting chaotic dynamics. Moreover, in [32] it is shown that when
MP regression is applied to time series of chaotic MP dynamics, the regula-
tors responsible of chaos generation are completely recognized, even when chaos
seems to hide any pattern of dynamical regularity.

3.7 Biological Applications

An interesting application of MP grammars is presented in [16]. Here we started
from the time series of gene expressions of a cancer cell under an effect E that
inhibits the cancer growth factor HER2. After standard procedures of error fil-
tering and data normalization, the expression time series were selected that
show a behavior clearly correlated to the inhibitory effect E. This means that
genes having time series that are constant in time, or with a chaotic shape,
are considered to be scarcely related to E. Therefore, only about one thousand
genes having time series with “regular” shapes were selected. Then we clustered
these curves in eight types: linear-quick-up, linear-slow-up, linear-quick-down,
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linear-slow-down, parabolic-up, parabolic-down, cubic-up-down, cubic-down-up.
Consequently, genes were grouped in eight clusters: C1, C2, C3, C4, C5, C6,
C7, C8, to which an average curve was associated, and which constituted the
variables of a dynamical system under investigation. By means of the LGSS
algorithm, MP grammars over these variables were searched for generating the
related curves. The LGSS algorithm was applied with a set of regressors con-
stituted by simple monomials over the variables. At end, we got a number of
possible MP grammars. One of them had the most reasonable set of regulation
maps, according to the literature about gene regulatory networks (Fig. 7). We
know that the cancer cell presents a resistance to the inhibition of the HER2
factor. Can our MP grammar tell us something about this resistance phenom-
enon? A deduction, coming from the obtained grammar, concerns with clusters
with cubic behavior C7, C8. In fact, from the MP grammar we obtained, with a
very easy translation, a regulation networks among clusters. In this network it
appears clearly that the HER2 factor promotes C7, while inhibits C8. However,
their curves expressions behave in conflict with this HER2 effect. We interpreted
this phenomenon as related to the observed resistance. In fact, a possible expla-
nation of the discordance of behaviors of C7 an C8, with respect to HER2 effect,
could be the chain of regulation influences in the network. Namely, it transforms
the effect of a linear regulation at the beginning of the chain into a non-linear
effect at the end of it (this is a typical situation occurring in MP grammars).
Based on this intuition, the genes in the clusters C1 and C3 (regulating clus-
ters that regulate C7 and C8) were analyzed. The investigations about genes of
clusters C1 and C3 allowed physicians to discover genes whose inhibition deter-
mine the disappearing of resistance, by finding an unknown role of gene E2F2
in breast cancer gene regulations. This is a proof that conceptual analyses based
on MP grammars can reveal deep interactions having important roles in the
observed dynamics. In Table 2 other examples of MP-modeling are listed, with
the corresponding references.

Table 2. MP models obtained by MP Regression.

Belousov-Zhabotinsky, Prigogine’s Brusselator (BZ) [37,38]

Lotka-Volterra, Predator-Prey dynamics (LV) [29,39,40]

Susceptible-Infected-Recovered Epidemics (SIR) [38,41]

Early Amphybian Mitotic Cycle (AMC) [20,42,43]

Drosophila Circadian Rythms (DCR) [38]

Non Photochemical Quenching in Photosynthesis (NPQ) [44]

Minimal Diabetes Mellitus (MDM) [15,21]

Bi-catalytic Synthetic Oscillator [17]

Synthetic Oscillators [14,18]

Gene Expression Dynamics [15,16]
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Fig. 7. The gene expression network represented by the eight-variables MP grammar
deduced in [16]. Arrows denote promotion, while bars denote inhibition. The dynamics
is obtained during inhibition of the cancer growth factor HER2. Full arrows indicate
the expected behaviors, which contradicts the observed one.

4 Open Problems

This paper presents a new perspective of considering recurrent equations. Usu-
ally, their investigation is aimed at finding analytical methods to solve them or
to determine properties of their dynamics [45]. On the contrary, here we do not
cope with their solutions, because their intrinsic algorithmic (iterative) nature
provides a direct computation of their dynamics. Of course, in this computation
the dynamics at step n can be computed only after computing it in the steps
preceding n, but this is not a real limitation if the computation is performed
automatically and with a good approximation.

Using MP grammars, recurrent equations are constructed by assigning regu-
lators to MP rules. In this perspective, regulators replace forces that in classical
mechanics are the causes of observed motions. In fact, regulators may be related
to a big number of unknown forces, very difficult to individuate and to discrim-
inate. Therefore, regulators express abstract entities of rational and compact
reconstruction of the internal logic underlying an observed dynamics. When the
complexity and the indetermination of systems do not allow us other ways of
analysis, this could be an important chance to the comprehension of phenomena.

We would like to stress that MP regression automatically calculates not only
the values of the coefficients, but also the form of regulators as linear combina-
tions of some primitive functions.

Some open problems naturally arise in the context of MP grammars, some
of them were partially addressed [11], but systemic solutions deserve a further
research and probably new ideas and methods. Some of them are listed below.
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Problem 1. Given a system with thousands variables, how to simplify it in
order to obtain a reduced system that, at same time, retains many important
dynamical aspects of the original one, so that discovering MP grammars for the
reduced system provides a useful knowledge about the investigated system?

Problem 2. When an MP Regression Algorithm is applied, according to dif-
ferent values of its parameters, many possible solutions can be found. How to
systematically evaluate the solutions in order to choose the best one for a given
kind of dynamics inverse problem?

Problem 3. MP Regression algorithms based on different methods have been
developed. How to integrate them in order to improve the adequacy and of the
results?

Problem 4. In the context of biological dynamics, when an MP grammar is
found by means of MP regression, we get a sort of “abstract rule” associated to
an observed dynamics. How to “read” this rule in a significant biological way?
For example, if our variables represent quantities of proteins produced inside
a cell, can the MP rules to be linked to specific mechanisms of gene, or gene
complexes, activations? If only in some cases this could be successfully obtained,
an important achievement would be reached toward the reasons determining
specific forms of biological regulations.

5 Future Outlook

As we claimed in the introduction, MP theory shares many aspects that are
crucial in problems addressed by Machine Learning. Therefore it seems natural
to search for integrative approaches which could bring benefits to both two
fields. This kind of cross-fertilization could be a sure advantage for biomedical
applications. In fact, computational models of pathological processes are a topic
of increasing interest in all the situations where personalized medical approaches
are required in the medical challenges of the next future.
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Abstract. Given its immense growth, scientific literature can be
explored to reveal new discoveries, based on yet uncovered relations
between knowledge from different, relatively isolated fields of research
specialization. This chapter proposes a bisociation-based text mining
approach, which shows to be effective for cross-domain knowledge discov-
ery. The proposed cross-domain literature mining functionality, including
text acquisition, text preprocessing, and bisociative cross-domain litera-
ture mining facilities, is made publicly available within a new browser-
based workflow execution engine TextFlows, which supports visual con-
struction and execution of text mining and natural language processing
(NLP) workflows. To support bisociative cross-domain literature min-
ing, the TextFlows platform includes implementations of several ele-
mentary and ensemble heuristics that guide the expert in the process
of exploring new cross-context bridging terms. We have extended the
TextFlows platform with several components, which—together with doc-
ument exploration and visualization features of the CrossBee human-
computer interface—make it a powerful, user-friendly text analysis tool
for exploratory cross-domain knowledge discovery. Another novelty of
the developed technology is the enabled use of controlled vocabularies to
improve bridging term extraction. The potential of the developed func-
tionality was showcased in two medical benchmark domains.

Keywords: Literature mining · Literature-based discovery · Cross-
context linking terms · Creativity support tools · Human-computer
interaction · Workflows

1 Introduction

Understanding complex phenomena and solving difficult problems often requires
knowledge from different domains to be combined and cross-domain associa-
tions to be taken into account. These kinds of context crossing associations,
called bisociations [1], are often needed for creative, innovative discoveries.
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60 M. Perovšek et al.

Bisociative knowledge discovery is a challenging task motivated by a trend of
over-specialization in research and development, which usually results in deep—
but relatively isolated—knowledge islands. Scientific literature too often remains
closed and cited only in professional sub-communities. In addition, the informa-
tion that is related across different contexts is difficult to identify using asso-
ciative approaches, like the standard association rule learning [2] known from
the data mining and machine learning literature. Therefore, the ability of liter-
ature mining methods and software tools to support the experts in their knowl-
edge discovery processes—especially in searching for yet unexplored connections
between different domains—is becoming increasingly important. Cross-domain
literature mining is closely related to bisociative knowledge discovery as defined
in [3]. Assuming two different domains of interest, a crucial step in cross-domain
knowledge discovery is the identification of interesting bridging terms (B-terms),
appearing in both literatures, which carry the potential of revealing the links
connecting the two domains.

This chapter presents a powerful approach to literature based cross-context
knowledge discovery that supports the process of bridging term extraction. The
developed methodology helps the experts in searching for hidden links that con-
nect seemingly unrelated domains. The main novelty of the presented approach is
the combination of document acquisition and text preprocessing facilities with a
new facility for term extraction through ensemble-based ranking of terms accord-
ing to their bisociative potential, which may contribute to novel cross-domain
discoveries. The proposed methodology is implemented in a web-based text min-
ing platform TextFlows1. To this end, the TextFlows platform was connected to
the human-computer interface of system CrossBee [4,5]. In the methodology pre-
sented in this chapter, the CrossBee web application—which we originally devel-
oped as an off-the-shelf solution for finding bisociations bridging two domains—is
used as a user interface to facilitate bridging term discovery through sophisti-
cated document visualization and exploration. This work proposes a further
extension of the methodology by facilitating the use of controlled vocabularies,
enhancing the heuristics capability to rank the actual B-terms at the top of the
ranked term list. With all these features, the TextFlows platform, which now
includes the reusable text analytics workflows combined with the CrossBee doc-
ument exploration interface, has become a publicly available creativity support
tool (CST), supporting creative discovery of new cross-domain hypotheses.

The chapter is organized as follows. Section 2 provides a brief glossary of key
terms that will facilitate a common understanding of the main topics presented
here. Section 3 presents the state-of-the-art in the area of literature-based dis-
covery. Section 4 illustrates the problem of bridging term ranking and B-term
exploration through a use case scenario, followed by an overview of the method-
ology. Section 5 comprises the core contribution of this chapter. The TextFlows

1 Our new text mining platform, named TextFlows, is publicly available for use
at http://textflows.org. The source code (open sourced under the MIT Licence) is
available at https://github.com/xflows/textflows. Detailed installation instructions
are provided with the source code.

http://textflows.org
https://github.com/xflows/textflows
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platform, acting as the enabling technology for implementing the developed
cross-domain link discovery approach, is described in Sect. 5.1. The elemen-
tary and ensemble heuristics used in bridging term discovery are described in
Sect. 5.2. Section 5.3 presents details of document acquisition, text preprocessing
and literature based discovery workflows implemented in TextFlows. Controlled
vocabulary extension of the methodology is presented in Sect. 5.4. Evaluation of
the developed methodology on two medical benchmark problems is provided in
Sect. 6, Finally, Sect. 7 concludes with a summary of most important features of
the presented approach and some directions for further work.

2 Glossary

Bisociation: the combination of knowledge from seemingly unrelated domains
into novel cross-domain knowledge.

Bridging term: a term common to two disjoint domains, which is a candidate
for the discovery of new knowledge or for formulation of new hypotheses, acting
as a “bridge” between the two domains.

Literature-based discovery: using academic literature to find previously uncov-
ered connections in existing domain knowledge.

Outlier detection: finding irregular or unusual data instances (documents in the
case of literature mining) that do not conform to the expected distribution.

3 State-of-the-Art

According to Koestler [1], bisociative thinking occurs when a problem, idea, event
or situation is perceived simultaneously in two or more “matrices of though” or
domains. When two matrices of thought interact with each other, the result is
either their fusion in a novel intellectual synthesis or their confrontation in a
new aesthetic experience. He regarded many different mental phenomena that
are based on comparison (such as analogies, metaphors, jokes, identification,
anthropomorphism, and so on) as special cases of bisociation. More recently, this
work was followed by the researchers interested in so-called bisociative knowledge
discovery [6], where—according to Berthold—two concepts are bisociated if there
is no direct, obvious evidence linking them and if one has to cross different
domains to find the link, where a new link must provide some novel insight into
the problem addressed.

In the area of literature based discovery (LBD), Swanson [7] and
Smalheiser [8] developed an approach to assist the user in literature based discov-
ery by detecting interesting cross domain terms with a goal to discover unknown
relations between previously unrelated concepts. The online system ARROW-
SMITH [8] takes as input two sets of titles of scientific papers from disjoint
domains A and C and lists terms that are common to A and C; the resulting
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bridging terms (B-terms) are further investigated by the user for their potential
to generate new scientific hypotheses. They defined the so-called closed discovery
process, where domains A and C are specified by the expert at the beginning of
the discovery process.

Inspired by this early work, literature mining approaches were further devel-
oped and successfully applied to different problems, such as finding associations
between genes and diseases [9], diseases and chemicals [10], and others. [11]
describe several quality-oriented web-based tools for the analysis of biomedical
literature, which include the analysis of terms (biomedical entities such as dis-
ease, drugs, genes, proteins and organs) and provide concepts associated with
a given term. A recent approach by Kastrin et al. [12] is complementary to the
other LBD approaches, in that it uses different similarity measures (such as com-
mon neighbors, Jaccard index, and preferential attachment) for link prediction
of implicit relationships in the Semantic MEDLINE network.

Early work by Swanson has shown that databases such as PubMed can
serve as a rich source of yet hidden relations between usually unrelated top-
ics, potentially leading to novel insights and discoveries. By studying two
separate literatures—the literature on migraine headache and the articles on
magnesium—[13] discovered “Eleven neglected connections”, all of them sup-
portive for the hypothesis that magnesium deficiency might cause migraine
headache. Swanson’s literature mining results have been later confirmed by lab-
oratory and clinical investigations. This well-known example has become a gold
standard in the literature mining field and has been used as a benchmark in
several studies, including those presented in [14–16] as well as in our own past
work [17,18]. Research in literature mining, conducted by Petrič et al. [17,18],
suggests that bridging terms are more frequent in documents that are in some
sense different from the majority of documents in a given domain. For example,
[18] have shown that such documents, considered outlier documents of their own
domain, contain a substantially larger amount of bridging-linking terms than
the normal, non-outlier documents.

The experimental data used to test the methodology proposed in this work
are papers from the combined migraine-magnesium domain, studied extensively
by Swanson and his followers, as well as the combined autism-calcineurin domain
pair explored in [17,19].

Our contribution in this chapter follows two lines of our past research. First,
it continues the work on cross-domain document exploration in [17,18], which
explore outlier documents as means for literature based discovery. Note that
the problem of finding outliers has been extensively studied also by another
researcher [20] and has an immense use in many real-world applications. Second,
and most importantly, the chapter continues our work on cross-domain bisoci-
ation exploration with CrossBee [5], which is most closely related to the work
described here. CrossBee is an off-the-shelf solution for finding bisociative terms
bridging two domains, which—as will be shown—can be used as the default user
interface to the methodology presented in this chapter. Given that the Cross-
Bee user interface is an actual ingredient of the technology developed in this
work, its user interface is described in some more detail than other LBD systems
mentioned in this section.
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The CrossBee HCI functionality includes the following facilities: (a) Perfor-
mance evaluation that can be used to measure the quality of results, e.g., through
plotting ROC curves when the actual bridging terms are known in advance.
(b) Marking of high-ranked terms by emphasizing them, thus making them eas-
ier to spot throughout the application. (c) B-term emphasis can be used to mark
the terms predefined as B-terms by the user. (d) Domain separation colors all
the documents from the same domain with the same color, making an obvious
distinction between the documents from the two domains. (e) User interface cus-
tomization enables the user to decrease or increase the intensity of the following
features: high-ranked term emphasis, B-term emphasis and domain separation;
this facility was introduced to enable the user to set the intensity of these fea-
tures, given that in cooperation with the experts we discovered that some of
them like the emphasizing features while others do not.

Note that the CrossBee web interface was designed for end-users who are
not computer scientists or data miners and who prefer using the system by
following a fixed sequence of predefined methodological steps. However, for a
more sophisticated user of developer, the weakness of CrossBee is the lack of
possibility to experiment with different settings as well as the lack of possibility
to extend the methodology with new ideas and then compare or evaluate the
developed approaches. As another weakness, the CrossBee web application does
not offer a downloadable library and documentation distribution or extensive
help. These weaknesses were among the incentives for our new developments,
resulting in the TextFlows platform and its elaborate mechanisms for detecting
and exploring bisociative links between the selected domains of interest.

4 Methodology Overview

In cross-domain knowledge discovery, estimating which of the terms have a
high potential for interesting discoveries is a challenging research question. It is
especially important for cross-context scientific discovery such as understanding
complex medical phenomena or finding new drugs for yet not fully understood
illnesses.

In our approach we focus on the closed discovery process, where two dis-
jointed domains A and C are specified at the beginning of the discovery process
and the main goal is to find bridging terms (see Fig. 1) which support valida-
tion of the novel hypothesized connection between the two domains. Given this
motivation, the main functionality of the presented approach is bridging term
(B-term) discovery, implemented through ensemble based term ranking, where
an ensemble heuristic composed of six elementary heuristics was constructed for
term evaluation.

To ensure the best user experience in the process of bridging term discovery
we have combined the visual programming interface of the TextFlows workflow
construction and execution platform with the bridging term exploration system
CrossBee; CrossBee provides a user interface for term and document visualiza-
tion that additionally supports the expert in finding relevant documents and
exploration of the top-ranked bisociative terms.
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Fig. 1. Bridging term discovery when exploring migraine and magnesium document
corpora, with B-terms as identified in [13] in the middle.

4.1 Methodology Illustration

The ensemble based term ranking methodology (using the final ensemble heuris-
tic) is illustrated in Fig. 2.

Fig. 2. Term ranking approach: first, ensemble heuristics vote for terms, next, terms are
sorted according to their potential B-term (as shown on left). Consequently, bridging
terms with the highest bridging term potential should receive the highest scores (as
shown on the right side).

The user starts the bridging term discovery process in TextFlows by either
constructing a new workflow for cross-domain discovery or by opening an existing
workflow (such as the workflow shown in Fig. 4 of Sect. 4.2). In the first case,
the user is required to input either a PubMed query or a file with documents
from the two domains, where each line contains a document with exactly three
tab-separated entries: (a) document identifier, (b) domain acronym, and (c) the
document text. The user is able to tailor the preprocessing steps to his own needs
by simply altering the workflow using the TextFlows visual programming user
interface, which enables simple addition, connection and removal of components
from the workflow canvas. In this way, the user can also modify the ensemble of
elementary heuristics, outlier documents identified by external outlier detection
software, the already known bisociative terms (B-terms), and others. When the
user runs the workflows (by clicking the run button) the system starts with
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the process of text preprocessing, followed by the computation of elementary
heuristics, the ensemble bisociation scores and term ranking.

After performing the calculation of bisociative potentials for every term in
the vocabulary in TextFlows, the user is directed to the user-friendly tool Cross-
Bee where one can efficiently investigate cross-domain links pointed out by the
ensemble-based ranking methodology. CrossBee’s document focused exploration
empowers the user to filter and order the documents by various criteria, includ-
ing detailed document view that provides a more detailed presentation of a single
document including various term statistics. Methodology performance analysis
supports the evaluation of the methodology by providing various data which can
be used to measure the quality of the results, e.g., data for plotting the ROC
curves. High-ranked term emphasis marks the terms according to their bisoci-
ation score calculated by the ensemble heuristic. When using this feature all
high-ranked terms are emphasized throughout the whole application thus mak-
ing them easier to spot (see different font sizes in Fig. 3). B-term emphasis marks
the terms defined as B-terms by the user (yellow terms in Fig. 3). Domain sep-
aration is a simple but effective option which colors all the documents from the
same domain with the same color, making an obvious distinction between the
documents from the two domains (different colors in Fig. 3). User interface cus-
tomization enables the user to decrease or increase the intensity of the following
features: high-ranked term emphasis, B-term emphasis and domain separation.

Fig. 3. One of the useful features of the CrossBee interface is the side-by-side view of
documents from the two domains under investigation. The analysis of the “stress” term
from the migraine-magnesium domain is shown. The presented view enables efficient
comparison of two documents, the left one from the migraine domain and the right one
from the magnesium domain. (Color figure online)
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4.2 Methodology Outline

This section describes how the complex methodology was developed as a work-
flow in the TextFlows platform, by presenting the entire pipeline of natural lan-
guage processing (NLP) and literature based discovery (LBD) components. The
top-level overview of the methodology, shown in Fig. 4, consists of the following
steps: document acquisition, document preprocessing, heuristics specification,
candidate B-term extraction, heuristic terms scores calculation, and visualiza-
tion and exploration. An additional ingredient shown in Fig. 4—methodology
evaluation—is not directly part of the methodology, however it is an important
step of the developed approach.

Fig. 4. Methodological steps of the cross-domain literature mining process.

Top-level procedural explanation of the workflow shown in Fig. 4 is given
below, while detailed explanations of individual steps of the workflow are
described in Sect. 5.3.

1. Document acquisition is the first step of the methodology. Its goal is to acquire
documents of the two domains, label them with domain labels and pack both
domains together into the annotated document corpus format.

2. The document preprocessing step is responsible for applying standard text
preprocessing to the document corpus. The main parts are tokenization, stop-
word tagging, and token stemming/lemmatization.

3. The heuristic specification step enables detailed specification of the heuristics
to be used for B-term ranking. The user specifies one or more heuristics, which
are to be applied to evaluate the B-term candidates. Note that each individual
heuristic can be composed of other heuristics, therefore an arbitrary complex
list of heuristics can be composed in this step.

4. The candidate B-term extraction step takes care of extracting the terms which
are later scored by the specified heuristics. There are various parameters
which control which kind of terms are extracted from the documents (e.g.,
the maximal number of tokens to be joined together as a term, minimal term
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corpus frequency, and similar). The outputs are the BoW Dataset (i.e. the
documents in the standard Bag-of-Words (BoW) vector format) and a Bow
Model Constructor. The latter stores the list of all candidate B-terms along
with the information about the input documents from annotated document
corpus as well as the exact data how each document was parsed. This data is
needed e.g., by the CrossBee web application when displaying the documents
since it needs to be able to exactly locate specific words inside a document,
in order to color or emphasize such words.

5. Heuristic term score calculation is the most important step of the methodol-
ogy. It takes the list of extracted B-term candidates and the list of specified
heuristics and calculates a heuristic score for each candidate term for each
heuristic. The heuristics calculation is optimized so that common information
used by different heuristics is calculated only once. The output is structurally
still a list of heuristics, however now each of them contains a bisociation score
for each candidate B-term.

6. Visualization and exploration is the final step of the methodology. It has three
main functionalities. It can either take the heuristically scored terms, rank the
terms, and output the terms in the form of a table, or it can take the heuristi-
cally scored terms along with the parsed document corpus and send them both
to the CrossBee web application for advanced visualization and exploration.
Besides improved bridging concept identification and ranking, CrossBee also
provides various content presentations which further speed up the process of
bisociation exploration. These presentations include e.g., side-by-side docu-
ment inspection (see Fig. 3), emphasizing of interesting text fragments, and
uncovering similar documents.

7. Methodology evaluation was introduces as an additional step, which can be
used during the development of the methodology. Its purpose is to calcu-
late and visualize various metrics that were used to assess the quality of the
methodology. Requirement to use these facilities is to allow the actual (prede-
fined) B-terms of the domain of investigation to act as gold standard B-terms
available for evaluating the quality of B-term extraction and ranking.

Evaluation of the methodology was actually performed on two problems: the
standard migraine-magnesium problem well-known in LBD, and a more recent
autism-calcineurin literature mining problem. The evaluation of the methodology
(its results are presented in detail in Sect. 6) provides evidence that the users
empowered with the CrossBee functionality of term ranking and visualization
are able to perform the crucial actions in cross-domain discovery more effectively
than with conventional text mining tools.

Note that the described pipeline represents an actual executable workflow
implemented in the online cloud-based workflow composition and execution envi-
ronment TextFlows. The entire workflow, whose components are explained in
detail in Sect. 5.3, is available for public reuse2.

2 http://textflows.org/workflow/486/.

http://textflows.org/workflow/486/
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5 Methodology Implementation

After presenting the main functionality of the TextFlows platform, this section
presents the core mechanism of bisociative term detection, i.e., the designed
heuristics and the workflows implementing the methodology in TextFlows. The
section concludes by presenting the methodology empowered by using a con-
trolled vocabulary in the search for bridging term.

5.1 The TextFlows Platform

We developed the TextFlows platform3 as an open-source, web-based text min-
ing platform that supports the construction and execution of text mining and
natural language processing workflows. TextFlows was designed as a cloud-based
web application that can be accessed and controlled from anywhere while the
processing is performed in a cloud of computing nodes. TextFlows differs from
comparable text mining platforms by its design that allows that during run-
time the TextFlows platform resides on a server (or on a cluster of machines)
while its graphical user interface that allows workflow construction is served as
a web application accessible from any modern web browser. Furthermore, the
platform’s distinguishing feature is the ease of sharing and publicizing work-
flows constructed in TextFlows, together with an ever growing roster of reusable
workflow components and entire workflows. As completed workflows, data, and
results can also be made public by the author of the workflow, the platform was
used to serve as an integration platform for development of various components
supporting the literature based cross-domain discovery process, and for con-
struction and evaluation of workflows, implementing the methodology proposed
in Sect. 4.2.

Following a modular design, workflow components in TextFlows are
organized into packages which allows for easier distributed development.
The TextFlows packages implement several text mining algorithms from
LATINO4[22], NLTK [23] and scikit-learn [24] libraries. Moreover, TextFlows is
easily extensible by adding new packages and workflow components. Workflow
components of several types allow graphical user interaction during run-time,
and visualization of results by implementing views in JavaScript, HTML or any
other format that can be rendered in a web browser (e.g., Flash, Java Applet).

Below we explain the concept of workflows in more detail, describe the key
text mining concepts of TextFlows and present the newly implemented package
with workflow components supporting literature based discovery.
3 Our platform TextFlows is a fork of data mining platform ClowdFlows [21], adapted

to text mining and enriched with text analytics and natural language processing
algorithms. As a fork of ClowdFlows, it benefits from its service-oriented architec-
ture, which allows the user to utilize arbitrary web-services as workflow components.
In addition to the new functionality, its novelty is a common text representation
structure and the development of ‘hubs’ for algorithm execution.

4 LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under
the LGPL license—and is available at https://github.com/LatinoLib/LATINO/.

https://github.com/LatinoLib/LATINO/
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Workflows. Executable graphical representations of complex procedures can
be represented as workflows. The workflow model is the main component of the
TextFlows platform and consists of an abstract representation of workflows and
workflow components. The graphical user interface used for constructing work-
flows follows a visual programming paradigm which simplifies the representation
of complex procedures into a spatial arrangement of building blocks. The most
basic unit component in a TextFlows workflow is a processing component, which
is represented as a widget in the graphical representation. Considering its inputs
and parameters, every such component performs a task and stores the results on
its outputs. Different processing components are linked via connections through
which data is transferred from a widget’s output to another widget’s input. An
alternative widget input for a widget are parameters, which the user enters into
the widgets text fields. The graphical user interface implements an easy-to-use
way of arranging widgets on a canvas to form a graphical representation of a
complex procedure.

Workflows in TextFlows are processed and stored on remote servers from
where they can be accessed from anywhere, requiring only an internet connection.
By default each workflow can only be accessed by its author, although the user
can also choose to make it publicly available. The TextFlows platform generates a
specific URL for each workflow that has been saved as public. The users can then
simply share their workflows by publishing the corresponding URL. Whenever
a public workflow is accessed by another user, a copy of the workflow is created
on the fly and added to his private workflow repository. The workflow is copied
with all the data to ensure the experiments can be repeated. This enables the
user to tailor the workflow to his needs without modifying the original workflow.

Key Text Mining Concepts in TextFlows. The key concepts in text min-
ing are a corpus or a document collection, a single document, and document
features [25]. Below we describe the model of corpora, documents and anno-
tations on documents in TextFlows, which are the fundamental parts of our
methodology. When designing TextFlows, the emphasis was on providing com-
mon representations which are passed among the majority of widgets:

Annotated corpus. A document collection is any grouping of text documents
to be used for text analytics purposes. In TextFlows the Python5 class that
represents a corpus of documents is called AnnotatedDocumentCorpus (ADC).
An ADC instance contains the collection of documents and its meta-data such
as the authors, creation date, facts and notes about the dataset, etc. Features
are stored in a simple key-value Python dictionary, where keys are strings and
the values can store any Python object.

Annotated document. A single textual data unit within a collection—a
document—is represented by the AnnotatedDocument class. An AnnotatedDoc-
ument instance may vary in size from a single sentence to a whole book. As with
5 https://www.python.org/.

https://www.python.org/
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ADC, AnnotatedDocument instances also contain meta-data, such as author,
date of publication, document length, assigned keywords, etc.

Annotation. Instances of the Annotation class are used to mark parts of the
document, e.g., words, terms or sentences. Each Annotation instance has two
pointers, one to the start and one to the end of the annotated stretch in the
document text. These instances also have a type attribute used for grouping
annotations of similar nature and contain key-value dictionaries of features, used
by taggers to annotate parts of document with specific tags, e.g., annotations of
type “token” that have a feature named “StopWord” with value “true”, represent
stop words in the document.

The Widget Repository. The following paragraphs present a subset of the
TextFlows repository of widgets, which will be used in the workflows that imple-
ment the methodology proposed in Sect. 4.2.

Corpus and vocabulary acquisition. Document acquisition is usually the first step
of every text mining methodology. TextFlows employs widgets which enable load-
ing document corpora, labeling of documents with domain labels and converting
them into the ADC structure. Document corpora can be loaded from files, where
the dataset can be either a single text file, with each line representing a separate
document, or a zip of files in which a document is represented as a file. Also
supported is the upload of Word (.doc or .docx) and PDF files. Together with
the text of the document the files may optionally contain document meta-data.

Corpus manipulation and visualization. TextFlows implements several widgets
for manipulation of ADC data objects. These widgets allow the user to add new
features, extract existing features from the document corpus, split document
corpora (by either specifying conditions or by indices), merge different corpora,
etc. A special widget in the platform is the Document Corpus Viewer widget,
which visualizes the ADC data objects (note that TextFlows design emphasizes
the importance of the ADC common document corpus representation which
is passed among the majority of widgets). The interactive Document Corpus
Viewer widget allows the user to check the results of individual widgets by
visualizing the ADC data object from their outputs.

Text preprocessing. Preprocessing is a very important part of any form of knowl-
edge extraction from text documents. Its main task is the transformation of
unstructured data from text documents into a predefined well-structured data
representation by extracting a high quality feature vector for every document in
a given document corpus.
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Our implementation employs the LATINO6 [22], scikit-learn [24] and NLTK7

[23] software libraries for its text preprocessing (and other processing) needs.
These libraries inter alia contain the majority of elementary text preprocessing
procedures as well as a large number of advanced procedures which support the
conversion of a document corpus into a table of instances, thus converting every
document into a table row representation of an instance.

The TextFlows preprocessing techniques are based on standard text min-
ing concepts [25] and are implemented as separate categories. Every category
possesses a unique hub widget, which has the task of applying a preprocessing
technique from its category to the ADC data object. Every such widget is library
independent, meaning that it can execute objects from either LATINO, NTLK
or scikit-learn libraries. A standard collection of preprocessing techniques imple-
mented in TextFlows includes: tokenization, stopword removal, Part-of-speech
(PoS) tagging, as well as stemming and lemmatization.

In the data mining modeling phase (i.e. document classification or heuristic
calculation), each document from the ADC structure needs to be represented as
a set of document features it contains. In TextFlows the Construct BoW Dataset
and BoW Model Constructor widget takes as an input an ADC data object and
generates a sparse BoW model dataset (which can then be handed e.g. to a
classifier). The widget takes as an input also several user defined parameters,
which are taken into account when building the feature dataset. Besides the
sparse BoW model dataset this widget also outputs a BowModelConstructor
instance. This additional object contains settings which allow repetition of the
feature construction steps on another document corpus. These settings include
the input parameters, as well as the learned term weights and vocabulary.

Literature based discovery. This category of widgets supports the literature based
discovery process. The package contains several widgets which specify different
elementary heuristics. As will be described in Sect. 5.2, the basic heuristics are
grouped into one of four categories: frequency-based, TF-IDF-based, similarity-
based, outlier-based. Each category is represented by its own widget and the user
is able to manually select its elementary heuristics through an interactive dialog.
The literature based discovery package also contains several widgets which spec-
ify operations between elementary widgets, such as minimum, maximum, sum,
norm, etc.

The library also contains two widgets which support the specification of
ensemble heuristics, which will be described in Sect. 5.2: Ensemble Heuristic
Vote and Ensemble Average Position widget. The first defines an ensemble vot-
ing heuristic (it calculates term votes according to Eq. 1 of Sect. 5.2), while the
latter specifies an ensemble that calculates normalized sum of term position
scores of the inputted heuristics (see Eq. 2 of Sect. 5.2).

6 LATINO (Link Analysis and Text Mining Toolbox library) is open-source—
mostly under the LGPL license—and is available at https://github.com/LatinoLib/
LATINO/.

7 Natural Language Toolkit.

https://github.com/LatinoLib/LATINO/
https://github.com/LatinoLib/LATINO/
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The most important widget from this package is the Calculate Term Heuris-
tic Scores widget which takes as an input several heuristics specifications and
performs the actual calculations. The decision for such an approach—having one
widget which calculates all the heuristics—is that several elementary heuristics
require the same intermediate results. These results can be cached and calcu-
lated only once, which results in faster computation. To this end, the TextFlows
platform uses Compressed Sparse Row (CSR) matrices8 to be able to store the
matrix of features in memory and also to speed up algebraic operations on vec-
tors and matrices.9

Literature based discovery package also contains the Explore in CrossBee
widget which exports the final ranking results and the annotated document
corpus into web application CrossBee, which offers manual exploration of terms
and documents. Also, the Rank Terms widget can be used to display the ranked
terms in the form of a table along with their respective scores.

5.2 Implemented Heuristics for Bridging Term Discovery

This section presents different groups of elementary and ensemble heuristics,
which are used for B-term ranking in the core step of the proposed methodology,
i.e. in the heuristic term score calculation step.

The heuristics are defined as functions that numerically evaluate the term
quality by assigning it bisociation score to a term (measuring the potential that a
term is actually a B-term). For the definition of an appropriate set of heuristics,
we define a set of special (mainly statistical) properties of terms, which aim
at distinguishing B-terms from regular terms; thus, these heuristics can also be
viewed as advanced term statistics. All heuristics operate on the data retrieved
from the documents in text preprocessing. Ranking all the terms using the scores
calculated by an ideal heuristic should result in ranking all the B-terms at the
top of a ranked list. This is an ideal scenario, which is not realistic; however,
ranking by heuristic scores should at least increase the proportion of B-terms
at the top of the ranked term list. Formally, a heuristic is a function with two
inputs, i.e. a set of domain labeled documents D and a term t appearing in these
documents, and one output, i.e. a score that represents the term’s bisociation
potential.

We will use the following notation: to state that the term’s bisociation score
b is equal to the result of a heuristic named heurX, we can denote it as b =
heurX(D, t). However, since the set of input documents is static when dealing
with a concrete dataset, we can—for the sake of simplicity—omit the set of input

8 Compressed Sparse Row (CSR) matrices are implemented in the scipy.sparse package
http://docs.scipy.org/doc/scipy/reference/sparse.html.

9 The Calculate Term Heuristic Scores widget also takes as input the BowModel-
Contructor object and the AnnotatedDocumentCorpus. The parse settings from the
BowModelConstructor object are used to construct Compressed Sparse Row (CSR)
matrices, which represents the BoW model. TextFlows uses mathematical libraries
numpy and scipy to efficiently perform the heuristics calculations.

http://docs.scipy.org/doc/scipy/reference/sparse.html
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documents from a heuristic notation and use only b = heurX(t). Whenever we
need to explicitly specify the set of documents to which the function is applied
(never needed for a heuristic, but sometimes needed for auxiliary functions used
in the formula for the heuristic), we write it as funcXD(t). For specifying the
function’s input document set, we have two options: either use Du that stands for
the (union) set of all the documents from all the domains, or use Dn : n ∈ {1..N},
which stands for the set of documents from the given domain n. In general, the
following statement holds: Du = ∪N

n=1Dn, where N is the number of domains.
In the most common scenario, when there are exactly two distinct domains, we
also use the notation DA for D1 and DC for D2, similarly to Swanson’s notation
of symbols A and C as representatives of the initial and the target domain in
the closed discovery setting, mentioned in Sect. 3.

Base Heuristics. We divide the heuristics into different sets for easier explana-
tion; however, most of the described heuristics work fundamentally in a similar
way—they all manipulate solely the data present in term and document vectors
and derive the terms bisociation score. The exceptions to this are the outlier-
based heuristics, which first evaluate outlier documents and only later use the
information from the term vectors for B-term evaluation.

We can thus define four sets of base heuristics: frequency based, TF-IDF
based, outlier based and similarity based heuristics. In following sections we
describe each set in more detail.10

Frequency-based heuristics. We first define two auxiliary functions:

– countTermD(t): counts the number of occurrences of term t in a document
set D (called term frequency in TF-IDF related contexts),

– countDocD(t): counts the number of documents in which term t appears in
document set D (called document frequency in TF-IDF related contexts).

We define the following base heuristics:

– freqTerm(t) = countTermDu
(t): term frequency in the two domains,

– freqDoc(t) = countDocDu
(t): document frequency in the two domains,

– freqRatio(t) = countTermDu (t)
countDocDu (t)) : term to document frequency ratio,

– freqDomnRatioMin(t) = min( countTermD1 (t)

countTermD2 (t)
,
countTermD2 (t)

countTermD1 (t)
): minimum of

term frequencies ratio of the two domains,
– freqDomnProd(t) = countTermD1(t) ·countTermD2(t): product of term fre-

quencies of the two domains,
– freqDomnProdRel(t) = countTermD1 (t)·fcountTermD2 (t)

countTermDu (t) : product of term fre-
quencies of the two domains relative to the term frequency in all domains.

10 Due to a large number of heuristics and auxiliary functions, we use the so called
camel casing multi-word naming scheme for easier distinction; names are formed by
word concatenation and capitalization of all non first words (e.g., freqProdRel and
tfidfProduct).
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TF-IDF-based heuristics. TF-IDF is a standard measure of term’s importance in
a document, which is used heavily in text mining research [26]. In the following
heuristics definitions, we use the following auxiliary functions:

– tfidfd(t) stands for TF-IDF weight of term t in document d,
– tfidfD(t) represents TF-IDF weight of term t in the centroid vector of all

documents d, d ∈ D, where the centroid vector is defined as an average of
all document vectors and thus presents an average document of document
collection D.

Heuristics based on TF-IDF are listed below:

– tfidfSum(t) =
∑

d∈Du
tfidfd(t): sum of all TF-IDF weights of term t in the

two domains; this heuristic is analogous to freqTerm(t),
– tfidfAvg(t) =

∑
d∈Du

tfidfd(t)

freqDocDu (t) : average TF-IDF weights of term t across all
domains,

– tfidfDomnProd(t) = tfidfD1(t) · tfidfD2(t): product of TF-IDF weights of
term t in the two domains,

– tfidfDomnSum(t) = tfidfD1(t)+ tfidfD2(t): sum of term TF-IDF weights of
term t in the two domains.

Similarity-based heuristics. Another approach to construct a relevant heuristic
measure is to use the cosine similarity measure that is frequently used in text
mining to compute the similarity of documents. We start by creating a repre-
sentational BoW model as a document space and by converting terms into BoW
document vectors. Next, we get the centroid vectors for both domains in the
document space representation. Finally, we apply TF-IDF weighting on top of
all the newly constructed vectors and centroids. We define the following auxiliary
function:

– simCosD(t): calculates the cosine similarity of the document vector of term t
and the document vector of a centroid of documents d ∈ D.

The base heuristics are the following:

– simAvgTerm(t) = simCosDu
(t): similarity of term t to an average term, i.e.

the distance from the center of the cluster of all terms,
– simDomnProd(t) = simCosD1(t)·simCosD2(t): product of similarity of term
t to the centroids of the two domains,

– simDomnRatioMin(t) = min( simCosD1 (t)

simCosD2 (t)
,
simCosD2 (t)

simCosD1 (t)
): minimum of term’s

frequency ratios of the two domains.

Outlier-based heuristics. Outlier detection is an established area of data min-
ing [20]. Conceptually, an outlier is an unexpected event, entity or—in our case—
an irregular document. We are especially interested in outlier documents since
they frequently embody new information that is often hard to explain in the con-
text of existing knowledge. Moreover, in data mining, an outlier is occasionally a
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primary object of study as it can potentially lead to the discovery of new knowl-
edge. These assumptions are well aligned with the bisociation potential that we
wish to optimize, thus, we have constructed several heuristics that harvest the
information possibly residing in outlier documents.

We concentrate on a specific type of outliers, i.e. domain outliers, which are
the documents that tend to be more similar to the documents of the opposite
domain than to those of their own domain. The techniques that we use to detect
outlier documents [18] is based on using classification algorithms to detect outlier
documents. First we train a classification model for each domain and afterwards
classify all the documents using the trained classifier. The documents that are
misclassified—according to their domain of origin—are declared as outlier doc-
uments, since according to the classification model they do not belong to their
domain of origin.

We defined three different outlier sets of documents based on three classifi-
cation algorithms utilized. These outlier sets are:

– DCS : documents misclassified by the Centroid Similarity (CS) classifier,
– DRF : documents misclassified by the Random Forest (RF) classifier,
– DSVM : documents misclassified by the Support Vector Machine (SVM) clas-

sifier.

Centroid similarity is a basic classifier model implemented in our system. It
classifies each document to the domain whose centroid’s TF-IDF vector is the
most similar to the document’s TF-IDF vector. The description of the other
two classification models is beyond the scope of this chapter, as we used exter-
nal procedures to retrieve these outlier document sets; a detailed description is
provided by [18].

For each outlier set we defined two heuristics: the first counts the frequency
of a term in an outlier set and the second computes the relative frequency of a
term in an outlier set compared to the relative frequency of a term in the whole
dataset. The resulting heuristics are listed below:

– outFreqCS(t) = countTermDCS
(t): frequency of term t in the CS outlier set,

– outFreqRF (t) = countTermDRF
(t): frequency of term t in the RF outlier set,

– outFreqSVM(t) = countTermDSV M
(t): frequency of term t in the SVM out-

lier set,
– outFreqSum(t) = countTermDCS

(t) + countTermDRF
(t) + countTermDSV M

(t): sum of frequencies of term t in all three outlier sets,
– outFreqRelCS(t) = countTermDCS

(t)

countTermDu (t) : relative frequency of term t in the CS
outlier set,

– outFreqRelRF (t) = countTermDRF
(t)

countTermDu (t) : relative frequency of term t in the RF
outlier set,

– outFreqRelSVM(t) = countTermDSV M
(t)

countTermDu (t) : relative frequency of term t in the
SVM outlier set,

– outFreqRelSum(t) = countTermDCS
(t)+countTermDRF

(t)+countTermDSV M
(t)

countTermDu (t) :
sum of relative term frequencies of term t in all three outlier sets.
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Ensemble Heuristics Construction. Ensemble learning is a known approach
used in machine learning for combining predictions of multiple models into a final
prediction. It is well evidenced [27] that the resulting ensemble model is more
accurate than any of the individual models used to build it as long as the models
are similarly accurate, are better than random, and their errors are uncorrelated.
There is a wide variety of known and well tested ensemble techniques, such
as bagging, boosting, majority voting, random forest, naive Bayes, etc. [28].
However, these approaches are usually used for the problem of classification
while the core problem presented in this work is ranking. Nevertheless, with the
rise of the areas like information retrieval and search engines’ web page rankings,
ensemble ranking is also gaining attention in the ranking community [29].

One possible—and probably the most typical—approach to designing an
ensemble heuristic from a set of base heuristics consists of two steps. In the
first step, the task is to select member heuristics for the ensemble heuristic
using standard data mining approaches like feature selection. In the second step,
equation discovery is used to obtain an optimal combination of member heuris-
tics. The advantage of such approach is that the ensemble creation does not
require manual intervention. Therefore, we performed several experiments with
this approach; however, the results of an ensemble were even more overfitted to
the training domain. Consequently, we decided to manually—based on experi-
ence and experimentation—select appropriate base heuristics and construct an
ensemble heuristic. As the presentation of numerous experiments, which support
our design decisions, is beyond the scope of this chapter, we describe only the
final solution, along with some reasoning about choosing the heuristics.

The ensemble heuristic for bridging term discovery, which we constructed
based on the experiments, is constructed from two parts: the ensemble voting
score and the ensemble position score, which are summed together to give the
final ensemble score for every term in the corpus vocabulary. Each term score
represents the term’s potential for joining the two disjointed domains.

The ensemble voting score (svotet ) of a given term t is an integer, which
denotes how many base heuristics voted for the term. Each selected base heuristic
hi gives one vote (svotetj ,hi

= 1) to each term, which is in the first third in its
ranked list of terms and zero votes to all the other terms (svotetj ,hi

= 0). The
voting threshold one third (13 ) was set empirically grounded on the evaluation of
the ensemble heuristic on the migraine-magnesium domain and is based on the
number of terms that appear in both domains (not one third of all the terms).
Formally, the ensemble voting score of term tj that is at position pj in the ranked
list of n terms is computed as a sum of individual heuristics’ voting scores:

svotetj =
k∑

i=1

svotetj ,hi
=

k∑

i=1

{
1, pj < n/3
0, otherwise

(1)

Therefore, each term can get a score svotetj ∈ {0, 1, 2, ..., k}, where k is the number
of base heuristics used in the ensemble. The ensemble position score (spost ) is
calculated as an average of position scores of individual base heuristics. For each
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heuristic hi, the term’s position score spostj ,hi
is calculated as n−pj

n , which results
in position scores being in the interval [0, 1). For an ensemble of k heuristics,
the ensemble position score is computed as an average of individual heuristics’
position scores:

spostj =
1
k

k∑

i=1

spostj ,hi
=

1
k

k∑

i=1

n − pj
n

(2)

The final ensemble score is computed as:

st = svotet + spost (3)

Using the proposed construction we make sure that the integer part of the ensem-
ble score always presents the ensemble vote score, while the ensemble score’s
fractional part always presents the ensemble position score. An ensemble posi-
tion score is strictly lower than 1, therefore a term with a lower ensemble voting
score can never have a higher final ensemble score than a term with a higher
ensemble voting score. Consequently, every final ensemble score falls into interval
[0, k + 1), where k is the number of base heuristics used in the ensemble.

The described method for ensemble score calculation is illustrated in
Tables 1–5. In Table 1 the base heuristics scores are shown for each term. Table 2
presents terms ranked according to the base heuristics scores. From this table,
the voting and position scores are calculated for every term based on its posi-
tion, as shown in Table 3. For example, all terms at position 2, i.e. t1, t6, and
t6, get voting score 1 and position score 4/6. Table 4 shows the exact equation
how these base heuristics voting and position scores are combined for each term.
Table 5 displays the list of terms ranked by the calculated ensemble scores.

Table 1. Base heuristic
scores

Term h1 h2 h3

t1 0.93 0.46 0.33

t2 0.26 0.15 0.10

t3 0.51 0.22 0.79

t4 0.45 0.84 0.73

t5 0.41 0.15 0.11

t6 0.99 0.64 0.74

Table 2. Terms
ranked by base
heuristics

Pos. h1 h2 h3

1 t6 t4 t3
2 t1 t6 t6
3 t3 t1 t4
4 t4 t3 t1
5 t5 t2 t5
6 t2 t5 t2

Table 3. Voting and position
scores based on positions in
the ranked lists

Pos. svotetj ,hi
spostj ,hi

1 1 (6−1)/6 = 5/6

2 1 (6−2)/6 = 4/6

3 0 (6−3)/6 = 3/6

4 0 (6−4)/6 = 2/6

5 0 (6−5)/6 = 1/6

6 0 (6−6)/6=0/6

Note that at the first sight, our method of constructing the ensemble score
looks rather intricate. An obvious way to construct an ensemble score of a term
could be simply to sum together individual base heuristics scores; however, the
calculation of the ensemble score by our method is well justified by extensive
experimental results on the migraine-magnesium dataset described in Sect. 6.
The final set of elementary heuristics included in the ensemble is the following:
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Table 4. Calculation of ensemble heuristic score

( svotetj ,h1 + svotetj ,h2 + svotetj ,h3 ) + ( spostj ,h1
+ spostj ,h2

+ spostj ,h3
)/k = svotetj + spostj

= stj
st1 = ( 1 + 0 + 0 ) + ( 4/6 + 3/6 + 2/6 )/3 = 1 + 9/18 = 1.50
st2 = ( 0 + 0 + 0 ) + ( 0/6 + 1/6 + 0/6 )/3 = 0 + 1/18 = 0.06
st3 = ( 0 + 0 + 1 ) + ( 3/6 + 2/6 + 5/6 )/3 = 1 + 10/18 = 1.56
st4 = ( 0 + 1 + 0 ) + ( 2/6 + 5/6 + 3/6 )/3 = 1 + 10/18 = 1.56
st5 = ( 0 + 0 + 0 ) + ( 1/6 + 0/6 + 1/6 )/3 = 0 + 2/18 = 0.11
st6 = ( 1 + 1 + 1 ) + ( 5/6 + 4/6 + 4/6 )/3 = 3 + 13/18 = 3.72

Table 5. Ranked list of terms produced by the ensemble

t6 (3.72), [t2, t3] (1.56), t1 (1.50), t5 (0.11), t2 (0.06)

– outFreqRelRF
– outFreqRelSVM
– outFreqRelCS

– outFreqSum
– tfidfDomnSum
– freqRatio

Detailed justification is presented in [30].

5.3 Workflows Implementing Individual Steps of the Methodology

The workflow for cross-domain literature mining, presented in Sect. 4.2, is pub-
licly available for sharing and reuse within the TextFlows platform. The workflow
integrates the computation of heuristics, described in Sect. 5.2, and is connected
to the term exploration interface of the online system CrossBee, which supports
the user in advanced document exploration by facilitating document analysis
and visualization.

Document Acquisition Workflow (Step 1). The first step of the workflow
from Fig. 4 is composed of several components described below. The components
are responsible for the following tasks:

1.1. load literature A into annotated document corpus data structure
1.1.1. load raw text data from a file (this component could be replaced by load-

ing documents from the web or by acquiring them using web services),
where each line contains a document with exactly three tab-separated
entries: (a) document identifier, (b) domain acronym, and (c) the docu-
ment text,

1.1.2. build the annotated document corpus from the raw data, i.e. parse the
loaded raw text data into a collection of documents and assign a domain
label (e.g., literature A, docsA, migraine) to the documents to enable
their identification after merging with literature B,

1.2. load literature B into the annotated document corpus data structure (indi-
vidual components are aligned with the components 1.1),
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1.3. merge the two literatures into a single annotated document corpus
structure,

1.4. optional check of document acquisition by visual inspection of the created
corpus.

The document acquisition workflow is shown in Fig. 5. The output is the
annotated document corpus consisting of the acquired documents labeled with
domain labels.

Fig. 5. Document acquisition workflow.

Text Preprocessing Workflow (Step 2). The document acquisition step is
followed by the text preprocessing step, which is itself a workflow implemented as
shown in Fig. 6. The main components here are tokenization, stopwords labeling
and token stemming or lemmatization. The output of this step is structurally
equal to the input; however every document in the annotated document corpus
now contains additional information about tokens, stopwords and lemmas.

Fig. 6. Document preprocessing workflow.

The individual components perform the following tasks:

2.1 split documents to tokens (the basic units for further text processing),
2.1.1. create tokenizer object (simple tokenizer based on regular expressions),
2.2. tag stopword tokens by using a stopword tagger (component 2.2.2),
2.2.1. load standard English stopwords,
2.2.2. define the stopword tagger using the standard English stopwords only

(the detected stopwords are used in candidate B-term extraction step),
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2.3. lemmatize tokens by applying the LemmaGen lemmatizer11 [31],
2.3.1. create an instance of LemmaGen lemmatizer.

Heuristics Specification Workflow (Step 3). While the heuristics specifi-
cation step is the core part of our methodology, this step only specifies which
heuristics are selected and how these heuristics should be combined into the
ensemble heuristic. The actual calculation is performed later in the heuristic
term score calculation step.

Fig. 7. Heuristic specification.

Heuristic specification displayed in Fig. 7 is the outcome of our research about
the base term heuristics and their combination into the ensemble heuristic pre-
sented in Sect. 5.2. Which heuristics to use and how to combine them is based
on the experiments on the real data that we performed as a part of the research
presented in this chapter—these experiments are presented in more detail in
[30]. The findings resulted in the setting shown in Fig. 7, which is a good choice
when applied on new data. Nevertheless, the setting and the choice of the base
heuristics is fully customizable and can be freely configured to better suit the
needs of new applications.

The output of this procedure is a specification of a complex ensemble heuris-
tic, which computes the term bisociation scores. The components in the heuristic
specification perform the following tasks:

3.1. define base heuristics (see Sect. 5.2 for details about the base heuristics
selection),

3.1.1. define TF-IDF based heuristic tfidfDomnSum,
3.1.2. define term frequency based heuristic freqRatio,
3.1.3. define outlier based heuristics outFreqRelRF, outFreqRelSVM, outFre-

qRelCS, outFreqRelSum
3.2. for every inputted heuristic defines a new heuristic that normalizes the

scores to the range [0,1) and outputs a list of new heuristic specifications,
11 LemmaGen is an open source lemmatizer with 15 prebuilted european lexicons. Its

source code and documentation is publicly available at http://lemmatise.ijs.si/.

http://lemmatise.ijs.si/
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3.3. combine the six heuristics into a single ensemble heuristic
3.3.1. define an ensemble voting heuristic that includes votes of the six heuristics

(ensemble voting score, see Eq. 1),
3.3.2. define a calculated heuristic that calculates normalized sum of position

scores of the six heuristics (ensemble position score, see Eq. 2),
3.4. define the final ensemble heuristic by summing the ensemble voting heuris-

tics, which results in the number of terms heuristics’ votes in the range
from 0 to 6 (integer value), and the calculated normalized sum of heuristics
scores in the range from 0 to less than 1 (final ensemble score, see Eq. 3).

Candidate B-term Extraction Workflow (Step 4). Another core step of
the workflow is candidate B-term extraction, shown in Fig. 8. Although it con-
tains only one component, it has a very important and complex goal of trans-
forming the inputted annotated document corpus into the BoW model in order
to represent documents in the form of feature vectors of term occurrences in
the documents (for the purpose of visualization of documents and the need of
highlighting and emphasizing of specific terms). Another task of this step is to
capture the exact parsing procedure, which is needed in order to perform var-
ious computations which are performed in the advanced heuristic term scores
calculation step. The outputted BowModelContructor object also contains the
vocabulary of all terms.

Fig. 8. Candidate B-term extraction.

Heuristic Term Score Calculation Workflow (Step 5). Figure 9 shows a
structurally simple methodological step of heuristic term score calculation that
contains only one component. The inputs to the procedure are the annotated
document corpus, the BoWModelContructor and the heuristics specification.
Based on the information present in the BoWModelContructor, the algorithm
calculates various frequency and TF-IDF document features vectors, which are
used to calculate the specified heuristics scores for all the terms. The calculation
results in the same heuristic structure as defined in the heuristic specification
step, however the ensemble heuristic at the top level, as well as all elementary
heuristics, now contain their calculated scores of the terms. The scores of the
top-level heuristic are intended to represent terms’ bisociation scores and are
typically used as a basis for the final term ranking.
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Fig. 9. Heuristic term score calculation.

B-Term Visualization and Exploration Workflow (Step 6). This step
of the methodology implements a workflow shown in Fig. 10. It enables visual-
ization and exploration of the ranked list of B-terms. There are four inputs to
this step. The first and the most important are the ensemble heuristic scores
of the extracted candidate B-terms. Inputs Annotated Document Corpus and
BoW Dataset are used by the online application for cross-context bisociation
exploration CrossBee, which needs the exact information about term extraction
from documents to be able to align the terms back with the original documents
in order to visualize them; while the BoW Model Constructor provides the con-
structed vocabulary. The goals of the created components are the following:

Fig. 10. B-term visualization and exploration.
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6.1. explore the final results in a web application CrossBee, which was designed
specifically for the purpose of bisociativity exploration (expressed either
through terms or through documents),

6.1.1. optional expert specified B-terms may be provided to CrossBee in order to
emphasize them in the text and to deliver a feedback about the bisociative
quality of the provided ranking. If available, these terms are loaded and
preprocessed using the same preprocessing techniques as described in the
document preprocessing step,

6.2. rank the terms
6.2.1. display the ranked terms in the form of a table along with their respective

scores.

Fig. 11. Methodology evaluation.

Methodology Evaluation Workflow (Step 7). The last step of the proposed
methodology is the methodology evaluation step, implemented as a workflow
shown in Fig. 11. There are three inputs to the process: the heuristic scores of
one or more evaluated heuristics (which presents the result of all the preced-
ing methodological steps), the BowModelContructor (which contains the corpus
vocabulary) and additional information about the actual B-terms (required in
order to assess any kind of quality measures). Note that, in order not to overflow
the overall methodology workflow of Fig. 4 with additional information, the list
of actual bridging terms was not shown as an additional step of the methodology.
Instead, it is implemented as a separate subprocess in the methodology evalu-
ation workflow, which is responsible for loading and preprocessing the actual
B-terms.

The components of the methodology evaluation workflow perform the follow-
ing tasks:

7.1. prepare pairs of actual and predicted values, which are used to calculate
different information retrieval measures in step 7.2,
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7.1.1. if available, load the actual (expert identified) B-terms, which present
the gold standard terms used to evaluate the quality of the methodology
and preprocess them using same techniques as in document preprocessing
step,

7.2. calculate different measures, such as precision, recall, and the F1-measure,
ROC curves and the AUC (Area Under Curve) values,

7.2.1. display ROC curves graphically,
7.2.2. compare information retrieval measures in the form of a table,
7.2.3. compare information retrieval measures in the form of a bar chart,
7.2.4. display and compare the F1-scores in the advanced VIPER performance

evaluation chart [32] component.

The methodology evaluation functionality presented in this section is not
part of the actual workflow for cross-domain knowledge discovery; however, it
is indispensable when developing a new approach. Description of this step con-
cludes the section presenting the key parts of the methodology.

5.4 Methodology Empowerment with Controlled Vocabulary

This section describes a new ingredient of the methodology: the use of a con-
trolled vocabulary for improving B-term detection and ranking. The motivation
for using predefined controlled vocabularies is to reduce the heuristic search
space which, consequently, reduces the running times of B-term discovery algo-
rithms. Controlled vocabularies ensure consistency and resolve ambiguity inher-
ent in normal human languages where the same concept can be given different
names. In this way, they improve the quality and organization of retrieved knowl-
edge, given that they consist of predefined, authorized terms that have been
pre-selected by the designers of the vocabulary that are experts in the subject
area. Controlled vocabularies solve problems of homographs and synonyms by a
bijection between concepts and authorized terms.

MeSH (Medical Subject Headings) is a controlled vocabulary used for index-
ing articles for PubMed, designed by The National Library of Medicine (NLM).
Figure 12 shows a top-level example of the MeSH structure and hierarchy. The
2015 version of MeSH contains a total of 27,455 subject headings, also known as
descriptors. Each descriptor is assigned a unique tree number (shown in square
brackets in Fig. 12) that facilitates search and filtering. Most of the descriptors
are accompanied by a short description or definition, links to related descriptors,
and a list of synonyms or very similar terms (known as entry terms). Because of
these synonym lists MeSH can also be viewed as a thesaurus.

We have implemented a vocabulary construction tool called MeSH filter as
an interactive widget in the TextFlows platform. This implementation uses syn-
onym lists from the MeSH 2015 database, available online12. The interface to
the developed interaction widget is designed to enable the selection of descrip-
tors of interest from the hierarchy of descriptors. Its final output is a text file

12 http://www.nlm.nih.gov/mesh/filelist.html.

http://www.nlm.nih.gov/mesh/filelist.html
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Fig. 12. Example of MeSH structure and hierarchy.

containing all the terms that belong to the user selected descriptors from the
MeSH hierarchy.

This section describes how we have upgraded the proposed methodology
with the ability to use a predefined controlled vocabulary for reducing the B-
term search space. This not only increases efficiency of the heuristic calculation
algorithms, but also tends to improve the relevance of top ranked B-terms due to
reduced ambiguities in human languages. The upgraded methodology is shown in
Fig. 13. Compared to the initial methodology shown in Fig. 4, the new workflow13

includes two new steps: vocabulary acquisition and vocabulary preprocessing.

Fig. 13. Methodological steps of the cross-domain literature mining process.

In order to ensure the proper matching between terms from the vocabu-
lary and document corpus, the vocabulary file must be preprocessed using the
preprocessing techniques, described in Sect. 5.3, which were also used for pre-
processing the document corpus in Step 2. After vocabulary preprocessing in

13 This workflow is publicly available at http://textflows.org/workflow/497/.

http://textflows.org/workflow/497/
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Step 4, the produced vocabulary file is used in Step 5 to filter out terms from
the document corpus that do not appear in the vocabulary. A procedural expla-
nation of the new steps of the upgraded workflow of Fig. 13 is presented.

Vocabulary Acquisition (Step 3)

– One term per line: Every single line in the text file represents one separate
term. Only terms which appear in this file are later used in the heuristic
calculation steps of the methodology.

– Synonym format : Additionally, term synonyms are listed after the term, sep-
arated by commas.

term1 → synonym1a, synonym1b...

Every synonym in the document corpus is then substituted with the term,
which appears at the first position in the corresponding line.

Vocabulary Preprocessing (Step 4). This step is responsible for applying
the same standard text preprocessing to the predefined vocabulary that is used
also to preprocess the document corpus. Similarly, the main components here
are tokenization, stopwords labeling and token stemming or lemmatization.

Candidate B-Term Extraction (Step 6). After completing the preprocess-
ing steps, the resulting whitelist output is used in Candidate B-term Extraction
step for filtering out terms that are not part of the controlled vocabulary.

6 Experiments and Results

This section presents the evaluation of the presented literature based discov-
ery methodology. We have applied different base and ensemble heuristics on
two problems: the standard migraine-magnesium literature mining benchmark
problem used in the Swanson’s experiments [13], and a more recent example of
using literature mining for uncovering the nature of relations that might con-
tribute to better understanding of autism, originated in [19,33]. In both cases,
our methodology successfully replicated the results known from the literature.

6.1 Experimental Setting

The evaluation was performed based on two datasets (or two domain pairs,
since each dataset consists of two domains)—the migraine-magnesium dataset
[13] and the autism-calcineurin [33] dataset—which can be viewed as a training
and test dataset, respectively. The training dataset is the dataset we employed
when developing the methodology, i.e. for creating a set of base heuristics as
well as for creating the ensemble heuristic. The results of the evaluation on
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the training dataset are important, but need to be interpreted carefully due
to a danger of overfitting the dataset, as described in [30]. The test dataset
is used for the evaluation of the methodology in a real-life setting. The well-
researched migraine-magnesium domain pair [13] was used as a training set. In
the literature-based discovery process Swanson managed to find more than 60
pairs of articles connecting the migraine domain with the magnesium deficiency
via 43 bridging concepts (B-terms), which are listed in Table 6.14 In testing the
developed methodology we aimed at rediscovering the 43 B-terms by ranking
them as high as possible in the ranked list of potential B-terms that include
Swanson’s B-terms and terms that are not in the Swanson’s B-term list.

Table 6. B-terms for the migraine-magnesium dataset identified in [13].

1 5 ht 16 convulsive 31 prostaglandin
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity
5 anti inflammatory 20 epilepsy 35 seizure
6 anticonvulsant 21 epileptic 36 serotonin
7 antimigraine 22 epileptiform 37 spasm
8 arterial spasm 23 hypoxia 38 spread
9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 inflammatory 40 stress
11 calcium blocker 26 nifedipine 41 substance p
12 calcium channel 27 paroxysmal 42 vasospasm
13 calcium channel blocker 28 platelet aggregation 43 verapamil
14 cerebral vasospasm 29 platelet function
15 convulsion 30 prostacyclin

Table 7. B-terms for the autism-calcineurin dataset identified in [33].

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin
4 radiation 9 asbestos
5 working memory 10 deletion syndrome

For the test dataset we used the autism-calcineurin domain pair [33]. Like
Swanson, Petrič et al. also provide B-terms, 13 in total (listed in Table 7),
whose importance in connecting autism to calcineurin (a protein phosphatase)
is discussed and confirmed by the domain expert. In view of searching for B-
terms, this dataset has a relatively different dimensionality compared to the
migraine-magnesium dataset. On the one hand it has only about one fourth of
the B-terms defined, while on the other hand, it contains more than 40 times
14 Note that Swanson did not state that this was an exclusive list, hence there may

exist other important bridging terms which he did not list.
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Table 8. Comparison of some statistical properties of the two datasets used in the
experiments.

migraine-magnesium autism-calcineurin

Retrieval Source PubMed PubMed

Query terms “migraine”-“magnesium” “autism”-“calcineurin”

Additional conditions Year < 1988 /

Part of paper used Title Abstract

Document Statistics Number 8,058 (2,415–5,633) 15,243 (9,365–5,878)

Doc. with B-term 394 (4.89%) 1,672 (10.97%)

Avg. words per doc 11 180

Term statistic Avg. term per doc. 7 173

Distinct terms 13,525 322,252

B-term candidates 1,847 78,805

Defined B-terms 43 13

as many potential B-term candidates. Therefore, the ratio between the actual
B-terms and the candidate terms is substantially lower—approximately by fac-
tor 160, i.e. the chance to find a B-term among the candidate terms if picking
it at random is 160 times lower in the autism-calcineurin dataset then in the
magnesium-migraine dataset. Consequently, finding the actual B-terms in the
autism-calcineurin dataset is much more difficult compared to the migraine-
magnesium dataset.

Both datasets, retrieved from the PubMed database using the keyword query,
are formed of titles or abstracts of scientific papers returned by the query.
However, we used an additional filtering condition for selecting the migraine-
magnesium dataset. For fair comparison we had to select only the articles pub-
lished before the year 1988 as this was the year when Swanson published his
research about this dataset and consequently making an explicit connection
between the migraine and magnesium domains.

Table 8 states some properties for comparing the two datasets used in the
evaluation. One of the major differences between the datasets is the length of
an average document since only the titles were used in the migraine-magnesium
dataset, while the full abstracts were used in the autism-calcineurin case. Conse-
quently, also the number of distinct terms and B-term candidates is much larger
in the case of the autism-calcineurin dataset. Nevertheless, the preprocessing of
both datasets was the same. We can inspect higher numbers in the migraine-
magnesium dataset which points to the problem of harder classification of doc-
uments in this dataset, which is also partly due to shorter texts.

6.2 Evaluation Procedure

The key aspect of the evaluation is the assessment of how well the proposed
ensemble heuristic performs when ranking the terms. Two evaluation measures
were used in the evaluation of the developed methodology: the standard Area
under the Receiver Operating Characteristic analysis and the amount of B-terms
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found among the first 5,10, 20, 100, 500 and 2,000 terms in the heuristics’ ranked
list of terms.

First, we compared the heuristics using the Area under the Receiver Operat-
ing Characteristic (AUROC) analysis [34]. The Receiver Operating Character-
istic (ROC) space is defined by two axes, where the horizontal axis scales from
zero to the number of non-B-terms, and the vertical axis from zero to the num-
ber of B-terms. An individual Receiver Operating Characteristic (ROC) curve,
representing a single heuristic, is constructed in the following way:

– Sort all the terms by their descending heuristic score.
– For every term of the term list do the following: if a term is a B-term, then

draw one vertical line segment (up) in the ROC space, else draw one horizontal
line segment (right) on the ROC space.

– If a heuristic outputs the same score for many terms, we cannot sort them
uniquely. In such case, we draw a line from the current point p to the point
p+(nb, b), where nb is the number of non-B-terms and b is the number of terms
that are B-terms among the terms with the same bisociation score. In this way
we may produce slanted lines, if such an equal scoring term set contains both
B-terms and non-B-terms.

AUROC is defined as the percentage of the area under ROC curve, i.e. the
area under the curve divided by the area of the whole ROC space.15 Besides
AUROC we also list the interval of AUROC which tells how much each heuristic
varies among the best and the worst sorting of a possibly existing equal scoring
term set. This occurs due to the fact that some heuristics do not produce unam-
biguous ranking of all the terms. Several heuristics assign the same score to a
set of terms—including both the actual B-terms as well as non B-terms—which
results in the fact that unique sorting is not possible.16 In the case of equal
scoring term sets, the inner sorting is random (which indeed produces different
performance estimates), however the constructed ROC curve corresponds to the
average ROC curve over all possible such random inner sortings.

From the expert’s point of view, the ROC curves and AUROC statistics are
not the most crucial information about the quality of a given heuristic. While
in general it still holds that a higher AUROC reflects a better heuristic, we
are more interested in the ranking from the perspective of the domain expert
(the end-user of the our system) who is usually more interested in questions like:
15 If a heuristic is perfect (it detects all the B-terms and ranks them at the top of

the ordered list), we get a curve that goes first just up and then just right with
an AUROC of 100%. The worst possible heuristic sorts all the terms randomly
regardless of being a B-term or not and achieves AUROC of 50%. This random
heuristic is represented by the diagonal in the ROC space.

16 In such cases, the AUROC calculation can either maximize the AUROC by sorting
all the B-terms in front of all the other terms inside equal scoring sets or minimize it
by putting the B-terms at the back. The AUROC calculation can also achieve many
AUROC values in between these two extremes by using different (e.g., random)
sortings of equal scoring sets. Preferable are the heuristics with a smaller interval
which implies that they produce smaller and fewer equal scoring sets.
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(a) how many B-terms are likely to be found among the first n terms in a ranked
list (where n is a selected number of terms the expert is willing to inspect, e.g., 5,
20 or 100), or (b) how much one can trust a heuristic if a new dataset is explored.
Therefore, we also performed an evaluation using an alternative user oriented
approach, which evaluates the ranking results adapted to the user’s needs. This
evaluation estimates how many B-terms can be found among the first 5, 10, 20,
100, 500 and 2,000 terms on the ranked list of terms produced by a heuristic.

6.3 Results on the Migraine-Magnesium Dataset

Table 9 shows the comparison of ranking performance for the ensemble and all the
base heuristics on the migraine-magnesium dataset. The heuristics are ordered by
their AUROC. The second and third column in the table represent heuristics’
average AUROC score17 and its AUROC interval, respectively. When looking
at the ensemble heuristic scores in Table 9, we notice that it achieves higher

Table 9. Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset.

Heuristic name AUROC Number of B-terms among top n ranked terms

Average Interval 5 10 20 50 100 200 500 1,000 2,000

outFreqRelSvm 58.78% 1.26% 0.12 0.24 0.48 1 1.63 5.88 14.44 29 43

outFreqRelSum 58.19% 0.65% 0 0.28 0.83 1.82 3.68 6 15 27 43

freqDomnRatioMin 57.34% 4.71% 0.14 0.28 0.57 1.42 2.83 5.66 14 28 43

outFreqRelRf 56.85% 1.50% 0.24 0.48 0.95 2 4.15 6.94 14 29 43

outFreqSum 55.41% 4.06% 0 0 0 0 0 2.44 15.06 27.16 43

outFreqRf 55.20% 11.07% 0 0 0 0 0.4 5.15 14.86 26.34 43

outFreqSvm 55.19% 9.38% 0 0 0 0 0.35 3 14.14 26.12 43

outFreqRelCs 54.29% 1.50% 0 0 1 1 2.69 5.07 11 27 43

freqDomnProdRel 53.23% 3.08% 0 0 0 0 0 6 14 27 43

outFreqCs 52.34% 10.51% 0 0 0 0 0 1.43 15.62 24.67 43

tfidfDomnSum 52.11% 2.69% 0 0 0 0 1 2 11 26.14 43

tfidfAvg 51.31% 3.63% 0 0 1 1.79 3.11 5.75 11.84 20.9 43

freqDomnProd 51.20% 3.36% 0 0 0 0 1 3 13.17 27.16 43

tfidfDomnProd 51.18% 2.69% 0 0 0 0 1 3 13.5 27 43

freqRatio 50.51% 39.26% 0 0 1 1 4 5 11.65 23.09 43

appearInAllDomains 50.00% 50.00% 0.11 0.23 0.46 1.15 2.3 4.6 11.49 22.98 43

tfidfSum 49.65% 3.63% 0 0 0 0 0 1 9 25.36 43

freqTerm 49.60% 3.78% 0 0 0 0 0 1 8.91 25.49 43

freqDoc 49.55% 3.82% 0 0 0 0 0 1 8.03 24.79 43

ensemble 59.05% 0.26% 1 1 1 5 6 9 18.57 28 43

17 In contrast to the results reported in [4,5], the AUROC scores presented in this
chapter take into account only the terms which appear in both domains. This results
in lower AUROC scores, which are thus not directly comparable between the studies.
The reason for this approach is in the definition of a bridging term, where the term
is required to appear in both domain, as it cannot form a connection otherwise.
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AUROC value and lower AUROC interval compared to all the other heuristics.
As mentioned in Sect. 5.2, the ensemble was constructed using also two not
so well performing heuristics (tfidfDomnSum and freqRatio) in order to avoid
overfitting on the training domain. This could have had a negative effect to
the ensemble performance, however, the ensemble performance was not seri-
ously affected which gives evidence of right decisions made when designing the
ensemble.

As mentioned, such AUROC evaluation does not necessarily aligns well with
the methodology evaluation from a user’s perspective. Therefore, the right side
of Table 9 shows the results of an alternative user oriented evaluation approach,
which shows how many B-terms were found among the first 5, 10, 20, 50, 100, 200,
500, 1,000 and 2,000 terms on the ranked list of terms produced by a heuristic.
The ensemble heuristic, described in Sect. 5.2, performing ensemble voting of six
elementary heuristics, resulted in very favorable results on the training migraine-
magnesium domain (as seen in Table 9), where one B-term among the first 5
terms, one B-term (no additional B-terms) among the first 20 terms, 6 B-terms
(5 additional) among the first 100 terms, 22 B-terms (16 additional) among first
500 terms and all the 43 B-terms (21 additional) among the first 2,000 terms.
Thus, e.g., if the expert limits himself to inspect only the first 100 terms, he
will find 6 B-terms in the ensemble ranked term list. These results confirm that
the ensemble is the best performing heuristics also from the user’s perspective.
Even though a strict comparison depends on the threshold of how many terms
an expert is willing to inspect, the ensemble is always among the best.

6.4 Results of Using a Controlled Vocabulary
on the Migraine-Magnesium Dataset

In this section we demonstrate that by using a predefined controlled vocabulary
we can increase the heuristics’ capabilities to rank the B-terms at the beginning
of the term list. We have repeated the experiments on the migraine-magnesium
domain, described in Sect. 6.3, except that we now used a predefined vocabulary
constructed from MeSH using the “MeSH filter” widget. As we were particularly
interested in the bridging terms between migraine—a disease—and magnesium—
a chemical element—as well as the circumstances and processes observed between
them, we only selected categories [C] Diseases, [D] Chemicals and drugs and [G]
Phenomena and Processes. In the experiment we used the workflow shown in
Fig. 13. The generated vocabulary was used in the candidate B-term extraction
step as a whitelist filter.

The results of the methodology using a controlled vocabulary on the
migraine-magnesium domain are presented in Table 11. The comparison of the
heuristics’ capabilities to rank the B-terms at the beginning of the term list in
the migraine-magnesium domain from Tables 9 and 11 shows an advantage of
using the controlled vocabulary. By inspecting the number of B-terms found
in the ranked first n terms, we notice that using the controlled vocabulary
in the migraine-magnesium domain resulted in a much higher concentration of
Swanson’s B-terms among the best ranked terms.
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Table 10. B-terms for the migraine-magnesium dataset identified in [13]. The 17 terms
which are crossed out were not part of the used controlled vocabulary, therefore heuris-
tics were unable to identify them as B-term candidates.

1 5 ht 16 convulsive 31 prostaglandin
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity
5 anti inflammatory 20 epilepsy 35 seizure
6 anticonvulsant 21 epileptic 36 serotonin
7 antimigraine 22 epileptiform 37 spasm
8 arterial spasm 23 hypoxia 38 spread
9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 inflammatory 40 stress
11 calcium blocker 26 nifedipine 41 substance p
12 calcium channel 27 paroxysmal 42 vasospasm
13 calcium channel blocker 28 platelet aggregation 43 verapamil
14 cerebral vasospasm 29 platelet function
15 convulsion 30 prostacyclin

As explained in Sect. 5.4 a predefined controlled vocabulary can greatly
reduce the B-term search space. As a side effect, we were unable to: (a) per-
form AUROC evaluation comparison due to different number of terms in the
vocabulary—As a result, Table 11 provides only evaluation which lists the num-
ber of B-terms found in the ranked first n terms, (b) detect all B-terms, identified
by Swanson (the crossed out B-terms in Table 10 were not part of the used con-
trolled vocabulary); this could be solved using larger controlled vocabularies,
though we must be careful not to overfit the vocabulary to the expected results.

On the other hand, results show that using a predefined controlled vocab-
ulary not only increases the efficiency of the heuristic calculation algorithms,
but also tends to improve the relevance of top ranked B-terms. Consequently,
the described approach enables the user to perform the exploration task more
effectively, potentially leading to new discoveries.

6.5 Results on the Autism-Calcineurin Dataset

In this section we show how our methodology performs on a new independent
test dataset—the autism-calcineurin domain—which was not used in the devel-
opment of the methodology. As discussed, the dimensionality of the autism-
calcineurin dataset is considerably different and less favorable compared to the
migraine-magnesium dataset.

Table 12 shows that the performance of individual base heuristics significantly
changes compared to the migraine magnesium dataset (Table 9), however, the
ensemble heuristic is still among the best and exposes small uncertainty. This
gives us the final argument for the quality of the ensemble heuristic since it out-
performs all the other heuristics (except for the freqRatio base heuristic) when
comparing the AUROC scores, as well as the numbers of B-terms found in the
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Table 11. Comparison of base and ensemble heuristics capacity to rank the B-terms
at the very beginning of the term list for the migraine-magnesium dataset using a
controlled vocabulary.

Heuristic Name Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000

freqDomnRatioMin 0.59 1.18 2.37 5.92 13.25 20 26 26 26

outFreqSum 0 1 2.75 5 15.53 17.06 26 26 26

freqDomnProdRel 0 1 2 5.67 9 20 26 26 26

outFreqRf 1 1 2 6.28 12.16 17.5 26 26 26

outFreqSvm 1 1 2.5 5.16 11.74 16.79 26 26 26

outFreqCs 0 0 2.45 5.6 10.22 17.06 26 26 26

tfidfDomnSum 0 1 1 4 10 19 26 26 26

freqDomnProd 0 1 1 4 9 19 26 26 26

tfidfDomnProd 0 1 1 4 9 19 26 26 26

outFreqRelRf 0.67 1.33 2 5 7 14.75 26 26 26

freqDoc 0 0 1 2.5 7.82 17.1 26 26 26

tfidfSum 0 0 1 2.25 7.5 17.35 26 26 26

freqTerm 0 0 1 2.25 7.56 17.43 26 26 26

appearInAllDomains 0.39 0.78 1.56 3.9 7.81 15.62 26 26 26

outFreqRelSum 0.42 0.83 1.29 4 9 15 26 26 26

tfidfAvg 0 1.42 2.47 5.63 7 13 26 26 26

outFreqRelSvm 0.45 0.91 1.82 3.25 10 15 26 26 26

outFreqRelCs 0.31 0.63 1 5 7.06 14 26 26 26

freqRatio 0 1 1 2 5.96 14.56 26 26 26

ensemble 1 3 4 9 13 19 26 26 26

most interesting ranked list lengths (up to 20, 100, 500 terms). The ensem-
ble finds one B-term among 10 ranked terms, 2 among 200 and 3 among 500
ranked terms out of the total of 78,805 candidate terms that the heuristics have
to rank. The evidence of the quality of the ensemble can be understood if we
compare it to a baseline, i.e. the appearInAllDomn heuristic which denotes the
performance achievable without developing the methodology presented in this
work. The baseline heuristic discovers in average only approximately 0.33 B-
terms before position 2,000 in the ranked list while the ensemble discovers 6;
not to mention the shorter term lists where the ensemble has even a better ratio
compared to the baseline heuristic.

6.6 Results of Using a Controlled Vocabulary
on the Autism-Calcineurin Dataset

In this section we replicated the experiments, described in Sect. 6.4, using a
predefined controlled vocabulary on the autism-calcineurin dataset. Similarly,
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Table 12. Comparison of base and ensemble heuristics capacity to rank the B-terms
at the very beginning of the term list for the autism-calcineurin dataset.

Heuristic Name AUROC Number of B-terms among top n ranked terms

Average Interval 5 10 20 50 100 200 500 1,000 2,000 5,000 all

freqRatio 95.10% 0.16% 1 1 1 1 1 1 1 3 5 8.99 13

tfidfSum 88.78% 0.05% 0 0 0 0 1 1 1 2 4 5 13

tfidfDomnProd 88.61% 0.05% 0 0 0 0 0 0 1 1 4 6 13

tfidfDomnSum 88.33% 0.02% 0 0 0 0 1 1 2 2 4 5 13

freqTerm 87.80% 0.80% 0 0 0 0 1 1 1 2 3 5 13

freqDomnProd 87.69% 0.73% 0 0 0 0 0 0 0 1 2 6 13

freqDomnProdRel 85.77% 0.69% 0 0 0 0 0 0 0 1 1 6 13

outFreqRf 85.05% 7.91% 0 0 0 0 0 1 1 1.34 4.37 7.4 13

outFreqSum 84.33% 5.80% 0 0 0 0 0 1 1 3 4 8.4 13

outFreqCs 80.50% 10.05% 0 0 0 0 0 1 1 1 4 7.17 13

freqDoc 79.01% 2.53% 0 0 0 0 0 1 1 2 2 5 13

outFreqSvm 75.15% 17.55% 0 0 0 0 1 1 1.46 4 4.67 5.44 13

tfidfAvg 73.56% 0.05% 1 1 1 1 1 1 1 1 3 6 13

outFreqRelRf 72.44% 0.03% 0 0 0 0 1 1 1 1 1 2 13

outFreqRelSum 67.24% 0.03% 0 0 0 0 0 1 1 2 2 2 13

outFreqRelCs 64.40% 0.19% 0 0 0 0 0 0 0 0 0 1.49 13

outFreqRelSvm 58.39% 0.17% 0 0 0 0 0 0 0 0 1.25 2 13

appearInAllDomains 50.00% 50.00% 0 0 0 0.01 0.02 0.03 0.08 0.17 0.33 0.83 13

freqDomnRatioMin 24.93% 1.12% 0 0 0 0 0 0 0 0 0 0 13

ensemble 90.10% 0.00% 0 1 1 1 1 2 3 4 6 8 13

Table 13. B-terms for the autism-calcineurin dataset identified by [33]. The four terms
which are crossed out were not part of the used controlled vocabulary, therefore heuris-
tics were unable to identify them as B-term candidates.

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin
4 radiation 9 asbestos
5 working memory 10 deletion syndrome

we wanted to increase the heuristics’ capabilities (in the workflow illustrated
in Fig. 13) to rank the B-terms at the beginning of the term list. We used the
same predefined vocabulary as with the migraine-magnesium domain, which
was constructed from MeSH using the following categories: [C] Diseases, [D]
Chemicals and drugs and [G] Phenomena and Processes were used for building
the controlled vocabulary (Table 13).

Inspecting the heuristics’ capabilities to rank the B-terms at the beginning
of the term list in the autism-calcineurin domain (Tables 12 and 14) shows the
advantage of using a controlled vocabulary. The increase in the number of B-
terms found in the ranked first n terms when using the controlled vocabulary
is even more significant than in the migraine-magnesium domain. The ensemble
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Table 14. Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset using a controlled
vocabulary.

Heuristic Name Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000 5,000

outFreqSvm 0 0 0 0.5 2 4 4.8 7 8.92 9

outFreqSum 0 0 0 0 0 4 5.56 7 8 9

tfidfDomnProd 0 0 0 0 0 3 4 7 9 9

freqDomnProd 0 0 0 0 1 3 4 7 9 9

freqRatio 1 1 1 1 2 3 3.6 6.01 9 9

freqDomnProdRel 0 0 0 0 0 1 4 7 9 9

outFreqCs 0 0 0 0 0 2 6.59 7 7.82 9

tfidfSum 0 1 1 1 1 2 3 7 9 9

tfidfDomnSum 0 1 1 1 1 2 3 7 9 9

freqTerm 0 1 1 1 1 2 3 6.21 9 9

freqDoc 0 1 1 1 1 2 3 6 8 9

outFreqRf 0 0 0 0 0 1 2.65 5.59 6.99 9

outFreqRelSvm 0 0 1 1 1 1 2 3 9 9

tfidfAvg 1 1 1 1 1 2 2 4 7 9

outFreqRelCs 0 0 0 0 0 0 2 3 7 9

outFreqRelSum 0 0 0 0 0 1 1 3 7 9

appearInAllDomains 0.01 0.03 0.06 0.14 0.28 0.55 1.38 2.76 5.52 9

outFreqRelRf 0 0 0 0 0 0 0 2 6 9

freqDomnRatioMin 0 0 0 0 0 0 1 2 6 9

ensemble 1 1 1 2 2 2 4 6 8 9

heuristic finds the first B-term among the top 5 ranked terms (before only among
top 10) and the second B-term among the top 50 ranked terms (before only
among 200). These results confirm the findings that controlled vocabularies can
increase the heuristics’ capacities to rank the B-terms at the beginning of the
term list and, thus, provide a more efficient exploration task to the end-user of
the platform.

7 Conclusions and Future Outlook

This chapter presents the TextFlows platform together with its cross-context lit-
erature mining facility, which in combination with the term exploration engine
CrossBee supports the expert in advanced document exploration, aimed at facil-
itating document retrieval, analysis and visualization. The combination of the
two systems forms a creativity support tool, helping experts to uncover not yet
discovered relations between seemingly unrelated domains from large textual
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databases. As estimating which terms have a high bisociative potential is a
challenging research question, we proposed a complex methodology which was
developed as a pipeline of natural language processing an literature based dis-
covery components in the TextFlows platform. The visual programming user
interface of TextFlows not only enables the user to tailor the methodology steps
to his own needs but also allows experiment repeatability and methodology reuse
by other users and developers.

This chapter contributes also the evaluation of a number of specially designed
heuristic functions that provide a bisociation score quality estimate for each
term. These base heuristics can be—based on the type of term features they
exploit—divided into the following sets: frequency based, TF-IDF based, sim-
ilarity based, and outlier based. Another contribution is the development of
the improved ensemble-based heuristic, which employs a set of base heuristics
to ensure robustness and stable performance across the datasets. We evalu-
ated the ensemble based methodology on two domains, migraine-magnesium
and autism-calcineurin, showing that the proposed methodology substantially
reduces the end-user’s burden in terms of the length of the term list that needs
to be inspected to find some B-terms. Furthermore, it was shown that by using
a predefined vocabulary we can increase the heuristics’ capacities to rank the
B-terms at the beginning of the term list. Indeed, by applying this approach in
the migraine-magnesium and autism-calcineurin domains we got a higher con-
centration of B-terms among the best ranked terms. Consequently, the user is
presented with a simpler exploration task, potentially leading to new discoveries.

In future work we will introduce additional user interface options for data
visualization and exploration as well as advance the term ranking methodology
by adding new sophisticated heuristics which will take into account also the
semantic aspects of the data. Besides, we will apply the system to new domain
pairs to exhibit its generality, investigate the need and possibilities of dealing
with domain specific background knowledge, and assist researchers in different
disciplines in their explorations which may lead to new scientific discoveries.

This research perfectly demonstrated the importance of the HCI-KDD [35]
approach of combining the best of two worlds for getting insight into complex
data, which is particularly important for health informatics research, where the
human expertise (e.g. a doctor-in-the-loop) is of great help in solving hard prob-
lems, which cannot be solved by automatic machine learning algorithms other-
wise [36]. There is much research in this area necessary in the future.
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towards better understanding of Autism. In: Bellazzi, R., Abu-Hanna, A., Hunter,
J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 217–226. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73599-1 29

http://dx.doi.org/10.1007/978-3-642-31830-6_2
http://dx.doi.org/10.1007/978-3-642-31830-6_24
http://dx.doi.org/10.1007/978-3-642-31830-6_24
http://dx.doi.org/10.1007/978-3-319-11812-3_12
http://dx.doi.org/10.1007/978-3-319-11812-3_12
http://dx.doi.org/10.1007/978-3-642-31830-6_23
http://dx.doi.org/10.1007/978-3-540-73599-1_29


98 M. Perovšek et al.
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Abstract. Routinely collected data in hospital Electronic Medical
Records (EMR) is rich and abundant but often not linked or analysed for
purposes other than direct patient care. We have created a methodology
to integrate patient-centric data from different EMR systems into clin-
ical pathways that represent the history of all patient interactions with
the hospital during the course of a disease and beyond. In this paper, the
literature in the area of data visualisation in healthcare is reviewed and
a method for visualising the journeys that patients take through care is
discussed. Examples of the hidden knowledge that could be discovered
using this approach are explored and the main application areas of visu-
alisation tools are identified. This paper also highlights the challenges of
collecting and analysing such data and making the visualisations exten-
sively used in the medical domain.

This paper starts by presenting the state-of-the-art in visualisation of
clinical and other health related data. Then, it describes an example clin-
ical problem and discusses the visualisation tools and techniques created
for the utilisation of these data by clinicians and researchers. Finally,
we look at the open problems in this area of research and discuss future
challenges.

