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Preface

Machine learning (ML) studies algorithms that can learn from data to gain knowledge
from experience and to make decisions and predictions. Health Informatics (HI) studies
the effective use of probabilistic information for decision making. Consequently, to
bridge these two fields is of eminent importance for improving human health and
well-being.

As a matter of fact, the discipline of health is increasingly turning into a data science
and health systems worldwide are confronted with big data. This may be beneficial, as
algorithms that improve through experience from large data sets can be of great help
here, and automatic ML (aML) approaches show impressive results. Moreover, much
health data are in arbitrarily high dimensions, where manual analysis is simply
impossible, hence fully automatic approaches by taking the human-out-of-the-loop
make great sense.

However, sometimes we are confronted with small data sets, or rare events, where
aML approaches suffer from insufficient training samples. Here interactive ML
(iML) may be of help, which can be defined as algorithms that can interact with agents
and can optimize their learning behavior through these interactions, where the agents
can also be human. Furthermore, such a human in the loop can be beneficial in solving
computationally hard problems. Particularly a doctor-in-the-loop can be helpful, e.g., in
subspace clustering, protein folding, or k-anonymization, where human expertise can
help reduce an exponential search space through heuristic selection of samples.
Therefore, what would otherwise remain an NP-hard problem, may decrease greatly in
complexity by making use of human intelligence and human intuition involved in the
ML pipeline.

Intelligence is the core topic of research and Demis Hassabis from Google Deep-
Mind summarizes it precisely within his mission statement: “Solve intelligence. Then
solve everything else.” A synergistic combination of methodologies and approaches
from two areas attack the challenge of “solving intelligence” from two perspectives:
Human Computer Interaction (HCI) and Knowledge Discovery and Data Mining
(KDD).

Consequently, this HCI-KDD approach fosters the successful application of
machine learning for health informatics, by encouraging an integrated approach, pro-
moting a concerted cross-disciplinary effort of experts from various disciplines,
including (1) data science, (2) algorithms, (3) network science, (4) topology,
(5) time/entropy, (6) data visualization, and last but not least (7) privacy, data pro-
tection, safety and security.

Hence, the mission of the HCI-KDD expert network is to bring together profes-
sionals from diverse areas with various backgrounds and different views, but who share
a common vision: “solving intelligence,” following the HCI-KDD motto “Science is to
test crazy ideas — engineering is to bring those ideas into business.”



VIII Preface

The HCI-KDD expert network organizes special sessions, the first took place in
Graz (Austria), the second in Macau (China), the third in Maribor (Slovenia), the fourth
in Regensburg (Germany), the fifth in Lisbon (Portugal), the sixth in Warsaw (Poland),
the seventh in Banff (Canada), the eight in London (UK), the ninth in Salzburg
(Austria), and the tenth is planned to take place in Reggio di Calabria (Italy) in summer
2017.

Volume 9605 of the Lecture Notes in Computer Science series is a state-of-the-art
survey (SOTA) and an output of the international HCI-KDD expert network. The
volume features 22 carefully selected and peer-reviewed chapters on hot topics in ML
for HI. Each chapter discuss open problems and future challenges in order to stimulate
further research and international progress in this field.

To acknowledge here all those who contributed to the efforts and stimulating dis-
cussions would be impossible. Many people contributed to the development of this
volume, either directly or indirectly, and it would be simply impossible to list all
of them, so let me thank my international, national, and local colleagues, my family and
friends for all their nurturing and positive encouragement. Last but not least I thank the
Springer management team and the Springer production team for their smooth support;
a cordial thank you to all!

October 2016 Andreas Holzinger



Organization

Scientific Committee: HCI-KDD Expert Network

I am grateful for the support of all members of the expert network HCI-KDD,
http://hci-kdd.org/international-expert-network

MED = medical doctor (“doctor-in-the-loop”); IND = industry member, ESR =
early-stage researcher, e.g., PhD student); 1 = data science; 2 = ML; 3 =
graphs/network science; 4 = topology; 5 = entropy; 6 = visualization; 7 = privacy,
data protection, safety and security.
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Abstract. Machine Learning (ML) studies algorithms which can learn
from data to gain knowledge from experience and to make decisions and
predictions. Health Informatics (HI) studies the effective use of proba-
bilistic information for decision making. The combination of both has
greatest potential to rise quality, efficacy and efficiency of treatment and
care. Health systems worldwide are confronted with “big data” in high
dimensions, where the inclusion of a human is impossible and automatic
ML (aML) show impressive results. However, sometimes we are con-
fronted with complex data, “little data”, or rare events, where aML-
approaches suffer of insufficient training samples. Here interactive ML
(iML) may be of help, particularly with a doctor-in-the-loop, e.g. in sub-
space clustering, k-Anonymization, protein folding and protein design.
However, successful application of ML for HI needs an integrated app-
roach, fostering a concerted effort of four areas: (1) data science, (2) algo-
rithms (with focus on networks and topology (structure), and entropy
(time), (3) data visualization, and last but not least (4) privacy, data
protection, safety & security.