Keywords: Visualisation · Big data · Clinical pathways · Data min-
ing · Knowledge discovery · Data quality · Decision making · Medical
informatics

1 Introduction

Hospitals routinely collect data related to the interaction of patients with dif-
ferent departments and medical specialties. Traditionally this information was
recorded in paper notes yet more recently there has been an increasing shift
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towards the adoption of electronic medical records, as the statistics from the
Electronic Medical Record Adoption Model (EMRAM) demonstrate (http://
himss.eu/emram), yet in many cases, researchers may still need to collate infor-
mation manually [1] and methodologies to facilitate this process are relatively
unexplored [2]. Clinical data is typically complex and may pertain to diag-
noses, admissions and discharges, prescriptions, treatments, biomarkers and
blood tests, outcomes and other clinical findings. As a result, patients leave
footprints on many hospital systems, but such prints are not often connected
to provide a pathway indicative of their journey through care, nor are they
presented at the aggregated level. In the context of important diseases such as
cancer or stroke, the journey of patients from diagnosis to outcome would pro-
vide a unique perspective that could aid clinicians to better understand disease
processes and provide valuable information on optimal treatment. Hence, an
initial challenge is to gather data from multiple EMR systems and construct
meaningful data structures that can encompass all of the relevant information
pertaining to a given patient and a given disease over time. We have named such
data structures clinical pathways and have provided a methodology to build them
[2,3]. Note that some researchers refer to clinical pathways as the standardised
and normalised therapy pattern recommended for a particular disease [4]. Other
researchers have focused on mining common pathways that show typical disease
progression based on hierarchical clustering and Markov chains [5]. Our path-
ways relate to the journey followed by the patient through care and they may
align with the recommended guidelines for a particular disease but may also
deviate from it.

Visualisations of pathways, at the individual or aggregate level, when well
presented and of high quality, could help clinicians to interact with such data
and give them a view of patients and disease progression that was otherwise
hidden away in databases. This would enable them to utilise the power of the
big data in their environment, a very topical subject which currently holds much
promise. For example, Shneiderman et al. [6] state that “while clinical trials
remain the work horse of clinical research there is now a shift toward the use of
existing clinical data for discovery research, leading researchers to analyse large
warehouses of patient histories”. The visualisation of this big data is a critical
topic and the specific subject of this paper.

In the context of medical data mining, clinical pathways, as we define them,
require consistent pre-processing techniques, innovative data mining methods
and powerful and interactive visualisation techniques. They also present the
challenges of data privacy which has to always be maintained when dealing with
patients’ data. We discuss some of these challenges and present some solutions
in this paper, particularly focusing on the visualisation aspects.

This paper is organized as follows: to ensure a common understanding we
provide a short glossary in Sect. 2; we examine work on visualisation of medical
data that is relevant in the context of the problem we present in Sect. 3; we
then provide some background information about clinical pathways, their con-
struction, their visualisation and the challenges of such an approach in Sect. 4.

http://himss.eu/emram
http://himss.eu/emram
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We then discuss the processes of visualization of aggregated pathways in Sect. 5
and their areas of application in Sect. 6. Finally, we discuss problems in the field
and conclude with prospects for the future.

2 Glossary and Key Terms

Electronic Medical Record (EMR): can be characterised as “the complete set of
information that resides in electronic form and is related to the past, present
and future health status or health care provided to a subject of care” [7].

Medical Informatics: is the interdisciplinary study of the design, development,
adoption and application of IT-based innovations in healthcare services deliv-
ery, management and planning [8]. Medical informatics is also called health care
informatics, health informatics, nursing informatics, clinical informatics, or bio-
medical informatics.

Data Mining: is an analytic process designed to explore large amounts of data in
search of consistent patterns and/or systematic relationships between variables,
and then to validate the findings by applying the detected patterns to new
subsets of data [9].

Medical Patterns: these are frequently appearing sequences of treatments, diag-
noses, etc., that are associated with unusually positive or negative outcomes [10].

Visual Analytics: denotes the science of analytical reasoning facilitated by visual
interactive interfaces [11].

DataQuality: includes (physical) quality parameters such as: Accuracy, Complete-
ness, Update status, Relevance, Consistency, Reliability and Accessibility [12].

Clinical Pathway: in the context of this paper it is defined as an ordered set of
patient-centric events and information relevant to a particular clinical condition
[3]. It can be considered as a suitable data structure for routine data extracted
from EMRs that records the actual journey of the patient for a given condition.
Others have defined it as “a map of the process involved in managing a common
clinical condition or situation” [13]. Hence in the second definition the clinical
pathway may embody the ideal or recommended pathway and enumerate regular
medical behaviours that are expected to occur in patient care journeys and may,
therefore, serve as a checkpoint for the performance of the actual pathway.

Temporal abstraction: this refers to the task of creating interval-based concepts
or abstractions from time-stamped raw data. In the context of electronic clinical
data, data summaries of time-oriented data can help for example when physicians
are scanning a long patient record for meaningful trends [14].

Clinical guidelines: are systematically developed statements designed to help
practitioners and patients decide on appropriate healthcare for specific clinical
conditions and/or circumstances [15]. They may articulate a desired clinical
pathway.
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3 State-of-the-Art

One of the main characteristics of clinical data is its temporal nature. EMRs
are composed of longitudinal event sequences which can sometimes be a
concurrent set of treatments for various conditions undertaken by a patient over
time. Another important characteristic is the complexity of the data, which can
include many different data types, support many levels of granularity and is
associated with extensive domain knowledge that may be required for context.
Additionally, the type of analysis we want to support may require techniques
that take into account individual patients, or aggregate at the cohort level. As
we are focusing on visualisation, we need to generate visual user interfaces that
can represent such complexity efficiently and effectively without overwhelming
the user. We need to provide query engines and mining methods that can deal
with the temporal and complex nature of the data with efficient interactions. We
also need to ensure that the systems produced are evaluated effectively, which is
difficult when evaluation requires the involvement of busy medical practitioners.
In this section, we review how researchers have tackled some of these problems
so far.

As a starting point, reviews and surveys on the subject of visualisation of
EMR data provide a good introduction to this topic. Turkay et al. [16] give a
recent introduction to the visualisation of large biomedical heterogeneous data
sets and point out the need for mechanisms to improve the interpretability and
usability of interactive visual analyses. They also stress the challenge of inte-
grating data from additional sources, such as the “microscopic” world (systems
biology), the “omics” world or the “macroscopic” (public health informatics)
world, as we move towards precision medicine.

Rind et al. [17] provide a survey comparing a number of state-of-the-art
visualisation research systems for EMR, and separately give examples of visu-
alisations produced by commercial systems. They also give a summary of other
reviews of this subject. Roque et al. [18] also give comparisons of the key infor-
mation visualisation systems for clinical data. Similarly, West et al. [19] provide
a systematic survey of works between 1996 and 2013. Their article is part of
a special issue dedicated to visual analytics to support the analysis of complex
clinical data [20]. Lesselroth and Pieczkiewicz [21] discuss a number of strategies
for visualising EMRs. More generically, methods for visualising time oriented
data have also been surveyed [22].

Time oriented clinical data has been considered to be important by a number
of researchers. Early work on visualisation of personal histories [23] produced a
system called Lifelines that used graphical time scales to produce a timeline
of a single patient’s temporal events. Medical conditions could be displayed as
horizontal lines, while icons indicated discrete events, such as physician consul-
tations. Line colour and thickness were used to illustrate relationships or the
significance of events. Application of Lifelines to medical records was further
explored in [24]. Lifelines is the basis for many other systems that visualise
time oriented clinical data. The evolution of Lifelines produced a system called
Lifelines2 [25] that displays multiple patient histories aligned on sentinel events
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to enable medical researchers to spot precursor, co-occurring, and after-effect
events.

Further work by the same team resulted in LifeFlow [26], which presents a
prototype for the visualisation of event sequences involving millions of patients.
LifeFlow was one of the first systems to provide an overview and enable the
answering of questions such as “what are the most common transfer patterns
between services within the hospital”. Hence Lifeflow attempts to summarise
all possible sequences, together with the temporal spacing of events within the
sequences. It provides one visual abstraction that represents multiple timelines
so it addresses the problem of aggregation. In terms of the interaction capability,
which has become a key issue in visualising clinical information, LifeFlow [26]
provides zooming, sorting, filtering and enables further exploration of events by
hoovering the cursor over parts of the visualisation. It also enables the user to
select non-temporal attributes as the basis for aggregation. This enables com-
parison between different groups.

Shahar et al. [14] also worked with temporal clinical data. In particular they
discuss the extraction of temporal abstractions from electronic data. Such tempo-
ral abstractions combine a domain knowledge-base with interval-based concepts.
A quoted example is the abstraction of Bone Marrow toxicity from raw individual
hematological data. The domain knowledge in this case would establish the con-
text such as following Bone Marrow Transplantation using a particular therapy
protocol. A simpler abstraction may be fever from multiple measures of raised
temperature over time. Temporal abstractions can support intelligent decision-
support systems or be used for the monitoring of clinical guidelines. However,
Shahar et al. argue that temporal abstractions can only be truly useful in a clin-
ical setting if they are accompanied by interactive visualisation and exploration
capabilities which can also take into account medical domain knowledge. For
this, they developed a system called KNAVE-II, a development of a previous
system [27]. The work does not provide, however, capabilities for aggregation of
patients according to some dynamic criteria. In further work [28], the authors
provided such capability under a system called VISITORS.

The issue of introducing context when evaluating patterns in a clinical setting
is also important in other scenarios. For example, Duke et al. [29] present a
system for incorporating knowledge such as a patient’s relevant co-morbidities
and risk factors when evaluating drug-drug interactions to improve the specificity
of alerts.

Analysis based on comparison of cohorts is also prevalent. Huang et al. [30]
describe a system for exploratory data analysis through a visual interactive envi-
ronment to show disease-disease associations over time. The system simplifies
visual complexity by aggregating records over time, clustering patients and filter-
ing association between cohorts. The main visualisation methods used to study
disease trajectories over time are Sankey diagrams [31].

Wong et al. [32] proposed INVISQUE, an interactive visualisation to support
both medical diagnosis and information analysis and discussed the key issues
that need to be addressed when designing interactive visualisation systems for
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such purposes. CareVis [33] is another system, specifically designed to provide
visualisation of medical treatment plans and patient data, including contextual
information on treatment steps. It utilises a language called Asbru, designed
to represent clinical guidelines and protocols in eXtensible Markup Language
(XML). Challenges of the data include hierarchical decomposition, flexible exe-
cution order, non-uniform element types and state characteristics of conditions.
CareVis utilises multiple integrated views [34] to represent logical and temporal
aspects of the treatment data. The views can be coupled with colour, brushing
and navigation propagation, hence elements in one view can be linked to the
same elements in the other views allowing for interaction with the visualisation.

Another recent work using Asbru, following from CareVis, and specifically
designed to analyse compliance with clinical guidelines is presented by Bodesin-
sky et al. [35]. The authors use visualisation to integrate information about
executed treatments with Computer Interpretable Guidelines. Combining views
from observation, treatment and guidelines is becoming increasingly important
in the clinical setting.

Very recent work on visualisation of temporal queries, which enables clini-
cians to extract cohorts of patients given temporal constraints is presented by
Krause et al. [36]. Retrospective cohort extraction in the traditional way involves
a long and complex process and requires involvement from doctors and SQL
query specialists. SQL queries do not cater well for temporal constraints and
query engines may not optimise well such queries, making the process difficult
and inefficient. A system called COQUITO is proposed as a visual interface
for building COhort QUeries with an ITerative Overview for specifying tempo-
ral constraints on databases. The query mechanism is implemented by a visual
query user interface and provides real-time feedback about result sets. It also
claims to be backed by a Temporal Query Server optimized to support complex
temporal queries on large databases. Another system for constructing visual
temporal queries is DecisionFlow [37]. DecisionFlow enables interactive queries
on high-dimensional datasets (i.e. with thousands of event types).

Given the amount of complex data that needs to be visualised in the context
of medical systems, one common problem is the dense display that can result and
the difficulty this represents for the user. For example, Kamsu-Foguen et al. [38]
discuss the need for intelligent monitoring systems that can help users with the
massive information influx. This may require the capturing of domain knowledge
to form a physiological/process model as part of the expert interface. It may
also require the use of machine learning to improve interaction of machines
and humans (e.g. reducing data input by inducing entries based on previous
interactions). The software proposed can integrate visual and analytical methods
to filter, display, label and highlight relevant medical information from patient-
time oriented data. At the same time, it can learn from interactions between
medical staff and the system in a particular context, such as modification of
a prescription. It could then be used for instance to capture domain expert
knowledge in respect to medical guideline compliance.

An issue that is also now receiving attention is the efficiency of visual analytic
algorithms as dataset grows. According to Stolper et al. [39] “in the context of
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medical data, it is common to find datasets with tens of thousand of distinct
type of medical events, thousands or even millions of patients and multiple years
of medical data per patient.” There are typically delays in the workflow of ana-
lysts launching queries, inspecting results, refining queries and adjusting para-
meters and relaunching queries. In this scenario, Stolper et al. propose the use
of progressive visual analytics that enable analysts to explore meaningful partial
results of an algorithm as they become available and interact with the algorithm
to prioritise subspaces of interest. The interface also enables the user to adjust
parameters as algorithms are running, re-start the running but also store results
obtained until that point so that the user can resume previous run if required.

There are parallels between information visualisation and data mining [40].
Visual Data Mining can integrate the human in the data exploration process and
can be seen as a hypothesis generation process based on visualisations [41]. Data
Mining analysis is also being applied to clinical data in conjunction with visu-
alisation techniques in order to extract knowledge, for example by identifying
outliers and deviations in health care data [42]. For clinical pathways, pathway
mining is also prominent and often associated with process mining using clinical
workflow logs to discover medical behaviour and patterns [4]. Perer and Wang
[10] have integrated frequent pattern mining and visualisation so that the result-
ing algorithms can handle multiple-levels of detail, temporal context, concur-
rency and outcome analysis and visualise the resulting frequent event sequences
from EMR. This has resulted in a prototype system, Care Pathway Explorer
[43], which can correlate medical events such as diagnosis and treatments with
patient outcome. The system has a user-centric visual interface which can rep-
resent the most frequent patterns mined as bubbles, with the size corresponding
to number of times a particular event occurs. It also uses Flow Visualisation to
see how the bubbles connect to each other.

Measuring the quality of the data to be used in an important issue, as rou-
tinely collected data can be of variable quality. It would be very useful for any
system that works with EMR to provide some quality measurements that can be
used for the purposes of including or excluding records for further queries and
clinical studies. For example, Tate et al. [44] elude to work in this area as part of
their attempt to construct a system that enables querying of large primary care
databases to select GP practices for clinical trials based on suitability of patient
base and measures of data quality.

Another important topic is the visualisation of biological and “omics” data
[16]. In systems biology, Jeanquartier et al. [45] carried out a large survey of data-
bases that enable the visual analysis of protein networks. Systems such as the
NAViGaTOR 3 extend the basic concept of network visualisation to visual data
mining and allow the creation of integrated networks by combining metabolic
pathways, protein-protein interactions, and drug-target data [41]. Other tech-
niques, such as multilevel glyphs, have been proposed as a multi-dimensional
way to visualise and analyse large biomedical datasets [46] and there is still a
high demand for specialized and highly integrative visual analytic approaches
in the biomedical domain [40], particularly as we move towards personalised
medicine.
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The evaluation of information visualisation tools is one of the open challenges
in this area. Often carried out by controlled experiments and the production of
usability reports, this are however described by Shneiderman and Plaisant [47]
as helpful but falling short of expectations. They describe a new paradigm for
evaluation in the form of Multi-dimentional In-depth Long-term Case studies
(MILCs) that may begin with careful steps to gain entry, permission and partic-
ipation of subjects and be followed by intense discussions which provide key data
for evaluations. As MILCs provide multiple methods, given multiple perspectives
on tool usage, they are presented as providing a compelling case for validity and
generality. However, they would require substantial investment in longitudinal
ethnographic studies of large groups which may not be forthcoming.

In the context of evaluation, Pickering et al. [48] recently proposed a step-
wedge cluster randomised trial. This was to test the impact of their system,
AWARE (Ambient Warning and Response Evaluation), on information manage-
ment and workflow on a live clinical intensive care unit setting. Such trials are
not commonly conducted, but can give real measures of efficiency of data utili-
sation and may be a good method of evaluation. They outcome was connected
with time spent in data gathering with and without the system and measures
were gathered by direct observation and survey.

4 Visualisation of Patient-Centric Pathways

The development of patient-centric pathways and related visualisation tools was
first conceptualised as a way to plot and study biomarker trends over time for
individual patients with a specific condition. This was carried out in a case
study on prostate cancer, where the Prostate Specific Antigen (PSA) was the
biomarker test used. The PSA is typically used to measure activity of the cells in
the prostate, both benign or malignant, and guidelines for the management and
screening or prostate cancer suggest that the PSA test can be read at certain
time points to help understand disease progression. As a result, a typical patient
will have several PSA readings during their journey through care and in their
pathways.

4.1 Pathways

A pathway is comprised of activities each containing the patient identifier, the
event code from a pre-defined dictionary of codes, the time when the activity
occurred (in days, zeroed at diagnosis date) and the value pertaining to that
specific activity. For example, activity A4 at time 105 (days after diagnosis)
describing the surgical removal of the prostate (event code S) for patient id
8 would be described as A4 = (8, 105, S, “M61.1”. In this example, the value
pertaining to surgical activity code S is the procedure code for the type of
surgical operation. We used the OPCS 4.5 Classification of Interventions and
Procedures coding and, in this case, code M61.1 refers to a total excision of
prostate and its capsule. The activity in this example would, in turn, be part
of a pathway, illustrated in Table 1. The pathway data model is defined in more
detail in [3].
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4.2 Development of a Graph Plotting System

A first support system was developed to plot the biomarker trends based on
the pathways data model [3]. This allowed the computation of charts showing
the complete PSA trend for each patient in the dataset. The resulting charts
were then divided by treatment type and this provided interesting results and
posed additional clinical questions. Analysis of the charts, working together
with the clinical team, was critical to determine further system requirements
and future developments, including a novel graphical representation of path-
ways data, described later. The data model can be revisited and data elements
can be added or removed, making this approach reproducible in other clinical
domains and extensible to different levels of granularity.

The inspection of PSA trend plots made clear that these should contain addi-
tional information in order to explain, for example, why the biomarker values
dropped from abnormal to normal levels at particular points in time. For exam-
ple, the most significant drops in PSA should be associated with a particular
radical treatment. This led to the development of a more sophisticated visuali-
sation system, capable of interpreting the pathways and transforming them into
meaningful yet concise graphical representations. The purpose of such visual-
izations is to summarise complex clinical information over large periods of time
into a single graph.

A graph generating system was developed together with the pathways engine,
and comprised an architecture similar to that of the Model-view-controller [49]
(MVC). In this implementation, the architecture, specific for building graphical
representations of pathways, encompasses the following elements with specific
purposes:

– the Data Model, responsible for maintaining the definitions and rules for the
interpretation of the pathways data using an extended dictionary that contains
information on how events are drawn;

– the Plot Engine, a controller that communicates user or system requests and
is responsible for the interaction between the model, the view and the system;

– the Graphical User Interface (containing the view), that receives instructions
based on the model and generates a graphical representation of a pathway.
This dynamic interface can also allow users to interact with the graphs by
communicating information back to the engine.

Figure 1 depicts the architecture of the system. Information available from a
Data Store is transformed according to definitions set out by the Data Model
and it is then fed to the Plot Engine. In turn, the engine utilises rules on how
to draw the graph that is ultimately sent to the Graphical User Interface.

4.3 Graphical Representation

Figure 2 shows the layout of a graph, or pathway plot, and the areas of the graph
where information is displayed. The y-axis represents the biomarker values (in
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Table 1. Annotated example of a pathway for patient id 8 with 7 activities and 4
distinct data elements (code P - PSA test, D - Diagnosis, G - Histological Gleason
Grade and S - Surgery).

Pathway Activity Time Code Value Description

P = 〈
A1 = (8,−51, P, 13.6),
A2 = (8, 0, D, 2),
A3 = (8, 1, G,“4 +3”),
A4 = (8, 105, S,“M61.1”),
A5 = (8, 106, G,“3 +4”),
A6 = (8, 183, P, 0.05),
A7 = (8, 456, P, 0.05)
〉

A1 −51 P 13.6 This patient’s first activ-
ity was a PSA test (values
in ng/ml). In this case the
reading was abnormal (>4
ng/ml) 51 days before diag-
nosis

A2 0 D 2 Diagnosis event, value
shows tumour staging. In
this case stage 2 indicates
the tumour is confined
to the prostate capsule.
At this point, a biopsy
was undertaken (poorly
recorded in our EMR
systems at the time)

A3 1 G 4 + 3 The result of the histo-
logical assessment of the
Gleason grade, that is, the
degree of cell differentia-
tion, in this case a Gleason
sum of 7

A4 105 S M61.1 The patient then underwent
surgery, with an OPCS
procedure code of M61.1
indicating total excision of
prostate and its capsule

A5 106 G 3 + 4 The revised Gleason grade
with a more complete sam-
ple taken from the surgical
operation was still a Glea-
son sum of 7 but now pre-
dominantly showing more
of type 3 than type 4

A6 183 P 0.05 Post-treatment PSA test
was carried out showing a
value less than 0.1, denot-
ing effective treatment
in reducing the amount
of PSA produced in this
patient

A7 456 P 0.05 Follow-up PSA test reaf-
firming that the treatment
was successful around a
year after the treatment
was performed
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Fig. 1. Architecture of the graph generating system.

this case, PSA) and the x-axis represents time, in days, zeroed at diagnosis date.
The biomarker readings are plotted in the center and events (such as treatments
or death) are marked with a vertical line (Line).

Treatments and other events can be colour-coded and, above the plot, the
corresponding pathway code (e.g. S for Surgery) is shown in the Line headings
area. The footer area displays additional information pertaining to events (such
as Gleason grades, i.e. the level of cell differentiation seen in the biopsy, or
patient age at diagnosis) and the right column area on the right of the plot
displays additional information on the patient that is not time-dependent, such
as deprivation score, additional diagnoses or alerts.

The graph generating system includes additional interaction capabilities and
analysis tools. Rather than relying on static graphical representations of the
pathways, the MVC architecture embedded within the system, produces real-
time plots of the pathways, as they are read from the database. Dynamic inter-
actions were also introduced enabling users to zoom in, re-scale and navigate the
pathway plot. This is particularly important as the scales of the plots may render
some drawn objects too close to each other. A mechanism for graphical conflict
resolution (i.e. avoiding overlapping elements) was also introduced. Examples of
pathway plots produced by this system are given in Sect. 6.
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Fig. 2. The schematic layout of a pathway plot.

5 Visualization of Aggregated Pathways

We now explore how to aggregate pathways in a visualisation. The pathways data
model enables the production of succinct sequences of activity codes. Truncat-
ing the sequence strings (i.e. collapsing sequentially repeating elements into one)
enables the aggregation of pathways with similar sequential activities. We devel-
oped a web-based software, called ExploraTree, to produce and display an inter-
active tree of the full cohort of prostate cancer patients based on the available
data elements. The technologies used include HTML, CSS, JSON, JavaScript
and the InfoVis toolkit. The pathways engine was used to produce the correct
data format for a tree representation using JSON and the JavaScript InfoVis
toolkit.

In order to accurately aggregate patients with similar sequences of activities,
new data elements were introduced in the data dictionary. In the core data
dictionary, a patient’s death was encoded by only one data element (code Z).
In the new encoding, patients who died of prostate cancer were kept with code Z
while those who died of other causes were identified with code Y and those who
survived, with code X. This ensures that all patients have a terminal element
indicating whether they are alive at the end of their follow-up period. Because in
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this cohort not all patients are followed-up the same amount of time, all terminal
elements (X,Y,Z) were given additional child nodes that represent the amount
of time the patients were followed-up in years (1 to 5 and ‘+’ for over 5 years).
The aggregated pathways tree is illustrated in Fig. 3.

Figure 3 shows the cohort tree and highlighted sequence 〈P,D,H, P,X〉, that
is, patients who started their pathway with one or more PSA tests (code P,
n = 1596), followed by a diagnosis of cancer (code D, n = 1502), hormone therapy
as first treatment (code H, n = 747), other PSA test(s) (n = 557) and finally
were last seen alive in this cohort (code X). 90% of patients with the highlighted
pathway (n = 266) were followed-up 3 or more years and one patient was followed-
up less than one year.

This aggregation also allows comparing patients that followed similar path-
ways but who died of prostate cancer (〈P,D,H, P, Z〉). In the case of patients
with a sequence prefix 〈P,D,H, P 〉, 9% (n = 48) died of prostate cancer (code
Z), 13% died of other causes (code Y), 48% survived, and the remaining patients
continued with other activities (H - Hormone Therapy, W - Active Surveillance,
R - Radiotherapy, S - Surgery).

Visualising the cohort in this manner is important as it enables the selection
of subsets of data for specific clinical studies as well as an inspection of the
sequential routes that patients take through care. The sequence highlighted in
Fig. 3 corresponds to the most common route (with most support on each node
sequentially).

Fig. 3. CaP VIS ExploraTree software displaying a selected pathway (patients with the
same sequential activities). The selected pathway nodes are highlighted and terminal
nodes are marked as red for patients that died and green for patients that were last
seen alive in this cohort. (Color figure online)
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It is possible to add more meaning to the visualisation and the pathways by
introducing additional data elements and remodeling the data dictionary. For
example, instead of using a single code for diagnosis it is possible to have a
breakdown of the tumour staging or Gleason grade at diagnosis so as to group
similar sequences with this information instead. However, due to the small size
of this cohort, increasing granularity in the pathways dictionary would result in
fewer patients in each node. For this reason no additional changes were made to
the pathways dictionary used for the ExploraTree, but our approach is flexible
enough to allow such modifications.

6 Application Areas

This section lists four broad areas where visualisation tools have been applied
and are expected to be most useful. Pathway plots illustrating relevant examples
are given for each of the areas.

6.1 Decision Support and EMR Enhancement

Recommendations for further research in clinical decision support and expert
systems [50] suggest that software that integrates complex data and generates
graphical representations is needed to support the analysis and understanding
of the data. Visualisations could also be used to enhance EMR systems as these
do not typically provide visually meaningful summaries of patient-centric data.

The pathways software was developed so that additional clinical information,
such as histopathology text reports, descriptive statistics, and graphical repre-
sentation could all be available in one place. This created an environment that
enables evidence based medicine, supports decision making. Clinicians are able
to retrieve similar cases by searching the desired pathway sequences and visually
inspect them, thereby gaining insights to support their decisions. In addition,
other information derived from domain knowledge such as PSA kinetics (how
fast PSA readings are doubling in time and rate of increase, both predictive of
outcome) can be shown in the developed system before or after diagnosis and
treatment. The flexible pathways data model has also enabled other aspects to
be incorporated. For example, rules can be applied to measure adherence to
guidelines.

Figure 4 shows four pathway plots for the same patient, a 69 year old diag-
nosed with tumour stage 3 prostate cancer and a Gleason sum of 9. Plot A
shows the original plot where the PSA is seen to have dropped after the patient
underwent hormone therapy (code H). The thick red line at the end of the path-
way denotes when the patient died. When producing this pathway’s plots, the
dictionary was extended so that the treatments retrieved from the local cancer
registry (and additional source of validation data) appear with a suffix “1” in
the vertical lines’ headings (code H1). In this case, regarding the date when the
patient first commenced hormone therapy, a time discrepancy of 51 days was
seen between the two data sources, where the hospital recorded the later date.
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Fig. 4. Four pathway plots of the same patient (175) with sequence 〈P,D,H, P 〉. Plot A
shows the original plot with the PSA trend alone. Plot B shows the same information as
plot A with additional Alkaline Phosphatase readings and their normal range (shaded
area). Plot C shows Creatinine readings and Plot D shows the same information and
hospital events (code K). (Color figure online)

Hence this serves to inform on data quality issues (further discussed in the next
section). The discrepancy in dates in this case did not introduce uncertainty as
the effect of the treatment is seen in the subsequent PSA readings.

The pathway plot in Fig. 4 then shows a PSA relapse in the last two readings.
Shortly after the last PSA reading, the patient died of a pulmonary embolism
(ICD I26) and prostate cancer (ICD C61) as a secondary condition leading to
death. Shortly before death the patient was diagnosed with a secondary and
unspecified malignant neoplasm of inguinal and lower limb nodes (ICD C77.4).
This was revealed by the additional data collected on hospital episodes and is
presented in the visualisation.

Figure 4 Plot B shows an additional element of the pathway, a blood test,
Alkaline Phosphatase (ALP) and its normal range in the shaded area. When
a patient’s advanced cancer metastasises to the bones, ALP can be increased
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due to active bone formation. Indeed studies have shown that prostate cancer
patients with a serum ALP reading of more than twice the normal upper limit
had a significantly lower survival rate than their respective counterparts [51].
This is observed in this pathway, although, an increased ALP could be due to
other reasons such as an obstructed bile duct or liver disease.

Lastly, plots C and D supplement the pathway with another blood test, Cre-
atinine. Creatinine has been reportedly associated with more advanced disease
and decreased survival [52]. However, any condition that impairs the function
of the kidneys is likely to raise the creatinine levels in the blood and act as a
confounding factor. In plot C, a flare in the values of Creatinine readings was
observed within the first 3 months. By introducing additional data elements
from the hospital episode statistics in plot D, a hospital episode (marked with
pathway code K) was found with an associated primary diagnosis of acute kid-
ney failure. Additional detail on episodes is obtainable by interacting with the
visualisation. Although a kidney stone was not coded in this (or any) episode
for this patient, a catheterisation of the bladder was performed during the same
hospital visit, and an inspection of the patient notes confirmed a kidney stone
was the cause of the acute kidney failure. The second hospital episode in this
pathway, also marked with code K, was for the removal of the catheter, and the
last hospital episode included a diagnosis of a secondary and unspecified malig-
nant neoplasm of inguinal and lower limb nodes and a pulmonary embolism,
caused by the first. This level of information that can be added to the pathway
would also allow, for example in other cases, to evaluate renal impairment and
prostate cancer. Indeed, in this respect, it has been reported that renal impair-
ment in men undergoing prostatectomy represents substantial and unrecognised
morbidity [53].

The introduction of additional detail helped to explain the Creatinine flare
for this patient and provided interesting insights that would otherwise not be
easily explored. The pathway plots provided sufficient information for the inter-
pretation of the pathway yet highlighted potential issues with the quality of the
data. Indeed discrepancies in treatment dates across data sources may intro-
duce additional challenges. As such, it is important to be able to differentiate
between pathways that have sufficient information and provide an accurate rep-
resentation of the patient’s history and those that do not. The evaluation of the
completeness and utility of the generated pathways for investigating biomarker
trends is explored in more detail in the next section.

6.2 Data Quality

Methods for the evaluation of data quality dimensions are lacking [54] and
visualisation tools can play an important role in quality assurance. Since the
development of the pathways framework, one of the first and foremost concerns
pertained to the quality of the data being visualised. For the first time since
EMR systems were introduced in our hospital, it was possible to visualise inte-
grated data and observe inconsistencies in the ways in which information had
been recorded over time. By expanding the data dictionary to include additional
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information from an external data source, the regional Cancer Registry, it was
possible to identify incongruent data across sources.

Figure 5 shows a pathway plot of a patient with Gleason grade 7 prostate
cancer who underwent a radical prostatectomy. Information from the Cancer
Registry was obtained to validate treatment data and this is included with code
S1. In this case, the dates and details of the procedure are in agreement and
this patient could easily pass for having a complete record. When plotting the
pathway, however, a visual inspection highlighted a significant drop in the PSA
values for which there is no clear justification based on the information available.
It is unlikely that the PSA values dropped below the 4 ng/ml normal threshold
without an intervention. This means that either the treatment date is incorrect
in both sources or there is missing information as the patient is likely to have
received treatment from another provider while the blood tests continued to be
performed by the same laboratory. In this case the plausibility and concordance
data quality dimensions were assessed with this visualisation.

Fig. 5. A Pathway plot for a patient diagnosed with Gleason grade 7 prostate cancer
who underwent a radical prostatectomy (code S).
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Other data quality examples include mismatch of treatment dates (as seen
earlier in Fig. 4) and missing or implausible information. Based on the pathways
framework, rules can be devised to inspect individual pathways and determine
how complete they might be. For example, in previous work [3] rules pertaining
to the availability, positioning and substantiation of the drops in PSA were pro-
posed to determine which pathways would be eligible for further clinical research.

6.3 Cohort Selection, Analysis and Research

Two of the preliminary interests in developing graphical representations of path-
ways were to compare the shapes of the biomarker curves and also to be able to
aggregate patients with similar features. Having pathways expressed as sequences
of activity codes has helped to develop the ExploraTree tool, seen in Fig. 3.
Depending on how the data points and outcomes are modelled, the trees pro-
duced will have varying degrees of granularity and clinical interest. In the exam-
ple shown earlier, ExploraTree is aggregating patients with similar data points
appearing sequentially in time. However, codes for PSA tests (P) could be further
broken down into abnormal (say, A) and normal (N) PSA values and this would
create more clinically meaningful groups. The ExploraTree software can then
help to select relevant cohorts for research, to determine if there are enough mem-
bers in a particular group of interest and to facilitate recruitment for prospective
studies.

Pathway plots allow more detailed and complex information to be presented
in a single graphical representation. This enables researchers to observe sev-
eral data points together and to study new outcomes. For example, Fig. 6 plots
Haemoglobin in addition to the PSA and shows normal perioperative bleeding
when the patient underwent surgery. This information is not usually examined
together yet it enables the assessment of the effect that surgical procedures have
on patients and also, the length of time it takes for them to recover after surgery.
The latter is an interesting current research question that arised from the visual
inspection of the pathways. It is also possible to determine and study different
outcomes such as hormone escaped, development of metastases or biochemical
recurrence after treatment. Research on services and adherence to guidelines is
also possible using the pathway framework [3]. Integration of clinical EMR data
with “omics” data is also a topic that should deserve attention in future devel-
opments. Pathways with this additional information can be more valuable for
precision medicine and their visualisations should also help take knowledge of
clinical practice out of the hospitals and bring it to biologists, geneticists and
other scientists.

6.4 Knowledge Discovery Support

Visualisation tools are often overlooked when working on knowledge discovery
problems in healthcare. One of the most common barriers in machine learning in
healthcare is that the models and results produced are not intelligible and work
in this area is becoming more topical [55]. Decision trees continue to be the gold
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standard of intelligible models and more work is needed to create visualisation
tools that describe complex models.

Data and process mining techniques are often suggested for the analysis of
workflows and pathways, however, most of these techniques have been found
unsuitable when applied to heterogeneous routine clinical data. The evaluation
of the quality of event logs in process mining relies on trustworthiness (recorded
events actually happened), completeness and well defined semantics [56]. These
can be achieved by selecting pathways with required data points using the path-
ways framework. The visualisation system allows for the close inspection and
contextualisation of pathways, illustrating particular paths with similar features.
It has been reported that a combination of visual analytics with automated
process mining techniques would make possible the extraction of more novel
insights from event data [56] and further work in this area is needed.

The pathways framework through its graphical representations could also be
an interesting way of representing a model, whereby an ideal pathway would
be presented and then compared to actual pathways and deviation could be

Fig. 6. A Pathway plot showing the effect of a prostatectomy in the Haemoglobin
and PSA readings. The green shaded area depicts the normal range for Haemoglobin.
(Color figure online)
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measured, although further work in this area is required. Additional analysis of
the shape of the curves represented (for example, clustering of biomarker trends)
is also possible using this framework and some work has already been done in
this area using fusion methods [57].

7 Open Problems

Some of the main problems relating to the improvement of health and healthcare
with interactive visualisation methods are reviewed by Shneiderman et al. [6],
Aigner et al. [58], Caban and Gotz [20], and West et al. [19]. Some of these
challenges arise because healthcare must become more “predictive, preemptive,
personalised and participative” [6]. Although the efforts described in Sect. 3 and
our own efforts are directed to some of this challenges, most systems described to
not provide completely satisfactory responses. The open problems summarised
from the papers above and from the work presented here include:

– An enduring problem in visualising clinical data is the scale and complexity
of the data. Data is not only vast in terms of the number of records but it also
includes several different data types (e.g. numeric, categorical, text, images),
semantic structures inherent of time data such as cycles and re-occurrences
and intertwining conditions and treatment processes. Visual techniques must
analyse data in the context of this complexity and summarise it in order to
assist busy clinicians with getting timely information in the right format. This
requires tools that enable the user to see the overall perspective with powerful
yet simple visualisations and then look for anomalies and drill for details of
predictable risks early.

– The systems must be capable of scaling up to cohort analysis. Visualising
one patient’s trajectory can enable monitoring of treatment process for that
particular patient. However, it is often necessary to scale the analysis to a
cohort of patients as clinicians can then compare responses of diverse patients
and assess effectiveness of therapy in the larger scale.

– Context and domain knowledge is very important in clinical decision making
so systems must be able to efficiently represent domain knowledge and reason
with it to make temporal abstractions, to look at conditions in the context
of many clinical parameters such as co-morbidities, medication and history. It
may also be desirable to compare cohorts across clinicians, time periods and
geographical locations.

– It is increasingly necessary to provide systems that can facilitate multi-
disciplinary decision making. Such teams may involve nurses, social workers,
physicians and patients. Hence the presentation of knowledge, flexible query-
ing and analysis should accommodate the demands of multiple users with
different perspectives and needs. Visualisation tools should play an important
role in delivering and interacting with patient data.

– It is often necessary to understand similarity in the context of heterogeneous
data but this is not a well developed area of research. Data mining tasks
such as classification, clustering, association rules and deviation detection need
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to be developed to work with heterogeneous temporal data and to produce
intelligible results and meaningful visualisations.

– Data that is routinely collected is plagued by missing values, erroneous values
and inaccuracies. Systems that analyse such data must be well equipped to
deal with uncertainty. However, uncertainty is a well known open problem in
computing. Issues of data quality take their own dimension in a time oriented
scenario and can require specific treatment [59]. It is necessary to pre-process
the data to uncover data quality issues and exclude dubious data from further
analysis. It is also important to quantify data quality dimensions by producing
standard measures that can be presented (visually) alongside the data. In
addition, presentation of uncertainty in a meaningful way, for example in the
context of risk, is still an open research area.

– Currently, according to Kopanitsa et al. [60], there is a gap in transforming
knowledge from domain model to interface model. Hence there is a need to
turn hard-coded user interfaces into generic methods by a process of stan-
dardisation. Standardisation exists for data storage and exchange and they
provide a good basis for further efforts. This may also make data more acces-
sible to patients, which may be an important consideration for personalised
and participative medicine.

– The design of better interfaces was highlighted as a challenge early on [61] and
continues to be an open issue. In particular application of cognitive engineering
methods [62] may be beneficial for informing design and for uncovering infor-
mation needs in clinical systems. There is a requirement for analysing and
understanding the process of visual interaction, for example by using logs.
Interaction with the visualisation tools is key and must cater for different
types of users with different priorities as already discussed.

8 Conclusion and Future Outlook

A picture can arguably be worth a thousand words and in the case of the path-
ways, a pathway plot is worth, on average, 188 activities using our prostate
cancer cohort. For immediate decision-making by clinicians at the point of care,
information should be brief and easily interpreted [63] and visualisation tools, if
well designed, have a great potential to become part of clinical practice by sum-
marising complex activities in one graphical representation. However, optimal
visualisation of clinical data is complex and several open problems remain.

In this paper, clinical pathways were used to demonstrate the potential
of visualising routinely collected data using a case study on prostate cancer.
The underlying data model enables the summarisation and extension of path-
ways as well as the aggregation of similar sequences. It is also possible to capture
and plot pathways with concurrent elements and to develop algorithms to fur-
ther explore the data and investigate quality issues. Furthermore, the pathways
framework has facilitated interpretation, communication and debate between
experts. More work is now needed to assess similar tools in other settings and
domains. In this paper, four key areas that hold promise in the future of visual-
isation in healthcare were identified: decision support and EMR enhancement;
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data quality; cohort selection, analysis and research; and knowledge discovery.
Further work in each of these areas will bring clinical practice closer to the best
available evidence and improve the quality and utility of the big data that is
available in EMR systems.
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18. Roque, F.S., Slaughter, L., Tkatšenko, A.: A comparison of several key informa-
tion visualization systems for secondary use of electronic health record content.
In: Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and
Data Mining of Health Documents, Louhi 2010, Stroudsburg, PA, USA, pp. 76–83.
Association for Computational Linguistics (2010)

19. West, V.L., Borland, D., Hammond, W.E.: Innovative information visualization of
electronic health record data: a systematic review. J. Am. Med. Inform. Assoc.
22(2), 330–339 (2014)

20. Caban, J.J., Gotz, D.: Visual analytics in healthcare – opportunities and research
challenges. J. Am. Med. Inform. Assoc. 22(2), 260–262 (2015)

21. Lesselroth, B.J., Pieczkiewicz, D.S.: Data visualization strategies for the electronic
health record. In: Berhardt, L.V. (ed.) Advances in Medicine and Biology, vol. 16,
pp. 107–140. Nova Science Publisher Inc. (2012)

22. Aigner, W., Miksch, S., Schuman, H., Tominski, C.: Visualization of Time-Oriented
Data. HCI, 1st edn. Springer, London (2011)

23. Plaisant, C., Milash, B., Rose, A., Widoff, S., Shneiderman, B.: Lifelines: visualizing
personal histories. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 1996, pp. 221–227. ACM, New York (1996)

24. Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B.: Life-
lines: using visualization to enhance navigation and analysis of patient records. In:
Proceedings of the AMIA Symposium, pp. 76–80 (1998)

25. Wang, T.D., Plaisant, C., Quinn, A.J., Stanchak, R., Murphy, S., Shneiderman,
B.: Aligning temporal data by sentinel events: discovering patterns in electronic
health records. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2008, pp. 457–466. ACM, New York (2008)
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Abstract. Segmentation of focal (localized) brain pathologies such as
brain tumors and brain lesions caused by multiple sclerosis and ischemic
strokes are necessary for medical diagnosis, surgical planning and disease
development as well as other applications such as tractography. Over the
years, attempts have been made to automate this process for both clini-
cal and research reasons. In this regard, machine learning methods have
long been a focus of attention. Over the past two years, the medical
imaging field has seen a rise in the use of a particular branch of machine
learning commonly known as deep learning. In the non-medical computer
vision world, deep learning based methods have obtained state-of-the-art
results on many datasets. Recent studies in computer aided diagnostics
have shown deep learning methods (and especially convolutional neural
networks - CNN) to yield promising results. In this chapter, we provide
a survey of CNN methods applied to medical imaging with a focus on
brain pathology segmentation. In particular, we discuss their character-
istic peculiarities and their specific configuration and adjustments that
are best suited to segment medical images. We also underline the intrin-
sic differences deep learning methods have with other machine learning
methods.

Keywords: Brain tumor segmentation · Brain lesion segmentation ·
Deep learning · Convolutional Neural Network

1 Introduction

Focal pathology detection of the central nerveous system (CNS), such as lesion,
tumor and hemorrhage is primordial to accurately diagnose, treat and for future
prognosis. The location of this focal pathology in the CNS determines the
related symptoms but clinical examination might to be sufficient to clear iden-
tify the underlying pathology. Ultrasound, computer tomography and conven-
tional MRI acquisition protocols are standard image modalities used clinically.
The qualitative MRI modalities T1 weighted (T1), T2 weighted (T2), Proton
c© Springer International Publishing AG 2016
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density weighted (PDW), T2-weighted FLAIR (FLAIR) and contrast-enhanced
T1 (T1C), diffusion weighted MRI and functional MRI are sensitive to the
inflammatory and demyelinating changes directly associated with the underlying
pathology. As such, MRI is often used to detect, monitor, identify and quantify
the progression of diseases.

For instance, in multiple sclerosis (MS), T2 lesions are mainly visible in white
matter (WM) but can be found also in gray matter (GM). MS lesions are more
frequently located in the peri-ventricular or sub-cortical region of the brain.
They vary in size, location and volume but are usually elongated along small
vessels. These lesions are highly heterogeneous and include different underly-
ing processes: focal breakdown of the BBB, inflammation, destruction of the
myelin sheath (demyelination), astrocytic gliosis, partial preservation of axons
and remyelination. Similarly, in Alzheimer’s disease (AD), white matter hyper-
intensity (WMH) which are presumed to be from vascular origin, are also visible
on FLAIR images and are believe to be a biomarker of the disease. Similar to
vascular hemorrhages, ischemic arterial or venous strokes can be detected with
MRI. MRI is also used for brain tumor segmentation which is necessary for mon-
itoring the tumor growth or shrinkage, for tumor volume measurement and also
for surgical planning or radiotherapy planning. For glioblastoma segmentation
different MRI modalities highlight different tumor sub-regions. For example T1
is the most commonly used modality for structural analysis and distinguish-
ing healthy tissues. In T1C the borders of the glioblastoma are enhanced. This
modality is most useful for distinguishing the active part of the glioblastoma
from the necrotic parts. In T2, the edema region appears bright. Using FLAIR
we can distinguish between the edema and CSF. This is possible because CSF
appears dark in FLAIR.

The sub-regions of a glioblastoma are as follows:

– Necrosis–The dead part of the tumor.
– Edema–Swelling caused by the tumor. As the tumor grows, it can block the

cerebrospinal fluid from going out of the brain. New blood vessels growing in
and near the tumor can also lead to swelling.

– Active-enhanced–Refers to the part of the tumor which is enhanced in T1C
modality.

– Non-enhanced–Refers to the part of the tumor which is not enhanced in T1C
modality.

There are many challenges associated with the segmentation of a brain
pathology. The main challenges come from the data acquisition procedure itself
(MRI in our case) as well as from the very nature of the pathology. Those chal-
lenges can be summarized as follows:

– Certainly the most glaring issue with MR images comes from the non-standard
intensity range obtained from different scanners. Either because of the various
magnet strength (typically 1.5, 3 or 7 Tesla) or because of different acquisition
protocol, the intensity values of a brain MRI is often very different from one
hospital to another, even for the same patient.
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– There is no reliable shape or intensity priors for brain tumors/lesions. Brain
pathology can appear anywhere in the brain, they can have any shape (often
with fuzzy borders) and come with a wide range of intensities. Furthermore,
the intensity range of such pathology may overlap with that of healthy tissue
making computer aided diagnosis (CAD) complicated.

– MR images come with a non negligible amount of white Rician noise intro-
duced during the acquisition procedure.

– Homogeneous tissues (typically the gray and the white matter) often suffer
from spacial intensity variations along each dimension. This is caused by a
so-called bias field effect. The MRI bias is a smooth low-frequency signal that
affect the image intensities. This problem calls for a bias field correction pre-
processing step which typically increase intensity values at the periphery of
the brain.

– MR images may have non-isotopic resolution leading to low resolution images,
typically along the coronal and the saggital views.

– The presence of a large tumor or lesion in the brain may warp the overall
structure of the brain, thus making some procedures impossible to perform.
For example, large tumors may affect the overall symmetry of the brain thus
making left-right features impossible to compute. Also, brains with a large
tumors can hardly be registered onto a healthy brain template.

Methods relying on machine learning also have their own challenges when
processing brain images. To count a few:

– Supervised methods require a lot of labeled data in order to generalize well
to unseen examples. As opposed to non-medical computer vision applications,
acquiring medical data is time consuming, often expensive and requires the
non-trivial approval of an ethical committee as well as the collaboration of
non-research affiliated staff. Furthermore, the accurate ground truth labeling
of 3d MR images is time consuming and expensive as it has to be done by an
highly trained personnel (typically a neurologist). As such, publicly-available
medical datasets are rare and often made of a limited number of images. One
consequence of not having enough labeled data is that the models trained on
it are prone to overfitting and perform poorly on new images.

– In supervised learning, we typically estimate maximum likelihoods and thus
assumes that the examples are identically distributed. Unfortunately, the
intensity variation from one MRI machine to another often violates that
assumption. Large variations in the data distribution can be leveraged by
having a sufficiently large training dataset, which is almost never the case
with medical images.

– Classic machine learning methods rely on computing high dimensional feature
vectors which make them computationally inefficient both memory-wise and
processing-wise.

– Generally in brain tumor/lesion segmentation, ground truth is heavily unbal-
anced since regions of interest are very small compared to the whole brain.
This is very unfortunate for many machine learning methods such as neural
networks whose assumption is that classes have similar size.
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– Because of the variability of the data, there is no standard pre-processing
procedure.

Most brain lesion segmentation methods use hand-designed features [22,59].
These methods implement a classical machine learning pipeline according to
which features are first extracted and then given to a classifier whose training
procedure does not affect the nature of those features.

An alternative would be to learn such a hierarchy of increasingly complicated
features (i.e. low, mid and high level features). Deep neural networks (DNNs)
have been shown to be successful in learning task-specific feature hierarchies [10].
Importantly, a key advantage of DNNs is that they allow to learn MRI brain-
pathology-specific features that combine information from across different MRI
modalities. Also, convolutions are very efficient and can make predictions very
fast. We investigate several choices for training Convolutional Neural Networks
(CNNs) for this problem and report on their advantages, disadvantages and
performance. Although CNNs first appeared over two decades ago [51], they
have recently become a mainstay for the computer vision community due to their
record-shattering performance in the ImageNet Large-Scale Visual Recognition
Challenge [48]. While CNNs have also been successfully applied to segmentation
problems [4,34,54], most of the previous work has focused on non-medical tasks
and many involve architectures that are not well suited to medical imagery or
brain tumor segmentation in particular.

Over the past two years, we have seen an increasing use of deep learning in
health care and more specifically in medical imaging segmentation. This increase
can be seen in recent Brain Tumor Segmentation challenges (BRATS) which is
held in conjunction with Medical Image Computing and Computer Assisted
Intervention (MICCAI). While in 2012 and 2013 none of the competing meth-
ods used DNNs, in 2014, 2 of the 15 methods and in 2015, 7 of the 13 methods
taking part in the challenge were using DNNs. In this work we explore a num-
ber of approaches based on deep neural network architectures applied to brain
pathology segmentation.

2 Glossary

Cerebral Spinal Fluid (CSF): a clear, colorless liquid located in the middle
of the brain.

Central Nervous System (CNS): part of the nervous system consisting of
the brain and the spinal cord.

Diffusion Weighted Image (DWI): MR imaging technique measuring the
diffusion of water molecules within tissue voxels. DWI is often used to visualize
hyperintensities.

Deep Neural Network (DNN): an artificial intelligence system modeled on
human brain where through a hierarchy of layers, the model learns low to high
features of the input.
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Convolutional Neural Network (CNN): type of DNN adopted for imagery
input. Number of parameters in a CNN is significantly less than that of a DNN
due to a parameter sharing architecture made feasible by convolutional opera-
tions.

FLAIR image: an MRI pulse sequence that suppresses fluid (mainly cere-
brospinal fluid (CSF)) while enhancing edema.

Gray Matter (GM): large region located on the surface of the brain consisting
mainly of nerve cell bodies and branching dendrites.

High-grade glioma: malignant brain tumors of types 3 and 4.

Low-grade glioma: slow growing brain tumors of types 1 and 2.

Multiple Sclerosis (MS): disease of the central nervous system attacking the
myelin, the insulating sheath surrounding the nerves.

Overfitting: in machine learning the overfitting phenomenon occurs when the
model is too complex relative to the number of observations. Overfitting reduces
the ability of the model to generalize to unseen examples.

Proton Density Weighted (PDW) image: MR image sequence used to
measure the density of protons; an intermediate sequence sharing some features
of both T1 and T2. In current practices, PDW is mostly replaced by FLAIR.

T1-weighted image: one of the basic MRI pulse sequences showing the differ-
ence in the T1 relaxation times of tissues [25].

T1 Contrast-enhanced image: a T1 sequence acquired after a gadolinium
injection. Gadolinium changes signal intensities by shortening the T1 time in its
surroundings. Blood vessels and pathologies with high vascularity appear bright
on T1 weighted post gadolinium images.

T2-weighted image: one of the basic MRI pulse sequences. The sequence high-
light differences in the T2 relaxation time of tissues [26].

White matter hyperintensity: changes in the cerebral white matter in aged
individuals or patients suffering from a brain pathology [64].

3 Datasets

In this section, we describe some of the most widely-used public datasets for
brain tumor/lesion segmentation.

BRATS benchmark. The Multimodal BRain Tumor image Segmentation
(BRATS) is a challenge held annually in conjunction with MICCAI conference
since 2012. The BRATS 2012 training data consist of 10 low- and 20 high-grade
glioma MR images whose voxels have been manually segmented with three labels
(healthy, edema and core). The challenge data consisted of 11 high- and 5 low-
grade glioma subjects no ground truth is provided for this dataset. Using only
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two basic tumor classes is insufficient due to the fact that the core label contains
structures which vary in different modalities. For this reason, the BRATS 2013
dataset contains the same training data but was manually labeled into 5 classes;
healthy, necrosis, edema non-enhanced and enhanced tumor. There are also two
test sets available for BRATS 2013 which do not come with ground truth; the
leaderboard dataset which contains the BRATS 2012 challenge dataset plus 10
high-grade glioma patients and the BRATS 2013 challenge dataset which con-
tains 10 high-grade glioma patients. The above mentioned datasets are available
for download through the challenge website [2].

For BRATS 2015, the size of the dataset was increased extensively1. BRATS
2015 contains 220 brains with high-grade and 54 brains with low grade gliomas
for training and 53 brains with mixed high and low grade gliomas for test-
ing. Similar to BRATS’13, each brain from the training data comes with a 5
class segmentation ground truth. BRATS’15 also contains the training data of
BRATS’13. The ground truth for the rest of the training brains is generated by a
voted average of segmented results of the top performing methods in BRATS’13
and BRATS’12. Although some of these automatically generated ground truths
have been refined manually by a user, some authors have decided to remove from
their training data brains for which they believe the ground truth was not accu-
rate enough [36,46,79]. This dataset can be downloaded through the challenge
website [2].

All BRATS datasets, share four MRI modalities namely; T1, T1C, T2,
FLAIR. Image modalities for each subject were co-registered to T1C. Also, all
images were skull stripped.

Quantitative evaluation of the model’s performance on the test set is achieved
by uploading the segmentation results to the online BRATS evaluation sys-
tem [2]. The online system provides the quantitative results as follows: The
tumor structures are grouped in 3 different tumor regions. This is mainly due to
practical clinical applications. As described by Menze et al. (2014) [59], tumor
regions are defined as:

1. The complete tumor region (including all four tumor structures).
2. The core tumor region (including all tumor structures exept “edema”).
3. The enhancing tumor region (including the “enhanced tumor” structure).

Depending on the year the challenge was held, different evaluation metrics
have been considered. For each tumor region, they consider Dice, Sensitivity,
Specificity, Kappa as well as the Hausdorff distance. The online evaluation system
also provides a ranking for every method submitted for evaluation. This includes
methods from the 2013 BRATS challenge published in [59] as well as anonymized
unpublished methods for which no reference is available.

ISLES benchmark. Ischemic Stroke Lesion Segmentation (ISLES) challenge
started in 2015 and is held in conjunction with the Brain Lesion workshop as

1 Note that the BRATS organizers released a dataset in 2014 but quickly removed it
from the web. This version of the dataset is no longer available.
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part of MICCAI. ISLES has two categories with individual datasets; sub-acute
ischemic stroke lesion segmentation (SISS) and acute stroke outcome/penumbra
estimation (SPES) datasets [1].

SISS contains 28 brains with four modalities namely: FLAIR, DWI, T2 TSE
(Turbo Spin Echo), and T1 TFE (Turbo Field Echo). The challenge dataset
consists of 36 subjects. The evaluation measures used for the ranking were the
Dice coefficients, the average symmetric surface distance, and the Hausdorff
distance.

SPES dataset contains 30 brains with 7 modalities namely: CBF (Cerebral blood
flow), CBV (cerebral blood volume), DWI, T1c, T2, Tmax and TTP (time
to peak). The challenge dataset contains 20 subjects. Both datasets provide
pixel-accurate level ground truth of the abnormal areas (2 class segmentation).
The metrics used to gauge performances are the Dice score, the Hausdorff dis-
tance, the recall and precision as well as the average symmetric surface distance
(ASSD).

MSGC benchmark. The MSGC dataset which was introduced at MICCAI
2008 [76] provides 20 training MR cases with manual ground truth MS lesion
segmentation and 23 testing cases from the Boston Childrens Hospital (CHB)
and the University of North Carolina (UNC. For each subject T1, T2 and FLAIR
are provided which are co-registered. While lesions masks for the 23 testing cases
are not available for download, an automated system is available to evaluate
the output of a given segmentation algorithm. The MSGC benchmark provides
different metric results normalized between 0 and 100, where 100 is a perfect
score and 90 is the typical score of an independent rater [76]. The different
metrics (volume difference “VolD”, surface distance “SurfD”, true positive rate
“TPR” and false positive rate “FPR”) are measured by comparing the automatic
segmentation to the manual segmentation of two experts at CHB and UNC.

4 State-of-the-Art

In this section, we present a brief overview of some methods used to segment
brain lesions and brain tumors from MR images.

4.1 Pre Deep Learning Era

These methods can be grouped in two major categories: semi-automatic and
automatic methods. Semi-automatic (or interactive) methods are those relying
on user intervention. Many of these methods rely on active deformable models
(e.g. snakes) where the user initializes the tumor contour [42,84]. Other semi-
automatic methods use classification (and yet machine learning) methods whose
raw input data is given through regions of interest drawn inside and outside
the tumor [8,37,38,44,86]. Semi-automatic methods are appealing in medial
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imaging applications since the datasets are generally very small [29,40]. Auto-
matic methods on the other hand are those for which no user interaction is
made. These methods can be generally divided in two groups; The first group
of methods are based on anomaly detection where the model estimates inten-
sity similarities between the subject being segmented and an atlas. By doing so,
brain regions which deviate from healthy tissue are detected. These techniques
have shown good results in structural segmentation when using non-linear reg-
istration. When combined with non-local approaches they have proven effective
segmentation diffuse and sparse pathologies such as MS [32] as well as more com-
plex multi-label gliomas [45,63,66]. Anomaly detection is not limited to brain
tumor/lesion detection but is a key core of health informatics [41].

The second group of methods are machine learning methods where a dis-
criminative model is trained using pre-defined features of the input modalities.
After integrating different intensity and texture features, these methods decide
to which class each voxel belongs to. Random forests have been particularly pop-
ular. Reza et al. [67] used a mixture of intensity and texture features to train
a random forest for voxelwise classification. One problem with this approach
is that the model should be trained in a high-dimensional feature space. For
example, Festa et al. [24] used a feature space of 300 dimensions and the trained
random forest comprised of 50 trees. To train more descriptive classifiers, some
methods have taken the approach of adding classes to the ground truth [9,87].
Tustison et al. [78] does this by using Gaussian Mixture Models (GMMs) to get
voxelwise tissue probabilities for WM, GM, CSF, edema, non-enhancing tumor,
enhancing tumor, necrosis. The GMM is initialized with prior cluster centers
learnt from the training data. The voxelwise probabilities are used as input fea-
tures to a random forest. The intuition behind increasing the number of classes
is that the distribution of the healthy class is likely to have different modes for
WM, GM and the CSF and so the classifier would be more confidant if it tries
to classify them as separate classes. Markov random field (MRF) as well as con-
ditional random field (CRF) are some times used to regularize the predictions
[35,52,58,78]. Usually the pairwise weights in these models are either fixed [35]
or determined by the input data. They work best in case of weak classifiers such
as k-nearest neighbor (kNN) or decision trees and become less beneficial when
using stronger classifiers such as convolutional neural networks [70].

Deformable models can also be used as post-processing where the automatic
method is used to initialize the counter as opposed to user interaction in semi-
automatic methods [39,45,63,66].

4.2 Deep Learning Based Methods

As mentioned before, classical machine learning methods in both automatic
and semi-automatic approaches use pre-defined (or hand-crafted) features which
might or might not be useful in the training objective. As opposed to that, deep
learning methods learn features specific to the task at hand. Moreover, these
features are learnt in a hierarchy of increasing feature complexity which results
in more robust features.
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Recently, deep neural networks have proven to be very promising for medical
image segmentations. In the past two years, we have seen an increase in use of
neural networks applied to brain tumor and lesion segmentations. Notable men-
tions are the MICCAI’s brain tumor segmentation challenge (BRATS) in 2014
and 2015 and the ISLES challenge in 2015 where the top performing methods
were taking use of convolutional neural networks [22,23].

In spite of the fact that CNNs were originally developed for image classifica-
tion, it is possible to use them in a segmentation framework. A simple approach
is to train the model in a patch-wise fashion as in [15], where for every training
(or testing) pixel i, a patch xi of size n×n around i is extracted. Given an image
S, the goal is to identify class label yi given xi for all i ∈ S.

Although MRI segmentation is a 3d problem, most methods take a 2D app-
roach by processing the MRI slice by slice. For these methods, training is mostly
done patch wise on the axial slices. Zikic et al. [88] use a 3 layer model with 2
convolutional layers and one dense layer. The input size of the model is chosen
19 × 19, however, since the inputs have been down sampled by a factor of 2, the
effective receptive field size is 38 × 38. Max pooling with stride of 3 is used at
the first convolutional layer. During test time, down sampled patches of 19 × 19
are presented to the model in sliding window fashion to cover the entire MRI
volume.

The model by Havaei et al. [35] consists of two pathways; a local pathway
which concentrates on the pixel neighborhood information and a global pathway
which captures more the global context of the slice. Their local path consists
on 2 convolutional layers with kernel sizes of 7 × 7 and 5 × 5 respectively while
the global path consists of one convolutional layer with 11 × 11 kernel size. In
their architecture, they used Maxout [30] as activation function for intermediate
layers. Training patch size was 33×33, however during test time, the model was
able to process a complete slice making the overall prediction time drop to a
couple of seconds. This is achieved by implementing a convolutional equivalent
of the dense layers. To preserve pixel density of the label map, they used stride
of 1 for max pooling and convolutions.2 This architecture is shown in Fig. 1.

Havaei et al. [35] also introduced a cascaded method where the class prob-
abilities from a base model are concatenated with input image modalities to
train a secondary model similar in architecture than the base model. In their
experiments, this approach refined the probability maps produced by the base
model and brought them among the top 4 teams in BRATS 2015 [36].

Pereira et al. [61] also adopted a patch wise training with input size experi-
mented with CNNs with small kernel size (i.e. 3 × 3) as suggested by [74]. This
allowed them to have deeper architecture while maintaining the same receptive
field as shallow networks with bigger kernels. They trained separate models for

2 Using stride of n means that every n pixel will be mapped to 1 pixel in the label
map (assuming the model has one layer). This causes the model to loose pixel level
accuracy if full image prediction is to be used at test time. One way to deal with
this issue is presented by Pinheiro et al. [62]. Alternatively we can use stride of 1
every where in the model.
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Fig. 1. The proposed architecture by Havaei et al. [35]. First row: TwoPathCNN.
The input patch goes through two convolutional networks each comprising of a local
and a global path. The feature maps in the local and global paths are shown in yel-
low and orange respectively. Second row: InputCascadeCNN. The class probabilities
generated by TwoPathCNN are concatenated to the input of a second CNN model.
Third row: Full image prediction using InputCascadeCNN.

HG and LG tumors. For the HG, their architecture consists of 8 convolutional
layers and 3 dense layers while the LG model was a bit shallower containing 4
convolutional layers and 3 dense layers. They used max pooling with stride of
2 and dropout was used only on the dense layers. Leaky rectified linear units
(LRLU) [55] was used for activation function. This method achieved good results
in BRATS 2015 challenge, ranking them among the top 4 winners. The authors
also found data augmentation by rotation to be useful. That said, the method
comes with a major inconvenience which is for the user to manually decide the
type of the tumor (LG or HG) to process.

Dvorak et al. [20] applied the idea of local structure prediction [19] for brain
tumor segmentation where a dictionary of label patches is constructed by clus-
tering the label patches into n groups. The model is trained to assign an input
patch to one of the n groups. The goal is to force the model to take into account
labels of the neighboring pixels in addition to the center pixel.

The methods discussed above treat every MRI modality as a channel in CNN
the same way color channels are treated in CNN in other computer vision appli-
cations. Rao et al. [65] treat these modalities as inputs to separate convolutional
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Fig. 2. U-Net: The proposed architecture by Ronneberger et al. [68].

Fig. 3. CEN-s: The proposed architecture by Brosch et al. [11].

streams. In this way, they train 4 separate CNN models each on a different modal-
ity. After training, these models are used as feature extractors where features from
all 4 models are concatenated to train a random forest classifier. The CNNs share
the same architecture of 2 convolutional layers of kernel size 5 × 5 followed by 2
dense layers. Every CNN takes as input 3 patches of size 32 × 32 extracted from
3 dimensions (i.e. axial, sagittal, coronal) around the center pixel.
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Segmentation problems in MRI are often 3d problems. However, employing
CNNs on 3d data remains an open problem. This is due to the fact that MRI vol-
umes are often anisotropic (especially for the FLAIR modality) and the volume
resolution is not consistent across subjects. A solution is to pre-process the sub-
jects to be isotropic [32,59]. However, these methods only interpolate the data
and the result ends up being severely blurry when the data is highly anisotropic.
One way to incorporate information from 3d surroundings is to train on orthogo-
nal patches extracted from axial, sagittal and coronal views. The objective would
then be to predict the class label for the intersecting pixel. This is referred to
as 2.5d in the literature [65,73]. Havaei et al. [35] experimented by training on
2.5d patches. They argued since BRATS 2013 train and test data have different
voxel resolutions, the model did not generalize better than only training on axial
view patches. Vaidya et al. [81] and Urban et al. [79] used 3d convolutions for
brain lesion and brain tumor segmentation. Using 3d convolution implies that
the input to the model has an additional depth dimension. Although this has the
advantage of using the 3d context in the MRI, if the gap between slices across
subjects varies a lot, the learnt features would not be robust. In a similar line
of thoughts, Klein et al. [47] also used 3d kernels for their convolutional layers
but with a different architecture. Their architecture consists of 4 convolutional
layers with large kernel sizes on the first few layers (i.e. 12 × 12 × 12, 7 × 7 × 7,
5 × 5 × 5, 3 × 3 × 3) with input patch size of 41 × 41 × 41. The convolutional
layers are followed by 2 dense layers.

Kamnitsas et al. [43] used a combination [35,61,79] applied to lesion seg-
mentation. In their 11 layer fully convolutional network which consisted of 2
pathways similar to [35], they used 3d convolutions with small kernel sizes of
3 × 3 × 3. Using this model, they ranked among the winners of the ISLES 2015
challenge.

Stollenga et al. [75] used a long short term memories (LSTM) network applied
on 2.5d patches for brain segmentation.

As opposed to methods which use deep learning in a CNN framework,
Vaidhya et al. [80] used a multi-layer perceptron consisting of 4 dense layers.
All feature layers (i.e. the first 3) were pre-trained using denoising auto-encoder
as in [83]. Input consists of 3d patches of size 9 × 9 × 9 and training is done on
BRATS dataset with a balanced number of class patches. However, similar to
[35], fine tuning was done on unbalanced data reflecting the real distribution of
label classes.

Inspired by [57], Brosch et al. [12] presented the convolutional encoder net-
works (CEN) for MS lesion segmentation. The model consists of 2 parts; the
encoder part to extract features and up sampling part for pixel level classifica-
tion3. The convolutional encoding part of the model consists of 2 3d convolutional
layers in valid mode4 with kernel size 9×9×9 on both layers followed by an RLU
activation function. The up sampling part of the model consists of convolutions

3 In the literature this way of up sampling is some times wrongly referred to as
deconvolution.

4 Valid mode is when kernel and input have complete overlap.
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Fig. 4. Effect of second phase training proposed by [35]. The figure shows how the
second phase regularizes the predictions and removes false positives.

in full mode5 which results in up sampling the model. Balancing label classes is
done by introducing weights per class in the loss function. They improved on this
method in [11] by introducing CEN-s, where they combine feature maps from
the first hidden layer to the last hidden layer. As shown in Figs. 2 and 3, this
model is very similar to the U-Net by Ronneberger et al. [68] with the difference
that the U-Net uses interpolation for up sampling as opposed to CEN-s where
convolutions are used and transformation weights are learnt during training.
Also U-Net is deeper with 11 layers while CEN-s contains only 4 layers. Weights
of the model are initialized by RBM unsupervised training. Combining feature
maps from shallow layers to higher layers (also referred to as skip or shortcut
connections) are popular in semantic segmentation [33,54].

5 Open Problems

5.1 Preparing the Dataset

Preparing the dataset in a proper way can play a key role in learning. In this
chapter we discuss important aspects of dataset preparation for medical imaging.

Pre-processing. As mentioned before, the grayscale distribution of MR images
is dependant on the acquisition protocol and the hardware. This makes learning
difficult since we expect to have the same data distribution from one subject to
another. Therefore, pre-processing to bring all subjects to similar distributions
is an important step. Also, it is desirable that all input modalities to the model
have the same range so one modality does not have prior advantage over others
in deciding the output of the model. Among the many pre-processing approaches
reported in the literature, the followings are the most popular:

– Applying the N4/N3 bias field correction [20,31,32,35,49,78,88]. Kleesiek
et al. [46] and Urban et al. [79] did not apply bias field correction, instead they

5 Full mode is when minimum overlap is a sufficient condition for applying convolution.
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performed intensity normalization with mean CSF value which they claim to
be more robust and effective.

– Truncating the 1% or 0.1% quantiles of the histogram to remove outliers from
all modalities have also proven to be very effective [35,78,80].

– Histogram normalization which is mostly done by matching histogram of every
modality to their corresponding template histogram [6,32,61,80].

– Zero mean unit variance on every modality [20,35] or the selected training
patches [61].

Shuffling. Introducing the data to the model in a sequential order results in
biasing the gradients and can lead to poor convergence. By sequential order,
we mean training first on data extracted from a subject, then training on data
extracted from another subject, and so on until the end of the training set. Gen-
erally it is a good idea to shuffle the data randomly prior to training. Depending
on the dataset, MRI subjects can be are very different in terms of noise and even
intensity distribution. Therefore, it is important to shuffle the entire dataset so
the model would not overfit to the current training subject and forget it is previ-
ous findings. It is desirable that the distribution from which we introduce training
examples to the model doesn’t change significantly (i.e. the training examples
lie on the same manifold). An advantage of patch-wise training over full image
training is that in patch-wise training every mini batch contains patches from
different slices of different subjects while in full image training, there is no shuf-
fling at pixel level.

Balancing the Dataset. Imbalanced dataset is when class labels are not
approximately equally represented. Unfortunately, brain imaging data are rarely
balanced due to the small size of the lesion compared to the rest of the brain.
For example, the volume of a stroke is rarely more than 1% of the entire brain
and a tumor (even large glioblastomas) never occupy more than 4% of the brain.
Training a deep network with imbalanced data often lead to very low true pos-
itive rates since the system gets to be biased towards the one class that is over
represented.

Ideally, we would want to learnt features invariant to the class distribution.
This can be done by balancing classes. One approach is to re-sample from the
training set so we get an equal number of samples for every class. Another
approach is to weight the loss for training examples based on their frequency
of appearance in the training data [12,68]. Sampling from the training set can
be done randomly [69–71], or follow an importance sampling criterion to help
the model learn things we care about (for example border between classes). For
Havaei et al.’s [35] patch-wise training method, the importance sampling is done
by computing the class entropy for every pixel in the ground truth and giving
training priority to patches with higher entropy. In other words, patches with
higher entropy, contain more classes and so would be good candidates to learn
the border regions from.
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Training on balanced dataset makes the model believe all classes are
equiprobable and thus may cause some false positives. In order to compensate
for this, one should account for the imbalanced nature of the data in a second
training phase during which only the classification layer is trained, the other
feature layers being fixed. This allows to regularize the model and remove some
false positives. The effect of the second phase training is presented in Fig. 4.
Ronneberger et al. [68] took a different approach which is best suited for full
image training. In their approach, they compute the distance of every pixel to
class borders and, based on that, a weight is assigned to every pixel. A weight
map is created for every training image and is used in the loss function to weight
every sample differently.

Pereira et al. [61] balance classes mainly by data augmentation. In their case,
data augmentation can be a transformation applied on a patch or simply increase
the size of the dataset by using patches from similar datasets. For example using
patches from brains with high-grade glioma when training a low-grade glioma
model.

5.2 Global Information

Adding context information has always been a subject of interest in medical
image analysis [3,17,18]. Since anatomical regions in closeup view can appear
similar and borders may be diffused in some parts due to lack of contrast or
other artifacts, additional context is needed to localize a region of interest.

In CNN, it is possible to encode more contextual information by increasing
the portion of the input image each neuron sees (directly or indirectly). Although
it is possible to increase the receptive filed of a neuron on the input image through
series of convolutional and pooling layers of stride 1, using strides greater than
one is computationally more efficient and results in more robust features. By
doing so, the model looses precision of spatial information which is needed for
segmentation purposes. To take advantage of both worlds, some authors [11,68]
learn a global understanding of the input by down sampling the information to
smaller size feature maps which are later up sampled and combined with feature
maps of lower layer that preserve the spacial information.

Havaei et al. [35] took a different approach where they add a second global
convolutional pathway in parallel to a local convolutional pathway. The output
feature maps of these two pathways are concatenated before going through the
classification layer. This two-pathway approach allows to learn simultaneously
global and local contextual features.

5.3 Structured Prediction

Although CNNs provide powerful tools for segmentation, they do not model
spatial dependencies. To address this issue, many methods have been proposed
to take the information of the neighboring pixels in the label image into account.
These methods can be divided into two main categories. The first category are
methods which consider the information of the neighboring labels in an implicit
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way while providing no specific pairwise term in the loss function. An example
of such approach is provided by Havaei et al. [35] which refine predictions made
by the first CNN model by providing the posterior probabilities over classes
as extra input to a second CNN model. Roth et al. [70] also use a cascaded
architecture to concatenate the probabilities of their first convolutional model
with features extracted from multiple scales in a zoom out fashion [60]. The
second category of methods are ones that explicitly define a pairwise term in the
loss function which is usually referred to as Conditional Random Field (CRF)
in the literature. Although it is possible to train the CNN and CRF end to end,
usually for simplicity, the CRF is trained or applied as post processing secondary
model to smooth the predicted labels. The weights for the pairwise terms in the
CRF can be fixed [37], determined by the input image [37] or learned from the
training data [70]. In their work Roth et al. [70] trained an additional convent
model between pairs of neighboring pixels.

Post-processing methods based on connected components have also proved to
be effective to remove small false positive blobs [35,61,80]. In [70], the authors
also try 3d isotropic Gaussian smoothing to propagate 2D predictions to 3d and
according to them, Gaussian smoothing was more beneficial than using CRF.

5.4 Training on Small or Incomplete Datasets

Deep neural networks generalize better on new data if a large training set is
available. This is due to the large number of parameters present in these models.
However, constructing a medical imaging dataset is an expensive and tedious
task which causes datasets to be small and models trained on these datasets
prone to overfitting. Even the largest datasets in this field do not exceed a few
hundred subjects. This is much lower than datasets like ImageNet which contains
millions of images.

Another problem arises from incomplete datasets. Medical imaging datasets
are often multi-modal with images obtained from acquisitions of MRI (T1, T2,
proton density, DWI, etc.) [59], or an anatomical MRI image (T1 or T2) coupled
with another modality such as SPECT or PET scans [53]. However, not all
modalities are available for every subject. How to effectively use the incomplete
data rather than simply discarding them is an open question. Another scenario is
how to generalize on subjects with missing modalities. In this section we review
several effective approaches to train on small and/or incomplete datasets

Data Augmentation. Increasing the size of the dataset by data augmentation
is commonly employed in machine learning to enrich a dataset and reduce over-
fitting [48]. Flipping the image, applying small rotations, warping the image are
common practices for this purpose [16,48,68]. Roth et al. [70] and Ronneberger
et al. [68] use non-rigid deformation transformations to increase the size of their
dataset and report it to be a key element for their models. The type of data
augmentation technique depends on the anatomy of the data and the model
being used. For example, Pereira et al. [61] only tested with rotation for data
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augmentation because the label of the patch is determined by the center pixel.
They used angles multiple of 90◦ and managed to increase the size of the dataset
4 times. They found data augmentation to be very effective in their experiments.

Transfer Learning. Deep learning has made significant breakthroughs in com-
puter vision tasks due to training on very large datasets such as ImageNet. Ima-
geNet contains more than 1.2 million training examples on over 1000 classes.
To improve generalization on smaller dataset, it is common to first train a base
model on a large dataset such as ImageNet and then re-purpose the learnt fea-
tures to a second target model to be fine tuned on an application-specific dataset
which is often much smaller in size. Yosinski et al. [85] show that the trans-
ferability of the features depends on how general those features are and the
transferability gap increases as the distance between the tasks increase and fea-
tures become less general such as the higher level features. But still, transferring
weights from a generic pre-trained model to a more specific one is better than
initializing weights randomly.

Transfer learning can take 3 forms. The first one is to generate features from
the base model and then train a classifier such as SVM or logistic regression with
those generated features [5,7,28]. Bar et al. [7] use an ImageNet pre-trained base
model to extract features. These features are concatenated with other hand-
crafted features before being introduced to an SVM classifier. Van et al. [28]
used overfeat pre-trained weights to generate features for lung tumor detection.
To facilitate with the RGB channels, 3 2D channels are extracted from axial,
saggital and coronal views. SVM is used as classifier.

Although this way of transfer learning has proved to be somewhat success-
ful, the degree of it is usefulness depends on how much the source and target
datasets are similar. When that is not the case, a transferring method is to fine-
tune the features on the target dataset [13,14,27,56]. Gao et al. [27] uses this
fine-tuning scheme to detect lung disease in CT images. To accommodate for the
RGB channels of the base model which has been pre-trained on ImageNet, three
attenuation scales with respect to lung abnormality patterns are captured by
rescaling the original 1-channel CT image. Carneiro et al. [13] uses this method
to reach state-of-the-art results on the InBreast dataset. Shin et al. [73] reported
experimental results in 3 scenarios for Lymph node detection. (1) No transfer
learning (2) transfer the weights from another model and only training the clas-
sification layer (i.e. weights from other layers are frozen), (3) transfer the weights
from another model and fine tune all layers. According to their experiments, the
best performance was achieved in the 3rd scenario where the weights of the model
are initialized from previously trained model and then all layers are fine tuned on
the Lymph node dataset while freezing the weights of the first model achieved
least performance. This is expected since the two datasets are very different
and the features learnt by model trained on ImageNet are not general enough
to be used as on a medical imaging dataset. Tajbakhsh et al. [77] conducted a
similar study on transferring pre-trained weights of AlexNet on ImageNet to 4
medical imaging datasets. Based on their findings, initializing the weights to a
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pre-trained model and fine-tuning all layers should be preferred to training from
scratch regardless of the size of the dataset. However, if the target dataset is
smaller we should be expecting a better gain in performance compared to when
the target dataset is sufficiently large. They also observed that transfer learning
increases the convergence speed on the target model. Also, since the natural
scene image datasets such as ImageNet are very different to medical imaging
datasets, we are better off fine-tuning all the layers of the model as opposed to
fine tuning only the last few layers. Van et al. [28] cam to a similar conclusion.

A third approach to transfer learning is to initialize the model to weights
which have been pre-trained separately in an unsupervised way using models
such as Autoencoders or RBMs [50]. This allows the weights of the main model
to be initialized in a better basin of attraction [21]. In their lung segmentation
problem where they had access to a large un-annotated dataset and a smaller
annotated dataset, Schlegl (2014) [72] use convolutional restricted boltzmann
machine to pre-train a CNN model in an unsupervised fashion. A shallow model
is used as it helps the unsupervised model to learn more general features and
less domain specific features.

Missing Modalities. Different modalities in MRI need to be acquired sepa-
rately and it often happens that different subjects are missing some modalities.
The most common practice is to prepare the dataset using modalities which exist
in most subjects. This leads to either discarding some subjects from the dataset
or discarding some modalities which are not present in all subjects. Another
approach is to impute the missing modalities by zero or the mean value of the
missing modality. Li et al. [53] used a 3 dimensional CNN architecture to predict
a PET modality given a set of MRI modalities. Van et al. [82] proposed to syn-
thesize one missing modality by sampling from the hidden layer representations
of a Restricted Boltzmann Machine (RBM). They perform their experiments on
BRATS 2013 using patch wise training approach. For every training patch, they
train the RBM with every modality to learn the joint probability distribution of
the four modalities. At test time, when only one of the modalities is missing they
can estimate the missing modality by sampling from the hidden representation
vector.

6 Future Outlook

Although deep learning methods have proven to have potential in medical image
analysis applications, their performance depends highly on the quality of pre-
processing and/or post processing. These methods tend to perform poorly when
input data do not follow a common distribution which is often the case. Learning
robust representations which are invariant the noise introduced by the acquisition
is needed. Unsupervised learning or weakly supervised learning might hold the
key to this problem. Also methods based on domain adaptation might help us
learn representations which better explain the anatomy of the brain and can
better generalize across datasets.
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Abstract. Epilepsy is one of the most common neurological disorder.
This disorder can be diagnosed by non-invasive examinations, such as
electroencephalography, whose records are called electroencephalograms
(EEG). The EEG can be stored in medical databases for reusing in
future. In these data, one can apply data mining process supported by
machine learning techniques in order to find patterns that can be used
for building predictive models. This paper presents an application of the
cross-correlation technique and the kNN algorithm for classification in a
set with 200 EEG segments in order to differentiate normal and epilep-
tic (abnormal) signals. The results were evaluated using 10-fold cross-
validation and contingency table methods. With the evaluation using
cross validation, it was not found statistically significant difference for
classification using kNN. The contingency table results found that the
kNN with k = 1 and k = 7 performed better for classifying abnormal
and normal EEG, respectively. Also, the kNN with k = 1 and k = 7 were
more likely to correctly classify normal and abnormal EEG, respectively.

1 Introduction

According to the World Health Organization (WHO)1, one in four people will
have a mental or neurological disorder. Currently, these disorders reaches approx-
imately 700 million people in the world. Epilepsy is the fourth most com-
mon neurological disorder and affects approximately 50 millions people in the
world [26,29].

Epilepsy can be diagnosed by electroencephalography, whose records are
called electroencephalograms (EEG), which is a non-invasive examination result-
ing from monitoring of the variation of electrical activity over time generated
by neuron populations [4,10]. The EEG signals are stored in databases in order
to maintain and to complement the clinical history of patients and be reused by
experts to auxiliary in decision making processes for diseases diagnosis [21].

However, with the increasing storage of information in medical databases,
their manual analysis becomes an infeasible task. Also, the EEG can contain
patterns which are difficult to be identified by naked eye. Thus, methods and

1 http://www.who.int.
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tools must be developed to assist in the analysis and management of such exam-
inations [13].

In this sense, data mining (DM) process supported by machine learning (ML)
methods can be applied in different fields to support data analysis and manage-
ment. This process in conjunction with ML techniques, have motivated several
researchers to build descriptive and predictive models [28]. To do so, the data must
be in a proper format, e.g., attribute-value table. For EEG signals representation,
several features can be extracted from these data [14].

The aim of this study is to classify EEG segments into normal or abnormal
(epileptic) class using the ML technique called k -nearest-neighbors (kNN).

This paper is organized as follows: Sect. 2 presents a glossary and key terms
related to this work; Sect. 3 reports the EEG database used in this work, the
technique applied to extract features in EEG segments and the methods used
to build and evaluate the classification performance; Sect. 4 describes the results
and discussion in terms of the classification effectiveness obtained with the appli-
cation of the approach proposed in the database; Sect. 5 presents the final con-
siderations; and Sect. 6 reports proposals for future work.

2 Glossary and Key Terms

Epilepsy is a neurological disorder occasioned by epileptic seizures [19].
Epileptic seizures are signals and/or symptoms due the electrical activity

disturbances of the brain [8].
International 10–20 system is a recognized method used in order to distribute

electrodes in the scalp for capturing EEG signals. These electrodes are divided
into particular locations, considering a distance around between 10 and 20% of
the head circumference [10].

Peak value is the maximum value of a time series (TS).
Root mean square is the equivalent voltage of the EEG and it is obtained by

multiplying the peak value by a quarter of a sine wave (sin(45◦) or 0.707) [16].
Centroid, also called first moment of area, is the geometric center of a wave [6].
Equivalent width is the wave width from the peak value of a wave [6].
Mean square abscissa is the spreading of wave amplitude on the centroid [6].

3 Materials and Methods

3.1 EEG Dataset

The data used in the experiments of this study compose a public EEG database
available from [2]. The EEG signals of this database were sampled by a 128-
channel amplifier system using an average common reference. These EEG were
sampled considering a rate of 173.61 Hz applying 12-bit analog-to-digital conver-
sion and filtered using band-pass at 0.53–40 Hz (12 dB/oct.). The international
10–20 system electrode placement was used for sampling.
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Fig. 1. Normal EEG segment sample.

In this EEG database there are 100 single channel EEG segments with 23.6 s
duration sampled, from different subjects. Also, these segments were distributed
into five sets and they were selected and removed artifacts, such as eyes move-
ments and muscle activities. Following, the recording conditions of each set are
described:

– A: Healthy volunteers recordings with eyes open;
– B: Healthy volunteers recordings with eyes closed;
– C: Recordings of the hippocampal formation of the opposite hemisphere of

the brain from patients with epilepsy;
– D: Epileptogenic zone recordings from patients with epilepsy;
– E: Seizure activity recordings, which were selected from all recording sites

showing ictal activity from patients with epilepsy.

Figures 1 and 2 show a normal (health) EEG and an abnormal (epileptic)
EEG samples, respectively.

Two sets were used in this work, such as set A (normal) and E (abnormal),
according to previous works [3,15]. This way a total of 200 EEG segments were
used.

3.2 Feature Extraction

In this work, the cross-correlation (CC) [3] method was applied to extract fea-
tures in EEG segments in order to represent them in a format suitable for build-
ing classifiers. Feature extraction is an essential task for data representation,
influencing the performance for building models [15].

CC is a mathematical operation that measures the level of similarity between
two signals [22,23] and can be calculated using Eq. 1, where x and y are the
signals, n is the signal length and m is the time shift parameter denoted by
m = {−n + 1, ..., 3, 2, 1, 0, 1, 2, 3, ..., n − 1}.
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Fig. 2. Epiletic EEG segment sample.

Fig. 3. Cross-correlogram of two healthy EEG segments.

CC(x, y,m) =

⎧
⎨

⎩

∑n−m−1
i=0 xi+m ∗ yi m ≥ 0

CC(y, x,−m) m < 0
(1)

So, the CC method generates a cross-correlogram (CCo) with length 2∗n−1,
where the j-th CCo value is the CC obtained using the time shift m = j − n.

Figures 3, 4, and 5 show the CCo of two healthy EEG segments, the CCo
of an epileptic and healthy EEG segments, and the CCo of two epileptic EEG
segments, respectively.

From CCo, the following features can be extracted [3]:

– Peak value (PV):

PV = max(CCo) (2)
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Fig. 4. Cross-correlogram of an epileptic and healthy EEG segments.

Fig. 5. Cross-correlogram of two epileptic EEG segments.

– Root mean squared (RMS):

RMS = 0.707 ∗ PV (3)

– Centroid (Ce):

Ce =

∑n
i=−n i ∗ CCo(i)

∑n
i=−n CCo(i)

(4)

– Equivalent width (EW):

EW =
∑n

i=−n CCo(i)
PV

(5)

– Mean square abscissa (MSA):
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MSA =
∑n

i=−n i
2 ∗ CCo(i)

∑n
i=−n CCo(i)

(6)

For feature extraction based on CCo, initially, an EEG segment is selected
as reference, decreasing by 1 the number of instances. Following, this reference
EEG is used for building CCo with all other EEG segments [15].

3.3 Building of Classification Models

After feature extraction, the k -nearest-neighbors (kNN) method was used for
classification of EEG segments into two classes (normal or abnormal). This
method classifies each new example through measuring its similarity with exam-
ples previously labeled (training set) by domain experts. For this operation,
distance measures can be used to measure similarity among examples, e.g., the
Euclidean distance. Also, it is important to emphasize that the kNN technique
does not build a classifier (predictive model), i.e., the training set is the classi-
fication model itself. The kNN classifies a new example by majority vote of its
neighborhood, i.e., the most predominant class in its k -neighbors [1,28].

For binary classifiers, which are applied in two classes classification problem,
the k value chosen usually is an odd number in order to avoid ties [12]. In this
work, the kNN was applied for k = 1, 3, 5, 7, and 9.

The kNN advantages include: easy implementation, fast training, and gener-
alization easy to understand, important characteristic for extracting knowledge
in data outside computational area. Therefore, for the classification using kNN,
its performance varies according to the value k, e.g., a small value is sensible to
noise and a large value, although reducing the noise effect in the classification
allows its neighborhood to include examples belonging to another class, i.e., the
boundaries between classes can be less distinct [7].

3.4 Model Evaluation

The performance of predictive models are evaluated according to their hits in
predicting the class of new examples. The evaluation can be performed by means
of cross-validation (CV) method. This method divides the data examples into
k equal-sized samples (k folds), which the k-th sample consists of the test set
and the k -1 remaining samples compose the training set. Thus, each example of
the test set is classified by the kNN using the training set. Afterwards, in the k
results of the folds, statistical measures can be calculated, such as average error
and standard deviation (SD), to evaluate the classification performance [20]. In
addition, statistical tests can be performed to compare the performance of the
models in order to verify the existence of the statistically significant difference
between them, considering a specific significance level.

Also, the classifiers can be evaluated by means of contingency table (CT)
method, which a table type in matrix format used to measure the relationship
among nominal variables regarding the class, i.e., the CT verifies whether the
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variables belong or do not belong to the same class. For example, the CT vari-
ables could represent the problem of classifying EEG into normal or abnormal
(epileptic) class. Particularly, the following attributes can be calculated from
CT [9]:

– Negative predictive value (NPV): calculates the percentage of instances
without abnormalities in relation to the total of examples that were classified
into normal class;

– Positive predictive value (PPV): measures the percentage of instances
with abnormalities in relation to the total examples that were classified into
abnormal class;

– Specificity: computes the percentage of instances that were not classified
into abnormal class in relation to the total number of examples classified as
normal;

– Sensitivity: estimates the percentage of instances that were classified into
abnormal class related to the total number of examples classified as abnormal.

In this sense, the Java2 language and the software development platform
named NetBeans3 were used to build a tool for the feature extraction based on
CCo. The WEKA tool [18] was used for performing and evaluating the classifiers
using the kNN algorithm, which classifies examples of the test set by calculating
its similarity with the training set [1]. The software GraphPad Instat c© was used
to perform statistical analysis.

4 Results and Discussion

The features based on CCo were used and evaluated in previous works. In [15],
CCo and other features with ML methods such as Support Vector Machines,
Binary Decision Tree and Naive Bayes were used for classification of healthy
and epileptic EEG. In [5], CCo with artificial neural network (ANN) was used
for heart beat categorization. In [23], CCo with ANN and kNN was used for
classification of real high frequency of power transformer windings. In [17], CCo
based on logistic regression algorithm was used for classification of motor imagery
tasks for brain-computer interface. Also, CCo with ML techniques were used in
other related works [11,24,25,27].

In this work, CCo features were extracted from a set of 200 EEG segments.
This set is divided into two sets: 100 normal EEG segments (set A) and 100
abnormal EEG (set E). Posteriorly, the first abnormal (epileptic) EEG of a
set was selected as reference to build CCo for each remaining EEG. The CCo
building method used in this work was implemented in Java using NetBeans.

Subsequently, features based on CCo were extracted, which were used for
application of ML techniques to classify EEG segments using kNN algorithm
with k = 1, 3, 5, 7, and 9 by WEKA tool.

2 http://www.oracle.com/technetwork/java/index.html.
3 https://netbeans.org/.

http://www.oracle.com/technetwork/java/index.html
https://netbeans.org/
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Table 1. Results of applying the CV method to evaluate the classification using kNN.

k value Average error (%) Standard Deviation (%)

1 7.22 5.07

3 6.67 5.59

5 7.22 6.67

7 5.00 2.50

9 8.89 6.01

Afterwards, the kNN performance was evaluated for each k value, based on
predictive accuracy. This evaluation was performed using the CV and the CT
methods, which were performed by WEKA.

The CV method was performed with data divided into ten partitions (10
folds). After, in these partitions, the average error and the SD measures were
calculated. Table 1 shows the evaluation results obtained by CV.

Based on this table, it was found that the classification using algorithm kNN
with k = 7 presents smaller average error and SD than the classification using
this algorithm with k = 1, 3, 5, and 9. To complement this evaluation, a statis-
tical test was performed for paired data aiming verify the occurrence of a sta-
tistically significant difference. The appropriate test type was selected by using
the p-value normality test in the error values generated by 10-fold CV for each
model. This test found that the classification using kNN with k = 5 and 7 were
not approved, evidencing that the test to be applied should not be parametric.
Thus, the Friedman test [9], considering the significance level of 5%, was applied,
resulting in the p-value of 0.4172, considered not significant. Accordingly, it was
not possible to observe statistically significant difference for accuracy of the KNN
classification with k = 1, 3, 5, 7, and 9.

Also, the CT was used to evaluate the classification using kNN. Table 2 shows
the correspondent results.

According to this table, the kNN with k = 7 was the approach that get better
performance for classifying normal EEG, corresponding to 99 signals correctly
classified. The kNN with k = 1 get better performance for classifying abnormal
EEG corresponding to 90 signals correctly classified.

For complement the evaluation using CT, Table 3 presents four precision
measures for each built CT.

Based on the Table 3, the kNN with k = 1 obtained the highest values for the
parameters NPV and sensitivity, which were measured as 91.18% and 90.91%,
respectively, finding that this approach was more accurate to correctly classify
normal EEG segments and was more likely to rightly categorize abnormal EEG
than other approaches used in this work. The kNN with k = 7 obtained the
highest values for the parameters PPV and specificity, which were measured as
98.88% and 99.00%, respectively, finding that this approach was more accurate
to correctly classify abnormal EEG segments and was more likely to rightly
categorize normal EEG.
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Table 2. CT for the classifier built by the kNN algorithm.

k value Classification Normal Abnormal Total

1 Normal 93 7 100

Abnormal 9 90 99

Total 102 97 199

3 Normal 96 4 100

Abnormal 10 89 99

Total 106 93 199

5 Normal 97 3 100

Abnormal 13 86 99

Total 110 89 199

7 Normal 99 1 100

Abnormal 11 88 99

Total 110 89 199

9 Normal 96 4 100

Abnormal 14 85 99

Total 110 89 199

Table 3. Measures calculated using the built CT.

k value NPV (%) PPV (%) Specitivity (%) Sensitivity (%)

1 91.18 92.78 93.00 90.91

3 90.57 95.70 96.00 89.90

5 88.18 96.63 97.00 86.87

7 90.00 98.88 99.00 88.89

9 87.27 95.51 96.00 85.86

5 Conclusion

In this work, an approach for extracting features based on CCo in EEG segments
and for classification these signals using ML techniques was presented. The CCo
method was implemented in Java language. The feature extraction was applied
in a set with 200 EEG segments. This set consists of 100 normal EEG and 100
abnormal (epileptic) segments. For building CCo, an abnormal EEG segment
was selected as reference.

Posteriorly, the kNN algorithm with k = 1, 3, 5, 7, and 9, aided by the
WEKA tool, was applied for classification of the EEG segments into normal or
abnormal class. Afterwards, the results were evaluated according to their hits in
predicting the class of the examples.

For performance evaluation of the models, the CV and CT methods by means
of WEKA were used. In the evaluation using CV method, the kNN with k = 7
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reaches lower average error and SD than others k values used in the algorithm.
To complement the CV results, the Friedman test was applied in order to verify
the existence of the statistically significant difference. The application of this test
did not find statistic difference among kNN classification for all k value used in
this work.

The performance evaluation of the models using CT found that the kNN
with k = 1 obtained better performance for classifying abnormal EEG and it
was more likely to rightly categorize normal EEG. The kNN with k = 7 obtained
better performance for classifying normal EEG and it was more likely to rightly
categorize abnormal EEG.

6 Future Research

For future works, we include the following activities: performing feature extrac-
tion by CCo using other EEG databases, studying and implementing other fea-
ture extraction methods to expand the EEG representation; applying the CCo
for studying of real EEG related to epilepsy and other diseases diagnosed using
this examination, building predictive models using others ML techniques and
more classes, and using CCo method in EEG processing for automatic genera-
tion of medical reports.

Thereby, with these studies, we expect a greater capacity for prediction of
epileptic seizure and other neurological illness, the building of more accurate and
representative classifiers, a greater support in the diagnosis of brain diseases, the
development of a technique to select EEG segment reference for application of the
CC method, the implementation of a tool for filling in medical textual reports
automatically, and the support in the decision making processes by medical
professionals.
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Abstract. Biosignals have become an important indicator not only for
medical diagnosis and subsequent therapy, but also passive health mon-
itoring. Extracting meaningful features from biosignals can help peo-
ple understand the human functional state, so that upcoming harm-
ful symptoms or diseases can be alleviated or avoided. There are two
main approaches commonly used to derive useful features from biosig-
nals, which are hand-engineering and deep learning. The majority of
the research in this field focuses on hand-engineering features, which
require domain-specific experts to design algorithms to extract mean-
ingful features. In the last years, several studies have employed deep
learning to automatically learn features from raw biosignals to make
feature extraction algorithms less dependent on humans. These studies
have also demonstrated promising results in a variety of biosignal appli-
cations. In this survey, we review different types of biosignals and the
main approaches to extract features from the signal in the context of
biomedical applications. We also discuss challenges and limitations of
the existing approaches, and possible future research.

Keywords: Feature extraction · Deep learning · Biosignals · Analytical
systems

1 Introduction

Biosignals have become an important indicator for medical diagnosis, subsequent
therapy and passive health monitoring. They contain information about physio-
logical phenomena which reflect human health and wellbeing [1]. They have been
widely used to a variety of applications such as epileptic seizure prediction, sleep
stage scoring, affective computing and arrhythmia detection. Recent advances
in wearable technology have paved a way to remotely and continuously monitor,
record and analyze individuals health status such as number of steps, heart rates,
brain signals [2], and glucose level [3]. Tools for analyzing biosignals are vital
to understand physiological status of each individual, so that appropriate treat-
ments can be provided in a timely manner. One of the most important research
area in biosignals is to develop algorithms to extract features from biosignals

c© Springer International Publishing AG 2016
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that can efficiently and compactly represent information relevant to particu-
lar problems. There are two main approaches to derive representative features
from biosignals: hand-engineering and deep learning. Hand-engineering feature
utilizes ingenuity and expert knowledge to implement algorithms to derive rep-
resentative features from data. Deep learning, on the other hand, is an approach
that utilizes multiple layers of linear and/or non-linear functions to learn useful
features from data. In this survey we review feature extraction algorithms devel-
oped to transform biosignals into more meaningful features, and the applications
to which they have been applied. This survey is useful for those who have basic
or advanced knowledge in machine learning, and would like to learn more about
different types of biosignals and the algorithms to extract meaningful features
from them in order to build analytical tools. The paper is organized as follows:
different types of biosignals and the common analytical pipeline will be discussed
in Sect. 3. Two main approaches of feature extraction algorithms are explained
in Sect. 4. Section 5 demonstrates how these algorithms are applied to different
biosignal applications. Challenges and limitations of the existing feature extrac-
tion algorithms are discussed in Sect. 6. Finally, possible future research avenues
are provided in Sect. 7.

2 Glossary and Key Terms

Biosignals: any signals that can be continually measured/monitored in living
organisms.

Hand-engineering Feature: an approach that utilizes ingenuity and expert knowl-
edge to implement algorithms to derive representative features from input data.

Deep Learning: a branch of machine learning that utilizes multi-layer of linear
and/or non-linear processing units to learn multi-level of representations that
facilitate the subsequent machine learning [4].

Epileptic Seizure: a brief episode of a sign and/or symptom due to abnormal
excessive or synchronous neural activity in the brain [5].

Affective Computing: study and development of systems and devices that can
assign computers the human-like capabilities of observation, interpretation and
generation of affect features [6].

Arrhythmia: a group of conditions in which the heart rhythm or heart rate is
irregular.

3 Biosignals

Biosignals refer to any signals that can be continually measured and monitored
from living organisms. They can be categorized into two groups: bioelectrical
and non-bioelectrical. In this section, we will discuss examples of bioelectrical
and non-bioelectrical signals. Then we will describe the common pipeline of
analytical systems for these signals.
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3.1 Electrical Biosignals

Bioelectrical signals reflect electrical activity, provoked by electrically active tis-
sue such as nerves and muscles as the result of the changes in the electric currents
generated by the sum of electrical potential differences across the tissues. The
most commonly used signals include electroencephalogram, electrocardiogram,
electromyogram, electrooculogram and electrodermal activity. Table 1 summa-
rizes these signals and examples of their biomedical applications.

Electroencephalogram (EEG) measures and records the electrical activity
in the brain. The EEG signals are collected by electrodes which are small, flat
metal discs attached on the scalp in certain positions identified by the recordist.
The signals reflect voltage fluctuations resulting from ionic current within the
neurons in the brain. The amplitudes of EEG signals recorded by electrodes are
in the range of microvolts; the main frequencies of interest up to approximately
30 Hz. Based on frequency, EEG waveforms can be broken down into 4 rhythms:
β wave (>13 Hz), α wave (8–13 Hz), θ wave (4–8 Hz) and δ wave (<4 Hz). One
of the major applications of EEG is diagnosing epilepsy, a condition that causes
repeated seizures which can be observed by abnormal patterns in EEG recording
(details in Sect. 5). EEG can also be used to investigate other conditions that
may affect brain function such as sleep disorders, dementia and brain injuries.

Electrocardiogram (ECG) is a type of biosignals that records the electrical
activities of the heart. Electrical changes on the skin that arise from the heart
muscle depolarising during each heartbeat are detected by electrodes attached
to the body surface. A single beat of an ECG signal consists of three main
components: the P wave, QRS complex and the T wave. Variations of these
components are associated with different heart characteristics and conditions.
Features such as relative positions, magnitudes and shapes of the waves, as well
as other derived features such as PR interval, PR segment, QT interval and ST
segment, are commonly used by cardiologists while making a diagnosis or inves-
tigation. ECG has been used to provide valuable insights into the prevention,
diagnosis and treatment of cardiac diseases such as arrhythmia.

Electromyogram (EMG) records the electrical activity produced by muscles.
It detects the electrical signals generated by muscle cells when these cells are
electrically or neurologically activated. There are two kinds of EMG: surface
EMG (sEMG), which measures muscle activity from the surface above the mus-
cle on the skin; and intramuscular EMG, which normally uses electrodes (e.g.,
needle electrodes) inserted through the skin into a muscle to record electrical
signals. EMG can be used to identify neuromuscular diseases including muscular
dystrophy, inflammatory myopathy, myasthenia gravis, and others. It can be also
used to study biofeedback, functional anatomy of muscles, firing characteristics
of motor units and excitability of motor neurons [7].

Electrooculogram (EOG) is used to measure the electrical potential differ-
ence between the front (positive pole formed by cornea) and back (negative
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Table 1. Different types of bioelectrical signals and application examples.

Biosignal Tissue/Organ Applications

Electroencephalogram (EEG) Brain Seizures detection, sleep analysis

Electrocardiogram (ECG) Heart Arrhythmia detection

Electromyogram (EMG) Muscles Neuromuscular disease detection

Electrooculogram (EOG) Eye Ophthalmological diagnosis, eye tracking

Electrodermal activity (EDA) Skin Stress monitoring, lie detector

pole formed by retina) of the eye. The signals are detected by electrodes placed
around the eyes, normally in a range of 5–6 millivolts. EOG is important in the
diagnosis of eye diseases such as vitelliform macular dystrophy. Since EOG can
detect eye movement and blinks, it is also commonly used in human–computer
interaction research.

Electrodermal Activity (EDA) refers to the autonomic changes in the elec-
trical properties of the skin. The skin conductance, which can be non-invasively
measured by applying a low constant voltage, is one of the most widely studied
electrodermal components [8]. EDA indicates the changes in autonomic sympa-
thetic arousal that are integrated with emotional and cognitive states [9], there-
fore becomes a common measure of autonomic nervous system activity. EDA has
been used in beiofeedback therapy devices for stress monitoring and polygraph
devices for lie detecting.

3.2 Non-electrical Biosignals

Biosignals can also be non-electrical, including acoustic signals (e.g., phono-
cardiogram, respiration), mechanical signals (e.g., mechanomyogram), magnetic
signals (e.g., magnetocardiogram), optic signals (e.g., photoplethysmogram) and
chemical signals (e.g., partial pressures of oxygen). Measurements such as heart
rate and blood pressure, multi-dimensional signals such as video, events such as
eye blinking and mouse clicking, can also be considered as non-electrical biosig-
nals and they have been applied to several areas such as affective computing
(details will be discussed in Sect. 5.3).

3.3 Common Pipeline of Biosignal Analytical Systems

The common pipeline of analytical systems for biosignals consists of four stages:
pre-processing, feature extraction, feature selection (or dimension reduction),
and model construction. Firstly, biosignals are pre-processed to ensure that only
quality signals can pass to the next stages. This can include removing irrelevant
artifacts from signals, correcting inaccurate signals, normalizing signals into a
desired range of values, and using a filter to exclude unwanted components. Sec-
ondly, features that are meaningful to a certain problem are extracted or derived
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from the pre-processed signals. The algorithms to extract these features are typ-
ically hand-engineered by human experts who know which features are useful for
particular problems. Recently, there have been an increasing number of research
employing deep learning to automate the hand-engineering process. Deep learn-
ing, which consists of multiple layers of linear and/or non-linear processing
units, is capable of deriving meaningful representations (or features) from high-
dimensional input data. Thirdly, it is helpful in some problems to select a subset
of extracted features before using machine learning to construct models (i.e.,
the forth stage). This is because it can speed up the model construction, and
can improve the generalization of the constructed models to prevent overfitting.
Finally, machine learning algorithms are employed to train and construct mod-
els that understand relationships between input (i.e., extracted features) and
their desired output (i.e., labels), and generalize observed data to new situa-
tions. Depending on the domain for which these models are trained, they are
then employed to predict harmful symptoms or classifying diseases.

4 Feature Extraction

4.1 Hand-Engineering Feature

Hand-engineering feature is an approach that utilizes ingenuity and expert
knowledge of human being to implement algorithms to derive representative fea-
tures from data. Generally people tend to employ this approach to build models
for a variety of biosignals applications such as classifying diseases and predicting
harmful symptoms. This is because it can reduce the amount of data used to
build models for such as classifying diseases and predicting harmful symptoms,
and the values of extracted features can be easily interpreted as the algorithm
details steps to transform from data into features.

Fourier and Wavelet Transforms is a typical tool to extract frequency
domain features from time series data. A Fourier transform (DFT) converts
a signal into its counterpart in frequency domain, and Fast Fourier transform
(FFT) rapidly computes such transformations by factorizing the DFT matrix
into a product of sparse factors, including frequency data [10], including magni-
tude, amplitude, phase, power density, and other computation results. The power
density estimation can be made by three different methods: mean squared ampli-
tude (MSA), sum squared amplitude (SSA) and time-integral squared amplitude
(TISA). These results could be used as features for prediction or classification
(e.g. in EEG [11]).

Another popular time-frequency-transformation for feature extraction comes
from wavelet transform. Wavelet transform is designed to address the problem of
nonstationary signals. It involves representing a time function in terms of simple,
fixed building blocks, termed wavelets. A wavelet series is a representation of a
square-integrable (real- or complex-valued) function by a certain orthonormal
series generated by a wavelet. They could be treated as features for biosignals
such as EEG [12–14]. The WT can be categorized into continuous and discrete.
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However, calculating wavelet coefficients for every possible scale can represent
a considerable effort and result in a vast amount of data. Therefore, discrete
wavelet transform (DWT) is often used.

Principal Component Analysis (PCA) is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of possibly corre-
lated variables into a set of values of linearly uncorrelated variables called princi-
pal components. The number of principal components is less than or equal to the
number of original variables. This transformation is defined in such a way that
the first principal component has the largest possible variance (that is, accounts
for as much of the variability in the data as possible), and each succeeding com-
ponent in turn has the highest variance possible under the constraint that it
is orthogonal to the preceding components. The resulting vectors are an uncor-
related orthogonal basis set. The principal components are orthogonal because
they are the eigenvectors of the covariance matrix, which is symmetric. PCA is
sensitive to the relative scaling of the original variables.

4.2 Deep Learning Approach

Deep learning is a branch of machine learning that utilizes multi-layer of linear
and/or non-linear processing units to learn multi-level of representations that
facilitate the subsequent machine learning [4]. There are many types of deep
learning designed to model different types of data. In this section we will describe
only three examples of the most commonly used deep learning algorithms in
biosignal applications: stacked autoencoder, convolutional neural network and
recurrent neural network.

Stacked Autoencoder (SAE) is a neural network consisting of multiple lay-
ers of autoencoders in which the outputs of each layer is fed to the input of the
next layer [15]. An autoencoder is a neural network consisting of only one hidden
layer. It is an unsupervised learning algorithm capable of extracting good fea-
ture representations from a plenty of unlabeled data. By setting the target value
of the autoencoder to be equal to the input, the autoencoder tries to learn a
feature representation that can be used to reconstruct the input. Stacking these
autoencoders, therefore, enables the network to learn useful feature representa-
tions from EEG data, as the subsequent layers can utilize the features learned
from the previous layers to produce even more useful features.

Convolutional Neural Network (CNN) is a neural network consisting of
convolutional and pooling layers [16]. Each convolutional layer contains a set of
neurons that connect to only a local region or a patch of the input (e.g., a time
window in biosignals) in order to detect different patterns. Each neuron contain
a number of trainable parameters, or a filter, which are used to convolve each
patch location to assess the similarity to the pattern encoded on the parameters.
The output generated from all patch locations assemble what is called a feature
map. Each pooling layer aggregates consecutive values of the feature maps (such
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as maximum and mean) resulting from the previous convolutional layer. By
properly alternating convolutional and pooling layers, the network can be trained
to learn time-invariant local feature detectors from high-dimensional input such
as images and biosignals.

Recurrent Neural Network (RNN) is a neural network for handling sequen-
tial data. This network maintains what is called a memory (or a hidden state)
to learn temporal dependencies between input and output sequences. Depending
on the arrangement of the network, it is able to map one input to sequences of
output (e.g., image captioning takes an image and outputs a sentence of words),
sequences of input to one output (e.g. sentiment analysis where a given sentence
is classified as expressing positive or negative sentiment), or input sequences
to output sequences (e.g., epileptic seizure prediction where each signal win-
dow is classified as preictal or non-preictal). There are many types of RNNs in
which update and maintain memory in different ways such as Elman RNN [17],
Discrete-time Recurrent Multilayer Perceptrons [18] and Long Short-Term
Memory (LSTM) [19].

5 Biosignal Applications

5.1 Epileptic Seizure Detection and Prediction

Almost 60 million people around the world suffer from epilepsy [20]. It is a neuro-
logical disorder associated with transient, recurrent and unpredictable epileptic
seizures, which are periods of abnormal neural activity in the brain [5]. These
seizures can be diagnosed and detected by long-term monitoring of electroen-
cephalograms (EEGs). Thus a system capable of automatically detecting epilep-
tic seizures in real-time can help neurologists to properly provide treatments for
patients.

In seizure detection problem, a number of algorithms have been proposed to
extract features from EEGs that can be used to differentiate between ictal and
non-ictal states. Fourier transforms have been used to extract features from win-
dowed EEG data such as power spectral density [21,22] and spectral structures
that were organized to maintain spatial and temporal information [23]. Later
wavelet transform has become more popular compared to the Fourier trans-
forms. Some researchers compared seizure detection performance between these
two transforms, and the results showed that the wavelet transforms were bet-
ter [24,25]. Wavelet transform have been employed to decompose EEG data into
frequency bands in order to derive discriminative features such as relative average
amplitude, relative scaled energy, relative power, relative derivative and coeffi-
cient of variation of amplitude [26,27]; correlation dimension (CD) and largest
Lyapunov exponents (LLE) [28–31]; combined seizure index (CSI) [32]; energy,
entropy, mean, minimum, maximum and standard deviation [33,34].

Although a system capable of rapidly and accurately detect epileptic seizures
is necessary, a more advanced system capable of predict seizures’ onsets prior to
their presentation would provide even greater benefits. For instance, it might be
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able to prevent impending seizures through certain therapies, and, therefore, be
able to avoid accidents and limit injury [35].

Similar to the detection problem, the seizure prediction is a binary classi-
fication problem between preictal and non-preictal states. Depending on the
starting time of seizure symptoms, the preictal state can be a period of several
seconds up to several hours before the seizure, and this preictal period varies
across differernt patients [36–40].

A majority of existing seizure prediction research concentrates on deriving
features from EEG signals. These features can be group into two categories:
univariate and multivariate features. The univariate features are extracted from
each EEG electrode signal independently such as Lyapunov exponent [41], spec-
tral power [42], wavelet energy and entropy [43], spike rate [44], and repeating
EEG patterns [45]. The multivariate features, on the other hand, are derived
from pairs or multiple EEG signals in order to represent the relationships (e.g.,
correlation and synchronizations) among these signals such as phase synchro-
nization [46], and relative spectral power [40]. Several studies have shown that
multivariate features demonstrated more promising performance than univariate
features [47–49].

Apart from EEG signals, features extracted from ECG signals have also been
investigated. Heart rate analysis conducted on ECG signal has been considered
as a primary predictor. Ictal tachycardia has been found in some patients of
tonic-clonic epilepsy [50], temporal and frontal lobe epilepsies [51,52]. Moreover,
tachycardia has also been observed to precede the seizure in some patients with
temporal lobe epilepsy [53,54], which has the potential to be used for seizure
prediction. Among them, good results have been demonstrated on newborns as
the signs of their seizures are more subtle [55,56]. However, for elders, due to
complex changes in the ECG occur in physiological and pathological conditions,
the ECG-based detection/prediction process is more complicated.

Instead of relying solely on one particular types of biosignals, several studies
have introduced approaches that utilizes features extracted from both EEG and
ECG signals to improve accuracy and reduce false alarms for seizure detection
and prediction. In seizure prediction, Teixeira et al. [57] introduced a software
package for supporting studies in epileptic seizure prediction including, which
includes feature extraction algorithms for EEG and ECG, and data visualiza-
tion tools. Valderrama et al. [58] extracted a large number of time-frequency
domain features from EEG and ECG for seizure prediction as they believed that
these high-dimensional features could help reduce false alarms. Phomsiricharoen-
phant et al. [59] showed a preliminary results from testing on three events of
seizures that the instantaneous frequency of the first mode of Empirical Mode
Decomposition (EMD) of EEG was significant dropped down simultaneously
with R-R internal variation (inverse of heart beat rate) around 130 s before
seizure. Piper et al. [60] investigated the synchronization level between heart
rate variability and EEG activity during preictal state finding that the syn-
chronization is more significant in the group of right hemispheric temporal lobe
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epilepsy. Also Greene et al. [61] demonstrated the potential of EEG and ECG
to complement each other for providing more accurate seizure detection.

There have been several attempts to apply deep learning to implement seizure
detection/prediction algorithms that are less dependent on humans. In seizure
detection, Guler et al. [62] applied Elman RNNs to classify three types of EEG:
healthy, seizure free epileptogenic zone, and epileptic seizure segments. The
Elman RNNs employing Lyapunov exponents were trained with LevenbergMar-
quardt algorithm on EEG. The results demonstrated that the proposed RNNs
can be useful in discriminating EEG. Supratak et al. [63] investigated the pos-
sibility of applying SAEs to learn features from raw EEG data. The SAEs was
trained with a two-step training including: the greedy layer-wise pretraining [64],
and the global fine-tuning to differentiate between ictal and nonictal states. The
preliminary results showed that SAEs have potentials to extract features from
raw EEG data for seizure detection. In seizure prediction, Petrosian et al. [65]
made the first attempt to use discrete-time recurrent multilayer perceptrons,
one type of RNNs, to predict the onset of epileptic seizures both on scalp
and intracranial EEGs. They trained RNNs with raw EEG and its wavelet-
decomposed subbands, in contrast to hand-crafted features from EEG, using
decoupled extended Kalman filter (DEKF) algorithm. The results showed that
it is quite feasible that a preictal period of several minutes preceding seizure
existed. Mirowski et al. [66] employed CNNs to learn relevant subsets of fea-
tures. They first extracted four kinds of EEG synchronization features: maxi-
mum cross-correlation, nonlinear interdependence, dynamical entrainment and
phase synchronization. These features were aggregated to form high-dimensional
features, called patterns, which were then used to train CNNs to discriminate
preictal from interictal patterns. The results demonstrated that CNNs trained
with spatio-temporal patterns of EEG synchronization provided the best seizure
prediction performance.

5.2 Sleep Stage Scoring

Sleep is an important biological phenomenon. People spend approximately one-
third of their life sleeping. The quality of sleep has a significant impact on peo-
ple’s health. Sleep apnea, insomnia and narcolepsy are common diseases, and
about 33% of the world population suffers from insomnia [67]. Thus being able
to monitor how well people sleep is essential for both medical research and prac-
tice, and could improve the quality of people’s life.

EEG signals have been used for monitoring the quantity of sleep and scor-
ing sleep stages. There are two standards for manual sleep stage scoring from
EEG [68,69], and American Academy of Sleep Medicine (AASM) is the most
commonly used one [69]. AASM classifies sleep into five stages: wake stage (W),
rapid eye movement stage (R), and three stages of non-rapid eye movement (N1,
N2 and N3).

Features extracted from sleep EEG can be divided into time-domain and
frequency-domain. The reading eye movement, rapid eye movement, slow eye
movement, eye blinks and major body movement, k complex, vertex shape waves,
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sawtooth waves, transient muscle activity from EEG can be considered as time
precision features [70–72], which mainly consists of statistical measures of the
time series. The frequency features, such as alpha rhythm, low amplitude mixed
frequency activity, sleep spindle, slow wave activity, low chin EMG tone, can be
extracted by using Morlet wavelets and Fourier transform [73–75]. Apart from
these time-domain and frequency-domain features, several studies have proposed
other features that can also be used to differentiate sleep stages such as multi-
scale entropy [76], spectral entropy [75] and renyi’s entropy [73], power-power
correlation and autocorrelation [74].

Apart from EEG signal, features extracted from ECG signals have also been
investigated [77,78]. For example, the inter-beat interval contains features of
heart rate variability (HRV), low frequency (LF, 0.04–0.15 Hz) and high fre-
quency (HF, 0.15–0.4 Hz) of HRV are associated with stage R, N1, N2 and N3.
Some nonlinear measures, such as detrended fluctuation analysis (DFA) [79] and
fractal component [80], can also be used to classify sleep stages.

Recently, people start to apply deep learning to extract features instead of
hand-crafted features [74,81]. This is partly attributed to the tendency of using
home-care single channel EEG [82] for sleep stage scoring [73,76,83], which cap-
tures less information compared with multi-channel EEG device. Also, sleep
stages are scored according to consistent features, but some of the features are
not consistent. For instance, about 10% of people did not have alpha activity
during walk stage, and another 10% of people had less alpha activity compared
with the others (80%) [69]. This introduces what is called variant problem. Deep
learning might therefore be a better option to model data with complex struc-
tures and variant problem [84].

Deep belief nets (DBNs) [81] was applied to sleep data in order to eliminate
the use of hand-crafted features, and it gave a better accuracy compared to
fine-turn hand-craft features. Orestis et al. [74] also employed stacked spare
autoencoders to reduce the number of features. The results showed a promising
performance.

5.3 Affective Computing

Emotion detection and modelling is the core of affective computing [85–87].
Various methods have been proposed to extract features from sensor signals as
computational predictors of affect. These features are then used to classify the
emotion states in emotion space (e.g. affective dimensions of valence and arousal
[88,89], which suggests that emotion is fundamentally organized by these two
parameters).

Temporal (and mostly physiological) signals such as skin conductance, heart
rate, blood pressure, respiration, pupillary dilation, EEG, speech, and muscle
action potentials can provide information regarding the intensity and quality
of an individuals internal affect experience. Simple statistical features can be
extracted from the average or standard deviation on the time or frequency
domains of the raw or normalized signals [90,91]. There are also more com-
plex extractors, e.g. extractors with Legendre and Krawtchouk polynomials [92]
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and approximate entropy [93,94] using the parameters of linear, quadratic and
exponential regression models fitted to a heart rate signal. Some works detected
the emotion from speech [91,95], with acoustic features (prosody features, e.g.
pitch variables) [96] or speaking rate [97].

Another type of signals comes from events such as user clicking a mouse but-
ton, blinking of eyes, etc. Lesh et al. [98] proposed a method called “frequent
sequence mining”, which finds frequent patterns across different discrete modal-
ities, namely gameplay events and discrete physiological events. The count of
each pattern was then used as an input feature to an affect detector. The effects
of affect on motor-behavior [99] extracted from log-files of mouse and keyboard
actions can be used to analyze correlations with affective state. Some other works
utilized the mouse clicking and movement as features [100,101].

Multi-dimensional signals [102] such as video were also used for extract-
ing features, through facial expression recognition and gesture recognition [103],
where a series of relevant points of the face or body are first detected (e.g., right
mouth corner and right elbow) and tracked along frames, then the tracked points
are aggregated into discrete or continuous features, such as action units [104]
and body contraction index [105]. For gestures recognition, apparentness meth-
ods [106] extract apparent features of hand gestures from 2-D images, which
3-D modeling methods [107] extract features by tracking in real 3D environ-
ment. Compared to 3-D methods, the apparentness methods are less compli-
cated, and easier to be used in real-time computation, however more efforts
should be done to adapt the method into high noise background and the real
application. Adopting mixed modeling methods and describing the features of
static hand gesture with multiple features (such as local profile features and over-
all image matrix features) can achieve higher and more robust tracking results
[108]. Kapur et al. [109] utilized full body skeletal movements captured using
video-based sensor, which included 14 markers, each represented as a point in
3D space (v = [x, y, z], where x, y, z are the Cartesian coordinates of the markers
position. For each point the velocity (first derivative of position) dv/dt and accel-
eration (second derivative) d2v/dt2 were calculated). During the data collection
for gestures recognition, auxiliary equipments such as electromagnetic inductors
[110] and optical reflection signs [111] are typically used. For facial expression
recognition, parameterized structure of the chief parts of humans face [112],
facial action coding system [104], and some other methods [113–115] were used
for feature extraction. There were also some multimodal systems, using variety
of microphones, video cameras as well as other sensors to enlighten the machine
with richer signals from the human [116–118].

Methods of dimensionality reduction on these features include PCA, sequen-
tial forward [119], sequential floating forward [120], sequential backwards [121],
N-best individuals & perceptron [122], and genetic feature selection [123].

Some recent works tried to achieve automatic feature extraction with deep
networks. Stuhlsatz et al. [124] used deep networks for discriminative feature
extraction from arbitrary distributed raw data, with Generalized Discriminant
Analysis [125]. For each considered emotion recognition task, acoustic feature
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vectors of 6552 dimensions were extracted using the openEAR toolkit as 39 func-
tionals of 56 acoustic Low-Level Descriptors (LLDs) including first and second
order delta regression coefficients. In deep network methodologies, information
relevant for prediction can be extracted more effectively using dimensionality
reduction methods directly on the raw physiological signals than on a set of
designer-selected extracted features [126]. Another good property of deep net-
works is that it can handle both discrete and continuous signals; a lossless trans-
formation can convert a discrete signal into a binary continuous signal, which
can potentially be fed into a deep network. Neural networks and Deep networks,
including CNN, can also be used for object recognition in images and thus be
utilized for feature extraction in multi-dimensional signals. Some existing works
include [127–129].

5.4 Arrhythmia Detection

Arrhythmia detection is one of the major biomedical applications of ECG [130].
Arrhythmia is a group of conditions in which the heart rhythm or heart rate
is irregular. There are various types of arrhythmias, including supraventricular
tachycardia, atrial fibrillation, ventricular tachycardia, ventricular fibrillation,
heart block and sick sinus syndrome, each type is considered to be associated
with a patten. Irregular heartbeats produce different morphology or wave fre-
quency compared with normal heartbeats, and such alterations can be identi-
fied by ECG signals. Different approaches have been proposed for extracting
meaningful features from ECG signals and constructing models for arrhythmia
detection. Li et al. [131] introduced an algorithm based on WT to detect QRS
complex of ECG signals. Bachler et al. [132] developed an algorithm suitable
for online real time and offline ECG analysis. In this approach, a set of wavelet
coefficients were extracted from the ECG signal using WT, and used to distin-
guish ECG waves from noise, artefacts and baseline drift. WT-based approaches
were proved to be powerful for ECG feature extraction [131,133,134] and sub-
sequently, a number of methods that combine feature extraction using WT and
classification using machine learning algorithms such as SVM [135,136] and prob-
abilistic neural network (PNN) [137] have been proposed in different studies for
rhythm classification and arrhythmia detection. Feature extraction methods such
as Linear discriminant analysis (LDA) [138], PCA [139], and independent com-
ponent analysis (ICA) [140] are also been applied to ECG signals to extract
features from various waveform properties. Recently, deep learning approaches
have been applied to automated learn and identify features from ECG signals for
arrhythmia detection. For example, Kiranyaz et al. proposed a patient-specific
ECG classification and monitoring system based on adaptive 1D convolutional
neural networks (CNNs) [141]. In another study, Yang et al. used a SAE to
extract feature vector from normalised ECG data, and then used a softmax
regression model as a classifier to differentiate premature ventricular contrac-
tion (PVC) beats and non-PVC beats [142]. Restricted Boltzmann machine was
used by Yan et al. to learn features from ECG data and build a deep belief
network for ECG classification [143].
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6 Open Problems

Most of the hand-engineering algorithms are designed specifically to extract
useful features from biosignals for particular applications. Even though these
algorithms have demonstrated promising results in a number of applications,
designing algorithms to extract features that generalize past experience well to
new situation is, however, still an active research problem. This might be due to
the fact that most of these approaches rely on assumptions or past experiences
observed from a limited set of data. Also most of these algorithms always extract
the same set of features which may not be optimal, as for each patient the fea-
tures that can best represent the characteristics of the underlying problem may
be different. Therefore, these hand-engineering algorithms might not perform
well when applied to new patients. Recent studies have started to apply deep
learning to learn representative features from biosignals. They believe that deep
learning might be able to learn more meaningful features that are not covered
by hand-engineered features [126]. Although these deep learning approaches are
able to achieve relatively good performance compared to the hand-engineering
ones, the process to training deep learning algorithms is, however, computa-
tional expensive. This makes it difficult to frequently incorporate new data into
the trained model. Moreover, in the domain of biosignals, it is also difficult to
interpret and understand the features learned by deep learning, which is different
from other domains such as computer vision.

7 Future Research

Very important is to implement algorithms that integrate knowledge from more
than one types of biosignals to enhance the performance of analytical systems.
Recent advances in wearable technology have paved a way to remotely and con-
tinuously monitor and record multiple types of biosignals from millions of peo-
ple around the world. Even though the quality of the signals might not be as
good as the ones recorded from hospitals or research labs, this allows us to
have access to continuous data that might capture interesting information that
could be analyzed to improve the quality of the treatments in a variety of the
diseases and generate alarms when abnormal patterns are detected. Another
future research area could be to develop algorithms that combine features from
both hand-engineering and deep learning approaches. As deep learning is a data-
driven approach, it might be able to learn features that are complement to the
hand-crafted ones, so that the performance of analytical systems are improved.
By investigating features learned by deep learning, we may have a better under-
standing of the characteristics of many diseases. One problem with this approach
is that such automatic approaches need many training sets, in health informat-
ics we are often confronted with a small number of data sets or rare events,
where automatic algorithms suffer of insufficient training samples, here interac-
tive machine learning with a “doctor-in-the-loop” [145] may be of help.
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Abstract. Modern machine Learning is devoted to the construction
of algorithms and computational procedures that can automatically
improve with experience and learn from data. Defeasible argumentation
has emerged as sub-topic of artificial intelligence aimed at formalising
common-sense qualitative reasoning. The former is an inductive approach
for inference while the latter is deductive, each one having advantages
and limitations. A great challenge for theoretical and applied research in
AI is their integration. The first aim of this chapter is to provide readers
informally with the basic notions of defeasible and non-monotonic reason-
ing. It then describes argumentation theory, a paradigm for implementing
defeasible reasoning in practice as well as the common multi-layer schema
upon which argument-based systems are usually built. The second aim
is to describe a selection of argument-based applications in the medical
and health-care sectors, informed by the multi-layer schema. A summary
of the features that emerge from the applications under review is aimed
at showing why defeasible argumentation is attractive for knowledge-
representation, conflict resolution and inference under uncertainty. Open
problems and challenges in the field of argumentation are subsequently
described followed by a future outlook in which three points of integra-
tion with machine learning are proposed.

Keywords: Defeasible reasoning · Argumentation · Conflict resolution ·
Knowledge-representation · Interactive machine learning · Medicine

1 Introduction

The fast-growing field of Machine Learning (ML) is devoted to the construction
of algorithms and computational procedures that can automatically improve
with experience and learn from data. Although ML is increasing in popularity
with a plethora of applications in several fields, and it has proved to be useful
in the identification and extraction of meaningful patterns of data and rules,
c© Springer International Publishing AG 2016
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it is often based upon algorithms that implement quantitative manipulation
of training data. These algorithms are frequently used as ‘black-boxes’ and the
inference process that lead to the quantitative output is neglected. In the last two
decades, Defeasible Reasoning (DR) has emerged as sub-topic of artificial intelli-
gence (AI) aimed at formalising common-sense qualitative reasoning. This type
of reasoning is often performed in contexts characterised by high uncertainty,
such as medicine and health care, where available information is usually frag-
mented, partial, conflicting, noisy and multi-dimensional. Defeasible reasoning
can be combined to machine learning inference techniques and a great challenge
for theoretical and applied research in AI is their integration. This challenge
is highly connected to the notion of interactive Machine Learning (iML) [1,2]
being proposed in this book. In particular, as Fig. 1 depicts, on one hand machine
learning might support defeasible reasoning by providing it with quantitative evi-
dence for enhancing reasoning processes. On the other hand, defeasible reason-
ing might contribute to extend and enhance the inferential mechanisms behind
machine learning techniques with more qualitative and transparent reasoning
and by incorporating intelligence and argumentative capacity. The integration
of these two subfields of AI is likely to impact and contribute to design and
develop intelligence agents with greater knowledge extraction, predictive power
as well as argumentative and reasoning capabilities [3]. Machine learning is a
more mature branch of research within artificial intelligence than formal defeasi-
ble reasoning. Therefore the main focus of this chapter is on the latter paradigm
with emphasis on argumentation theory and argument-based systems, the com-
putational approaches to implement defeasible reasoning in practice. The rest of
this document is organised as it follows. Firstly, a glossary describes the core def-
initions and terms of this desk research. Argumentation theory is subsequently
introduced with an emphasis on its role in defeasible reasoning. This is com-
plemented by a detailed description of the multi-layered pattern upon which
argument-based systems are usually built. An overview of practical applications
of argumentation in clinical domains is then presented followed by a description
of the main features and advantages of defeasible reasoning and argumentation
theory in decision-making and knowledge representation. Open problems and
challenges in applied research are then discussed and a summary concludes this
chapter with a future outlook for argumentation and its integration with machine
learning.

Defeasible reasoningMachine learning

extends

supports

Fig. 1. Interaction of argumentation and machine learning
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2 Glossary and Key Terms

Machine learning (ML): subfield of computer science devoted to the design of
computational procedures able to learn from and perform prediction of data.
Default knowledge: kn owledge routinely employed by humans in a reasoning
process even if the preconditions for its application are only partially known.
Defaults: specific inference rules employed in default knowledge.
Monotonicity: property of a reasoning process in which conclusions are not
affected by new pieces of evidence and, as a consequence, the set of available
conclusions monotonically increases.
Non-monotonicity: property of a reasoning process in which conclusions can be
retracted in the light of new pieces of evidence, and as a consequence, the set of
available conclusions can decrease in cardinality.
Defeasible reasoning(DR): a type of reasoning with the non-monotonicity prop-
erty based upon reasons that are defeasible. This reasoning does not produce a
complete and final demonstration of a claim, instead it acknowledges corrigibility
and fallibility of a conclusion.
Argumentation theory (AT): a multidisciplinary area of artificial intelligence that
provides state-of-the-art computational models of defeasible reasoning.
Argument: piece of evidence considered in a defeasible reasoning process. Typi-
cally an argument is built upon a set of assumptions or premises, a method of
reasoning and a conclusion.
Undermining attack: a type of conflict in which an argument is attacked on one
of its premises by another argument whose conclusion negates that premise.
Rebutting attack: a type of conflict that occurs when an argument negates the
conclusions of another argument.
Undercutting attack: a type of conflict that occurs when an argument uses a
defeasible inference rule that is attacked by another argument arguing that there
is a special case that does not allow the application of the rule itself.
Semantics: a formal criterion to determine which arguments of an argumentation
graph can be accepted.

3 State-of-the-Art: Defeasible Argumentation Theory

3.1 Defeasible Reasoning

The capability of deriving defeasible conclusions with partial information is an
important aspect of modern medical systems. In order to achieve such a capabil-
ity, humans routinely resort to the so-called default knowledge, a main feature of
which is that it can be used in a reasoning process even if the preconditions for
its application are only partially known. These preconditions, whose truth is not
explicitly verified, are assumed to hold defeasibly, that means in the absence of
explicit information to the contrary. In the event that new information becomes
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available and the falsity of such preconditions can be deduced, then the conclu-
sions derived from the application of the default knowledge have to be retracted.
This type of reasoning is known as defeasible reasoning [4]. Default knowledge is
represented by using defaults that are specific inference rules. These are expres-
sions of the form: p(x) : j1(x), ..., jn(x) −→ c(x) where p(x) is the prerequisite of
the default, j(x) is the justification and c(x) is the consequent. If p(x) is known
and if j(x) is consistent with what is known, then c(x) can be defeasibly deduced.
In other words, if it is believed that the prerequisite is true, and each of the n
conditions (justifications) can be assumed since they are consistent with current
beliefs, then this leads to believe the truth of the conclusion. Defeasible rea-
soning, unlike standard deductive reasoning, is non-monotonic. Intuitively this
means that adding new premises may lead to removing, rather than adding new
conclusions. More specifically, if the conclusion p follows from a set of premises A
(denoted as A � p), in standard monotonic reasoning it also holds that A,B � p
namely t, if and only if any additional set of premises B is added to A, the con-
clusion p is still valid. This property is called monotonicity : conclusions are not
affected by new evidence hence the set of conclusions monotonically increases.
This is not the case in real life in general and in medicine, health care in partic-
ular where reasoning is often non-monotonic: conclusions can be retracted when
new evidence is available. Consider the following example [5]:

– X has undergone breast cancer surgery and subsequently radiotherapy.
– Radiotherapy minimises the risk of cancer recurrence, so possibly
– X has a low risk of breast cancer recurrence.

If in addition to the fact that X has undergone cancer surgery and subsequently
radiotherapy, it is found out that

– X had a cancer with high degree of lymph node involvement,

then the conclusion that X has a low risk of cancer recurrence has to be retracted,
as a special exception has been raised.

Non-monotonic logic relies on the idea that the pieces of knowledge employed
in a reasoning activity such as X has a low risk of cancer recurrence may admit
exceptions and it is impossible to include a full list of exceptions within the
reasoning rules [4]. In these cases, the premise of a certain rule is only partially
specified and a conclusion can be derived from the premises, assuming that
no exception occurs, that means that all the implicit premises of the rule are
satisfied. In the case where an exception subsequently arises then the derived
conclusion has to be retracted. The basic idea of non-monotonic inferences is
that, when more information is obtained, some previously accepted inference
may no longer hold. Defeasible reasoning has increasingly gained attention in
the medical sector because it supports reasoning over partial, incomplete and
dynamic evidence and knowledge, where several exceptions can arise according
to various circumstances. Argumentation theory (AT), an important sub-field
of artificial intelligence (AI), provides state-of-the-art computational models of
defeasible reasoning (DR).
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3.2 Argumentation Theory

Argumentation theory (AT), often referred to as argumentation, is a multi-
disciplinary research subject ranging from law to philosophy and linguistic, with
aspects borrowed from psychology and sociology [6,7]. AT has gained interest in
artificial intelligence as it provides the basis for computational models inspired
by the way humans reason [8]. These models have extended classical reasoning
approaches, based on deductive logic, that were proving increasingly inadequate
for problems requiring non-monotonic reasoning and explanatory reasoning not
available in standard non-monotonic logics [9]. AT focuses on how pieces of
evidence, seen as arguments, can be represented, supported or discarded in a
defeasible reasoning process, and it investigates formal approaches to assess the
validity of the conclusions inferred [6]. AT has been employed for tasks like
practical reasoning, decision support, dialogue and negotiation [6,10–12] as well
as for knowledge representation [13,14]. It differs from many traditional mono-
lithic non-monotonic logics because it envisages a modular and intuitive process,
supporting the explanation of each reasoning step, making the reasoning and
inference processes more explanatory.

In a nutshell, argumentation deals with the interactions between possibly con-
flicting arguments, arising when different parties, participants or artificial agents
argue for and against some conclusions or when different pieces of evidence, even
conflicting, are available [12]. Arguments can be regarded as ‘tentative proofs for
propositions’ [15] in a logical language whose axioms represent premises in the
domain under consideration. In general, the premises are not consistent because
they may lead to incompatible conclusions. These conflicts may arise either dur-
ing the defeasible reasoning activity of a single human/agent or in the context
of a dialogue between multiple humans or artificial agents. These modes are
referred to as monological and dialogical argumentation, respectively. Accord-
ingly, monological models [16] focus on the internal structure of an argument,
meaning its components (like premises, rules, conclusions) and their relations.
Dialogical models focus instead on argument conflicts and their resolution and
typically regard arguments as monolithic entities, whose internal structure is
abstracted away as far as the conflict resolution process is concerned. Roughly
speaking, monological models concern the production and construction of argu-
ments while dialogical models concern management of their conflicts, that means
the actual arguing process. A third classification of models, referred to as rhetor-
ical models, has also been proposed (Table 1) in which neither the monological
nor the dialogical structure is considered [16]. Here, the rhetorical nature of
arguments is stressed. More specifically, the audience’s perception of arguments
and how they can be employed as a means of persuasion is taken into account
[17,18].

In the literature of argumentation, models belonging to one category dif-
ficultly belong to the other categories. For instance, dialogical models do not
address the internal representation of an argument and do not consider their
perception by an audience. However, according to [16], in order to design intel-
ligent systems that incorporate powerful argumentative capabilities, the micro-
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Table 1. Classification of argumentation models

Monological Dialogical Rhetorical

Structure Micro Macro Persuasive

Foundation Arguments as tentative
proofs

Defeasible reasoning Audience’s perception
of arguments

Linkage Connecting a set of
premises to a claim at
the level of argument

Connecting a set of
arguments in a
dialogical structure

Connecting arguments
in a persuasive way

structure of an argument, its relation with other arguments as well as the rhetor-
ical structure should be addressed. The internal representation of an argument
should clearly relate premises to conclusions, and at an external level, the argu-
ment should be considered within the set of the other arguments it interacts
with. Eventually, the perception by an audience is important because in real life
implementations, arguments are built to achieve predefined objectives, accord-
ing to the participating agents’ believes. The general idea is that argumentation
systems formalise non-monotonic reasoning as the internal construction of argu-
ments (micro-structure) as well as their comparisons for and against certain
conclusions (macro-structure). The construction of arguments, based on a the-
ory, is monotonic that means an argument remains the same even if the theory is
expanded with new information. Non-monotonicity is expressed in terms of inter-
action between conflicting arguments. This is because the additional information
may generate stronger arguments that in turn defeat previous arguments.

Argumentation systems and the notion of an argument are typically con-
structed upon an underlying logical language and around an associated notion
of logical consequence. As mentioned before, this notion of consequence is
monotonic. New information can not invalidate existing arguments as con-
structed, but can only be responsible for the generation of new counterargu-
ments. Some argument-based applications assume a particular and well-defined
logic whereas other leave the underlying logic part of the context of application
or even totally undefined. In the case the logic is left unspecified, the system
can be instantiated with different alternative logics, thus they are often referred
to as frameworks rather then systems. Beside the chosen underlying language,
argumentation systems are generally built upon five layers [19] (Fig. 2):

1. definition of the internal structure of arguments
2. definition of conflicts between arguments
3. evaluation of conflicts and definition of valid attacks
4. definition of the dialectical status of arguments
5. accrual of acceptable arguments
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1) structure of arguments

2) conflicts of arguments

3) evaluation of conflicts

4) dialectical
status of arguments

5) accrual of
acceptable arguments

Translation of
knowledge-base
into interactive

defeasible arguments

Elicitation of
knowledge-base &

resolution of
inconsistencies

Final inference

Fig. 2. Five layers upon which argumentation systems are generally built

3.3 Layer 1: Definition of the Internal Structure of Arguments

The internal representation of arguments is addressed by monological mod-
els. Often an argument is internally represented with a set of premises
(P1, P2, ..., Pn), and a conclusion (C) follows from them with the application
of some rule (→).

Argument : P1, P2, ..., Pn → C

Many argumentation systems do not make any distinction between premises.
However, arguments actually used in human reasoning may follow a more artic-
ulated structure where different premises play different roles, as in the argument
model first introduced by Toulmin [20] composed of six parts (Fig. 3).

– Claim (C): an assertion/claim (conclusion) potentially controversial;
– Data (D): statements specifying facts/beliefs previously established related

to a situation in which the claim is made;
– Warrant (W): statement that justifies the derivation of conclusion from data;
– Backing (B): a set of information that ensures the trustworthiness of a war-

rant. It is the grounds underlying the reason. A backing is invoked when the
warrant is challenged;

– Qualifier (Q): a statement that expresses the degree of certainty associated
with the claim;

– Rebuttal (R): a statement introducing a situation in which the conclusion
might be defeated.

Toulmin’s model plays a significant role in highlighting the elements that
form a natural argument, providing a useful basis for knowledge representa-
tion. Another well-known monological paradigm has been proposed by Reed and
Walton to model the notion of arguments as product [21,22]. It is based upon
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Fact (D) So (probably) (Q) Conclusion (C)

Warrant (W)

since

Backing (B)

because

Rebuttal (R)

unless

Fig. 3. An illustration of the Toulmin’s argument representation

the notion of an argumentation scheme and it is useful for identifying and eval-
uating a variety of argumentation structures in everyday discourse [16]. These
argumentation schemes are aimed at capturing common stereotypical patterns
of reasoning that are non-monotonic and defeasible in nature [13]. Consider the
example presented in [8] in which two parts, A and B, are discussing chemother-
apy, and that B is not in favour of it because P thinks that it has a high emo-
tional impact on the person due to the risk of alopecia phenomenon and should
be discouraged. B’s argument is:

Argument: Dr. B (expert in psychology) says that chemotherapy affects the
emotional state of the patient

It appears that B’s argument is implicitly an appeal to expert opinion. In
addition, it is evidently an instance of argument from consequences. These two
schemes can be used by B to build a point of view. B is claiming that negatively
affecting the emotional state is a bad consequence of an action. The argument
is based upon the assumption that, since the bad outcome is a consequence
of chemotherapy, therefore chemotherapy should not be applied. This can be
represented by the following argumentation chain:

– Dr. B., an expert psychologist, says that chemotherapy negatively affects emo-
tional state, because he has knowledge of patients emotions;

– chemotherapy negatively affects emotional state;
– negatively affecting the emotional state is a bad thing ;
– anything that leads to bad consequences is a bad practice;
– chemotherapy is a bad practice.

Walton identified 25 different argumentation schemes, each including a set
of critical questions such as:

‘is the expert E in a position to know about the proposition P?’

Critical questions provide a sort of checklist about the validity conditions for the
application of a specific argument scheme. Intuitively, critical questions make the
defeasibility of argument schemes explicit and indicate some canonical ways to
build the relevant counterarguments. For further information on monological
approaches to argumentation, readers can refer to [16]. The Toulmin’s model
[20] as well as the Reed and Walton’s approach [21,22] do not specify the way
different argument structures can be aggregated nor how they can interact or
conflict in the dynamics of an argumentation process.
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3.4 Layer 2: Definition of the Conflicts Between Arguments

Monological models, aimed at representing the internal structure of arguments
are complemented by dialogical models, focused on the relationships between
arguments and, in particular, their conflicts. The latter investigates the issue of
invalid arguments that appear to be valid (fallacious arguments). Conflicts, often
referred to attacks or defeats, and sometimes with slightly different meanings,
are the key notions in argumentation theory. In the AT literature several kinds of
conflicts have been considered. Here the classification proposed in [23] is stressed.
This encompasses three classes of conflicts (Figs. 4, 5, and 6):

– undermining attack : occurs when an argument is attacked on one of its
premises by another whose conclusion negates that premise;

– rebutting attack occurs when an argument negates the conclusions of another;
– undercutting attack occurs when an argument uses a defeasible inference rule

and is attacked by arguing that there is a special case that does not allow the
application of the rule itself [24].

Ca

P a
1 P a

n P b
1 P b

2 P b
nP aP a

2PP

CbCb

¬

A: ‘alcohol consumption is low according
to X so X has a low risk of recurrence’

B: the alcohol level from a blood test is
high so X has a high alcohol consumption

Fig. 4. Undermining attack: A is undermined by B

3.5 Layer 3: Evaluation of Conflicts and Definition of Valid Attacks

Conflict between arguments, although an important notion, does not embody any
approach for the determination of the success of an attack, from one argument
to its target. Generally an attack, sometimes referred to as ‘defeat’, has a form
of a binary relation between two arguments. Some authors distinguish a relation
in a weak form (attacking another argument and not weaker) or in a strong
form (attacking another argument and stronger) [25]. The former is generally
referred to as ‘defeat’ whereas the latter as ‘strict defeat’ [23]. Defeat relations
are determined in various ways, influenced by the domain of application and
are usually defeasible. For example, in those domains where observations are
important, defeats might depend on the reliability of tests or the expertise of
the observers. Evaluating an attack can occur through:
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P a
1 P a

2 P a
n P b
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Ca
CbCa
Cb

¬

¬

A: ‘ radiotherapy minimises risk so X has
a low risk of breast cancer recurrence

B: ‘X is an old patient, the strongest risk
for breast cancer is age, so the risk of

recurrence is high’.

Fig. 5. Rebutting attack: A is rebutted by B and viceversa
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A: ‘radiotherapy minimises the risk of
recurrence so X has a low risk of breast

cancer recurrence’

B: ‘paper Z demonstrated that
radiotherapy failed several times in

curing breast cancer so it is not always
an effective method to reduce recurrence’.

Fig. 6. Undercutting attack: A is undercut by B

– the notion of preferentiality of arguments or strength of arguments
– the notion of preferentiality of attacks or strength of an attack relation.

Strength of Arguments. To establish whether an attack can be considered a
successful defeat, a trend in AT is devoted to the consideration of the strength of
arguments. In this respect a key concept is represented by the inequality of the
strength of arguments that has to be accounted for in the computation of sets
of arguments and counterarguments [26]. Several works have adopted the notion
of preferentiality among arguments [27]. For example, in [28,29], the authors
formalised the role of preferences and if an arguments X undercuts another
argument Y , then X is a successful attack (defeat) if Y is not stronger than X.
Other approaches adopt preferentiality at a more abstract level. For instance,
in the Preference-based Argumentation Framework (PAF) proposed by [30], an
attack from X to Y is successful only if Y is not preferred to X. [31] proposed
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a Value-based argumentation framework (VAF) in which an attack from X to
Y is successful only if the value promoted by X is ranked higher or equal than
the valued promoted by Y , in accordance to a given ordering on values. Figure 7
illustrates these various scenarios of preferentiality, given an attack set and the
resulting defeat (successful attack) set.

A B C

Starting attack set :

0.5 0.4 0.45

red blue blue

strength of arguments

arguments

values promoted

Preference of arguments: [B > A > C] Rank of values: [red > blue]

Resulting successful attack set :

according to [28]:
Pollock’s defeasible reasoningA B C

according to [30]:
preference-based relation (PAF)A B C

according to [31]:
value-based argumentation (VAF)A B C

Fig. 7. Implementations of preferentiality between arguments

The information necessary to decide whether an attack between two argu-
ments is successful is often assumed to be pre-specified, and implemented as an
ordering of values or a given partial preference. However, according to [27], the
information related to preferentiality of arguments might be contradictory, as
the preferences may vary depending on the context and on different subjects
who can assign different strengths, to different arguments, employing different
criteria. This led the author to propose the concept of meta-level argument : a
simple node in a graph of nodes where preferentiality is abstractly defined, by
creating a new attack relation that comes from a preference argument. Meta-
level arguments allow no commitment regarding the definition of the preferences
of arguments, rendering the reasoning process simpler. To model the preference
relation among arguments, the notion of fuzziness has been used in [32] where
a fuzzy preference argumentation framework (FPAF) has been proposed. Here,
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A B

Preference list: [A > B]

(a) Standard preferentiality

A B C

Preference argument C

(b) Meta-level argument

Fig. 8. Standard preferentiality and meta-level arguments

a value X attached to a preference relation between two arguments A, B cor-
responds to the degree of credibility by which A is strictly preferred to B. To
clarify the above notions, consider the example of Fig. 8 where two arguments
A, B, claiming two different conclusions rebut each other. Suppose the existence
of a pre-defined preference list in which argument A is preferred to argument
B (part a). According to Modgil [27], this situation can be expressed as in the
graph (part b) where another meta-level argument C is added to the reasoning
process, undercutting the inference link of argument B.

Strength of Attack Relations. Preferentiality, as reviewed so far, is imple-
mented by assigning to arguments an importance value. This is usually pre-
defined, in form of a full or partial priority list of available arguments, or in form
of a numerical value attached to each of them, explicitly provided or implicitly
derived from the strength of the rules used within the argument. In turn pref-
erentiality allows to establish whether an attack can be considered successful,
thus formalising a proper defeat relation, or considered a weak/false attack, thus
being disregarded. As opposite to this approach, another branch of argumenta-
tion is devoted to associate weights to attack relations instead to arguments.
In [26] the role of adding weights on the attack links between arguments has
been investigated, introducing the notion of inconsistency budget. This quanti-
fies the amount of inconsistency a designer of an argumentation system is willing
to tolerate. With an inconsistency budget α, the designer is open to disregard
attacks up to a total weight α. It turns out that, increasing this threshold, more
solutions can be achieved progressively as less attack would be disregarded. As a
consequence, this gives a preference order over solutions, and the solutions hav-
ing a lower inconsistency budget are preferred. A similar recent approach that
considers the strength of attacks is incorporated in [33] resulting in a varied-
strength attacks argumentation framework (VSAAF). Here, each attack relation
is assigned a type, and the framework is equipped with a partial ordering over
the types. Let us consider the example of Fig. 9 where the type of attack from
an argument A to B is i and from B to C is j. Intuitively, depending on whether
the type j is higher, lower or equally ranked than the type i, different ranges of
solutions are possible. Beside this relation of attack, another approach has been
proposed [34] by employing the notion of fuzzy relations borrowed from Fuzzy
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A B C
i j

VSAAF: 1 ≤ i ≤ j ≤ n FAF: i, j ∈ [0..1] PRAF: i, j ∈ [ 0
n
, n
n
]

Fig. 9. Types of the strength of attack relations

Logic [35,36]. This approach allows the representation of the degree to which an
argument attacks another one, creating a fuzzy argumentation framework (FAF).

Strength of arguments and defeat relations has been considered also in [37].
Here, probabilities are assigned both to arguments and defeats, introducing the
notion of probability argumentation framework (PRAF). Probabilities refer to
the likelihood of the existence of a specific argument or defeat relation, thus
capturing the inherent uncertainties in the argumentation system. The idea is
that all possible arguments neither definitely are disregarded nor they definitely
exist: they have different chances of existing. In the approach proposed in [38]
two fictitious people have to be confronted, endorsing respectively the roles of
proponent and opponent of the argument. Situation of conflicts are subsequently
analysed employing the paradigm of game theory [38].

3.6 Layer 4: Definition of the Dialectical Status of Arguments

Defeat relations, as per layer 3, focus on the relative strength of two individ-
ual arguments and do not tell yet what arguments can be seen as justifiable.
The final state of each argument depends on the interaction with the others
and a definition of their dialectical status is needed. Layer 4 of the multi-layer
schema of Fig. 2 is aimed at determining the outcome of an argumentation sys-
tem usually by splitting the set of arguments in two classes, those that support
a certain decision/action and those that do not. Sometimes a further class can
contain those arguments that leave the dispute in an undecided status. Multi-
ple actions or decisions can be accounted for in a defeasible reasoning process,
thus the number of classes can increase. Modern implementations for computing
the dialectical status of arguments are usually built upon the theory of Dung
[9] which, historically speaking, derives from other more practical and concrete
works on argumentation such as [24,39]. Dung’s abstract argumentation frame-
works (AF) allow comparisons of different systems by translating them into his
abstract format [39]. The underlying idea is that given a set of abstract argu-
ments (the internal structure is not considered) and a set of defeat relations,
a decision to determine which arguments can ultimately be accepted has to be
taken. AF is a directed graph in which arguments are presented as nodes and
the attacks as arrows (Fig. 10). Solely looking at an argument’s defeaters to
decide the status of an argument is not enough: it is also important to investi-
gate whether the defeaters are defeated themselves. Generally, an argument B
defeats A if and only if B is a reason against A.

Given an AF, the issue is to decide which arguments should ultimately be
accepted. In Fig. 10, A is attacked by B, and apparently A should not be accepted
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A B C

Fig. 10. Argument and reinstatement

since it has a counterargument. However, B is itself attacked by C that, in turn,
is not attacked by anything, thus C should be accepted. But if C is accepted, then
B is ultimately rejected and does not form a reason against A anymore. Therefore
A should be accepted as well. In this scenario it is said that C reinstates A and in
order to determine which arguments of an AF can be accepted, a formal criterion
is necessary. This criterion is known as acceptability semantics, and given an AF,
it specifies zero or more extensions (sets of acceptable arguments) [40]. Using
the labelling approach proposed in [41], each argument is either in, out or undec
according to two conditions:

1. an argument is labelled in if, only if all its defeaters are labelled out, and
2. an argument is labelled out if, only if it has at least one defeater labelled in.

Informally speaking, an argument labelled in means it has been accepted, out
means it has been rejected and undec means it can not be neither accepted nor
rejected. In the AF of Fig. 10, for argument C it holds that all its defeaters
are labelled out (trivial as C is not defeated by any argument), thus C has to
be labelled in. B now has a defeater labelled in thus it has to be labelled out.
For A, it holds that all its defeaters are labelled out, so it has to be labelled
in. As a consequence the resulting status of each argument is: Lab(A) = in,
Lab(C) = in and Lab(B) = out. Thus, A and C can be accepted and argument
B has to be rejected. A set of arguments is called conflict-free if and only if
it does not contain any argument A and B such that A defeats B. A set of
arguments Args is said to defend an argument C if and only if each defeater of
C is defeated by an argument in Args. These basic notions drive the proposal of
the complete semantics aimed at computing complete extensions [9]. The idea
is that a complete labelling might be viewed as a subjective and reasonable
point of view that a designer can consider with respect to which arguments are
accepted, rejected or considered undecided. Each point of view can be certainly
questioned by someone, but its internal inconsistency cannot be pointed out.
The set of complete labellings can be seen as the reasonable positions available
to a designer [41].

Complete semantics have an important property: more than one complete
extension might exist. However, sometimes it is advantageous to take a skeptical
approach, thus a semantics that is guaranteed to generate exactly one exten-
sion is the grounded semantics. The idea is to select the complete labelling Lab
in which the set of in-labelled arguments is minimal. The grounded extension
coincides with the complete labelling in which in is minimised, out is minimised
and undec is maximised and can be the empty set. In Fig. 10, the grounded
extension is {A,C}. However, this skeptical approach might be replaced by a
more credulous one, known as preferred semantics [9]. The idea is that, instead
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of maximising undec arguments, it maximises in arguments (and also out argu-
ments). They are based on the notion of admissibility. A set of arguments is
admissible if and only if it is conflict-free and defends at least itself. The empty
set is admissible in every AF as it is conflict-free and trivially defends itself
against each of its defeaters (none). For any AF, there exists at least one pre-
ferred extension. Every grounded and every preferred extension is a complete
extension. In Fig. 10, the admissible sets are {C}, {A,C}. {B} and {A} are not
admissible as they do not defend themselves respectively against C and B. Only
one preferred extension exists: {A,C}. Grounded and preferred semantics have
been conceived by Dung and firstly described in his topical work [9]. However,
other semantics have been proposed such as the ideal semantics [42,43], semi-
stable [44], stage [45], non-admissibility based semantics [46] and CF2 semantics
[47]. For further readings on argumentation semantics, the reader is referred to
[40,48].

3.7 Layer 5: Accrual of Acceptable Arguments

Multiple acceptable extensions of arguments may be computed from the previous
layer coinciding with possible consistent points of view that can be considered
for describing the knowledge being modelled and thus employed for decision-
making and defeasible inference. However, sometimes for practical purposes,
as in the medical domain, a single decision must be takes or a single action
must be performed. Thus a fifth layer is sometimes added to the argumentative
schema aimed at extracting the most credible or consistent point of view for
informing such a decision or action. It includes a strategy for computing, for
instance, a degree of credibility of each extension that can be used for purposes
of comparison. The most credible can be eventually selected and employed to
support decision-making. Various strategies have been proposed in the litera-
ture for selecting such an extension [49,50]. These include the consideration of
the strength of arguments, or a preference list among them defined in layer 3.
Alternatively, the extension with higher cardinality can be considered, that is
the larger conflict-free set of arguments. In the literature of argumentation and
defeasible reasoning, this layer is probably the less developed and further works
should be carried out.

4 Application Areas

The previously described five layers (Fig. 2) give an overall idea of the main com-
ponents that are usually considered in an argumentative process, and are strictly
connected. The first layer deals with monological argumentation while the other
layers with dialogical argumentation. Some of these layers can be neglected or
merged together. For example, when the strength of arguments or attack rela-
tions is not considered, layer 3 can be discarded. Also, the strength of arguments
and their preferentiality may be considered in the 5th layer and not only in the
3rd layer. The literature of defeasible reasoning and its theoretical works is vast
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in the logic and artificial intelligence communities. Readers can refer to [16] for
a taxonomy of argument-based models and to [51] for a review of defeasible rea-
soning implementations. In this section, applications of defeasible reasoning and
argumentation in medicine and health-care are described. Argumentation was
adopted in the context of the Aspic project [52]: a general model for argumen-
tation services. The goal was to develop a theoretical framework for inference,
decision-making, dialogue and learning that could be used, for example, in the
identification of patients treatment options given multiple and conflicting pieces
of evidence. An application of this framework includes a multi-agent scenario
where three agents collaborate exchanging pros and cons of alternative inter-
ventions and diagnoses towards settling on a justifiable treatment for a patient
with chest pain [53]. Aspic has been also used as method for genetic counselling
aimed at providing patients and clinicians with an aid for customising, evaluat-
ing, visualising and communicating care plans. Another application concerned a
simulation where eight cancer genetic counsellors participated in an experiment
in which they had to counsel a woman carrying a risk-increasing gene mutation.
Information was visually displayed in an organised-fashion, in the form of struc-
tured arguments. These arguments helped counsellors enhancing their discussion
with the patient and explaining the options available for mitigating the risk of
cancer [54]. In the Aspic project, arguments are constructed from a knowledge-
base of facts, internally modelled with strict and defeasible inference rules. These
rules are composed by a set of premises supporting a claim and an argument can
embed different rules organised as a tree. Each argument has a numerical degree
of belief attached (1 for strict arguments and a partial degree, less than 1, for
defeasible arguments), and this can be computed employing different principles.
These include the ‘weakest link’ principle in which the minimum of the strength
of an argument’s premises and its links is computed, or the ‘last link’ principle
in which the maximum strength of an argument’s links, with no accrual of rea-
sons is considered [55]. Once arguments are defined, the Aspic framework allows
the explication of a set of attack relations between them, always according to
the knowledge-base of facts. Dung’s calculus of opposition [9] is employed to
compute a dialectical (justification) status of arguments. Eventually, from the
claim of the justified arguments, a final inference is drawn, this being usually a
decision, a diagnosis or a treatment recommendation.

Argumentation has been used for medical group-decision support [56]. In this
context, expert clinicians participated in a group discussion to decide on the best
treatment for a given patient or case. A web-prototype to build arguments was
presented to a group of oncologists who were asked to discuss on treatment
therapies for patients having cancer in the head-to-neck region. Arguments were
modelled as natural language propositions constructed upon a particular piece
of evidence, acquired from the literature, and linked to a particular treatment
choice. Each argument was also accompanied by a value indicating the strength
of the underlying evidence. A machinery that extended Dung’s calculus of oppo-
sition [9] was proposed, followed by a preference-based accrual of arguments
[56]. Further research studies adopted the Aspic framework in the context of
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consensus on explanations and it focused on understanding how two clinicians,
with a disagreement in relation to an anomalous patient’s response to treatment,
exchanged arguments in order to arrive at a consensus [57]. Gorogiannis et al.
employed argumentation for investigating treatment efficacy and their work was
motivated by the fact that, although there was a rapidly-growing dataset of
trial results, this dataset was inconsistent, incomplete and required a significant
effort to be sensibly aggregated for the inference of a single correct decision
[58]. The authors proposed an argument-based framework to analyse the avail-
able knowledge and present the different possible results. In this framework,
the monological structure of arguments was modelled as a triple < A,B,C >
with A the set of evidence from a clinical trail, B an inference rule that linked
evidence to a claim C. The claim was a comparison between the outcomes of
two generic treatments t1 and t2 (only two-arm comparisons were treated) that
can be either t1 > t2 (t1 is statistically superior to t2), t2 < t1 (viceversa) or
t1 ∼ t2 (no statistical difference). Regarding the dialogical structure, arguments
(clinical tests) conflicted with each other if they entailed contradicting claims
and contradictions were resolved with the Dung’s calculus of opposition. This
framework was extended in [59] by allowing the expression of preferences among
arguments and by employing descriptive logic to further specify their mono-
logical structure. In this extension, authors performed a case study on ovarian
cancer data showing how the introduction of the dialogical Dung’s calculus of
opposition could support the selection of relevant/undisputed clinical evidence
in a large and fragmented dataset of cases.

Argumentation has been employed for predicting the recurrence of breast
cancer in patients who have undergone a surgery [60]. In this circumstance,
the knowledge-base of a cancer expert has been translated into arguments with
premises supporting either recurrence or non-recurrence of cancer. This mono-
logical structure has been subsequently extended adding conflicts among argu-
ments organised dialogically, always according to the expert’s knowledge-base.
In turn, they were evaluated with the Dung’s calculus of opposition. A strategy
based on the largest cardinality was implemented for selecting the most credible
preferred extension, and thus recommending a justifiable outcome (recurrence
or non-recurrence). [61] describes an application of argumentation to the field
of organ transplant called Carrel+. Human-organ is a decision-making process
that often illustrates conflicts among medical experts: what may be sufficient
for one doctor to discard an organ may not be for another one. This application
allows doctors to express their arguments about the viability of an organ and
employs monological argumentation techniques, namely argumentation schemes
[20] and critical questions [21] to combine arguments, to identify inconsistencies
and to propose a valid solution considering their relative strength as well as
the available evidence about the organ and the donor. Other ways to elaborate
and construct arguments exist and they differ because of the variability of their
monological structure. For instance, [58,59] are different from [61–63]. In the
former studies, arguments are built directly from clinical trial results with a uni-
form structure that makes the approach less domain-dependent and scalable to
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large-volume data. In the latter works, arguments are hand-crafted and ad-hoc
constructs built by relying on domain specific expertise and therefore they have
a variable internal structure.

Ultimately, [64] is probably the most complete work applying argumenta-
tion to medical decision support. This work is closely adhering to the 5-layer
schema previously introduced (Sect. 3). First, the available evidence, collected
from experts or literature, is converted into a monological argument structured
as an inference rule. Second, a medical expert can set up preference relations
by assigning a weight to each arguments (argument A can be preferred to B
because, despite having comparable effects, A has fewer side effects than B).
Third, meta-arguments can be built about the quality of arguments created in
the first stage (an argument based on a non-randomised small sample is weaker
than another based on the evidence collected on a large randomised sample).
Forth, the dialogical structure is arranged in a Dung style argumentation graph
and an argumentation semantics is used for computing their dialectical and
acceptability status from which consistent conclusions can be suggested to the
decision makers. The study proposes several case studies: diagnosis of glaucoma,
treatment of hypertension and treatments of pre-eclampsia.

In summary, Table 2 gives a panoramic of the contributions reviewed so far,
classified according to the 5-layer schema introduced in Fig. 2 The aim is at
providing the reader with a high-level snapshot describing the current effort
devoted towards producing argument-based systems in medicine and health-
care.

4.1 Features of Argumentation

Theoretically, argumentation and defeasible reasoning have a set of features that
are generally appealing and specifically interesting for clinicians and practitioners
in the field of medicine and health-care [7,60].

– Inconsistency/incompleteness: argumentation provides a methodology for rea-
soning on available evidence, even if this evidence is partial and inconsistent
as it often happens in medicine and health-care;

– Expertise/uncertainty: argumentation captures expertise in an organised fash-
ion, employing the notion of arguments and it can handle vagueness and the
uncertainty associated with clinical evidence;

– Intuitiveness: argumentation is close to the way humans reason. Vague knowl-
edge bases can be structured as arguments built with familiar linguistic terms,
which is extremely appealing for clinicians;

– Explainability: argumentation leads to explanatory reasoning thanks to its
incremental, modular way of reasoning with available evidence. It provides
approaches for computing the justification status of arguments, allowing the
final decision of a reasoning process to be better explained;

– Dataset independency : argumentation does not require a complete dataset
and it may be useful for emerging knowledge, where quantitative evidence
has not yet been gathered or is limited;
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Table 2. Argument-based systems in medicine and health-care: applications

Ref Domain Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

[52,53] argumentation

services,

patient

treatment

options

a tree of

premises→claim +

degree of belief

abstract

attacks

degree of

belief

dung n/a

[54] genetic

consueling,

care plans

Toulmin n/a n/a n/a n/a

[56] group-

decision

support

natural language

propositions +

strength of evidence

abstract

attacks

preference

list

dung + preference-

based

[57] consensus,

explanations

a tree of

premises→claim +

degree of belief

abstract

attacks

degree of

belief

dung n/a

[60] cancer

prediction

premises→claim abstract

attacks

n/a dung extension

cardinality

[58] treatment

efficacy

premises→claim abstract

attacks

preference

list

dung n/a

[59] identification

of relevant

evidence

descriptive logic abstract

attacks

preference

relation-

ships

dialectical

tree

n/a

[61] organ

transplant

confirmation

argument schemes

+ critical questions

abstract

attacks

argument

strength

dung n/a

[62] breast cancer

care

Evidence-based

guideline

n/a n/a n/a n/a

[64] Treatments of

diseases

inference rule argument

strength

meta

arguments

dung utility

theory

– Extensibility/updatability: argumentation is an extensible paradigm that
allows a decision to be retracted in the light of new evidence. An argumenta-
tion system can be updated with new arguments when they become available;

– Knowledge-bases comparability : argumentation allows comparisons of different
subjective knowledge-bases. Two clinicians might build their own argumenta-
tion frameworks, identify differences in the definition of their beliefs, expertise
and intuitions as well as compare their inferential capacity;

– Consensus building: argumentation is a useful approach for decision-making
and achieving consensus between contradicting perspectives of knowledge.

Although argumentation has a great potential for supporting decision-
making, enhancing knowledge representation and performing defeasible infer-
ence in the light of fragmented, partial, vague and inconsistent knowledge, it
has some limitations [10,11]. The aforementioned features are appealing at the
theoretical level, however, there are more practical, open problems for applied
research. The following section is aimed at describing these problems and present
future challenges for enabling wide-spread application of argumentation at the
more practical level. Readers can refer to [11] for a further discussion on the role
of argumentation and argumentation-based applications in modern computing.
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5 Open Problems and Challenges

Bench-Capon and Dunne discussed limitations of argumentation in artificial
intelligence and computer science [10], identifying a set of challenges concerning
the widespread deployment of argumentation technology. These challenges are
still valid and their resolution requires the union of theoretical work with more
practical engineering work. Probably, the most important limitation concerns
the adoption of argumentation methods and systems in practical fields, these
including medicine and health care. However, other limitations exist:

– lack of engineering solutions for application/automation of argumentation
– lack of a strong link between argumentation and other formalisms for dealing

with uncertainty;
– scalability of argument-based applications and their widespread;
– ambiguity of the communication protocols and language that can be used by

artificial agents incorporating argumentative capabilities.

Firstly, as it often happens in real-world knowledge-engineering, pieces of
knowledge are abundant, so the amount of arguments that can be built upon
them. However, engineering and software tools for the monological representa-
tion of arguments are limited, despite advances in technology and interfaces.
Diagrammatic representations of arguments have been proposed [20,21,65] but
their implementation in practice is still narrow. Human reasoning over graphical
diagrams is fundamental to enable human experts to translate their knowledge
bases and beliefs in a computable form employable for reasoning and inference.
User-friendly interfaces are necessary for enabling human operators to link argu-
ments together, for modelling their conflicts and for performing inference through
the execution of acceptability semantics for the resolution of these conflicts.
These bottlenecks must be addressed to support the deployment and adoption of
argument-based applications. Advances in user-interface design and deployment
as well as the availability of web-based tools (javascript) are valid candidates for
tackling these bottlenecks.

Secondly, in order to facilitate the impact of argument-based applications in
the arena of intelligent computer systems, a further challenge is the construction
of a stronger link with other formalisms for dealing with uncertainty within the
broader field of artificial intelligence. Examples include probability and Bayesian
theories, Dempster-Shafer theory and Game Theory [38] for applications requir-
ing the interaction of multiple parties, participants [56] or Fuzzy Sets and Logic
[32,34–36] for representation of vague knowledge. Further formalisms concern-
ing the supporting of collaborative work/learning or decision-making [52] include
Organisational Theory [66,67] and Decision theory [68].

Thirdly, another important challenge refers to the scalability of applications
of argumentation and their widespread. This means that in order to demonstrate
the impact of argument-based technologies to knowledge representation and rea-
soning, several applications have to be deployed and tested in different disciplines
such as education, medicine [54,56,57,64], psychology, biology extending tradi-
tional fields of application such as artificial intelligence [10], computer science,
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philosophy, linguistic and human-computer Interaction [69–71]. The scalability
challenge also refers to a more technical issue concerning the deployment of engi-
neering systems that can easily scale, such as in [72], and let a great amount
of parties, participants or artificial agents to be engaged in a large-scale argu-
mentative process and enabling collective intelligence [73]. Assuming the above
challenges can be resolved there is another important challenge referred to the
development of the protocols for allowing artificial agents, incorporating argu-
mentative capabilities, to communicate, argue and negotiate with each other in
a distributed digital world [11,74]. Recent advances in the field of multi-agent
systems might offer valid approaches to tackle this problem.

6 Future Outlook

This chapter has presented an overview of argumentation for knowledge represen-
tation, conflict resolution and defeasible reasoning, with an informal description
of the multi-layer pattern usually adopted for implementing in practice such rea-
soning. A literature review of applications of argumentation showed how defea-
sible reasoning has been employed so far in the medical and health-care sectors.
Advantages and features of argumentation have been proposed emphasising the
benefits for defeasible inference under uncertainty. Open problems and challenges
have been identified, these mainly referring to the practical applicability of argu-
mentation rather than the development of new theoretical formalisms. The lack
of user-friendly tools and procedures employable by humans to build arguments,
connect them in a dialogical structure and enable defeasible reasoning in practice
is the most important challenge for applied research. From a more theoretical
perspective, future work should be focused on the integration of argumentation
theory and machine learning as two different but complementary methods for
enhancing knowledge representation and extraction, reasoning and classification
with fragmented, partial and conflicting information [75]. This integration could
be tackled through 3 points of interaction (Fig. 11, A, B, C).

arguments
structure

arguments
conflicts

conflicts
evaluation

dialectical
status

arguments
accrual

datasupervisedunsupervised
rules/patterns
+ quantities

argument
mining

knowledge base elicitation & inconsistency resolution inference

Machine learning

deductive

inductive

A
B

C

Fig. 11. Integration of machine learning and defeasible argumentation

On one hand, argumentation represents a theory and belief-driven deduc-
tive paradigm to reasoning over pieces of evidence, potentially conflicting and
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fragmented towards a final inference. On the other hand, machine learning, is
a data-driven inductive paradigm aimed at exploring data, extracting patterns
and building learning models from it so classification can be performed and pre-
dictions can be made. Through these models, new arguments can be built and
incorporated in existing knowledge-bases thus enhancing reasoning processes (A)
[76]. The rules and patterns emerged from unsupervised machine learning tech-
niques and the predictions, probabilistic values available in supervised machine
learning classifiers can support the resolution of potential inconsistencies in a
defeasible reasoning process, providing it with numerical attributes useful for for-
malising preferences and deciding between conflicting arguments (B). Eventually,
the inference produced by a defeasible reasoning process can provide machine
learning with a useful theoretical background for identifying deceptive chains
of inference that might lead to erroneous results (C). Hybrid models employing
both the paradigms can benefit from the advantages of each approach and tackle
their pitfalls and they are expected to perform better in term of representation,
clustering of knowledge and in term of prediction and inference.
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Bernd Malle2, and Andreas Holzinger2,3

1 Knowledge Technologies Department, Jožef Stefan Institute, Ljubljana, Slovenia
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Abstract. Parkinson’s disease (PD) results primarily from dying of
dopaminergic neurons in the Substantia Nigra, a part of the Mesen-
cephalon (midbrain), which is not curable to date. PD medications treat
symptoms only, none halt or retard dopaminergic neuron degeneration.
Here machine learning methods can be of help since one of the crucial
roles in the management and treatment of PD patients is detection and
classification of tremors. In the clinical practice, this is one of the most
common movement disorders and is typically classified using behavioral
or etiological factors. Another important issue is to detect and evaluate
PD related gait patterns, gait initiation and freezing of gait, which are
typical symptoms of PD. Medical studies have shown that 90% of peo-
ple with PD suffer from vocal impairment, consequently the analysis of
voice data to discriminate healthy people from PD is relevant. This paper
provides a quick overview of the state-of-the-art and some directions for
future research, motivated by the ongoing PD manager project.

Keywords: Machine learning · Data mining · Parkinson’s disease

1 Introduction

We present the results of a literature-based study of data mining methods used
for Parkinson’s disease management. The study was motivated by requirements
of the EU H2020 project PD manager1, which aims to develop an innovative,
mobile-health, patient-centric platform for Parkinson’s disease management. One
part of the data mining module of this platform will include predictive data min-
ing algorithms designed to predict the changes in patients symptoms as well as
their severity. The second segment will include descriptive data mining meth-
ods, which will analyze and provide deeper insight in the patients condition by
discovering new disease patterns.
1 http://www.parkinson-manager.eu/.
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Data mining algorithms search for patterns and/or models in data, which
are interesting and valid according to the user-defined criteria of interesting-
ness and validity. Both predictive as well as descriptive data mining methods
are lately rapidly used in the healthcare domain. Use of data mining methods
brings numerous advantages in healthcare, such as lowering the cost of the avail-
able medical solutions, improving the detection of disease causes and proper
identification of treatment, drug recommendation and providing support in per-
sonalized health [1].

There are several symptoms that are important for diagnosis, management
and treatment of Parkinson’s disease patients. It appears that one of the cru-
cial roles in managing Parkinson’s disease is the detection and classification of
tremor. Tremor, which is a primary symptom of the disease, is an involuntary,
rhythmical, forwards and backwards movement of a body part and is assessed in
some studies with Hidden Markov models, neural networks and different meth-
ods for time domain and spectral analysis. Besides tremor, freezing of gait (FoG)
is one of the advanced symptoms in Parkinson’s disease. Very few computational
methods have been developed so far to detect it and they can be grouped into the
following categories: analysis of electromyography signals, 3D motion analysis,
foot pressure analysis and motion signal analysis using accelerometers and gyro-
scopes. The problem of gait initiation, the transient state between standing and
walking, is studied in terms of differentiation between normal and abnormal gait
initiation. In addition to these symptoms, medical studies have shown that over
90% of people with Parkinson’s disease suffer from some form of vocal impair-
ment. The analysis of voice can be used for successfully diagnosing Parkinson’s
disease.

There were several EU projects devoted to different aspects of Parkinson’s
disease, which is the topic of this research. On the basis of the state-of-art search,
this work proposes the design and the functionality of a data mining module that
will be implemented within the mobile e-health platform for the purpose of the
PD manager project.

2 Glossary and Key Terms

Parkinson’s disease (PD) results primarily from dying of dopaminergic neu-
rons in the Substantia Nigra, a part of the Mesencephalon (midbrain), which is
not curable to date. PD medications treat symptoms only, none halt or retard
dopaminergic neuron degeneration [2].

ClowdFlows is an open source cloud-based platform for composition, execu-
tion, and sharing of interactive machine learning and data mining workflows,
which is based on the principles of service-oriented knowledge discovery and
features interactive scientific workflows [3].

Hyper heuristics are a way of selecting or configuring algorithms by searching
a space of lower level heuristics instead of searching the solution (parameter)
space itself.
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3 Data Mining

This section overviews the basic concepts and provides a state-of-the-art litera-
ture review of data mining methods used in PD diagnosis, prediction, analysis
and management.

3.1 Basic Concepts

Data mining algorithms search for patterns and/or models in data that are
interesting and valid according to the user-defined criteria of interestingness and
validity. There are two main machine learning approaches used in data mining
algorithms: supervised learning takes classified examples as input for training
the classification/prediction model, while unsupervised learning takes as input
unclassified examples [4]. Consequently, data mining methods can be classified
into two main categories:

– Predictive data mining methods result in models for prediction and classifica-
tion. In classification, data are class labeled and the task of a classifier is to
determine the class for a new unlabeled example. The most commonly used
predictive methods are rule and decision tree learning methods. The classi-
fication rule model consists of if-then rules in a format: if Conditions then
Class, where Conditions represent conjunctions of attribute values, and rule
consequent is a Class label. The decision tree model consists of nodes and arcs.
Non-leaf nodes in a decision tree represent a test on a particular attribute, each
arc is test output (one or more attribute values in case of nominal attributes,
or an interval in case of numeric attributes) and each leaf is a class label.

– Descriptive data mining methods are used for finding individual data pat-
terns, such as associations, clusters, etc. Association rule induction, clustering
and subgroup discovery are among the most popular descriptive data mining
methods. Association rule learning is an unsupervised learning method where
an association rule is given in a form X → Y , where X and Y are sets of items.
The goal of association rule learning is to find interesting relationships among
sets of data items. Clustering is another unsupervised learning method where
data instances are clustered into groups based on their common characteris-
tics. On the other hand, subgroup discovery is a supervised learning method,
aimed at finding descriptions of interesting population subgroups.

Data mining is used extensively in various domains, such as business man-
agement, market analytics, insurance policies, healthcare, etc. In the last decade,
data mining has made its breakthrough and since then its use in the healthcare
domain is rapidly growing. The use of data mining methods brings numerous
advantages to healthcare, such as lowering the cost of medical solutions, detec-
tion of disease causes and proper identification of treatment methods, developing
personalized health profiles, drug recommendation systems, etc. [5]. This liter-
ature review specifically focuses on data mining applications for Parkinson’s
disease, which is the topic of the next section.
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3.2 State-of-the-art Review

This section presents a survey of the data mining methods used for diagnos-
ing, predicting, analyzing and managing PD. It is structured according to the
particular tasks in PD domain for which data mining algorithms were employed.

Tremor Assessment. One of the crucial roles in the management and treat-
ment of PD patients is the detection and classification of tremors. In clinical
practice, this is one of the most common movement disorders and is typically
classified using behavioral or etiological factors [6]. During early stages of PD,
tremor is mostly present at rest, while at later stages postural action tremor can
be observed. The two are hard to distinguish with automated methods using
only their base frequencies (3.5–7.5 Hz vs. 4–12 Hz) so the recognition of body
posture is also essential. Because clinical tremor assessment is most commonly
based on subjective methods such as clinical scales, handwriting and drawing
assessment [7,8], there is a great need for objective, computational methods for
the detection and quantification of tremors.