Keywords: Machine learning - Health informatics

1 Introduction and Motivation

Since the early days of Machine Learning (ML) in the 1950ies [1] the goal was
to learn from data, to gain knowledge from experience and to make predictions.
The field accelerated by the introduction of statistical learning theory in the
late 1960ies; although it was at that time a purely theoretical analysis of the
problem of function estimation from a given collection of data [2]. With the
introduction of new statistical learning algorithms (e.g. support vector machine
[3]) statistical learning theory became more and more interesting as a tool for
developing algorithms of practical use for the estimation of multidimensional
functions [4].

Today, ML is the most growing subfield in computer science and Health
Informatics (HI) is the greatest application challenge [5,6]. This is not surprising,
because in the health domain we are confronted with probabilistic, uncertain,
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unknown, incomplete, heterogenous, noisy, dirty, unwanted and missing data sets
which endangers the modelling of artifacts. Moreover, in the biomedical world
we are confronted with a further problem: time. Whilst most computational
approaches assume homogeneity in time, people and processes in the health
domain are not homogenous in time and cannot be forecasted, sometimes it
can happen the completely unexpected. That makes automatic solutions in this
domain difficult, yet sometimes impossible.

A grand challenge in HI is to discover relevant structural patterns and/or
temporal patterns (“knowledge”) in such data, which are often hidden and not
accessible to the human expert but would be urgently needed for better deci-
sion support. Another problem is that most of the data sets in HI are weakly-
structured and non-standardized [7], and most data is in dimensions much higher
than 3, and despite human experts are excellent at pattern recognition in dimen-
sions of <3, high dimensional data sets make manual analysis difficult, yet often
impossible.

The adoption of data-intensive methods can be found throughout various
branches of health, leading e.g. to more evidence-based decision-making and to
help to go towards personalized medicine [8]: A grand goal of future biomedicine
is to tailor decisions, practices and therapies to the individual patient. Whilst
personalized medicine is the ultimate goal, stratified medicine has been the cur-
rent approach, which aims to select the best therapy for groups of patients who
share common biological characteristics. Here, ML approaches are indispens-
able, for example causal inference trees (CIT) and aggregated grouping, seeking
strategies for deploying such stratified approaches. Deeper insight of personalized
treatment can be gained by studying the personal treatment effects with ensem-
ble CITs [9]. Here the increasing amount of heterogenous data sets, in particular
“-omics” data, for example from genomics, proteomics, metabolomics, etc. [10]
make traditional data analysis problematic and optimization of knowledge dis-
covery tools imperative [11,12]. On the other hand, many large data sets are
indeed large collections of small data sets. This is particularly the case in per-
sonalized medicine where there might be a large amount of data, but there is
still a relatively small amount of data for each patient available [13]. Conse-
quently, in order to customize predictions for each individual it is necessary to
build a model for each patient along with the inherent uncertainties, and to
couple these models together in a hierarchy so that information can be “bor-
rowed” from other similar patients. This is called model personalization, and is
naturally implemented by using hierarchical Bayesian approaches including e.g.
hierarchical Dirichlet processes [14] or Bayesian multi-task learning [15].

This variety of problems in the application of ML for HI requires a syner-
gistic combination of various methodological approaches which are combined in
the HCI-KDD approach, which is described in Sect.3. In Sect.4 an example
curriculum is briefly discussed and Sect.5 provides an outlook to three future
challenges.
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2 Glossary and Key Terms

automatic Machine Learning (aML) in bringing the human-out-of-the-loop is
the grand goal of ML and works well in many cases with “big data” [16].

Big Data is a buzz word to indicate the flood of data today; however, large data
sets are necessary for aML approaches to learn effectively, the problem is rather
in “dirty data” and sometimes we have large collections of “little data”.

Cognitive Science mainly deals with questions of human intelligence, problem
solving and decision making and is manifested to a large extent in the field of
Human-Computer Interaction (HCI) [17].