Several approaches to computational assessment of tremor have been pro-
posed. Methods such as time domain analysis [9], spectral analysis [10] and non-
linear analysis [10] have addressed the detection and quantification of tremor.
Much of the recent work is based on body fixed sensors (BFS) for long-term
monitoring of patients [11,12]. Recent work by Rigas et al. [13] on the assess-
ment of tremor activity tries to overcome the limitations of older methods using
the following approach. First, six body sensors are used to collect raw data in
real time. Then, signal pre-processing is performed to separate lower frequency
events (not interesting) and higher frequency events (relevant for tremor assess-
ment). Following data pre-processing, two sets of features are extracted from
signal data. The first set of features is used for posture recognition while the
second set is used for tremor detection and quantification. The obtained data is
used to train two Hidden Markov Models (HMM), one for posture recognition
and the other for tremor classification. By using the combined output of both
models, tremor can be accurately assessed. The authors report high accuracy
on a set of 23 subjects which indicates that the method is efficient for tremor
assessment in practice. A less popular, invasive approach to data collection for
tremor assessment is using deep brain electrodes implanted in PD patients [14].
Wu et al. have demonstrated the performance of radial basis function neural
network in detecting tremor and non-tremor patterns. These patterns allowed
them to predict the tremor onset in PD patients.

Gait Analysis. Muniz et al. [15] study the effects of deep brain stimulation
(DBS) on ground reaction force (GRF) during gait. They are interested in the
ability to discriminate between normal and PD subjects. They report using the
Principal Component Analysis (PCA) of the walking trials data to extract PC
features from the different GRF components. Then, the aim of the paper is to
investigate which classification method is the most successful for the addressed
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discrimination task. The methods tested are Support Vector Machines (SVM),
Probabilistic Neural Networks (PNN) and Logistic Regression (LR). They con-
clude that the PNN and SVM models show the best performance.

The problem of discriminating between normal and PD gait pattern is ana-
lyzed also in a study by Tahir and Manap [16]. Beside the GRF data, the authors
use additional spatio-temporal (e.g., stride time, cadence, step length) and kine-
matic (e.g., hip, knee, ankle angle) data, acquired by using reflective markers on
the subjects skin and an infrared camera. The methods they compare are SVMs
using linear, radial basis function and polynomial kernels, and Neural Networks
(NN). Their results suggest that the kinematic features are not informative for
this task, and that the SVM classifier performs better than the NNs.

Freezing of Gait Detection. Besides tremor, freezing of gait (FoG) is one of
the advanced symptoms in Parkinson’s disease. Three types of FoG are distin-
guished:

– inability to start walking or continue movement,
– complete absence of movement, and
– shuffling with very short steps [17].

Automated assessment of FoG events is of crucial importance because (a) it
becomes more frequent and disabling with the progression of Parkinson’s disease
and (b) because FoG is a common cause of falls and has a great impact on the
quality of life. Clinical assessment of FoG is performed using different scales and
questionnaires [18]. Such scales are largely subjective and lack validation against
the onset and duration of events. This calls for the development of automated
computational methods that are able to detect and assess FoG accurately.

Surprisingly, only few computational methods have been developed so far.
The methods can be classified into four categories:

– analysis of electromyography signals [19],
– 3D motion analysis [20],
– foot pressure analysis [21], and
– motion signal analysis using accelerometers and gyroscopes [22–24].

The methods from the last category are specially important because they
are based on body sensor data analysis and can therefore be integrated with
the detection and assessment of other PD symptoms and movement disorders
(e.g., tremor assessment described above). In their recent work, Tipoliti et al.
[22] developed a methodology for FoG detection using six wearable accelerome-
ters and two gyroscopes. The method is based on signal processing and feature
extraction, followed by classification using four well-known machine learning
algorithms. The methodology has four stages: (1) missing data imputation, (2)
low pass filtering, (3) extraction of features using a sliding window, (4) clas-
sification using one the well-known machine learning algorithms (Naive Bayes,
Random forest, Decision tree, Random tree). The evaluation was performed on
a set of 16 patients: 5 patients diagnosed with PD and history of FoG events,
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6 patients with PD exhibiting other symptoms, and 5 healthy control subjects.
The proposed approach is interesting because it can be fully integrated into
clinical practice and exhibits high accuracy of 96.11% in classification.

Gait Initiation. The problem of gait initiation, the transient state between
standing and walking, was addressed in the study of Muniz et al. [25]. The
authors target only the long-term effects of DBS on gait initiation, as the disease
progresses. Their hypothesis is that as the disease progresses, the gait initiation
worsens. The methods used to test this include PCA of the GRF components,
selection of the most informative PCs, and analysis of standard distance2. The
authors also use logistic regression to identify a threshold over the standard
distance data, which would discriminate between normal and abnormal gait ini-
tiation. They conclude that the standard distance based on PCA of gait initiation
GRF data is increased on long-term.

Vocal Impairment of PD Patients. Medical studies have shown that over
90% of people with PD suffer from some form of vocal impairment [26]. The
analysis of voice can be used for successfully diagnosing PD. The study of Das
[27] distinguishes the healthy individuals from the ones with PD based on the
vocal recordings from 31 people where 23 were with PD. The author has per-
formed a comparative study where performance of several classification algo-
rithms was evaluated (Neural Networks, DMneural, Regression and Decision
Tree) and showed that Neural Network achieved the highest accuracy of 92.9%.

The remote tracking of PD patients using acoustic data was done by Eskidere
et al. [28] and Chen et al. [29]. The data they use are publicly available [30,31]
deposited in the UCI machine learning repository3,4.

Eskidere et al. [28] compare standard SVM, Multilayer Perceptron Neural
Networks (MLPNN), General Regression Neural Networks (GRNN) and Least
Square Support Vector Machines (LS-SVM). The target variables correspond
to the Unified Parkinson’s Disease Rating Scale (UPDRS), and are the total-
UPDRS and motor-UPDRS, which are numeric variables and denote the pres-
ence and severity of symptoms. The authors conclude that a logarithmic trans-
formations of extracted vocal features along with Least Square Support Vector
Machines (LS-SVM) shows best overall mean-square results.

Chen et al. [29] use data consisting of vocal measurements of 31 people, and
are interested in discriminating healthy people from those with PD. The authors
use the fuzzy k-nearest neighbour approach (FKNN) and compare its perfor-
mance to two different SVM variants. In the discussion they also state that a
lot of different methods have been tried on this classification task, with different
results: decision trees, SVMs, Neural Networks, to name a few. The method asso-

2 Standard distance: a statistic mainly used for spatial GIS data, to measure compact-
ness of a distribution.

3 https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.
4 https://archive.ics.uci.edu/ml/datasets/Parkinsons.

https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
https://archive.ics.uci.edu/ml/datasets/Parkinsons
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ciated with the best classification accuracy is obtained by the fuzzy-based non-
linear transformation method in combination with the SVM classifier [32]. Addi-
tionally, the authors claim that their 10-times 10-fold cross-validation results
suggest that FKNN shows even higher classification accuracy.

Analysis of Combined PD Symptoms. System PERFORM, containing a
data mining module with the Predictor and Associator part, represents an effort
to combine tracking of several PD symptoms [33]. Based on the initial patients
examination and medications taken the Predictor part can predict each PD
symptom separately covering 15 different PD symptoms in total. Its predic-
tion accuracy ranges from 57.1% to 77.4% depending on the symptom where
the highest accuracy is achieved for tremor detection. The Associator generates
association rules from the patients dataset and can discover new insights for the
disease.

4 Open Problems Addressed in the PD manager Project

Data mining methods are used within the PD manager project for the analysis
of various types of data, such as sensor data in the form of time series, lifestyle,
therapy, etc. in order to create new, valuable and improved knowledge in the
domain of PD. Moreover, the problem of prediction of PD symptoms and their
severity are addressed. Both of these tasks have the goal to help decision support
systems monitoring patients status, evaluating the current therapy and, when
necessary, suggesting a new therapy plan.

Two research phases are carried out within the data mining module. The
first one involves raw patients data, therapy, patient profiles and other available
data to analyze the patients status where the analysis is done throughout the
rule discovery process with association rule mining algorithms. The second phase
includes developments of automatic recognition of symptoms based on time series
data from patients. This prediction is based on decision trees where we aim
to improve the prediction accuracy compared to the existing study [33]. The
recognized symptoms, therapy information and other available patients data are
the starting point for the rule discovery process in the second phase.

The PD manager data mining module consists of workflows for data process-
ing and data mining algorithms and is included into the novel web-based data
mining platform ClowdFlows5. The implementation of this module in the form of
workflows provides the benefits of repeatability of such workflows and potential
sharing results between different users. The main advantage of using a web-based
platform to analyze patients data and predict symptoms is that no installation
is required, which also eliminates the problem of building island solutions which
may contain data of great interest and value, but do not expose them to the
whole research community [3]. Moreover, focusing on isolated implementations

5 http://www.clowdflows.org/.

http://www.clowdflows.org/
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usually involves much technological effort (as described in [34]) which would be
better invested in improving core research.

The platform has a user-friendly graphical user interface which enables its
easy utilization by the end users (clinicians). We expect that the proposed
PD manager data mining module, implemented in the ClowdFlows platform,
will exhibit several advantages (such as efficient feature selection, and wider
selection of applicable data mining and machine learning algorithms) and will
enable data analysis in clinical practice.

5 Future Challenges

Building on the initial implementation of the data mining module, one could
take several possible research routes to improve the effectiveness of our meth-
ods. The use of a centralized, Web based graphical workflow system will prove
especially useful in those endeavors, as it bundles not only data, but the exper-
imental results of all experts involved with that platform, which can be useful
to experiment with. This follows the concept of an “expert-in-the-loop” to solve
problems which would otherwise be computationally hard [35] (for clinical exam-
ples refer to: [36–38]). This “glass-box”-approach [39] may be an alternative to
the often criticized fully-automatic “black-box”-approach.

5.1 Heterogeneous Data Linkage

As we have seen, the field of Parkinson’s disease comprises several sub-problems
which are amenable to different machine learning approaches and feature their
own, distinctive input data sets. Coming from EEG, EMG, implanted body sen-
sors and force resisting sensors, these data sets have distinct attribute domains,
which are—via their time dimension, and probably via many other biological
attributes—interlinkable with one another. Usually, studies are only concerned
about using a single one of those data sources and applying different methods
to it. However, a more holistic approach would be to fuse those data sets along
a certain dimension (time, spectral, etc.) in order to achieve a richer represen-
tation of the underlying problem. A resulting data-set might take the form of a
graph structure, in which individual entities from the originating sets are linked
by meaningful connection rules (which will have to be learned in the first place).
For example, [40] introduced the concept of authority ranking for heterogeneous
networks, where the impact is transferred along edges to simultaneously rank
nodes of different types.

5.2 Meta Machine Learning

Meta-learning applies learning algorithms on data collected about machine learn-
ing experiments. As one of the first papers regarding this topic, [41] defined the
‘Algorithm Selection Problem’, which was first recognized as a meta learning
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problem by the machine learning community in the 1990s. He describes sev-
eral spaces in which the Algorithm Selection Problem plays out, comprising the
problem space, feature space, the pool of suitable algorithms, performance mea-
sures (metric space) as well the criteria space defining the weights assigned to
performance measures.

In our scenario we are concerned with the selection of workflow components
and their parameters based on the tackled problems, their features, available
learning algorithms, preprocessing methods, parameters and performance mea-
sures. Several approaches and successful applications of this principle exist and
we will follow the best practices [42]. The greatest advantage of using Meta ML
in combination with a centralized, Web based workflow system lies in the fact
that users may profit from their colleagues’ meta data by building up a collective
Meta ML database: input data plus algorithm parameters plus success metrics.

5.3 Hyper Heuristics

Hyper heuristics are a way of selecting or configuring algorithms by searching
a space of lower level heuristics instead of searching the solution (parameter)
space itself. Hyper heuristics are different from meta learning in that they work
independently of the problem domain and therefore promise to be generally
applicable; the challenges lie in producing algorithms that do not need to be
optimal, but rather good-enough, soon-enough, cheap-enough [43].

Although the field of Parkinson’s disease in itself is not broad enough to be
a suitable proving ground for hyper heuristic research, the ClowdFlows platform
will provide us with meta-data about experiments in many diverse areas. We
fully agree with [44] who concludes that there is still little interaction between
research communities, a problem whose solution could lead to the extension of
algorithms to both new problem domains and new methodologies through cross-
fertilization of ideas. A huge challenge in the future is in privacy aware machine
learning [45].
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Abstract. The generalized adoption of Electronic Medical Records
(EMR) together with the need to give the patient the appropriate treat-
ment at the appropriate moment at the appropriate cost is demanding
solutions to analyze the information on the EMR automatically. However
most of the information on the EMR is non-structured: texts and images.
Extracting knowledge from this data requires methods for structuring
this information. Despite the efforts made in Natural Language Process-
ing (NLP) even in the biomedical domain and in image processing, med-
ical big data has still to undertake several challenges. The ungrammatical
structure of clinical notes, abbreviations used and evolving terms have to
be tackled in any Name Entity Recognition process. Moreover abbrevia-
tions, acronyms and terms are very much dependant on the language and
the specific service. On the other hand, in the area of medical images,
one of the main challenges is the development of new algorithms and
methodologies that can help the physician take full advantage of the
information contained in all these images. However, the large number of
imaging modalities used today for diagnosis hinders the availability of
general procedures as machine learning is, once again, a good approach
for addressing this challenge. In this chapter, which concentrates on the
problem of name entity recognition, we review previous approaches and
look at future works. We also review the machine leaning approaches for
image segmentation and annotation.

Keywords: Natural language processing · Electronic medical record
(EMR) · Medical image processing · Name entity recognition · Image
annotation · Image segmentation

1 Introduction

In addition to the enormous use that medical data has in the diagnosis and
treatment of individual patients, the great value of these data is provided by
the possibility of extracting knowledge from a large number of patient medical
records. The wisdom, knowledge and experience of a large number of physi-
cians are hidden in electronic medical records. Complex computer algorithms
oriented to supporting clinical diagnostic methods, description of diseases as
well as the dimensioning of the chances of success of a particular treatment
c© Springer International Publishing AG 2016
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will make it possible to go from clinical judgement to evidence-based medi-
cine. Electronic Medical Records (EMR) (also called Electronic Health Records
(EHR)) are one of the main sources of information as they contain the med-
ical history of the patient, diagnoses, medications, treatment plans, immuniza-
tion dates, allergies, images (radiology, etc., and laboratory and test results.
Most of the information contained in the EMR is consequently non-structured
(natural text and images). Understanding this information requires methods for
structuring this information for example by labelling or annotating text and
images respectively. However it is still a daunting task as most of the existing
methods for other domains do not perform well on medical images and clini-
cal notes. Once the information is structured, the challenge lies in mining the
structured information. Clinical notes are frequently not grammatically correct,
they include abbreviations and acronyms that are often not standard and the
medical terms contained evolve almost continuously. Name Entity Recognition
(NER) is a paramount step in the natural language process in which words or
tokens representing a particular entity are found. NER encompasses analyzing
terms that refer to treatments, diseases or body parts, amongst others, as well
as analysing the relationship between these concepts. The use of dictionaries
and ontologies such as SNOMED, LOINC, etc., plays an important role in this
task. The previous features of text in EMR increase the complexity of NERs for
clinical notes that have to deal with the disambiguation of abbreviations and
multilingual issues for example. On the other hand, these peculiarities of clinical
text makes NER for biomedical domains less precise in clinical notes. Several
approaches have been proposed for the task. We will review these approaches in
this chapter, in which machine learning is applied and will highlight the open
problems and look at future developments. On the other hand, it should be
noted that medical imaging currently constitutes one of the main sources of
information used by physicians for diagnosis and therapy. As a consequence,
medical imaging technologies have evolved rapidly; and a large number of new
imaging modalities and methodologies have emerged. Just to mention some of
them: positron-emission tomography (PET)/CT, conebeam/multi-slice CT, 3D
ultrasound imaging, tomosynthesis, diffusion-weighted magnetic resonance imag-
ing (MRI), electrical impedance tomography or diffuse optical tomography. The
analysis and interpretation of this huge volume of data requires the development
of new algorithms and methodologies that help the physician take full advan-
tage of the information contained in all these images. Since the extraction of the
information from the images depends on many factors, such as: modality, regis-
tration conditions, devices, and many others, it is not possible to have general
procedures available to locate and identify objects such as anatomical struc-
tures or lesions in medical images. Machine learning currently plays an essential
role in the analysis of medical images, and it has been used for image segmen-
tation, image registration, image fusion, image annotation and content-based
image retrieval. In this chapter we concentrate on the challenges behind medical
image segmentation and annotation. We will review the challenges that have to
be tackled when annotating medical images and the existing approaches that
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have been proposed from the machine learning community. We will also analyse
these problems and the future outlook.

Consequently, we believe that computer scientists and data scientists will
find this chapter especially interesting in identifying the challenges and problems
still to be tackled both in the field of NER in clinical notes and medical image
annotation and segmentation. On the other hand, we recommend that healthcare
professionals also read the chapter so that they may appreciate the value of the
data they generate and then look at the existing approaches to extract this
value. In a sense, this chapter tries to bridge the gap between data scientists,
who will better understand open problems, and healthcare professionals, who
will discover the value behind the data they generate and how they can make
use of this value as feedback by producing better quality data that will be easier
to analyze automatically. By closing the loop between health care practitioners
and data scientists, the solutions demanded for a better health care practice will
become a reality.

The rest of the chapter has been organized as follows: The beginning of Sect. 2
contains the list of terms and acronyms that are used to understand the chapter
fully. Section 3.2 dissects the problem of analyzing natural medical text. We cover
the Natural Language Process and we focus the attention on the NER and on
the solutions from machine learning to approach this problem. In Sect. 3.3, first
we describe the image analysis challenges and then proceed to analyse the efforts
made in machine learning towards image processing. Despite these efforts, there
is still a long way to go both in image segmentation and annotation as well as
NER and consequently in Sect. 4 we highlight the open problems and we end
with the future outlook in Sect. 5.

2 Glossary and Key Terms

Active learning techniques aim to select the most effective samples actively to
present to the users for feedback, fully using human effort [1].

Cluster analysis divides data into meaningful or useful groups (clusters).

Deep learning is a new area of machine learning, which deals mainly with the
optimization of deep neural networks.

Image Annotation is a technique that assigns a set of linguistic terms to images
in order to categorize the images conceptually and provide a means for accessing
images from databases effectively [2].

Image Mining can be defined as the set of techniques and processes that allow
the extraction of knowledge contained in images stored in large databases.

Image Segmentation refers to the partition of an image into a set of homogeneous
regions that cover the whole image and in which the regions do not overlap.

Machine Learning can be defined as a set of methods that can automatically
detect patterns in data, and then use these patterns to predict future data, or
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carry out other types of decision making under conditions of uncertainty (such
as planning how to collect more data!) [3].

Natural Language Processing (NLP) refers to the Artificial Intelligent method of
communicating with intelligent systems using a natural language such as English.

Named Entity Recognition (NER) is the task of identifying elements in text
belonging to predefined categories such as the names of persons, organizations,
locations, expressions of times, quantities, monetary values, percentages, etc.

Part-Of-Speech Tagger is a piece of software that reads text in a language and
assigns parts of speech to each word (and other tokens), such as noun, verb,
adjective, etc. [4].

Support Vector Machines is a discriminative classifier formally defined by a sep-
arating hyperplane: given labelled training data (supervised learning), the algo-
rithm outputs an optimal hyperplane which categorizes new examples.

3 State-of-the-art

3.1 Machine Learning for Text

Today, a major part of the patient’s clinical observations, including radiology
reports, operative notes, and discharge summaries are recorded as narrative text,
even laboratory and medication records are sometimes only available as natural
text notes [5]. After a patient visit, diagnosis codes are assigned to the medical
records by trained coders by reviewing all the documents associated with the
visit. This is a very complex task for which computational approaches to the code
assignment have been proposed in recent years [6]. For example in [7], logistic
regression is used to learn a string similarity measure from a dictionary, useful
for softstring matching. In fact, the notes are written in the official language
of the country so one issue is that of multilingualism. In this chapter however
we will concentrate on the English language and the solutions that have been
proposed for this language.

Even though NLP techniques can enable the meaning from a natural language
input to be derived automatically, the process is not straightforward due to the
inherent ambiguity of the language at different levels: (i) lexicographic: the same
word can have several meanings, (ii) structural: it is required to disambiguate
the semantic dependence of different phrases that lead to the construction of dif-
ferent syntax trees, (iii) detection of the affected subject: especially in healthcare
information in which patient information plays a very important role in detect-
ing the subject of a disease, whether it be denied or hypothetical is paramount
to understanding clinical notes.

The problem of being able to extract knowledge from texts and querying the
system in natural language and even extracting patterns from clinical notes lies
in natural language processing which is far beyond that of information retrieval.
In fact, in medical texts, the work is even more challenging as the terminology
changes, sentences can contain the negation of facts that are discriminated in
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order to know the factors of a disease, there are numbers that indicate either lab
result texts, doses of treatments, and several acronyms can be ambiguous and
have to be expanded depending on the context. Consequently, after the process
of tokenizing and syntactically analyzing the text there are two important tasks
related to entity recognition, that is to say recognizing whether a certain work
(or part of a sentence) corresponds to a certain disease, treatment, gene, drug,
etc. and the relationships among the entities discovered.

Over recent decades, a lot of effort has been made to apply NLP technolo-
gies to clinical texts. As a result of this effort, several systems were developed
such as the Linguistic String Project [8] or the Medical Language Extraction
and Encoding System (MedLEE) [9]. Recent efforts including cTAKES [10] and
HiTEX [11] have also been introduced into the community. One common feature
of clinical NLP systems is that they can extract various types of named entities
from clinical texts and link them to concepts in the Unified Medical Language
System (UMLS).

In this section, first we describe the different stages of the NLP to concentrate
on a specific problem that, as we will see, is paramount in the medical domain:
the detection of entities. We will first explore the challenges and then the machine
learning approaches that have been proposed to resolve them.

The processing of medical texts normally starts with spelling correction, find-
ing dates, doses, disambiguation of acronyms [12] and the expansion of abbrevi-
ations [13]. Then the Natural Language Process is applied which is made up of
several steps: (i) sentence detector: sentences are found (ii) tokenization: a token
is an instance of a sequence of characters, at this stage the sentence is divided
into all possible tokens, (iii) part of speech: based on its use and functions,
words (tokens) are categorized into several types or parts of speech (in the Eng-
lish grammar 8 major parts of speech are defined: noun, pronoun, verb, adverb,
adjective, conjunction, preposition, and interjection); (iv) shallow parsing also
called chunking: the process of analyzing a sentence identifying the constituents
(noun groups, verb groups, etc.) and (v) entity recognition: recognizing words or
phrases as medical terms that represent the domain concepts and understanding
the relationships between the identified concepts. The process of determining
an appropriate Part-Of-Speech (PoS) tag for each word in a text is called PoS
tagging. Each language has its own structure and rules for the construction of
sentences. Therefore, a PoS tagger is a language specific tool. A PoS Tagger is
a piece of software that reads text in a particular language and assigns parts
of speech to each word. A Java implementation of the log-linear part-of-speech
taggers is described in [14].

A tagset is a list of predefined PoS tags. The size of the tagset can differ
from several types to hundreds of types. The Penn Treebank [MSM93] corpus
for English texts uses 48 tags, of which 12 tags are punctuation and currency
symbols. Many machine learning methods have also been applied to the problem
of PoS tagging. Methods such as SVM, Maximum Entropy classifier, Perceptron,
and Nearest-neighbour have all been tried, and most can achieve an accuracy of
more than 95%.
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In [15] a PoS tagger that achieves more than 97% accuracy in MEDLINE
citations is presented. In fact, two studies are presented in [16] and [17] in which
it is shown how training a PoS-tagger on a relatively small set of clinical notes
improves the performance of the PoStagger trained on Penn Treebank from 90%
to 95% in the first case and from 79% to 94% in the second case. PoS taggers
are out of the scope of this chapter. For the interested reader, one can find a list
of several PoS taggers in [18], as one of the main challenges behind obtaining
a good medical PoS tagger is the availability of an annotated medical corpus,
such as PoS taggers trained in medical data, reports better results than those
being trained on a general purpose corpus. In [19] a comprehensive review of the
state-of-art and open problems in biomedical text mining is presented.

3.2 Name Entity Recognition

Named Entity Recognition (NER), as has been seen, labels sequences of words in
a text which are the names of things. Typical examples include person, locations
and company names. For the medical domain, the entities to be identified are
diseases, genes, drugs, or protein names amongst others. The problem of finding
entities requires the extraction of the features of the words that can help to
identify them later and which sometimes requires dictionaries, as we shall see.

NER in medicine is crucial to understanding any clinical note, be it a radi-
ological report, a discharge summary or whatever type of clinical text, as it
helps to identify terms that make reference to names of diseases, treatments,
doses, etc., and make it possible to find associations among them. Biomedical
names are very complex; they include acronyms, and morphological, derivational
and orthographic variants. These variants of the same term have to be clearly
identified in a non-ambiguous way.

In the literature we find references to NER as the task that involves iden-
tifying the boundaries of the name in the text while the term Name Entity
Classification (NEC) is used for the task of classifying or assigning a semantic
class to the entity based on a dictionary or ontology of terms. However, both
tasks are often grouped under the name of NER, and this is the term that we
will use in this chapter.

Research indicates that even state-of-the-art NER systems developed for one
domain do not typically perform well in other domains [20]. In fact, this is one
of the challenges to tackle when analysing clinical notes. A great deal of effort
has been dedicated to the biomedical domain since 1998, in particular for gene
recognition and later in finding out the name of a drug, but as we will see there
is a paucity of works in which clinical notes are analyzed.

We will briefly review the efforts of NER in general domains and then we
will analyze the efforts in the biomedical field with emphasis on these machine
learning approaches.

A classification of NER methods in dictionary and statistical-based methods
is in [21]. In statistical based approaches, NER is formalised as a classification
task in which an input expression is either classified as an entity or not. As
in any supervised problem in the training phase, the parameters of the NER
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model are learned from the annotated data and then the trained model is used
for name entity detection in unseen documents. Supervised learning methods
are reported to achieve a performance superior to unsupervised ones (those only
based on dictionaries), but previously annotated data are essential for training
supervised models [22]. Consequently, the main drawback of supervised systems
is the manual effort needed for the creation of labelled training data. Reducing
the annotation work for NER can be achieved through a dynamic selection of
sentences to be annotated [23] or through active learning [24,25].

A dictionary-based recognizer does not need labelled text as training data.
A dictionary is a collection of phrases that describe named entities. The UMLS
[26] is a repository of biomedical vocabularies developed by the US National
Library of Medicine. The UMLS integrates over 2 million names for some 900 K
concepts from more than 60 families of biomedical vocabularies, as well as 12
million relationships among these concepts. Vocabularies integrated in the UMLS
Metathesaurus include the NCBI taxonomy, Gene Ontology, the Medical Subject
Headings (MeSH), OMIM and the Digital Anatomist Symbolic Knowledge Base.
Many NER methods (applied to both the clinical narrative and the biomedical
literature texts) use UMLS Meta and tools developed within the UMLS. One
of the main drawbacks of a dictionary-based NER is that the quality of the
dictionary used can be very much dependant on local terms especially in the
case of dealing with clinical notes. In [27] the construction of a resource that
provides semantic information on words and phrases to facilitate the processing
of medical narrative is presented, concluding that automatic methods can be
used to construct a semantic lexicon from existing UMLS sources. The semantic
information obtained this way can aid natural language processing programs
that analyze medical narrative, provided that lexemes with multiple semantic
types are kept to a minimum, however further work is still needed to increase
the coverage of the semantic lexicon and to exploit contextual information when
selecting semantic senses.

In clinical notes one problem is shared with traditional biomedical systems;
local terminology is paramount to mapping concepts. In the biomedical case,
as they have been developed independently of each other, they do not have a
common structure, nor do they share a common data dictionary or data elements.
Consequently, in [28], the authors propose to improve the mapping of the UMLS
by using supplementary information based on WordNet, however as shown in
the conclusions, synonyms are of almost no use as there are very few of them
in WordNet and a relatively low similarity between some definitions has been
shown. Despite all these limitations, the method helped to solve mappings that
were not solved in UMLS. Consequently, in clinical notes for dictionary-based
methods, it would be interesting to have lexicons developed for each service,
sector or hospital to improve the efficacy of the NER.

Supervised NER Approaches. Named entity recognition using machine
learning models have the main drawback, as has been previously highlighted,
that training data (i.e. annotated corpora) have to be available. Methods such
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as Conditional Random Fields or Support Vector Machines have shown that
they can outperform dictionary based NERs in terms of accuracy. However, the
dearth of training data (i.e. annotated corpora) makes it difficult for machine
learning-based Named Entity Recognizers to be used in building practical infor-
mation extraction systems.

In [29] one can find a survey covering the results of research into NER from
1991 to 2006. In this paper, the main efforts from the machine learning com-
munity are specified. Consequently, the following are reported as supervised
methods: Hidden Markov Models (HMM) [30], Decision Trees [31], Maximum
Entropy Models (ME) [32], Support Vector Machines (SVM) [33], and Condi-
tional Random Fields (CRF) [34]. In this work, the authors also review the work
on semisupervised learning, as obtaining results in some problems that can be
compared to those of supervised learning [35].

Finally, in unsupervised methods, they highlight clustering as the most
important approach in which, for example, one can try to gather named entities
from clustered groups based on the similarity of context. The techniques rely on
lexical resources such as WordNet, on lexical patterns and on statistics computed
on a large unannotated corpus.

Focusing on the supervised approaches for NER, not specific for the clinical
domain the work presented in [34] is the pioneering work in CRF. Lexicon-based
features, which are used to build the training set, report 84% for the English
language. The main disadvantage of CRFs is the computational cost of training.
In [36], one can find a Java implementation of this technique.

The results of the sixteen systems that participated in the CoNLL- 2003
shared task are compared in [37]. They used a wide variety of machine
learning techniques (Maximum Entropy Model, Hidden Markov Models,
AdaBoost.MH, Conditional Markov Models, Memory-Based Learning, Support
Vectors Machines and Conditional Random Fields) as well as system combi-
nation. Almost all participants used lexical features as well as part-of-speech
tags. Orthographic information, affixes, and chunk information were also incor-
porated into most systems. The best performance for both languages has been
obtained using a combined-learning system that used Maximum Entropy Mod-
els, transformation-based learning, Hidden Markov Models as well as robust risk
minimization [38]. It is worth mentioning that in this paper, the authors also
highlight that in the CoNLL-2002 shared task they found out that the choice
of features is at least as important as the choice of the learning approach for a
good NER.

The work presented in [38] combines a robust linear classifier, Maximum
Entropy, transformation-based learning, and hidden Markov model. The authors
report the results using features based on the words with their lemmas, PoS tags,
text chunks, prefixes and suffixes, form of the word, gazetteers, proper names,
and organizations. When no gazetteer or other additional training resources
are used, the combined system attains a 91.6% F-measure performance on the
English data. However, when trained on more general data integrating name,
location and person gazetteers, the F-measure is reduced by a factor of 15 to
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21%. However, these works have not been trained on medical data. Since the late
1990’s, there has been a great deal of interest in entity identification in molecular
biology, bioinformatics, and natural medical language processing communities.
The most common entity of interest in that domain has been names of genes
and gene products. There has also been considerable interest in the recognition
of chemical entities and drugs in the context of the CHEMDNER competition,
with 27 teams participating in this task [39].

Meystre et al. review information extraction from clinical narrative [40]. In
this paper it is very interesting to see the difference that the author makes
between biomedical data and clinical data. In fact, in this work, biomedical text
refers to be the kind of text that appears in books, articles, literature abstracts,
posters, and so forth. Clinical texts, on the other hand, are defined as texts
written by clinicians in a clinical setting. These texts describe patients, their
pathologies, their personal, social, and medical histories, findings made during
interviews or procedures, and in general all the information in the patient’s
records.

In general, clinical notes differ from biomedical texts. Certain features of clin-
ical notes that can make NER trained on biomedical text not work on clinical
notes are worth mentioning, such as the number of abbreviations (often ambigu-
ous), acronyms, misspelling errors, numbers with different meanings (doses in
treatment, number of lab tests), repetitions due to cutting and pasting from
other reports and frequently a lack of grammatical structure. Consequently, we
review the efforts we have found in the literature, noting that in these clinical
notes, they can be similar to biomedical texts in structure and content, so that
in research reports, for example, one could think that existing techniques should
behave in a similar way [40].

In particular, a two-phase named entity recognizer for the biomedical domain
based on SVMs is described in [41]. The approach consists of two subtasks: a
boundary identifier and a semantic classifier of named entities. This separation
of the NER task allows the use of the appropriate SVM classifier and the relevant
features for each subtask, resulting in a reduction in computational complexity
and an improvement in performance. A hierarchical classification method is used
for a semantic classification that used 22 semantic classes that are based on the
GENIA ontology [42].

As has already been mentioned, reducing the annotation effort for NER can
be achieved through the dynamic selection of sentences to be annotated [23]
or active learning [25]. These methods could be of value for the annotation
of clinical notes because the existing collections of annotated clinical notes are
significantly smaller than those in medical literature (most dataset owners report
gold standards of around 160 notes [43,44]. The F-scores achieved for a statistical
NER in these collections range from low 70% [44] to 86% [45].

More recent approaches include the work on novel feature exploration pre-
sented in [46] for identifying the entities of the text into 5 types: protein,
DNA, RNA, cell-line and cell-type. They apply Semi-CRFs that label a segment
not as a single word like in other conditional random field model approaches.
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The approach is a two-phase method: (i) term boundary detection and semantic
labelling. The new feature sets are reused to improve the performance.

Furthermore, in the biomedical field, the works presented in [47] compare
Hidden Markov Model and Conditional Random Fields in the biomedical domain
and experiments are conducted on the GENETAG [48] and JNLPBA corpora.

An optimization method for two-phase recognition using Conditional Ran-
dom Fields is proposed in [49]. First, each named entity boundary is detected
to distinguish all real entities and then the semantic class of the entity detected
is labelled. The model training process is implemented using MapReduce. The
approach tries to improve the recognition performance by reducing the training
time which is now crucial due to the volume of biological data.

Another field that has been increasing in interest in recent years in the med-
ical domain is that of recognizing the names of drugs. In this sense, a machine
learning-based approach to recognize the names of drugs in biomedical texts is
presented in [50], in which experimental results achieve an F-score of 92.54% on
the test set of DDIExtraction2011. In this approach, a drug name dictionary is
first constructed using DrugBank and PubMed. Then a semi-supervised learning
method, feature-coupling generalization, is used to filter this dictionary. Finally,
the drug name dictionary is combined with a Conditional Random Field (CRF)
model to recognize drug names.

RapTAT, a token-order-specific näıve Bayes-based machine learning system
that predicts associations between phrases and concepts, is presented in [51]. The
performance was assessed using a reference standard generated from 2,860 VA
discharge summaries containing 567,520 phrases that had been mapped to 12,056
distinct clinical terms in SNOMED CT. In this work, the authors demonstrate
the feasibility of rapidly and accurately mapping phrases into a wide range of
medical concepts based on a token-order-specific näıve Bayes model and machine
learning.

In the biomedical domain, for example, several annotated corpora such as
GENIA [52], PennBioIE [53], and GENETAG [48] have been created and made
publicly available, but the named entity categories annotated in these corpora
are tailored to their specific needs and not always sufficient or suitable for text
mining tasks that other researchers need to carry out.

Drug NER using limited or no manually annotated data is researched in [23].
An algorithm is proposed for combining methods based on annotations and
dictionaries. The drug NER recall is improved using suffix patterns that were
calculated by genetic programming. Drug NER performances improved by aggre-
gating heterogeneous drug NER methods (Aggregating drug NER methods,
based on gold-standard annotations, dictionary knowledge and patterns). The
experiments show that combining heterogeneous models can achieve a similar or
comparable classification performance with that of our best performing model
trained on gold-standard annotations. In particular, the authors have shown that
in the pharmacology domain, static knowledge resources such as dictionaries
actually contain more information than is immediately apparent, and therefore
can be used in other, non-static contexts. It remains to be seen whether a larger
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annotated collection of clinical notes will prove to be beneficial for statistical
NER.

A novel approach in which interactive machine learning with the human-in-
the-loop [54] is applied to solving medical problems is presented in [55]. The
novelty behind the approach is that contrary to classic machine learning, it does
not operate on predefined training or test sets, and human input to improve the
system is supplied iteratively. Then during annotation, a machine learning model
is built on previous annotations and used to propose labels for subsequent anno-
tations. The iterative and interactive process is shown to improve the learning
process.

Following the interactive machine learning approach, in [56] the authors
present an innovative approach in which rather than using established ontologies
they allow users to annotate and create their own ontologies of concepts which
could later be integrated with known ontologies. The experiments conducted in
the paper lead to the understanding that users in the process of learning are
a very good asset to improve the overall learning process and can help to out-
perform methods already used in the literature. Moreover, the human can help
to solve computational hard problems, an experimental proof for the human-in-
the-loop approach can be found in [57].

3.3 Machine Learning for Medical Image Analysis

The use of modern machine learning techniques in medical imaging has suf-
fered a considerable delay compared to other fields such as business intelligence,
detection of e-mail spam, or fraud and credit scoring [58]. However, machine
learning currently plays an essential role in the area of medical imaging, and it
has been used in many applications, such as: image segmentation [59,60], image
registration [61], image fusion [62], image annotation [63] and content-based
image retrieval [64] amongst others, and for almost any imaging modality. There
are a huge number of conferences, workshops and scientific papers on all these
issues [65]. A simple search of the terms “machine learning medical image”? in
Google Scholar provides 731,000 results and the similar search “machine learning
medical imaging” obtains 215,000 results.

Given the difficulty in addressing the overall problem and taking into account
space restrictions, this document will focus on the theme of machine learning
for medical image mining, in particular in the processes of segmentation and
annotation.

Image mining can be defined as the set of techniques and processes that allow
the extraction of knowledge contained in images stored in large databases. Even
though standard data mining methods can be used to mine structured informa-
tion contained in images, image mining is more than just an extension of data
mining to the image domain. Different and complex processes should be applied
to transform images into some form of quantitative data or, in other words, into
structured information, as a first step for the further application of data mining
algorithms. Two of the main processes involved in this transformation are the
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segmentation of the images into homogeneous objects and the annotation of the
images with semantic concepts.

Machine Learning for Medical Images Segmentation. The goal of a seg-
mentation process is to separate objects of interest from the background. Since
the definition of the background depends on the kinds of objects that we are
looking for, a priori knowledge on the objects of interest is generally needed in
order to obtain an optimal segmentation. Thus, for example, depending on what
we are looking for, vital organs such as: lungs, liver, heart; or for pathological
tissues inside one of these organs, different segmentations should be done. Since
segmentation is the first step in the chain of processes to be analysed and inter-
pret images, the accuracy of the final results depends strongly on the quality of
the segmentation.

Several works can be found in the literature that address the use of machine
learning in both challenges: organ identifications and pathological tissues. Thus,
[66] presented a review on machine learning techniques for the automatic seg-
mentation of liver images. In this review, they describe three main types of
technique: based on Neural Networks, based on Support Vector Machines and
based on Clustering. They conclude that even though a comparative evaluation
of these methods it is not possible, since different dataset and different error mea-
sures are used, it seems that hybrid methods that combines different machine
learning techniques provide better results than individual techniques.

In order to avoid the problem of the lack of a uniform dataset to carry out
machine learning technique validation, the competitions proposed in recent years
with the goal of finding the best segmentation algorithm for particular cases
should be mentioned. For that, they provide annotated datasets, real cases for
which the ground truth information is known, as is the validation protocol. Thus,
it is ensured that the results provided by different algorithms are technically
comparable. In 2007, the Retinopathy Online Challenge (ROC) was organized
by the University of Iowa 1. Diabetic retinopathy is the second largest cause
of blindness in the US and Europe. Even though there are a lot of studies and
researchers, they have not been implanted into clinical practice. The objective of
the competition was to make the use of these results in clinical practice possible.
The set of data used for the competition consisted of 50 training images with
the available reference standard and 50 test images from which the reference
standard was withheld by the organizers. The main conclusion was that there
is room for improvement. One of the most active organizations in this direction
is the Medical Image Computing and Computer Assisted Intervention Society
(MICCAI2).

Many competitions sponsored by the different workshops organized in the
framework of the annual conference of this society, have been held. Just some
examples will be mentioned here. One of the main challenges addressed in recent
years has been the 3D segmentation as a part of the “3D segmentation in the
1 http://webeye.ophth.uiowa.edu/ROC/.
2 http://www.miccai.org.

http://webeye.ophth.uiowa.edu/ROC/
http://www.miccai.org
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clinic: A grand challenge”? workshops, in which different competitions have been
held. In 2007, the proposed challenges were: (i) extraction of the liver from CT
and (ii) and extraction of the caudate nucleus from brain MRI data [67]. In
2008, the Coronary Artery Tracking competition was organized. Three different
challenges were proposed in this competition: (i) automatic tracking; (ii) tracking
with minimal user-interaction and (iii) interactive tracking [68]. One of the most
significant challenges, from the point of view of its difficulty, is perhaps the
Multimodal Brain Tumour Image Segmentation (BRATS). The segmentation of
the brain tumours is one of the most difficult tasks in medical image analysis.
This is due to their unpredictable appearance and shape, as well as their non-
normal behaviour in particular image modalities, requiring the use of different
image modalities simultaneously. Even though, this problem has been addressed
by researchers for more than 20 years [69,70], there is no consensus as regards
the best algorithm that have to be used. The results of the BRATS (2012–2013)
are published in [71]. These results were obtained for twenty, state-of-the-art
tumour segmentation algorithms applied to a set of 65 multi-contrast MR scans
of low-and high-grade glioma patients. All these images were manually annotated
by up to four raters. The evaluation was performed automatically by an online
tool [72]. All the discussed challenges are already open, since different problems
have not been solved yet. A summary of them will be detailed and discussed in
the Sect. 4.

Machine Learning for Medical Image Annotation. The objective of imag-
ing annotation is to generate words that describe the content of the image. In
fact, the annotation consists of a set of words capable of describing the image.
Traditionally imaging annotation is carried out manually by humans. However,
this process has some disadvantages such as, the time cost and the subjectivity of
the operator. Although the same operator delimits and annotates the same image
at different times, the annotation will not necessarily be the same. The alterna-
tive approach is automatic or semi-automatic annotation done by machine. In
the latter approach, humans participate in some way in the annotation, but in
the automatic approach, all work is done by the machine. Two main steps are
involved in this approach: feature extraction and final annotation, which is done
mainly by a classification process.

In the case of medical image annotation, the contributions of the ImageCLEF
association should be mentioned. ImageCLEF aims to provide an evaluation
forum for the cross–language annotation and retrieval of images. ImageCLEF
was launched in 2003 as part of the Cross Language Evaluation Forum (CLEF).
Its goal is to provide support for the evaluation of (i) language-independent
methods for the automatic annotation of images with concepts, (ii) multimodal
information retrieval methods based on the combination of visual and textual
features, and (iii) multilingual image retrieval methods. Since 2005, the medical
automatic image annotation task exists in ImageCLEF. It can be highlighted
that among the 10 most cited papers under the search “medical image anno-
tation” are the overview of the results of these tasks for the years 2005 [73],
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2007 [63], 2008 [74] and 2009 [75]. During the different competitions several key
aspects of these problems were addressed. Thus, for example, in 2005, the aim
was to explore and promote the use of automatic annotation techniques to allow
semantic information to be extracted from little-annotated medical images. The
complexity of the tasks has been increased in order to evaluate the performance
of state-of-the-art methods for the completely automatic annotation of medical
images based on visual properties. The evolution of the tasks and the results
during the period 2005–2007 is described in [63], the conclusions being that
the application of techniques developed in the machine learning and computer
vision domain for object recognition in different areas, not necessarily in med-
ical images and based on local image descriptors and discriminative models,
provide reasonable predictions. The quality of content-based image retrieval and
image classification by means of overall signatures was the task driven by the
ImageCLEF 2008 medical association. An innovation in this competition was
the introduction of the hierarchy of reference in the IRMA reference code [76].
A scoring scheme was defined to penalise incorrect classification in early code
positions over those in later branches of the code hierarchy, and to penalise false
category associations in the assignment of a “unknown” code. In total, 12,076
images were used, and 24 runs of 6 groups were submitted. In 2009, a classifica-
tion scheme using SVM and local descriptors outperformed the other methods
was the winner.

Many other papers have been published in the last 10 years regarding auto-
matic medical image annotation by machine learning such as [77–85] amongst
others. In [85] a good summary of some of these methods such as: Multilevel,
IRMA code ii, Visual Bag of Words (BOW), Neural Network, Surf detector or
Hausdorff distance, can be found. From all of them it can be concluded that
even though most of them are classified as an automatic method, they required
a previous manual annotation. As has already been mentioned, this task is time
consuming and depends greatly on the operator. In addition it has not com-
pletely solved the semantic “gap” between the description of the image at low
level features and its semantic interpretation at a high level. These issues will
be discussed in the Sect. 4.

4 Open Problems

In this paper we have reviewed existing works from the machine learning com-
munity for the problem of NER in medical notes and for the segmentation and
annotation of medical images. The analysis of the literature highlights the prob-
lems that remain open despite the efforts to date.

In particular, the following remains as open lines of research:

– Creation of annotated corpora. There is a need have an annotated corpora
from clinical notes. This is a crucial step in order to be able to evaluate NER
algorithms. One important problem to be tackled here is confidentiality as the
data from the clinical notes could contain information that has to be made
anonymous prior to making the corpus available for researchers.
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– Multilingualism. Techniques and approaches that have been analysed are
mainly for the English language. The performance of NER is very much depen-
dant on language so it remains an open issue how to deal with information,
which to the contrary of biomedical literature does not have to be in English.

– Abbreviations and acronyms. It remains as an open problem how to deal
with the large evolving amount of ambiguous and local terms. This problem
is also related to multilingualism as acronyms and abbreviations differ from
one language to another, from a medical service to another and even from one
physician to another.

– Scope of the entity. It is still an open problem how to deal, for example, with
expressions containing numbers such as doses of treatments, or lab results.

On the other hand, in the segmentation and annotation of medical imaging
from our perspective, there are two main problems that are worth highlighting
and the subject of future research:

– The availability of annotated open data sets. Independently the problem
considered (segmentation, annotation) the use of machine learning requires the
availability of labelled images, from which the machine learning can learn. In
order to compare the performance of different machine learning methods to
solve a particular problem, the existence of correctly annotated open data
sets is essential. It has been mentioned that there have been a significant
number of competitions to date trying to resolve this situation; however, two
aspects remain yet unsolved: (i) The size of the training data sets. In an
appreciable number of the papers reviewed in Sect. 3.3 it has been detected
that the number of cases used for the training phase are not large enough to
generate accurate and general models that perform adequately. (ii) Specificity
of the models. The methods developed work only for specific organs, when not
for particular pathologies and sometimes, only for a particular age or sex.

– Bridging the “semantic gap”. Even though the automatic image anno-
tation with low level features (gray level, texture, shape, etc.) has evolved
satisfactorily in recent years, this kind of annotation is not enough to inter-
pret the content of the image, or to search for images in the same way as text
documents. For this, the annotation of the images with semantic concepts is
required. This gap between the low level features and semantic concepts asso-
ciated to images is known as the “semantic gap”. A lot of knowledge of the
specific work domain is required to bridge it.

5 Future Outlook

In this paper we have concentrated on analysing two problems that are currently
worrying the scientific community: on the one hand, that related to information
extraction from clinical notes and in particular the problem of NER and, on the
other hand, the problem of image annotation and segmentation.

As regards NER, since 1998, there has been a great deal of interest in
entity identification in the molecular biology, bioinformatics, and medical nat-
ural language processing communities. The most common entity of interest in
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this domain is names of genes and gene products. There has also been consid-
erable interest in the recognition of chemical entities and drugs [39]. However,
little effort has been dedicated to analyzing NER for clinical notes and despite
the similarities one can find between biomedical and clinical note, research has
indicated that NER systems developed for one domain do not typically perform
well in other domains [20].

We have also analyzed how clinical texts differ from biomedical text, which
implies a special challenge to NLP tasks and in particular to NER. The lack of
grammatical structure combined with the number of abbreviations, acronyms,
and local dialectal shorthand phrases, misspellings and duplications due to cut-
ting and pasting means that the NER trained on biomedical texts not necessarily
perform alike. On the other hand, there is another aspect that makes NER in
the medical field challenging that is the constant evolution of terms in the health
sector (proteins, genes, diseases, drugs, organs, DNA and RNA are almost con-
stantly evolving).

As we have already mentioned most NER systems relay a set of feature func-
tions that represent a machine-readable characteristic of a word. The choice of
features for an NER system is the most important aspect of any NER system.
Some feature datasets have already been used in the approaches that have been
reviewed in similar general domains. However is has been also shown that the
performance depends as much on the algorithm used to train as the decision on
the feature set. Finally, we have analyzed the problem of the lack of training
data (annotated corpora) that makes the task of learning challenging and eval-
uation difficult to compare with different corpora containing a small number of
annotated clinical notes.

From the discussion of the aforementioned open problems regarding medical
imaging, it is obvious that a critical challenge for smart medical image mining is
automatic-semantic imaging annotation. On the other hand, the need for a lot
of expert knowledge to bridge the “semantic gap”? has also been referred to.

A possible approach to manage these issues is to benefit from user interactions
and feedback. Active learning techniques aim to select the most effective samples
actively to present to the users for feedback, fully utilizing human effort [1]. This
strategy first allows the time spent by manual annotation to be reduced in order
to generate models for automatic annotation [86] and moreover, it is possible to
include mechanisms in the active learning framework to tackle the bridging of
the semantic gap [87].

Recently a new area of machine learning, known as deep learning, has
emerged. Deep learning mainly deals with the optimization of deep neural net-
works or, in other words, neural networks with multiple hidden layers. The num-
ber of layers that a neural network has determines its depth. Since in the network,
each layer learns patterns from the previous layer, the complexity of the patterns
captured by the neurons depends on the depth of the layer in which the neurons
are located. In this way, the deep learning architectures learn multiple levels of
the representation and abstraction of data and, in particular, images. These ideas
are not new. However, their implementation has not been possible in the past
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for different reasons, mainly the problem of training them. Nevertheless, deep
neural networks are now possible because of the development of new techniques
to train them efficiently, even though the training data are unlabeled, and the
computational power and the huge amounts of data are increasing. Nowadays,
researchers are aware of the enormous number of possible applications of this
new technique in many different areas and for different kinds of data, such as:
image classification [88,89], image segmentation [90], among others. However, to
our knowledge, they have not been exploited for medical imaging annotation in
order to avoid the lack of training data and to bridge the “semantic gap”. From
our perspective, we consider that this line of research will be a source of solutions
for the problems detected in the application of machine learning to Electronic
Health Records.

Having said all this and given the rapid adoption of EMR it is necessary
to provide healthcare practitioners with solutions for evidence-based medicine.
There is an urgent need for data scientists and physicians to cooperate to accel-
erate the developments.

We can foresee that the machine learning community has an opportunity to
provide solutions that will definitely boost the development of evidence-based
medicine solutions. In this sense improving NER algorithms with specific meth-
ods for the expansion and disambiguation of abbreviations and numerical expres-
sions will be paramount for all languages. There is also an urgent need to have
annotated corpora that can be used by all the community to evaluate algorithms.
In this sense, the organization of a conference challenge to produce this anno-
tated corpora and solutions for NER will once again accelerate the development
of solutions as a consequence of the joint efforts of physicians and data scientists.

In the same way, there is a need to share images and their reports with
confidentiality so the barriers to annotating images can be removed. In this field
it is once again remarkable that the development of solutions will only come as
a hand-in-hand effort of image processing professionals and physicians.
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Fernández, J.L.: Miracles naive approach to medical images annotation (2005)

84. Setia, L., Teynor, A., Halawani, A., Burkhardt, H.: Grayscale medical image anno-
tation using local relational features. Pattern Recognit. Lett. 29(15), 2039–2045
(2008)

85. Khademi, S.M., Pakize, S.R., Tanoorje, M.A.: A review of methods for the auto-
matic annotation and retrieval of medical images. Int. J. Adv. Res. Comput. Sci.
Softw. Eng. 4(7), 1–5 (2014)

86. Wang, M., Hua, X.S.: Active learning in multimedia annotation and retrieval: a
survey. ACM Trans. Intell. Syst. Technol. 2(2), 10 (2011)

87. Tang, J., Zha, Z.J., Tao, D., Chua, T.S.: Semantic-gap-oriented active learning for
multilabel image annotation. IEEE Trans. Image Process. 21(4), 2354–2360 (2012)

88. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3642–3649. IEEE (2012)

89. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

90. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural net-
works segment neuronal membranes in electron microscopy images. In: Advances
in Neural Information Processing Systems, pp. 2843–2851 (2012)



Visual Intelligent Decision Support Systems
in the Medical Field: Design and Evaluation

Hela Ltifi1,2(&) and Mounir Ben Ayed1,3

1 REsearch Groups on Intelligent Machines,
National School of Engineers (ENIS),

University of Sfax, BP 1173, 3038 Sfax, Tunisia
{hela.ltifi,mounir.benayed}@ieee.org

2 Faculty of Sciences and Techniques of Sidi Bouzid,
University of Kairouan, Kairouan, Tunisia

3 Computer Sciences and Communication Department,
Faculty of Sciences of Sfax, Route Sokra Km 3.5, BP 1171, 3000 Sfax, Tunisia

Abstract. The tendency for visual data mining applications in the medical field
is increasing, because it is rich with temporal information, furthermore visual
data mining is becoming a necessity for intelligent analysis and graphical
interpretation. The use of interactive machine learning allows to improve the
quality of medical decision-making processes by effectively integrating and
visualizing discovered important patterns and/or rules. This chapter provides a
survey of visual intelligent decision support systems in the medical field. First,
we highlight the benefits of combining potential computational capabilities of
data mining with human judgment of visualization techniques for medical
decision-making. Second, we introduce the principal challenges of such decision
systems, including the design, development and evaluation. In addition, we
study how these methods were applied in the medical domain. Finally, we
discuss some open questions and future challenges.
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1 Introduction

Medical data and knowledge have become increasingly numerous over last years with
advances in imaging, development of biological tests and therapeutic procedures [60,
41] Human memory is limited and physicians have to keep in mind all the medical
knowledge they need for their daily practice. Therefore, a patient care following good
medical practices requires that physicians must be assisted to perform these complex
tasks. This is the purpose of medical Decision Support Systems (DSS) that occupy
many researchers in bioinformatics for many recent years [60].

Machine learning techniques have been increasingly integrated in medical DSSs to
automatically assist decision-makers in their analytical procedures [41]. The efficient use
of these techniques supports evidence-based decision-making and assist in realizing the
primary objectives of personalized medicine. Medical DSSs must allow decision-makers
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to make more accurate and effective decisions while minimizing medical errors,
improving patient care and reducing costs [25]. From these intelligent techniques, we are
particularly interested in those of data mining [19, 24]. Data mining extends the possi-
bilities for decision support by discovering patterns and hidden relationships in data
therefore enabling an inductive approach to data analysis [38, 83] including methods
frommachine learning. A main constituent of iDSS is visualization; it enables humans to
perceive, use, and communicate abstract data and amplify cognition. Such visual aids
provide interactive machine learning [28] for making more precise decisions [41]. Over
the last years, several medical DSS based on visualization and data mining have been
developed. This chapter reviews and summarizes a number of recent studies for modeling
and evaluating such kind of systems.

This chapter is organized as follows: we start by providing some background
information about the DSS based on visualization and data mining (Sect. 3). In Sect. 4,
we focus on a literature review of the modeling approaches. In Sect. 5 we provide some
existing utility and usability evaluation methods. In Sect. 6, we discuss the provided
review and we propose future challenges. Finally we conclude in Sect. 7.

2 Glossary and Key Terms

Medical Decision Support System (DSS): is an interactive computerized system that
helps decision makers using medical data and models in resolving unstructured and
semi-structured clinical problems [69].

Machine Learning: represent a computer science field that develops a set of auto-
mated, learnable and improvable algorithms, which can be used for predictions [28].
Data mining can include these algorithms for extracting knowledge.

Visual Data Mining: is a combination of interactive visualization and data mining
methods allowing users to explore, gain insight and interact with data for drawing
conclusions [37].

Software Engineering (SE): is a discipline that incorporates various methods and
models to design, develop and maintain software [79].

Human-Computer Interaction (HCI): is a discipline that includes the design and use
of computer technology, focusing particularly on the interfaces between users and
computers [68].

Cognitive Modeling: is a discipline that deals with simulating human problem solving
and mental task processes in a computerized model for the purposes of comprehension
and prediction [67].

Multi-Agent System (MAS): is a computerized system that involves various inter-
acting intelligent agents (autonomous entities) to solve complex problems within a
distributed environment [86].

Usability Evaluation: it refers to the system ease of use. It can be evaluated with
criteria like learnability, efficiency, memorability, less errors and user satisfaction [37].
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Utility Evaluation: it concerns the relevance and efficacy evaluation of the developed
system [37].

3 Decision Support in the Medical Field: Current Trends

3.1 The Medical Decision-Making

Decision support systems (DSS) are computerized systems that support business and
organizational decision making activities. Medical DSS have an increased attention in
many domains of healthcare. They integrate different sources of health information and
assert intelligent access to relevant medical knowledge by helping in the process of
structuring health decisions. DSS can employ machine-learning methods to automati-
cally solve problems by formal techniques. Information can include clinical knowledge
and guidance, intelligently filtered and presented at the appropriate time.

Medical databases are characterized by the complexity and diversity of their data.
They incorporate large amount of complex data about patients, hospitals’ resources,
disease diagnosis, electronic patient records and medical devices, etc. This high amount
of data is an important resource to be processed and analyzed for knowledge extraction
that enables support for decision-making. Data mining presents a set of tools and
techniques that can be applied for discovering hidden patterns [19, 24]. These patterns
provide healthcare professionals with an additional source of knowledge for making
decisions. Thus, we address in particular the data mining based DSS: intelligent DSS
(iDSS). In fact, several literature research efforts tried to develop iDSS by exploiting
data mining tools, addressing efficient new classes of decision making discipline [83].

3.2 Intelligent Decision Support Systems

Data mining technology has attracted significant interest during the past decades and
was applied in many medical domains providing a large number of medical applica-
tions [83]. These applications range from medical diagnosis to quality assurance [25].
Data Mining can be defined as the process that starting from apparently unstructured
data tries to extract unknown interesting patterns [19]. During this process, machine
learning algorithms are used (cf. Fig. 1). While Data Mining applies machine-learning
techniques, it can also drive its advancement.

Fig. 1. Involved interdisciplinary fields
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Using automated data mining techniques to support pre-established DSS tasks is
one implementation of emerging technologies (cf. Fig. 1). An intelligent DSS does not
require a priori decision-maker knowledge. It is developed to find new interesting
patterns and relationships in a given data set and then applies such discovered
knowledge to a new data set [25].

Several examples of medical iDSS in the literature highlight the significant impact
of data mining for DSS. Leonard et al. (2002) [47] applied the Bayesian Network to
mine biomedical literature for references to genes and proteins and evaluate the rele-
vance of each reference assignment. Walsh et al. (2004) [84] developed a neural
network technique to predict the bronchiolitis disposition for children in emergency
situations. Gordon et al. (2005) [23] applied logistic regression models to compare
hospital profiles based on risk-adjusted mortality of non-cardiac surgery and identifi-
cation of hospitals with quality problems. Kumar et al. (2009) [43] proposed the
integration of different data mining techniques (such as decision tree and association
rules) to analyze medical data for decision-making tasks. Kuo et al. (2011) [44]
introduced a rule-based iDSS to interpret multiple medical data in health examinations.
Ltifi et al. (2012) [50] suggested the application of the Dynamic Bayesian Networks
technique for daily calculating Nosocomial Infections probabilities in the Intensive
Care Units. Tsolis et al. (2013) [82] introduced a medical iDSS that combines efficient
data mining, artificial intelligence and web services to support diagnosis and treatment
planning. El-Sappagh et al. (2014) [17] proposed an open distributed medical DSS
architecture taking advantage of Electronic Health Record (EHR), data mining tech-
niques, clinical databases and domain expert knowledge bases, to provide decision-
making support for healthcare professionals.

iDSS were treated continually in the literature by applying data mining algorithms
for decision making tasks. One of the current trends in iDSS is the visualization aiming
at exploring and understanding data and discovered knowledge: visual iDSS (viDSS).

3.3 Visual Intelligent Decision Support Systems

Since the human brain can treat a small amount of information, it can recognize a
limited number of different visual objects instantly. Consequently, the conversion of
numerical data to images is an important visualization process computationally done.
For this, information visualization has received increased attention by developing
visualization techniques for exploring databases [37, 49, 52, 78].

The emerging results of information visualization community can be an important
contribution in iDSS community if provided visualization techniques enables iDSS
using the available information to discover more relevant knowledge for
decision-making: visual intelligent DSS (viDSS) (cf. Fig. 1). This kind of DSS aims at
significantly helping decision-makers to treat data and knowledge more rapidly,
reducing work time and thinking visually [52]. There are three visual data mining
paradigms presented in the literature [78]: (1) visualization of the data, (2) patterns
visualization, and (3) visualization of data mining algorithm steps.

In this section, we provide a brief recent review of literature on the viDSS in the
medical field. We aim in particular to demonstrate the progressive application of
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visualization in the medical iDSS. There have been numerous developed systems for
visualizing discovered temporal medical patterns to be recognized and exploited by
decision makers (PatternFinder [18], OutFlow [87], and EventFlow [58]). Perer et al.
(2014) [65] presented a system that integrates data mining and visualization for finding
frequent medical patterns to handle different levels of detail, temporal aspect, con-
currency, and medical result analysis. Basole et al. (2015) [5] introduced a viDSS that
allows decision makers obtaining ideas for care process data, spot trends, visualize
patterns and recognize outliers. Ltifi et al. (2015) [52] suggested the integration of
temporal visualization techniques in the knowledge discovery stages for the fight
against nosocomial infections in Intensive Care Units. Otasek et al. (2014) [64], Müller
et al. (2014) [59] and Jeanquartier et al. (2015) [32] underlined the enormous challenge
of the visualization of EHR data and Omics data for knowledge discovery, particularly
in future and personalized medicine.

As indicated in the literature, the integration of visual data mining in DSS can lead
to significantly improve solutions in practical medical applications and enable tackling
complex and real-time health care problems. Such improvements highlight the benefits
of combining potential computational capabilities of data mining with the human
judgment of the visualization techniques for the medical decision-making [28].

4 Design and Development Approaches

viDSS are systems that deal with problems based on automatic analysis (using data
mining techniques) combined with visual analytics (using visualization techniques). It
becomes difficult to develop such kind of system that fits exactly to the users’
(decision-makers) needs. To overcome this difficulty, many research works on the
design and development of effective DSS are discussed in literature using: (1) design
models, (2) cognitive modeling methods or (3) Multi-agent architectures.

4.1 Design Models

Finding appropriate DSS design and development models is a critical topic, which has
kept researchers in the DSS community. Studies on DSS development conducted us to
begin by investigating the field of Software Engineering (SE). From this field are
derived traditional models, including the waterfall [72], V [54] and Spiral [9] models,
and more recent development cycles, including the Y model [3] and the Unified
Process (UP) [31]. These models are often oriented towards the technical aspect while
non-directed towards the user. Such models most often come with little explanation for
users consideration. The design and evaluation of Human-Computer Interaction
(HCI) aspects are rarely specific in these models [6]. For this reason, we examine
enriched models under the HCI angle. Among them, we can cite the Long and Denley’s
model [48]; the Star model [26]; the Nabla model [40]; or the U model [1]. These
models are difficult to use because they are not sufficiently complete and show
insufficiencies relating to the iterative development and the early evaluation.
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Furthermore, several approaches specific to DSS are proposed. Examples are: the
evolutionary approach [13], the development process [63], the MODESTI model [15]
and ADESIAD approach [46]. These approaches present interesting aspects, in par-
ticular, the expert consideration, the reusability and the knowledge integration. How-
ever, they don’t consider the data mining tasks. Consequently, none of these models are
adapted to develop such kind of DSS.

For this reason, hybrid models are suggested in literature. Examples are: (1) the
Context-Based Approach of [21] that considers the context of the DSS during the
development process by combining the benefits-realization approach with the real-
ization feedback process; (2) the U/UP model [6] (cf. Fig. 2) based on two comple-
mentary methods: an adapted U model to include the data mining specificities (from the
field of the HCI), and the Unified Process (from the field of the SE); and (3) the ExUP
[51] that consists of extending the Unified Process activities by integrating the HCI and
the data mining aspects.

This brief literature review of the design models is not exhaustive but only provides
some of representative models. Currently, it is challenging to develop DSS facing
complex, uncertain, visual and real-time environments. So, these design models
become insufficient. Design considerations of visualization integration in the data
mining phases are suggested in several works such as [52, 28]. In such complex
dynamic situations, it seems to be essential to model the cognitive behavior of the
decision-maker.

Where: 
A: Needs assessment
B: Analysis
C: Design
D: Implementation
E: Test

The U model from the HCI field The UP model from the SE field

Fig. 2. The U/UP model adapted from [6]
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4.2 Cognitive Modeling Approaches

Cognitive modeling of dynamic DSS deals with formulating human problem solving
and mental task processes (understanding, intentions, processing and knowledge). It
integrates decision-makers as part of the dynamic situation and reacts to the human
operator’s actions [27]. Several cognitive models are proposed to design and develop
DSSs.

Dearden et al. (2000) [14] and Millot (2014) [57] suggested adaptive task allocation
to the machine. Jungerman and Fischer (2005) [35] specified a cognitive model to
understand the dynamics of cooperative decision-making situations, examining in
particular, the acceptance or the reject of an expert advice. Tran (2010) [80], Burnett
(2011) [10] and Yu et al. (2013) [88] introduced trust assessment models in open,
dynamic, untrusted and uncertain environments.

Simoff et al. (2008) [78] proposed two strategies of evaluating human cognition in
visual data mining: (1) the guided cognition to simulate the human cognitive mecha-
nisms to discover the visual forms, interact with them and conduct meaningful inter-
pretations; and (2) the validated cognition to confirm the results of human perception of
the visualized forms. Ltifi et al. (2015) [53] introduced a viDSS cognitive model that
specifies and applies the cognitive causal links between the data acquisition, under-
standing the situation, the analysis and the dynamic knowledge integration in the
dynamic decision-making process (cf. Fig. 3). Benmohamed et al. (2015) [8] studied
the Bloom’s cognitive taxonomy for the development of the concentric circles tech-
nique to visualize the patterns extracted by a Dynamic Bayesian Networks for the fight
against nosocomial infections.

Fig. 3. The viDSS cognitive model adapted from [53]
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viDSS cognitive modeling is interesting because it considers the main notions of
dynamic situation, cooperative modeling and human cognition supporting in visual-
ization and data mining technologies; Another interesting design domain to investigate
is the Multi-Agent Systems.

4.3 Agent-Oriented Modeling Approaches

Intelligent agents are autonomous software or hardware entities that perform a set of
tasks on behalf of a user or another program [4]. It applies artificial intelligence
techniques such as machine learning, inductive or deductive reasoning.

DSS applied Multi-Agent System (MAS) in order to delegate complex tasks for
intelligent agents, which allows: (1) automating the repetitive tasks, (2) extracting and
filtering information from complex data and (3) learning and making recommendations
to users concerning a particular action course by employing some knowledge of the
user’s purposes or desires [4]. MAS based DSS have been designed and applied to a
great variety of fields for modeling complex reality: e.g. Krzywicki et al. (2014) [42]
who studied the applicability of agent-oriented Meta heuristics to DSS and how the
MAS can fulfill scalability and performance requirements. Jemal et al. (2015) [33]
suggested a MAS-DSS architecture that integrates intelligent agents in the health
delivery process of hospital organizations. Ellouzi et al. (2015) [16] proposed a new
MAS-based viDSS for the fight against nosocomial infections while Ben Jemmaa et al.
(2015) [7] suggested a MAS-based architecture of a Remote Health Care Monitoring
system based on the visual data mining.

As presented above, the MAS architecture is used to design and develop DSS even
based on data mining and/or visualization. This technology has proven its applicability,
particularly in the medical domain. Several viDSS in the medical field have been
developed using design models, cognitive approaches or MAS. Their evaluation was
addressed to understand their potential and limitations. The following section is ded-
icated to a literature review of the evaluation approaches.

5 Evaluation Approaches

Evaluation of a viDSS prototype is one of the hottest topics of the field. The objective
of this section is to evaluate in order to improve. There are two traditional dimensions
of evaluation in the HCI field: utility and usability [61, 74, 75].

5.1 Utility Evaluation

viDSS utility evaluation relates to its relevance or efficacy. Since viDSS is a predictive
system, its utility evaluation can investigate specific metrics using the confusion matrix.
The columns of the matrix list the instances of a predicted class while the rows list the
instances of an actual class. Thismatrix allows detailed analysis of the system’s prediction
ability by calculating a set of associated performance metrics [70]. These metrics are:
sensitivity (true positive rate), specificity (true negative rate), precision (positive
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predictive value), negative predictive value, false positive rate, false discovery rate, false
negative rate, Accuracy and the F1 score (the harmonicmean of precision and sensitivity).

5.2 Usability Evaluation

As viDSSs are interactive systems that include visual interfaces, its usability evaluation
must be addressed in particular to the generated visualization. Numerous alternatives to
assess visualization tools exist in the literature [30]. We present in Table 1 some
selected evaluation approaches discussed in the literature.

Table 1. Usability evaluation methods

Method Principle

Usability Testing Includes typical methods imported from Human-Computer
Interaction such as observations and questionnaires. It consists in
assessing visualizations usability by interpreting and comparing
results against a predefined usability specification [26]

Controlled experiments Controlled experiments [12] have been used in many studies to
evaluate visualizations. It consists in applying: (1) independant
variables to control the tool’s tasks, data, and participant classes
and (2) dependent variables to measure accuracy (such as
precision, error rates, etc.) and efficiency (calculating time to
achieve predefined tasks).
Controlled experiments allowed effectiveness comparison of
visualisation tools in numerous studies [29, 39])

Heuristic evaluation
(analytic evaluation)

Analytical evaluation of the interfaces by experts through heuristics
[61]. It examines the effects of visualization techniques usage.
Examples of used metrics in the literature are: expressiveness and
effectiveness criteria [55], design guidelines [76], visual properties,
effectiveness [11], representation and interaction criteria [20],
evaluation cognitive models [34] and preattentive processing and
perceptual independence [85]

Case Studies in realistic
settings

To evaluate the impact of visualization tools on real users’
practices, specific case studies have been discussed. Examples of
such studies are: the workplace study in Gonzales et al.
(2003) [22], the field study in Rieman (1996) [71] and the case
study in Shneiderman et al. (2006) [77]

Focus groups Collecting qualitative data from users using specific interviews.
Focus group interviews include (1) open-ended questions aiming at
exploring user attitudes and beliefs, and (2) cognitive questions
aiming at exploring visualization tools cognitive tasks [56]

Insight based evaluation An evaluation method based on the characteristics of data insight
and allowing identifying and quantifying it in the user tests [73, 62]

Inspection based evaluation It consists in using critical inspection as a form of evaluating
visualization tools [45]. It can be done: (1) by the tools authors
themselves, (2) by external experts [81], or also (3) by visual
experts such as graphic designers, illustrators and artists [36, 2]
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In this chapter, we tried to provide a survey on the design and evaluation methods
that can be applied in the context of viDSS. The following section discusses the
presented brief review and presents future challenges.

6 Discussion and Open Questions

6.1 On ViDSS Design and Development

The structure of today’s DSS environment becomes very complex due to the data
mining and visualization technology integration. In this context, DSS development
process is not simple and needs an adequate design method able to manage different
tools to achieve decision-maker’s requirements. In Table 2, we provide some con-
clusions on the presented design approaches (cf. Sect. 3).

Making adaptations to hybrid approaches, cognitive models and/or MAS archi-
tecture are promising for the viDSS design and development. It is a major future
challenge that can improve the quality of viDSS tools, especially for the medical
decision-makers where decisions are critical and based on temporal data. Another
future work lies in the visualization process of temporal medical data and its consid-
eration in the viDSS development cycle.

6.2 On ViDSS Evaluation

We discuss in this section the presented usability evaluation methods (cf. Table 1).
Concerning usability testing and controlled experiments, North (2005) [62] supposed

Table 2. Conclusions on the design methods

Approaches Conclusions

Software
Engineering models

- The way of designing viDSS is different from that of a classic
information system
- viDSS cannot be developed using the classical methods of software
engineering

HCI models - User-centred design models are applicable for interactive systems
- These methods are insufficient for DSS because the conditions that
decision-makers faces are continually changing and the decision
problems are unstructured

Hybrid approaches - Specific models for DSS (where some of them integrate the data
mining tasks)
- As far as we know, visualization design is absent in such approaches

Cognitive
approaches

Several interesting cognitive models are proposed taking into
account: decision-makers behaviour, dynamic situations, data mining
and visualization tasks and processes

MAS architexture Intelligent architecture are suitable for designing complex viDSS in
by assigning agents to data mining and visualization tasks
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that these methods limit the user’s thinking and performance, which is inappropriate as
the evaluation aims at informing the development of a visualization tool. Analytic
evaluation is more difficult to use since it implicates a list of heuristics and cannot
identify any unexpected problems [56]. Focus groups and case studies in realistic
settings allow uncovering these problems [56]. Unfortunately, they consume time to
conduct evaluation and results could not be generalized [66]. Insight and inspection
based evaluations are more novel and interesting, but based just on user tasks and data
characteristics which is insufficient to judge the visualizations usability for intelligent
decision-making tasks. To better measure the usefulness of visualizations in intelligent
DSS, we need a new evaluation approach that focuses on the visualizations ability to
generate knowledge and allows the intelligent analysis of the evaluation results. In this
context, we plan to propose a new evaluation methodology consisting of two main
steps: (1) a questionnaire including relevant metrics in relation to the visual analytics
tasks of the viDSS, and (2) a fuzzy logic technique to interpret and analyze ques-
tionnaire evaluation results. As an improvement of this work, the evaluation can learn
in real-time, based on user environmental feedback and past experience. To do so, it is
possible to apply an intelligent technique of machine learning such as the neural
network method.

7 Conclusion and Future Outlook

Medical decision support systems have employed visualization and data mining
techniques to assist physicians in making more accurate decisions within a reasonable
time period. Such DSS (named visual intelligent DSS) requires adequate design and
evaluation methods. In this chapter, we provided first a brief literature review of the
existing viDSS tools in the medical field in order to underline the benefits of combining
the potential computational capabilities of the data mining with the human judgment of
the visualization techniques for the medical decision-making.

As DSS based on visualization and data mining is a complex system, its design and
evaluation must be able to manage these different technologies to achieve
decision-maker’s requirements. For this reason, we have provided a literature review
on the design models (from SE, HCI, DSS, cognitive modeling and MAS fields) and
the visualization evaluation methods (to evaluate the viDSS interfaces characterized by
their visual aspect). This review allowed us to discuss these models and methods and
provide possible future challenges on viDSS design, development and evaluation.

In addition, another major future research area in medical viDSS includes big data.
To face such high levels of data volume, characterized by its variety and variability,
traditional analytic techniques may easily fall short of storing, analyzing and processing
these for decision-making. Key success factors of managing big data and exploiting
them for medical decision making include the improvement of data mining algorithms
efficiency, the improvement of speed and accuracy of decision-making, the ability to
predict and a better understanding of physicians’ needs. Turning big data into
biomedical field will therefore become one of the major challenges in the viDSS
discipline by looking for novel and innovative methodologies, theories, techniques and
systems.
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Another important future outlook concerns the integration of visual data mining
technology in the Remote Healthcare Monitoring Systems (RHMS), which are cur-
rently in the front of several bioinformatics research works. These systems aim to
monitor elderly and dependent people in their own homes. Data mining integration
allows analyzing the real-time data collected from numerous ambient captors for
detecting risk situations and generating appropriate decisions to the remote monitoring
center. Such analysis can be improved using visualization techniques.
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Abstract. A major challenge in precision medicine is the development
of biomarkers which can effectively guide patient treatment in a manner
which benefits both the individual and the population. Much of the dif-
ficulty is the poor reproducibility of existing approaches as well as the
complexity of the problem. Machine learning tools with rigorous statis-
tical inference properties have great potential to move this area forward.
In this chapter, we review existing pipelines for biomarker discovery and
validation from a statistical perspective and identify a number of key
areas where improvements are needed. We then proceed to outline a
framework for developing a master pipeline firmly grounded in statisti-
cal principles which can yield better reproducibility, leading to improved
biomarker development and increasing success in precision medicine.

Keywords: Biomarker discovery · Reproducibility · Data mining ·
Machine learning

1 Introduction

Biomarkers occupy a position of fundamental importance in biomedical research
and clinical practice. They can be employed for a variety of tasks, such as diag-
nostic tools or surrogate endpoints for clinical outcomes; Table 1 gives several
examples of biomarkers and their uses. In this chapter, we will primarily focus
on prognostic biomarkers, which provide information on the natural history
of a disease and help in estimating a patient’s overall outcome or prognosis, and
predictive biomarkers, which provide information on the likelihood that a
patient will respond to a therapeutic intervention and help in identifying the
c© Springer International Publishing AG 2016
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Table 1. Examples of biomarkers and their significance in medicine

Biomarker How it is measured Relevance

Body mass index (BMI) Person’s weight in kilograms

divided by the square of

height in meters

Associated with a

number of health outcomes,

including obesity [6] and death

[7]

Periodic variation of R-R

intervals (heart rate

variability)

Calculated from continuous

electrocardiogram record

Indicator of the activity of the

autonomic nervous system [8],

predictor of survival after heart

attack [8,9]

Glycosolated hemoglobin

(HbA1c)

Assayed from blood samples Diagnostic marker for

diabetes [10]; an indicator of

glycemic control in

patients with diabetes [11]

KRAS Somatic mutations Assayed from tumor samples Associated with

treatment response in colorectal

cancer [12]

BRCA1 Germline mutations Assayed from human buccal

cells or blood

Associated with the risk of

breast and ovarian cancer [13]

most effective course of treatment. Note that some biomarkers, such as estrogen
receptor status in breast cancer, can be both prognostic and predictive [1].

The emergence of “-omics” approaches has enabled new biomarkers to step
into the limelight, holding promise for precision medicine, an emerging field that
builds individual variability in biological and environmental factors into its app-
roach to treating disease [2]. Parallel advances in high-throughput technologies
have generated an unprecedented amount of data (“big data”). The sheer scale
and variety of information available, along with its structural and functional
heterogeneity and often its inconsistencies, have led to the current paradox: bio-
marker discovery is more possible than it has ever been before, but it is also more
problematic and inefficient. Of the hundreds of thousands of disease-associated
markers that have been reported, only a small fraction have been validated and
proven clinically useful [3–5].

It has become abundantly clear, given the current difficulties, that research
practices in biomarker discovery must be firmly grounded in statistical and bio-
medical practices. In this chapter, we outline a framework for developing a master
pipeline for biomarker discovery and validation that is aimed at increasing the
reliability and reproducibility of biomarker discovery experiments.

We will first review various approaches to study design, highlighting those
that are relevant to biomarker discovery trials. We will then discuss the chal-
lenges of ensuring data quality in the world of “big data” and propose strate-
gies for data collection and curation. We will introduce several statistical analy-
sis techniques, devoting special attention to the role of machine learning tech-
niques. We will emphasize the role of traditional statistical considerations, such
as power analysis, in biomarker studies, regardless of the specific analysis tech-
nique. We will then mention several approaches to the validation and evalua-
tion of biomarkers. We will conclude by discussing the clinical interpretation of
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biomarkers and the central role it plays, and by providing some directions for
future research.

2 Glossary

Accelerated Failure Time (AFT) Model: specifies the regression model λ(t|Z) =
e−β′Z(t)λ0

(
e−β′Z(t)

)
for the hazard function.

Biomarkers or biological markers: quantifiable, objectively measured and evalu-
ated indicators of physiological and pathogenic processes, responses to interven-
tions, and environmental exposures.

Biclustering: a clustering method which considers groupings of rows (experimen-
tal subjects) and columns (covariates) both together and independently.

Classification: a supervised learning method with a binary, ordinal, or multi-
category outcome variable. The focus of classification is placing observations
into the correct class based on covariates.

Cluster Analysis: aims to group together individuals who are more similar to
each other than the individuals assigned to other clusters. Examples include
k-means, hierarchical, and spectral clustering.

Cox Proportional Hazard Model: specifies the semiparametric regression model
λ(t|Z) = λ0(t)eβ′Z(t) for the hazard function.

Dimension Reduction: reduces the number of covariates and converts data to
a lower dimensional space that is easier to analyze. Examples include principal
component analysis (PCA), linear discriminant analysis (LDA), and classical
multidimensional scaling (MDS).

False Discovery Rate (FDR): The average proportion of false discoveries (V )
among all discoveries R, or rejections of the null hypothesis, in a study, i.e.
FDR = E[V/R].

Family-wise Error Rate (FWER): The probability that even one false discovery
(V ) will be made in a study, i.e. FWER = Pr(V ≥ 1).

G-Estimation: a method for estimating causal effects in structural nested models,
while accounting for time-varying confounders and mediators.

Least Absolute Shrinkage and Selection Operator (LASSO): an L1-penalized
regression technique for the linear model Y = Xβ + ε. The L1 penalization causes
the estimates of coefficients for unimportant covariates to shrink to exactly zero,
thereby performing model selection.

Machine Learning Methods: flexible, nonparametric methods derived from the
field of computer science, which arose from the study of pattern recognition in
artificial intelligence. Machine learning methods are well-suited for prediction in
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a variety of complex data scenarios, but many do not have well-studied inferential
properties.

Negative predictive value (NPV): the probability that a subject is disease nega-
tive given that they test negative.

Nonparametric Methods: assume that the data arise from a complicated process
whose set of explanatory parameters is not fixed. Offer flexibility at the expense
of interpretability and efficiency.
Non-penalized Methods: estimate parameters by directly maximizing a likelihood
function.

Outcome Weighted Learning: a machine learning method suited to identifying
predictive biomarkers within a randomized trial or observational study for binary
treatments with substantial treatment heterogeneity.

Parametric Methods: assume that the data arise from a known probability dis-
tribution that is determined by a small, fixed number of parameters. Offer inter-
pretability and efficiency at the expense of strong assumptions.

Penalized Methods: estimate parameters by maximizing a likelihood function
that is modified by a penalty term. Penalized methods are used to regularize
parameter estimates, which aids in prediction by reducing overfitting.

Positive predictive value (PPV): the probability that a subject is disease positive
given that they test positive.

Power: the probability that a null hypothesis that is actually false will correctly
be rejected.

Predictive Biomarker: a biomarker that helps in determining which of several
possible treatments will be most beneficial to a patient. Causal in nature.

Prognostic Biomarker: a biomarker that helps in ascertaining or predicting dis-
ease status. Not causal in nature.

Q-Learning: a regression-based machine learning method that estimates optimal
personalized treatment strategies by directly estimating the Q-functions.

Random Forests: nonparametric machine learning tools that combine decision
trees, which provide low bias without strong assumptions, bootstrap aggregation,
which reduces the variance of the tree-based estimate, and feature randomiza-
tion, which reduces the correlation between trees for further variance reduction.

Receiver Operating Characteristic (ROC) Curve: a plot of the sensitivity and
specificity of a diagnostic test over all possible cutoff values.

Regression: a supervised learning technique that poses a model for the mean of
an outcome variable that depends on the covariates of interest and the inherent
variability of the sample.
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Reproducibility: the ability of a study’s results to be corroborated or confirmed
by similar experiments in similar settings.

Semiparametric Methods: assume that the data arise from a process containing
a parametric piece and a nonparametric piece. Offer a middle ground between
the flexibility of nonparametric methods and the efficiency and interpretability
of parametric methods.
Sensitivity: the probability of a positive test given that a subject is disease
positive; also called the true positive fraction.

Singular Value Decomposition (SVD): the factorization of a data matrix X =
UDV T =

∑r
k=1 skukv

T
k , where r is the rank of X, U is a matrix of orthonormal

left singular vectors, V is a matrix of orthonormal right singular vectors, D
is a diagonal matrix with positive singular values on its diagonal. X can be
approximated X ≈ X(K) ≡ ∑K

k=1 ukskv
T
k where X(K) is the closest rank-K

approximation of X [14].

Specificity: the probability of a negative test given that a subject is disease
negative; one minus specificity is also called the false positive fraction.

Supervised Learning: a class of learning methods that explicitly incorporate an
outcome variable. Supervised learning methods can be used to predict future
values of the outcome, assess the effect of covariates on the outcome, or both.

Support Vector Machine (SVM): a supervised learning method that classifies
data points with a binary outcome based on the optimal separating hyperplane.

Unsupervised Learning: a type of machine learning that uses unlabeled data to
conduct statistical inference, where the covariates of interest are known but the
outcome variables are not given.

3 Biomarker Discovery and Validation Pipeline

3.1 Study Design

While the role a biomarker plays in a study—prognostic or predictive—is impor-
tant, trouble can arise if investigators focus too much on the details specific to
that role and lose sight of the fundamentals of study design. In Anna Karenina,
Leo Tolstoy wrote that “Happy families are all alike; every unhappy family is
unhappy in its own way.” A similar statement can be made about biomarker
studies. Successful studies will address similar minimal criteria at each phase
of development, while unsuccessful studies can fail to do so in any number of
unique and creative ways. Study objectives, outcome measures and their relia-
bility, availability of appropriate analysis methods, and the biomarker’s clinical
context should all play an essential role in determining the study design.

Studies involving prognostic biomarkers tend to focus on the development
and evaluation of clinical assays and screening tests for a disease. Pepe et al.
(2001) [15] suggest five phases for prognostic biomarker studies:
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1. Phase 1: Pre-clinical Exploratory Studies Phase 1 studies identify and
prioritize potentially useful biomarkers from a large pool of candidates. A bio-
marker’s utility is based on how significantly its levels differ between disease
cases and healthy controls, which are often matched to account for patient
heterogeneity.

2. Phase 2: Clinical Assay Development Phase 2 studies develop reliable
clinical assays based on the biomarkers identified in phase 1. Clinical assays
employ non-invasively obtained specimens that are simple to collect.

3. Phase 3: Retrospective Longitudinal Repository Studies Phase 3
studies assess how well a biomarker can be used for early disease detection
by examining whether levels of the biomarker in clinical specimens differ sig-
nificantly between disease cases and healthy controls during the time period
before the cases were diagnosed. Phase 3 studies can be used to define criteria
for a screening test, which is evaluated in future phases.

4. Phase 4: Prospective Screening Studies Phase 4 prospective studies
evaluate the performance and determine the operating characteristics (see
Sect. 3.6) of a screening test. Patients are screened with the proposed test,
and true disease status is ascertained with a “gold standard” diagnostic test.

5. Phase 5: Disease Control Studies Phase 5 confirmatory randomized tri-
als address whether biomarker-based screening reduces the actual burden of
disease. There is a distinction between success in phases 4 and 5: a biomarker
may screen for disease effectively but not lead to a decrease in mortality due
to other factors, such as lack of appropriate treatment.

While we have presented these phases as a straightforward progression, not
all prognostic biomarkers will progress linearly through the five phases, and some
study designs will combine elements of multiple phases.

Predictive biomarkers are typically incorporated into pivotal phase III trials
of experimental treatments. The reason is twofold. First, predictive biomarkers
assist in determining which of several treatments is likely to be more effective for
a given patient; this information can help clarify the treatment effect that a phase
III trial intends to estimate. Second, predictive biomarkers are causal in nature,
and the setting of a randomized clinical trial provides the most compelling evi-
dence to support claims of causation. Two simple questions can assist in selecting
the correct phase III biomarker design: how many candidate biomarkers are in
consideration, and how strong is the evidence that supports them?

Trials that incorporate one biomarker supported by strong evidence often
take the form of biomarker-enriched, biomarker-stratified, or biomarker-strategy
studies [16,17]. In all three cases, the study population is assayed for the
biomarker of interest before randomization. In biomarker-enriched trials, only
patients testing positive for the biomarker proceed to randomization; this scheme
is particularly appropriate when biological evidence suggests that the test-
negative population will not benefit from the treatment, raising concerns of
ethics and efficiency [18,19]. In biomarker-strategy trials, patients are random-
ized into either a biomarker-directed arm, in which their treatment is dic-
tated by the biomarker, or a control arm, where all patients receive control
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treatment; this scheme may be preferable when the biomarker-directed treat-
ment strategy is complex [16]. In biomarker-stratified trials, patients are split
into two groups, test-positive and test-negative, and then randomized normally
within these groups; biomarker-stratified designs, when logistically and ethi-
cally appropriate, offer a great deal of efficiency [16,17]. These designs can be
combined to address complex research questions—for instance, when a complex
experimental therapy is enriched by multiple biomarkers at once [17].

Extensions of these methods can accommodate weaker assumptions on the
biomarkers of interest by performing inference on biomarker properties in tan-
dem with estimation of treatment effect. Adaptive threshold designs use a single
biomarker without a pre-specified test-positive threshold, which reduces reliance
on phase II studies to correctly determine the threshold [20]. Adaptive biomarker
designs consider a relatively small pool of candidate biomarkers rather than a
single biomarker, selecting the most promising biomarker or biomarkers during
the course of the trial [18,20].

Even in the most restrictive setting, where investigators have a large pool
of candidate biomarkers with little to no prior evidence supporting them, clever
study designs enable valid statistical inference. One such design, the adaptive
signature design, employs two outcome stages [21]. The first outcome stage tests
for treatment efficacy at the α1 significance level in the overall population of
size N ; if this stage is successful, the drug is considered generally useful. If
the first stage does not find overall efficacy, the second stage uses the first N1

accrued patients to train a machine learning classifier that divides the final
N2 = N − N1 patients into two groups: those who are likely to benefit from the
experimental treatment, E, and those who are not likely to, C. Then treatment
efficacy is tested at the α2 significance level in the promising group E. If efficacy
is shown in phase 2, the drug is considered effective for the biomarker-selected
group, and the machine learning classifier can be used to predict group status
for future patients. Choosing α1 + α2 = α controls type I error at the α level;
see Sect. 3.4 for more details. Adaptive signature designs were proposed with
a simple machine learning classifier that aptly handled a variety of simulation
settings [21], but any number of the more sophisticated methods discussed in
Sect. 3.3 may prove useful in extending adaptive signature designs.

The incorporation of biomarkers poses its fair share of challenges to com-
mon considerations in phase III trials. For one, biomarker-based designs may
complicate interim analyses, encouraging flexible stopping rules over rigid ones
[16]. For another, biomarkers may define subgroups of scientific interest to test
as secondary outcomes, making multiple comparisons adjustments (see Sect. 3.4)
especially relevant [18].

In addition, several study designs address the task of discovering predictive
biomarkers outside of phase III trials. Sequential multiple assignment random-
ized trial (SMART) designs offer a framework for applying predictive biomarkers
to dynamic treatment regimes, often in phase II trials [22]. Electronic health
record data, used in concert with causal inference, could give rise to efficient
observational and other non-randomized predictive biomarker studies [3,23].
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3.2 Ensuring Data Quality

Unlike in the myth of Athena’s birth, which depicts the goddess leaping from
Zeus’s forehead fully formed and armed for battle, a well-executed study yielding
reliable results does not spontaneously arise from a well-designed study. Data
management is a crucial step of a successful study—mishandling a study’s data
threatens the validity of everything that follows.

Often, when errors creep into a dataset, they do so at the phase of data col-
lection. Although human and measurement error will always lie outside an inves-
tigator’s control, investigators can limit the impact of these factors. A detailed
study protocol that lists how data collection should be carried out reduces ambi-
guity and lessens reliance on subjective judgments. Studies that utilize multiple
data collection sites carry an additional burden: measurements must be consis-
tent not only within sites, but across sites. For a much more thorough treatment
of the topic, see the Data Acquisition section of the Society for Clinical Data
Management’s GCDMP 4.0 [24].

Investigators must also pay close attention to how their data are stored and
linked. The optimal data management plan will vary from study to study based
on numerous factors, including the physical and institutional proximity of collab-
orators, the volume and frequency of data collected, and the data use guidelines
put in place by participating institutions. Extra care must be taken with “big
data,” which may tax the computing resources available to a research team.
What should not vary is the investigators’ approach to data management: data
management requires a clearly stated plan and thorough documentation of all
steps taken throughout the process. A data flow diagram may help clarify the
steps of data collection, processing, and storage, and potentially aid in identify-
ing problems [25]. Overall, investigators should balance two guiding principles:
ease of access and protection of privacy.

While the first of these principles is intuitively clear, the second deserves some
elaboration. In the course of data collection, investigators will have access to sen-
sitive personal information, and investigators have a solemn obligation to protect
the privacy of their participants to the greatest extent possible. This obligation
may be legal in addition to ethical, thanks to privacy-protecting statutes such
as HIPAA [26]. Investigators should familiarize themselves with statutes that
apply to their study and make sure their methods of data collection and storage
comply with all relevant guidelines.

Investigators should also be wary of losing sight of what their data mean
functionally—they should be able to describe the information contained in every
column of every dataset. Informative file and variable names can help, but they
are not enough. As standard practice, investigators should draw up a data dic-
tionary that explains each dataset and each variable the datasets contain.

3.3 Statistical Methods for Biomarkers

In this section, we provide a brief overview of statistical methods appropri-
ate for the analysis of biomarker data. We pay particular attention to machine
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learning methods, which offer an attractive combination of flexibility and desir-
able statistical properties.

While we present a variety of methods for both supervised and unsuper-
vised learning below, we wish to emphasize that the two are rarely as disjoint as
they may appear in this section. They are often used in concert: covariates are
often pre-processed through an unsupervised method before being employed in
a supervised method, for instance. The matter is further complicated by latent
supervised learning, which posits intermediate ground between supervised and
unsupervised methods based on latent subgroups [27], and semi-supervised learn-
ing, which trains a model on both data where the outcome variable is observed
and data where it is not [28].

Supervised Methods. The taxonomy of supervised methods is expansive—
supervised methods can accommodate data from a truly staggering variety of
studies. While the details of a specific biomarker study and data type are invalu-
able in selecting the correct method, the search for the appropriate method in
any study can be aided by two general questions. First, what is the goal of the
method? Second, what type of information does the method need to provide?
The questions are clearly related, and together they often point directly to a
small class of methods. For instance, if the investigators primarily care about
prediction of future values of the outcome, and they do not particularly care
about interpreting the effect of covariates, a nonparametric machine learning
method may prove their best option; but if their primary research question is
quantifying the relationship between a biomarker of interest and the outcome, a
parametric or semiparametric model will likely serve them better. The spectrum
of supervised methods offers a trade-off between flexibility and interpretability,
between what Kosorok (2009) [29] calls “the ability to discover and the ability
to generalize.”

1. Parametric Methods Parametric methods assume that the data are gen-
erated by a known probability distribution with a small, fixed number of
parameters (e.g. the mean and variance of a Gaussian random variable, or
the rate of an exponential). The parameters of that distribution provide a con-
cise way to summarize and interpret the data, and they serve as the target
of statistical inference. Another attractive property of parametric methods
is their efficiency: when the assumptions for a parametric method are truly
met, the estimates that method provides are highly precise.
Non-Penalized Methods Non-penalized methods estimate the parameters
directly from the form of the probability distribution, or likelihood function,
by finding the parameter values that maximize the likelihood. Several popu-
lar and widely-used methods belong to the class of non-penalized parametric
methods, among them linear regression, logistic regression, and the acceler-
ated failure time model for survival analysis.
Accelerated Failure Time (AFT) Model The AFT model poses a regres-
sion model on the scale of the hazard function, λ, of the failure time T . Let
Z denote the (potentially time-varying) covariates, and let λ(t|Z) denote the
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hazard function at time t conditional on the covariates. Then the AFT model
is given by λ(t|Z) = e−β′Z(t)λ0

(
e−β′Z(t)t

)
where λ0 represents the unob-

served baseline hazard function of T when all covariates equal zero. When
λ0’s parametric distribution is specified in advance, the AFT model is fully
parametric [30]; when λ0 is estimated nonparametrically, the AFT model is
semiparametric [31]. The parameter β is the target of inference, as it describes
the effect of the covariates on survival time. As an example, Altstein and Li
(2013) [31] used the AFT model to discover biomarker-based latent subgroups
in a melanoma trial.
Penalized Methods Penalized methods estimate model parameters by max-
imizing a likelihood function that is modified by a penalty term. The penalty
term is added in to regularize parameter estimates, which can reduce overfit-
ting and aid the model’s performance in prediction. Many penalty terms can
be chosen, each of which offer their own benefits; we present only one in this
chapter. For a more thorough treatment of penalized methods, see chapters 3
and 4 of Hastie, Tibshirani, and Friedman (2008) [32].
LASSO The least absolute shrinkage and selection operator (LASSO) is
among the most popular penalized methods, and is particularly useful for
high-dimensional data where the number of variables is much larger than the
number of data points. A primary reason is that the LASSO, in addition to
regularizing parameter estimates, also sets the estimates of many coefficients
exactly equal to zero—hence, the LASSO performs both regularization and
variable selection. If we let Yi denote the continuous outcome for patient i
and Xi denote that patient’s covariates, then the LASSO estimate of β mini-
mizes the function

∑n
i=1(Yi −β′Xi)2+λ

∑p
j=1 |βj |, where β = (β1, ..., βp) and

λ ≥ 0 is an L1-constrained penalty parameter. When λ is small, the LASSO
estimate of β resembles the result from ordinary least squares, but as λ grows,
increasingly many components of β are set equal to zero. Cross-validation is
typically used to specify the value of λ. Once λ is chosen, the optimization
problem simplifies to a quadratic programming problem, which can be solved
through an efficient sequential algorithm [33]. There are many extensions of
the LASSO which accommodate categorical data [33,34], survival data [35],
study designs with interactions [36], and mixed models [37,38].

2. Nonparametric Methods Nonparametric methods assume that the data
are not generated by a probability distribution with a fixed number of
parameters—rather, the number of parameters needed to explain the data
is allowed to grow to infinity as the sample size grows. While some non-
parametric methods are complex and computationally intensive, a number
of convenient nonparametric methods are available for data analysis. Many
machine learning techniques, which perform well at a variety of difficult
prediction tasks and are becoming increasingly well-studied from a statistical
perspective, fall under the umbrella of nonparametric methods.
Random Forests Random forest approaches, which are fully nonparamet-
ric machine learning tools, offer great predictive power in both regression
and classification. The technical details underlying random forests are rather
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complex, and a full treatment of them is beyond the scope of this chapter;
we simply mention that they combine the strengths of two well-known tech-
niques, decision trees and bootstrap aggregation [39]. Random forests offer
a measure of covariate importance, albeit a much less interpretable mea-
sure than a regression coefficient in a parametric model. Random forests
have inspired many extensions. Among them are Bayesian additive regres-
sion trees (BART), which marry the random forest and Bayesian nonpara-
metric approaches [40], and reinforcement learning trees (RLT), which use
reinforcement learning to select important variables while muting unimpor-
tant ones [41]. RLTs appear particularly promising, as several results about
their statistical inference properties have been shown [41]. As an example,
Gray et al. (2013) used random forests to classify patients into subgroups of
Alzheimer’s disease based on a variety of biomarkers, including MRI volumes,
cerebrospinal fluid measures, and genetic markers [42].
Deep Learning Deep learning methods have proven quite powerful in pre-
diction, both in the regression and classification setting, in a variety of diffi-
cult prediction contexts, such as speech recognition [43] and image process-
ing [44]. The most commonly used deep learning methods are deep neural
networks, which posit that the covariates are related to the outcome through
multiple hidden layers of weighted sums and nonlinear transformations. Some
deep neural networks, such as convolutional neural networks, build a spatial
dependency into the structure of the hidden layers. Deep neural networks can
be plagued by overfitting; the introduction of dropout, which reduces depen-
dencies among nodes in the hidden layers, appears to greatly reduce this
weakness [45]. Although deep learning techniques have met with great suc-
cess in application, their inferential properties are, as of yet, not well-studied,
though research in this area is currently active. As an example, Xiong et al.
(2015) used deep neural networks to predict disease status based on alterna-
tive genetic splicing [46].
Support Vector Machine Another popular machine learning method for
nonparametric classification is the support vector machine (SVM). The sup-
port vector machine considers each observation of covariates Xi as a point
in d-dimensional space with a class label Yi ∈ {−1, 1}. The SVM sets up a
classification rule by finding the d− 1-dimensional hyperplane that optimally
separates points with Yi = 1 and Yi = −1. This problem can be formulated
as a constrained optimization problem and analytically solved; for details, see
chapter 7 of Cristianini and Taylor (2000) [47]. The SVM can be extended
to nonlinear classification using reproducing kernel Hilbert spaces [48] and
regression settings using support vector regression [49].
Q-Learning Q-learning is a regression-based method for estimating an opti-
mal personalized treatment strategy, which consists of a sequence of clinical
decisions over time. Q-learning estimates a set of time-varying Q-functions,
Qt, t = 1, . . . , T , which take the current patient state St and the clinical
decision Dt as inputs and give the value, which is based on the clinical out-
come of interest, as an output. When the Q-functions have been estimated,
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the only information we need to determine the optimal future treatment
is the patient’s current state. Estimates of the Q-functions, {Q̂1, . . . , Q̂T },
are obtained through a backwards iterative algorithm [50]. The estimated
Q-functions allow us to estimate the optimal treatments:

π̂t = argmax
dt

Q̂t(st, dt) for t = 1, . . . , T,

That is, we select the treatment sequence {π̂1, . . . , π̂T } that maximizes the
sequence of Q-functions. Q-learning can be applied to complex, multi-stage
trials, such as sequential multiple assignment randomized trials [51].
G-Estimation Predictive biomarkers are often used to provide information
for several decisions over a period of time. Suppose that we are interested in
discovering a causal relationship between an exposure and an outcome over
time. If any time-varying confounder is also related to future exposure, stan-
dard methods for adjusting for confounders will fail. G-estimation, a method
for estimating a causal effect in structural nested models while accounting
for both confounders and mediators [52], is useful in this setting [53,54].
G-estimation has been applied in a number of settings where time-varying
covariates are of interest, such as cardiovascular disease [55] and AIDS [56].
Vansteelandt et al. (2014) [52] give a more thorough overview of G-estimation
and structural nested models.
Outcome Weighted Learning (OWL) OWL offers a method for identify-
ing predictive biomarkers in a randomized trial or observational study testing
binary treatments which have substantial treatment heterogeneity [57]. OWL
estimates the optimal individualized treatment rule by formulating it as a
weighted classification problem, which can be solved through a computation-
ally efficient algorithm. For ease of notation, we present the case of a two-
arm randomized trial in this chapter. Suppose we have a binary treatment
A ∈ {−1, 1}, and that the p biomarkers of the n patients are recorded in
the n × p covariate matrix X. Let R denote the clinical outcome, or reward,
that we wish to maximize. In this framework, an individualized treatment rule
(ITR) is a function that takes the covariates as an input and recommends one
of the two treatments as an output. The optimal ITR, then, is the function
that satisfies

D∗(x) = arg min
D

{

E

(
R · 1{A �= D(X)}

Pr(A)

)}

, (1)

where Pr(A) is the prime probability of being assigned to treatment A
[58]. Essentially, OWL finds the optimal ITR by matching the treatments
of patients with a high reward and mismatching patients who have small
rewards. Equation 1 with 0–1 loss yields an optimization problem that is non-
deterministic polynomial-time (NP) hard, and can be quite computationally
intensive to solve. To alleviate this difficulty, OWL employs the hinge loss
used in the Support Vector Machine. In addition, OWL uses regularization
to stabilize the estimate of the ITR based on the observed sample (xi, ai, ri),
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i = 1, · · · , n. Hence, OWL searches for the decision rule f that minimizes the
regularized optimization problem

1
n

n∑

i=1

ri

Pr(ai)
(1 − aif(xi))+ + λ||f ||2, (2)

where ||f ||2 is the squared L2-norm of f and λ is a tuning parameter used
to balance model accuracy and complexity. Once we have estimated f , the
OWL ITR is simply D̂(X) = sign(f). OWL has many attractive inferential
properties, including results for Fisher consistency and risk bounds [57].

Several methods extend the capabilities of OWL. Zhou et al. (2015) [59]
improve OWL model accuracy by fitting the reward function with the covari-
ates ahead of time and plugging the residuals into Eq. 2 instead of the reward.
Xu et al. (2015) [60] add an L1 penalty term to OWL, allowing OWL to per-
form variable selection. Zhao et al. (2015) [61] extend OWL from a single-stage
trial, as described above, into multiple-stage clinical trials, allowing OWL to
inform optimal dynamic treatment regimes.

OWL is not the only approach to finding predictive biomarkers in tri-
als with treatment heterogeneity. Other approaches examine the interaction
between treatment and candidate predictive biomarkers, including recent
work in tree-based methods that provide flexible models for determining
variable importance [62]. Zhang et al. (2012) take a similar approach based
on a semiparametric model that uses inverse-probability weighting to ana-
lyze observational studies [63]. Tian et al. (2014) [64] model the interactions
between the treatment and modified covariates in a variety of settings, includ-
ing the setting with a large pool of biomarkers about which little is known
and only a subset of patients expected to benefit from treatment.

3. Semiparametric Methods Semiparametric methods contain a parametric
piece and a nonparametric piece, offering a trade-off between the flexibility
offered by nonparametric methods and the efficiency offered by parametric
methods. Although some semiparametric models are in wide use, others which
offer the same attractive balance have found adoption much slower. In this
section, we only discuss the most commonly used semiparametric model: the
Cox proportional hazards model.
Cox proportional hazards model The Cox proportional hazards model,
like the AFT model, poses a regression model on the scale of the hazard func-
tion [65]. If we let Z denote the potentially time-varying covariates, and we
let λ(t|Z) denote the hazard function at time t conditional on the covariates,
the Cox model can be expressed as λ(t|Z) = λ0(t)eβ′Z(t), where λ0 denotes
the unobserved baseline hazard function, which can be estimated nonpara-
metrically or assumed to follow a parametric distribution. The former is more
common, and leads to a semiparametric model. The parametric piece of the
Cox model is eβ′Z(t), and β is estimated through maximum partial likeli-
hood. As an example, Kalantar-Zadeh et al. (2007) used the Cox model to
show an association between levels of A1C and mortality risk after controlling
for several demographic characteristics [66].
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Latent Supervised Learning. Latent supervised learning, a novel approach
that exists in the middle ground between supervised and unsupervised learn-
ing, simultaneously handles parameter estimation and the problem of unlabeled
subgroups. To illustrate: suppose that the patient population in a clinical trial
consists of several underlying subgroups, and treatment efficacy differs accord-
ing to these latent subgroups. Ignoring these subgroups can cause a supervised
method to produce poor estimates [27]. Let Y denote the outcome and X denote
the covariates. Wei and Kosorok (2013) proposed the following model for binary
classification using latent supervised learning [27]:

Y = μ1,01{ωT
0 X − γ0 ≥ 0} + μ2,01{ωT

0 X − γ0 < 0} + ε

The model posits that an unknown linear function of the covariates determines
the mean value of the outcome—patients with different signs of ωT

0 X − γ0 have
different means (μ1,0 vs. μ2,0). The underlying subgroup structure is assumed
to be linear. When ε is Gaussian, model parameters can be estimated through
maximum likelihood [27]. These model parameters provide not only an estimate
of the treatment effect, but also subgroup predictions based on covariates.

The assumption of latent subgroups that depend on biomarkers is not only
reasonable, but often of primary scientific interest. Methods that can accommo-
date this assumption and simultaneously provide estimates of its effect, as the
emerging field of latent supervised learning does, offer a great deal of promise
for future research.

Unsupervised Methods. In some settings, it may be impractical to observe
the outcome due to logistics or cost, or the exact nature of the outcome may
not be known. More commonly, investigators may wish to perform some sort
of data pre-processing before plugging their data into a supervised method. In
these settings, unsupervised learning techniques assist in conducting statisti-
cal inference about the underlying structure of the data. Identifying the underly-
ing structure can provide valuable insight into different classes that exist among
the data, and which subset of variables determines those classes [67].

Dimension reduction reduces the number of effective covariates and brings
data into a lower-dimension space that is easier to analyze. The most com-
monly used dimension reduction techniques are principal component analysis
(PCA), linear discriminant analysis (LDA), and classical multidimensional scal-
ing (MDS). While these methods are widely used, they may fail to capture
the underlying structure of complex data. In these situations, nonlinear dimen-
sion reduction methods may prove more fruitful. Isometric feature mapping, or
Isomap, builds a weighted graph using data points as nodes and calculates the
geodesic distance between data points as the sum of weights along the shortest
path between points. The geodesic distance is then used in place of Euclid-
ean distance in MDS, which allows for Isomap to handle points that lie on
a nonlinear manifold [68]. Another popular technique is t-Stochastic Neighbor
Embedding, or t-SNE, which finds a low dimensional mapping to minimize the
Kullback–Leibler divergence between the distributions of the data in low and
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high dimensional spaces [69]. t-SNE commonly employs a normal distribution
in the high dimensional space and a t-distribution in the low dimensional space.
Many other nonlinear dimension reduction methods are available, such as Locally
Linear Embedding (LLE) [70] and diffusion maps [71].

Traditional clustering methods, such as k-means and hierarchical clustering,
treat covariates of interest as a monolithic collection, which proves ineffective
if only a subset of the covariates is truly informative. Biclustering methods
address this issue by considering clusters among both subjects and covariates
simultaneously. We present several methods for biclustering.

Let X denote the overall data matrix. Large Average Submatrix (LAS) finds
K constant, potentially overlapping submatrices of X via maximum likelihood,
then poses X as the sum of these submatrices and random noise [72]. Sparse clus-
tering imposes a Gaussian likelihood on the biclusters of X, where the biclusters
have unique means and common variance. The means are estimated through
L1-penalized least squares, which sets many bicluster means identical to zero,
inducing sparsity [73].

Several biclustering methods use singular value decomposition (SVD)
for dimension reduction. Sparse SVD (SSVD) additionally shrinks small nonzero
singular vectors to zero through an L1 penalty on the squared Frobenius norm of
X, meaning only a checkerboard pattern of influential rows and columns remains
nonzero [14]. Heterogeneous sparse SVD (HSSVD) functions in the case where
biclusters vary in both mean and variance. HSSVD has the advantages of scale
and rotation invariance, and has an improved capacity for detecting overlapping
biclusters compared to classic SVD, as well as improved performance relative to
several methods even in the case where the biclusters have homogeneous variance
[74]. Currently, HSSVD has limited utility in handling count data and data that
arise from more than one “-omics” platform.

Example: The following example comes from a lung cancer dataset with the
expression levels of 12,625 genes from 56 patients discussed in [74]. The inves-
tigators performed HSSVD, classifying patients’ lung cancer subtype (normal
lung, pulmonary carcinoid tumors, colon metasteses, and small-cell carcinoma).
They then compared the results of HSSVD with those of FIT-SSVD, LSHM, and
SVD. The comparison is visualized in the checkerboard plots in Fig. 1. Successful
biclustering is expected to produce the checkerboard appearance exhibited by
HSSVD and FIT-SSVD, but not LSHM and SVD. The biclusters are identified
as the rows divided by the white lines.

3.4 Power

Machine learning techniques appear prominently in biomarker discovery stud-
ies, especially in genomics settings [75,76]. While machine learning techniques
are well-suited to analyzing large, heterogeneous datasets, many core statistical
concepts—such as power calculations—are essentially absent from the machine
learning literature [77]. In this section, we emphasize that power should play a
central role in any biomarker study, regardless of the analysis method selected.
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Fig. 1. Checkerboard plots produced by four different SVD biclustering methods on
12,625 genes from 56 patients with four levels of lung cancer [74].

The exact definition of power relevant to a biomarker study depends on the
study’s goal. Phase III trials incorporating predictive biomarkers revolve around
one or more hypothesis tests that address whether the experimental treatment
has a significant effect. In this setting, the traditional definition of power—the
probability that, if the null hypothesis is truly false, it will be rejected—is appro-
priate. Trials evaluating a screening test based on a prognostic biomarker require
a modified definition of power: the probability that the screening test correctly
classifies a high proportion of patients, e.g. 90%. It is immediately apparent that
both formulations of power are eminently desirable—without power, an unac-
ceptably high number of results are likely to be false positives. Sample size is
one of the drivers of power; in a typical study, investigators should aim for a
sample size that enables at least 80% power.

Unacceptably high rates of false positives, or type I errors, threaten the
validity of a study’s conclusions. This concern is especially relevant when many
hypotheses are tested simultaneously, as multiple comparisons inflate the type
I error if they are not controlled for. Investigators can choose between many
well-studied methods to limit type I error rate to a low level, conventionally 5%,
in the presence of multiple tests, most commonly family-wise error rate (FWER)
or false discovery rate (FDR). The FWER is the probability that we incorrectly
reject even one true null hypothesis. FDR, meanwhile, is the expected propor-
tion of falsely rejected hypotheses. FWER offers a stronger control than FDR, in
the sense that if we control FWER at a certain level, we automatically also con-
trol FDR at that level. FWER and FDR may be preferred in different settings:
FWER is used in many confirmatory studies [78], while FDR may be more logi-
cal in exploratory and other settings [79]. The most popular procedure for con-
trol of FWER is the Bonferroni correction [80]; despite this method’s numerical
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simplicity, however, it is not recommended in light of Holm’s step-down pro-
cedure [81], which is uniformly more powerful than the Bonferroni correction
at the same level of control. The Benjamini-Hochberg step-up procedure offers
control of FDR [82,83]. For a more detailed overview of multiple comparisons,
we direct the reader to Dudoit and van der Laan’s book [84].

We now present a general algorithm for calculating sample size in biomarker
studies via simulation. The crux of the algorithm is the generation of realistic
data scenarios, simulated datasets that incorporate information about the study
design, method, and biomarkers in question. Information needed for all study
designs includes the maximum allowable type I error rate, α, the multiple com-
parisons adjustment method, the desired power, β, the number of simulations
to be run, B, an initial guess of the sample size, n0, and the study’s minimal
clinical measure of importance. The specific measure of importance will vary by
study. In a biomarker-stratified study, for instance, the measure of importance
would be the expected change in effect size for the experimental treatment from
the biomarker-positive to biomarker-negative groups. In an adaptive signature
study, the measure of importance would be the change in effect size between over-
all and biomarker-specific groups, and additional necessary information would
include the expected proportion of biomarkers that are true predictive biomark-
ers (likely below 1%). In a phase 4 prospective study of a screening test based on
a prognostic biomarker, the measure of importance would be the misclassification
proportion of the test compared to gold standard (e.g. 10%), and other neces-
sary information would include the expected operating characteristics of the test,
which may be based on information from a phase 3 prognostic biomarker study.
While the details vary, the philosophy remains constant: investigators should not
be excessively optimistic when generating realistic data scenarios. Most values
should represent a worst-case scenario—e.g., the minimum effect size the investi-
gators could observe and still conclude that a drug has a meaningful effect worth
pursuing.

Algorithm 1. Power calculations through simulation
1 Run B simulations adjusting for a type I error rate of at most α, under a

realistic data scenario with sample size n0. This will entail simulating the
correct number of biomarkers necessary for the study, under the assumption
that they attain only the minimum clinical measure of importance.

2 Calculate the proportion of times the simulated biomarkers were detected
and/or the hypotheses of interest were correctly rejected. This proportion is the
estimated power of the test.

3 If the estimated power is ε less (or more) than the prespecified β, then increase
(or decrease) n0 by 1 and go back to step 1.

4 Otherwise, stop the algorithm and the desired sample size is n0.
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3.5 Validation

When candidate biomarkers have been identified, they must be validated through
an external dataset. At times, it is appropriate to consider truly exogenous
data—data from a previous study that have evaluated the same outcome and bio-
markers, for instance. At other times, this is infeasible or inappropriate; in these
cases, researchers should plan to collect a secondary dataset. Researchers should
consider the same issues listed above when determining the sample size for the
validation set, but the set of assumptions should be less restrictive—namely, the
number of biomarkers will be smaller and the proportion of biomarkers believed
to be true will be higher. Algorithm 1 once again provides a convenient way to
calculate sample size under these new assumptions.

3.6 Evaluation

In most real-world applications, it is not enough for a candidate biomarker to
exist—it must also be useful. Once researchers have identified and validated a
candidate biomarker, they can turn their attention to the issue of evaluating
a biomarker’s utility, whether that utility is in diagnosis, risk prediction, or
any of a variety of functions in clinical practice. There are many statistical
methods available for evaluating both the relationship between a biomarker and
the disease area of interest and the usefulness of a biomarker when applied
to specific populations; we outline only a few of these methods. Researchers
should choose evaluation methods based on the specifics of their experiment
while putting together their analysis plan, before data are collected. For a more
in-depth introduction to some of the techniques mentioned in this section, see
Pepe (2003) [85].

Measures of Accuracy. Biomarkers are often used in diagnostic medicine
to classify patients as diseased or non-diseased. In this setting, evaluating the
performance of a candidate biomarker is informed by the typical measures of
accuracy for any diagnostic test. Let X be a candidate biomarker, and let Y =
1{X > c} be an indicator equal to one when the biomarker exceeds a certain
threshold, c, and zero otherwise. Suppose that a researcher intends to diagnose
disease based on Y . Let D be an indicator of disease, so that D is equal to
one for diseased subjects and zero otherwise. We define the sensitivity of Y
as se = Pr(Y = 1|D = 1). The specificity of Y is sp = Pr(Y = 0|D = 0).
Sensitivity is also referred to as the true positive fraction (TPF) and one minus
specificity as the false positive fraction (FPF). Sensitivity and specificity give
the probability of correct classification, conditional on disease status.

Two additional accuracy measures are the positive predictive value (PPV)
and negative predictive value (NPV), given by PPV = Pr(D = 1|Y = 1) and
NPV = Pr(D = 0|Y = 0). That is, the positive and negative predictive values
give the probability of correct disease classification, conditional on test result.
Although PPV and NPV are related to sensitivity and specificity, there is an
important distinction between them. Sensitivity and specificity are functions of
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the test alone–they do not vary when the test is applied to different populations.
Positive and negative predictive values, on the other hand, are highly dependent
on the disease prevalence in the population the test is applied to: the same test
may have wildly different positive and negative predictive values when applied
to different populations. As such, the positive and negative predictive values
cannot be estimated using data from studies that lack an estimate of disease
prevalence, such as case-control studies. Accuracy measures are typically esti-
mated empirically, and confidence regions for these measures can be constructed
using the methods outlined in chapter 2 of Pepe (2003) [85].

Receiver Operating Characteristic Curves. Often, investigators will wish
to evaluate a continuous biomarker. Receiver operating characteristic (ROC)
curves are frequently used to do so, and they can be applied to a wide variety
of tasks: comparing two biomarkers, constructing single-number summaries of
biomarker performance, and selecting the screen positive threshold, c, among
others. Roughly speaking, the ROC curve for a biomarker, X, is a plot of the
true positive fractions and false positive fractions as functions of the threshold
c. That is, if TPF(c) and FPF(c) are the true and false positive fractions for the
test 1{X > c}, respectively, then ROC(·) = {(FPF(c),TPF(c)),−∞ < c < ∞}.
If we let SD and SD̄ denote the survival functions for X in the diseased and
non-diseased populations, respectively, then the ROC curve can be equivalently
defined as ROC(t) = SD(SD̄(t)) for 0 < t < 1. ROC curves boast well-developed
theory, and the literature contains many procedures for ROC curve estimation
and inference, both parametric and semiparametric [86–90]. Pepe (2000) [91]
proposes a method to adjust ROC curves for covariates.

An advantage of the ROC framework is the ability to construct single number
summaries that can be used to evaluate biomarkers. One such summary is the
area under the ROC curve (AUC). A test that classifies perfectly yields AUC
= 1, while a test that is no better than random chance has AUC= 0.5. If we
let XD and XD̄ denote observed biomarkers from the diseased and non-diseased
populations, respectively, then AUC has an attractive interpretation as the prob-
ability of correctly ordered biomarkers—that is, AUC = Pr(XD > XD̄). Two
candidate biomarkers can be compared by testing whether the corresponding
AUCs differ, as in chapter 5 of Pepe (2003) [85].

Alternative Methods. While AUC is often a useful summary of a biomarker’s
performance, other methods may be more relevant for risk prediction models.
Consider a risk prediction model that contains several biomarkers, and suppose
we add a new biomarker to the model. Ware (2006) [92] observed that doing
so may result in many subjects being placed in new risk categories, even if the
change in AUC is small. Pencina et al. (2008) [93] propose using reclassification
statistics to more adequately capture the effect of the new biomarker. Specifi-
cally, net reclassification improvement (NRI) measures how much an additional
biomarker improves model-predicted probabilities of disease. When a strongly
predictive biomarker enters the model, subjects with disease are reclassified into



278 S.J.T. Hidalgo et al.

higher risk categories while subjects without disease are reclassified into lower
risk categories, resulting in a large NRI. Pencina et al. (2011) [94] present a
number of extensions to reclassification statistics.

Pencina et al. (2008) [93] propose a second alternative to AUC for evaluating
biomarkers called integrated discrimination improvement (IDI). IDI measures
how much a new biomarker increases the values of sensitivity and specificity,
integrated over all possible thresholds. IDI also has a useful interpretation as
the change in average TPF corrected for any increase in average FPF.

Predictive Biomarkers. The evaluation of predictive biomarkers requires spe-
cial care. Predictive biomarkers are often evaluated by considering the interaction
between the biomarker and treatment in a regression analysis [95,96]. While a
strong interaction between a biomarker and treatment is consistent with the role
of a predictive biomarker, it is not sufficient: predictive biomarkers are causal
in nature, and causal evidence is needed to truly support them. The potential
outcomes framework may help overcome this pitfall. Huang et al. (2012) [97] use
the potential outcomes framework to evaluate a predictive biomarker under the
assumption of monotone treatment effect, while Zhang et al. (2014) [98] propose
a method that relaxes the assumption of monotonicity. For a general discussion
of the evaluation of predictive biomarkers, see Polley et al. (2013) [99].

3.7 Reproducibility

“Non-reproducible single occurrences are of no significance to science.”
- Karl Popper

Reproducibility is not just a criterion for a research study or manuscript to
be accepted—it is a central, guiding tenet of the scientific method, an aim that
every study should seek to attain. The Oxford English Dictionary defines repro-
ducibility as “the extent to which consistent results are obtained when produced
repeatedly.” Applied to the setting of biomarker studies, reproducibility is the
principle that experiments conducted under similar conditions should give sim-
ilar results. Reproducibility is a crucial goal: if a study is not reproducible, its
results will be difficult, and perhaps inappropriate, to apply to other settings.

In practice, to validate whether results can be reproduced, researchers may
carry out a new experiment under similar conditions. The results of the new
experiment can be compared to those of the original using a variety of methods,
such as the Pearson correlation coefficient, the paired t-test, the intraclass cor-
relation coefficient or the concordance correlation coefficient (CCC) [100]. When
researchers wish to compare multiple outcomes, they should be careful to correct
for multiple comparisons, as described in Sect. 3.4.

To clarify a subtle point: there is a distinction between reproducibility
and replicability. An experiment need not be exactly replicated to qualify as
reproducible–in fact, it may be very difficult to achieve perfect replication. A
reproducible study’s results can recur, or be reaffirmed, under similar but not
identical settings–researchers at different labs testing the same biomarker, for
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instance [101]. A replicable study, on the other hand, would lead to identical
results when it is conducted under the same conditions [102]. Whether strict
replicability is necessary or not is currently the topic of some debate. To return
to the biomarker example, Drummond [101] notes that such experiments can
easily be affected by gene-deficient variants of the biomarkers in question, as
these could lead independently synthesized gene segments to have significantly
differing effects. As a consequence, it is unlikely for researchers to achieve a pre-
cise replication of the original experiment–but it may be unimportant to do so
as long as the results of the experiments are consistent.

A natural question to ask is how many times an experiment should be
repeated before it is considered trustworthy enough to publish. The answer to
this question depends on expense and ethical considerations. Generally speak-
ing, an experiment should be repeated several times before it is reported. This
recommendation can be relaxed in some settings when it would prove overly
restrictive, for instance when replication is excessively costly or when a repeated
experiment’s ethics would be questionable [102]. An illustration of the latter
comes from the guidelines for experimentation on vertebrate animals, which dis-
courages the use of unnecessary duplication. Casadevall [102] and Laine [103]
suggest that, in order to make full use of each experiment, researchers “strive
for reproducibility instead of simple replicability.” For example, if the original
experiment tests the efficacy of a drug on controlling glucose level in a certain
time period, a second experiment could test for a dose-response relationship
while simultaneously confirming the original conclusion of efficacy.

While external confirmation is the gold standard for establishing the repro-
ducibility of a result, investigators can ensure substantial levels of reproducibility
simply by choosing appropriate methods. The inferential properties of a statisti-
cal method, such as consistency and power (see Sect. 3.4), are directly connected
to the reproducibility of that method’s results. Large, well-designed studies,
equipped with inferentially sound methods and powered appropriately for the
questions of scientific interest, are inherently highly reliable. Investigators can
save a great deal of time and effort by striving for such studies initially.

4 Clinical Interpretation

Ultimately, statistical validation and evaluation of a biomarker can only go so
far. A biomarker’s long-term worth depends heavily on its clinical interpretation
and utility. Investigators should also take care not to dramatically depart from
standardized, consistent definitions and properly executed methods. Inconsisten-
cies across studies can hinder research producing robust conclusions.

In many instances, biomarkers are used as substitutes, or surrogates, for clini-
cal endpoints. Surrogates may improve the feasibility of a trial through reduction
in sample size or trial duration, and they are especially attractive when there are
ethical concerns with the clinical endpoint, such as invasive procedures. Deter-
mining whether or not a biomarker is an appropriate surrogate endpoint relies
on knowledge of the disease process and the causal pathways the biomarker lies
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in. However, disorders are often complex, clinically heterogeneous, and subject
to large inter-individual variation, with the same disorder appearing drastically
different at distinct points along the continuum between severe pathology and
non-disease state. As such, investigators should be wary of jumping to belief of
a causal link between a biomarker and a clinical outcome, even when they find
a statistical and temporal association: the biomarker may affect a causal path-
way present in only a small number of patients, or may not play a role in the
relevant causal pathway at all [104]. Even when the biomarker is in the correct
causal pathway, its effect on the biological process may be of insufficient size
or duration to significantly affect the clinical outcome [104]. Hence, while sur-
rogate biomarkers can be useful tools, relying solely on surrogates may lead to
misleading conclusions and even harm to patients. For example, the use of ven-
tricular premature depolarization (VPD) suppression as a primary outcome in
clinical trials had led to the approval of antiarrhythmic drugs for patients with
myocardial infarction [105]. Subsequent studies, however, found that, despite
being effective in suppressing VPD, some antiarrhythmics actually increased
mortality [106]. Prentice (1989) proposes an operational criterion to validate
surrogate endpoints in clinical trials comparing two or more interventions: the
surrogate endpoint should fully capture the net effect of the intervention on the
clinical endpoint conditional on the surrogate endpoint [107]. The Prentice cri-
terion is not universally accepted: some argue that it does not allow for valid
inference on the effect of the intervention on the clinical endpoint [108].

Similarly, biomarkers that perform well in a narrow context may not be
applicable to other settings [109]. Patient heterogeneity is among the most
important factors to account for in biomarker studies; we recommend employ-
ing matching or stratification based on relevant characteristics, such as age,
race/ethnicity, or body mass index, to help account for it. For example, there
are consistent gender differences in patients with acute myocardial infarction:
elevation of troponins are less common and lower in women than in men, while
natriuretic peptides and C-reactive protein are more elevated in women than
men [110]. The heterogeneity in symptoms between genders may contribute to
the poorer prognosis of myocardial infarction in women, as well as demonstrating
a facet of the “Yentl syndrome,” the gender bias against women in the identifi-
cation and management of coronary heart disease [111].

Finally, whether a biomarker is used for clinical prediction and screening
should be based heavily on the benefits and risks involved. For example, the
utility of prostate cancer screening that relies on the prostate-specific antigen
(PSA) is controversial [112]. A substantial proportion of PSA-detected cancers
are benign enough that they would not cause clinical problems during a man’s
lifetime. In these cases, the potential benefits of PSA testing may not outweigh
the harms of the invasive diagnostic procedures and unnecessary treatment,
including urinary, sexual, and bowel complications [112].
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5 Limitations

This chapter was constructed to be general enough to appeal to a wide audience
of researchers working in biomarker discovery. Moreover, we are attempting to
provide an overall pipeline. As such, we could not address individual parts of this
pipeline in sufficient detail, and we may have left out some important specifics.
This section is meant primarily to serve as a safeguard for readers against known
potential issues so they can avoid errors in advance.

While having a data management plan and protocol is necessary, it is rarely
completely sufficient—issues always arise during data cleaning and management
that were not anticipated by the plan. For this reason, we recommend having
a research team member specializing in data management, whose expertise can
help tackle unexpected issues.

While we have suggested several supervised and unsupervised methods for
biomarker discovery, this review only scratches the surface of the sum total of
methods available. Domain expertise is necessary to select appropriate methods;
such knowledge is not provided in this chapter (due to limited space).

Power analysis was defined in very general terms, and we provided an all-
purpose algorithm for its calculation through simulation. Our exposition may
leave readers with the false impression that power calculations are an easy busi-
ness with few complications. Nothing could be farther from the truth. Power
calculations should, if possible, be left to a senior statistician well-versed in mul-
tiple comparisons, and adequate time should be allowed for them.

While sensitivity, specificity, and ROC curves are useful methods for bio-
marker evaluation, great care needs to be taken when specifying what magnitude
of improvement is useful. Biomarkers might lead to an incremental improvement
in the operating characteristics we have presented, but only at the expense of
prohibitive cost. We recommend consulting with a physician with expertise on
the particular application when considering this trade-off.

6 Conclusion

The rapid increase of available data—a process that is only accelerating—
provides immense opportunities for improving the health of both individuals
and populations. Fields that can harness “big data” to make health care deci-
sions that take patient heterogeneity into account, as precision medicine seeks
to do, have the potential to advance human health dramatically. However, the
rise of “big data” presents not only opportunities, but a whole host of complica-
tions and challenges. The discovery and validation of biomarkers that can guide
treatment decisions is more relevant than it has ever been, and methodologies
that accomplish this task in a reliable, reproducible, and statistically rigorous
way are of utmost necessity.

The discovery and validation of biomarkers is a complex process. Statistical
issues are inherent to every step of the process, and they must be carefully
considered as they are encountered. We propose the following master pipeline to
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help ensure the reproducibility of research related to biomarker discovery. For
each step in the pipeline, we provide questions that researchers should answer
affirmatively before proceeding.

1. Consider research goals to choose an appropriate design. Does the study design
reflect the role the biomarkers are expected to play in a clinical setting? Is the
study design consistent with the current state of knowledge for the biomarkers
being analyzed?

2. Design data analysis plan. Consider both supervised and unsupervised statis-
tical methods. Are the method’s assumptions consistent with the study design?
Is the method suited to the research question at hand?

3. Conduct power calculations to determine the appropriate sample size. Did
you correctly define a minimum clinical measure for calculating power? Is
your minimum clinical measure chosen to represent a worst case scenario?
Did the power calculation adjust for multiple comparisons? Did the power
calculation incorporate prior knowledge effectively?

4. Collect and curate data. Are the data collected consistently and reliably? Are
the data stored and linked in a way that respects patients’ privacy?

5. Conduct planned analyses and validate on an external data set. Were the
candidate biomarkers discovered in the initial analysis confirmed by the vali-
dation analysis?

6. Evaluate the usefulness of the biomarker in practice. Do the biomarkers offer
a clinically relevant improvement in TPF and FPF?

7. Consider clinical implications. Is the cost of the proposed biomarker justified
by its benefits?

The above pipeline will need to be modified on a case-by-case basis, but it should
provide a useful guide for any researcher and starting point for any study in the
biomarker discovery field.

Many areas of research pertaining to the discovery of biomarkers are fervently
active. The optimal approach for incorporating predictive biomarkers into mod-
ern, multi-stage study designs, such as SMARTs, is an area of open research,
as is the proper use of electronic health record data and causal inference for
observational and other non-randomized biomarker studies. The development of
machine learning techniques with desirable inferential properties is an ongoing
task, as is the use of these inferential properties to derive formal power calcula-
tions. Note that automatic approaches, such as many of the approaches described
above, greatly benefit from “big data” with large training sets. However in some
health informatics settings, we can be confronted with a small amount of data
and/or rare events, where completely automatic approaches may suffer from
insufficient training data. In these settings, interactive machine learning (iML)
may be applicable, where a “doctor-in-the-loop” can help to refine the search
space through heuristic selection of samples. Therefore, what would otherwise be
an almost intractable problem, reduces greatly in complexity through the input
and assistance of a human agent involved in the learning phase [113]. In all of
these developments, proper attention to statistical considerations will enhance
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the ability of biomarker discovery studies to demonstrably improve clinical care
through precision medicine.
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Abstract. The explosive growth of medical databases and the widespread
development of high performance machine learning (ML) algorithms led to the
search for efficient computer-aided medical diagnosis (CAMD) techniques.
Automated medical diagnosis can be achieved by building a model of a certain
disease under surveillance and comparing it with the real time physiological
measurements taken from the patient. If this practice is carried out on a regular
basis, potential risky medical conditions can be detected at an early stage, thus
making the process of fighting the disease much easier. With CAMD, physicians
can trustfully use the “second opinion” of the ‘digital assistant’ and make the
final optimum decision. The recent development of intelligent technologies,
designed to enhance the process of differential diagnosis by using medical
databases, significantly enables the decision-making process of health profes-
sionals. Up-to-date online medical databases can now be used to support clinical
decision-making, offering direct access to medical evidence. In this paper, we
provide an overview on selected ML algorithms that can be applied in CAMD,
focusing on the enhancement of neural networks (NNs) by hybridization, par-
tially connectivity, and alternative learning paradigms. Particularly, we
emphasize the benefits of using such effective algorithms in breast cancer
detection and recurrence, colon cancer, lung cancer, liver fibrosis stadialization,
heart attack, and diabetes. Generally, the aim is to provide a theme for dis-
cussions on ML-based methods applied to medicine.

Keywords: Data mining � Machine learning � Biomedical informatics �
Computer-aided medical diagnosis

1 Introduction and Motivation

Establishing a medical diagnosis, more precisely, a differential diagnosis (DF) is a
process of differentiating among different possible diseases presenting more or less
similar symptoms. From a medical point of view, this process resides in highlighting
the connection between a certain disease and the patient’s history (patient file), physical
examinations, tests, clinical, radiological and laboratory data, etc. From a biomedical
informatics point of view, DF assumes a classification procedure involving a
decision-making process based on the available medical data processed by an “intel-
ligent” system (IS) borrowed from the information technology. In this way, IS directly
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assists the DF process, representing a clinical decision-support system (CDSS) [1].
Physicians have thus access to a wide range of Data Mining (DM) methods (e.g., NNs,
genetic algorithms (GAs), support vector machines (SVMs), etc.), from which to
choose the most appropriate one to the given situation [3]. Hence, the nowadays
widespread use of computer technology takes advantage of the huge computational
power and the fast processing speed as compared to that of the humans, in order to
minimize the possible physician’s error when using a huge amount of data.

The motivation for this study is the tremendous opportunity for ML methods,
within the DM field, to assist the physician deal with the flood of patient information
and scientific knowledge. Its primary goal is to draw attention to the applications and
challenges faced by this approach, and, secondly, to highlight its strong potential in
helping to optimally solve medical decision problems. The chapter is meant for all
those working in the medical field, who wish to use modern and efficient computerized
tools, and, at the same time, to all researchers in the health informatics domain, who
develop such “intelligent” tools.

2 Glossary and Key Terms

Biomedical Informatics: in the classical definition: “the study of biomedical informa-
tion and its use in decision making…” [1];

Data Mining: “the automatic search of patterns in huge databases, using compu-
tational techniques from statistics, machine learning, and pattern recognition” [3];

Machine Learning: “the field of machine learning is concerned with the question of
how to construct computer programs that automatically improve with experience” [4];

Artificial Intelligence: “learning symbolic representation of concepts. Using prior
knowledge together with training data to guide learning” [4];

Supervised learning: “the process of establishing a correspondance (function) using
a training set, seen as a ‘past experience’ of the model” [3];

Unsupervised learning: “the model is adapted to observations, being distinguished
by the fact that there is no a priori output” [3];

Neural Networks: “represent non-programmed (non-algorithmic) adaptive infor-
mation processing systems” [3];

Genetic Algorithms: “provide a learning method motivated by an analogy to bio-
logical evolution” [4];

SVMs: “is a linear machine, equipped with special features, and based on the
structural risk minimization method and the statistical learning theory” [3];

Feature selection: “is used to eliminate irrelevant and redundant features, possibly
causing confusion, by using specific methods” [3];

Clustering: “the method to divide a set of data (records/tuples/vectors/instances/
objects/sample) into several groups (clusters), based on certain predetermined simi-
larities” [3].
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3 State-of-the-Art of ML Solutions in CAMD

The basic paradigm underlying IS can be summarized as follows. The input consists of
different attributes (symptoms), while the output consists of possible diseases caused by
them. After comparing a certain data corresponding to a yet undiagnosed patient with
the observations and corresponding diagnoses contained in the medical database
(medical data of patients), IS will provide the most probable diagnosis based on the
human knowledge embedded in that database.

The use of medical datasets belonging to large data repository, such as UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/), requires state-of-the-art
ML techniques [1, 2]. In this context, NNs have become a popular tool for solving such
tasks [5]. Belciug & El-Darzi [6] present a partially connected NN-based approach with
application to breast cancer detection and recurrence. A hybrid NN/GA model is
developed by Belciug & Gorunescu [7] for the same task. Andersson et al. [8] use NNs
to predict severe acute pancreatitis at admission to hospital. Gorunescu et al. [9] present
a competitive/collaborative neural computing system for pancreatic cancer detection.
Kalteh et al. [10] present a research regarding the use of NNs to breast cancer detection.
A swarm optimized NN has been used by Dheeba & Selvi [11] for micro-classification
in mammograms. A novel evolutionary strategy to develop learning-based decision
systems applied to breast cancer and liver fibrosis stadialization has been developed by
Gorunescu & Belciug [12]. Gorunescu & Belciug [13] has proposed a new learning
technique for NN, based on the Bayesian paradigm, with applications to automated
diagnosis of breast cancer, lung cancer, heart attack, and diabetes. Holzinger [14]
presents the interactive machine learning paradigm, which has its roots in reinforce-
ment learning and active learning. In Holzinger et al. [15], an experimental proof of the
interactive machine learning paradigm is proposed, by applying ant colony algorithms
in solving the traveling salesman problem with the human-in-the-loop approach.
Girardi et al. [16] use the interactive knowledge discovery with the doctor-in-the-loop
in cerebral aneurysms research. Hund et al. [17] propose an interactive tool to visually
explore subspace clusters from different perspectives, thus using the doctor-in-the-loop
for complex patient datasets.

4 Towards Finding Solutions: The CAMD Approach

Over the last years, recent advances in DM/ML fields provided highly efficient algo-
rithms for CAMD, with a huge impact in the health care domain. A gain in applying
them lies in improving the diagnosis of different diseases, and in reducing the time
pressure on physicians and nurses. Among the most common algorithms used in
CAMD, one can mention NNs, SVMs, GAs, etc. This paper focuses mainly on neural
computing, with the primary purpose of drawing attention to the challenges faced by
this approach, and, secondary, in highlighting the strong potential of these models in
supporting solutions to these medical decision problems. Figure 1 synthesizes the
CAMD ‘picture’ “robot doctor”.
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4.1 Area 1: Neural Networks

NN is an information-processing paradigm inspired by the way the human brain pro-
cesses information. Its complex architecture consists of a large number of highly
interconnected processing elements (neurons) working together to solve specific
problems. The multi-layer perceptron (MLP) represents the most popular NN archi-
tecture in use today, typically consisting of a set of source units (input layer), one or
more hidden layers of neurons, an output layer, and the back-propagation algorithm
(BP) as learning algorithm. The radial-basis function (RBF) represents an equally
appealing and intuitive alternative, consisting of a hidden layer of radial units, each
actually modeling a Gaussian response surface. The probabilistic neural network
(PNN) represents a completely different NN structure, the network actually learning to
estimate a probability density function using the Bayes strategy and a sum of small
multivariate Gaussian distributions as the activation function.

4.1.1 Area 2: Partially-Connected Neural Network (PCNN)
In paper “A partially connected neural network-based approach with application to
breast cancer detection and recurrence”, Belciug & El-Darzi [6] assess the effec-
tiveness of a partially connected neural network (PCNN) used to detect breast cancer
and recurrence. The PCNN architecture is based on a traditional MLP, trained with the
BP algorithms, with the sum of squared errors (SSE) as error (loss) function, and using
the winner-takes-all rule to compute the network output. The key idea behind this
model is that the weights that did not suffer major modifications, i.e., did not surpass a

Fig. 1. Illustration of the CAMD paradigm
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certain threshold s after a certain number of training samples presented to the network,
are erased from the network’s architecture, being inhibited.

Experimental results using four publically available breast cancer datasets from
UCI Machine Learning Repository have shown that the simplified MLP architecture
have proven classification performance consistent with some of the highest results
obtained by using sophisticated and expensive medical imaging, such as MRI/PET
methods. Compared to a fully connected NN, the results have been similar or even
better, with a slight gain in CPU time.

4.1.2 Area 3: Hybrid NN-GA Algorithm (MLP-GA)
In paper “A hybrid neural network/genetic algorithm system applied to the breast
cancer detection and recurrence”, Belciug & Gorunescu [7] propose a GA-based
routine to set the synaptic weights of a MLP, and use this algorithm to detect breast
cancer and recurrence. While MLP has a standard architecture (SSE as error function,
and winner-takes-all rule to compute the network output), a GA was especially
designed to optimize the MLP weights, substituting the classical BP algorithm. In this
evolutionary-based training paradigm, a weight vector is represented through a chro-
mosome, which contains a number of genes equaling the number of neurons from the
input layer multiplied by the number of neurons from the hidden layer. The weights
between input units and hidden units were read off the network from top to bottom,
representing the components of the weight vector w ¼ ðwðx1Þ1;wðx2Þ1;wðx3Þ1; . . .;wðxnÞ1;
wðx1Þ2;wðx2Þ2;wðx3Þ2; . . .;wðxnÞ2Þ. The model hyper-parameters, as population size,
number of generations, mutation rate, etc. have been set heuristically, in order to obtain
optimal performance. The classical sigmoid f ðxÞ ¼ 1

ð1þ e�xÞ has been chosen as acti-

vation function, 40% of the existing chromosomes (the best ones) have been kept for
reproduction and mutation. The arithmetic crossover/BLX-α, the linear BGA crossover,
the Wright’s heuristic crossover, and the uniform crossover have been used as cross-
over operators, while the process of mutation contained two steps. Firstly, a number
between 0 and 1 has been randomly generated. If the number was smaller than the
standard default threshold 0.5, a subtraction has been made, otherwise an addition.

Then, using the chromosome error ¼ ð100�chromosome accuracyÞ
100 , each gene has been

mutated according to the previous step. Applied to the four publically available breast
cancer datasets mentioned above, the hybrid MLP-GA model has proven a classifi-
cation accuracy that exceeded the performance of most other ML algorithms (MLP,
RBF, PNN), and similar to PCNN.

4.1.3 Area 4: Radial Basis Function Network
In paper “Radial Basis Function network-based diagnosis for liver fibrosis estimation”
Gorunescu et al. [18] assess the effectiveness of a RBF-based approach in the special
case of liver fibrosis stadialization. Using data obtained by the relatively novel
non-invasive technique represented by Fibroscan (Fibroscan® -Echosens, Paris,
France), the study proved both the suitability of the RBF approach for the classification
of liver fibrosis stages, and also highlighted the role of the Fibroscan use in liver
fibrosis evaluation.
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4.1.4 Area 5: Competitive/Collaborative Neural Computing System
In paper “Competitive/Collaborative Neural Computing System for Medical Diagnosis
in Pancreatic Cancer Detection” Gorunescu et al. [9] have developed a competitive/
collaborative neural computing system designed to support the medical decision pro-
cess using medical imaging databases, with a concrete application in the differential
diagnosis of chronic pancreatitis and pancreatic cancer. The neural computing system
consists of a set of five neural network algorithms (linear neural network (LNN), MLP
(3-layer/4-layer), RBF, and PNN) working in both competitive and collaborative way.
In the competitive phase, the NN algorithms have been applied to the same medical
dataset regarding pancreatic cancer, and they have been statistically evaluated by using
differences in mean tests (t-test for independent samples, Mann & Whitney U test),
comparing proportions (two-sided t-test), comparing agreements (Cohen’s kappa test),
and comparing performances through the area under the ROC (receiver operating
characteristic) curve. Based on the statistical assessment, they have been ranked in
descending order regarding their effectiveness, and the first three of them (i.e., MLP
(4-layer), MLP (3-layer), and RBF) have been retained for the next stage. In the
collaborative phase, using a weighted voting system (WVS), the output diagnosis of the
ensemble of NNs represented the weighted vote of the computing system components.
Finally, the effectiveness of such an approach in comparison to separate standalone
networks has been proven by a concrete example consisting in three different testing
cases (i.e., three new, unknown, patients).

4.1.5 Area 6: Tandem Feature Selection/Evolutionary-Driven NN
In paper “Intelligent decision-making for liver fibrosis stadialization based on tandem
feature selection and evolutionary-driven neural network” Gorunescu et al. [19] pro-
pose a tandem feature selection mechanism and evolutionary-driven neural network
(MLP/GA) as a computer-based support for liver fibrosis stadialization in chronic
hepatitis C, using the Fibroscan device. A synergetic system, based on both specific
statistical tools (discriminant function analysis-DFA, multiple linear regression (for-
ward and backward stepwise approaches), and analysis of correlation matrix), and the
sensitivity analysis provided by five neural networks (LNN, PNN, RBF, 3-MLP, and
4-MLP), has been used for reducing the dimension of the database from twenty-five to
just six attributes. The experimental results have shown that the proposed tandem
system has provided a significantly better accuracy than its competitors (PNN, MLP,
RBF, and SVM), a relatively high computational speed, and the ability to detect the
most important liver fibrosis stages, i.e., F1 -disease starting stage, and F4 -cirrhosis.

4.1.6 Area 7: Alternative Network Learning Using the Bayesian
Paradigm
In paper “Error-correction learning for artificial neural networks using the Bayesian
paradigm: Application to automated medical diagnosis”, Gorunescu & Belciug [13]
present an alternative to the BP learning algorithm based on the Bayesian paradigm.
Thus, the Bayesian paradigm has been used to learn the weights in NNs, by considering
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the concept of subjective probability instead of objective probability. Based on the
standard architecture of a feed-forward network (3-MLP), this approach replaces the
standard updating technique of weights by using the Bayesian model. The weights are
updated using their posterior probability distribution given the error function through
the non-parametric Goodman-Kruskal Γ rank correlation. Technically, the rank cor-
relation Γ between attributes and decision classes was used for the synaptic weights
initialization. Next, the updating process was based on the Bayes’ theorem. The
synaptic weights were considered as posterior probabilities, the probabilities corre-
sponding to a partition of the weight space were considered as prior probabilities, the
probabilities of the error conditioned by the partition of the weight space represented
the likelihood, and the error probability represented the evidence. The rank correlation
Γ was used to estimate the above mentioned probabilities. The model assessment has
been achieved through the standard 10-fold cross-validation, and the training process
stopped after a fixed number of iterations. The model has been applied on six
real-world publically available datasets regarding breast cancer, lung cancer, heart
attack, and diabetes, and the experimental results showed that this model provided
performance equaling or exceeding the results reported in literature.

4.1.7 Area 8: Cooperative Co-evolution for Classification (CCEA)
In paper “Evolution of cooperating classification rules with an archiving strategy to
underpin collaboration”, Stoean & Stoean [20, 21] propose an evolutionary algorithm
(EA)-based approach to encode rules to model the partition of the samples into cate-
gories. A typical EA would conduct to one global or local optimum, so instead a
methodology to maintain several basins is put forward. The solution for the classifi-
cation problem is regarded as a set of rules. This is decomposed into components
(rules) and a different EA deals with the discovery of a rule. The evolution of each
population is separate with the only exception of the fitness evaluation. In order to
evaluate an individual (that corresponds to a rule), collaborators have to be selected
from all the other populations and thus a complete set of rules is reached, which is
applied on the training set and the obtained accuracy represents the evaluation. In order
to conserve a diverse selection of rules, after each generation, a fixed number of best
collaborators from the current population and the previous archive (chosen such that
there are no two rules alike) is retained in an archive. When the evolutionary process
ends, the archive represents the actual found rule set and is applied on the test set.
A methodology that is endowed with feature selection is presented in [21]. The average
accuracy for the breast cancer dataset is of 95.52% and the standard deviation is of
1.56%.

4.1.8 Area 9: Clustering-Based Approach
In paper “Clustering-based approach for detecting breast cancer recurrence”, Belciug
et al. [23] assess the effectiveness of three different clustering algorithms used to detect
breast cancer recurrent events. The performance of the traditional k-means algorithm
has been compared with a Self-Organizing Map (SOM-Kohonen network) and with a
cluster network (CN), illustrated in Fig. 2.
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Using a real-world breast cancer dataset (Wisconsin Recurrence Breast Cancer)
from UCI Machine Learning Repository, the experimental results have shown that, in
this particular case, the CN performance, equaling 78%, was is in accordance to the
reported modern medical imaging experience, while SOM provided good enough
diagnosis accuracy (67%), followed by the standard k-means algorithm (62%). To
conclude, from this simple experiment it came out that the three clustering models have
proved a diagnosing performance comparable to the standard medical experience, but
much cheaper and faster.

4.1.9 Area 10: Supervised vs. Unsupervised Neural Networks
In paper “Assessing performances of unsupervised and supervised neural networks in
breast cancer detection” Belciug et al. [24] compare the performance of three super-
vised NNs (3 layer-MLP), RBF, and PNN) with the unsupervised SOM network, using
the Wisconsin Prognostic Breast Cancer dataset from Machine Learning Repository. In
the concrete problem regarding the breast cancer detection, the SOM model has proved
a diagnosing performance comparable to the application of standard NNs. In addition,
the diagnosis accuracy of SOM was in accordance with the reported modern medical
imaging experience. Thus, beyond the debate that the traditional supervised NNs, and
not only, are not enough biological plausible, the concept of self-organizing networks
became a point of interest among researchers.

4.2 Area 11: Comparing Algorithms: A Statistical Approach

Most of the papers that are dealing with DM or ML algorithms suffer from a lack of
rigor in terms of assessing their performance. Usually, the vast majority of studies
regarding the application of DM/ML algorithms in health care are limited to reporting
the classification accuracy along with the corresponding standard deviation. In

Fig. 2. Illustration of SOM and CN topologies
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addition, the decision summary statistics presents the total number of cases in each
class, cases of each class that were correctly (and incorrectly) classified, and cases of
that class which could not be classified at all (unknown cases). The most evolved of
them report the following performance measures (binary classification case): confusion
matrix, sensitivity and specificity, positive and negative predictive values, or even the
area under the ROC curve [3]. For this reason, we present hereinafter a solution to this
problem, based on a statistical analysis of the data regarding the algorithms
performance.

The vast majority of ML algorithms are of stochastic nature, so they have to be
independently run a sufficient number of times in order to obtain a reliable result
regarding both their robustness and effectiveness. From a statistical point of view, the
testing classification accuracy obtained during the multiple independent computer runs
constituted a sample of decision performance. Since most of the medical databases used
in experiments have a rather small size, the 10-fold cross-validation is commonly used
as testing method. The classification accuracy is computed 10 times, each time leaving
out one of the sub-samples and using that sub-sample as a test sample for
cross-validation; therefore, each sub-sample is used 9 times as training sample and just
once as testing sample. The algorithm correct classification rates, computed for each of
the 10 runs of the model, are then averaged to give the 10-fold estimate of the clas-
sification accuracy. This procedure is repeated 10 times to complete a cross-validation
cycle, consisting of the 10 runs of the model. It is noteworthy that, in case of relatively
large databases, the holdout cross-validation is used instead of 10-fold cross-validation.
In this regard, 2/3 of data form the training set, while the rest of 1/3 represents the
testing set, and the process is repeated, with a random choice of samples regarding each
dataset.

The benchmarking process of the algorithms involved in the study is assessed by
statistical means, seen as an objective quality procedure. As mention above, the data
statistically analyzed consist of samples concerning training and testing performances
of each ML model, run in a certain number of complete cross-validation cycles. The
benchmarking process usually envisages three aspects:

• Data screening, involving the suitability of the data for the type of statistical
analysis that is intended;

• Hypotheses testing, involving the comparison between the testing performances
obtained in the diagnosing process;

• Over-learning control, involving the analysis of the correlation between training
and testing performances, enabling the statistical investigation of the model ability
to generalize well on new cases.

An a priori statistical power analysis (two-tailed type of null hypothesis) is usually
performed in advance with the aim to determine the appropriate sample size, i.e., the
appropriate number of independent computer runs for each algorithm, in order to
achieve adequate statistical power.
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Data screening consists in applying classical normality tests (i.e., Kolmogorov-
Smirnov & Lilliefors test, and Shapiro-Wilk W test) and the homogeneity of variances
test (Levene’s test).

Hypotheses testing consists in using different statistical comparison tests, such as:

• t-test for independent samples or/and its non-parametric alternative of Mann-
Whitney U test, Kolmogorov-Smirnov two-sample test (K-S), and Wald-Wolfowitz
runs test (W-W), in case of non-normal distributions;

• Two-sided test (z-value) to compare the average proportions of correctly classified
cases/two means;

• Cohen’s kappa test to compare the agreement between ML models, seen as inde-
pendent ‘raters’;

• Classical one-way ANOVA technique along with the Tukey’s honestly significant
difference (Tukey HSD) post-hoc test in order to quantify the magnitude of the
contrast between the corresponding performances (more than two ‘competitors’).

5 Advantages and Disadvantages of CAMD

In paper “Intelligent decision systems in medicine -a short survey on medical diagnosis
and patient management” Gorunescu [22] presents a short review regarding the
applications of ML algorithms in health care. A special attention has been paid to the
‘Ups and Downs’ of this domain. Thus, it is noteworthy that:

• Medical diagnosis is ‘subjective’ and depends both on available data, and on the
experience of the physician;

• Specific requirements for the ML algorithms are: (i) good performance (ii) handling
missing/noisy data, (iii) transparency of diagnosis knowledge despite the
“black-box” property of certain algorithms, (iv) ability to explain new patient
diagnosis, (v) reduction of the amount of data needed/feature selection ability;

• In many cases, various classifiers perform roughly the same. However, there are
significant differences between them, mostly depending on the database and data
type;

• When choosing between ML techniques, physicians prefer those with high expla-
nation ability (e.g., Bayesian decision, classification tree);

• Instead of using standalone algorithms, a better idea is to use a committee-machine
approach;

• ML-based diagnosis (automated diagnosis) remains just another source of possibly
useful information that helps to improve the diagnostic accuracy. The final
responsibility whether to accept or reject this information belongs to the physician.

Remark. It is noteworthy that the most misplaced expectation is the idea that CAMD is
intended to replace doctors in the medical decision process. On the contrary, physicians
are necessarily required to make the final decision based on the computer support.
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Let us also mention that the ML algorithms used within CAMD are often based on
heuristics. Therefore, despite their well-known effectiveness and easy-to-use in clinical
research, one can be cautious with their decision, which should always be censored by
the human specialist.

5.1 Area 1: Note on Privacy

In CAMD, it is mandatory to consider possible implications regarding privacy when
using medical datasets. Medical records contain personal information that can be used
for unethical purposes. For this reason, in all developed countries, the respective
governments and other official institutions have considered strict regulations regarding
the use of such data.

In paper “Ethical issues in electronic health records; A general overview”, Ozair
et al. [25] discuss various ethical issues faced by the wide nowadays use of medical
data obtained from electronic health records.

In paper “Privacy-preserving data publishing: a survey of recent developments”,
Fung et al. [26] systematically summarize and evaluate different approaches regarding
privacy-preserving data publishing, and analyse challenges in practical data publishing
and other issues related to the use of collections of digital information.

In paper [27] “The right to be forgotten: Towards Machine Learning on perturbed
knowledge bases” it is disscused the effect of the perturbed/anonymized knowledge on
the results of four machine learning techniques.

6 Conclusion and Future Outlook

Clinical databases store large amounts of information of all kinds about patients and
their medical conditions. State-of-the-art ML techniques are designed to deal with this
information in order to discover relationships and patterns which are helpful in
studying the progression and the management of diseases.

In this context, it is noteworthy to mention the existence of powerful research
groups within well-established universities, working in developing effective intelligent
decision systems, based on ML technologies, for medical decision-making. Among
well-known examples of such groups, we mention the research group Clinical Decision
Making, within the Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology-MIT, USA, “dedicated to exploring and furthering
the application of technology and artificial intelligence to clinical situations” - https://
www.csail.mit.edu/, http://groups.csail.mit.edu/medg/. In addition, one can mention
Human-Computer Interaction and Knowledge Discovery/Data Mining-http://hci-kdd.
org/, Image Sciences Institute-http://www.isi.uu.nl/Research/Themes/CAD/, and Cor-
nell University Vision and Image Analysis Group - http://www.via.cornell.edu/
research/.
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Some of the most important research themes approached in about thirty years of
using Artificial Intelligence tools in health care are reviewed in [28]. The conclusion of
this survey is that “There has been a major shift from knowledge-based to data-driven
methods, while the interest for other research themes such as uncertainty management,
image and signal processing, and natural language processing has been stable since the
early 1990s”.

Nowadays, researchers have to cope with collections of large and complex datasets,
difficult to be processed with traditional tools. In this context, by “big data” we
commonly understand the tools, processes, and techniques enabling to create, manip-
ulate and manage very large datasets. In the “big data” era, health care informatics has
been significantly grown, and a large amount of digital health care and medical data is
produced [29].

To conclude, there are many challenges in dealing with big data. The ultimate goal
of future research in this domain is to bridge physicians, DM/ML and medical infor-
matics communities to foster interdisciplinary studies between the three research
groups.
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Abstract. The rapidly increasing capabilities of neurotechnologies are generat-
ing massive volumes of complex multi-modal data at a rapid pace. This neuro-
logical big data can be leveraged to provide new insights into complex
neurological disorders using data mining and knowledge discovery techniques.
For example, electrophysiological signal data consisting of electroencephalogram
(EEG) and electrocardiogram (ECG) can be analyzed for brain connectivity
research, physiological associations to neural activity, diagnosis, and care of
patients with epilepsy. However, existing approaches to store and model elec-
trophysiological signal data has several limitations, which make it difficult for
signal data to be used directly in data analysis, signal visualization tools, and
knowledge discovery applications. Therefore, use of neurological big data for
secondary analysis and potential development of personalized treatment strategies
requires scalable data processing platforms. In this chapter, we describe the
development of a high performance data flow system called Signal Data Cloud
(SDC) to pre-process large-scale electrophysiological signal data using open
source Apache Pig. The features of this neurological big data processing system
are: (a) efficient partitioningof signal data into fixed size segments for easier
storage in high performance distributed file system, (b) integration and semantic
annotation of clinical metadata using an epilepsy domain ontology, and
(c) transformation of raw signal data into an appropriate format for use in signal
analysis platforms. In this chapter, we also discuss the various challenges being
faced by the biomedical informatics community in the context of Big Data,
especially the increasing need to ensure data quality and scientific reproducibility.
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1 Introduction and Motivation

The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) ini-
tiativeannounced by the US President in 2013 has defined an ambitious vision to
understand how individual neural cells and complex neural networks interact to
accelerate neuroscience research [1]. The BRAIN initiative aims to undertake a com-
prehensive effort similar to the Human Genome Project (HGP) to facilitate new dis-
coveries in neuroscienceand potentially facilitatedevelopment of new treatment
mechanisms for a range of neurological disorders. The rapid increase in the capabilities
of neurotechnologies is enabling us to collect neuroscience data at unprecedented levels
of granularity, for example real time functional Magnetic Resonance Imaging (fMRI)
and intracranial electroencephalogram (EEG) provide high quality data corresponding
to complexbrain activities [2, 3]. One of the key advantages of this neuroscience “Big
Data” is the ability to derive actionable information from analysis of statistically sig-
nificant volumes of data that can also support knowledge discovery applications [2, 4].
However, the large volume and rapid rate of multi-modal neuroscience data generation
has made it difficult to process and analyze these datasets using existing neuroscience
data processing tools [5]. The limitations of existing data processing tools make it
difficult to define new data-driven research techniques for variety of neuroscience
applications, for example mapping brain activities derived from fMRI to task com-
plexities using adaptive testing, computing anatomical connections between different
brain regions using diffusion MRI [6], and computing brain connectivity measures
from EEG data [7].

Computing functional connectivity measures is important for characterizingthe
extent of seizure networks in epilepsy patients. Epilepsy is one of the most common
serious neurological disease affecting more than 50 million persons worldwide with
200,000 new cases diagnosed each year [8]. Patients with epilepsy suffer from repeated
“seizures” that are caused by abnormal electrical activity, which arerecorded as EEG
recordings using electrodes implanted on the brain surface (scalp electrodes) or within
the brain (intracranial electrodes). Electrophysiological signal data are interpreted by
signal processing algorithms to detect important events, such as the start or end of
epileptic seizures, and are also manually reviewed by domain experts to characterize
the extent of the “seizure network” [9]. Accurate characterization ofthe spatial and
temporal characteristics of seizure networks is important for diagnosis and treatment of
epilepsy patients, including prescribing anti-epileptic medication and making appro-
priate decisions related to surgical interventions [10]. In addition to epilepsy, the
growing role of signal data analysis in evaluating brain trauma, for example concus-
sions in sports medicine, and imaging data for brain function tests in neurodegenerative
diseases (e.g. Alzheimer’s disease) make it important to develop efficient data pro-
cessing pipelines to support neuroscience Big Data applications [11].

However, there are several key data processing challenges that impede the effective
use of large-scale signal data for computing brain connectivity measures. For example,
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signal data is often stored in European Data Format (EDF) files that collate signal data
in a contiguous order corresponding to all recording channels [12], which makes it
difficult to efficiently extract specificsegment of signal data for secondary analysis. In
addition, an EDF file stores all data recorded during a recording session as a single unit,
which makes it difficult for analysis applications to process and interpret specific
segments of data. The rapidly increasing volume of signal data, which is highlighted by
the more than 32 TB of signal data collected at the University Hospitals of Cleveland
(USA) Epilepsy Center, makes it extremely difficult for existing data processing tools
to efficiently store and retrieve signal data for visualization or analysis. Specific neu-
roscience applications, for example computation of functional connectivity measures
using phase synchronization, generalized synchronization or regression methods [7]
requires efficient and scalable data processing techniques. In our ongoing research
project, we are using non-linear correlation coefficient measures to compute functional
connectivity between different brain regions involved in onset and propagation of
epilepsy seizures.

To compute correlation measures between two channels requires several
pre-processing steps to address the limitations of the default format of EDF files used to
store signal data, including:

1. Data corresponding to specific signal channels (e.g., data recorded from two brain
locations Gx and Gy) need to be extracted from an EDF record that stores signal
data from all channels contiguously;

2. Segments of signal data corresponding to seizure eventsneed to be extracted for
computing the connectivity measures during seizures;

3. The EDF file stores signal values as “raw” binary values that need to be transformed
into appropriate numeric values;

4. Finally, the clinical events detected by physicians in the signal data (e.g., occur-
rence of an epilepsy seizure) are stored separately from an EDF file. Therefore, the
clinical annotations need to be integrated with the signal data for subsequent
analysis.

However, processing large volumes of EDF files and computing correlation coef-
ficient values over large EDF files (e.g., 3 GB files) with more than 170 signal channels
with large number of combinatorial selections is a complex taskand cannot be done
manually by neuroscience researchers. Therefore, we have developed a two-phase data
processing approach to address these challenges, which consists of: (1) development of
a new JSON-based signal data representation format that supports partitioning signal
data into smaller segments with integrated clinical annotations describing
seizure-related events; and (2) development of highly scalable data pre-processing
pipeline using Apache Pig that can leverage commodity hardware for distributed data
processing.

Our two-phasedata flowaims toenable neuroscience researchers to effectively
leverage the growing volume of signal data for brain connectivity research in various
research applications. We developed and evaluated our two-phase data processing
pipeline using de-identified SEEG data, which was collected in the epilepsy center at
the University Hospitals of Cleveland.The performance of the data processing pipeline
was evaluated using more than 700 GB of data to simulate real world scenario [13].
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The different computational functions of the two-phase data flow wereevaluated to
demonstrate the scalability of our implementation by effectively leveraging the capa-
bilities of a multi-node Hadoop cluster.The Apache Pig system features high level
programming constructs defined using the Pig Latin language to describe complex data
processing tasks, which are automatically compiled into MapReduce tasks by the Pig
compiler [14]. Each MapReduce task corresponds to the well-known two-step dis-
tributed computing programming approach developed by Google for extremely large
volumes of data [15].

Apache Pig is an open source system that features a set of built-in data processing
tasks and User Defined Functions (UDF), which allows users to develop customized
data processing functions. The primary advantage of Apache Pig is that it allows users
to define scalable and customized data processing pipelines for various domains, for
example neuroscience signal processing. Our two-phase scalable signal data processing
pipeline can be readily integrated with multiple functional connectivity computation
workflows that aim to analyze specific segments of signal data using different func-
tional connectivity measures. We note that functional connectivity measures can be
computed using other neuroscience data modalities, including functional Magnetic
Resonance Imaging (fMRI) for real time adaptive evaluation. Although the current
version of our approach does not support other data modalities, weare extending our
data processing pipeline to compute functional connectivity using fMRI data as part of
ongoing research. This will allow researchers with limited programming experienceto
easily construct scalable data processing pipelinesusing high-level programming con-
structs defined in Apache Pig.

2 Glossary and Key Terms

Brain Connectivity: represents connections between different locations of the brain that
are derived from various brain activities (also called functional connectivity) or
anatomical connections (also called structural connectivity) [16];

Functional connectivity: Functional connectivity represents correlated brain activity
recorded from different brain regions using different modalities, for example SEEG and
fMRI [17, 18];

Electrophysiological Signal Data: record the electrical signals produced in bio-
logical systems, for example signal data recorded as electroencephalogram (EEG) data
using scalp or intracranial electrodes implanted in brain [17];

European Data Format (EDF): is a widely used file format for storage of elec-
trophysiological signal data. EDF files store information corresponding to predefined
metadata fields (both study and channel-specific record) and raw signal data in binary
format [12];

Biomedical Ontology: is a formal representation of biomedical information using
knowledge representation languages such as the Web Ontology Language (OWL) that
can be consistently and accurately interpreted by software tools [19];

Epilepsy: is a serious neurological disorder characterized by abnormal electrical
brain signalsthat cause repeated seizures and manifest as physical or behavioral
changes. Epilepsy affects more than 50 million persons worldwide [20];
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Epilepsy Seizure Network: consists of different brain regions that participate in
epileptic seizures and are characterized by coupling or synchronization [17];

Neuroscience Big Data: is characterized by the growing volume of multi-modal
neuroscience data being generated at a rapid rate bya new generation of neurotech-
nologies, which record data at high level of granularity [5];

Apache Hadoop: is an open source implementation of the Google MapReduce
distributed computing approach consisting of repeated two steps of Map and Reduce to
process extremely large volumes of data [21];

Apache Pig: is a dataflow system consisting of data manipulation functions using
Pig Latin program that are used to describe data processing steps. Apache Pig functions
are converted into MapReduce programs by the Pig compiler [14];

Hadoop Cluster: consists of multiple computing nodes that are physically con-
nected with built-in support for redundancy and load balancing to enable distributed
analysis of large-scale data.

3 Related Work: Processing Neurological Data for Brain
Connectivity Research

High performance distributed computing approaches are being increasingly used to
process and analyze neuroscience data, for example use of Apache Spark for mapping
brain activity in model organisms [22]. Clusters of Graphical Processing Unit
(GPU) have been used to process large volumes of EEG data [23, 24] and data analysis
[25]. GPU and Apache Spark algorithms are also being used to process and analyze
neuroimaging datasets generated in the Human Connectome Project (HCP) [26].
The HCP is a multi-institutional initiative to map both functional and structural net-
works of human brain using advanced imaging techniques that provide extremely high
spatial resolution with faster imaging frequency [3]. To process the extremely large
volume of neuroimaging data, the HCP researchers have developed scalable pipelines
to compute functional connectivity using fMRI data stored in the Neuroimaging
Informatics Technology Initiative (NIfTI) format. The pipeline uses a distributed NIfTI
reader written in Scala for Apache Spark that can be subsequently analyzed using the
GraphX library [26].

Network analysisis an intuitive approach for modeling brain connectivity structures
with brain regions represented as nodes and structural or functional connections between
the nodes represented as edges [17]. Brain connectivity researchers use various mea-
sures to evaluate functional networks, for example the number of edges between nodes,
number of edge hops connecting two nodes and even clustering coefficient measures
corresponding to total number of triangles in a network. In epilepsy seizure
network-related research, three primary networks are usually used namely, “regular
networks” with high path density between brain regions, “random networks” with paths
connecting brain regions with some probability, and “small-world network” that have
short paths and high clustering coefficients [27]. Research in functional connectivity
measures, which are derived from EEG data, aim to accurately characterize the spatial
and temporal properties of seizure networks in epilepsy neurological disorder.
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In patients with “focal epilepsy”, abnormal electrical activity called seizures orig-
inate in specific brain regions and may or may not involve other brain regions over a
period of time. The brain regions involved in the initial and subsequent stages of the
seizures constitute a seizure network with brain regions represented as nodes and
propagation paths of seizures represented as edges. An important neuroscience chal-
lenge is to precisely localize the origin of seizure and its subsequent propagation using
spatial and temporal properties of electrical activity recorded across different brain
regions [9, 27]. The accurate characterization of seizure network is important to
identify brain tissues responsible for epileptic seizures and to subsequently remove
them during surgery to help patients who do not respond to anti-epileptic drugs [7]. Our
research is focused on using high resolution SEEG that precisely records electrical
activity in specific brain region to characterize seizure networks and facilitate accurate
identification of brain regions involved in seizures [28].

Our work in the development of distributed and parallel data processing pipelines
for multi-modal neuroscience data is related to the general approach of using high
performance computing techniques deployed over commodity hardware. However, our
data processing pipeline effectively uses new data partitioning techniques for seg-
menting electrophysiological datainto smaller fragments that can be processed and
analyzed in parallel for scalability. At present, we are not aware of any existing work
that uses distributed computing approaches with data partitioning techniquesto process
and analyze signal data for computing functional connectivity using Apache Pig.
Another key feature of our data processing pipeline is the use an Epilepsy and Seizure
Ontology (EpSO) [29] as standardized terminological system for clinical events
detected in signal data. EpSO is a domain ontology modeled using the description
logic-based W3C Web Ontology Language (OWL2) [30] to represent the well-known
four-dimensional classification system of epilepsy together with brain anatomy, drug
information, and genetic information. The use of EpSO for annotating SEEG data
allows easier retrieval of specific signal segments annotated with relevant clinical
events and facilitates data integration of signal data generated from multiple sources.

4 A Modular and Scalable Data Flow for Processing
Neuroscience Data

To develop our two-phase data processing pipeline, we used de-identified signal data
from a 44 years old female epilepsy patient with intractable focal epilepsy (patient did
not respond to anti-epileptic medications) as test case. The patient was evaluated for
surgical intervention using stereotactically placed symmetric depth electrodes in both
left and right insular region of the patient’s brain [31]. The SEEG signal data was
de-identified to remove protected health information (PHI) and eight EDF files were
created with each file corresponding to an occurrence of seizure in the patient. The
two-fold objectives of the data flow development process were to identify data pro-
cessing bottlenecks in the pipeline and to address these bottlenecks using distributed
computing techniques. The output of the data processing pipeline was used as input
data to thedata flow for computing functional connectivity measures using non-linear
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correlation coefficient. The complete data processing and analysis pipeline consists of
three distinct steps (illustrated in Fig. 1):

1. Step 1: Pre-processing of SEEG data to partition signal data in an EDF file into
smaller time segments (default of 30 s), integrate the clinical annotations stored in a
separate file with the signal data, transform the layout of signal data corresponding
to channel-oriented structure and compute numeric values from raw binary signal
data;

2. Step 2: Transform and aggregate channel-specific data to allow computation of
the nonlinear correlation coefficient and store them as Javascript Object Notation
(JSON) files;

3. Step 3: Compute the degree of co-occurrence of signals at two locations Gx and
Gy representing functional connectivity to facilitate characterization of the spatial
and temporal characteristics of seizure networks. These functional connectivity
measures will help identify candidate brain locations for surgery in focal epilepsy
patients who do not respond to anti-epileptic medications.

4.1 Computing Functional Connectivity Measures

Nonlinear correlation coefficientis used to compute the degree of co-occurrence
between signals X(t) and Y(t) recorded at two brain locations Gx and Gy [7]. The
equation:

h2XYðsÞ ¼ 1�VarðY ðt þ sÞ j X tð Þ � Var ðY ðt þ sÞÞ

gives the non-linear measure of association between the two signals at time lag of τ in
the direction of Gx to Gy. The maximum of this nonlinear measure computed over all
possible lag values of τgives the overall measure of association from region Gx to Gy
and is computed as follows:

h2XY ¼ max smin \s\smaxh2XYðsÞ

Fig. 1. The three steps constituting the data processing and analysis pipeline for SEEG data to
compute functional connectivity measure

Processing Neurology Clinical Data for Knowledge Discovery 309



The resulting h2XY value is called the nonlinear correlation coefficient in the
direction from Gx to Gy. The value of h2XY varies from 0 to 1, where 0 represents no
association between signal recorded at GX, Gy and 1 represents perfect correlation
between the signals recorded at the two locations.

To identify the performance bottlenecks of the functional connectivity pipeline, we
processed and analyzed all the twelve EDF files generated from the insular epilepsy
patient. The results of the evaluation demonstrated thatStep 1 and Step 2 required-
significantly more time to process signal data as compared to Step 3. For example, it
requires nearly 40 min to process a single 1.26 GB EDF file and approximately 30 min
to process a smaller 830 MB sized EDF file (a detailed description of the evaluation
results for various sizes of signal data is presented in our paper [13]). Clearly, this is a
significant bottleneck to rapidly process and analyze large volumes of signal data for
computing functional connectivity. Therefore, there is a clear need to address the
computational bottleneck in Step 1and Step 2 to process large volumes of signal data.

We have developed a scalable data processing pipeline for signal data consisting of
four modules that support the following functionalities: (1) Partitioning the signal data
in an EDF file into smaller segments, (2) Integration of clinical annotations with signal
data in the smaller segments, (3) Transforming the layout of the signal data from
sampling collection-based layout to channel-oriented layout, and (4) Conversion of the
binary raw signal data into numeric values. The final output of this data processing
pipeline is stored asa JSON file with the clinical event annotations mapped to EpSO
classes [29]. EpSO is a domain ontology developed to support a variety of
epilepsy-focused informatics applications.

Biomedical ontologies are widely used in informatics applications for data inte-
gration, ontology-based data access (OBDA), and knowledge discovery [19]. For
example, Gene Ontology (GO) [32], the Systematized Nomenclature of Medicine
Clinical Terms (SNOMED CT) [33], and the Human Phenotype Ontology (HPO) [34]
are widely used in biomedical informatics applications as common reference termi-
nological systems. The use of EpSO classes to semantically annotate clinical events in
signal data allows the data processing pipeline toreconcile terminological heterogeneity
in signal data collected from different sources (for example in multi-center clinical
research projects). The use of OWL2 to model epilepsy-related terms in EpSO also
allows software tools to use reasoning rules during query and retrieval of signal data
segments corresponding to specific clinical events [29].

The use of EpSO to annotate signal data highlights the key role of common ter-
minology in biomedical data processing pipeline. In addition to signal data, there has
been extensive work in use of biomedical ontologies to annotate gene expression data
[35], protein function data [36], and the increasing use of SNOMED-CT to annotate
clinical research data extracted from Electronic Health Records (EHR). The use of
EpSO classes significantly improves data harmonization in neuroinformatics applica-
tions, however the data processing bottleneck identified in Step 1 and Step 2 requires
the use of distributed computing techniques. We describe this Apache Pig-based
scalable data processing pipeline in the next section.
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4.2 Scalable Data Processing Using Apache Pig

Various components of the Hadoop technology stack are being increasingly used in
scientific applications to develop highly scalable data flow pipelines that can effectively
leverage distributed computing techniques. The Hadoop MapReduce programming
approach parallelizes data processing and analysis tasks over hundred or thousands of
computing nodes to help address the challenges of data and compute intensive tasks in
the scientific community [15]. Apache Pig is an open source dataflow system that
allows users to use high-level programming constructs to compose data processing
functions into a multi-step pipeline [14]. Apache Pig is a component of the Hadoop
technology stack. We use the Apache UDF feature (described earlier in Sect. 1) to
define customized functions for processing signal data. These signal data-specific
UDFs, which are part of the NeuroPigPen toolkit [13], are automatically compiled into
MapReduce tasks by the Pig compiler [14].

The NeuroPigPen toolkit consists of five modules that are customized to support
loading, parsing, processing, and partitioning signal data:

1. PigSignalLoad: The PigSignalLoadmoduleextends the Hadoop InputFormat and
RecordReader Application Programming Interface (API) for reading and parsing
EDF files. The load module locates and integrates the clinical event annotation files,
which are stored separately from the EDF file, into a single file.

2. PigSignalReader: The PigSignalReader module supports the extraction of meta-
data values associated with signal data, for example sampling rate of each signal
channel, the specific category of electrode used to record the signal data, the
physical and digital minimum as well as maximum values. The PigSignalReader
module can be used as a standalone tool to read and process signal data.

3. PigSignalPartitioner: The PigSignalPartitioner module addresses the need to
partition large volumes of signal data stored in an EDF file into smaller segments,
which can be processed and analyzed in a distributed computing infrastructure. This
module partitions the signal data into smaller segments with the size of each seg-
ment configured as a user-defined parameter in terms of time duration (for example,
30 s duration). After partitioning the data into smaller segments, this module adds
the signal metadata information together with clinical annotations extracted by the
PigSignalReader module. The output of this module is processed in the next step of
the data flow pipeline by the PigSignalProcessor module.

4. PigSignalProcessor: The PigSignalProcessor module transforms the layout of the
signal data from the default EDF file format, which stores the signal data as con-
tiguous values recorded from all channels, into channel-oriented layout. The
channel-oriented layout stores all the data recorded from a single channel con-
tiguously. The PigSignalProceesor module also transforms the signal data from a
binary format into numeric format and “digital values” to “physical values” [12] to
allow functional connectivity tools to directly use the signal data without the need
for additional processing.

5. PigSignalCSFGenerator: The PigSignalCSFGenerator module generates the
JSON files corresponding to the partitioned and transformed signal data, which

Processing Neurology Clinical Data for Knowledge Discovery 311



contains appropriate metadata information to allow these file segments to be
self-descriptive. These JSON files correspond to a new format called Cloudwave
Signal Format (CSF) developed in our previous work [37] to support signal data
processing in a distributed computing environment as well as used by different
neuroscience research applications.

The NeuroPigPen toolkit was designed to be a highly scalable data processing
pipeline with support for deployment in Hadoop clusters with different number of
computing nodes. To evaluate the performance of this data processing pipeline, we
processed the twelve de-identified EDF files (described earlier in Sect. 1) using a
sequential data processing approach and Apache Pig. The data was processed over a
31-node Hadoop cluster at our High Performance Computing Cluster (HPCC) using
Cloudera CDH 5.4 distribution. Each Data node in the Hadoop cluster has a dual Xeon
E5450 3.0 GHz processor with 8 cores per processor, 16 GB memory, and 2 TB disk
storage. The Hadoop Name node has a dual Xeon 2.5 GHz E5-2450 processor with 16
cores, 64 GB memory, and 1 TB disk storage. The nodes are connected by 10 gigabits
network connection. We used a HDFS replication factor of three to store the datasets in
the HPCC cluster. The results reported in this section are the average value of three
executions on the HPCC cluster.