Computer Science today has a large focus on machine learning algorithms and
these are manifested to a large part in the field of Knowledge Discovery/Data
Mining (KDD). Deep Learning allows models consisting of multiple layers to
learn representations of data with multiple levels of abstraction, e.g. in speech
recognition, visual object recognition, object detection, genomics etc. [6].

Dimensionality of data is high, when the number of features p is larger than the
number of observations n by magnitudes. A good example for high dimensional
data is gene expression study data [18].

Entropy quantifies the expected value of information contained in data and can
be used as a measure of uncertainty, hence it is of tremendous importance for
HI with many applications to discover e.g. anomalies in data [19].

Health has been defined by the World Health Organization (WHO) in 1946 as
“a state of complete physical, mental, and social well-being” and is undeniably
one of the most important aspects concerning every human [20].

Health Informatics is concerned with the use of computational intelligence for
the management of processes relevant for human health and well-being, ranging
from the collective to the individual [21].

interactive Machine Learning (iML) in bringing the human-in-the-loop is nec-
essary if we have small amounts of data (“little data”), rare events or deal with
complex problems [22,23].

Knowledge Discovery (KDD) includes exploratory analysis and modeling of data
and the organized process to identify valid, novel, useful and understandable pat-
terns from these data sets [24].

Topological Data Mining uses algebraic geometry to recover parameters of mix-
tures of high-dimensional Gaussian distributions [25].

Visualization can be defined as transforming the symbolic into the geometric
and the graphical presentation of information, with the goal of providing the
viewer with a qualitative understanding of the information contents [12,26].
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3 The HCI-KDD Approach

The original idea of the HCI-KDD approach [8,27,28] is in combining aspects of
the best of two worlds: Human—Computer Interaction (HCI), with emphasis on
cognitive science, particularly dealing with human intelligence, and Knowledge
Discovery/Data Mining (KDD), with emphasis on machine learning, particularly
dealing with computational intelligence [29].

Cognitive science (CS) studies the principles of human learning from data to
understand intelligence. The Motto of Demis Hassabis from Google Deepmind
is “Solve intelligence - then solve everything else” [30]. Our natural surrounding
is in R3 and humans are excellent in perceiving patterns out of data sets with
dimensions of <3. In fact, it is amazing how humans extract so much knowledge
from so little data [31] which is a perfect motivator for the concept of iML.

The problem in HI is that we are challenged with data of arbitrarily high
dimensions [7,18,32]. Within such data, relevant structural patterns and/or tem-
poral patterns (“knowledge”) are hidden, difficult to extract, hence not accessible
to a human. A grand challenge is to bring the results from high dimensions into
the lower dimension, where the health experts are working on 2D surfaces on
different devices (from tablet to large wall-displays), which can represent data
only in R2.

Machine Learning (ML) studies the principles of computational learning from
data to understand intelligence [5]. Computational learning has been of general
interest for a very long time, but we are far away from solving intelligence:
facts are not knowledge and descriptions are not insight. A good example is the
famous book by Nobel prize winner Eric Kandel “Principles of Neural Science”
[33] which doubled in volume every decade - effectively, our goal should be to
make this book shorter!

HCI and KDD did not harmonize in the past. HCI had its focus on specific
experimental paradigms, embedded deeply in Cognitive Science; and aimed to
be cognitively/neutrally plausible. KDD had its focus on computational learning
problems and tried to optimize in the range of 1% because it was embedded in
Computer Engineering, and aimed to have working systems to solve practical
problems - whether mimicking the human brain or not.

Consequently, a concerted effort of both worlds and a comprehensive under-
standing of the data ecosystem along with a multi-disciplinary skill-set, encom-
passing seven specializations: (1) data science, (2) algorithms, (3) network sci-
ence, (4) graphs/topology, (5) time/entropy, (6) data visualization and visual
analytics, and (7) privacy, data protection, safety and security can be highly
beneficial for solving the aforementioned problems (Fig.1).