The results (Fig. 2) clearly show a significant gain in time performance for the 12
EDF files, which vary in size from 362.8 MB to 1.36 GB. The Apache Pig imple-
mentation reduces the time taken to process the data from 36.28 min to 1.54 min for
the largest EDF file with size of 1.36 GB, which is 40 times faster as compared to the
sequential data processing implementation. We note that there is significant improve-
ment in time performance even for the smallest EDF file with size of 362.8 MB from
11.22 min to 0.96 min, which is 11 times faster as compared to the sequential
implementation. We demonstrated the scalability of the data processing pipeline in our

Fig. 2. A comparative evaluation of processing time for 12 EDF files with different sizes using
Apache Pig and sequential evaluation demonstrates the significant improvement in data
processing time.
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previous work using more than 700 GB of de-identified signal data [13]. We used EDF
files with different sizes ranging from 248 MB to 19.6 GB and clustered them into five
datasets with sizes 1 GB, 50 GB, 100 GB, 500 GB, and 750 GB. The NeuroPigPen
was also evaluated using five different configurations of Hadoop consisting of 3, 6, 12,
18, 24, and 30 Data nodes. The results from these evaluations demonstrated that the
NeuroPigPen toolkit met its design objectives.

As part of our ongoing research, we are exploring the use of distributed computing
approaches to compute the functional connectivity measure also. The NeuroPigPen
toolkit is a real world and practical example of multi-modal data processing pipelines
being developed in biomedical informatics using distributed computing techniques to
address the challenges of biomedical Big Data. In the next section, we discuss some of
the existing and future challenges in biomedical data processing that requires the
development of new data flows that support various data mining and knowledge dis-
covery applications in biomedical research [38–40].

5 Current and Future Challenges

The unprecedented growth in the volume and variety of neuroscience data is opening
new avenues for researchers to address the societal grand challenge of understanding
the complex dynamics of human brain. High-resolution multi-modal data ranging from
imaging to multi-channel electrophysiology signal data are providing unique new
insights into the structure and functions of human brain. Integrative analysis of
structural and functional brain connectivity network data has the potential to make
critical advances in understanding the role of brain connectivity in complex neuro-
logical disorders affecting millions of persons worldwide. However, neuroscience
researchers face critical challenges in effectively leveraging this new paradigm of
neuroscience Big Data due to lack of scalability of existing neuroinformatics tools. This
is clearly demonstrated in the domain of epilepsy seizure network research that requires
the analysis of extremely large volumes of high-resolution signal data collected using
multiple electrodes implanted in human brain during pre-surgical evaluation of epilepsy
patients. Results from our research project demonstrate that many challenges posed by
biomedical Big Data can be effectively addressed through use of new distributed
computing techniques. However, there are several existing challenges that need to be
addressed by the biomedical informatics research community and we discuss some of
these challenges in the next few sections.

5.1 Towards Effective Secondary Use of Biomedical Data: Challenges
in Sharing and Integration of Data

Biomedical research projects often involve multiple research centersand data from each
center needs to be aggregated and integrated into a common repository for query and
analysis by the project team members. In addition to multi-center research projects,
there is a growing need to integrate data collected across different projects into publicly
accessible repositories to allow the biomedical research community to leverage the
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large volume of existing study data [41]. For example, the US National Institutes of
Health (NIH) has funded the development of one of the largest data repositories for
sleep medicine research called the National Sleep Research Resource (NSRR) that aims
to aggregate and integrate study data from 50,000 studies [42]. Integration of large
volumes of disparate datasetsrequires processing the source data and using common
terminology for subsequent querying. However, there are no existing best practices that
can easily define mappings for domain-specific data collected from different sources.
Therefore, there is a clear need to develop scalable data processing and integration tools
for managing large biomedical datasets for data repositories such as NSRR.

Biomedical ontologies can play a significant role in development of data processing
and integration tools for large-scale datasets, which was demonstrated in our neu-
roinformatics project through the use of EpSO. However, the development of appro-
priate domain ontologies to support large-scale data integration requires significant
time and effort with close collaboration between computer science and biomedical
domain experts. This bottleneck can be effectively addressed through re-use of terms
from existing biomedical ontologies, for example SNOMED CT is comprehensive with
wide coverage of the clinical research domain that may be used for integrating large
datasets. In addition to biomedical ontologies, controlled vocabularies with simpler
structure and minimal formal semantics can also be used for processing and integrating
data. For example, the US NIH has initiated a project to develop Common Data
Elements (CDE) to facilitate uniform data collection and storage in research project.
Although CDEs can help address some of the challenges associated with integrating
disparate datasets, they require additional data processing steps to reconcile data
heterogeneity in comparison to biomedical ontologies.

5.2 Provenance Metadata-Aware Biomedical Data Processing
for Scientific Reproducibility

Provenance metadata describes the history or origin of data and it plays an important
role in ensuring data quality and supporting scientific reproducibility [43]. Collecting
and integrating provenance information with biomedical data processing pipeline is
important to ensure that researchers using integrated biomedical data repositories can
access information describing the techniques used to collect biomedical data in the
original study. Provenance metadata is often represented using the W7 model con-
sisting of information describing “who”, “where”, “why”, “which”, “what”, “how”, and
“when” [44]. There has been extensive work in use of provenance metadata in scientific
workflow systems used to process and analyze scientific data, including biomedical
datasets [45]. There is an increasing need to incorporate provenance information in
biomedical data processing pipeline especially in healthcare and clinical research
applications. The development of the World Wide Web Consortium (W3C) PROV
specifications has allowed the use of a common provenance model, which can be
extended to represent domain-specific provenance information, to facilitate interoper-
ability [43].

Provenance information describing the context of the biomedical data needs to be
propagated together with the data through the various stages of data processing. The
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size and heterogeneity of the provenance information collected by different centers or
sourced from different projects increases the computational complexity of data pro-
cessing pipelines. As the volume of biomedical data increases, the size of provenance
information associated with data also increases to incorporate detailed description of
the dataset (also called fine-level provenance versus coarse-level provenance). There-
fore, it is important to design and implement scalable data processing pipeline that can
be extended to incorporate provenance metadata. The role of provenance metadata in
supporting scientific reproducibility is an area of active research that has led to
development of clinical research-focused provenance models [37].

5.3 Privacy of Patients in Context of Biomedical Data Processing
and Analysis

The widespread adoption of electronic health records in the US and other countries has
highlighted the need to protect patient privacy [41]. Data processing pipeline need to be
aware of the critical importance of preserving privacy and security of protected health
information (PHI) of patients. Removal of PHI from healthcare and biomedical dataset
that is used outside of the original research study is an essential part of the
data-processing pipeline. The accurate identification and removal of PHI using auto-
mated tools is an area of active research in biomedical informatics due to the challenges
associated with identifying PHI related data in unstructured or semi-structured datasets.
Many data processing pipelines used for biomedical data with PHI requires manual
validation, which may be bottleneck for Big Data applications.

Many biomedical data integration applications often rely on an “honest broker” to
access medical record information and remove identifiable information to generate
de-identified data for use by researchers. Big Data applications require the development
of new approaches that scale with the increasing volume of biomedical data while
ensuring the privacy of patients. The design of effective biomedical data processing
pipeline needs to incorporate privacy preserving features without adding to the com-
plexity of processing and integrating large data.

6 Conclusion

In this chapter, we describe the development of a scalable data processing pipeline for
neuroscience data to support brain connectivity research. The data processing pipeline
transforms electrophysiological signal data collected from epilepsy patients into
appropriate format to allow computation of functional connectivity measures between
different brain regions. The functional connectivity measures, which are derived from
EEG data, are used to characterize the spatio-temporal properties of epilepsy seizure
networks. The signal data-processing pipeline is implemented using Apache Pig, which
is an open source high-level distributed computing system, to process large scale signal
data. The data processing pipeline has been systematically evaluated using more than
700 GB of signal data. The data processing pipeline uses an epilepsy domain ontology
called EpSO to semantically annotate signal data, which allow easier querying and
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retrieval of signal data. We also discuss some of the challenges faced in development of
biomedical data processing systems, for example the role of biomedical ontologies for
data integration, provenance metadata to ensure data quality and scientific repro-
ducibility, and the challenges associated with preserving privacy of patients during
processing of biomedical data.

Acknowledgements. This work is supported in part by the National Institutes of Biomedical
Imaging and Bioengineering (NIBIB) Big Data to Knowledge (BD2 K) grant (1U01EB020955)
and the National Institutes of Neurological Disorders and Stroke (NINDS) Center for SUDEP
Research grant (1U01NS090407-01).

References

1. Brain Research through Advancing Innovative Neurotechnologies (BRAIN). The White
House, Washington, D.C. (2013)

2. Bargmann, C., Newsome, W., Anderson, D., et al.: BRAIN 2025: a scientific vision. US
National Institutes of Health 2014

3. Marcus, D.S., Harwell, J., Olsen, T., Hodge, M., Glasser, M.F., Prior, F., Jenkinson, M.,
Laumann, T., Curtiss, S.W., Van Essen, D.C.: Informatics and data mining tools and
strategies for the human connectome project. Front. Neuroinformatics 5 2011

4. Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, S., Franklin, M., Gehrke, J.,
Haas, L., Halevy, A., Han, J., Jagadish, H.V., Labrinidis, A., Madden, S., Papakonstantinou,
Y., Patel, J.M., Ramakrishnan, R., Ross, K., Shahabi, C., Suciu, D., Vaithyanathan, S.,
Widom, J.: Challenges and Opportunities with Big Data. Purdue University 2011

5. Sejnowski, T.J., Churchland, P.S., Movshon, J.A.: Putting big data to good use in
neuroscience. Nature Neurosci. 17, 1440–1441 (2014)

6. Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.P., Wedeen, V.J., Meuli, R.: Understand-
ing diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion
tensor imaging and beyond. RadioGraphics 26, 205–223 (2006)

7. Wendling, F., Ansari-Asl, K., Bartolomei, F., Senhadji, L.: From EEG signals to brain
connectivity: a model-based evaluation of interdependence measures. J. Neurosci. Methods
183, 9–18 (2009)

8. Epilepsy Foundation. http://www.epilepsyfoundation.org/aboutepilepsy/whatisepilepsy/
statistics.cfm. Accessed May 3, 2016

9. Wendling, F., Bartolomei, F., Senhadji, L.: Spatial analysis of intracerebral electroen-
cephalographic signals in the time and frequency domain: identification of epileptogenic
networks in partial epilepsy. Philos. Tansa. Maths Phys. Eng. Sci. 367, 297–316 (2009)

10. Fisher, R.S.: Emerging antiepileptic drugs. Neurology 43, 12–20 (1993)
11. Wagenaar, J.B., Brinkmann, B.H., Ives, Z., Worrell, G.A., Litt, B.: A multimodal platform

for cloud-based collaborative research. In: Presented at the 6th International IEEE/EMBS
Conference on Neural Engineering (NER), San Diego, CA (2013)

12. Kemp, B., Olivan, J.: European data format ‘plus’ (EDF+), an EDF alike standard format for
the exchange of physiological data. Clin. Neurophysiol. 114, 1755–1761 (2003)

13. Sahoo, S.S., Wei, A., Valdez, J., Wang, L., Zonjy, B., Tatsuoka, C., Loparo, K.A., Lhatoo,
S.D.: NeuroPigPen: a data management toolkit using hadoop pig for processing electro-
physiological signals in neuroscience applications. Front. Neuroinformatics (2016)

316 S.S. Sahoo et al.

http://www.epilepsyfoundation.org/aboutepilepsy/whatisepilepsy/statistics.cfm
http://www.epilepsyfoundation.org/aboutepilepsy/whatisepilepsy/statistics.cfm


14. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S.M., Olston, C.,
Reed, B., Srinivasan, S., Srivastava, U.: Building a high-level dataflow system on top of
Map-Reduce: the Pig experience. In: 35th International Conference on Very Large Data
Bases, Lyon, France, pp. 1414–1425 (2009)

15. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53,
72–77 (2010)

16. Friston, K.J.: Functional and effective connectivity: a review. Brain Connectivity 1, 13–36
(2011)

17. Kramer, M.A., Cash, S.S.: Epilepsy as a disorder of cortical network organization.
Neuroscientist 18, 360–372 (2012)

18. Rogers, B.P., Morgan, V.L., Newton, A.T., Gore, J.C.: Assessing functional connectivity in
the human brain by fMRI. Magn. Reson. Imaging 25, 1347–1357 (2007)

19. Bodenreider, O., Stevens, R.: Bio-ontologies: Current trends and future directions. Briefings
Bioinform. 7, 256–274 (2006)

20. Fisher, R.S., Boas, W.E., Blume, W., Elger, C., Genton, P., Lee, P.Engel, Jr., J.: Epileptic
Seizures and epilepsy: definitions proposed by the international league against epilepsy
(ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46, 470–472 (2005)

21. Dean, J.: Challenges in building large-scale information retrieval systems. In: Invited Talk,
ed. ACM International Conference on Web Search and Data Mining (WSDM) (2009)

22. Freeman, J., Vladimirov, N., Kawashima, T., Mu, Y., Sofroniew, N.J., Bennett, D.V., Rosen,
J., Yang, C.T., Looger, L.L., Ahrens, M.B.: Mapping brain activity at scale with cluster
computing. Nat. Methods 11, 941–950 (2014)

23. Chen, D., Wang, L., Ouyang, G., Li, X.: Massively parallel neural signal processing on a
many-core platform. Comput. Sci. Engg. 13, 42–51 (2011)

24. Wang, L., Chen, D., Ranjan, R., Khan, S.U., KolOdziej, J., Wang, J.: Parallel processing of
massive EEG data with MapReduce. presented at the ICPADS (2012)

25. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data
analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)

26. Boubela, R.N., Kalcher, K., Huf, W., Našel, C., Moser, E.: Big data approaches for the
analysis of large-scale fMRI data using apache spark and GPU processing: a demonstration
on resting-state fMRI data from the human connectome project. Front. Neurosci. 9 (2016)

27. Guye, M., Bettus, G., Bartolomei, F., Cozzone, P.J.: Graph theoretical analysis of structural
and functional connectivity MRI in normal and pathological brain networks. Magn. Reson.
Mater. Phys., Biol. Med. 23, 409–421 (2010)

28. Yang, S., Tatsuoka, C., Ghosh, K., Lacuey-Lecumberri, N., Lhatoo, S.D., Sahoo, S.S.:
Comparative Evaluation for Brain Structural Connectivity Approaches: Towards Integrative
Neuroinformatics Tool for Epilepsy Clinical Research. In: Presented at the AMIA 2016 Joint
Summits on Translational Science, San Francisco, CA (2016)

29. Sahoo, S.S., Lhatoo, S.D., Gupta, D.K., Cui, L., Zhao, M., Jayapandian, C., Bozorgi, A.,
Zhang, G.Q.: Epilepsy and seizure ontology: towards an epilepsy informatics infrastructure
for clinical research and patient care. J. Am. Med. Inform. Assoc. 21, 82–89 (2014)

30. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web
ontology language primer. In: World Wide Web Consortium W3C2009

31. Lacuey, N., Zonjy, B., Kahriman, E.S., Marashly, A., Miller, J., Lhatoo, S.D., Lüders, H.O.:
Homotopic reciprocal functional connectivity between anterior human insulae. Brain Struct.
Funct. 221, 1–7 (2015)

Processing Neurology Clinical Data for Knowledge Discovery 317



32. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris,M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A.,
Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene
ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25,
25–29 (2000)

33. Rector, A.L., Brandt, S., Schneider, T.: Getting the foot out of the pelvis: modeling problems
affecting use of SNOMED CT hierarchies in practical applications. J. Am. Med. Inform.
Assoc. 18, 432–440 (2011)

34. Köhler, S., Doelken, S.C., Mungall, C.J., et al.: The human phenotype ontology project:
linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, 966–
974 (2014)

35. Diehn, M., Sherlock, G., Binkley, G., Jin, H., Matese, J.C., Hernandez-Boussard, T., Rees,
C.A., Cherry, J.M., Botstein, D., Brown, P.O., Alizadeh, A.A.: SOURCE: a unified genomic
resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res.
31, 219–223 (2003)

36. Xie, H., Wasserman, A., Levine, Z., Novik, A., Grebinskiy, V., Shoshan, A., Mintz, L.:
Large-scale protein annotation through gene ontology. Genome Res. 12, 785–794 (2002)

37. Jayapandian, C., Wei, A., Ramesh, P., Zonjy, B., Lhatoo, S.D., Loparo, K., Zhang, GQ,
Sahoo, S.S.: A scalable neuroinformatics data flow for electrophysiological signals using
MapReduce. Front. Neuroinformatics 9 (2015)

38. Yildirim, P., Majnaric, L., Ekmekci, I.O., Holzinger, A.: Knowledge discovery of drug data
on the example of adverse reaction prediction. BMC Bioinform. 15, S7 (2014)

39. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine:
cognitive science meets machine learning. IEEE Intell. Inf. Bull. 15, 6–14 (2014)

40. Preuß, M., Dehmer, M., Pickl, S., Holzinger, A.: On terrain coverage optimization by using a
network approach for universal graph-based data mining and knowledge discovery. In:
Śle ̧zak, D., Tan, A.-H., Peters, James, F., Schwabe, L. (eds.) BIH 2014. LNCS (LNAI), vol.
8609, pp. 564–573. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09891-3_51

41. Holdren, J.P., Lander, E.: Realizing the full potential of health information technology to
improve healthcare for americans: the path forward. PCAST Report, Washington, D.C.
(2010)

42. Dean, D.A., Goldberger, A.L., Mueller, R., Kim, M., Rueschman, M., Mobley, D., Sahoo, S.
S., Jayapandian, C.P., Cui, L., Morrical, M.G., Surovec, S., Zhang, G.Q., Redline, S.:
Scaling up scientific discovery in sleep medicine: the National Sleep Research Resource.
Sleep 39, 1151–1164 (2016)

43. Lebo, T., Sahoo, S.S., McGuinness, D.: PROV-O: The PROV Ontology. World Wide Web
Consortium W3C2013

44. Goble, C.: Position statement: musings on provenance, workflow and (semantic web)
annotations for bioinformatics. In: Workshop on Data Derivation and Provenance, Chicago
(2002)

45. Missier, P., Sahoo, S.S., Zhao, J., Goble, C., Sheth, A.: Janus: from Workflows to semantic
provenance and linked open data. In: Presented at the IPAW 2010, Troy, NY (2010)

318 S.S. Sahoo et al.

http://dx.doi.org/10.1007/978-3-319-09891-3_51


Network-Guided Biomarker Discovery
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Abstract. Identifying measurable genetic indicators (or biomarkers) of
a specific condition of a biological system is a key element of precision
medicine. Indeed it allows to tailor diagnostic, prognostic and treatment
choice to individual characteristics of a patient. In machine learning
terms, biomarker discovery can be framed as a feature selection problem
on whole-genome data sets. However, classical feature selection meth-
ods are usually underpowered to process these data sets, which contain
orders of magnitude more features than samples. This can be addressed
by making the assumption that genetic features that are linked on a
biological network are more likely to work jointly towards explaining
the phenotype of interest. We review here three families of methods for
feature selection that integrate prior knowledge in the form of networks.

Keywords: Biological networks · Structured sparsity · Feature selec-
tion · Biomarker discovery

1 Introduction and Motivation

Therapeutic development today is largely based on large-scale clinical trials and
the average responses of thousands of people. However, a large number of medical
conditions have no satisfactory treatment, and when treatment is available, many
patients either do not respond or experience unacceptable side effects [1]. This is
explained both by variations in environment and life styles between individuals,
and by their genetic differences. As a consequence, precision medicine, which
aims at tailoring preventive and curative treatments to patients based on their
individual characteristics, is gaining considerable momentum. At its core, it relies
on identifying features, genetic or otherwise, that correlate with risk, prognosis
or response to treatment. Here we are interested in the identification, from large
whole-genome dataset, of genetic features associated with a trait of interest. Such
features, which can be used to aid diagnostic, prognostic or treatment choice,
are often refered to as biomarkers.

Biomarker discovery, which can be framed as a feature selection problem,
depends on collecting considerable amounts of molecular data for large num-
bers of individuals. This is being enabled by thriving developments in genome
c© Springer International Publishing AG 2016
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sequencing and other high-throughput experimental technologies, thanks to
which it is now possible to accumulate tens of millions of genomic descriptors
(such as single-nucleotide polymorphisms or copy number variations of the DNA,
gene expression levels, protein activities, or methylation status) for thousands of
individuals [2]. However, these technological advances have not yet been accom-
panied by similarly powerful improvements in the methods used to analyze the
resulting data [3].

One of the major issues we are facing is that feature selection methods suffer
from a small sample size problem: they are statistically underpowered when the
dimensionality of the data (the number of biomarkers to investigate) is orders
of magnitude larger than the number of samples available. This is one of the
reasons behind the relative failure of genome-wide association studies to explain
most of the genetic heredity of many complex traits [4].

This problem can be addressed by using prior biological knowledge, which
reduces the space of possible solutions and helps capturing relevant information
in a statistically sound fashion. When a human expert is available, this is a typ-
ical application case for interactive machine learning [5], where a domain expert
drives a heuristic procedure to reduce the complexity of the search space. This
type of “doctor-in-the-loop” approach has recently been successfully applied in
the clinic [6]. However, such analyses are currently restricted to relatively small
numbers of a variables (61 in the example cited above) and it is not always pos-
sible to involve an expert directly. Hence, we will focus on using prior knowledge
compiled in databases.

Because genes do not work in isolation, but rather cooperate through their
interaction (physical, regulatory, or through co-expression) in cellular pathways
and molecular networks, this prior biological knowledge is often available in a
structured way, and in particular under the form of networks. Examples include
the STRING database [7], which contains physical and functional interactions,
both computationally predicted and experimentally confirmed, for over 2, 000
organisms, or BioGRID [8], which includes interactions, chemical associations,
and post-translational modifications from the literature. In addition, systems
biologists are building specialized networks, focused on the pathways involved
in a particular disease. One example of such networks is ACSN [9], a compre-
hensive map of molecular mechanisms implicated in cancer. These gene-gene
interaction networks can be used to define networks between genomic descrip-
tors, by mapping these descriptors to genes, using for instance in the case of
SNPs a fixed-size window over the genetic sequence, and connecting together all
descriptors mapped to the same gene, and all descriptors mapped to either of
two interacting genes [10]. We will here make the assumption that genetic fea-
tures that are linked on such a network are more likely to work jointly towards
explaining the phenotype of interest, and that such effects would otherwise be
missed when considering them individually.

This chapter focuses on methods for feature selection that integrate prior
knowledge as networks. Compared to pathway-based approaches, which assess
whether predefined sets of genes are associated with a given trait, network-based
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approaches introduce flexibility in the definition of associated gene sets. We will
review three families of approaches, namely post-hoc analyses, regularized regres-
sion and penalized relevance, before presenting their multi-task versions and dis-
cussing open problems and challenges in network-guided biomarker discovery.

2 Glossary and Key Terms

Feature selection: In machine learning, feature selection [11] aims at identifying
the most important features in a data set and discarding those that are irrele-
vant or redundant. This framework is clearly well-suited to the identification of
biologically relevant features.

Sparsity: A model is said to be sparse when it only contains a small number
of non-zero parameters, with respect to the number of features that can be
measured on the objects this model represents [12]. This is closely related to
feature selection: if these parameters are weights on the features of the model,
then only the few features with non-zero weights actually enter the model, and
can be considered selected.

Genome-Wide Association Study (GWAS): GWAS are one of the prevalent tools
for detecting genetic variants associated with a phenotype. They consist in col-
lecting, for a large cohort of individuals, the alleles they exhibit across of the
order of 250, 000 to several millions of Single Nucleotide Polymorphisms (SNPs),
that is to say, individual locations across the genome where nucleotide variations
can occur. The individuals are also phenotyped, meaning that a trait of interest
(which can be binary, such as disease status, or continuous, such as age of onset)
is recorded for each of them. Statistical tests are then run to detect associations
between the SNPs and the phenotype. A recent overview of the classical GWAS
techniques can be found in [13].

Graph/Network: A graph (network) (V, E) consists of a set of vertices (nodes)
V and a set of edges (links) E made of pairs of vertices. If the pair is ordered,
then the edge is directed; otherwise, it is undirected. A graph with no directed
edge is called undirected; unless otherwise specified, this is the type of graph we
consider here. We use the notation i ∼ j to denote that vertex i and vertex j
form an edge in the graph considered.

Adjacency matrix: Given a graph (V, E), its adjacency matrix is a square matrix
W ∈ R

d×d, where d = |V| is the number of vertices, and Wij �= 0 if and only if
there is an edge between the i-th and the j-th elements of V. Wij ∈ R represents
the weight of edge (i, j). If all non-zero entries of W are equal to 1, the graph is
said to be unweighted.

Network module: Given a graph G = (V, E), a graph G′ = (V ′, E ′) is said to be
a subgraph of G if and only if V ′ is a subset of V and E ′ is a subset of E . In
systems biology, the term “network module” refers to a subgraph of a biological
network whose nodes work together to achieve a specific function. Examples of
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modules include transcriptional modules, which are sets of co-regulated genes
that share a common function, or signaling pathways, that is to say chains of
interacting proteins that propagate a signal through the cell. In the context of
biomarker discovery, we are interested in finding modules of a given biological
network that are associated with the phenotype under study.

Graph Laplacian: Given a graph G of adjacency matrix W ∈ R
d×d, the Lapla-

cian [14] of G is defined as L := D−W , where D is a d×d diagonal matrix with
diagonal entries Dii =

∑d
j=1 Wij . The graph Laplacian is analog to the Lapla-

cian operator in multivariable calculus, and similarly measures to what extent a
graph differs at one vertex from its values at nearby vertices. Given a function
f : V �→ R, f�Lf quantifies how “smoothly” f varies over the graph [15].

Submodularity: Given a set V, a function Φ : 2V → R is said to be submodular
if for any S, T ⊆ V, Φ(S) + φ(T ) ≥ Φ(S ∪ T ) + Φ(S ∩ T ). This property is
also referred to as that of diminishing returns. Given a graph G and its adja-
cency matrix W , an example of submodular function is the function Φ : S �→∑

p∈S
∑

q/∈S Wpq. In the case of equality, i.e. Φ(S)+φ(T ) = Φ(S ∪T )+Φ(S ∩T )
for any S, T ⊆ V, Φ is said to be modular. In this case, the value of Φ over a set
is equal to the sum of its values over items of that set. The cardinality function
Φ : S �→ |S| is a simple example of a modular function. Submodular functions
play an important role in optimization [16] and machine learning [17].

3 State of the Art

3.1 Network-Based Post-analysis of Association Studies

We start by describing methods that have been developed for the network-based
analysis of GWAS outcomes; these methods can easily be extended to other
type of biomarkers. These approaches start from a classical, single-SNP GWAS,
in which the association of each SNP with the phenotype is evaluated thanks to a
statistical test. This makes it possible to leverage state-of-the-art statistical tests
that, for example, account for sample relatedness [18], address issues related to
correlation between markers (linkage disequilibrium) [19], or are tailored to the
discovery of rare variants [20]. In addition, they can easily be applied without
access to raw data, only on the basis of published summary statistics. Their goal
is to find modules of a given gene-gene network that concentrate more small
p-values than would be expected by chance.

The first step is to map all SNPs from the dataset to genes, and to summarize
the p-values of all SNPs mapped to a given gene as a unique gene p-value. This
summary can be based for example on the minimum, maximum, or average p-
value. A popular alternative consists in using VEGAS, which accounts for linkage
disequilibrium between markers [21].

Several search methods have been proposed to find modules of significantly
associated genes from such data. In dmGWAS [22], the authors use a dense
module searching approach [23] to identify modules that locally maximize the
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proportion of low p-value genes. This search algorithm is greedy. It considers each
gene in the network as a starting seed, from which it grows modules by adding
neighboring genes to the set as long as adding them increases the module’s score
by a given factor.

An alternative approach, first proposed in [24] and refined in PINBPA [25],
relies on a simulated annealing search called JActiveModule and first proposed for
the discovery of regulatory pathways in protein-protein interaction networks [26].

Finally, GrandPrixFixe [27] uses a genetic algorithm for its search strategy.

Limitations. Because exact searches are prohibitively expensive in terms of cal-
culations, these approaches rely on heuristic searches that do not guarantee that
the top-scoring module is found. Let us note however that any highly scor-
ing module that is detected with such an approach is bound to be, if not bio-
logically, at least statistically interesting. Methods exist to identify top-scoring
sub-networks exactly, but they are too computationally intensive to have been
applied to GWAS at this point [28]. An other way to mitigate this issue is to
predefine potential modules of interest [29], but this strongly limits the flexibil-
ity offered by the use of networks rather than of predefined gene sets. Finally,
these computational issues limit their application to networks defined over genes
rather than directly over biomarkers.

More importantly, such methods rely on single-locus association studies, and
are hence unsuited to detect interacting effects of joint loci. The failure to account
for such interacting effects is advanced as one of the main reasons why classical
GWAS often does not explain much of the heritability of complex traits [4,30].

3.2 Regularized Linear Regression

So-called embedded approaches for feature selection [11] offer a way to detect
combinations of variants that are associated with a phenotype. Indeed, they learn
which features (biomarkers here) contribute best to the accuracy of a machine
learning model (a classifier in the case of case/control studies, or a regressor in
the case of a quantitative phenotype) while it is being built.

Regularization. Within this framework, the leading example is that of linear
regression [31]. Let us assume the available data is described as (X,y) ∈ R

n×m×
R

n, that is to say as n samples over a m biomarkers (X), together with their
phenotypes (y). A linear regression model assumes that the phenotype can be
explained as a linear function of the biomarkers:

yi =
m∑

p=1

Xipβp + εi, (1)

where the regression weights β1, . . . , βm are unknown parameters and εi is an
error term. Note that we can equally assume that the mean of y is 0, or that
the first of the m biomarkers is a mock feature of all ones that will serve to
estimate the bias of the model. The least-squares methods provides estimates
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of β1, . . . , βm by minimizing the least-square objective function (or data-fitting
term) given in matrix form by Eq. (2):

arg min
β∈Rm

||Xβ − y||22 . (2)

When m � n, as it is the case in most genome-wide biomarker discovery
datasets, Eq. (2) has an infinite set of solutions. In order to regularize the estima-
tion procedure, one can add to the least-square objective function a penalty term,
or regularization term, that will force the regression weights to respect certain
constraints. A very popular regularizer is the l1-norm of β, ||β||1 =

∑m
p=1 |βp|,

which has the effect of shrinking the βp coefficients and setting a large number
of them to zero, hence achieving feature selection: the features with zero weights
do not enter the model and can hence be rejected. This results in the lasso [31],
which estimates the regression weights by solving Eq. (3). The reason for using
the l1-norm, rather than the l0-norm which counts the number of variables that
enter the model and hence directly enforces sparsity, is that with the l0-norm
the resulting objective function would be non-convex, making its minimization
very challenging computationally.

arg min
β∈Rm

||Xβ − y||22 + λ ||β||1 . (3)

Here, λ ∈ R
+ is a parameter which controls the balance between the relevance

and the regularization terms.
Many other regularizers have been proposed, to satisfy a variety of constraints

on the regression weights, and have led to many contributions for the analysis
of GWAS data [32–36].

Network regularizers. In particular, it is possible to design regularizers that force
the features that are assigned non-zero weights to follow a given underlying struc-
ture [37,38]. In the context of network-guided biomarker discovery, we will focus
on regularizers Ω(β) that penalize solutions in which the selected features are not
connected over a given network.

We are now assuming that we have access to a biological network over the
biomarkers of interest. Such a network can usually be built from a gene interac-
tion network [10].

A first example of such approaches is the Overlapping Group Lasso [39].
Supposing that the m markers are grouped into r groups {G1, G2, . . . , Gr}, which
can overlap, we denote by VG the set of r-tuples of vector v = (vu)u=1,···r such
that vu is non-zero only on features belonging to group u. The Overlapping
Group Lasso penalty, defined by Eq. (4), induces the choice of weight vectors β
that can be decomposed in r weight vectors v = (vu)u=1,···r such that some of
the vu are equal to zero. This limits the non-zero weights to only some of the
groups. If each network edge defines a group of two biomarkers, then this method
can be applied to network-guided biomarker discovery, where it will encourage
the selection of biomarkers belonging to the same group, i.e. linked by an edge.
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Ωogl(β) = inf
v∈VG :

∑r
u=1 vu=β

r∑

u=1

||vu||2 . (4)

Another way to smooth regression weights along the edges of a prede-
fined network, while enforcing sparsity, is a variant of the Generalized Fused
Lasso [40]. The corresponding penalty is given by Eq. (5). The resulting opti-
mization problem is typically solved using proximal methods such as the fast
iterative shrinkage-thresholding algorithm (FISTA) [41]. While it has not been
applied to biomarker discovery to the best of our knowledge, [42] successfully
applied this approach to Alzheimer’s disease diagnostic from brain images.

Ωgfl(β) =
∑

p∼q

|βp − βq| + η ||β||1 . (5)

Alternatively, based on work on regularization operators by Smola and Kon-
dor [15], Grace [43,44] uses a penalty based on the graph Laplacian L of the
biological network, which encourages the coefficients β to be smooth on the
graph structure. This regularizer is given by Eq. (6), and yields a special case
of the recently proposed Generalized Elastic Net [45]. It penalizes coefficient
vectors β that vary a lot over nodes that are linked in the network. The cor-
responding optimization problem can be solved through a coordinate descent
algorithm [46]. Grace was applied to gene-gene networks, but can theoretically
be extended to other types of networks of biomarkers; the aGrace variant allows
connected features to have effects of opposite directions.

Ωgrace(β) = β�Lβ =
∑

p,q

Wpq(βp − βq)2 (6)

These approaches are rather sensitive to the quality of the network they use,
and might suffer from bias due to graph misspecification. GOSCAR [47] was
proposed to address this issue, and replaces the term |βp − βq| in Eq. (5) with
a non-convex penalty: max (|βp|, |βq|) = 1

2 (|βp + βq| + |βp − βq|). The authors
solve the resulting optimization problem using the alternating direction method
of multipliers (ADMM) [48,49].

Finally, while the previous approaches require to build a network over bio-
markers, the Graph-Guided Group Lasso [50] encourages genes connected on the
network to be selected in and out of the model together (graph penalty), and
biomarkers attached to a given gene to be either selected together or not at all
(group penalty). Supposing that the m biomarkers are grouped into r mutu-
ally exclusive genes {G1, G2, . . . , Gr}, and calling βGu

the coefficient vector β
restricted to its entries in Gu, the Graph-Guided Group Lasso penalty is given by
Eq. (7). As Grace’s, this optimization problem can be solved with a coordinate
descent algorithm.

Ωgggl(β) =
r∑

u=1

√
|Gu| ||βGu

||2 + η1 ||β||1 + η2
1
2

∑

p∈Gu,q∈Gv
Gu∼Gv

Wuv(βp − βq)2. (7)
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Limitations. In practice, we found that the computational burden was a severe
limitation to applying the Overlapping Group Lasso and Grace to the analysis of
more than a hundred thousand markers [10]. On a similar note, the experiments
presented in [47] used at most 8, 000 genes; the graph-guided group lasso [50]
used 1, 000 SNPs only; and the work in [42] used 3, 000 voxels to describe brain
images. It is therefore unclear whether these methods can scale up to several
hundreds of thousands of markers.

While these computational issues might be addressed by using more powerful
solvers or parallel versions of the algorithms, these regularized linear regression
approaches also suffer from their inability to guarantee their stability as feature
selection procedures, meaning their ability to retain the same features upon
minor perturbations of the data. These algorithms are typically highly unstable,
often yielding widely different results for different sets of samples relating to the
same phenotype [51]. There is hope that the use of structural regularizers, such
as those we defined above, can address this phenomenon by helping the selection
of “true” features, but ranking features based on t-test scores often still yields
the most stable selection in practice [52,53].

Finally, it is interesting to note that biomarkers are often represented as
categorical variables (such as the presence or absence of a mutation, or the num-
ber of minor alleles observed in the case of SNPs). Applying linear (or logistic)
regressions in this context, although not entirely meaningless, can be considered
an unsatisfying choice.

3.3 Penalized Relevance

Let us assume data is described over a set V of m features. The penalized rele-
vance framework proposes to carry out feature selection by identifying the subset
S of V that maximizes the sum of a data-driven relevance function and a domain-
driven regularizer.

The relevance function R : 2V → R quantifies the importance of a set of
features with respect to the task under study. It can be derived from a measure
of correlation, or a statistical test of association between groups of features and
a phenotype.

Our objective is to find the set of features S ⊆ V that maximizes R under
structural constraints, which we model, as previously, by means of a regularizer
Φ : 2V → R, which promotes sparsity patterns that are compatible with a priori
knowledge about the feature space. A simple example of regularizer computes
the cardinality of the selected set. More complex regularizers can be defined to
enforce a specific structure on S, and in particular a network structure [10]. We
hence want to solve the following problem:

arg max
S⊆V

R(S) − λΦ(S). (8)

Here again, λ ∈ R
+ is a parameter which controls the balance between the

relevance and the regularization terms.
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This formulation is close to that of the regularized linear regression presented
in Sect. 3.2. However, Lasso-like approaches focus on the minimization of an
empirical risk (or prediction error), while the penalized relevance framework
shifts the emphasis to the maximization of feature importance with respect to
the question under study. As with the approaches presented in Sect. 3.1, this
formulation makes it possible to leverage a large body of work from statistical
genetics to define relevance based on appropriate statistical tests. Moreover,
in this framework, optimization is done directly over the power set of V (also
noted as 2V), rather than over R

m. This presents the conceptual advantage of
yielding sparsity formulations that can be optimized without resorting to convex
relaxation, and offers better computational efficiency in very high dimension.

When relying on linear models, relevance functions are modular, meaning
that the relevance of a set of biomarkers is computed as the sum of the rel-
evances of the individual biomarkers in this set. Moreover, a number of sub-
modular, structure-enforcing regularizers can be derived from sparsity-inducing
norms [54]. Among them, the Laplacian-based graph regularizer, which encour-
ages the selected features to be connected on a predefined graph defined by its
adjacency matrix W , is very similar to Ωgrace in Eq. (6). It is given by

ΦLaplacian : S �→
∑

p∈S

∑

q/∈S
Wpq. (9)

The sum of submodular functions is submodular, hence if R is modular and
Φ submodular, solving Eq. (8) becomes a submodular minimization problem and
can be solved in polynomial time. Unfortunately, algorithms to minimize arbitrary
submodular functions are slow (O(m5c + m6) where c is the cost of one function
evaluation [55]). However, faster algorithms exist for specific classes of submodu-
lar functions. In particular, graph cut functions can be minimized much more effi-
ciently in practice with maximum flow approaches [56], a particularity that has
long been exploited in the context of energy minimization in computer vision [57].

This property can be exploited in the specific case of penalized relevance imple-
mented in SConES [10], where R is defined by linear SKAT [58] and Φ by the sum of
a cardinality constraint η|S| and the Laplacian-based regularizer ΦLaplacian defined
above. SConES solves the optimization problem given by Eq. (10):

arg max
S⊆V

∑

p∈S
R({p}) − η|S| − λ

∑

p∈S

∑

q/∈S
Wpq. (10)

In this case, the submodularminimization problemcanbe cast as a graph-cut prob-
lem and solved very efficiently. Figure 1 shows the transformed s/t-graph for which
finding a minimum cut is equivalent to solving Eq. (10). This approach is available
as a Matlab implementation1 as well as part of the sfan Python package2.

1 https://github.com/chagaz/scones.
2 https://github.com/chagaz/sfan.

https://github.com/chagaz/scones
https://github.com/chagaz/sfan
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(if          )
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Fig. 1. This figure, taken from [10], shows a graph for which finding the minimum cut
is equivalent to maximizing the objective function in Eq. (10). cp denotes the relevance
of biomarker p, and Wpq is the weight of the edge connecting biomarker p to biomarker
q in the given network.

Limitations. An important aspect of both regularized regression and penalized
relevance is the parameters (such as λ or η) that control the trade-off between
the different terms and regularizers. While they afford these methods their flexi-
bility, one needs to come up with appropriate ways to set them. This is typically
done in an internal cross-validation setting, in which one explores several pos-
sible values for each of the parameters, and choose those leading to the best
performance according to a given criterion. In biomarker discovery, this crite-
rion can either be the predictivity of the selected biomarkers in a given model,
or their stability [59]. Finding a good balance between both aspects is difficult,
as approaches that either select all or none of the features will have high sta-
bility but poor predictivity – and little interest. In addition, exploring multiple
parameter values increases the computational cost of these approaches.

While SConES is computationally more efficient than the regularized regres-
sion approaches, it also suffers from the limitation of relying on an additive
model, in which the final phenotype is a function of a linear combination of
the individual effects of each biomarker. Biology, however, is highly non-linear,
and we expect the effect of a combination of biomarker to be more accurately
approached by non-linear models. However, such models lead to optimization
problems that are far more computationally expensive to solve.

3.4 Multi-task Extensions

Multi-task setting. The assumption that there are benefits to be gained from
jointly learning on related tasks has long driven the fields of multi-task learning
and multi-task feature selection. This also holds for biomarker discovery [60,61]
For example, in toxicogenomics, where one studies the response of a population
of cell lines to exposure to various chemicals [62], one could try to perform
feature selection for each chemical separately, but jointly selecting features for
all chemicals reduces the features-to-sample ratio of the data. eQTL studies,
which try to identify the SNPs driving the expression level of various genes, also
fall within this setting [63].
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Multi-task regularized linear regression. Many multi-task variants of the lasso
have been proposed [33,64], and can be extended in spirit to various structural
regularizers, such as Grace [65]. Assuming T tasks, each containing nt training
samples, and denoting by βt the m-dimensional vector of regression weights for
task t, the first of these approaches consists in solving the optimization problem
defined by Eq. (11). The penalty term used enforces that the regression weights
are both sparse and smooth across tasks.

arg min
β1,...,βt∈Rm

T∑

t=1

1
nt

nl∑

i=1

(Xiβt − yi)2 + λ
T∑

t=1

||βt||2 . (11)

When a network structure is known over the phenotypes, the graph-fused
Lasso can be used to smooth coefficients across tasks [66]. One could imagine
combining this approach with a graph regularizer over the features. Although
this has not been done with the graph-fused Lasso, the authors of [67] successfully
used Laplacian-based regularizers both on the biomarkers and on the phenotypes
to analyze associations between DNA methylation (about 15, 000 CpG probes)
and gene expression. In related work, the authors of [68] use a Laplacian-based
penalty to discover the structure of the correlation between the traits.

Most of the multi-task approaches that have been proposed for regularized
regression assume that the same features should be selected across all tasks.
Indeed, while the multi-task lasso of [64] allows for different regression weights
for the selected features, it imposes that the same features have non-zero weights
across all tasks. While this is reasonable for some application domains, this
assumption is violated in a number of biomarker discovery settings. For instance,
lung diseases such as asthma and chronic obstructive pulmonary disease may be
linked to a set of common mutations, but there is no indication that the exact same
mutations are causal in both diseases. One way to address this problem is to decom-
pose the regression weights in two components, one that is common to both tasks
and one that is task specific, but this increases the computational complexity and
is not yet amenable to hundreds of thousands of biomarkers [69,70].

Moreover, to the best of our knowledge, none of the multi-task regularized
regression methods that incorporate structured regularizers make it possible to
consider different structural constraints for different tasks. However, we may for
example want to consider different biological pathways for different diseases.

Multi-task penalized relevance. Because of the computational efficiency of graph-
cut implementations, SConES can be extended to the multi-task setting in such
a way as to address these issues. Multi-SConES [65] proposes a multi-task feature
selection coupled with multiple network regularizers to improve feature selection
in each task by combining and solving multiple tasks simultaneously.

The formulation of Multi-SConES is obtained by the addition of a regular-
izer across tasks. Assuming again T tasks, and denoting by � the symmetric
difference between two sets, this formulation is given by Eq. (12).
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arg max
S1,...,ST ⊆V

T∑

t=1

⎛

⎝
∑

p∈St

R({p}) − η|St| − λ
∑

p∈St

∑

q/∈St

Wpq

⎞

⎠ − μ
∑

t<u

|Su � Sv|. (12)

Limitations. The main challenges of current multi-task approaches for biomarker
discoveries are linked to their computational complexity, which grows at best lin-
early with the number of tasks. Allowing different features to be selected across
tasks, imposing different network constraints for different tasks, and leveraging
prior knowledge on the correlation structure between tasks all increase the com-
putational complexity of the model, which currently limits the applicability of
existing methods to a handful of tasks at most.

4 Open Problems

The three main challenges in network-guided biomarker discovery today are:
departing from linear models; guaranteeing stability; and evaluating the statis-
tical significance of the detected modules.

Problem 1. There is no method that incorporates network information
and accounts for non-linear effects between genetic loci. Non-additive
epistatic effects are believed to play an important role in a number of human
diseases, such as breast cancer [71], ovarian cancer [72], hypertension [73], or
type-2 diabetes [74].

A large number of methods, reviewed in [75], have been proposed to perform
exhaustive association tests between pairs of SNPs and a phenotype. A first
step to address the lack of approaches relying on biological networks for the
detection of non-linear interaction effects between SNPs and a phenotype would
be to combine them with the approaches outlined above; the penalized relevance
framework lends itself particularly well to this. However, this is still limited to
interactions between two loci, but more might be at play, and models for higher-
order interactions are required.

Embedded approaches for feature selection are not limited to linear algo-
rithms. Several promising approaches have been proposed in recent years along
those lines, based mostly on random forests [76,77], but also on Bayesian neural
networks [78].

Alternatively, Drouin et al. [79] propose to use set covering machines [80] to
learn conjunctions of disjunctions of short genomic sequences to predict bacterial
resistance to antibiotics. Unlike random-forests-based approaches, this approach
only consider specific types of biomarkers interactions (combinations of logical
ANDs and ORs on their presence/absence), but it also has the potential to
uncover epistatic interactions not detectable with the usual quadratic methods.

However, to the best of our knowledge, no approach exist that allows for
the integration of prior knowledge as networks in these higher-order, non-linear
interaction models, and this would be an exciting research avenue to pursue.
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Problem 2. There is no method to guarantee stable feature selection.
The stability (or robustness) of feature selection procedures, meaning their abil-
ity to retain the same features upon minor perturbations of the data, remains
a major predicament in the high-dimensional, low sample-size setting. Current
algorithms typically yield widely different results for different subsets of the
same set of samples [51]. This high variability implies that they capture idiosyn-
crasies rather than truly relevant features. This casts doubts on the reliability
of predictive algorithms built on the selected features and impedes interpreting
these features to yield novel biological insights. However, this question has only
recently started to come under investigation [81].

Most of the work in that domain has tried to yield lower-dimensional rep-
resentations by grouping features together in meta-features, based either on
the data or on prior knowledge [82,83]. Unfortunately, these groupings, if done
wrongly, can confuse the feature selection procedure even more.

Alternatively, ensemble approaches are based upon the idea of ensemble
learning methods to combine the strengths of multiple weak learners to form
a stronger predictor. Bagging approaches, in which each of the selector is based
on a subsample of the data, have been shown to be consistent in settings in
which the procedure based on the full data was not [84,85].

Finally, variable-reduction approaches have led to schemes which reweight
samples based on their suitability for the estimation of feature importance [86].
However, all these efforts are in their infancy and ranking features based on
t-test scores often still yields the most stable selection in practice [52,53].

Problem 3. There is no method to assess the statistical significance
of the uncovered modules. Very few methods can determine the statistical
significance of the association between multiple biomarkers and a phenotype,
despite it being key to the interpretation of biomarker discovery outcomes. A
recent paper [87] proposes to do this for intervals of the genome. The extension
of this work to network modules, however, is not trivial.

Work on confidence intervals on edge differences between brain imaging net-
works [88] solve a related problem. However, in the case of network-guided bio-
marker discovery, one is interested in evaluating the significance of node (and
not edge) differences, and it is not obvious whether biological networks can be
described with similar models as brain images.

5 Future Outlook

We can hardly hope to understand the biology underlying complex diseases
without considering the molecular interactions that govern entire cells, tissues
or organisms. The approaches we discussed offer a principled way to perform
biomarker discovery in a systems biology framework, by integrating knowledge
accumulated in the form of interaction networks into studies associating genomic
features with a disease or response to treatment. While these methods are still
in their infancy, in strong part because of the statistical and computational
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challenges outlined in Sect. 4, we believe that they can become powerful tools in
the realization of precision medicine.

Future research directions for biomarker discovery include the development of
(1) machine learning approaches for stable, non-linear, multi-task feature selec-
tion; (2) statistical techniques for the evaluation of the significance of the associ-
ation detected by complex models; and (3) the refinement and choice of appropri-
ate network data. While most network-guided biomarker discovery studies make
use of generic gene-gene interaction networks such as STRING or BioGRID,
many other possibilities are starting to open up. They include disease-specific
networks such as ACSN, but we can also imagine using for example eQTL net-
works based on previous studies [89], or three-dimensional chromatin interaction
networks [90]. Methods that integrate these multiple types of networks may be
needed; that the regularized regression or penalized relevance methods we dis-
cussed can all accommodate weighted networks (either directly or through simple
modifications) will facilitate these developments.

Finally, serious progress in the field of biomarker discovery requires proper
validation, at the very least in other data sets pertaining to the same trait,
of the pertinence of the modules identified by these various methods. Because
this requires that modelers convince the owners of such data sets to run exper-
iments to this end, this is often hard to implement outside of large consortium
collaborations, and a major limitation of most of the work cited in this chapter.
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models of phenotypes from whole genome sequences with the Set Covering Machine
(2014). arXiv:1412.1074 [cs, q-bio, stat]

80. Marchand, M., Shawe-Taylor, J.: The set covering machine. J. Mach. Learn. Res.
3, 723–746 (2002)

81. He, Z., Yu, W.: Stable feature selection for biomarker discovery. Comput. Biol.
Chem. 34(4), 215–225 (2010)

82. Ma, S., Huang, J., Moran, M.S.: Identification of genes associated with multiple
cancers via integrative analysis. BMC Genom. 10, 535 (2009)

83. Yu, L., Ding, C., Loscalzo, S.: Stable feature selection via dense feature groups. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 803–811. ACM (2008)
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Abstract. There has been a recent surge in the implementation of elec-
tronic health care records. These patient records contain valuable medical
information including patient demographic data, diagnosis, therapeutic
approach, and patient outcomes. It is important to analyze patterns
within these records in order to more effectively treat individuals. In
this paper, a method is presented for identifying these themes and pat-
terns within patient data. This methodology includes extraction of the
main themes or patterns in the data and linking those themes back to
the corpus from which they were generated. In our research, we parti-
tioned graphs from terms gathered from electronic medical records. We
used two sets of data including eight charts and ten case studies for this
study from primary disease categories. The Electronic Medical Records
(EMRs) and case studies were modeled as networks of interacting terms
where the interactions were captured by their co-occurrences in the doc-
uments. A greedy algorithm was used to find communities with high
modularity. Finally, we compared our method with probabilistic topic
modeling algorithms and evaluated the efficacy of our method by using
recall and precision measures.

Keywords: Electronic medical records · Visualization · Analytics · Pat-
tern recognition

1 Introduction and Motivation

The healthcare industry has recently seen a massive transition of health care
records from predominantly paper based systems to completely automated elec-
tronic medical record systems. This transformation has resulted in more oppor-
tunities for health care practitioners and researchers to extract patient data in an
efficient manner. In order to discover patterns within electronic health records,
data mining techniques are needed to uncover pertinent insights.

Researchers have looked at specific techniques that discover similarities
within the data and discern associations with patient outcomes. Many techniques
have been used to gain insight from clinical data, including interactive visualiza-
tion and data mining systems [1,2]. Although these methods have proven to be
c© Springer International Publishing AG 2016
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of value, they are also limited in their abilities. Typical mining methods are able
to highlight short fragments of frequently occurring patterns [3]. The current
visualization based methods are able to highlight a process from beginning to
end. However, these methods are also limited to a small number of events before
the data becomes so complex that it is virtually impossible to decipher.

Most researchers in the machine learning community focus on automatic
machine learning (aML), with the ultimate goal of bringing humans-out-of-the-
loop However, biomedical data sets are full of uncertainty, incompleteness etc. [4],
they can contain missing data, noisy data, unwanted data, and some problems
in the medical domain are hard, which makes the application of fully automated
approaches difficult. The integration of the knowledge of a domain expert can
at times be indispensable and the interaction of a domain expert with the data
would greatly enhance the knowledge discovery process. Therefore, interactive
machine learning (iML) puts the “human-in-the-loop” to allow what neither a
human nor a computer could do independently. This idea is supported by a
synergistic combination of methodologies of two areas that offer ideal condi-
tions towards solving such problems. A corresponding experimental proof in the
context of visual analytics is provided in [5].

In this paper, we present a novel approach that involves the use of a graph-
based method for analyzing electronic health records. The two major steps in this
process include (a) determination of the main themes or patterns in the data,
and (b) linking these themes back to the corpus from which they were generated.
In our experiments we have used modularity [6] as the quality function, which
strives to measure how well a given partition of a network compartmentalizes
its communities. A partitioned knowledge graph is the input to the second step
in our process for which each partition we create a list of terms that are used to
assign a relevance score for each document.

The rest of the paper is organized as follows: in Sect. 2 we present research
that are related to this paper, in Sect. 3 we describe our methodology, and in
Sect. 4 we present the experimental results followed by our conclusions in Sect. 5.

2 Related Work

The consolidation of health care records from paper records to electronic records
has provided health care practitioners and researchers with the ability to access
health information more efficiently. The surge of large-scale datasets in the health
care industry that contain large amounts of data concerning patients, their dis-
eases, and treatments have provided us with the opportunity to understand the
significant aspects of the disease processes, the efficacy of treatment methods,
and other factors that impact the health of the patient [7]. Patients disease
processes can often evolve into complex and often unpredictable patterns. By
using pattern mining and analysis, researchers can uncover significant insights
into the disease process [3].
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2.1 Temporal Data Mining and Interactive Visualization of Event
Sequences

A common type of study used in this type of research is temporal event analysis.
Temporal properties of these events are analyzed to discover associations with
patients’ eventual outcomes. A variety of techniques have been used to gain
insight from clinical event sequence data such as interactive visualizations [1] and
data mining systems [2]. Recently, the research transitioned to visualizations of
cohorts of patients. This includes a range of tools for querying, visualizing, and
sorting through groups of patient event data [8–10]. The most pertinent of these
techniques includes Outflow, a technique used for visualizing aggregate patient
evolution pattern in terms of symptoms, treatments, or another set of temporal
event types [11–14].

Professionals in the biomedical domain are faced with increasing amounts
of data, which require efficient solutions and the development of methods to
assist them in knowledge discovery to extract, identify, visualize and understand
information from these large amounts of data [4]. The popularity of personalized
medicine has resulted in a mass of data that are characterized by complexity,
which makes manual analysis very inefficient and often virtually impossible [15].
Muller, et al. developed a set of validated glyphs for the interactive exploration
of biomedical data sets [16]. Data glyphs are 3-D objects defined by several
levels of geometric descriptions, combined with a mapping of data attributes to
graphical methods and elements, which define their spatial position.

2.2 Patient Similarity

Patient Similarity approaches have been used in a variety of practice areas rang-
ing from emergency rooms to risk scoring [17]. Orthuber and Sommer developed
a similarity-based search tool for patient records that has been implemented
for decision support [18]. A different approach was used by Wongsuphasawat
and Shneiderman who used visualization techniques to identify similar records
interactively. These techniques can help users identify individual similar records,
which can be used by decision makers. Although these techniques are powerful,
these techniques rely on clusters of similar patients, which are determined by
complex algorithms. Therefore, it can be challenging for doctors to comprehend
the characteristics of patients in cluster. Also, these automatically generated
clusters can often require tweaks by domain experts. Consequently, visualiza-
tion techniques have been designed for these tasks. These range from parallel
coordinates, heat maps, and scatter plots [19–25]. Although these methods are
effective, they do not serve well for large numbers of clusters. Therefore, Gotz
and his researchers implemented an iconic treemap-based visualizations scheme,
which can provide a compact and intuitive representation that scales easily to
large cluster sets [17].
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2.3 Clinical Decision Intelligence

Large databases of EHRs hold significant information about patient populations.
Statistical insights about an overall population are beneficial, however, they are
often not well defined enough to implement individualized patient-centric deci-
sions [17]. Clinical decision intelligence can be implemented by using data analy-
sis algorithms to dynamically identify cohorts of similar patients from within an
institutions EHR database [17]. This type of patient analysis has been shown to
be successful at near-term prognostics for physiological data and risk assessment
[26,27]. To enable interactive cohort refinement by domain experts, a visualiza-
tion technique called DICON was implemented [28]. Using DICON, clinicians
can interactively search for clusters produced by the automated analysis and
assess their quality. Also, DICON lets users manipulate clusters of patients using
drag and drop methods to merge or split groups of patients based on domain
expertise.

2.4 Predictive Models

Machine-learning techniques are data-driven methods that are designed to dis-
cover statistical patterns in high-dimensional, multivariate data sets, like those
that are typically found in electronic health record systems. The detection of
correlations in data provides the pathway for predicting future patient outcomes
from a given scenario [29]. Predictive clinical modeling is a technique that uses
machine-learning methods to create multivariate models from clinical data and
makes inferences on unknown data. Examples of this include the prediction of
breast cancer survival [30] and surgery outcomes [31]. Creating patterns of direc-
tionality in disease progression and comorbidity are the initial steps for using
EMRs for predictive purposes, and this has been analyzed in network analysis
studies of Medicare data [32,33].

3 Methodology

There are two major steps in our methodology: (a) creating the main themes or
patterns in the data, and (b) linking the themes back to the corpus from which
they were generated. We present the themes as undirected graphs referred to
as “knowledge graphs” where the themes are color-coded for easy identification.
The steps in creating the knowledge graphs from the text corpus are shown in
Fig. 2.

In this research we analyzed each patient’s electronic medical record (EMR)
individually. Each EMR can consist of numerous documents where each docu-
ment represents a text segment that can be a sentence, paragraph, or section.
There are pros and cons for selecting short versus long documents. Selecting short
text segments such as sentences as documents typically results in very similar
relevance scores (explained in Sect. 4.2) for each, which is not conducive to gen-
erating the synopsis of an EMR. On the other hand, large text segments may
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impact the ability to narrow down search for specific patterns. In this research
we delimited each document by the “newline” character in the EMR, which was
both easy for automation and appropriate in size.

The pre-processing steps in our methodology include cleaning the text cor-
pus such as removing non-alphanumeric characters, stop-words, punctuations,
redundant spaces, etc., converting all characters to lowercases, and stemming
to ensure that only root words are used instead of different cognate variations.
Next a term-document matrix (TDM) is created where each entry represents
the frequency of occurrence of each term in each document. We have tried using
both term frequency and TF/IDF (term frequency/inverse document frequency)
and the results of the analysis are very similar. We created an adjacency matrix
of terms obtained by multiplying the TDM with its transpose. The TDM is used
to create a graph where the nodes are terms and an edge between any two terms
represents that those terms co-occur in a single document.

3.1 Creating Knowledge Graphs

The typical size of large graphs such as social network services spans in millions
if not billions of nodes. In our research a graph corresponding to each EMR can
span thousands of nodes. Therefore, a large EMR system consisting of thousands
of patents may approach the size of real-world social networks. These scales
require new methods to retrieve information from their structure. A promising
approach involves decomposing a large graph into sub-graphs, such the nodes
within a sub-graph are highly inter-connected. The identification of these sub-
graphs is significant as they can help uncover unknown modules in such graphs.
In addition, the resulting meta-network may be used to visualize the original
structure of the graph. The issue of community calls for the partition of a graph
into densely connected nodes, with sparse connection of nodes from different
communities. In this paper we use modularity as the quality function which
strives to measure how well a given partition of a graph compartmentalizes its
communities (e.g. [34]).

Modularity involves creation of sub-graphs where the nodes are highly inter-
connected and have fewer connections with outside nodes. Modularity provides
precise measure of how to count the total strength of connections within commu-
nities versus those between communities and is a scaled assortativity measure
based on whether the high-strength edges are more or less likely to be adja-
cent to other high-strength edges. Maximizing modularity has been used an the
objective function in finding the community structure in graphs (for example
[34–36]). The problem of modularity maximization is NP-hard [37]. However,
several heuristic solutions exist as good solutions (for example [6,34]). In this
paper we have used graph partitioning in order to maximize the modularity, cre-
ating dense and frequent interactions between the nodes while still separating
them from others.

We have implemented a greedy algorithm for detecting communities with
high modularity [6]. Maximizing the modularity function Q (defined in Eq. 1)
results in identifying sub-graphs in which the number of interactions among
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the nodes are significantly larger than that the expected number of interactions
among nodes in a random graph.

Q =
1

2m

n∑

l=1

∑

i∈Cl,j∈Cl

(Aj − di.dj
m

) (1)

In Eq. (1) di and dj are the degrees of nodes i and j, m is the total number of
edges in the graph, and di.dj/2m is the probability that nodes i and j will be
connected in a random graph. Q represents how different the graph is from such
a random graph for each sub-graphs and adds them up over all sub-graphs. Max-
imizing Q results in the discovery of the maximum number of dense sub-graphs
where the nodes are much more connected with each other than with nodes
outside the sub-graphs. The Greedy algorithm finds high modularity partitions
of large graphs efficiently with a time complexity of O(n2logn), which unfolds a
hierarchical community structure for the graph. This gives us access to different
resolutions of community detection. This algorithm is split in two phases that
are repeated iteratively. First, a different community is assigned to each node
of the graph. Then, for each node i we consider the neighbors of j and i and
evaluate the gain of modularity that would take place by removing i from its
community and by placing it in the community of j. The node i is then placed in
the community for which this gain is maximum but only if the gain is positive.
This process is done repeatedly for all nodes until no further improvement can
be made.

Our findings in this research suggest that the quality of the communities
detected is very good, as was measured by the modularity. This simple algorithm
has several advantages. First, these steps are intuitive and easy to implement.
Also, the algorithm is extremely fast, i.e., computer simulations on large ad-
hoc modular networks suggest that its complexity is linear on sparse data. The
accuracy of this method has been tested on ad-hoc modular networks and is
shown to be excellent as relative to other much slower community detection
methods.

In this research we have analyzed eight EMRs shown in Table 1. However,
for space limitations we illustrate our method using one EMR with anemia as
the primary disease category. The partitioned graph for the EMR with anemia
is shown in Fig. 1, where the sizes of nodes vary from 1 to 5 mm corresponding
to their authority scores [35]. Each partition is shown in a different color in with
partition sizes ranging from 23% to 1% in terms of the number of nodes.

Figure 1 shows the graph corresponding to the EMR for the patient with
anemia at the top and its four largest clusters further partitioned one level below.
The graph at the top level has four large partitions (clusters) color-coded as cyan,
red, yellow, and pink. The cluster with cyan nodes is the densest cluster with
around 200 nodes and 6000 edges. The nodes in this cluster are related to causes
of anemia for the particular patient whose clinical record is being analyzed. From
the EMR, some of the possible causes of anemia in this particular case are cancer
in the gastrointestinal (GI) or genitourinary (GU) tracts.
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Fig. 1. Partitioned knowledge Graphs (Color figure online)

The red cluster has around 300 nodes and 2600 edges and is primarily related
to bleeding. There was blood in the stool and the darkness suggest that its source
might have been in the upper digestive system and hence both Esophagogastro-
duodenoscopy (EGD) and colonoscopy are recommended.

The yellow cluster with around 180 nodes and 2100 edges is related to car-
diovascular diseases and other comorbidities. The patient has a history of coro-
nary artery disease and had a percutaneous transluminal coronary angioplasty
(PTCA) in the past. The patient also has hypertension and is at risk getting
diabetes.

The purple cluster with around 500 nodes and 3700 edges is related to gen-
eral admission information including allergies, specific dietary information, and
problems self-reported by the patient.

3.2 Hierarchical Partitioning

In our methodology one can hierarchically partition the graph which allows
drilling down from high to low level details. As an example, we further parti-
tioned the yellow cluster in Fig. 1 into further sub-clusters shown in Fig. 3, where
the inset shows the parent yellow cluster. This sub-clustering separates the var-
ious comorbidities into different clusters. For example, the new cyan cluster is
related to cardiovascular issues and includes further information such as smoking
and heavy drinking habits of the patient. It also indicates that the patient has
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Fig. 2. Flowchart for Creation of knowledge Graphs

Fig. 3. Hierarchical Partitioning of knowledge Graphs

a high level of cholesterol in the blood. The pink cluster contains information
that the patient had an abdominal aortic aneurysm (AAA). The red cluster is
related to prior procedures such as the PTCA. The blue and the green clusters
are related to hypertension and diabetes respectively.
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3.3 Linking Knowledge Graphs to EMR

A partitioned knowledge graph is the input to the second step (step b) in our
method. In this step we create a list of terms for each partition. These lists
are then used to compute the relevance score of each document in the EMR.
The relevance score is the sum of the number of times each term in a partition
occurs in a document. This is done for each partition over all the documents and
the list of documents with their relevance scores is returned as the output. The
pseudocode of the algorithm for this step is shown in Algorithm 1.

Input: a corpus with p documents;
Input: a partitioned graph with q partitions;
Output: list of documents with relevance scores;
for i ← 1 to p do

for j ← 1 to q do
Create a list of terms in partition j;
Relevance score ← sum of the # of occurrences of each term in
document i;

end

end
Algorithm 1: Link Knowledge Graphs to EMR

Fig. 4. Search results for “neuro”
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3.4 Search Function

In many cases clinicians are interested in finding certain patterns in the data
interactively. Some of these patterns of interest may not be prominent patterns
that will be discovered in a completely unsupervised process as described above.
There are at least two options of incorporating such features: (a) add user input
in the process of knowledge discovery and (b) allow user to interactively retrieve
relevant portions of the corpus. In this paper we describe the second option
where an end user can retrieve documents that contain a certain pattern. We
make use of Algorithm 1 to implement such a search function. As an example
of the search function we ran query with the search pattern “neuro” in the case
study on embolic brain infarction [38]. Our system returned 5 documents of
which 3 are shown in Fig. 4.

4 Experimental Results

4.1 Data

We have used two sets of data in our experiments. The first data set was collected
from patient records at the Baltimore VA Medical Center. Each dataset is a
clinical episode subset of a single patient’s EMR. In our experiments we used
a total of 8 charts for this study from primary disease categories of anemia,
appendicitis, cecal colon cancer, diabetes, lung cancer, chronic renal disease HIV,
and syncope and low blood pressure. The details of the dataset are shown in
Table 1 that shows the main disease category, number of nodes, edges, average
degree per nodes number of connected components, and number of documents
in each EHR.

Table 1. Summary of the EMRs

Disease # nodes # edges Avg. deg/node # CC # docs

Anemia 2294 43662 19 45 5848

Appendicitis 2668 42280 16 56 7785

Colon cancer 2711 46509 17 57 7658

Diabetes 4243 99247 23 53 28559

Lung cancer 2665 40383 15 56 7911

HIV 2397 37263 15 46 4878

Chest pain 2038 37240 18 46 5066

Syncope 1926 27662 14 48 3170

The data shown in Table 1 are obtained from the Clinical Patient Record Sys-
tem (CPRS) which is a front end to the VA’s MUMPS based electronic medical
record, known as VISTA (Veterans Integrated System Technology Architecture).



Knowledge Discovery in Clinical Data 347

Each of these documents was thoroughly reviewed for any patient identifiers or
personal health information. This work was originally funded by IBM for the
project in which we explored the use of the Deep Q and A software developed for
Jeopardy for medical applications after addition of a corpus of additional medical
information such as guidelines and other materials. Each chart was annotated
by a physician for important content and questions were formulated that were
intended as a test of the ability of a computer system to review the information
in the chart and correlate it with additional healthcare “knowledge”. The anno-
tation consisted of a number of questions and corresponding answers related to
the diagnosis and treatment of each patient. We removed the annotations from
the EMRs and used them as test data against which both our method and LDA
were compared as described in Sects. 4.3 and 4.4 below.

The second data set consists of 10 randomly chosen clinical case studies from
the Journal of Medical Case Reports [38–47]. The summary of the case studies
are shown in Table 2. As in Table 1 the primary disease category are shown in
Table 2. As can be seen from Table 2 the graphs corresponding to most of the
case studies have fewer numbers of nodes and number of connected components
as compared to the EMRs. The case studies are, in general, much smaller in
size as compared to the EMRs. Each paragraphs in a case study corresponds
to a document which explains the fewer number of documents. The number of
edges in the case studies are about the same as those of the EMRs and hence
the average number of edges per node is much larger. Also, there are far fewer
number of connected components as compared to the EMRs, which is due to
difference in the writing styles between the case studies and the EMRs.

Table 2. Summary of the Cases

Disease # nodes # edges Avg. deg/node # CC # docs

Brain Infarction 557 43175 78 2 27

Glioblastoma 468 48404 103 2 18

Granulomatosis 739 64571 87 3 29

Hemorrhage 480 43244 90 2 18

Hypothyroidism 566 62014 110 2 23

Breast cancer 424 28190 66 2 22

Postoperative hypertension 324 33312 103 2 10

Cardiac arrest 544 47130 87 3 23

Thoracic spinal fracture 373 27943 75 2 21

Spinal cord injury 607 65351 108 2 23
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Fig. 5. Relevance scores of documents for anemia

4.2 Creating the Synopsis of Clinical Data

The relevance scores of the documents for the patient with Anemia is shown
in Fig. 5 which shows that most of the documents (more than 5000 out of the
5848 documents) had a relevance score of 0 and 17 of these documents had a
score of 10 or above. The document with the highest relevance score was 137
follow by the second most relevant document with a score of 35. The pattern
of a few documents having large relevance scores and the majority of the docu-
ments having low relevant scores with 0 being the most frequent relevance score
was a common feature in all of the EMRs we tested. Since each EMR graph
was partitioned into multiple clusters of varying sizes, each partition had its
own set of the relevant scores for all the documents within each EMR. The
synopsis consisted of the documents with high relevance scores for the largest
partitions for a given EMR. The size of the synopsis can be varied based on
used needs.

The relevant scores corresponding to the documents in the case studies show
a slightly different pattern in that the number of documents with zero or near
zero relevance scores was much smaller than in the EMRs. Having fewer docu-
ments may have affected the relative lack of skewness in the case studies. The
relevance scores for one of the case study on thoracic spinal fracture [46] is shown
in Fig. 6.
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Fig. 6. Relevance scores of documents for thoracic spinal fracture

4.3 Comparison with Topic Models

We have compared our method with probabilistic topic modeling algorithms
[48], well-known for automatically discovering the thematic structures in text
documents. Like our method, topic modeling algorithms do not require any prior
annotation or labeling of the documents. A topic is a probability distribution of
words in the entire corpus. The goal of topic modeling is to discover topics that
are responsible for generating the collection of documents in the corpus. In our
experiments we used the Latent Dirichlet Allocation (LDA) as the topic modeling
algorithm. In LDA a document is treated as the outcome of a generative process
that include hidden variables. The generative process defines a joint probability
distribution over observed and hidden variables, where the observed variables
are the words in the documents, the joint probability distribution is used to
compute the conditional distribution of the hidden variables given the observed
variables. The end product is a list of topics for each document and the most
frequent words within each topic. For our experiments we selected 20 topics
per document and 10 most frequent words in each topic. The “bag-of-words”
approach of LDA is similar to our approach. However, one difference between
our approach and LDA is that LDA is a mixed-membership model where each
term can occur within multiple topics whereas in our approach a term can only
occur in a single partition, which results in a crisp separation of the themes
captured within each partition.
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Fig. 7. Comparison with LDA using EMRs: recall

Fig. 8. Comparison with LDA using EMRs: precision

4.4 Evaluation

In order to evaluate the efficacy of our method, we used the annotations for each
EMR mentioned in Sect. 4.1 as watson, the summary created using our method
as synopsis, and the topics created using LDA as LDA. The measures used for
evaluating synopsis and LDA are recall and precision by comparing the terms in
each against those in watson. Recall and precision are defined as follows.
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Fig. 9. Comparison with LDA using Case Studies: recall

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

In Eqs. 2 and 3, TP refers to the number of common clinical terms with watson,
FP refers to the number of clinical terms that are in synopsis or LDA, depending
on the model that is evaluated but not in watson, and FN is the number of
clinical terms that are in watsonbut not in the model (synopsis or LDA). From
the results shown in Figs. 7 and 8, our method has a significantly higher recall
values and precision values that LDA in all of eight cases. One of the reasons
for the superior performance of our method over LDA is that being a mixed
membership model, there is a significant amount of overlap among the topics in
LDA as opposed to the crisp separation of themes in our method.

A similar comparison was done between our method and LDA using the
case studies in Figs. 9 and 10. In the case studies we used the abstract and
keywords as test cases and the remaining document for creating the themes. The
results are very similar to those with the EMRs in that our method consistently
outperformed LDA. Even though our method consistently outperformed LDA,
the recall and precision measures are still not very high. This is due to the fact
that both our synopsis and the watson summaries are written as natural language
sentences in which the same concept can be written using different phraseology.
Also in our experiments we included complete sentences that included both
clinical and non-clinical terms when calculating recall and precision as there
was no easy way to separate the clinical from non-clinical terms. We applied a
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Fig. 10. Comparison with LDA using Case Studies: precision

penalty function based on an estimate of the ratio of the clinical terms in each
document. However, this was done consistently in both Synopsis and LDA thus
eliminating any systematic bias. The precision scores were expected to be low
particularly for the case studies. This is because the abstracts were written to
highlight the main features of case studies as opposed to being comprehensive
as opposed to our method that aims to discover all themes embedded in the
documents.

5 Conclusion and Future Challenges

The health care industry has seen a massive transition of health care records from
paper records to electronic medical records in the recent years. It is important
to effectively analyze patterns within these records in order to more efficiently
treat individuals. In this paper, the methodology included the creation of the
main themes or patterns in the data and linking the themes back to the corpus
form, from which they were generated. In our research, we partitioned graphs
from terms gathered from electronic medical records. Two sets of data were used
in the experiments. The first data set included patient records from the Balti-
more VA Medical Center. The second data set consisted of ten randomly chosen
clinical case studies form the Journal of Medical Case Reports. In addition, we
compared our method with probabilistic topic modeling algorithms, specifically
LDA. One of the reasons for the superior performance of our method over LDA
is that being a mixed membership model, there is a significant amount of overlap
among the topics in LDA as opposed to the crisp separation of themes in our
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method. Even though our method consistently outperformed LDA, the recall
and precision measures were still not very high. This was due to the fact that
both our synopsis and the Watson summaries are written as natural language
sentences in which the same concept can be written using different phraseology.
Also, our experiments included complete sentences that included both clinical
and non-clinical terms when calculating recall and precision as there was no easy
way to separate the clinical from non-clinical terms.

Although the methods described in this paper provide meaningful results,
there are many areas within healthcare that offer challenging problems with sig-
nificant real world significance. Some of these include automated analysis of clini-
cal charts for pre-screening patients for clinical trials, automatic de-identification
of unstructured clinical data by removing protected health information, health
risk identification for patients from clinical data, and providing clinical decision
support for physicians. With the increasing digitization of heath data big data
analytics can play a pivotal role in maximum utilization of clinical data.
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Abstract. In this paper, we present the current state-of-the-art of deci-
sion making (DM) and machine learning (ML) and bridge the two research
domains to create an integrated approach of complex problem solving
based on human and computational agents. We present a novel classifica-
tion of ML, emphasizing the human-in-the-loop in interactive ML (iML)
and more specific on collaborative interactive ML (ciML), which we under-
stand as a deep integrated version of iML, where humans and algorithms
work hand in hand to solve complex problems. Both humans and com-
puters have specific strengths and weaknesses and integrating humans
into machine learning processes might be a very efficient way for tack-
ling problems. This approach bears immense research potential for various
domains, e.g., in health informatics or in industrial applications. We out-
line open questions and name future challenges that have to be addressed
by the research community to enable the use of collaborative interactive
machine learning for problem solving in a large scale.

Keywords: Decision making · Reasoning · Interactive machine learn-
ing · Collaborative interactive machine learning

1 Introduction and Motivation

Disregarding the application domain, i.e. whether in the medical domain or in
the industrial context, current developments such as the rapidly growing com-
munication infrastructure, the internet of things and increasing processing power
with services and applications on top of those lead to massive amounts of data
and new possibilities. Traditional analytic tools are not well suited to capturing
the full value of “big data”. Instead ML is ideal for exploiting opportunities hid-
den in data. Highly complex small batch production and personalized medicine
(precision medicine [1]) are two of many possible target scenarios. Both depend
c© Springer International Publishing AG 2016
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on computer-intensive data processing prior to its analysis and decision making
processes.

However, to handle and exploit the required data, besides computer algo-
rithms, human capabilities are strongly needed as well. For example, classical
logic in ML approaches permits only exact reasoning, i.e. if A is true then A
is non-false and if B is false then B is non-true. However, even though modern
sophisticated automatic ML approaches can hardly cope with such situations,
human agents can deal with such deficiencies.

Moreover, many ML approaches are based on normative models such as for-
mal probability theory and expected utility (EU) theory. EU theory accounts for
decision under uncertainty and is based on axioms of rational behavior described
by von Neumann and Morgenstern (1944) [2]. Based upon the fact that informa-
tion available in daily problem solving situations is most of the time imperfect,
imprecise and uncertain due to time pressure, disturbance of unknown factors
or randomness outcome of some attributes [3,4], the interaction between human
and computer has to be designed in an optimal way in order to realize the best
possible output. Given that, a combined approach of human and computer input
can be a sustainable approach for effectively revealing structural or temporal
patterns (“knowledge”) and make them accessible for decision making.

At this point, decision theory comes into play and helps us to deal with
bounded rationality and the problem of which questions to pose to human
experts and how to ask those questions. Therefore, new types of human-computer
interaction (HCI) will arise and shape the ecosystem of human, technology and
organization. In particular, adaptive decision support systems that help humans
to solve complex problems and make far-reaching decisions will play a central
role in future work places.

In this paper, we will focus on decision making under uncertainty and bridge
it to ML research and particularly to interactive ML. After discussing the state-
of-the-art in ML and decision making under uncertainty, we provide some prac-
tical aspects for the integration of both approaches. Finally, we discuss some
open questions and outline future research avenues.

2 Glossary and Key Terms

Bias refers to a systematic pattern of deviation from rationality in decision
making processes.

Bounded Rationality – introduced by Herbert A. Simon [5] – is used to denote
the type of rationality that people resort to when the environment in which they
operate is too complex relative to their limited mental abilities [6].

Decision Support Systems (DSS) are intended to assist decision makers in taking
full advantage of available information and are a central part of health informat-
ics [7] and industrial applications [8].

Decision Theory is concerned with goal-directed behaviour in the presence of
options [9]. While normative decision theory focuses on identifying the opti-
mal decision to make, assuming a fully-rational decision maker who is able to
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compute with perfect accuracy, descriptive decision theory deals with questions
pertaining to how people actually behave in given choice situations. Prescriptive
decision theory is the logic consequence and tries to exploit some of the logical
consequences of normative theories and empirical findings of descriptive studies
to make better choices [10].

Expected Utility (EU) Theory consists of four axioms, that define a rational deci-
sion maker: completeness, transitivity, independence, and continuity; if those are
satisfied, then the decision making is considered to be rational and the pref-
erences can be represented by a utility function, i.e. one can assign numbers
(utilities) [2].

Heuristics describe approaches to problem solving and decision making which
are not perfect, but sufficient for reaching immediate goals [11].

Human-Computer Interaction (HCI) is a multi-disciplinary research field that
deals with “the design, implementation and evaluation of interactive systems in
the context of the user’s task and work” [12, p. 4]. It can be located at the
intersection of psychology and cognitive science, ergonomics, computer science
and engineering, business, design, technical writing and other fields [12, p. 4].

Judgment and Decision Making (JDM) is a descriptive field of research which
focuses on understanding decision processes on an individual and group level.

Machine Learning (ML) is a research field grounding in computer science that
“concentrates on induction algorithms and on other algorithms that can be said
to ‘learn’” [13]. While in automatic Machine Learning (aML) representations of
real-world objects and knowledge are automatically generated from data, inter-
active Machine Learning (iML) methods allow humans to interact with com-
puters in some way to generate knowledge and find an optimal solution for a
problem. More specifically, collaborative interactive Machine Learning (ciML)
is a form of iML, where at least one human is integrated into the algorithm
using a specific user interface that allows manipulating the algorithm and its
intermediate steps to find a good solution in a short time.

Perception-Based Classification (PBC) is a classification of data done by humans
based on their visual perception. In the context of ML, PBC has been introduced
by Ankerst et al. [14] who enabled users to interactively create decision trees.
PBC can be seen as one possible way of realizing iML.

Utility Theorem describes that a decision-maker faced with probabilistic (partic-
ularly when probabilities are distorted or unknown) outcomes of different choices
will behave as if she/he is maximizing the expected value [15]; this is the basis
for the expected utility theory.

3 State-of-the-Art

In this section, we will provide an overview of the current research regarding
two fields: First, we will investigate machine learning (ML) and focus especially
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on the advances in interactive machine learning (iML). Second, we will provide
an overview of the research on JDM under uncertainty. We will further focus on
bridging the research on human decision making and the research on iML. We
will motivate, why the knowledge of and research on human decision-making is
key for the development of future human-oriented ciML systems.

3.1 Machine Learning (ML)

ML is a very practical field with many application areas, though at the same
time well grounded theories with many open research challenges exist. There
are many various definitions, depending on whom to ask; a Bayesian will give
a different answer than a Symbolist [16]; a classical definition is close to and
grounding in computer science that “concentrates on induction algorithms and
on other algorithms that can be said to ‘learn’” [13]. This definition is at the same
time the goal of ML which concentrates on the development of “programs that
automatically improve with experience” [17]. Advances in ML have solved many
practical problems, e.g., recognizing speech [18], giving movie recommendations
based on personal references [19] or driving a vehicle autonomously [20].

In the following, we will differentiate between classical ML approaches, that
we will call aML and the newer concepts of iML.

Automatic Machine Learning (aML): Methods and algorithms of machine
learning are often categorized as follows (here the classification of Marsland
[21]):

– With supervised learning methods, an algorithm creates a general model from
a training set of examples containing input and output data (targets). With
this model, the output of new unknown input can be predicted.

– Contrary, when using unsupervised learning methods, the output data are
not provided to the algorithm. The algorithm focuses on finding similarities
between a set of input data and classifies the data into categories.

– Reinforcement learning is somehow between supervised and unsupervised
learning. It characterizes algorithms that receive feedback, in the case that
their created output data are wrong. By this feedback the algorithm can
explore possibilities and iteratively find better models, respectively outputs.

– Finally evolutionary learning methods develop models iteratively by receiving
an assessment of the quality (fitness) of the current model. As the term depicts,
this learning method is inspired by the biological evolution.

The mentioned methods and algorithms all have in common, that they – once
started – run automatically. We therefore call those classical machine learning
methods automatic machine learning. When using aML methods, human involve-
ment is in general very limited and restricted to the following three aspects:

– Humans have to prepare the data and remove corrupt or wrong data sets from
the input data (data cleansing).
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– When using supervised learning methods, humans are responsible for provid-
ing the output data, e.g., for labeling data in classification tasks.

– Another user involvement is the assessment of a certain model and the eval-
uation. Humans can assess the generated model and its results, and decide,
whether a certain model is able to produce good predictions or not.

The traditional approach does not put much emphasize on the human inter-
actions with the ML system. Humans are somehow involved in providing the data
as described above, but the early ML research mostly neglects the question, how
humans can provide data and how they deal with an inaccurate model. From
a practical perspective, this is a huge restriction in automatic machine learning
(aML) systems. The main problems of practical ML applications are often not
the implementation of the algorithm itself, but rather the data acquisition and
cleansing. Often data are corrupt or of bad quality and in most cases data do
not cover all required context information to solve a specific problem [3,4].

Interactive Machine Learning (iML): Compared to aML, iML is a relative
new approach that also considers the human involvement and interactions in
ML and aims at putting the human into the loop of machine learning. In this
section, we will discuss the approaches and concepts that previously have been
described under the term iML. We will distinguish in this section between three
types of iML methods: First, early works in the iML research considered iML
as an alternative way of ML where humans accomplish the model generation,
which basically means that humans replace algorithms. Second, concepts have
been proposed under the term iML that put a human into the training-evaluation
loop, but still execute algorithms automatically. Contrary to aML in this type of
iML algorithms have to be much faster to give rapid feedback to a user. Third,
humans can work hand in hand with algorithms to create a certain model, which
we consider as the most promising concept of iML with the best integration of
users and algorithms.

Humans replacing algorithms: Early work in iML has been done by Ankerst et al.
[14]. They implemented a system called perception-based classification (PBC)
that provides users the means to interactively create decision trees by visual-
izing the training data in a suitable way. By interacting with the visualized
training data, users select attributes and split points to construct the decision
trees. The system cannot automatically generate the tree. Instead, the user of
the system replaces the algorithm and creates the tree manually with the inter-
active application provided. According to their evaluation, the system reaches
the same accuracy as algorithmic classifiers but the human-generated decision
trees have a smaller tree size, which is beneficial in terms of understandability.
Another advantage of the interactive and manual approach is the possibility
of backtracking in case of a suboptimal subtree – a situation that humans can
easily recognize [14]. A huge benefit of this human-centered approach is the inte-
gration of the users’ domain knowledge into the decision tree construction [22].
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Building on the work of Ankerst et al., Ware et al. [23] developed a similar sys-
tem that replaces the algorithm with users. Their work focuses mainly on an
empirical evaluation of the performance of humans compared to state-of-the-art
algorithms. According to their study, novice users can build trees that are as
accurate as the ones provided from algorithms, but similar to Ankerst et al.
they found, that the tree size is decreased, when humans generate the decision
trees. On the other hand, Ware et al. point out that this manual iML approach
might not be suitable for large data sets and high-dimensional data. This early
variant of interactive machine learning is shown in Fig. 1A.

Humans in the training-evaluation loop: Another variety of iML is the integra-
tion of humans into the training-evaluation loop, when using supervised learning
methods. Fails and Olsen [24] were one of the first, who used the term iML and
proposed this integration for the rapid development of models, if the feature
selection cannot be done by domain-experts due to missing knowledge. They
give an example of the use of iML for the rapid development of perceptual user
interfaces (PUIs), that are developed by interaction designers who are usually
not familiar with computer vision (CV) algorithms. For this purpose, they pro-
vide a tool that gives designers rapid visual feedback of the produced classifiers
and the iterative changes of the selected features for the model generation. The
tool masks the complexity of the feature selection and rather allows users to
assess the output of the model generation and to drive the feature selection
into the right direction. A similar concept has been described by Fiebrink et al.
[25]. They developed Wekinator1, a system that analyses human gestures in the
context of music making. A graphical user interface supports users with the cre-
ation of appropriate training data, the configuration of various ML algorithms
and parameters and allows a real-time evaluation of the trained model by giving
visual or auditory feedback. This real-time evaluation allows a domain user to
rapidly adapt the input data to improve the model. Fogarty et al. [26] presented
CueFlik, a similar iML tool for generating models for image classification tasks.
For the mentioned type of iML, it is essential to have algorithms that have a
very short learning time to be able to give rapid feedback on the results [24].
Addressing this particular aspect in connection with big data, Simard et al. [27]
described a system that is very generic in terms of the data types and tasks and
interactive even when using big data. Their system called ICE (interactive clas-
sification and extraction) allows users to interactively build models consisting
of several millions of items. In [28] they extend their approach and addition-
ally deliver feedback about the performance of the generated model to the user.
With this system they empower users to not only optimize the model in terms
of accuracy, but to optimize in terms of performance as well. While the men-
tioned systems use only one model, in recent years model ensembles became the
standard of ML [16]. Talbort et al. therefore provide a tool that deals with mul-
tiple models and allows users to interactively build combination models [29]. All
mentioned publications in this section use the term iML to describe a concept,

1 http://www.wekinator.org/.

http://www.wekinator.org/


Reasoning Under Uncertainty 363

Fig. 1. Classification of interactive machine learning (iML). A: Early iML research
aimed at replacing algorithms and using human pattern recognition capabilities instead.
B: Later iML methods have been proposed that provide a rapid feedback cycle to users.
Models are generated in a very short time and presented to users. Based on the pre-
sented model, users can adapt the input data and rerun the machine learning algorithm.
With this approach the model is iteratively improved. C: Using collaborative interac-
tive machine learning (ciML) humans can manipulate an algorithm during runtime
and improve the model while it is generated. Human and computational agents work
collaboratively on a specific problem.

where humans are in the training-evaluation loop, but cannot interfere with the
algorithm itself – from a human perspective the algorithm is a black-box. The
method of putting humans into the training-evaluation loop is shown in Fig. 1B.