3.1 Research Track 1 DAT: Data Preprocessing, Integration, Fusion

Understanding the data ecosystem is of eminent importance in HI. Considering
the context in which the data is produced, we can determine between four large
data pools: (1) Biomedical research data (e.g. clinical trial data, -omics data
[10]), e.g. from genomic sequencing technologies (Next Generation Sequencing,
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Fig. 1. The big picture of the HCI-KDD approach: The horizontal process chain (blue
box) encompasses the whole machine learning pipeline from physical aspects of raw
data, to human aspects of data visualization; while the vertical topics (green box)
include important aspects of structure (graphs/networks), space (computational topol-
ogy) and time (entropy); privacy, data protection, safety and security are mandatory
topics within the health domain and provide kind of a base compartment (Color figure
online) (Image taken from hci-kdd.org)

NGS etc.), microarrays, transcriptomic technologies, proteomic and metabolomic
technologies, etc., which all plays important roles for biomarker discovery and
drug design [34,35]. (2) Clinical data (e.g. patient records, clinicians documen-
tations, medical terminologies (e.g. ICD, SNOMED-CT), medical surveys, labo-
ratory tests, clinical and physiological parameters, ECG, EEG etc.), (3) Health
business data (e.g. costs, utilization, management data, logistics, accounting,
billing, resource planning, prediction etc.), and (4) private patient data, pro-
duced by various customers and stakeholders outside the clinical context (e.g.,
wellness data, Ambient Assisted Living data, sport data, insurance data, etc.)
[36]. The US Department of Health and Human Services (HHS) created a tax-
onomy of health data with the following dimensions [37]: (1) Demographics and
socio-economic Data: age, race, sex, education, etc. (2) Health Status Data:
Health status of the patient, e.g., morbidities, problems, complaints, disabili-
ties, diagnoses, symptoms, etc. (3) Health Resources Data: Characteristics and
capacity of the health system, etc. (4) Healthcare Utilization Data: Characteris-
tics(e.g., time, duration, tests, procedures, treatment) about medical care visits
like discharge, stay, use of healthcare services, etc. (5) Healthcare Financing and
Expenditure Data: Costs, charges, insurance status, etc. (6) Healthcare Out-
comes of current and past prevention, treatments, etc. (7) Other data: -omics
data, environmental exposures, etc.
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Technically, there exist various levels of data structures [38] from physical
level as basic indissoluble unit (bit, Shannon) to the logical level (Booleans,
integers, floating-point numbers, strings, etc.) and conceptual (abstract) Level
(arrays, lists, trees, graphs, etc.). Finally the technical level is the application
data (text, graphics, images, audio, video, multimedia) an the Hospital Level
includes narrative (“free text”) patient record data (structured/unstructured
and standardized /non-standardized), -omics data (genomics, proteomics,
metabolomics, lipidomics, transcriptomics, microbiomics, fluxomics, phenomics,
cytomics, connectomics, environomics, exposomics, exonomics, foodomics, topo-
nomics, etc.), numerical measurements (physiological data, lab results, vital
signs, etc.), recorded signals (ECG, EEG, EOG, etc.), Images (standard X-ray,
MR, CT, PET, SPECT, microscopy, confocal laserscans, ultrasound imaging,
molecular imaging, etc.)

Data preprocessing is often a required first step for machine learning because
ML algorithms learn from data and the learning outcome for problem solving
heavily depends on the proper data needed to solve a particular problem. Data
preprocessing, however, inflicts a heavy danger, e.g. during the preprocessing
data can be inadvertently modified, e.g. “interesting” data may be removed.
Consequently, for discovery purposes it would be wise to have a look at the
original raw data first.

Data integration is a hot topic generally and in health informatics specifi-
cally and solutions can bridge the gap between clinical and biomedical research
[39]. This is becoming even more important due to the increasing amounts of
heterogeneous, complex patient related data sets, resulting from various sources
including picture archiving and communication systems (PACS) and radiologi-
cal information systems (RIS), hospital information systems (HIS), laboratory
information systems (LIS), physiological and clinical data repositories, and all
sorts of -omics data from laboratories, using samples from Biobanks. The latter
include large collections of DNA sequence data, proteomic and metabolic data;
resulting from sophisticated high-throughput analytical technologies. Along with
classical patient records, containing large amounts of unstructured and semi-
structured information, integration efforts incorporate enormous problems, but
at the same time offers new possibilities for translational research. However,
before starting any data integration or machine learning task, it is necessary
to get a deep understanding of the underlying physics of the available data. In
this paper we provide an overview about the modern data landscape in a clini-
cal and biomedical research domain, with a focus on typical clinical/biomedical
research, imaging and -omics data-sources, and the structure, quality and size
of the produced patient related health information.

Whilst data integration is on combining data from different sources and pro-
viding users with a unified view on these data (e.g. combining research results
from different bioinformatics repositories), data fusion is matching various data
sets which represent one and the same object into a single, consistent, and clean
representation [40]; in health informatics these unified views are particularly
important in high-dimensions, e.g. for integrating heterogeneous descriptions of
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the same set of genes [41]. The main expectation is that fused data is more
informative than the original inputs.