Humans collaborating with algorithms: Sinard et al. define iML as a ML scenario,
where “the teacher can provide [. . . ] information to the machine as the learning
task progresses” [27]. De facto, most systems presented in the past realized this
iML by providing means to users to evaluate a certain model and by changing
the training data to optimize the previously generated model. In this section,
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we present work that goes even one step further and integrates humans into
the process by providing a user interface that allows humans to manipulate the
parameters of the algorithm during its execution. We will call this approach col-
laborative interactive machine learning (ciML). Im this approach, humans can
directly collaborate with an algorithm. With this deep integration, new possi-
bilities of human-computer collaboration in ML might rise. One of the earliest
works, that aimed at the collaboration between human and algorithm in a ML
scenario has been presented by Ankerst et al. [30]. They built up on their earlier
PBC system [14] and provide an iML system for building decision trees for a
classification task. While their earlier PBC system only visualized data and left
the decision tree building to the users, algorithms are now integrated into the
system that might (but does not have to) be used. With the options provided,
different types of cooperation can be realized: manual (equivalent to the earlier
PBC), combined or completely automatic model generation. For the decision
tree construction, the system supports with proposing splits, with visualizing
hypothetical splits – up to a defined number of levels (“look-ahead function”),
and with the feature of automatically expanding subtrees. One mentioned goal of
their work is the use of human pattern recognition capabilities in the interactive
decision tree construction by still using algorithmic operations to allow dealing
with huge data sets [30]. Along these lines, Holzinger defines iML as “algorithms
that can interact with agents and can optimize their learning behavior through
these interactions, where the agents can also be human” [31], consequently, he
considers iML as this deeply integrated type of a collaboration between algo-
rithm and human. He discusses another issue that can be addressed with this
deeply integrated form of iML: Sometimes ML needs to deal with rare events,
like occurrences of rare diseases in health informatics, and consequently adequate
training data are missing. He identifies new application areas for ciML within the
health domain, e.g. for subspace clustering, protein folding, or k-anonymization
of patient data and names challenges for the future ciML research. Holzinger
also shows that the solution of complex problems is possible by using ciML. He
presents the integration of users into an ant colony algorithm to solve a traveling
salesman problem (TSP) [32]. A visualization shows the pheromone tracks of the
ants in the TSP and the optimal round-trip found by the algorithm so far. Users
can select edges and add or remove the current amount of pheromones on the
edge between each of the iterations. First experiments show that the process is
sped up in terms of required iterations to find the optimal solution [32]. The
collaborative variant of interactive machine learning is shown in Fig. 1C. As the
related work regarding the collaboration between humans and algorithms in iML
shows, there has not been done a lot of research investigating the challenges and
opportunities of a human-algorithm interaction. Application areas of this new
iML approach need to be further identified and the implications of a human
agent in the iML system need to be explored. While humans can bring tacit
knowledge and context information into the process of building models, the
question remains unclear how human decisions effect the output of the iML sys-
tem. However, there has been a lot of research regarding human-decision making
that we will introduce in the next section.
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3.2 Judgement and Decision Research

Generally, the main focus of ML is on dealing with uncertainty and making pre-
dictions. In order to infer unknowns, data sets have to be learned and analysed.
Therefore, most ML approaches are based on normative models such as formal
probability theory and EU theory. EU theory accounts for decisions under uncer-
tainty and is based on axioms of rational behavior, codified by von Neumann and
Morgenstern [2]. It states that the overall utility of an option equals the expected
utility, calculated by multiplying the utility and probability of each outcome [33,
p. 24]. Probability theory in ML is most often used in terms of Bayesian decision
theory [34–37], which is build on EU theory as a framework for solving problems
under uncertainty [38, p. 140]. “Individuals who follow these theories are said to
be rational” [39, p. 724].

The successful integration of knowledge of a domain expert in the black-box
as discussed in the iML approach stands or falls with the careful consideration
of people’s actual decision making abilities. It is generally accepted that human
reasoning and decision making abilities can exhibit various shortcomings when
compared with mathematical logic [3]. Hence, the question that arises is, how to
integrate human and computer input, accounting for the imperfections of both
[40, p. 2122]. At this point descriptive decision theory can offer useful insights
for the optimal integration of human judgement in iML approaches.

Descriptive decision theory deals with questions pertaining to how people
behave in given choice situations and what we need to fully predict their behav-
iour in such situations [41, p. 2]. In many cases, this is a difficult task due
to given inconsistencies in people’s choices. These inconsistencies can often be
attributed to irrational behaviour or accidental errors, which can also lead to
deficient decisions [41, p. 6].

Within the last decades, a growing research community within the area of
descriptive decision making is focusing on understanding individual and group
judgement and decision making (JDM) [42,43].2 Researchers from various fields
are actively contributing to JDM, e.g. cognitive psychologists, social psycholo-
gists, statisticians and economists [42,45]. They have developed a detailed pic-
ture of the ways in which individuals judgement is bounded [46], e.g., people
violate the axions of EU theory and do not always follow basic principles of
calculus [47,48]. JDM tasks are characterized by uncertainty and/or by a con-
cern for individual’s preferences and will therefore apply to central aspects of
human activities in iML [38, p. 140]. In detail, JDM research focuses on how
different factors (e.g., information visualization) affect decision quality and how
it can be improved [49,50]. In order to give any predictions about human judge-
ment, JDM usually presupposes a definition of rationality that makes certain
actions measurable. This instrumental view of rationality only accords with nor-
mative theory if keeping in line with it helps to attain satisfaction – measured
in subjective utility [51]. A basic approach of JDM is to compare actual judge-
ments to normative models and look for deviations. These so called biases are

2 See also [44] for the chapter.
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the starting point for building models that explain and predict human decision
making behaviour. A fundamental outcome of early JDM research reveals that
the typical model of a “rational man” as presumed by most normative theories –
considering every possible action, every outcome in every possible state and cal-
culating the choice that would lead to the best outcome – is unrealistic and does
not exist [5]. Instead innumerous studies revealed that people cannot carry out
the complex and time-consuming calculations necessary to determine the ideal
choice out of possible actions [52, p. 7]. Instead people act as “satisficers” and
make decisions on the basis of limited information, cognitive limitations and
the time available. Simon’s concept of bounded rationality describes how people
actually reach a judgement or a decision and has become a widely used model
for human decision behaviour [5].

Building on Simon’s model, Tversky and Kahneman developed their heuris-
tics and biases program that fundamentally shaped our understanding of judg-
ment as we know it today [48]. According to their argumentation, coming to a
decision requires a process of information search. Information can be retrieved
from memory or other external sources. In any case, information has to be pre-
processed for the particular problem and a final conclusion has so be drawn.
Therefore, information processing is key for decision making and limited cog-
nitive abilities, as stated in the model of bounded rationality, might essentially
impact decision quality. The major reason for the huge impact of the heuristics
and biases program in research is, that it is able to explain a wide variety of
different decision situations without restricting it due to motivated irrationality
[52, p. 1].

Tversky and Kahneman assume, that decisions under uncertainty are based
on heuristics rather than complex algorithms [48]. Heuristics are defined as men-
tal short-cuts or rules of thumb and require only limited amount of information
and cognitive abilities. Generally, heuristics achieve results fast and depend on
low effort. To do so, they neglect relevant information, which can lead to system-
atic predictable deviations from rationality. There is a huge amount of evidence
that biases can lead to poor outcomes in important and novel decisions [42,53].
This, together with the fact that biases are systematic, emphasises the impor-
tance of incorporating heuristics in modelling.

In their pioneering work, Tversky and Kahneman described three funda-
mental heuristics [48] which are relevant in countless practical situations. The
representativeness heuristic is applied when people make judgements about the
probability of an unknown event. To come up with a judgement, people tend to
judge the probability of the unknown event by finding a comparable known event
and assume that the probabilities will be similar. For illustration, Tversky and
Kahneman developed the “Linda problem”, where they describe the fictitious
person Linda as “31 years old, single, outspoken, and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of discrimi-
nation and social justice, and also participated in anti-nuclear demonstrations”
[54, p. 297]. Thereupon they asked subjects which is more probable, (a) Linda
being a bank teller or (b) Linda being a bank teller and actively involved in
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feminist movement. Results reveal, that in accordance with their hypothesis, a
vast majority (80–90%) of subjects chose the conjunction (b) to be more likely
than the single event (a). From a logical perspective, a conjunction of events (b)
can never be more likely than any of its constituents (a) and therefore indicates
a violation of rationality. Within the last decades, many different biases have
been linked to the representativeness heuristic (e.g., conjunction fallacy, base
rate neglect, insensitivity to sample size) [42].

The availability heuristic is the second of Tversky and Kahnemans heuristics
and states, that people rely upon knowledge that is easily available and comes
to mind rather than complete data [55]. By relying on the availability of a given
event in someone’s memory, the actual probability of the event can often be
predicted quite good. Nevertheless, sometimes the availability of an event is
influenced by other factors besides the probability or frequency of the occurrence
and in this case the availability heuristic will lead to systematic deviations from
rationality [55]. For example the chronological distance or conciseness are factors
that can influence the availability of an event. The cause of death “firearm”
is estimated as much higher compared to “tobacco”, which can be attributed
to the media coverage of violence [42,56]. Similar to this, subjects who were
asked to estimate “If a random word is taken from an English text, is it more
likely that the word starts with a K, or that K is the third letter?” [55, p.
1125]. Following Tversky and Kahneman’s hypothesis, people easier recall words
beginning with an K and therefore overestimate the number of words that begin
with the letter K. Although experimental results support this hypothesis, a text
typically contains twice as many words which have the letter K at the third,
rather than first letter.

The so-called anchoring and adjustment heuristic describes a widely explored
and robust phenomenon in human decision making [48]. The heuristic can be
very useful when primary values of information do hint to a correct answer and
are relevant to the underlying decision-problem – a situation found in many daily
tasks. The anchor effect – as the central result of the anchoring and adjustment
heuristic – can be found in situations, where a numerical starting point (the
anchor) is processed to form a final estimation. In case the final estimation is
biased towards the initial starting point, one talks about an anchoring effect.
In a well-known demonstration, Tversky and Kahneman asked subjects to esti-
mate the percentage of African countries that are in the United Nations (UN)
[48, p. 1128]. Prior to this, for every subject of the experiment, a random num-
ber between one and one hundred after spinning a wheel of fortune was chosen.
Subjects had to state if the random number is higher or lower compared to
the true value. It was found, that people who had a lower number estimated
fewer countries in the UN than people who had a higher number. Thereupon
numerous experiments validated the robustness of the anchoring effect in vary-
ing fields of application, e.g. general knowledge [57], probability estimates [44,58]
and negotiations [59,60]. Neither financial incentives nor explicit advices could
effectivly mitigate the anchoring effect [61,62]. Moreover, the numerical start-
ing point does not have to be relevant to the underlying decision-problem, even



368 S. Robert et al.

unconsciously perceived or irrelevant values can distort the judgement [61, p.
123]. In general, there are two different approaches to explain the occurrence of
the anchor effect. The original approach of Tversky and Kahneman states that
individuals tend to anchor onto a numerical value and then gradually adjust
away from that value until they reach a decision that seems reasonable [48]. This
anchoring and adjustment process is usually insufficient and therefore biased. In
contrast, the selective accessibility approach argues, that biased estimations are
rooted in an early phase of information processing [57,63,64]. Following the
approach, individuals, when given an anchor, will evaluate the hypothesis that
the anchor is a suitable answer (confirmatory hypothesis testing) and therefore
access all the relevant attributes of the anchor value. Thereon, the approach
assumes that anchoring effects are mediated by the selectively increased acces-
sibility of anchor-consistent knowledge and the final estimate is therefore biased
towards the anchor. Overall, none of the mentioned approaches can fully explain
empirical evidence and the origin of the anchoring effect is still highly debated
within the research community [42,65].

In addition to the three fundamental heuristics and their resulting biases,
there are further heuristics which try to explain decision making under specific
situations. Despite the tremendous success of the heuristics and biases program,
there are alternative approaches to explain actual decision making behaviour. For
example the fast-and-frugal-approach – mostly based on Gigerenzers works – is
also based on several simple heuristics, but in contrast to the classical heuristics,
they are precisely defined and can be directly validated [66,67]. Moreover, the
probabilistic mental model [68] and prospect theory [69] also build on limited
cognitive abilities and are used in different areas to predict decision making
behaviour.

3.3 Practical Aspects for the Integration of Interactive ML
and Decision Theory

The importance of the integration of interactive ML and decision theory is evi-
dent. Given the massive consequences that can result from suboptimal decision
making, it is critical to improve our knowledge about ways to yield better deci-
sion outcomes [46, p. 379]. In our knowledge-based economy, each decision is
likely to have vast implications and will affect subsequent decisions on their
own. Decision problems have to be analysed for their potential receptiveness
to decision biases and in what ways they are likely to benefit from automatic
processing.

On the one side, current technological and methodical advances enable us to
cope with more complex decision tasks. But on the other side, in many practi-
cal situations decision making in terms of the interaction between human and
computer input is still limited and does not tap the full potential. Moreover,
new decision situations in many fields of application are characterized by the
same underlying process and therefore share the common need for new ways of
interaction.



Reasoning Under Uncertainty 369

For example, there are innumerable applications in the field of medical deci-
sion making and cyber-physical systems (e.g. “Industry 4.0”) such as assistance
or recommender systems that are based on the same abstract decision problem,
combine similar approaches of computer algorithms with human input and there-
fore face similar challenges. For instance, the analysis of sensor data is pretty
similar in many practical applications. On the one hand, data may describe
body parameters such as temperature, heartbeat or blood plasma concentration
in a medical context. On the other hand, data may provide information about
the energy consumption of a power unit, the temperature of an engine or the
status of a relay in an industrial context. Although there are many algorithms
that can analyse the captured data in a purely unsupervised fashion, in order
to achieve excellent and instant results, an interactive data analysis backed by
human decision making skills can offer new possibilities and bring context infor-
mation into the process. The same applies to the area of image exploitation. In
many cases, it is about finding structural anomalies in data and learning from
previous examples. With up-to-date methods of image exploitation, algorithms
can detect, count and cluster different types of objects. These algorithms are in
many cases only partially automatic and require human input. In medical image
exploitation, doctors can help to provide diagnostic findings in the segmentation
of skin cancer images [70]. In the industrial context, image exploitation is for
example used to detect tool wear [71]. In both situations, wrong diagnoses and
decisions potentially bear extensive risk and therefore the optimal integration
of human and computer input is of great importance. A big issue is accordingly
the integration process, because exactly here setting up a system between the
expert and the algorithm requires a common ground between them and is crucial
for total imaging. This common ground has to exploit computational power and
integrate human intelligence to realise the best possible output.

4 Open Problems

The study of ML is primarily based on normative models. Most of these models
are the result of centuries of refection and analysis and are widely accepted as
the basis of logical reasoning. For the fact that human decision making skills
are in certain settings superior to computer algorithms – e.g. many ML-methods
perform very badly on extrapolation problems which would be very easy for
humans [32, p. 4] – and major assumptions of normative models cannot be
applied in reality, a conjoint approach of human and machine input could be
key to enhanced decision quality. Therefore, the answer is to put humans in the
loop [40]. However, using normative models to integrate human decision making
in centrals parts of machine learning could lead to faulty predictions since the
nature of actual decision making is of bounded rationality [5].

Based on the described approaches, today we know the specific ways in which
decision makers are likely to be biased and we can describe how people make
decisions with astonishing detail and reliability. In addition, with regards to
normative models, we have a clear vision of how much better decision making
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could be [46]. The most important step now is to integrate those two different
approaches, correct biases and improve decision making. The prescriptions for
such corrections are called prescriptive models [33, p. 19] and will decide about
the success of human-in-the-loop approaches in ML. Altogether, not only do we
need to know the nature of the specific problem, “but normative models must
be understood in terms of their role in looking for biases, understanding these
biases in terms of descriptive models and developing prescriptive models” [72,
p. 20].

In consideration of this fact, interactive ML approaches are a promising can-
didate for further enhancing the knowledge discovery process. One important
problem which we have to face in future research is which questions to pose to
humans and how to ask those questions [40]. At this point, human machine-
interaction could provide useful insights and offer guidelines for the design of
interfaces and visualisations. Moreover, research in this area, i.e. at the intersec-
tion of cognitive science and computational science is fruitful for further improv-
ing ML thus improve performance on a wide range of tasks, including settings
which are difficult for humans to process (e.g., big data and high dimensional
problems) [32]. According to Lee and Holzinger [73], there is a very common
misconception about high dimensionality, i.e. that ML would produce better
outcomes with higher dimensional data. Increasing amounts of input features
can build more accurate predictors as features are key to learning and under-
standing. However, such attempts need high computational power, and due to
limitations in human perception, understanding structures in high dimensional
spaces is practically impossible. Hence, the outcome must be shaped in a form
perceivable for humans, which is a very difficult problem. Here graph-based rep-
resentations in R

2 are very helpful in that respect and open up a lot of future
possibilities [74,75].

5 Future Challenges

The important role of iML for dealing with complexity is evident. However,
future research has to be done in various areas.

First of all, only a few research projects have dealt with ciML. The devel-
opment of new ciML approaches for different algorithms has to be expanded to
be able to develop generic human-algorithm interfaces. Research has to focus on
further algorithms beyond decision trees and ant colony algorithms that could
benefit from the new approach of ciML to analyze its full potential.

Secondly, from the knowledge today it cannot be said, which problems ciML
can address and which problems will not be addressable with ciML. Future
research has to focus on the classification of problems in terms of the different
aML, iML and ciML approaches. For some problems we do know that aML can
provide very efficient algorithms, some problems are known to be unsolvable in
polynomial time, but we currently do not have comprehensive knowledge about
the opportunities of ciML.

Thirdly, the iML algorithms proposed so far address very specific problems.
In general, the questions have been solved, how humans can be integrated into
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the algorithm and understand both the underlying problem and the algorithm
with its parameters. Therefore, the past and ongoing research on HCI will play a
prominent role in the future of iML: It has to be further analyzed, how humans
(not only computer scientists) can be empowered to better understand the spe-
cific ML algorithms. This involves adequate visualization techniques of the input
data, as shown by past research projects as well as visualizations to support the
understandability of complex algorithms. In this respect, new interaction tech-
nologies might come in handy. Large displays [76], room-spanning projections
[77], gesture-based interactions and virtual and augmented reality (VR and AR)
[78,79] are new interaction concepts and technologies that have been applied
successfully in the medical [80] and industrial [81–83] domains and might be
able to play a roll in the interaction with algorithms in the future.

6 Conclusion

In this paper, we presented the current state of research in two domains: JDM
and ML. We presented a new classification of ML emphasizing on iML and –
more specificly – on ciML. We bridged the two research domains and argued
that future research will have to take both research domains into account, when
dealing with highly complex problems. Both humans and computers have their
specific strengths and weaknesses and putting humans into the loop of ML algo-
rithms might be a very efficient way for solving specific problems. We identified
two application areas, which provide complex problems that might benefit from
the new approach of ciML: health informatics and cyber-physical systems. While
these two domains seem to be different on the first sight, their problems often
share the same characteristics: Often exceptional variances in data need to be
found, e.g. a specific diseases based on physiological data in medicine or malfunc-
tions of complex cyber-physical systems based on sensor data of machines. The
classical approach of aML focuses on finding these patterns based on previous
knowledge from data. However, aML struggles on function extrapolation prob-
lems which are trivial for human learners. Consequently, integrating a human-
into-the-loop (e.g., a human kernel [84]) could make use of human cognitive
abilities and will be a promising approach. While we outlined the potential of
ciML there are multiple open questions to be tackled in the research community.
The explorative development of new ciML approaches for different algorithms
will help to analyze the full potential of ciML. Existing complex problems need
to be classified and application areas for the different iML approaches need to
be identified. And last but not least, the questions on how to support humans
ideally when collaborating with algorithms and big data needs to be addressed.
In this area the experts from both ML and HCI will have to work hand in hand in
this new joint research endeavor that will greatly help in future problem solving.
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71. Królczyk, G., Legutko, S., Raos, P.: Cutting wedge wear examination during turn-
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Abstract. Parkinson’s Disease (PD) is a chronic and progressive illness
that affects hundreds of thousands of people worldwide. Although it is
quite easy to identify someone affected by PD when the illness shows
itself (e.g. tremors, slowness of movement and freezing-of-gait), most
works have focused on studying the working mechanism of the disease in
its very early stages. In such cases, drugs can be administered in order
to increase the quality of life of the patients. Since the beginning, it is
well-known that PD patients feature the micrography, which is related to
muscle rigidity and tremors. As such, most exams to detect Parkinson’s
Disease make use of handwritten assessment tools, where the individual
is asked to perform some predefined tasks, such as drawing spirals and
meanders on a template paper. Later, an expert analyses the drawings in
order to classify the progressive of the disease. In this work, we are inter-
ested into aiding physicians in such task by means of machine learning
techniques, which can learn proper information from digitized versions of
the exams, and them recommending a probability of a given individual
being affected by PD depending on its handwritten skills. Particularly,
we are interested in deep learning techniques (i.e. Convolutional Neural
Networks) due to their ability into learning features without human inter-
action. Additionally, we propose to fine-tune hyper-arameters of such
techniques by means of meta-heuristic-based techniques, such as Bat
Algorithm, Firefly Algorithm and Particle Swarm Optimization.

Keywords: Convolutional Neural Networks · Parkinson’s Disease ·
Machine learning · Meta-heuristics

1 Introduction and Motivation

Parkinson’s Disease (PD) is a chronic, progressive and neuron-degenerative ill-
ness that affects people worldwide. Firstly described by James Parkinson [1]
in 1817, PD is often related to the slowness of movement, tremors and mus-
cle stiffness. Other side effects concern changes in speech, writing and the
c© Springer International Publishing AG 2016
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well-known freezing-of-gate. According to the Parkinson’s Disease Foundation,
approximately 60, 000 Americans are diagnosed with PD [2]. The problem gets
worse, since thousands of potential individuals may not be properly diagnosed,
or even remain uncovered by exams or any sort of clinical diagnosis.

Computer-assisted PD diagnosis has been the foremost research in the last
decades, since mathematical models are more appropriate to detect subtle
changes in a number of symptoms related to the disease. As a matter of fact,
the main concern is related to the detection of PD first symptoms, i.e. to detect
the side effects at the very early stages of the disease, where the treatment can
increase the quality of life of a given patient.

Machine learning-driven tools are the most likely approaches to succeed when
dealing with automatic diagnosis of Parkinson’s Disease, since they can be fed
with labeled data for further learning the non-linear mapping between input
data and the real diagnosis (ground-truth) given by the expert. In the last years,
deep learning techniques (DL), a branch of machine learning research field, have
arisen as a powerful tool to help the task of unsupervised feature learning by
means of a series of layers that are in charge of extracting different information
on each [3]. Convolutional Neural Networks (CNNs) [4], Deep Belief Networks
(DBNs) [5], and Deep Boltzmann Machines (DBMs) [6] are among the most used
techniques based on deep learning. Given an input image, DL-based approaches
aim at performing a series of similar tasks in order to obtain a high-dimensional
representation of that input data, which can be further used to feed a supervised
pattern classifier.

Therefore, instead of handcrafting features, deep learning techniques can be
used to learn proper information about the problem without human interven-
tion. However, in health-related applications, we usually do not have sufficient
training samples, where automatic approaches may fail. In such circumstances,
we still need the doctor-in-the-loop [7,8]. Another major drawback related to DL
techniques concerns their parameters, which can reach hundreds of thousands
depending on the complexity of the model. Therefore, the task of finding such
parameters can be model as an optimization problem, where the fitness func-
tion is the classification error over a training/validating set. Particularly, we are
interested in meta-heuristic-based techniques, since they can provide an elegant
solution and easy implementations to a number of distinct problems [9].

This work concerns two main contributions: (i) to use CNNs to learn features
from handwriting exams in order to aid PD diagnosis, and (ii) to use meta-
heuristic-based optimization techniques to fine-tune CNN hyper-parameters. To
the best of our knowledge, some of the techniques used in this paper have never
been used to optimize CNN parameters to date, such as Bat Algorithm [10],
Particle Swarm Optimization [11] and Firefly Algorithm [12]. The reasons for
using such techniques concern their swarm-based behaviour, as well as they are
considered state-of-the-art techniques in the related field.
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1.1 Glossary and Key Terms

Deep learning: a branch of machine learning that aims at studying techniques
that learn features in an unsupervised fashion [3].

Convolutional Neural Networks (CNNs): technique composed of a series of layers
(e.g. convolution and pooling) that aim at learning specific features on each.
Usually, such networks output a high-dimensional feature vector given an input
image, which is used to feed a supervised pattern recognition technique [4].

Optimization: it usually refers to the task of finding the minimum/maximum
value of a function given some input values (decision variables) [9].

Meta-heuristics: techniques used to solve problems (heuristics) in general. They
are often used to handle optimization-oriented problems [9].

Parkinson’s Disease: is a chronic, progressive and neuron-degenerative illness,
which is often related to the slowness of movement, tremors, muscle stiffness,
and the freezing-of-gate [1].

Micrography: usually featured by Parkinson’s Disease patients, it concerns the
decreasing ability in the writing, which may become smaller as the illness pro-
gresses.

Handwritten exam: usually a piece of paper used to assess the handwritten skills
of a given individual. Such exam requires the user to perform some predefined
tasks, such as drawing spirals, circles and meanders to asses its handwritten
skills.

Handwritten trace: drawing done by the patient when performing a handwritten
exam.

Handwritten template: template printed out in the form to be completed by the
patient.

Bat Algorithm (BA): optimization algorithm based on the behavior of bats when
hunting down their preys [10].

Firefly Algorithm (FA): optimization algorithm based on the flashing lighting
mechanism of fireflies, which is used for matting partners [12].

Particle Swarm Optimization (PSO): optimization algorithm based on swarms
of livings beings [11].

2 State-of-the-Art in Computer-Aided Parkinson’s
Disease Diagnosis

Spadotto et al. [13] introduced the Optimum-Path Forest (OPF) [14,15] classifier
to aid the automatic identification of Parkinson’s Disease, and later on the same
group of authors proposed an evolutionary-based approach to select the most
discriminative set of features that help improving PD recognition rates [16].
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The OPF classifier seemed to be a suitable tool, since it is parameterless and
easy-to-manage.

Das [17] presented a comparison of multiple classification methods for the
diagnosis of PD, among them Neural Networks, and Regression and Decision
Trees. Several evaluation methods were employed to calculate the performance
of that classifiers, being the experiments conducted in a dataset composed of a
range of biomedical voice measurements from 31 people, in which 23 diagnosed
with Parkinson’s disease. The best results were obtained by Neural Networks
(around 92.9% of PD recognition rate). In 2014, Weber et al. [18] used a biomet-
ric pen together with Support Vector Machines to learn handwritten dynamics
from PD patients.

In the work conducted by Zhao et al. [19], five patients and seven healthy
individuals were used to recognize Parkinson’s disease by means of the voice
analysis. In order to fulfil this purpose, the individuals’ voice were recorded
using an Isomax EarSet E60P5L microphone, being the recording sessions last-
ing around 25 min each, and a total of 50 pre-recorded prompts consisting of
emotional sentences spoken by a professional actress. Tsanas et al. [20] evaluated
different algorithms based on dysphonia measures aiming at PD recognition. A
total of 132 acoustic features were initially used for further feature selection, and
the authors concluded the dysphonia information together with existing features
end up helping PD recognition. Harel et al. [21] claimed that PD symptoms are
detectable up to five years prior to clinical diagnosis, and symptoms presented
in speech include reduced loudness, increased vocal tremor, and breathiness. In
their work, the authors used a dataset of the National Center for Voice and
Speech, which comprises 263 phonations from 43 subjects (17 females and 26
males, being 10 healthy controls and 33 diagnosed with PD).

Since one of the first manifestation of Parkinson’s Disease is the deterio-
ration of handwriting, the micrography is another information widely used for
the diagnosis of Parkinson’s disease [22]. This technique is considered an objec-
tive measure, since a PD patient possibly features the reduction of calligraphy
size, as well as the hand tremors. Nowadays, this procedure is often conducted
by filling out some specific forms. Rosenblum et al. [23] suggested that writing
exams can be used to distinguish PD patients from healthy individuals. The
authors employed the following methodology to support their assumption: 20
PD patients and 20 control individuals were asked to write their names and
addresses in a piece of paper attached to a digital table. Further, for each stroke,
the mean pressure and velocity were measured in order to compute spatial and
temporal information. The authors presented very good recognition rates, being
97.5 % of the participants classified correctly (100 % of the control individuals,
and 95 % of PD patients). Later on, Drotár et al. [24] claimed that movement
during handwriting of a text consists not only from the on-surface movements of
the hand, but also from the in-air trajectories performed when the hand moves
in the air from one stroke to the next. The authors demonstrated the assessment
of in-air hand movements during sentence handwriting has a higher impact than
the pure evaluation of on surface movements, leading to classification accuracies
of 84 % and 78 %, respectively.
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Recently, Pereira et al. [25] proposed to extract features from writing exams
using visual features learned from drawings the patients were asked to do. The
authors also designed and made available a dataset called “HandPD” with all
images and features extracted from the handwriting exams1. Pasluosta et al.
[26] focused on PD as a representative disease model by evaluating the Internet-
of-Things (IoT) platform in the context of healthcare. The authors considered
the potential of combining wearable technology with the IoT in the health-
care scenario, as well as the engagement of patients in the assessment of symp-
toms, diagnosis, and consecutive treatment options. Zhao et al. [27] also analyzed
E-health support in PD, but now with smart glasses.

Khobragade et al. [28] applied a Large-Memory Storage and Retrieval neural
network for the prediction of onset of tremor in PD patients. The work demon-
strated a fully automated deep brain stimulation system that can be applied
on-demand, i.e. only when it is needed, since the usual treatments apply that
stimulation continuously. Navarro et al. [29] proposed to employ an augmented
reality-based approach that has been widely used in the field of rehabilitation to
aid PD patients. The experiment was tested on 7 PD individuals, and showed
that VR is a simple and suitable tool that should be encouraged to be used in
PD patients.

Geldenhuys et al. [30] presented the use of a novel video-based paradigm
for analyzing the gait of patients with Parkinson’s disease. The idea was to
consider the locomotor kinematics, which is capable of detecting subtle changes
in gait and analyze the results in a gender-specific manner. In their experiments,
a male mice group showed a statistically significant higher propensity towards
gait changes than the female mice, suggesting that gait deficits in female-treated
mice might be subtler.

Kim et al. [31] proposed a novel smartphone-based system using inertial
sensors to detect freezing-of-gate symptoms in an unconstrained way. Several
motions such as ankle, trouser pocket, waist and chest pocket, were evaluate.
Data obtained and pre-processed via discriminative features extracted from
accelerometer and gyroscope motion signals of the smartphone were used to
classify freezing-of-gate episodes from normal walking using AdaBoost.M1 clas-
sifier with sensitivity of 86% at the waist, and 84% and 81% in the trouser
pocket and at the ankle, respectively.

Another contribution of this work is to optimize CNN hyper-parameters by
means of meta-heuristic techniques. As far as we are concerned, only a few
and very recent works have employed such optimization models to fine-tune
hyper-parameters of deep learning techniques [32–37]. Usually, such optimization
models are based on evolutionary/bio-inspired/meta-heuristic techniques, since
they offer easy and elegant solution to a number of problems in the literature.
Roughly speaking, such techniques start placing possible solutions (the so-called
agents) at random positions in the search space. At each iteration, the solutions
move onto the search space according to some specific dynamics (bat’s behaviour
in Bat Algorithm and fireflies in Firefly Algorithm, among others). However, as

1 http://wwwp.fc.unesp.br/∼papa/pub/datasets/Handpd/.

http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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any optimization technique, the main idea is to converge to some global optimum
when it exists. The reader can refer to the work of Holzinger et al. [38] for an
interesting overview of these techniques.

3 Open Problems

The main challenges in computer-assisted Parkinson’s Disease diagnosis include:

– Different data sources
– To detect PD at the very early stages of the disease
– To monitor the patient at home
– To obtain digitized versions of pretty old exams.

Bellow, we briefly discuss some of the most important problems we usually
face when dealing with PD diagnosis.

Problem 1. It is quite difficult to identify the first symptoms of the
disease in its early stages. Pereira et al. [25] showed the handwritten exam
of a healthy individual and an early-stage patient can be the much similar to
each other. Such situation poses a big challenge when using images acquired
from handwritten exams only.

Problem 2. Datasets with different modalities concerning the data
source are rare. As aforementioned, using only images from handwritten exams
may not be enough to accurately identify PD patients at the very early stages
of the disease, since subtle information may not be observed by either humans
and machines. Therefore, complimentary information from sensors can be helpful
to provide a more reliable decision-making model. One example concerns using
“smart pen” to detect the handwritten dynamics, for instance.

Problem 3. To obtain digitized versions of quite old exams. There might
be a number of handwritten exams in the hospitals and clinics that can be of
extreme importance to identify the behaviour of PD patients. However, as stated
by Pereira et al. [25], there is a need for specific protocols concerning the image
acquisition of the exams, their pre-processing and feature extraction.

Problem 4. Technology is not available to everyone. Although in-home
tools are quite efficient to monitor PD patients (e.g. tablets to asses handwritten
skills, on-body sensors to detect freezing of movements and virtual reality), they
are expensive and most of time not available for those who need care.

4 Methodology and Experiments

4.1 HandPD Dataset

The HandPD dataset (see Footnote 1) was collected at the Faculty of Medi-
cine of Botucatu, São Paulo State University, Brazil, being composed of images
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(a) (b)

Fig. 1. Meander samples from: (a) control and (b) PD patient.

(a) (b)

Fig. 2. Spiral samples from: (a) control and (b) PD patient.

extracted from handwriting exams of individuals divided into two groups: (i)
healthy people and (ii) PD patients [25]. The dataset comprises 35 individuals,
being 14 patients (10 males and 4 females) and 21 control (healthy) individuals
(11 males and 10 females). Each person is asked to fill out a form starting from
inward to outward. This activity concerns the analysis of the movement provided
by spirals and meanders drawings, which quantify the normal motor activity in
a healthy individual, as well as the dysfunction of PD patients.

Figures 1 and 2 illustrate some drawing images concerning meanders and
spirals, respectively. One can observe the different patterns between spiral and
meander images, as well as different patterns between the same sketch of healthy
and PD patients.

4.2 Modelling CNN Hyper-parameter Optimization

We propose to model the selection of suitable hyper-parameters as an image
recognition task by means of CNNs. The learning step has three main hyper-
parameters: the base learning rate η, penalty parameter (momentum) α and
weight decay λ. Therefore, we have a three-dimensional search space with three
real-valued variables. Roughly speaking, the proposed approach aims at selecting
the set of CNN hyper-parameters that minimizes the loss function of the images
from the validation set. After that, the selected set of hyper-parameters is thus
applied to classify images from the test set.
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4.3 Experimental Setup

In this work, we classified meanders and spirals images drawn by the control
group and PD patients using a CNN-based approach. Three different meta-
heuristic techniques were employed to fine-tune CNN hyper-parameters: BA,
PSO and FA. Also, to serve as a baseline for comparison purposes, we employed
a standard CNN without optimization2 and a Random Search (RS)3. Also, the
hyper-parameters of each optimization technique were set empirically.

We divided the experiments into two datasets: (i) the meanders and the (ii)
spirals. Both datasets are composed of 264 images (256 × 256 pixels), being 124
PD patients and 140 control group samples. In addition, we employed 30 % of
the dataset for training, 20 % for validation and 50 % for testing purposes. In
order to provide a statistical analysis by means of Wilcoxon signed-rank test [40]
with significance of 0.05, we conducted a cross-validation with 10 runnings. We
employed 15 agents over 25 iterations for convergence considering all techniques.
This configuration leads us to 15 × 25 = 375 evaluations of the fitness function
for each technique. If one decides to use a near-exhaustive search over three
parameters, we could adjust the number of evaluations to be close to 375 for
a fair comparison. In this case, we would be allowed to consider a range of 7
possible values for each hyper-parameter, since 73 = 343. However, the hyper-
parameters are real-valued, and we believe only seven values would not be enough
for a good evaluation of the search space. Table 1 presents the hyper-parameter
configuration for each optimization technique4.

Table 1. Hyper-parameter configuration.

Technique Hyper-parameters

BA fmin = 0, fmax = 2.0 A = 0.5, r = 0.5

PSO c1 = 1.7, c2 = 1.7, w = 0.7

FA γ = 1.0, β0 = 1.0 α = 0.2

In regard to the source-code, we used the well-known Caffe library5 [39],
which is developed under GPGPU (General-Purpose computing on Graphics
Processor Units) platform, thus providing more efficient implementations. Each
meta-heuristic technique was evaluated by the same CNN architecture provided
by Caffe, using 1, 000 training iterations with mini-batches of size 12. We have
set each CNN hyper-parameter according to the following ranges: η ∈ [0, 0.01],
α ∈ [0, 1] and λ ∈ [0, 0.001]. Finally, the best hyper-parameters found by the
meta-heuristic techniques were evaluated again.
2 The CNN hyper-parameters in this case are the default values given by Caffe [39].
3 A random search means an aleatory initialization of hyper-parameters between the

range bounds.
4 Notice these values have been empirically setup.
5 http://caffe.berkeleyvision.org.

http://caffe.berkeleyvision.org
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Regarding the architecture used on this experiment, we used the one pro-
posed by Krizhevsky et al. [41]. Briefly speaking, such CNN is composed of 5
convolution layers, 5 pooling layers and 2 normalization layers. It is also con-
stituted by 7 ReLU layers, 3 inner product layers, 2 dropout layers, 1 accuracy
layer and 1 softmax loss layer for testing purposes.

4.4 Experimental Results

This section aims at presenting the experimental results concerning the CNN-
based Parkinson’s Disease identification, as well as its hyper-parameter fine-
tuning effectiveness. As aforementioned in Sect. 4.3, we compared three distinct
meta-heuristic techniques among with a baseline network without optimization
and a random initialization of hyper-parameters considering both meander and
spiral datasets. Notice the overall accuracy is computed using the standard for-
mulation, i.e., (1− errors

dataset size )∗100. Additionally, we provided the accuracy per
class, i.e. “Control” and “PD”. Tables 2 and 3 present the average results con-
cerning meanders and spirals, respectively, and the best set of hyper-parameters
(average) found by each technique. The most accurate results according to
Wilcoxon signed-rank test are in bold.

Table 2. Average accuracies and best hyper-parameters over the test set considering
meander dataset.

Accuracy (%) Best Hyper-parameters

Overall Control PD η α λ

Standard 78.18% 74.14 % 82.74% 0.001 0.9 0.0005

RS 72.50 % 80.14 % 63.87 % 0.0048 0.4233 0.0005

BA 79.62% 75.43 % 84.35% 0.0008 0.6437 0.0007

FA 69.85 % 93.71% 42.90 % 0.0009 0.3594 0.0003

PSO 75.76% 85.00 % 65.32% 0.0009 0.5144 0.0004

Once can observe FA obtained the best results concerning “Control” (healthy
individuals) class for meander dataset, but it has performed poorly when dealing
with PD patients. This situation has led FA to the worst overall result with
69.85%. Considering the RS, it was also one of the worst techniques, mainly due
its randomness and its lack of exploitation ability. The most accurate techniques
were BA, PSO and the standard set of hyper-parameters defined by the library,
although BA obtained the best recognition rate.

In regard to the spirals (Table 3), BA, PSO and the standard set of hyper-
parameters obtained the best results once again. Nevertheless, RS was able to
almost obtain similar results. In this case, BA and PSO can be considered sim-
ilar to each other concerning the PD class, while standard performed better in
“Control” class. By taking into account both exams, i.e. meanders and spirals,
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the latter are more discriminative and effective to distinguish healthy individ-
uals from PD patients. Since meanders feature straight lines only (Fig. 1), we
believe it is more difficult (for those affected by Parkinson’s Disease) to follow
the complex pattern of spirals when performing the exams.

Table 3. Average accuracies and best hyper-parameters over the test set considering
spiral dataset.

Accuracy (%) Best Hyper-parameters

Overall Control PD η α λ

Standard 89.55% 93.71% 84.84 % 0.001 0.9 0.0005

RS 86.67 % 92.43% 80.16 % 0.0038 0.5343 0.0005

BA 87.20% 84.14 % 90.65% 0.0036 0.3972 0.0008

FA 83.79 % 82.29 % 85.48 % 0.01 0.4522 0.0006

PSO 88.33% 85.00 % 92.10% 0.0026 0.2733 0.0004

In order to provide a deeper experimental section, we executed one extra
round of experiments (10 runnings with randomly generated sets) using the best
set of hyper-parameters found out by each optimization technique (notice the
standard results are the same). Tables 4 and 5 present such results concerning
meanders and spirals, respectively. Since in the previous experiment we used
training and validating sets (30% and 20%, respectively), in this extra round of
experiments we merged them into a single training set.

Table 4. Average accuracies using the best hyper-parameters found over the test set
considering meander dataset.

Accuracy (%) Best Hyper-parameters

Overall Control PD η α λ

Standard 78.18 % 74.14 % 82.74 % 0.001 0.9 0.0005

RS 78.18 % 76.86 % 79.68 % 0.003856 0.472675 0.000388

BA 83.11% 70.43 % 97.42% 0.000143 0.923070 0.000929

FA 74.39 % 81.14% 66.77 % 0.000448 0.387494 0.000079

PSO 77.65 % 84.14% 70.32 % 0.000675 0.729715 0.000884

Considering meander images, BA obtained the best overall accuracy so far,
followed by the standard set of hyper-parameters, RS and PSO. This very good
result was pushed up by the BA best recognition rate over PD class (i.e. 97.42%).
With respect to spirals, standard, BA and PSO obtained similar results concern-
ing the overall recognition rates, tough BA achieved the highest accuracy.
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Table 5. Average accuracies using the best hyper-parameters found over the test set
considering spiral dataset.

Accuracy (%) Best Hyper-parameters

Overall Control PD η α λ

Standard 89.55% 93.71% 84.84 % 0.001 0.9 0.0005

RS 86.97 % 95.29% 77.58 % 0.002717 0.322419 0.000856

BA 90.38% 89.29 % 91.61% 0.001843 0.266447 0.001

FA 83.86 % 80.86 % 87.26% 0.01 0.096975 0.001

PSO 89.62% 86.00 % 93.71% 0.003552 0 0.000210

5 Conclusion and Future Outlook

In this paper, we dealt with the problem of Parkinson’s Disease identification by
means of features learned from handwritten exams. The features were extracted
by Convolutional Neural Networks fine-tuned by meta-heuristic-based optimiza-
tion techniques, which obtained the best results for meanders, tough being sim-
ilar to the standard set of parameters defined by the library with respect to
spiral images (which we believe were hand-tuned). The experiments highlighted
spirals as the most discriminative drawing, since it appears to be more difficult
to perform such exam than meanders, which are composed of straight lines only.

In regard to future works, we intend to combine the results of the different
optimization techniques, since they seem to disagree with respect to both “Con-
trol” and “PD” classes, being probably complementary to each other. Also, we
aim at evaluating other meta-heuristic techniques, such as Cuckoo Search and
Genetic Programming.

Acknowledgments. The authors are grateful to FAPESP grants #2014/16250-9 and
#2015/25739-4, as well as CNPq grant #306166/2014-3.
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Abstract. Recommender systems are a classical example for machine
learning applications, however, they have not yet been used extensively
in health informatics and medical scenarios. We argue that this is due to
the specifics of benchmarking criteria in medical scenarios and the mul-
titude of drastically differing end-user groups and the enormous context-
complexity of the medical domain. Here both risk perceptions towards
data security and privacy as well as trust in safe technical systems play
a central and specific role, particularly in the clinical context. These
aspects dominate acceptance of such systems. By using a Doctor-in-the-
Loop approach some of these difficulties could be mitigated by combining
both human expertise with computer efficiency. We provide a three-part
research framework to access health recommender systems, suggesting to
incorporate domain understanding, evaluation and specific methodology
into the development process.

Keywords: Health recommender systems · Human-computer interac-
tion · Evaluation framework · Uncertainty · Trust · Risk · Privacy

1 Introduction and Motivation

What should I read next? [1] What should I watch next? What product will I find
interesting? These are typical questions that traditional recommender systems
are designed for. Recommender systems help sieve through large amounts of data
in determining options that are most relevant to the task the user has in mind. If
the user is a customer using an online retailing platform, recommender systems
are pervasive. Almost everyone has seen Amazon’s “Other customers have also
c© Springer International Publishing AG 2016
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bought XYZ” suggesting other products that are relevant to the current search
request. Research in recommender systems in e-commerce focus on algorithms,
interaction patterns and evaluation. Typical objects of applications are movies,
music, documents, or products.

While the choices made by customers can be described as being low-risk,
decisions made in other domains may have more severe consequences for the end
user. In particular in the area of health and medicine, the limiting resource is
the (possibly) non-replenish-able health of the patient. The recommender system
should not only avoid failures and support decision making, but it should also
understand the patient, the attitudes, the requirements, the values in the con-
text of disease and health management. This makes the applicability of health
recommender systems more tricky.

First, we must clarify where recommender systems are applied in the health
domain? What are the options to be recommended? Does the system offer ther-
apy suggestions to a doctor or do we supply nutrition-based food recommenda-
tions? Both systems are drastically different, yet share inherently similar risks,
either for the individual, for the society as a whole, or both.

No framework exists that unites the specificity of health related recommender
systems in order to provide both guidance to develop, and metrics to evaluate
a health recommender system. In this article we aim to provide a review of
recommender systems, how they have been applied in health scenarios, and how
we think a framework can help in creating better health recommender systems.

2 Glossary and Key Terms

In order to make this article more understandable for researchers that have no
prior experience in recommender systems. We first provide a glossary and some
key terms that are relevant in this article.

2.1 General Terminology

Patients are typically persons that are in some kind of medical care. In health
recommender systems patients (and in some cases users) must not necessarily be
suffering from an illness. Health recommender systems may largely be applied
as preventive measures, as well.

Machine Learning (ML) addresses the question of how to design algorithms
that improve automatically through experience [2] - the focus is on doing it
automatically (aML) without a human-in-the-loop [3].

interactive Machine Learning (iML) can be defined as learning algorithms that
can interact with both computational agents and human agents and can optimize
their learning behaviour through these interactions [4], by bringing in a human-
in-the-loop [5].
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2.2 Recommender Systems Terminology

Users – People that use the system and receive recommendations. Users also
provide the ratings for items.

Items – The items that are being recommended (e.g. movies, products, hotels,
etc.).

Ratings – Ratings refer to the choices of users in relation to items. Ratings can be
explicit, by e.g. tagging a product, or implicit (e.g. opening a document, buying
a product). Ratings can be Boolean, ordinal or numeric in nature, requiring
different algorithms in implementation.

Content – The data from within the items that can be analyzed for recommenda-
tion. When documents are recommended, typically the content of the document.
In many cases also meta-data.

Task – The reason why a user uses the system (e.g. to find a movie to watch).
Often a set of interdependent tasks are relevant.

Context – The sum of all contextual factors that influence the use and evaluation
of the recommender system and their interactions.

Sparse Matrix – A matrix that contains mostly the value 0. In user-item matrices,
we often have many users and many items and only few ratings for individual
users and items.

Cold start problem – When a new item or new user enters the system, we have
very little information on the user to base recommendations on.

Coverage – Coverage refers to the criterion that addresses, whether all items in
the database are getting recommended [6]. Recommenders that only recommend
the most bought items, reach low coverage.

Serendipty – Serendipity refers to the criterion that addresses, whether recom-
mended items are unexpected to the user. Novel unexpected items — serendip-
itous finds — can be a core benefits of a recommender.

3 Recommender Systems

The purpose of a recommender system is to find items that are relevant to
the user, based on the users previous decisions. Recommender systems use these
decisions and the decisions of other users to establish what may be relevant to the
user. The first “recommender system” can be traced back to the Tapestry system
developed at XEROX Park [7]. The initial idea was the concept of collaborative
filtering. Users would tag interesting items to allow other users to browse these
items by tags. The principles behind collaborative filtering are still being used
in recommender systems [8].

Research then quickly focused on identifying similarities within documents.
This allowed to rely not only on the opaque choices of users but also on the
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content of the recommended items, hence the name content-based filtering [9].
Quickly hybrid approaches appeared, merging both content-based and collabo-
rative filtering [10].

Modern recommender systems often use compositional approaches, combin-
ing multiple recommender algorithms to an overall solution [11]. Techniques from
other fields of computer science also find their way into recommender systems
research. For example, social network analysis is used to augment recommenda-
tions [12] with data from relevant peers. Here, research on trust-based recommen-
dation [13,14] has shown, that recommendations given by trusted peers are more
likely to be helpful than generic algorithmic solutions. Recent approaches have
also used methods like deep learning [15,16] to uncover the non-linear structure
of preference in users.

Overall, we can say that research focuses on algorithms, data sets, evalu-
ation criteria and interfaces for recommender systems. To each of those areas
we provide a short introduction in the following sections. We then see, what of
this work has been applied to health recommender systems, and what still needs
work.

3.1 Algorithms

One typical research area, also the one with the strongest focus, is the underlying
motor of the recommender system – the recommendation algorithm. Several
approaches are used depending on the context of use. This sections aims to give
a quick overview over the field of algorithms in recommender systems. It is by
no-means extensive, but aims to help the reader to understand later parts of this
article where algorithms are used.

Collaborative Filtering relies on the individual ratings of all users. It tries to
identify items that are relevant for the user, or related to other items that have
received positive ratings by the user. For this purpose a user-item matrix is used
(see Fig. 1 on the left). This matrix simply contains the ratings of the users for
all items. When a user has not rated an item, the cell remains empty. Typically
this is a sparse-matrix. Various methods are used to impute the empty cells. This
imputation is a prediction of a rating from a user for a given item. Predictions of
high ratings can be used as recommendations. Some of these methods are given
here:

– Row mean – By utilizing the mean of the row we average the users rating and
return an non-informative rating, matching the users average judgment.

– Column Mean – By using the mean of the column we utilize how users have
rated a particular item on average.

– Combined – We can use both means to adjust the prediction of an item to the
respective users rating behavior.

– Row based cosine similarity - The vector cosine allows comparing the similarity
of two vectors. The cosine is 1 if vectors are the same and 0 if they are
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Fig. 1. Non-negative matrix factorization. By factorizing the user-item-matrix on the
left, we can extract latent commonalities (d) of both users and items and calculate
recommendations faster.

orthogonal. We can use this to find similar users and use their rating as a
means of prediction.

– Column based cosine similarity – This can be used to find similar items and
using them for recommendations immediately.

In order to improve run-time performance and to overcome the sparse-matrix
and a part of the cold-start problem, we can use matrix-factorization to deter-
mine latent commonalities (here d) of both users and items (see Fig. 1). Matrix
factorization has been found to be superior to nearest neighbor procedures and
allows to integrate additional information (implicit feedback, temporal informa-
tion, etc.) [17].

The natural extension of matrix factorization is tensor-decomposition. When
information on ratings contains a third dimension of information (e.g. location-
data, social preferences [18], context [19], etc.), we can encode this information
in additional tensor dimensions. In order to apply similar procedures, we can
no longer rely on matrix factorization, but must use tensor decomposition to
compute recommendations [20].

Depending on the runtime-complexity of calculating latent preferences, dif-
ferent approaches exist, when incorporating new ratings. If complexity is high,
different recommendation techniques can be combined to address users who are
new to the system and thus not adequately represented. This can be done until
the latent preferences have been updated.

Content-Based Filtering uses meta-data or features from individual items
to open the black-box of the non-descriptive “item-id”. In document recommen-
dation typically text-mining methods are used for feature extraction. A typical
text-mining pipeline would include the following steps, and yields a vector-space
model :

1. Term-Document Matrix – Used to store a bag of words model of all docu-
ments.

2. Stop-Word Deletion – Used to remove words that are not predictive (e.g.
“this”)

3. Stemming – Using the stem of a word only (e.g. “walk” instead of “walking”).
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4. N-Gram Detection – Finding words that appear frequently together which
are used as a singular term (e.g. “recommender system”).

5. TF-IDF – Used to weight words in accordance with their relative importance
for the document at hand.

6. Latent-Semantic Indexing – Using singular value decomposition on the term-
document-matrix to incorporate semantic information in the extended vector
space model.

As the end result we have three matrices that can be used to compute similar
documents, based on the semantic similarity of documents. As an alternative
approach we could use Latent-Dirichlet Allocation in order to identify topics in
documents and find documents with similar topic-distributions. These similarity
measures can be used in a similar fashion as in the collaborative filtering. When
the recommended items are not documents, one must consider what are features
of items that are relevant for recommendations (e.g. product features, actors in
movies, etc.).

3.2 Data Sets

In 2006 Netflix1 released a part of their users’ ratings data sets. They proposed
a challenge open for anyone, to train an algorithm to outcompete their imple-
mentation in predicting ratings of the remaining (unpublished) data. The Netflix
price spiked the development in recommender algorithms and yielded Bellkor’s
Pragmatic Chaos algorithm [21]. The algorithms were measured against the root-
mean square error (RMSE) of their predictions with the actual data. Interest-
ingly, this algorithm was never included in the Netflix system. Partly because the
algorithm was optimizing against an irrelevant metric. In 2006, Netflix believed
that by reducing the RMSE, better recommendations could be achieved. But the
RMSE can also be reduced by optimally predicting the ratings of movies, which
in the lowest interest of the users. This might reduce RMSE but helps only little
with good recommendations.

Other data sets exist from bibsonomy (scientific publications), delicious
(bookmarked hyperlinks), flixster, movielens, movietweetings (all on movies),
million songs dataset (music), and ta-feng (grocercy shopping bags from
Belgium). Further data sets are described at the RecSysWiki 2.

3.3 Evaluation of Recommender Systems

As we have seen before, the criterion, against which a recommender system is
evaluated, is critical to its success. Traditionally, recommender system algorithms
were evaluated based on criteria borrowed from information retrieval or signal
detection theory. Typical metrics are [22]:

1 Netflix is an online movie provider.
2 http://www.recsyswiki.com/wiki/Category:Dataset.

http://www.recsyswiki.com/wiki/Category:Dataset
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– Precision – The percentage of relevant items that are correctly recommended
out of all recommended items.

– Recall – The fraction of items that are recommended from all relevant items.
Also called sensitivity.

– F-Measure – The F-Measure is the harmonic mean of both precision and recall.
It combines both measures into a single metric (see also Fig. 2).

– ROC-Curve – The reciever operating characteristic is a plot that visualizes
the change of true positives against false positives depending on the sensitivity
threshold. A sensitivity threshold must be chosen, as typical output of algo-
rithms is mostly never clearly 1 (recommend) or 0 (do not recommend). The
ROC-Curve helps determining optimal thresholds and compare algorithms
against each other independently of the selected threshold.

– RSME – The root-square mean error is a measure that can be used to compare
predictions against real data. By calculating the squared error for all items and
then taking the root of the mean of the squared errors, we receive a value that
penalizes strong deviations and is relatively forgiving to small deviations. This
yields a weighted score which increases, when predictions differ more strongly
from real values, and decreases when predictions become more accurate.

But as the Netflix price showed, that reducing error alone does not help
in creating a better recommender. Ge et al. therefore argued to move beyond
recommendation accuracy [23]. In a recommendation scenario often only the first
k items are viewed by the user. If none of these are relevant, a user might go to
a different website and not buy anything, in an e-commerce setting. This idea
yields the k-top recommendations metrics (i.e. how many of the k-top items does
the algorithm correctly find for all users?). But also measures such as serendipity
(i.e. are items new?) and coverage (i.e. are all items being recommended?) are
important, because users do not want to see their most beloved movies over and
over again.

Fig. 2. Visualization of three metrics in a recommendation example: precision, recall
and F-measure
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3.4 Interfaces and Interactive Recommender Systems

When considering the whole recommender system in real usage scenarios, it
became clearer that not only the algorithm needs to be evaluated [24]. The
interface and HCI of a recommender system are equally important in how a user
interacts with a recommender system.

This led to the design of user-centered evaluation frameworks. Most famous
the work by Knijenburg et al. [25] and Pu et al. [26]. The work of Knijen-
burg et al. suggests that depending on domain knowledge, different types of
interactions are most helpful to the user. Novices and “maximizers” prefer top-
recommendations, while experts prefer hybrid-approaches combining implicit
and explicit preferences.

Pu et al. shifted the focus of evaluation on technology acceptance. The new
criteria were categorized as perceived quality, user believes, user attitudes and
behavioral intentions. Under user perceived quality we summarize the per-
ceived quality of recommendations (e.g. accuracy, familiarity, novelty, etc.), the
interaction adequacy (e.g. adequacy of expression of ratings, explanations, etc.),
and the interface adequacy (e.g. layout adequacy, clarity, etc.). The perceived
quality then influences the users’ beliefs about the recommender system. User
beliefs concern the perceived ease of use, perceived usefulness, and control and
transparency of the system. The users’ attitudes refer to the attitude the user
has in regard to the recommender systems. These encompass attitudes such as
overall satisfaction, confidence and trust in the recommendations. Lastly differ-
ent types of behavioral intentions can be measured on the base of cognitive
and motivational attitudes of users. The user can either be willing to use the
system, buy a product, continue to use the system or even influence his social
circle to use the system.

As the evaluation of recommender systems took a turn to the user, of course
the interface to the recommender became more important. In their review on
interactive recommender systems, He et al. [27] reveal that interactive recom-
mender systems aim at fulfilling the evaluation criteria transparency. By visual-
izing items in non-list based manners, and by showing how a recommendations
come together, the results are more transparent to the users. Some of these
interfaces are designed to foster exploration [1] and serendipity, others to pro-
vide overview and explanations [28].

Although the HCI part of recommender systems has become increasingly
important, it still takes a smaller part in recommender research overall [29].
In particular, aspects such as user-control, affective interfaces and high risk
domains — such as health — have not had a large share of research.

3.5 Health Recommender Systems

Not much previous work on applying recommender system in health informatics
or medicine exists. As of June 5th 2016 only 17 articles are found when searching
for the terms “recommender system health” in web of science. The oldest article
is from 2007 and the most cited article has only 14 citations. Wiesner and Pfeifer
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[30] distinguish between two scenarios: the first scenario targets health profes-
sionals as end-users of health recommender systems. The second scenario targets
patients as end-users. Health professionals can benefit from recommender sys-
tems to retrieve additional information for a certain case, such as related clinical
guidelines or research articles. The second scenario focuses on delivering high
quality, evidence based, health related content to end-users. Most other articles
that we have reviewed target patients as end-users. Objectives include delivering
relevant information to end-users that is trustworthy, as in the work of Wiesner
and Pfeifer [30], lifestyle change recommendations [31] and improving patient
safety [32]. The latter category for instance includes research on how to use rec-
ommender systems to suggest relevant information about interactions between
different drugs, in order to avoid health risks. Lifestyle change recommendations
focus among others on suggesting users how to improve their eating [33,34],
exercising or sleeping behavior.

In their research statement Fernandez-Luque et al. [35] argue, that using
recommender systems for personalized health education does not take advantage
of the increasing amount of educational resources available freely on the web. As
one reason, difficulties in finding and matching content is given.

In a short review on health recommender systems by Sezgin & Ozkan [36]
provided at the EHB 2013, the authors emphasize the increasing importance of
Health Recommender Systems (HRS). The authors argue, that these systems
are complementary tools used to aid decision making processes in all health care
services. These systems show a potential to improve the usability of health care
devices by reducing the information overload generated from medical devices
and software and thus improve their acceptance.

The 2016 ACM Conference on Recommender Systems conference featured a
workshop on engendering health with recommender systems, where many of the
topics from this article were discussed.

4 A Framework for Health Recommender Systems

In order to successfully develop a health recommender system, additional criteria
and procedures must be incorporated to ensure the success of such a system. The
area of health or medical recommender systems faces several challenges that
make it specific and intricate.

First of all, there is no clear task definition for recommender systems in
health. The purpose of a recommender system depends on the item being rec-
ommend. In a health scenarios various items are imaginable. For example, a
rather typical recommender system in a mobile device could recommend physi-
cal activities that match the current user situation to improve their health. An
patient with arthritis and obesity could benefit more from physical activity rec-
ommendations that put no additional strain on already inflamed joints. Going
for a walk will be more pleasurable, if weather conditions are good. Another,
very different example of a health recommender could be a system that pro-
poses different forms of cancer therapies to both a doctor and the patient. The
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Fig. 3. Three steps to consider when developing a health recommender system. These
steps should be incorporated as an extension of typical steps.

system could integrate patient properties such as other illnesses, additional med-
ication, job requirements, and family situation to recommend optimal therapies
and alternatives. It could visualize duration, experience and possible side-effects
of multiple therapies and thus increase the patients control over their situation.
The recommender system could be a communication tool that is used by both
doctor and patient to help make difficult decisions.

In both scenarios the underlying algorithms can be taken from recommender
systems research, but serve drastically different purposes and thus change the
requirements to the recommender system.

In order to help understand the design space of such recommender systems,
we propose the use of three additional design steps (see Fig. 3) when conceiving a
health recommender system. Each step proposes guidance questions or additional
methods and procedures to enrich the contextual picture of the usage scenario.
We propose to extend the traditional recommender system design procedure to
encompass theses additional requirements.

4.1 Understanding the Domain

First, we believe that different questions are necessary in understanding the
application domain. As with any other recommendation domain, we must first
understand what the recommended item is. Possible categories are:

– Food/Nutritional Information – Providing recommendations to optimize nutri-
tion. May be applied to compensate malnutrition, reduce weight or to prevent
certain food-based illnesses [33,34]. Recommendations could be food replace-
ment items [37,38], different meals [39], or additions to a diet. The complex
nature of taste [40] and its temporal and social dependencies [41] have to be
considered.
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– Physical exercise/Sport – Providing recommendations on what physical activi-
ties to perform. May be applied to help in finding activities that are interesting
and motivating and also match the users requirements and needs. A recom-
mender could also include location-data and weather data to find activities
that are optimal for the users context.

– Diagnosis – Providing recommendations on likely diagnoses of a patient to a
doctor or nurse. An approach using this recommendation item can be very
similar to case-based reasoning approaches. By adding recommendations and
linking them to therapy options, further value can be created.

– Therapy/Medication – Providing recommendations about the variety of pos-
sible options that may be applicable. A recommender system could address
either/both patient and professional in finding a patient-specific therapy. The
therapy, as mentioned in the example before, could include various patient
properties and visualize different outcome criteria. Recommender systems
could create personalized-health solely from data-analysis.

The second important question is, who are the users for the domain at hand?
Typically the system is designed for an end-user, who can be either healthy or
already a patient. But health recommender systems may extend their audience
to health professionals such as doctors and nurses. Beyond these obvious new
stakeholders pharmacists, clinicians, researchers and also policy makers could
benefit from health recommender systems. Reducing the cost of health care in
general could be a goal of recommender systems.

The third big part of the domain is the usage context. The context contains
both the multifactorial goal setting, as well as contextual factors that influence
how items are recommended and how they should be presented. By multifactor-
ial goal setting we mean that health goals are not following a singular dimension.
While naively we might think that the “most healthy” option is the one that
should be recommended, different domain-specific criteria play a role in evaluat-
ing an item. For example, what is healthy for one patient could be dangerous for
another (e.g. diuretics and other blood pressure lowering agents are dangerous
for patients with diabetes, gout, etc.). It is necessary to include side-effect reduc-
tion as a goal. Beyond these immediate health-related outcomes, other outcomes
such as costs, applicability (e.g. is the patient able to perform a daily subcuta-
neous injection) or changes in quality of life are important to consider. The
impact of individual goals is also expected to differ strongly between different
diseases. One can easily imagine that the relative importance of different goals
vary drastically from one another for illnesses such as gout, cancer, depression or
allergies. The goals can both be finding alternatives or finding optimal solutions.
Thus the recommender system could very easily become a decision support sys-
tem, depending on the dimensions of the search-space. Some illnesses have very
few effective therapies, while other illnesses may have a multitude of tools that
still only help to alleviate symptoms. In the latter scenarios complex recommen-
dations (i.e. one therapy per symptom) could be the outcome of a recommender.
The overall compatibility with the patients predispositions could be judged as
the quality of a recommendation. It is also important to consider that some



402 A. Calero Valdez et al.

patients may value quality of life over longevity. A cancer patient might refuse
painful therapy in order to enjoy the last few months at home rather than in a
hospital. Optimizing for highest probable health outcome, by comparing efficacy
of different medicines, could be an obvious solution but not necessarily the one
a patient might have chosen in retrospect.

The fourth area of the domain is the availability of data. While typical
areas of recommendations — such as movies — have the benefit of having pub-
licly available data-sets, which can be used to train and test algorithms, data
sets for health recommendations are rare. Some of the problems stem from the
intrinsically more complex nature of health data. Health data is often unstruc-
tured, incomplete, non-standardized and stems from various sources. Large parts
of data are not generated in a computer (as typical recommendations are) but
stem from paper-based health-records that are often digitized afterwards. Addi-
tionally, the type of data may differ. While we have large nutritional databases,
understanding what food stuffs serve as tasteful replacements is not fully under-
stood. Also different brands of similar food stuffs make recommendations harder
to do. IBM Watsons chef for example recommends dishes using IBM Watson
technology. But simply trying to exclude sugar from recipes, requires to exclude
19 different types of sugar.

To make things more complicated health data has inherent privacy issues.
Non-anonymized patient data in the hand of insurance companies, can be in the
disinterest of the patient.

Stakeholders who are relevant besides the user should also be considered.
In cases of health recommenders for food, for example, not only the user is
affected by the system. Food is (most) often consumed in groups, thus individual
preferences of multiple users influence the possibility of choices. Very specific
choices or recommendations (e.g. low-carb, low-fat, sugar-free gluten-free, vegan)
might be contradictory with each other. In such cases it is thinkable, that the
group preference might overturn the recommended solution. Another approach
could be to find group recommendations [41]. In another scenario, the parents
of a child that suffers from diabetes are core stakeholders. Moreover, any family
care givers could also benefit from high quality health recommender systems, as
they might be the ones administering the care.

4.2 Evaluation of Health Recommender Systems

The criteria mentioned in this section should be considered as additions to typical
evaluation criteria of recommender systems (e.g. [26,42,43]).

As with any medical technology it is crucial to measure and benchmark
health recommender systems, particularly in regard to user acceptance [44] and
satisfaction. By tailoring the services or devices to the individual user needs,
demands and requirements, future research issues are uncovered. This includes
user diversity research, not just in regard to user tailored results, but also in
regard to the user interface of a recommender system [45]. Questionable quality
will not be acceptable in a health recommender system.
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To enable benchmarking, more comprehensive quality measures must be
sought, and more specific theoretical and experimental frameworks should
be investigated [43]. The overemphasis of accuracy metrics and under-
representation of metrics such as serendipity and coverage pose a serious problem
in typical recommender systems, but how do they apply to health recommender
systems?

In particular rare diseases are important in this regard. Rare disease are
individually rare, but there a many different rare diseases, making patients with
rare diseases a non-rare phenomenon. Therefore, the question of serendipity and
coverage, i.e. finding “interesting” as well as finding all relevant results, is also
important for health recommender systems.

Algorithms exist to trade-off serendipity and coverage [23] for improved
accuracy, e.g. by recommending items with more data. And since all three of
these measure are important to users in many applications, designing algorithms
in such a fashion may be adequate, but less useful in medical scenarios. Here a
DiL approach could also be helpful by integrating the doctor in the algorithm.
Judgments that are inherently human [46] (e.g. what is interesting?) can be
integrated in the recommendation process, but we will need more comprehen-
sive measures of quality combining accuracy, serendipity and coverage, to allow
algorithm designer to improve trade-offs adjusted to medical scenarios in DiL
settings.

Another very important research issue is trust in recommender systems [13].
This is particularly true for health recommender systems, as they shall be used
to provide end users with more proactive and personalized information relevant
to their health. But, there are still many open research questions considering
trust, privacy and intimacy in the use of medical technology. User diversity
plays a role, with an emphasis on gender and age [44].

This is important in regard to user satisfaction. Herlocker et al. [43] sug-
gest to look deeper into modeling user satisfaction, with the aim of predictive
satisfaction models. In the case of health recommender systems, this prediction
is peculiar, as there are different relevant user groups. Differences in expertise,
overview knowledge, but also tasks must be understood to create recommender
systems suitable to health practitioners, clinical doctors, biomedical researchers,
care givers and patients, alike.

As the outcome of health recommendations are inherently uncertain, com-
munication of this uncertainty is highly important. Finding ways to visualize
uncertainty in a set of recommendations is crucial to allow the user to evalu-
ate the option adequately. This problem is linked to the risk and duration of
the consequence of a choice. Picking a bad movie may cost you 90 min of your
life; picking a bad therapy could reduce quality of life for many years. This
changes how typical evaluation criteria (e.g. k-top recommendations precision)
are judged. One bad option in the first few recommendations could have drastic
outcomes. The designer of a health recommender systems must be careful and
act responsibly in both generating recommendations and communicating them.
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Under the assumption that the user of the system has perfect access to the
desired options, the effectiveness of such a system must still be evaluated in
regard to the users external behavior. Behavioral evaluations must be consid-
ered to measure the effectiveness of a health recommender system. For example,
when giving recommendations about activities to conduct to improve fitness, the
recommender system must track what activities have actually been conducted.
In the case of smoking cessation [47], the system has a harder time to measure
its effectiveness, as users might want to skip reporting that they have smoked
a cigarette because of social desirability. Some health recommenders may also
aim at long term behavioral changes and these must be tracked somehow, too.
The risks of ignoring behavioral changes in long-term evaluations, could lead to
short term recommendations, that are helpful to many users in the short-term,
but conflict with long term goals (e.g. crash diets) [48].

Measuring actual health impact is also important. Even when the users
show long term adherence to recommended health behaviors, the next question
is whether the conducted changes in behavior or therapy lead to the desired
changes in health. We must consider which health parameters to assess and
which medical tests to employ to ensure medical effectiveness. For example,
crash diets may lead to reduced body weight (a superficial health parameter),
but mostly because of reducing body muscle mass. This leads to rebounding
effects because of reduced metabolism. Long-term weight loss is burdened.

Before such an approach can be implemented in real-world medicine, it must
be assured that such systems are sufficiently trustworthy [13]. Publicly accessi-
ble systems such as collaborative recommenders pose a security risk, as normal
end-users cannot be distinguished from potential attackers. Beyond these tech-
nical risks, such attacks may lead to a continuous degradation of trust in the
objectivity and accuracy of such a system. Therefore, a cornerstone of future
research is in modeling such attacks and examine their impact on recommend-
ing algorithms. Hybrid algorithms in a DiL paradigm could provide a higher
degree of robustness to such attacks [49].

Furthermore we must consider ethical considerations of recommender sys-
tems. (e.g. what do we do when health parameters used as an indicator for dis-
ease seem to not correlate with actual disease [50]). The principle of “first do
no harm” should be kept in mind [48]. A recommender system might uninten-
tionally provide health guidance that could — in the hand of a person suffering
from a mental illness — steer a patient in an unhealthy direction (e.g. dieting
tips for anorexic patients).

4.3 Methods to Design Health Recommender Systems

Third we need a framework to help us design a health recommender system in
collaboration with the end-users. The aim in designing a recommender system
for health should always integrate the end users. A framework needs to integrate
tools that bring together the requirements of the domain and the evaluation
criteria for the specific application. These tools should help the designer focus
on the user and put the user-perspective first.
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We think the first tool crucial to success, is the use of participatory design
[51,52]. When health is the end-goal of a recommender system, the user should
get an active say in designing their system. This helps identifying actual user
needs and creates identification with the future system. When users design the
system, the recommender system is not a tool devised by “Big Pharma” to
optimize sales, but can become their personal assistant helping them to over-
come health burdens that are meaningful to them. It may also alleviate privacy
concerns [53]. The challenging part is to extrapolate existing methodology to
allow large-scale co-creation and participation. We need tools that allow users
to customize their own recommender system and to communicate needs more
directly.

In scenarios were users are too remote, or too uninformed to directly co-
create, methods such as design thinking [54] can be employed, to ensure that
users problems are the focus of the system and not some accuracy metric.

The second tool we think is essential to any health recommender system,
is the use of differential privacy [55]. Differential privacy allows the shar-
ing of data without revealing individual identities. Typical methods include
k-anonymity or l-diversity [56], which work by revealing only the amount of data
that can be traced back to a group of at least k people. L-diversity addition-
ally integrates the differences in sensitivity of different data fields. Beyond these
purely IT-based privacy tools, it is necessary to communicate privacy concerns
to the end user. Users are often not aware of privacy risks and behave in manners
that contradict their long-term interests. On the other hand many users openly
agree with sharing private information, even when aware of risks. Finding the
matching trade-off between privacy and utility for the individual user group or
user is crucial to implementing health recommender systems [57]. In this context,
individual factors play a decisive role. As such, the level of knowledge about pri-
vacy threats in the Internet is important [58], but also different risk perceptions,
as well as the level of digital competency [59], which is often related to age and
technology generation [60,61]. Factual (technical) privacy threat is furthermore
not identical with risk perceptions. The perceived benefits from sharing the data
in the medical context is seen different than sharing the data in a less sensitive
field [58,62,63]. In addition, users are much more reluctant to share data in per-
sonal spaces, when data relate to intimacy contexts, such as homes [64] or the
sharing of physiological data [65].

The third tool to incorporate is adequate uncertainty and risk commu-
nication (e.g. risk-ladders, shaded error-bars, etc.) [29,66]. Communication goes
in both directions – to the user and to the recommender. Users should be able
to communicate uncertainty in their input methods, to ensure understanding on
the algorithm’s side [67]. As the end users may also have differing models of risk
and different degrees of understanding statistics and uncertainty, it is crucial to
address all levels of risk-literacy (e.g. absolute or natural frequencies [68]).

Furthermore, effective and efficient visualizations should be used, when
displaying health data. The visualization of data should address the purpose
of the recommender system and regard the end user and their intentions.
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A methodology to ensure this is the Design Study Methodology [69], which has
been shown to be effective even in visual recommender system design [28,70].
Creating a visualization in a recommender fosters the users willingness to explore
options and help explain individual recommendations [71]. The challenge is that
the influence of user diversity has not yet been fully investigated in information
visualization [72]. Since individual differences might play a leveraging role in
personalized health applications it is crucial to strengthen research in this areas.

Lastly, assisting medical professionals in a doctor-in-the-loop (DiL) app-
roach is a new paradigm in information driven medicine [73]. It pictures the
doctor not only as a consumer of digital information, but also as a someone who
can interactively manipulate algorithms and tools. The doctor as a final author-
ity inside the loop of an expert system can make sure that expert knowledge
is integrated in the decision making process, by finding patterns and supplying
tacit knowledge, while the recommender system can integrate patient data as
well as treatment results and possible (side-)effects related to previous decisions.
The DiL-concept can thus be seen as an extension of use of knowledge discov-
ery for the enhancement of medical treatments together with human expertise:
The expert knowledge of the doctor is enriched with additional information and
expert know-how [74–76].

5 Conclusion

Recommender systems are applied in almost all fields of commercial web appli-
cations helping users to find products and services relevant and interesting to
them. They are used to help find interesting information, scientific documents,
and collaborators. But even in these areas further research is required [77]. In
the future, we will hopefully see health recommender systems integrating experts
in the algorithms, thus combining human expertise with computer efficiency to
improve medical care for patients, care giver and doctors, providing better health
for everyone.

The framework that we have suggested (see Fig. 4) in this article is considered
to guide a developer into getting a holistic picture of the constraints that a
medical application gives. A medical application is often judged against all of
these (and many more) criteria, and inadequately addressing one of these aspects
ensures failure of the recommender system and loss of trust in the recommender
systems for health in general.

It is of utmost importance to mention that this framework is not an exten-
sive one. It does not address any aspects of law, policy, and medicine directly.
Developers should take an interdisciplinary approach seriously when designing a
health recommender system. Seek out professionals from these field, when con-
sidering developing a health recommender system. Our framework merely looks
at the challenge from a HCI perspective extending into the areas of communi-
cation, information visualization and technology acceptance.
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Fig. 4. The three parts of our research framework for developing health recommender
systems.

6 Future Work

The future of health recommender systems strongly relies on interdisciplinary
collaboration and collaboration across organizational borders. Recommender
systems have started to flourish when data sets become public and quality met-
rics became available. We hope to see more open data sets for health recom-
mender system that are helpful in designing algorithms, testing user experience
and developing new metrics for the field of health recommender systems. Crucial
in this regard is to respect privacy and anonymity, by some means provided ear-
lier in this article. Next to offline evaluations possible through these data sets,
it is worth noting that online evaluations still play an extensive role in evaluat-
ing a recommender system. User actual reactions might differ drastically from
predictions made from offline data [78].

How different types of user-diversity (e.g. personality) can be used to
improve recommendations has not been fully explored [79]. Even more so for
the field of health recommender systems. As one long-term trend of recom-
mender systems could be their integration as a personal assistant —think Siri or
Cortana— it will become necessary to think about what health assistant users
will want to have [80]. While some users might prefer a purely informative style of
assistance others might want an assistant that is responsible for their decisions.
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Can a recommender system be responsible for its recommendations? Can the
developer be held responsible?

When health recommender systems have been more established, new metrics
can be designed to economize recommendations. Sharing data is a form a giving
monetary value and receiving helpful recommendations has financial value as
well. We think that research should also address this aspect of hidden transac-
tions and develop metrics to measure the price and value of recommenda-
tions not just from a user perspective, but also from a societal perspective. We
are not arguing that users should think of recommendations as a product, but
any viable recommender system will be used commercially and the consequences
will have monetary effects on end users. Understanding the intricacies of how
this aspect influences usage of a recommender system is important and should
be included in the system design. Models from game-theory could be considered
to depict these processes and develop business-models that help foster health
and not a single pharmaceutical manufacturer, for instance.

Beyond this economical considerations, research is needed to evaluate soci-
etal impact. Neither all individual nor all societies can afford the best thera-
pies for themselves. How will health recommender systems address this aspect
of applicability and affordability? Maybe we even reduce effectiveness of a treat-
ment, just by showing therapies that are too expensive for a patient [81]. There-
fore a naive recommender system could —if globally applied— deteriorate overall
health. The authority of the doctor also lies in matching medical needs and finan-
cial possibilities. If recommender systems come into play how does this affect a
society as a whole? Does it affect the trust in medical professionals? Does it raise
distrust in elites?

This also brings up the difference in culture and the applicability of recom-
mender systems. In particular when looking at food or nutritional recommen-
dations it is necessary to incorporate effects of culture and cultural tastes [82].
Beyond this superficial limitations, differences in health perception may play a
deeper role, when building a health recommender system. In particular, the cul-
tural differences in perceptions of gender or ethnicity may play into the design
[83]. Questions that need be raised go in the direction of: How is technology
perceived within different cultures? What is the effect of culture on perceptions
of risk, privacy, and uncertainty? Does culture play a role in determining the
role of individual and group benefit?

Lastly, the area of ethical implications of health recommender systems
must be explored. While we do know some effects of traditional recommender
systems, such as the filter bubble [84], we have not fully figured out the long-
term consequences of these effects. When applying these effects to the area of
health, the risk of overlooking relevant options might be much more costly for
an individual of for society as a whole. But beyond these transferable effects, we
must consider further ethical implications.

When recommender systems for health become effective and help in reduc-
ing health care cost, the question may become disconcerting whether individuals
are still allowed to withhold their data because of privacy concerns. How much
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individual freedom is worth how much global health expenditure. The unwill-
ingness to share medical data might increase the cost of therapy and therefore
prevent funds to be used elsewhere, indirectly costing other people’s health and
lives. When recommender systems can be benchmarked in a fashion that makes
this cost tangible, will they effectively kill privacy? Does revealing the space
of possibilities (and thus the space of impossibilities) help improve health for
everyone or only for a selected few? How will pervasive personalized health rec-
ommendations influence individual psycho-social development and in extension
the Zeitgeist? We, as a society and as researchers, must find ways to decide what
role recommender systems will play in the future — both in health and in other
fields.
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Abstract. The various interplaying variables of tumor growth remain
key questions in cancer research, in particular what makes such a growth
malignant and what are possible therapies to stop the growth and prevent
re-growth. Given the complexity and heterogeneity of the disease, as well
as the steadily growing set of publicly available big data sets, there is
an urgent need for approaches to make sense out of these open data
sets. Machine learning methods for tumor growth profiles and model
validation can be of great help here, particularly, discrete multi-agent
approaches.

In this paper we provide an overview of current machine learning
approaches used for cancer research with the main focus of highlighting
the necessity of in silico tumor growth modeling.

Keywords: Tumor growth · Cancer modeling · Machine learning ·
Computational biology

1 Introduction

Cancer prognosis and prediction is advancing by making use of data that has
been mined and interpreted with the help of machine learning techniques.
Machine Learning (ML) also aids the process of interpreting and understanding
the complexity in big data sets [1].

Johnson et al. describe cancer informatics as hybrid discipline; although, even
with the latest ML advances, there is still a gap to fill in fostering mathematical
modeling and computer simulation of cancer [2].

Modeling tumor growth is a very challenging problem because, besides from
being highly complex, it involves dynamic interactions spanning multiple scales
both in time and space. This involves both continuous and discrete variables that
call for hybrid approaches [3]. Araujo and Mcelwain [4] historically summarize
how mathematical modeling has contributed to elucidating tumor growth.
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1.1 Glossary and Key Terms

In Silico refers to being performed on a computer instead of a wetlab and stands
opposite to in vivo or in vitro [5]. Naturally, integration and interplay of all three
approaches is essential for research advances.

Machine Learning (ML) addresses the question of how to design algorithms that
improve automatically through experience [6]. Besides primary goal of learning
useful models, scalability of these algorithms play an increasingly important role
in the the era of “big data analytics”.

Interactive Machine Learning (iML) defines learning algorithms that can inter-
act with both computational agents and human agents, and can optimize their
learning behavior through these interactions [7], by bringing in a human-in-the-
loop [8].

Agent-Based Modeling (ABM) depicts a computational method for simulating a
system, which is based on individual units, calculated by a given rule-set on a
discrete level [9].

Cellular Potts Modeling (CPM) defines a stochastic process of simulating the
collective behavior of cellular structures [10].

Cellular Automata (CA) are representations for modeling complex systems
dynamics [11–13].

Support Vector Machines (SVM) are supervised learning algorithms to solve
primarily classification and regression problems [14,15].

Electronic Health Records (EHR) are longitudinal electronic records of patient
health information with the ability to generate complete records of clinical
patient encounters [16].

Protein-Protein Interactions (PPI) comprise the concurrence and the effect of
proteins on each other based on surface properties as well as local features [17].
PPIs form the basic concept of biological communication and the specificity in
signal transduction [18–20].

2 Motivation for Applying ML to Cancer Research

There are different entry points for ML to tumor growth research. Within this
paper, we summarize possible approaches to using ML in the field of cancer
research and the various kinds of models of tumor growth in computational or
systems biology.

Cancer research started around 250 years ago [21]. There are several methods
to study the disease, still, basic research comes down with animal experimen-
tation. In vitro cell systems and the comparison of cellular processes help to
understand the complexity of uncontrolled cell growth.
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In silico models complement traditional in vitro and in vivo animal models.
While ML is not new to cancer research the full potential of diverse ML algo-
rithms has not been realized yet. In fact, in silico techniques are often underrated
but can be vital to fundamental questions to beat cancer [22]. Knowledge discov-
ery with ML outperforms bio assays [23] and image analysis could outperform
human [24]. The principles of the 3Rs - replacement, reduction and refinement -
can be used for the reduction of animal research, saving resources as well as
reducing costs spent on clinical and wet-lab experiments in cancer research. In
this regard, computerized experiments, meeting the terms of 3R, offer new pos-
sibilities for biomedical research. In silico suits the task of refinement as well
as knowledge discovery. Recently, we presented an in silico approach for tumor
growth simulation that holds the advantage of data visualization over multiple
implementation possibilities [25,26]. It is clear that ML techniques will give new
insights into tumor growth modeling. Thereby, the goal is to increase the basic
understanding of tumor progression as well as the onset of cancer.

3 In Silico Modeling of Cancer

In silico models involve various disciplines of mathematics, biology, medical
and computer science. The underlying data is computationally processed from
biomedical literature sources, based on wet-lab and clinical investigations, and
extended or refined through hypothesises and theoretical characterizations [22].

There are different kinds of models in biology, such as spatial ones, space free
ones but also cell descriptive models based on density, cell-based, sub-cellular
or molecular, relating to their scale of phenomenon, and so far, various models
for cancer have been described [10,27]. Models can also be differentiated by
their biological scale, ranging from the cellular and molecular level up to the
genetic macro scale. On the other hand, there are also diverse computational
modeling approaches, such as statistical, network-based as well as models on
tissue-level. Regarding the cell-cell interactions there are discrete/agent-based
to continuum-based modeling approaches. This leads us to the term agent that
is shortly discussed in the next paragraph.

3.1 Agents in Modeling and ML

Agents play an important role both in Agent-based modeling (ABM) as well as
in Machine Learning (ML). As described by Russell et al., “an agent is anything
that can be viewed as perceiving its environment through sensors and acting
upon that environment through effectors” [28]. According to [29] ABM is used
to model phenomena as dynamical systems of interacting agents. Thereby, agents
individually assess a situation and make decisions on the basis of a set of rules
[30]. So far, agents can be robot or human [7].

New agent-based models of tumor growth have been developed to foster the
understanding of cancer, while agents can be used to model different parts of
tumor growth to understand peculiarities such as factors that influence a tumor



418 F. Jeanquartier et al.

becoming malignant etc. [9,25,31]. Followingly, we shortly describe aspects of
tumor growth for ABM.

Tumor growth kinetics follow simple laws that can be mathematically mod-
eled [32]. Among them, the Gompertz law describes growth following a contin-
uous deceleration [33–35].

Cellular Potts Model (CPM) is an agent-based modeling approach that has
been introduced and described by Graner and Glazier [36]. It is used to simulate
the collective behavior of cellular structures and has been used in a wide range
of applications, among them, tumor dynamics [10].

Spatial & temporal scales are key descriptors in ABM in general and in mod-
eling tumor growth in particular [10,25,32]. Regarding the description of spatial
aspects, different topologies are used in ABM, such as spatial grids. Grids have
been implemented as CA, i.e. Conway’s Game of Life [37]. We [25] use also
the term lattice as a group (not partially ordered set) to describe the topology
and therefore the connectedness of several cellular bricks. The agent’s neigh-
borhood is described by an agent only interacting with its neighbors located
close-by. However, agents may also interact with their environment, therefore
environmental parameters can be taken into account. Regarding the temporal
aspects, ABM follows discrete event cues, in particular a sequential schedule of
interactions, computed by Monte Carlo steps (MCS).

Cellular Automata (CA) is a concept introduced by Stanislaw Ulam and John
von Neumann in 1940s [11–13]. A typical CA includes a spatial lattice comprising
units, called cells, where each cell can reside in one of finite number of pre-defined
states. State of each cell in the lattice is updated according to the transition rules,
so that the state of the cell in the given time depends on its own previous state
and on the previous state if its close neighbors. The overall state of the entire
lattice is evolving in discrete times steps, either synchronously, when all cells
are updated at once, or asynchronously, when single randomly selected cell is
updated in each time step. The Concept of CA was later popularized by Stephen
Wolfram, who showed that even simple transition rules allow CA to exhibit
variety of complex behaviors including phenomena of “self-organization” [38].
CA have been then extensively utilized in model dynamics of complex systems
across diverse fields, including cancer biology. CA have been successfully adopted
to realistically model tumor growth [39–46], as well as angiogenesis [47–49] and
immune evasion [50,51].

Transition rules governing the behavior of the automaton, are sometimes for-
mulated directly according to the available experimental knowledge [39,44,48],
but more often are subject of inference using numerical optimization with respect
to desired macroscopic qualities, e.g., transient dynamics of the tumor growth,
or its geometric properties [42,46]. Alternatively, transition rules and associ-
ated quantitative parameters are varied in order to reveal association between
microscopic properties of the single cell and macroscopic properties of the
tumor [40,41].

Ideally, a model gives emergence to phenomena that could not be a priori
deduced, and can be tested against experimental data.
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ABM is not inductive, that means models are not based on a set of data and
do not make inferences that lead to that data, but rather describe a system’s
mechanisms of rules and seek to reconstruct observations. This leads to ML, that
is suitable to find patterns in existing data as well as can be used for validation,
to extend in silico modeling tools.

4 ML Applications Areas in Cancer Research

ML approaches for cancer research have been reviewed before [1,52–56]. These
reviews deal both with biological questions as well as on algorithmic details.
While most ML reviews in this domain cover genomic studies and image based
analysis, some also tackle the question how to support the understanding of
tumor kinetics in particular. But there is a clear lack of new results in this area.
An advanced search within EuropePMC with the query:

(TITLE : “cancer” AND “machine learning”) AND (OPEN ACCESS : y)
yielded 671 results.

The search query: (KW : “machine learning” AND KW : “cancer”) AND
(OPEN ACCESS : y) delivered only 41 results.

Regarding the term “tumor growth” there are hardly any works. The query:
(TITLE : “tumor growth”) AND (KW : “machine learning”) even resulted in no
results at all.

This work is not aimed at providing a comprehensive list of all studies that
can be found on machine learning methods related to tumor growth research,
even, if there are hardly any found. It is rather thought to provide a practi-
cal overview of pointers to machine learning methods applied to tumor growth
modeling research with identifying challenges and opportunities.

In order to understand the different possibilities of applying ML techniques
to cancer research, we first differentiate between specific application areas and
later continue on describing research on tumor growth in particular. An overview
of ML applications in cancer research is presented in Fig. 1.

Most reviews on ML for cancer focus on discussing existing cancer research
that applies ML methods for predicting susceptibility, recurrence and survival
[1,53]. Next to prediction, ML methods are applied to identification and diagno-
sis [57]. A classification of ML application areas in bioinformatics shows partially
overlapping areas of genomics, proteomics and metabolomics but also evolution-
ary developmental biology, text mining, systems biology other advanced model-
ing applications [58]. Computational prediction approaches based on computer
algorithms, allow for multivariate analysis in cancer diagnosis and comprise sev-
eral methods such as linear or penalized discriminant analyses, logistic regres-
sion, learning vector quantization, decision trees, random forest, support vector
machines, Bayesian networks and artificial neural networks [59,60]. These com-
putational approaches overcome the lack of sensitivity and selectivity that, still,
are often found in conventional methods based on univariate factors such as sin-
gle biomarkers [60]. To evaluate prediction accuracy of these models the data is
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OMICS

Proteomics

● classification of metastasis,

● identification of signaling cascades, 

● identification of cancer biomarkers,

● identification of drug response

● identification of drug treatment,

● prediction of drug response,

● identification of patient subgroups,

● identification of metabolic alterations, 

● identification of stages, 

● validation of groups, 

● validation of mutations, 

● validation of tumor growth models

Metabolomics

Genomics

● classification of cancer subtypes, 

● validation of gene-interactions,

● identification of gene-interactions

● identification of cancer-driving CNAs,

● prediction of patient survival,

● prediction of drug response

EHR

● identification of phenotype features

● prediction of drug response,

● prediction of survival

Data For Tumor Phenotyping

IMAGING

● classification of tumors, 

● prediction of growth,

● evaluation of biomarkers

 

Fig. 1. Overview of ML approaches in cancer research regarding data type

randomly separated into training-, validation-, and test-sets. However, this gold
standard method is solely feasible for large data sets. Cross-validation, a simple
and commonly applied approach, splits data into subsets, while each subset is
left out once for testing, the model is trained on the remaining data. Independent
of univariate or multivariate methodology, permutation-based evaluation is rec-
ommended to assess the superiority of the model compared to a model trained
on a randomized outcome variable [61].

ML approaches for cancer research can also be organized according to their
algorithmic approach as well as the type of data used, ranging from imaging,
genomics up to pathologic and demographic [53]. We next list works sorted by
data approach to provide pointers for using ML on open cancer data [26].
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4.1 Processing Imaging Data

ML can be used to detect and classify tumors in medical images [53]. For exam-
ple, Morris et al. model glioma tumor growth using magnetic resonance (MR)
scans for learning the parameters of a diffusion model [62]. Thereby they use
patient data and preprocessing of images such as noise reduction and segmenta-
tion for feature extraction and consecutively prediction of glioma growth through
classification and diffusion.

HealthAgents is another interesting project implementing a multi-agent sys-
tem (MAS) for classifying brain tumors by applying pattern recognition methods
on MR images [63].

Moreover, ML methods have been used for the evaluation of different
radiomic features for predicting survivability [64]. Results highlight the several
features’ utility as radiomic biomarkers [64].

Cancer imaging, in particular image analysis of MR scans, already provides
many possibilities for biomarkers [55]. But, images not only allow for measure-
ments of the dynamics of shape and size. Fluorescence microscopy is also used to
monitor small parts of cells [65]. Understanding complex diseases also requires
identifying interactions among different components which leads us to the world
of “Omics”. Processing additional data such as combing picture archives with
genomic profiles and even more, with electronic health records (EHR), brings us
one step closer towards personalized medicine. Next, we summarize main con-
cepts in Omics data and further proceed with examples in processing electronic
healthcare records and hybrid data approaches:

4.2 Processing Omics Data

The molecular etiology of cancer is not well understood. Although numerous
molecular cancer biomarkers have been identified, they are often ineffective for
tasks such as cancer diagnosis, classification of cancer subtypes, prediction of
cancer recurrence, or prediction of response to treatment [66]. One of the most
promising strategies for addressing these problems is analysis of molecular net-
works, combined with machine learning and graph theory algorithms. These
approaches lead to better predictions across diverse samples, and identify mole-
cular mechanisms underlying cancer [67].

Protein-Protein Interaction (PPI) networks were the first type of molecu-
lar network used for identifying cancer biomarkers. Chuang et al. [68] identified
PPI subnetworks that could serve as biomarkers for classifying breast cancer
metastasis. Their approach combined PPI data with gene expression data from
patients with and without breast cancer metastasis. The approach searched for
protein subnetworks whose corresponding gene expression levels could distin-
guish metastatic and non-metastatic patients. The average expression of all genes
in a subnetwork was used as a biomarker, unlike previous approaches, where bio-
markers were individual molecules. The identified subnetworks had significant
associations with hallmarks of cancer, and indicated novel relationships between



422 F. Jeanquartier et al.

signaling cascades (functional networks or pathways) and tumor progression.
Furthermore, subnetwork biomarkers outperformed single-gene biomarkers in
two important aspects: reproducibility across data sets and classification perfor-
mance. Reproducibility considers whether the same biomarkers can be identified
using different data sets: subnetwork biomarkers from different expression data
sets overlapped by 12.7 %, whereas single-gene biomarkers overlapped by only
1.3 %. Classification performance - the ability of biomarkers to predict metastatic
status - was assessed by using biomarkers as inputs to classifiers (logistic regres-
sion and support vector machines), that were tested through cross-validation.
Subnetwork biomarkers significantly outperformed sets of single-gene biomark-
ers with all classifiers and data sets tested. Subsequent studies used PPI networks
to identify subnetwork biomarkers of bladder, colorectal, gastric, liver, and lung
cancers [69,70], and single-protein biomarkers of brain, breast, liver, lung, and
skin cancers [71–75]. PPI networks have also been used to identify biomarkers
of response to cancer treatment [76,77]. Cancer-related biomarkers cannot only
be described in Proteomics but also in Genomics.

Genomic Data has brought up several biomarkers for measuring therapeutic
response and validating drug treatment of cancer [78]. Moreover, genomic data
such as gene expression samples can be used for identifying cancer subtypes
[79] but also for predicting evolution even including response to drugs [53]. For
example, gene expression data [79] and molecular profiling [80] have been used to
improve glioma classification. Genomic data has also been used for the prognosis
of possible relapse after treatment of prostate cancer [81].

Upstill et al. describe ML approaches for discovering gene-gene interactions in
sequencing data [57]. While They call the type of data “disease data”. They also
underline that most studies report on applying ML for validating results rather
than on identifying new disease-related interactions. The Matchmaker Exchange
API [82] is a tool for cohort discovery and variant disease causal validation that
also makes use of so called “disease data” from different genomic databases.

In general, networks based on gene expression data have been used to iden-
tify biomarkers predictive of patient drug response and prognosis. Two types
of networks are typically constructed from gene expression data: co-expression
networks, where edges connect pairs of genes that have correlated expression
across samples, and gene regulatory networks, where edges indicate regulatory
effects between pairs of genes. Both types of networks have helped identify can-
cer biomarker genes and gene modules. These biomarkers were used as inputs
to statistical or machine learning methods for various disease prediction and
classification tasks. Biomarkers from co-expression networks have been used to
predict patient prognosis [83–85] and response to treatment [85]. Applications of
gene regulatory networks have included biomarker discovery for prostate cancer
[86] and breast cancer [87], and modeling of ovarian cancer progression [88].

As genomic alterations are a fundamental feature of cancer, several network-
based methods have been developed for analyzing these alterations, and
identifying subsets that are cancer biomarkers. Jörnsten et al. developed causal
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network models to understand how DNA copy number alterations in glioblas-
toma affect gene expression [89]. These models, based on regression and boot-
strapping methods, predict key cancer-related alterations, their effects on gene
expression, and patient survival. Shi et al. developed an alternative network
model, using Laplacian shrinkage, to analyze the effects of copy number alter-
ations on gene expression [90]. Leung et al. introduced a method for identifying
frequently mutated gene modules in molecular networks associated with patient
drug response, patient survival and other clinical or phenotypic data [91]. Similar
approaches identify cancer-deregulated subnetworks [92].

There is a vast amount of publicly available heterogeneous genomic data,
making data mining and ML well suited to solve key problems in the world of
genomic medicine [93]. Complementing genetic studies leads us to the field of
Metabolomics.

Metabolomics has been introduced to cancer “omics” studies relatively
recently. It opened new opportunities towards biomarker discovery, identi-
fication of signaling molecules associated with cell growth, cell death, cel-
lular metabolism [101]. Metabolomics is therefore frequently used for stud-
ies aiming at the detection of cancer even in early stages. Most commonly
used analytical technologies comprise NMR spectroscopy, LC/MS, GC/MS and
MCC/IMS [101,102]. In order to meet the demands of cellular proliferation and
the required uptake and conversion of nutrients into biomass, cancer cells mod-
ify their metabolism during tumor development. Many of these key metabolic
alterations are similar across tumor cells. A prominent example are the changes
in the glucose metabolism leading to an increase of the described biosynthetic
activities, and to the ‘Warburg’ effect, an inevitable adaptation to cope with the
lack of ATP generation [103].

Metabolomics technology can be used to identify clinically relevant subgroups
of cancer patients. For instance, O’Shea et al. analyzed the metabolites in spu-
tum from patients with lung cancer and age-matched volunteers smoking con-
trols using flow infusion electrospray ion mass spectrometry and found potential
marker using artificial neural networks [104]. A sequential application of recur-
sive feature elimination on linear-SVM and orthogonal partial least squares dis-
criminant analysis (PLS-DA) was used to find the minimum set of discriminant
features separating early-stage ovarian cancer patients samples from controls.
Permutation testing was performed to validate the results [105]. Another study
analyzed the metabolom of exhaled air by MCC/IMS within normal, COPD
and lung cancer patients. A variety of supervised ML methods, e.g., linear-SVM
or random forest, were applied to evaluate their capabilities to differentiate the
three groups [106].

A second group of studies focus on validation. G12C k-RAS mutation has
been suspected to be a key player in promoting metabolic rewiring, in isogenic
non-small cell lung caner (NSCLC) cell line. Brunelli et al. applied OPLS-DA
models and discovered a robust separation between G12C and WT k-RAS iso-
forms both in vitro and in vivo. Authors further validated their findings by



424 F. Jeanquartier et al.

mapping the quantified metabolites to the KEGG pathway database. Further-
more, they identify a list of most likely enriched metabolic pathways associated
with the given metabolites [107].

The third application focuses on the prediction of disease outcome.
Metabolomic NMR fingerprinting was utilized to assess the survival of patients
with metastatic colorectal cancer (mCRC). A combination of partial least
squares and support vector machines (PLS-SVM) was first applied to discrimi-
nate patients with mCRC and healthy subjects. In a second step, PLS-SVM was
successfully used to evaluate whether patients with short or long overall survival
can be identified by metabolomic profiling using NMR [108]. Wei et al. utilized
a metabolomics approach to predict the effectiveness of treatments. In particu-
lar, PLS-DA is applied to model the response to neoadjuvant chemotherapy for
breast cancer [109].

These findings show that metabolomics data can be used to differentiate not
only tumor from control samples but also identify different stages of the grow-
ing tumor. Thereby, these technologies could be used for continuous monitoring
of tumor growth and development in order to validate and optimize presented
approaches in silico tumor growth models. Processing healthcare records forms
another example in need of computerized support within the field of personalized
cancer therapy and research, that is discussed next.

4.3 Processing Healthcare Records and Combined Data

When dealing with medical records, its anonymization is an important topic that
can be supported through the use of ML [7]. Learning from various data sets
opens up novel possibilities for cancer research.

So far, several works have described different ML techniques for the classi-
fication of patient cohorts [94]. Standardized multi-scale information models of
cancer phenotypes provide information in computable form that are important
for complementary approaches such as tumor growth modeling [95].

Delen et al. [96] describe a comparative study of neural networks, decision
trees as well as logistic regression for mining a data set of more than 200,000
cases provided by SEER [97] for testing prediction of breast cancer survivability.

Menden et al. describe an approach for predicting how cancer cells respond
to drugs based on combined data analysis, genomic features of cell lines as well
as chemical features of drugs [98].

EHR have also been used for predicting cancer survival with the help of
support vector machines (SVMs) [99]. Weighted Bayesian networks have been
developed on the combination of EHR and PubMed data to predict pancreatic
cancer [100].

Hybrid methods provide effective means to detect and quantify a broad range
of small molecules for studying complex biological networks.
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5 ML Towards Extending In Silico Modeling

Lisboa et al. [55] highlight how modeling of biological processes related to can-
cer may benefit from data mining approaches. They summarize main concepts
found in literature as on the one hand, mining data from experiments to better
understand parts of signaling pathways, and on the other hand to predict the
evolution of dynamical systems.

Integration of data can be used to extend the descriptive part of compart-
mental states [26], such as by relating information on inhibitors and promotors
to tumor growth curves, but also by making use of cancer classifications to create
cancer profiles [110].

ML methods can be used on open cancer data for several possibilities, i.e.,
identifying tumor suppressing and inhibiting genes and further advancing a
tumor growth related interaction network [111] that may help find and select
precisely targeted treatments [92,112,113]. Existing treatment data can be fur-
ther integrated into simulation tools to validate both tool and model and improve
the tumor growth prediction rates. Such predictions gained via ML approaches
can be combined with the ABM approach for further analysis. Other subjects
of interest can be described further, such as specific cells or parts of it, that
are again remodeled as discrete entities or agents, and iteratively validated to
support sense-making in tumor growth analysis.

Additionally, visualization supports interaction with data and models [114].
Visualization in ABM is needed to visually convey the behavior of the model
[31,115]. We have recently introduced a novel visualization approach of simu-
lating and analyzing cell-related variables regarding tumor growth kinetics [25].
Thereby, visualization is used to show patterns of tumor growth. The graph-
based visualization approach makes use of nodes, representing cellular bricks.
These cellular bricks are related to compartmental states, including localized
phenomena.

Last but not least, ML can be used to include image analysis in two ways:
First, images can be used as input for the modeling, while the classification
of images can be supported by ML techniques. Second, by analyzing a set of
existing images related to tumor growth, the model can be compared to ML
results and further validated.

6 Challenges in Network-Based ML Approaches

Network analysis combined with machine learning has proven to be an effective
approach for identifying biomarkers and molecular mechanisms of cancer [116].
This approach is likely to further increase in popularity, but continued progress
will require addressing multiple challenges:

Challenge 1. foremost, we need to increase coverage and annotation of diverse
networks, to include tissue and process specificity;
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Fig. 2. The “big picture” in the modeling and visualization of tumor growth [25,26]

Challenge 2. we need to improve scalability of algorithms to addressed increased
size and complexity of networks;

Challenge 3. biomarker performance will need to be measured by standardized
unbiased methods;

Challenge 4. multiple types of omics data will need to be combined into unified
network models; and

Challenge 5. networks may need to be tailored to individuals to facilitate per-
sonalized medicine.

7 Challenges in Modeling Tumor Growth Dynamics

In Silico models complement the lack of in vitro and in vivo models. How-
ever, tumor growth modeling also brings up many questions concerning specific
aspects of the various kinds of benign and malignant neoplasms. The main chal-
lenges in modeling tumor growth kinetics include:

Challenge 1. There is no universal tumor growth model. As Benzekry
et al. [32] described, dormancy phases creates challenges for finding a generic
growth law. The Gompertz or power law has been used to predict tumor growth;
however, with a very low prediction rate. A so called “Universal Law of tumor
growth” has to be found yet. However, [117] proposed to classify tumor growth
patterns into fundamentally different categories. Therefore, cancer classification
and profiling has to be taken into account.
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Challenge 2. The disease’s complexity poses a big open problem to tumor
growth modeling. According to Edelman et al. [27] modeling the heterogeneous
nature of tumor growth needs to take various characteristics into account. These
characteristics are to be comprehensively discovered, as well as, in the latter
modeled.

Challenge 3. Data heterogeneity challenges integration and fusion. Data
fusion poses significant challenges. While diverse data sets exist, data comes
from different laboratories, with different type and quality controls, different
representation and processing [27,118–120]. Integrating current bioinformatics
workflows with knowledge engineering provides the necessary step in the right
direction.

Challenge 4. Visualizing evidence and uncertainty with aggregation and dis-
play of specific information is required to make informed decisions. However, visu-
alization still poses a big challenge. Offering reproducable, transparent and inter-
active visual analysis output of learned patterns is one of the many challenges for
applying Visual Analytics methods to the biomedical domain [121–124].

Challenge 5. Finally, the question remains of how to infer knowledge from
existing data. Machine learning may be used to infer graphical models from
data [118], but there are difficult learning tasks to infer graphical models, yet to
be solved.

8 Conclusion and Future Outlook

Combining ML and ABM can be used on various biological scales, as shown in
Fig. 2: The lattice’s nodes are represented as cellular bricks, which can be related
to localized phenomena such as intra- & intercellular interactions, information
on absorption, excretion, distribution as well as modulators, inhibitors and pro-
moters, but also protein interactions and gene ontology. The overall goal remains
to understand properties and peculiarities regarding cancer disease signaling.

In summary, ML can be used to improve in silico modeling, ranging from
model validation to identifying novel insights. Future studies may involve the
integration of proteomic and metabolomic networks behind ABM in order to
simulate drug effects on tumor growth towards personalized medicine. Further
exploration on genomic information regarding disease-driving mutations could
be embedded within a multi-agent approach to simulating tumor growth in more
detail. This may include studies on evolutionary dynamics of tumor growth and
the underlying cellular heterogeneity of tumors using in silico environments.
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Abstract. In this tutorial, we will provide an introduction to the main
Python software tools used for applying machine learning techniques to
medical data. The focus will be on open-source software that is freely
available and is cross platform. To aid the learning experience, a com-
panion GitHub repository is available so that you can follow the examples
contained in this paper interactively using Jupyter notebooks. The note-
books will be more exhaustive than what is contained in this chapter,
and will focus on medical datasets and healthcare problems. Briefly, this
tutorial will first introduce Python as a language, and then describe some
of the lower level, general matrix and data structure packages that are
popular in the machine learning and data science communities, such as
NumPy and Pandas. From there, we will move to dedicated machine
learning software, such as SciKit-Learn. Finally we will introduce the
Keras deep learning and neural networks library. The emphasis of this
paper is readability, with as little jargon used as possible. No previous
experience with machine learning is assumed. We will use openly avail-
able medical datasets throughout.

Keywords: Machine learning · Deep learning · Neural networks ·
Tools · Languages · Python

1 Introduction

The target audience for this tutorial paper are those who wish to quickly get
started in the area of data science and machine learning. We will provide an
overview of the current and most popular libraries with a focus on Python,
however we will mention alternatives in other languages where appropriate. All
tools presented here are free and open source, and many are licensed under very
flexible terms (including, for example, commercial use). Each library will be
introduced, code will be shown, and typical use cases will be described. Medical
datasets will be used to demonstrate several of the algorithms.

Machine learning itself is a fast growing technical field [1] and is highly rele-
vant topic in both academia and in the industry. It is therefore a relevant skill to
have in both academia and in the private sector. It is a field at the intersection
of informatics and statistics, tightly connected with data science and knowledge
c© Springer International Publishing AG 2016
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discovery [2,3]. The prerequisites for this tutorial are therefore a basic under-
standing of statistics, as well as some experience in any C-style language. Some
knowledge of Python is useful but not a must.

An accompanying GitHub repository is provided to aid the tutorial:

https://github.com/mdbloice/MLDS

It contains a number of notebooks, one for each main section. The notebooks
will be referred to where relevant.

2 Glossary and Key Terms

This section provides a quick reference for several algorithms that are not explic-
ity mentioned in this chapter, but may be of interest to the reader. This should
provide the reader with some keywords or useful points of reference for other
similar libraries to those discussed in this chapter.

BIDMach GPU accelerated machine learning library for algorithms that are
not necessarily neural network based.

Caret provides a standardised API for many of the most useful machine learn-
ing packages for R. See http://topepo.github.io/caret/index.html. For read-
ers who are more comfortable with R, Caret provides a good substitute for
Python’s SciKit-Learn.

Mathematica is a commercial symbolic mathematical computation system,
developed since 1988 by Wolfram, Inc. It provides powerful machine learning
techniques “out of the box” such as image classification [4].

MATLAB is short for MATrix LABoratory, which is a commercial numeri-
cal computing environment, and is a proprietary programming language by
MathWorks. It is very popular at universities where it is often licensed. It was
originally built on the idea that most computing applications in some way
rely on storage and manipulations of one fundamental object—the matrix,
and this is still a popular approach [5].

R is used extensively by the statistics community. The software package Caret
provides a standardised API for many of R’s machine learning libraries.

WEKA is short for the Waikato Environment for Knowledge Analysis [6] and
has been a very popular open source tool since its inception in 1993. In 2005
Weka received the SIGKDD Data Mining and Knowledge Discovery Service
Award: it is easy to learn and simple to use, and provides a GUI to many
machine learning algorithms [7].

Vowpal Wabbit Microsoft’s machine learning library. Mature and actively
developed, with an emphasis on performance.

3 Requirements and Installation

The most convenient way of installing the Python requirements for this tutorial
is by using the Anaconda scientific Python distribution. Anaconda is a collection

https://github.com/mdbloice/MLDS
http://topepo.github.io/caret/index.html
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of the most commonly used Python packages preconfigured and ready to use.
Approximately 150 scientific packages are included in the Anaconda installation.

To install Anaconda, visit

https://www.continuum.io/downloads

and install the version of Anaconda for your operating system.
All Python software described here is available for Windows, Linux, and

Macintosh. All code samples presented in this tutorial were tested under Ubuntu
Linux 14.04 using Python 2.7. Some code examples may not work on Windows
without slight modification (e.g. file paths in Windows use \ and not / as in
UNIX type systems).

The main software used in a typical Python machine learning pipeline can
consist of almost any combination of the following tools:

1. NumPy, for matrix and vector manipulation
2. Pandas for time series and R-like DataFrame data structures
3. The 2D plotting library matplotlib
4. SciKit-Learn as a source for many machine learning algorithms and utilities
5. Keras for neural networks and deep learning

Each will be covered in this book chapter.

3.1 Managing Packages

Anaconda comes with its own built in package manager, known as Conda. Using
the conda command from the terminal, you can download, update, and delete
Python packages. Conda takes care of all dependencies and ensures that packages
are preconfigured to work with all other packages you may have installed.

First, ensure you have installed Anaconda, as per the instructions under
https://www.continuum.io/downloads.

Keeping your Python distribution up to date and well maintained is essential
in this fast moving field. However, Anaconda makes it particularly easy to man-
age and keep your scientific stack up to date. Once Anaconda is installed you
can manage your Python distribution, and all the scientific packages installed
by Anaconda using the conda application from the command line. To list all
packages currently installed, use conda list. This will output all packages and
their version numbers. Updating all Anaconda packages in your system is per-
formed using the conda update -all command. Conda itself can be updated
using the conda update conda command, while Python can be updated using
the conda update python command. To search for packages, use the search
parameter, e.g. conda search stats where stats is the name or partial name
of the package you are searching for.

4 Interactive Development Environments

4.1 IPython

IPython is a REPL that is commonly used for Python development. It is included
in the Anaconda distribution. To start IPython, run:

https://www.continuum.io/downloads
https://www.continuum.io/downloads
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1 $ ipython

Listing 1. Starting IPython

Some informational data will be displayed, similar to what is seen in Fig. 1,
and you will then be presented with a command prompt.

Fig. 1. The IPython Shell.

IPython is what is known as a REPL: a Read Evaluate Print Loop. The
interpreter allows you to type in commands which are evaluated as soon as you
press the Enter key. Any returned output is immediately shown in the console.
For example, we may type the following:

1 In [1]: 1 + 1

2 Out [1]: 2

3 In [2]: import math

4 In [3]: math.radians (90)

5 Out [3]: 1.5707963267948966

6 In [4]:

Listing 2. Examining the Read Evaluate Print Loop (REPL)

After pressing return (Line 1 in Listing 2), Python immediately interprets the
line and responds with the returned result (Line 2 in Listing 2). The interpreter
then awaits the next command, hence Read Evaluate Print Loop.

Using IPython to experiment with code allows you to test ideas without
needing to create a file (e.g. fibonacci.py) and running this file from the com-
mand line (by typing python fibonacci.py at the command prompt). Using
the IPython REPL, this entire process can be made much easier. Of course,
creating permanent files is essential for larger projects.
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A useful feature of IPython are the so-called magic functions. These com-
mands are not interpreted as Python code by the REPL, instead they are special
commands that IPython understands. For example, to run a Python script you
can use the %run magic function:

1 >>> %run fibonacci.py 30

2 Fibonacci number 30 is 832040.

Listing 3. Using the %run magic function to execute a file.

In the code above, we have executed the Python code contained in the file
fibonacci.py and passed the value 30 as an argument to the file.

The file is executed as a Python script, and its output is displayed in the
shell. Other magic functions include %timeit for timing code execution:

1 >>> def fibonacci(n):

2 ... if n == 0: return 0

3 ... if n == 1: return 1

4 ... return fibonacci(n-1) + fibonacci(n-2)

5 >>> %timeit fibonacci (25)

6 10 loops , best of 3: 30.9 ms per loop

Listing 4. The %timeit magic function can be used to check execution times of
functions or any other piece of code.

As can be seen, executing the fibonacci(25) function takes on average
30.9 ms. The %timeit magic function is clever in how many loops it performs to
create an average result, this can be as few as 1 loop or as many as 10 million
loops.

Other useful magic functions include %ls for listing files in the current work-
ing directory, %cd for printing or changing the current directory, and %cpaste
for pasting in longer pieces of code that span multiple lines. A full list of magic
functions can be displayed using, unsurprisingly, a magic function: type %magic
to view all magic functions along with documentation for each one. A summary
of useful magic functions is shown in Table 1.

Last, you can use the ? operator to display in-line help at any time. For
example, typing

1 >>> abs?

2 Docstring:

3 abs(number) -> number

4

5 Return the absolute value of the argument.

6 Type: builtin_function_or_method

Listing 5. Accessing help within the IPython console.

For larger projects, or for projects that you may want to share, IPython
may not be ideal. In Sect. 4.2 we discuss the web-based notebook IDE known as
Jupyter, which is more suited to larger projects or projects you might want to
share.



440 M.D. Bloice and A. Holzinger

Table 1. A non-comprehensive list of IPython magic functions.

Magic Command Description

%lsmagic Lists all the magic functions

%magic Shows descriptive magic function documentation

%ls Lists files in the current directory

%cd Shows or changes the current directory

%who Shows variables in scope

%whos Shows variables in scope along with type information

%cpaste Pastes code that spans several lines

%reset Resets the session, removing all imports and deleting all variables

%debug Starts a debugger post mortem

4.2 Jupyter

Jupyter, previously known as IPython Notebook, is a web-based, interac-
tive development environment. Originally developed for Python, it has since
expanded to support over 40 other programming languages including Julia
and R.

Jupyter allows for notebooks to be written that contain text, live code, images,
and equations. These notebooks can be shared, and can even be hosted on
GitHub for free.

For each section of this tutorial, you can download a Juypter notebook that
allows you to edit and experiment with the code and examples for each topic.
Jupyter is part of the Anaconda distribution, it can be started from the command
line using using the jupyter command:

1 $ jupyter notebook

Listing 6. Starting Jupyter

Upon typing this command the Jupyter server will start, and you will briefly
see some information messages, including, for example, the URL and port at
which the server is running (by default http://localhost:8888/). Once the
server has started, it will then open your default browser and point it to this
address. This browser window will display the contents of the directory where
you ran the command.

To create a notebook and begin writing, click the New � button and select
Python. A new notebook will appear in a new tab in the browser. A Jupyter
notebook allows you to run code blocks and immediately see the output of these
blocks of code, much like the IPython REPL discussed in Sect. 4.1.

Jupyter has a number of short-cuts to make navigating the notebook and
entering code or text quickly and easily. For a list of short-cuts, use the menu
Help → Keyboard Shortcuts.
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4.3 Spyder

For larger projects, often a fully fledged IDE is more useful than Juypter’s
notebook-based IDE. For such purposes, the Spyder IDE is often used.
Spyder stands for Scientific PYthon Development EnviRonment, and is included
in the Anaconda distribution. It can be started by typing spyder in the com-
mand line.

5 Requirements and Conventions

This tutorial makes use of a number of packages which are used extensively in
the Python machine learning community. In this chapter, the NumPy, Pandas,
and Matplotlib are used throughout. Therefore, for the Python code samples
shown in each section, we will presume that the following packages are available
and have been loaded before each script is run:

1 >>> import numpy as np

2 >>> import pandas as pd

3 >>> import matplotlib.pyplot as plt

Listing 7. Standard libraries used throughout this chapter. Throughout this chapter
we will assume these libraries have been imported before each script.

Any further packages will be explicitly loaded in each code sample. However,
in general you should probably follow each section’s Jupyter notebook as you
are reading.

In Python code blocks, lines that begin with >>> represent Python code
that should be entered into a Python interpreter (See Listing 7 for an example).
Output from any Python code is shown without any preceding >>> characters.

Commands which need to be entered into the terminal (e.g. bash or the
MS-DOS command prompt) begin with $, such as:

1 $ l s −lAh
2 t o t a l 299K
3 −rw−rw−r−− 1 b l o i c e admin 73K Sep 1 14 :11 C lu s t e r i ng . ipynb
4 −rw−rw−r−− 1 b l o i c e admin 57K Aug 25 16 :04 Pandas . ipynb
5 . . .

Listing 8. Commands for the terminal are preceded by a $ sign.

Output from the console is shown without a preceding $ sign. Some of the
commands in this chapter may only work under Linux (such as the example usage
of the ls command in the code listing above, the equivalent in Windows is the
dir command). Most commands will, however, work under Linux, Macintosh,
and Windows—if this is not the case, we will explicitly say so.

5.1 Data

For the Introduction to Python, NumPy, and Pandas sections we will work with
either generated data or with a toy dataset. Later in the chapter, we will move
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on to medical examples, including a breast cancer dataset, a diabetes dataset,
and a high-dimensional gene expression dataset. All medical datasets used in
this chapter are freely available and we will describe how to get the data in
each relevant section. In earlier sections, generated data will suffice in order to
demonstrate example usage, while later we will see that analysing more involved
medical data using the same open-source tools is equally possible.

6 Introduction to Python

Python is a general purpose programming language that is used for anything
from web-development to deep learning. According to several metrics, it is ranked
as one of the top three most popular languages. It is now the most frequently
taught introductory language at top U.S. universities according to a recent ACM
blog article [8]. Due to its popularity, Python has a thriving open source commu-
nity, and there are over 80,000 free software packages available for the language
on the official Python Package Index (PyPI).

In this section we will give a very short crash course on using Python. These
code samples will work best with a Python REPL interpreter, such as IPython
or Jupyter (Sects. 4.1 and 4.2 respectively). In the code below we introduce the
some simple arithmetic syntax:

1 >>> 2 + 6 + (8 * 9)

2 80

3 >>> 3 / 2

4 1

5 >>> 3.0 / 2

6 1.5

7 >>> 4 ** 4 # To the power of

8 256

Listing 9. Simple arithmetic with Python in the IPython shell.

Python is a dynamically typed language, so you do not define the type of
variable you are creating, it is inferred:

1 >>> n = 5

2 >>> f = 5.5

3 >>> s ="5"

4 >>> type(s)

5 str

6 >>> type(f)

7 float

8 >>> "5" * 5

9 "55555"

10 >>> int("5") * 5

11 25

Listing 10. Demonstrating types in Python.
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You can check types using the built-in type function. Python does away
with much of the verbosity of languages such as Java, you do not even need to
surround code blocks with brackets or braces:

1 >>> if "5" == 5:

2 ... print("Will not get here")

3 >>> elif int("5") == 5:

4 ... print("Got here")

5 Got here

Listing 11. Statement blocks in Python are indicated using indentation.

As you can see, we use indentation to define our statement blocks. This is the
number one source of confusion among those new to Python, so it is important you
are aware of it. Also, whereas assignment uses =, we check equality using == (and
inversely !=). Control of flow is handled by if, elif, while, for, and so on.

While there are several basic data structures, here we will concentrate on lists
and dictionaries (we will cover much more on data structures in Sect. 7.1). Other
types of data structures are, for example, tuples, which are immutable—their
contents cannot be changed after they are created—and sets, where repetition is
not permitted. We will not cover tuples or sets in this tutorial chapter, however.

Below we first define a list and then perform a number of operations on this
list:

1 >>> powers = [1, 2, 4, 8, 16, 32]

2 >>> powers

3 [1, 2, 4, 8, 16, 32]

4 >>> powers [0]

5 1

6 >>> powers.append (64)

7 >>> powers

8 [1, 2, 4, 8, 16, 32, 64]

9 >>> powers.insert(0, 0)

10 >>> powers

11 [0, 1, 2, 4, 8, 16, 32, 64]

12 >>> del powers [0]

13 >>> powers

14 [1, 2, 4, 8, 16, 32, 64]

15 >>> 1 in powers

16 True

17 >>> 100 not in powers

18 True

Listing 12. Operations on lists.

Lists are defined using square [] brackets. You can index a list using its
numerical, zero-based index, as seen on Line 4. Adding values is performed using
the append and insert functions. The insert function allows you to define in
which position you would like the item to be inserted—on Line 9 of Listing 12
we insert the number 0 at position 0. On Lines 15 and 17, you can see how we
can use the in keyword to check for membership.



444 M.D. Bloice and A. Holzinger

You just saw that lists are indexed using zero-based numbering, we will now
introduce dictionaries which are key-based. Data in dictionaries are stored using
key-value pairs, and are indexed by the keys that you define:

1 >>> numbers = {"bingo": 3458080 , "tuppy": 3459090}

2 >>> numbers

3 {"bingo": 3458080 , "tuppy": 3459090}

4 >>> numbers["bingo"]

5 3458080

6 >>> numbers["monty"] = 3456060

7 >>> numbers

8 {"bingo": 3458080 , "monty": 3456060 , "tuppy": 3459090}

9 >>> "tuppy" in numbers

10 True

Listing 13. Dictionaries in Python.

We use curly {} braces to define dictionaries, and we must define both their
values and their indices (Line 1). We can access elements of a dictionary using
their keys, as in Line 4. On Line 6 we insert a new key-value pair. Notice that
dictionaries are not ordered. On Line 9 we can also use the in keyword to check
for membership.

To traverse through a dictionary, we use a for statement in conjunction with
a function depending on what data we wish to access from the dictionary:

1 >>> for name , number in numbers.iteritems ():

2 ... print("Name:" + name + ", number:" + str(number))

3 Name: bingo , number: 3458080

4 Name: monty , number: 3456060

5 Name: tuppy , number: 3459090

6

7 >>> for key in numbers.keys():

8 ... print(key)

9 bingo

10 monty

11 tuppy

12

13 >>> for val in numbers.values ():

14 ... print(val)

15 3458080

16 3456060

17 3459090

Listing 14. Iterating through dictionaries.

First, the code above traverses through each key-value pair using
iteritems() (Line 1). When doing so, you can specify a variable name for
each key and value (in that order). In other words, on Line 1, we have stated
that we wish to store each key in the variable name and each value in the vari-
able number as we go through the for loop. You can also access only the keys
or values using the keys and values functions respectively (Lines 7 and 13).
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As mentioned previously, many packages are available for Python. These need
to be loaded into the current environment before they are used. For example,
the code below uses the os module, which we must first import before using:

1 >>> import os

2 >>> os.listdir("./")

3 ["BookChapter.ipynb",

4 "NumPy.ipynb",

5 "Pandas.ipynb",

6 "fibonacci.py",

7 "LinearRegression .ipynb",

8 "Clustering.ipynb"]

9 >>> from os import listdir # Alternatively

10 >>> listdir("./")

11 ["BookChapter.ipynb",

12 "NumPy.ipynb",

13 ...

Listing 15. Importing packages using the import keyword.

Two ways of importing are shown here. On Line 1 we are importing the entire
os name space. This means we need to call functions using the os.listdir()
syntax. If you know that you only need one function or submodule you can
import it individually using the method shown on Line 9. This is often the
preferred method of importing in Python.

Lastly, we will briefly see how functions are defined using the def keyword:

1 >>> def addNumbers(x, y):

2 ... return x + y

3 >>> addNumbers (4, 2)

4 6

Listing 16. Functions are defined using the def keyword.

Notice that you do not need to define the return type, or the arguments’
types. Classes are equally easy to define, and this is done using the class key-
word. We will not cover classes in this tutorial. Classes are generally arranged
into modules, and further into packages. Now that we have covered some of the
basics of Python, we will move on to more advanced data structures such as
2-dimensional arrays and data frames.

7 Handling Data

7.1 Data Structures and Notation

In machine learning, more often than not the data that you analyse will be stored
in matrices and vectors. Generally speaking, your data that you wish to analyse
will be stored in the form of a matrix, often denoted using a bold upper case
symbol, generally X, and your label data will be stored in a vector, denoted with
a lower case bold symbol, often y.
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A data matrix X with n samples and m features is denoted as follows:

X ∈ R
n×m =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1,1 x1,2 x1,3 . . . x1,m

x2,1 x2,2 x2,3 . . . x2,m

x3,1 x3,2 x3,3 . . . x3,m

...
...

...
. . .

...
xn,1 xn,2 xn,3 . . . xn,m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Each column, m, of this matrix contains the features of your data and each
row, n, is a sample of your data. A single sample of your data is denoted by its
subscript, e.g. xi = [xi,1 xi,2 xi,3 · · · xi,m]

In supervised learning, your labels or targets are stored in a vector:

y ∈ R
n×1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
y3
...
yn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Note that number of elements in the vector y is equal to the number of
samples n in your data matrix X, hence y ∈ R

n×1.
For a concrete example, let us look at the famous Iris dataset. The Iris flower

dataset is a small toy dataset consisting of n = 150 samples or observations of
three species of Iris flower (Iris setosa, Iris virginica, and Iris versicolor). Each
sample, or row, has m = 4 features, which are measurements relating to that
sample, such as the petal length and petal width. Therefore, the features of the
Iris dataset correspond to the columns in Table 2, namely sepal length, sepal
width, petal length, and petal width. Each observation or sample corresponds to
one row in the table. Table 2 shows a few rows of the Iris dataset so that you can
become acquainted with how it is structured. As we will be using this dataset
in several sections of this chapter, take a few moments to examine it.

Table 2. The Iris flower dataset.

Sepal length Sepal width Petal length Petal width Class

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

...
...

...
...

...
...

150 5.9 3.0 5.1 1.8 virginica

In a machine learning task, you would store this table in a matrix X, where
X ∈ R

150×4. In Python X would therefore be stored in a 2-dimensional array



Tutorial on Machine Learning and Data Science 447

with 150 rows and 4 columns (generally we will store such data in a variable
named X). The 1st row in Table 2 corresponds to 1st row of X, namely x1 =
[5.1 3.5 1.4 0.2]. See Listing 17 for how to represent a vector as an array and
a matrix as a two-dimensional array in Python. While the data is stored in a
matrix X, the Class column in Table 2, which represents the species of plant, is
stored separately in a target vector y. This vector contains what are known as the
targets or labels of your dataset. In the Iris dataset, y = [y1 y2 · · · y150], yi ∈
{setosa, versicolor, virginica}. The labels can either be nominal, as is the case
in the Iris dataset, or continuous. In a supervised machine learning problem,
the principle aim is to predict the label for a given sample. If the targets
are nominal, this is a classification problem. If the targets are continuous this
is a regression problem. In an unsupervised machine learning task you do not
have the target vector y, and you only have access to the dataset X. In such a
scenario, the aim is to find patterns in the dataset X and cluster observations
together, for example.

We will see examples of both classification algorithms and regression algo-
rithms in this chapter as well as supervised and unsupervised problems.

1 >>> v1 = [5.1, 3.5, 1.4, 0.2]

2 >>> v2 = [

3 ... [5.1, 3.5, 1.4, 0.2],

4 ... [4.9, 3.0, 1.3, 0.2]

5 .. ]

Listing 17. Creating 1-dimensional (v1) and 2-dimensional data structures (v2) in
Python (Note that in Python these are called lists).

In situations where your data is split into subsets, such as a training set and
a test set, you will see notation such as Xtrain and Xtest. Datasets are often split
into a training set and a test set, where the training set is used to learn a model,
and the test set is used to check how well the model fits to unseen data.

In a machine learning task, you will almost always be using a library
known as NumPy to handle vectors and matrices. NumPy provides very use-
ful matrix manipulation and data structure functionality and is optimised for
speed. NumPy is the de facto standard for data input, storage, and output in
the Python machine learning and data science community1. Another important
library which is frequently used is the Pandas library for time series and tabular
data structures. These packages compliment each other, and are often used side
by side in a typical data science stack. We will learn the basics of NumPy and
Pandas in this chapter, starting with NumPy in Sect. 7.2.

1 To speed up certain numerical operations, the numexpr and bottleneck optimised
libraries for Python can be installed. These are included in the Anaconda distribu-
tion, readers who are not using Anaconda are recommended to install them both.
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7.2 NumPy

NumPy is a general data structures, linear algebra, and matrix manipulation
library for Python. Its syntax, and how it handles data structures and matrices
is comparable to that of MATLAB2.

To use NumPy, first import it (the convention is to import it as np, to avoid
having to type out numpy each time):

1 >>> import numpy as np

Listing 18. Importing NumPy. It is convention to import NumPy as np.

Rather than repeat this line for each code listing, we will assume you have
imported NumPy, as per the instructions in Sect. 3. Any further imports that
may be required for a code sample will be explicitly mentioned.

Listing 19 describes some basic usage of NumPy by first creating a NumPy
array and then retrieving some of the elements of this array using a technique
called array slicing :

1 >>> vector = np.arange (10) # Make an array from 0 - 9

2 >>> vector

3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

4 >>> vector [1]

5 1

6 >>> vector [0:3]

7 [0, 1, 2]

8 >>> vector [0:-3] # Element 0 to the 3rd last element

9 [0, 1, 2, 3, 4, 5, 6]

10 >>> vector [3:7] # From index 3 but not including 7

11 [3, 4, 5, 6]

Listing 19. Array slicing in NumPy.

In Listing 19, Line 1 we have created a vector (actually a NumPy array)
with 10 elements from 0–9. On Line 2 we simply print the contents of the
vector, the contents of which are shown on Line 3. Arrays in Python are 0-
indexed, that means to retrieve the first element you must use the number 0. On
Line 4 we retrieve the 2nd element which is 1, using the square bracket index-
ing syntax: array[i], where i is the index of the value you wish to retrieve
from array. To retrieve subsets of arrays we use a method known as array slic-
ing, a powerful technique that you will use constantly, so it is worthwhile to
study its usage carefully! For example, on Line 9 we are retrieving all elements
beginning with element 0 to the 3rd last element. Slicing 1D arrays takes the
form array[<startpos>:<endpos>], where the start position <startpos> and
end position <endpos> are separated with a: character. Line 11 shows another
example of array slicing. Array slicing includes the element indexed by the
<startpos> up to but not including the element indexed by <endpos>.

2 Users of MATLAB may want to view this excellent guide to NumPy for MATLAB
users: http://mathesaurus.sourceforge.net/matlab-numpy.html.

http://mathesaurus.sourceforge.net/matlab-numpy.html
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A very similar syntax is used for indexing 2-dimensional arrays, but now we
must index first the rows we wish to retrieve followed by the columns we wish
to retrieve. Some examples are shown below:

1 >>> m = np.arange (9).reshape (3,3)

2 >>> m

3 array ([[0, 1, 2],

4 [3, 4, 5],

5 [6, 7, 8]])

6 >>> m[0] # Row 0

7 array ([0, 1, 2])

8 >>> m[0, 1] # Row 0, column 1

9 1

10 >>> m[:, 0] # All rows , 0th column

11 array ([0, 3, 6])

12 >>> m[:,:] # All rows , all columns

13 array ([[0, 1, 2],

14 [3, 4, 5],

15 [6, 7, 8]])

16 >>> m[-2:, -2:] # Lower right corner of matrix

17 array ([[4, 5],

18 [7, 8]])

19 >>> m[:2, :2] # Upper left corner of matrix

20 array ([[0, 1],

21 [3, 4]])

Listing 20. 2D array slicing.

As can be seen, indexing 2-dimensional arrays is very similar to the
1-dimensional arrays shown previously. In the case of 2-dimensional arrays, you
first specify your row indices, follow this with a comma (,) and then specify your
column indices. These indices can be ranges, as with 1-dimensional arrays. See
Fig. 2 for a graphical representation of a number of array slicing operations in
NumPy.

With element wise operations, you can apply an operation (very efficiently)
to every element of an n-dimensional array:

1 >>> m + 1

2 array ([[1, 2, 3],

3 [4, 5, 6],

4 [7, 8, 9]])

5 >>> m**2 # Square every element

6 array ([[ 0, 1, 4],

7 [ 9, 16, 25],

8 [36, 49, 64]])

9 >>> v * 10

10 array ([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

11 >>> v = np.array ([1, 2, 3])

12 >>> v

13 array ([1, 2, 3])

14 >>> m + v
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15 array ([[ 1, 3, 5],

16 [ 4, 6, 8],

17 [ 7, 9, 11]])

18 >>> m * v

19 array ([[ 0, 2, 6],

20 [ 3, 8, 15],

21 [ 6, 14, 24]])

Listing 21. Element wise operations and array broadcasting.

Fig. 2. Array slicing and indexing with NumPy. Image has been redrawn from the
original at http://www.scipy-lectures.org/ images/numpy indexing.png.

There are a number of things happening in Listing 21 that you should be
aware of. First, in Line 1, you will see that if you apply an operation on a
matrix or array, the operation will be applied element wise to each item in the
n-dimensional array. What happens when you try to apply an operation using,
let’s say a vector and a matrix? On lines 14 and 18 we do exactly this. This is
known as array broadcasting, and works when two data structures share at least
one dimension size. In this case we have a 3 × 3 matrix and are performing an
operation using a vector with 3 elements.

7.3 Pandas

Pandas is a software library for data analysis of tabular and time series data.
In many ways it reproduces the functionality of R’s DataFrame object. Also,
many common features of Microsoft Excel can be performed using Pandas, such
as “group by”, table pivots, and easy column deletion and insertion.

Pandas’ DataFrame objects are label-based (as opposed to index-based as
is the case with NumPy), so that each column is typically given a name which
can be called to perform operations. DataFrame objects are more similar to

http://www.scipy-lectures.org/_images/numpy_indexing.png
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spreadsheets, and each column of a DataFrame can have a different type, such
as boolean, numeric, or text. Often, it should be stressed, you will use NumPy
and Pandas in conjunction. The two libraries complement each other and are
not competing frameworks, although there is overlap in functionality between the
two. First, we must get some data. The Python package SciKit-Learn provides
some sample data that we can use (we will learn more about SciKit-Learn later).
SciKit-Learn is part of the standard Anaconda distribution.

In this example, we will load some sample data into a Pandas DataFrame
object, then rename the DataFrame object’s columns, and lastly take a look at
the first three rows contained in the DataFrame:

1 >>> import pandas as pd # Convention

2 >>> from sklearn import datasets

3 >>> iris = datasets.load_iris ()

4 >>> df = pd.DataFrame(iris.data)

5 >>> df.columns = ["sepal_l", "sepal_w", "petal_l",

"petal_w"]

6 >>> df.head (3)

7 sepal_l sepal_w petal_l petal_w

8 0 5.1 3.5 1.4 0.2

9 1 4.9 3.0 1.4 0.2

10 2 4.7 3.2 1.3 0.2

Listing 22. Reading data into a Pandas DataFrame.

Selecting columns can performed using square brackets or dot notation:

1 >>> df["sepal_l"]

2 0 5.1

3 1 4.9

4 2 4.7

5 ...

6 >>> df.sepal_l # Alternatively

7 0 5.1

8 1 4.9

9 2 4.7

10 ...

Listing 23. Accessing columns using Pandas’ syntax.

You can use square brackets to access individual cells of a column:

1 >>> df["sepal_l"][0]

2 5.1

3 >>> df.sepal_l [0] # Alternatively

4 5.1

Listing 24. Accessing individual cells of a DataFrame.
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To insert a column, for example the species of the plant, we can use the
following syntax:

1 >>> df["name"] = iris.target

2 >>> df.loc[df.name == 0, "name"] = "setosa"

3 >>> df.loc[df.name == 1, "name"] = "versicolor"

4 >>> df.loc[df.name == 2, "name"] = "virginica"

5 # Alternatively

6 >>> df["name"] = [iris.target_names[x] for x in iris.

target]

Listing 25. Inserting a new column into a DataFrame and replacing its numerical
values with text.

In Listing 25 above, we created a new column in our DataFrame called name.
This is a numerical class label, where 0 corresponds to setosa, 1 corresponds to
versicolor, and 2 corresponds to virginica. First, we add the new column on Line
1, and we then replace these numerical values with text, shown in Lines 2–4.
Alternatively, we could have just done this in one go, as shown on Line 6 (this
uses a more advanced technique called a list comprehension).

We use the loc and iloc keywords for selecting rows and columns, in this
case the 0th row:

1 >>> df.iloc [0]

2 sepal_l 5.1

3 sepal_w 3.5

4 petal_l 1.4

5 petal_w 0.2

6 name setosa

7 Name: 0, dtype: object

Listing 26. The iloc function is used to access items within a DataFrame by their
index rather than their label.

You use loc for selecting with labels, and iloc for selecting with indices.
Using loc, we first specify the rows, then the columns, in this case we want the
first three rows of the sepal l column:

1 >>> df.loc[:3, "sepal_l"]

2 0 5.1

3 1 4.9

4 2 4.7

5 3 4.6

6 Name: sepal_l , dtype: float64

Listing 27. Using the loc function also allows for more advanced commands.

Because we are selecting a column using a label, we use the loc keyword
above. Here we select the first 5 rows of the DataFrame using iloc:
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1 >>> df.iloc [:5]

2 sepal_l sepal_w petal_l petal_w name

3 0 5.1 3.5 1.4 0.2 setosa

4 1 4.9 3.0 1.4 0.2 setosa

5 2 4.7 3.2 1.3 0.2 setosa

6 3 4.6 3.1 1.5 0.2 setosa

7 4 5.0 3.6 1.4 0.2 setosa

8 5 5.4 3.9 1.7 0.4 setosa

Listing 28. Selecting the first 5 rows of the DataFrame using the iloc function. To
select items using text labels you must use the loc keyword.

Or rows 15 to 20 and columns 2 to 4:

1 >>> df.iloc [15:21 , 2:5]

2 petal_l petal_w name

3 15 1.5 0.4 setosa

4 16 1.3 0.4 setosa

5 17 1.4 0.3 setosa

6 18 1.7 0.3 setosa

7 19 1.5 0.3 setosa

8 20 1.7 0.2 setosa

Listing 29. Selecting specific rows and columns. This is done in much the same way
as NumPy.

Now, we may want to quickly examine the DataFrame to view some of its
properties:

1 >>> df.describe ()

2 sepal_l sepal_w petal_l petal_w

3 count 150.000000 150.000000 150.000000 150.000000

4 mean 5.843333 3.054000 3.758667 1.198667

5 std 0.828066 0.433594 1.764420 0.763161

6 min 4.300000 2.000000 1.000000 0.100000

7 25% 5.100000 2.800000 1.600000 0.300000

8 50% 5.800000 3.000000 4.350000 1.300000

9 75% 6.400000 3.300000 5.100000 1.800000

10 max 7.900000 4.400000 6.900000 2.500000

Listing 30. The describe function prints some commonly required statistics regarding
the DataFrame.

You will notice that the name column is not included as Pandas quietly ignores
this column due to the fact that the column’s data cannot be analysed in the
same way.

Sorting is performed using the sort values function: here we sort by the
sepal length, named sepal l in the DataFrame:
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1 >>> df.sort_values(by="sepal_l", ascending=True).head (5)

2 sepal_l sepal_w petal_l petal_w name

3 13 4.3 3.0 1.1 0.1 setosa

4 42 4.4 3.2 1.3 0.2 setosa

5 38 4.4 3.0 1.3 0.2 setosa

6 8 4.4 2.9 1.4 0.2 setosa

7 41 4.5 2.3 1.3 0.3 setosa

Listing 31. Sorting a DataFrame using the sort values function.

A very powerful feature of Pandas is the ability to write conditions within
the square brackets:

1 >>> df[df.sepal_l > 7]

2 sepal_l sepal_w petal_l petal_w name

3 102 7.1 3.0 5.9 2.1 virginica

4 105 7.6 3.0 6.6 2.1 virginica

5 107 7.3 2.9 6.3 1.8 virginica

6 109 7.2 3.6 6.1 2.5 virginica

7 117 7.7 3.8 6.7 2.2 virginica

8 118 7.7 2.6 6.9 2.3 virginica

9 122 7.7 2.8 6.7 2.0 virginica

10 125 7.2 3.2 6.0 1.8 virginica

11 129 7.2 3.0 5.8 1.6 virginica

12 130 7.4 2.8 6.1 1.9 virginica

13 131 7.9 3.8 6.4 2.0 virginica

14 135 7.7 3.0 6.1 2.3 virginica

Listing 32. Using a condition to select a subset of the data can be performed quickly
using Pandas.

New columns can be easily inserted or removed (we saw an example of a
column being inserted in Listing 25, above):

1 >>> sepal_l_w = df.sepal_l + df.sepal_w

2 >>> df["sepal_l_w"] = sepal_l_w # Creates a new column

3 >>> df.head (5)

4 sepal_l sepal_w petal_l petal_w name sepal_l_w

5 0 5.1 3.5 1.4 0.2 setosa 8.6

6 1 4.9 3.0 1.4 0.2 setosa 7.9

7 2 4.7 3.2 1.3 0.2 setosa 7.9

8 3 4.6 3.1 1.5 0.2 setosa 7.7

9 4 5.0 3.6 1.4 0.2 setosa 8.6

Listing 33. Adding and removing columns

There are few things to note here. On Line 1 of Listing 33 we use the dot
notation to access the DataFrame’s columns, however we could also have said
sepal l w = df["sepal l"] + df["sepal w"] to access the data in each col-
umn. The next important thing to notice is that you can insert a new column
easily by specifying a label that is new, as in Line 2 of Listing 33. You can delete
a column using the del keyword, as in del df["sepal l w"].
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Missing data is often a problem in real world datasets. Here we will remove
all cells where the value is greater than 7, replacing them with NaN (Not a
Number):

1 >>> import numpy as np

2 >>> len(df)

3 150

4 >>> df[df > 7] = np.NaN

5 >>> df = df.dropna(how="any")

6 >>> len(df)

7 138

Listing 34. Dropping rows that contain missing data.

After replacing all values greater than 7 with NaN (Line 4), we used the
dropna function (Line 5) to remove the 12 rows with missing values. Alter-
natively you may want to replace NaN values with a value with the fillna
function, for example the mean value for that column:

1 >>> for col in df.columns:

2 ... df[col] = df[col]. fillna(value=df[col].mean())

Listing 35. Replacing missing data with mean values.

As if often the case with Pandas, there are several ways to do everything,
and we could have used either of the following:

1 >>> df.fillna(lambda x: x.fillna(value=x.mean())

2 >>> df.fillna(df.mean())

Listing 36. Demonstrating several ways to handle missing data.

Line 1 demonstrates the use of a lambda function: these are functions which
are not declared and are a powerful feature of Python. Either of the above
examples in Listing 36 are preferred to the loop shown in Listing 35. Pandas offers
a number of methods for handling missing data, including advanced interpolation
techniques3.

Plotting in Pandas uses matplotlib (more on which later), where publication
quality prints can be created, for example you can quickly create a scatter matrix,
a frequently used plot in data exploration to find correlations:

1 >>> from pandas.tools.plotting import scatter_matrix

2 >>> scatter_matrix(df, diagonal="kde")

Listing 37. Several plotting features are built in to Pandas including scatter matrix
functionality as shown here.

Which results in the scatter matrix seen in Fig. 3. You can see that Pan-
das is intelligent enough not to attempt to print the name column—these are
known as nuisance columns and are silently, and temporarily, dropped for cer-
tain operations. The kde parameter specifies that you would like density plots
3 See http://pandas.pydata.org/pandas-docs/stable/missing data.html for more

methods on handling missing data.

http://pandas.pydata.org/pandas-docs/stable/missing_data.html
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Fig. 3. Scatter matrix visualisation for the Iris dataset.

for the diagonal axis of the matrix, alternatively you can specify hist to plot
histograms.

For many examples on how to use Pandas, refer to the SciPy Lectures website
under http://www.scipy-lectures.org/. Much more on plotting and visualisation
in Pandas can be found in the Pandas documentation, under: http://pandas.
pydata.org/pandas-docs/stable/visualization.html. Last, a highly recommend-
able book on the topic of Pandas and NumPy is Python for Data Analysis by
Wes McKinney [9].

Now that we have covered an introduction into Pandas, we move on to visu-
alisation and plotting using matplotlib and Seaborn.

8 Data Visualisation and Plotting

In Python, a commonly used 2D plotting library is matplotlib. It produces pub-
lication quality plots, an example of which can be seen in Fig. 4, which is created
as follows:

1 >>> import matplotlib.pyplot as plt # Convention

2 >>> x = np.random.randint (100, size =25)

3 >>> y = x*x

4 >>> plt.scatter(x, y); plt.show()

Listing 38. Plotting with matplotlib

This tutorial will not cover matplotlib in detail. We will, however, mention
the Seaborn project, which is a high level abstraction of matplotlib, and has the
added advantage that is creates better looking plots by default. Often all that is

http://www.scipy-lectures.org/
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
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Fig. 4. A scatter plot using matplotlib.

necessary is to import Seaborn, and plot as normal using matplotlib in order to
profit from these superior looking plots. As well as better looking default plots,
Seaborn has a number of very useful APIs to aid commonly performed tasks,
such as factorplot, pairplot, and jointgrid.

Seaborn can also perform quick analyses on the data itself. Listing 39 shows
the same data being plotted, where a linear regression model is also fit by default:

1 >>> import seaborn as sns # Convention

2 >>> sns.set() # Set defaults

3 >>> x = np.random.randint (100, size =25)

4 >>> y = x*x

5 >>> df = pd.DataFrame ({"x": x, "y": y})

6 >>> sns.lmplot(x="x", y="y", data=df); plt.show()

Listing 39. Plotting with Seaborn.

This will output a scatter plot but also will fit a linear regression model to
the data, as seen in Fig. 5.

For plotting and data exploration, Seaborn is a useful addition to the data
scientist’s toolbox. However, matplotlib is more often than not the library you
will encounter in tutorials, books, and blogs, and is the basis for libraries such
as Seaborn. Therefore, knowing how to use both is recommended.

9 Machine Learning

We will now move on to the task of machine learning itself. In the following sec-
tions we will describe how to use some basic algorithms, and perform regression,
classification, and clustering on some freely available medical datasets concerning
breast cancer and diabetes, and we will also take a look at a DNA microarrray
dataset.
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Fig. 5. Seaborn’s lmplot function will fit a line to your data, which is useful for quick
data exploration.

9.1 SciKit-Learn

SciKit-Learn provides a standardised interface to many of the most commonly
used machine learning algorithms, and is the most popular and frequently used
library for machine learning for Python. As well as providing many learning
algorithms, SciKit-Learn has a large number of convenience functions for com-
mon preprocessing tasks (for example, normalisation or k-fold cross validation).
SciKit-Learn is a very large software library. For tutorials covering nearly all
aspects of its usage see http://scikit-learn.org/stable/documentation.html. Sev-
eral tutorials in this chapter followed the structure of examples found on the
SciKit-Learn documentation website [10].

9.2 Linear Regression

In this example we will use a diabetes dataset that is available from SciKit-
Learn’s datasets package.

The diabetes dataset consists of 442 samples (the patients) each with 10
features. The features are the patient’s age, sex, body mass index (BMI), average
blood pressure, and six blood serum values. The target is the disease progression.
We wish to investigate if we can fit a linear model that can accurately predict
the disease progression of a new patient given their data.

For visualisation purposes, however, we shall only take one of the features of
the dataset, namely the Body Mass Index (BMI). So we shall investigate if there
is correlation between BMI and disease progression (bmi and prog in Table 3).

First, we will load the data and prepare it for analysis:

http://scikit-learn.org/stable/documentation.html
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Table 3. Diabetes dataset

age sex bmi map tc ldl hdl tch ltg glu prog

1 0.038 0.050 0.061 0.021 −0.044 −0.034 −0.043 −0.002 0.019 −0.017 151

2 −0.001 −0.044 −0.051 −0.026 −0.008 −0.019 0.074 −0.039 −0.068 −0.092 75
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442 −0.045 −0.044 −0.073 −0.081 0.083 0.027 0.173 −0.039 −0.004 0.003 57

1 >>> from sklearn import datasets , linear_model

2 >>> d = datasets.load_diabetes ()

3 >>> X = d.data

4 >>> y = d.target

5 >>> np.shape(X)

6 (442, 10)

7 >>> X = X[:,2] # Take only the BMI column (index 2)

8 >>> X = X.reshape(-1, 1)

9 >>> y = y.reshape(-1, 1)

10 >>> np.shape(X)

11 (442, 1)

12 >>> X_train = X[: -80] # We will use 80 samples for testing

13 >>> y_train = y[: -80]

14 >>> X_test = X[ -80:]

15 >>> y_test = y[ -80:]

Listing 40. Loading a diabetes dataset and preparing it for analysis.

Note once again that it is convention to store your target in a variable called
y and your data in a matrix called X (see Sect. 7.1 for more details). In the
example above, we first load the data in Lines 2–4, we then extract only the
3rd column, discarding the remaining 9 columns. Also, we split the data into a
training set, Xtrain, shown in the code as X train and a test set, Xtest, shown
in the code as X test. We did the same for the target vector y. Now that the
data is prepared, we can train a linear regression model on the training data:

1 >>> linear_reg = linear_model.LinearRegression ()

2 >>> linear_reg.fit(X_train , y_train)

3 LinearRegression (copy_X=True , fit_intercept=True , n_jobs

=1, normalize=False)

4 >>> linear_reg.score(X_test , y_test)

5 0.36469910696163765

Listing 41. Fitting a linear regression model to the data.

As we can see, after fitting the model to the training data (Lines 1–2), we test
the trained model on the test set (Line 4). Plotting the data is done as follows:

1 >>> plt.scatter(X_test , y_test)

2 >>> plt.plot(X_test , linear_reg.predict(X_test))

3 >>> plt.show()

Listing 42. Plotting the results of the trained model.
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Fig. 6. A model generated by linear regression showing a possible correlation between
Body Mass Index and diabetes disease progression.

A similar output to that shown in Fig. 6 will appear.
Because we wished to visualise the correlation in 2D, we extracted only one

feature from the dataset, namely the Body Mass Index feature. However, there
is no reason why we need to remove features in order to plot possible correla-
tions. In the next example we will use Ridge regression on the diabetes dataset
maintaining 9 from 10 of its features (we will discard the gender feature for
simplicity as it is a nominal value). First let us split the data and apply it to a
Ridge regression algorithm:

1 >>> from sklearn import cross_validation

2 >>> from sklearn.preprocessing import normalize

3 >>> X = datasets.load_diabetes ().data

4 >>> y = datasets.load_diabetes ().target

5 >>> y = np.reshape(y, (-1,1))

6 >>> X = np.delete(X, 1, 1) # remove col 1, axis 1

7 >>> X_train , X_test , y_train , y_test = cross_validation .

train_test_split (X, y, test_size =0.2)

Listing 43. Preparing a cross validation dataset.

We now have a shuffled train and test split using the cross validation
function (previously we simply used the last 80 observations in X as a test set,
which can be problematic—proper shuffling of your dataset before creating a
train/test split is almost always a good idea).

Now that we have preprocessed the data correctly, and have our train/test
splits, we can train a model on the training set X train:
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1 >>> ridge = linear_model.Ridge(alpha =0.0001)

2 >>> ridge.fit(X_train , y_train)

3 Ridge(alpha =0.0001 , copy_X=True , fit_intercept=True ,

max_iter=None , normalize=False , random_state=None ,

solver="auto", tol =0.001)

4 >>> ridge.score(X_test , y_test)

5 0.52111236634294411

6 >>> y_pred = ridge.predict(X_test)

Listing 44. Training a ridge regression model on the diabetes dataset.

We have made out predictions, but how do we plot our results? The linear
regression model was built on 9-dimensional data set, so what exactly should
we plot? The answer is to plot the predicted outcome versus the actual outcome
for the test set, and see if this follows any kind of a linear trend. We do this as
follows:

1 >>> plt.scatter(y_test , y_pred)

2 >>> plt.plot([y.min(), y.max()], [y.min(), y.max()])

Listing 45. Plotting the predicted versus the actual values.

The resulting plot can be see in Fig. 7.

Fig. 7. Plotting the predicted versus the actual values in the test set, using a model
trained on a separate training set.

However, you may have noticed a slight problem here: if we had taken a dif-
ferent test/train split, we would have gotten different results. Hence it is common
to perform a 10-fold cross validation:
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1 >>> from sklearn.cross_validation import cross_val_score ,

cross_val_predict

2 >>> ridge_cv = linear_model.Ridge(alpha =0.1)

3 >>> score_cv = cross_val_score(ridge_cv , X, y, cv=10)

4 >>> score_cv.mean()

5 0.45358728032634499

6 >>> y_cv = cross_val_predict(ridge_cv , X, y, cv=10)

7 >>> plt.scatter(y, y_cv)

8 >>> plt.plot([y.min(), y.max()], [y.min(), y.max()]);

Listing 46. Computing the cross validated score.

The results of the 10-fold cross validated scored can see in Fig. 8.

Fig. 8. Plotting predictions versus the actual values using cross validation.

9.3 Non-linear Regression and Model Complexity

Many relationships between two variables are not linear, and SciKit-Learn has
several algorithms for non-linear regression. One such algorithm is the Support
Vector Regression algorithm, or SVR. SVR allows you to learn several types of
models using different kernels. Linear models can be learned with a linear kernel,
while non-linear curves can be learned using a polynomial kernel (where you can
specify the degree) for example. As well as this, SVR in SciKit Learn can use a
Radial Basis Function, Sigmoid function, or your own custom kernel.

For example, the code below will produce similar data to the examples shown
in Sect. 8.
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1 >>> x = np.random.rand (100)

2 >>> y = x*x

3 >>> y[::5] += 0.4 # add 0.4 to every 5th item

4 >>> x.sort()

5 >>> y.sort()

6 >>> plt.scatter(x, y); plot.show();

Listing 47. Creating a non-smooth curve dataset for demonstration of various
regression techniques.

This will produce data similar to what is seen in Fig. 9. The data describes
an almost linear relationship between x and y. We added some noise to this in
Line 3 of Listing 47.

Fig. 9. The generated dataset which we will fit our regression models to.

Now we will fit a function to this data using an SVR with a linear kernel.
The code for this is as follows:

1 >>> lin = linear_model.LinearRegression ()

2 >>> x = x.reshape(-1, 1)

3 >>> y = y.reshape(-1, 1)

4 >>> lin.fit(x,y)

5 LinearRegression (copy_X=True , fit_intercept=True , n_jobs

=1, normalize=False)

6 >>> lin.fit(x, y)

7 >>> lin.score(x, y)

8 0.92222025374710559

Listing 48. Training a linear regression model on the generated non-linear data.

We will now plot the result of the fitted model over the data, to see for
ourselves how well the line fits the data:
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1 >>> plt.scatter(x,y, label="Data")

2 >>> plt.plot(x, lin.predict(x))

3 >>> plot.show()

Listing 49. Plotting the linear model’s predictions.

The result of this code can be seen in Fig. 10.

Fig. 10. Linear regression on a demonstration dataset.

While this does fit the data quite well, we can do better—but not with a
linear function. To achieve a better fit, we will now use a non-linear regression
model, an SVR with a polynomial kernel of degree 3. The code to fit a polynomial
SVR is as follows:

1 >>> from sklearn.svm import SVR

2 >>> poly_svm = SVR(kernel="poly", C=1000)

3 >>> poly_svm.fit(x, y)

4 SVR(C=1000, cache_size =200, coef0 =0.0, degree=3, epsilon

=0.1, gamma="auto", kernel="poly", max_iter=-1,

shrinking=True ,tol =0.001 , verbose=False)

5 >>> poly_svm.score(x, y)

6 0.94273329580447318

Listing 50. Training a polynomial Support Vector Regression model.

Notice that the SciKit-Learn API exposes common interfaces irregardless of
the model—both the linear regression algorithm and the support vector regres-
sion algorithm are trained in exactly the same way, i.e.: they take the same basic
parameters and expect the same data types and formats (X and y) as input. This
makes experimentation with many different algorithms easy. Also, notice that
once you have called the fit() function in both cases (Listings 48 and 50),
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a summary of the model’s parameters are returned. These do, of course, vary
from algorithm to algorithm.

You can see the results of this fit in Fig. 11, the code to produce this plot is
as follows:

1 >>> plt.scatter(x,y, label="Data")

2 >>> plt.plot(x, poly_svm.predict(x))

Listing 51. Plotting the results of the Support Vector Regression model with
polynomial kernel.

Now we will use an Radial Basis Function Kernel. This should be able to fit
the data even better:

Fig. 11. Fitting a Support Vector Regression algorithm with a polynomial kernel to a
sample dataset.

1 >>> rbf_svm = SVR(kernel="rbf", C=1000)

2 >>> rbf_svm.fit(x,y)

3 SVR(C=1000, cache_size =200, coef0 =0.0, degree=3, epsilon

=0.1, gamma=’auto’, kernel=’rbf’,max_iter=-1, shrinking=

True ,tol =0.001 , verbose=False)

4 >>> rbf_svm.score(x,y)

5 0.95583229409936088

Listing 52. Training a Support Vector Regression model with a Radial Basis Function
(RBF) kernel.

The result of this fit can be plotted:

1 >>> plt.scatter(x,y, label="Data")

2 >>> plt.plot(x, rbf_svm.predict(x))

Listing 53. Plotting the results of the RBF kernel model.
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Fig. 12. Non-linear regression using a Support Vector Regression algorithm with a
Radial Basis Function kernel.

The plot can be seen in Fig. 12. You will notice that this model probably fits
the data best.

A Note on Model Complexity. It should be pointed out that a more complex
model will almost always fit data better than a simpler model given the same
dataset. As you increase the complexity of a polynomial by adding terms, you
eventually will have as many terms as data points and you will fit the data
perfectly, even fitting to outliers. In other words, a polynomial of, say, degree
4 will nearly always fit the same data better than a polynomial of degree 3—
however, this also means that the more complex model could be fitting to noise.
Once a model has begun to overfit it is no longer useful as a predictor to new
data. There are various methods to spot overfitting, the most commonly used
methods are to split your data into a training set and a test set and a method
called cross validation. The simplest method is to perform a train/test split:
we split the data into a training set and a test set—we then train our model
on the training set but we subsequently measure the loss of the model on the
held-back test set. This loss can be used to compare different models of different
complexity. The best performing model will be that which minimises the loss on
the test set.

Cross validation involves splitting the dataset in a way that each data sample
is used once for training and for testing. In 2-fold cross validation, the data is
shuffled and split into two equal parts: one half of the data is then used for
training your model and the other half is used to test your model—this is then
reversed, where the original test set is used to train the model and the original
training set is used to test the newly created model. The performance is measured
averaged across the test set splits. However, more often than not you will find
that k-fold cross validation is used in machine learning, where, let’s say, 10%
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of the data is held back for testing, while the algorithm is trained on 90% of
the data, and this is repeated 10 times in a stratified manner in order to get the
average result (this would be 10-fold cross validation). We saw how SciKit-Learn
can perform a 10-fold cross validation simply in Sect. 9.2.

9.4 Clustering

Clustering algorithms focus on ordering data together into groups. In general
clustering algorithms are unsupervised—they require no y response variable as
input. That is to say, they attempt to find groups or clusters within data where
you do not know the label for each sample. SciKit-Learn has many clustering
algorithms, but in this section we will demonstrate hierarchical clustering on a
DNA expression microarray dataset using an algorithm from the SciPy library.
We will plot a visualisation of the clustering using what is known as a dendro-
gram, also using the SciPy library.

In this example, we will use a dataset that is described in Sect. 14.3 of
the Elements of Statistical Learning [11]. The microarray data are available
from the book’s companion website. The data comprises 64 samples of cancer
tumours, where each sample consists of expression values for 6830 genes, hence
X ∈ R

64×6830. As this is an unsupervised problem, there is no y target. First
let us gather the microarray data (ma):

1 >>> from scipy.cluster.hierarchy import dendrogram ,

linkage

2 >>> url = "http :// statweb.stanford.edu/~tibs/ElemStatLearn

/datasets/nci.data"

3 >>> labels = ["CNS","CNS","CNS","RENAL","BREAST","CNS",

"CNS","BREAST","NSCLC","NSCLC","RENAL","RENAL","RENAL",

"RENAL","RENAL","RENAL","RENAL","BREAST","NSCLC","RENAL

","UNKNOWN","OVARIAN","MELANOMA","PROSTATE","OVARIAN","

OVARIAN","OVARIAN","OVARIAN","OVARIAN","PROSTATE","

NSCLC","NSCLC","NSCLC","LEUKEMIA","K562B -repro","K562A -

repro","LEUKEMIA","LEUKEMIA","LEUKEMIA","LEUKEMIA","

LEUKEMIA","COLON","COLON","COLON","COLON","COLON","

COLON","COLON","MCF7A -repro","BREAST","MCF7D -repro","

BREAST","NSCLC","NSCLC","NSCLC","MELANOMA","BREAST","

BREAST","MELANOMA","MELANOMA","MELANOMA","MELANOMA","

MELANOMA","MELANOMA"]

4 >>> ma =pd.read_csv(url , delimiter="\s*", engine="python",

names=labels)

5 >>> ma = ma.transpose ()

6 >>> X = np.array(ma)

7 >>> np.shape(X)

8 (64, 6830)

Listing 54. Gathering the gene expression data and formatting it for analysis.

The goal is to cluster the data properly in logical groups, in this case into
the cancer types represented by each sample’s expression data. We do this using
agglomerative hierarchical clustering, using Ward’s linkage method:
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1 >>> Z = linkage(X, "ward")

2 >>> dendrogram(Z, labels=labels , truncate_mode="none");

Listing 55. Generating a dendrogram using the SciPy package.

This will produce a dendrogram similar to what is shown in Fig. 13.

Fig. 13. Dendrogram of the hierarchical clustering of a gene expression dataset relating
to cancer tumours.

Note that tumour names shown in Fig. 13 were used only to label the group-
ings and were not used by the algorithm (such as they might be in a supervised
problem).

9.5 Classification

In Sect. 9.4 we analysed data that was unlabelled—we did not know to what
class a sample belonged (known as unsupervised learning). In contrast to this,
a supervised problem deals with labelled data where are aware of the discrete
classes to which each sample belongs. When we wish to predict which class
a sample belongs to, we call this a classification problem. SciKit-Learn has a
number of algorithms for classification, in this section we will look at the Support
Vector Machine.

We will work on the Wisconsin breast cancer dataset, split it into a training
set and a test set, train a Support Vector Machine with a linear kernel, and test
the trained model on an unseen dataset. The Support Vector Machine model
should be able to predict if a new sample is malignant or benign based on the
features of a new, unseen sample:
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1 >>> from sklearn import cross_validation

2 >>> from sklearn import datasets

3 >>> from sklearn.svm import SVC

4 >>> from sklearn.metrics import classification_report

5 >>> X = datasets.load_breast_cancer ().data

6 >>> y = datasets.load_breast_cancer ().target

7 >>> X_train , X_test , y_train , y_test = cross_validation .

train_test_split (X, y, test_size =0.2)

8 >>> svm = SVC(kernel="linear")

9 >>> svm.fit(X_train , y_train)

10 SVC(C=1.0, cache_size =200, class_weight=None , coef0 =0.0,

decision_function_shape =None , degree=3, gamma="auto",

kernel="linear", max_iter=-1, probability=False ,

random_state=None , shrinking=True , tol =0.001 , verbose=

False)

11 >>> svm.score(X_test , y_test)

12 0.95614035087719296

13 >>> y_pred = svm.predict(X_test)

14 >>> classification_report(y_test , y_pred)

15

16 precision recall f1 -score support

17

18 malignant 1.00 0.89 0.94 44

19 benign 0.93 1.00 0.97 70

20

21 avg / total 0.96 0.96 0.96 114

Listing 56. Training a Support Vector Machine to classify between malignant and
benign breast cancer samples.

You will notice that the SVM model performed very well at predicting the
malignancy of new, unseen samples from the test set—this can be quantified
nicely by printing a number of metrics using the classification report func-
tion, shown on Lines 14–21. Here, the precision, recall, and F1 score (F1 =
2 · precision·recall/precision+recall) for each class is shown. The support column is a
count of the number of samples for each class.

Support Vector Machines are a very powerful tool for classification. They
work well in high dimensional spaces, even when the number of features is higher
than the number of samples. However, their running time is quadratic to the
number of samples so large datasets can become difficult to train. Quadratic
means that if you increase a dataset in size by 10 times, it will take 100 times
longer to train.

Last, you will notice that the breast cancer dataset consisted of 30 features.
This makes it difficult to visualise or plot the data. To aid in visualisation of
highly dimensional data, we can apply a technique called dimensionality reduc-
tion. This is covered in Sect. 9.6, below.
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9.6 Dimensionality Reduction

Another important method in machine learning, and data science in general, is
dimensionality reduction. For this example, we will look at the Wisconsin breast
cancer dataset once again. The dataset consists of over 500 samples, where each
sample has 30 features. The features relate to images of a fine needle aspirate of
breast tissue, and the features describe the characteristics of the cells present in
the images. All features are real values. The target variable is a discrete value
(either malignant or benign) and is therefore a classification dataset.

You will recall from the Iris example in Sect. 7.3 that we plotted a scatter
matrix of the data, where each feature was plotted against every other fea-
ture in the dataset to look for potential correlations (Fig. 3). By examining this
plot you could probably find features which would separate the dataset into
groups. Because the dataset only had 4 features we were able to plot each fea-
ture against each other relatively easily. However, as the numbers of features
grow, this becomes less and less feasible, especially if you consider the gene
expression example in Sect. 9.4 which had over 6000 features.

One method that is used to handle data that is highly dimensional is Principle
Component Analysis, or PCA. PCA is an unsupervised algorithm for reducing
the number of dimensions of a dataset. For example, for plotting purposes you
might want to reduce your data down to 2 or 3 dimensions, and PCA allows
you to do this by generating components, which are combinations of the original
features, that you can then use to plot your data.

PCA is an unsupervised algorithm. You supply it with your data, X, and
you specify the number of components you wish to reduce its dimensionality to.
This is known as transforming the data:

1 >>> from sklearn.decomposition import PCA

2 >>> from sklearn import datasets

3 >>> breast = datasets.load_breast_cancer ()

4 >>> X = breast.data

5 >>> np.shape(X)

6 (569, 30)

7 >>> y = breast.target

8 >>> pca = PCA(n_components =2)

9 >>> pca.fit(X)

10 >>> X_reduced = pca.transform(X)

11 >>> np.shape(X_reduced)

12 (569, 2)

13 >>> plt.scatter(X_reduced [:, 0], X_reduced [:, 1], c=y);

Listing 57. Performing dimensionality reduction on a breast cancer dataset using
Principle Component Analysis.

As you can see, the original dataset had 30 dimensions, X ∈ R
569×30, and

after the PCA fit and transform, we have now a reduced number of dimensions,
X ∈ R

569×2 which we specified using the n components=2 parameter in Line 8
of Listing 57 above.
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Now we have a reduced dataset, X reduced, and we can now plot this, the
results of which can be seen in Fig. 14. As can be seen in Fig. 14, this data may
even be somewhat linearly separable. So let’s try to fit a line to the data.

Fig. 14. The data appears somewhat linearly separable after a PCA transformation.

For this, we can use Logistic Regression—which despite its name is actually
a classification algorithm:

1 >>> from sklearn.linear_model import LogisticRegression

2 >>> lr = LogisticRegression ()

3 LogisticRegression(C=1.0, class_weight=None , dual=False ,

fit_intercept=True , intercept_scaling =1, max_iter =100,

multi_class="ovr", n_jobs=1, penalty="l2", random_state

=None , solver="liblinear", tol =0.0001 , verbose=0,

warm_start=False)

4 >>> lr.fit(X_reduced , y)

5 >>> lr.score(X_reduced , y)

6 0.93145869947275928

Listing 58. Logistic regression on the transformed PCA data.

If we plot this line (for code see the accompanying Jupyter notebook) we will
see something similar to that shown in Fig. 15.

Again, you would not use this model for new data—in a real world scenario,
you would, for example, perform a 10-fold cross validation on the dataset, choos-
ing the model parameters that perform best on the cross validation. This model
would be much more likely to perform well on new data. At the very least, you
would randomly select a subset, say 30% of the data, as a test set and train
the model on the remaining 70% of the dataset. You would evaluate the model
based on the score on the test set and not on the training set.
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Fig. 15. Logistic Regression algorithm applied to the dimensionally reduced breast
cancer dataset.

10 Neural Networks and Deep Learning

While a proper description of neural networks and deep learning is far beyond
the scope of this chapter, we will however discuss an example use case of one of
the most popular frameworks for deep learning: Keras4.

In this section we will use Keras to build a simple neural network to classify
the Wisconsin breast cancer dataset that was described earlier. Often, deep learn-
ing algorithms and neural networks are used to classify images—convolutional
neural networks are especially used for image related classification. However,
they can of course be used for text or tabular-based data as well. In this chapter
we will build a standard feed-forward, densely connected neural network and
classify a text-based cancer dataset in order to demonstrate the framework’s
usage.

In this example we are once again using the Wisconsin breast cancer dataset,
which consists of 30 features and 569 individual samples. To make it more chal-
lenging for the neural network, we will use a training set consisting of only 50%
of the entire dataset, and test our neural network on the remaining 50% of the
data.

Note, Keras is not installed as part of the Anaconda distribution, to install
it use pip:

1 $sudo pip install keras

Listing 59. As Keras is not part of the Anaconda distribution it must be installed
separately using pip.

4 For some metrics, see the Keras author’s tweet: https://twitter.com/fchollet/status/
765212287531495424.

https://twitter.com/fchollet/status/765212287531495424
https://twitter.com/fchollet/status/765212287531495424
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Keras additionally requires either Theano or TensorFlow to be installed. In
the examples in this chapter we are using Theano as a backend, however the
code will work identically for either backend. You can install Theano using pip,
but it has a number of dependencies that must be installed first. Refer to the
Theano and TensorFlow documentation for more information [12].

Keras is a modular API. It allows you to create neural networks by building
a stack of modules, from the input of the neural network, to the output of the
neural network, piece by piece until you have a complete network. Also, Keras
can be configured to use your Graphics Processing Unit, or GPU. This makes
training neural networks far faster than if we were to use a CPU. We begin by
importing Keras:

1 >>> import keras

2 Using Theano backend.

3 Using gpu device 0: GeForce GTX TITAN X (CNMeM is enabled

with initial size: 90.0 % of memory , cuDNN 4007)

Listing 60. Importing Keras will output important information regarding which GPU
(if any) the framework has access to.

We import the Keras library on Line 1. This will output a few informa-
tional messages (Lines 2–3), which are important and can highlight configura-
tion or driver issues relating to your GPU. If there are errors, you may want
to check the Theano configuration ~/.theanorc, or the Keras configuration file
~/.keras/keras.json.

Now we will begin to build a network. In this case, we will build a sequential
neural network with an input layer, one hidden layer, and an output layer. The
input layer is used to read in the data you wish to analyse. The hidden layer
will perform some operations on the input data which has been read in by the
input layer. The output layer will make a classification or regression prediction
based on what it receives from the hidden layer. In Keras we define this network
as follows:

1 >>> model = Sequential ()

2 >>> model.add(Dense (10, input_dim =30, init="uniform",

activation="relu"))

3 >>> model.add(Dense(6, init="uniform", activation="relu"))

4 >>> model.add(Dense(2, init="uniform", activation="softmax

"))

5 >>> model.compile(loss="categorical_crossentropy ",

optimizer="adamax", metrics =["accuracy"])

Listing 61. Defining a neural network using Keras.

The code in Listing 61, Line 1, first defines that you wish to create a sequential
neural network. We then use the add function to add layers to the network. Deep
Learning algorithms are neural networks with many layers. In this case we are
only adding a small number of fully connected layers. Once we have added our
input layer, hidden layers, and output layers (Lines 2–4) we can compile the
network (Line 5). Compiling the network will allow us to ensure that the network
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we have created is valid, and it is where you define some parameters such as the
type of loss function and the optimiser for this loss function. The type of loss
function depends on the type of model you wish to create—for regression you
might use the Mean Squared Error loss function, for example.

Once the network has compiled, you can train it using the fit function:

1 >>> h = model.fit(X_train , y_train , nb_epoch =20,

batch_size =10, validation_data =(X_test , y_test))

2 Train on 284 samples , validate on 285 samples

3 Epoch 1/20

4 loss: 0.66 - acc: 0.54 - val_loss: 0.65 - val_acc: 0.56

5 Epoch 2/20

6 loss: 0.64 - acc: 0.63 - val_loss: 0.62 - val_acc: 0.71

7 Epoch 3/20

8 loss: 0.69 - acc: 0.66 - val_loss: 0.67 - val_acc: 0.78

9 ...

10 Epoch 20/20

11 loss: 0.21 - acc: 0.91 - val_loss: 0.26 - val_acc: 0.90

Listing 62. Keras output when training a neural network.

Listing 62 shows the output of a model while it is learning (Lines 2–11). After
you have called the fit function, the network starts training, and the accuracy
and loss after each epoch (a complete run through the training set) is output for
both the training set (loss and acc) and the test set (val loss and val acc).
It important to watch all these metrics during training to ensure that you are
not overfitting, for example. The most important metric is the val acc metric,
which outputs the current accuracy of the model at a particular epoch on the
test data.

Once training is complete, we can make predictions using our trained model
on new data, and then evaluate the model:

1 >>> from sklearn.metrics import classification_report

2 >>> y_pred = model.predict_classes(X_test)

3 >>> metrics.classification_report(y_test , y_pred)

4

5 precision recall f1 -score support

6

7 malignant 0.96 0.78 0.86 110

8 benign 0.88 0.98 0.92 175

9

10 avg / total 0.91 0.90 0.90 285

Listing 63. Printing a classification report of the model’s performance.

We may want to view the network’s accuracy on the test (or its loss on
the training set) over time (measured at each epoch), to get a better idea how
well it is learning. An epoch is one complete cycle through the training data.
Fortunately, this is quite easy to plot as Keras’ fit function returns a history
object which we can use to do exactly this:
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1 >>> plt.plot(h.history["val_acc"])

2 >>> plt.plot(h.history["loss"])

3 >>> plt.show()

Listing 64. Plotting the accuracy and loss of the model over time (per epoch).

This will result in a plot similar to that shown in Fig. 16. Often you will also
want to plot the loss on the test set and training set, and the accuracy on the
test set and training set. You can see this in Figs. 17 and 18 respectively.

Plotting the loss and accuracy can be used to see if you are overfitting (you
experience tiny loss on the training set, but large loss on the test set) and to see
when your training has plateaued.

Fig. 16. The accuracy and loss over time for a neural network. In this plot, the loss is
reported for the network on the training set, while the accuracy is reported measured
against the test set.

We can have seen that using Keras to build a neural network and classify a
medical dataset is a relatively straightforward process. Be aware that introspec-
tion into the inner workings of neural network models can be difficult to achieve.
If introspection is very important, and this can be the case in medicine, then a
powerful algorithm is Decision Trees, where the introspection into the workings
of the trained model is possible.

11 Future Outlook

While Python has a large number of machine learning and data science tools,
there are numerous other mature frameworks for other platforms and languages.
In this section we shall highlight a number of other tools that are relatively new
and are likely to become more mainstream in the near future.
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Fig. 17. The loss of the network on the test set and the training set, over time (mea-
sured at each epoch).

Fig. 18. The accuracy of the network measured against the training set and the test
set, over time (measured at each epoch).

11.1 Caffe

Caffe is likely the most used and most comprehensive deep learning platform
available. Developed by the Berkeley Vision and Learning Centre, the software
provides a modular, schema based approach to defining models, without needing
to write much code [13]. Caffe was developed with speed in mind, and has been
written in C++ with Python bindings available. Due to its large developer com-
munity, Caffe is quickly up to date with new developments in the field. To install
Caffe, you must compile it from source, and a detailed description of how to do
this is not in this chapter’s scope. However, an easier alternative to compiling
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from source is to use the Caffe version provided by Nvidia’s DIGITS software,
described in Sect. 11.2.

11.2 DIGITS

Nvidia’s DIGITS is a front end for Caffe and Torch, that allows for model training
and data set creation via a graphical user interface. Models are defined by the
Caffe and Torch model definition schemas respectively. The front end is web-
based, a typical example is seen in Fig. 19. The front end provides visual feedback
via plots as to the model’s accuracy during training. The front end also makes
it easier to generate datasets and to organise your models and training runs.

Fig. 19. Nvidia DIGITS in use. Graphs provide visual feedback of the model’s accuracy,
loss, and other metrics during training.

The advantage to using DIGITS is that is comes with a pre-compiled version
of Caffe, saving you the effort of needing to compile Caffe yourself. See https://
developer.nvidia.com/digits for information on how to obtain DIGITS.

11.3 Torch

Torch is a popular machine learning library that is contributed to and used by
Facebook. It is installed by cloning the latest version from Github and compiling
it. See http://torch.ch/docs/getting-started.html for more information.

https://developer.nvidia.com/digits
https://developer.nvidia.com/digits
http://torch.ch/docs/getting-started.html
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11.4 TensorFlow

TensorFlow is a deep learning library from Google. For installation details see
https://www.tensorflow.org/get started/os setup.html. TensorFlow is relatively
new compared to other frameworks, but is gaining momentum. Keras can use
TensorFlow as a back-end, abstracting away some of the more technical details
of TensorFlow and allowing for neural networks to be built in a modular fashion,
as we saw in Sect. 10.

11.5 Augmentor

When working with image data, it is often the case that you will not have
huge amounts of data for training your algorithms. Deep learning algorithms
in particular require large amounts of data, i.e. many samples, in order to be
trained effectively. When you have small amounts of data, a technique called
data augmentation can be applied. Augmentation is the generation of new data
through the manipulation of a pre-existing dataset. Image augmentation is the
generation of new image data through the manipulation of an image dataset.

As an example, say you had a certain number of images, you could quickly
double this set of images by flipping each one of them through the horizontal
axis, as shown in Fig. 20.

Fig. 20. A histopathology image of cancer cells spreading to bone microenviron-
ment, flipped along its horizontal axis, creating a new image which can also be used
for training purposes. Image source: The Web site of the National Cancer Institute
(http://www.cancer.gov)/Indiana University Simon Cancer Center. Creators: Khalid
Mohammad and Theresa Guise. URL: https://visualsonline.cancer.gov/details.cfm?
imageid=10583.

Much work is performed in medicine, in fields such as cell detection or tumour
classification, using deep learning. For example in [14] the authors use deep
neural networks to detect mitosis in histology images. Augmentation can, in
certain cases, aid the analysis of medical image data by artificially generating
more training samples.

To aid image augmentation itself, we have created a software tool called
Augmentor. The Augmentor library is available in Python and Julia versions (in

https://www.tensorflow.org/get_started/os_setup.html
http://www.cancer.gov
https://visualsonline.cancer.gov/details.cfm?imageid=10583
https://visualsonline.cancer.gov/details.cfm?imageid=10583
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the interests of full disclosure, the first author of this paper is also the author of
the Python version of this software package).

You can install Augmentor for Python using pip:

1 $ pip install Augmentor

Listing 65. Installing the Augmentor software package using pip. For the Julia version
see the package’s documentation.

Documentation for the package, including samples and links to the package’s
source code can be found under http://augmentor.readthedocs.io. For instal-
lation instructions on how to install Augmentor for Julia, see the package’s
documentation at http://augmentorjl.readthedocs.io.

Although larger datasets are important for deep learning, as neural networks
consist of many millions of parameters that need to be tuned in order to learn
something useful, in the healthcare domain practitioners can be confronted with
much smaller datasets or data that consists of very rare events, where traditional
approaches suffer due to insufficient training samples. In such cases interactive
machine learning (iML) may be of help [15].

12 Conclusion

We hope this tutorial paper makes easier to begin with machine learning in
Python, and to begin machine learning using open source software. What we have
attempted to show here are the most important data preprocessing tools, the
most frequently used Python machine learning frameworks, and have described
a broad spectrum of use cases from linear regression to deep learning. For more
examples, see the chapter’s accompanying Jupyter notebooks, which will be peri-
odically updated.

Acknowledgements. We would like to thank the two reviewers for their suggestions
and input which helped improve this tutorial.
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