Capturing all information describing a biological system is the implicit objec-
tive of all -omics methods, however, genomics, transcriptomics, proteomics,
metabolomics, etc. need to be combined to approach this goal: valuable informa-
tion can be obtained using various analytical techniques such as nuclear magnetic
resonance, liquid chromatography, or gas chromatography coupled to mass spec-
trometry. Each method has inherent advantages and disadvantages, but are com-
plementary in terms of biological information, consequently combining multiple
data sets, provided by different analytical platforms is of utmost importance.
For each platform, the relevant information is extracted in the first step. The
obtained latent variables are then fused and further analyzed. The influence of
the original variables is then calculated back and interpreted. There is plenty of
open future research to include all possible sources of information [42].

3.2 Research Track 2 ML: Machine Learning Algorithms

There are uncountable future challenges in the design, development, experimen-
tation and evaluation of ML algorithms generally and in the application to health
informatics specifically. The ultimate goal ever since is to develop algorithms
which can automatically learn from data, hence can improve with experience
over time without any human-in-the-loop. Most colleagues from the ML commu-
nity are concentrating on automatic Machine Learning (aML), with the grand
goal of excluding humans, hence to make it fully automatic and best practice
real-world examples can be found in speech processing [43], recommender sys-
tems [44], or autonomous vehicles [45], just to mention a few.

However, the application of such aML approaches in the complex health
domain seems elusive in the near future and a good example are Gaussian
processes, where aML approaches (e.g. standard kernel machines) struggle on
function extrapolation problems which are trivial for human learners. Conse-
quently, interactive ML-approaches, by integrating a human-into-the-loop (e.g.
a human kernel [46]), thereby making use of human cognitive abilities, is a
promising approach for solving problems in the complex health domain. iML
can be defined as algorithms that can interact with both computational agents
and human agents and can optimize their learning behaviour through these
interactions [22]. In Active Learning such agents are referred to as oracles [47].

iML-approaches can be of particular interest to solve problems, where we are
lacking big data sets, deal with complex data and/or rare events, where tradi-
tional learning algorithms suffer due to insufficient training samples. Here the
doctor-in-the-loop can help, where human expertise and long-term experience
can assist in solving problems which otherwise would remain NP-hard; exam-
ples include subspace clustering [48], protein folding [49], or privacy preserving
ML, which is an important issue, fostered by anonymization, in which a record is
released only if it is indistinguishable from k other entities in the data, but where
k-anonymity is highly dependent on spatial locality in order to effectively imple-
ment the technique in a statistically robust way. In high dimensionalities data
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becomes sparse, hence the concept of spatial locality is not easy to define. Con-
sequently, it becomes difficult to anonymize the data without an unacceptably
high amount of information loss [50] - here iML could be of help.

Despite these apparent findings, so far there is little quantitative evidence
on effectiveness and efficiency of iML-algorithms. Moreover, there is practically
no evidence, how such interaction may really optimize such algorithms. Even
though such “natural” intelligent agents are present in large numbers on our
world and are studied by cognitive scientists for quite a while [51]. One possible
explanation for the dominance of aML-approaches could be, that these are much
better to evaluate and therefore are more rapidly publishable. In iML approaches
methodically correct evaluations are not only much more difficult and time-
consuming, but also very difficult or even impossible to replicate, due to the fact
that human agents are subjective, individual and therefore can not be copied -
in contrast to data, algorithms and computational agents. Robustness of iML is
an open question.

3.3 Research Track 3 GDM Graph-Based Data Mining

Graph-Theory [52] provides powerful tools to map data structures and to find
novel connections between single data objects [53,54]. The inferred graphs can
be further analyzed by using graph-theoretical, statistical and machine learning
techniques [55]. A mapping of already existing and in medical practice approved
knowledge spaces as a conceptual graph (as e.g. demonstrated in [56]) and a sub-
sequent visual and graph-theoretical analysis can bring novel insights on hidden
patterns in the data, which exactly is the goal of knowledge discovery. Another
benefit of a graph-based data structure is in the applicability of methods from
network topology and network analysis and data mining, e.g. small-world phe-
nomenon [57,58], and cluster analysis [59,60]. However, the first question is “How
to get a graph?”, or simpler “How to get point sets?”, because point cloud data
sets (PCD) are used as primitives for such approaches. The answer to this ques-
tion is not trivial (see [61]), apart from “naturally available” point clouds, e.g.
from laser scanners, protein structures [62], or text mapped into a set of points
(vectors) in R™. Sticking on the last example, graphs are intuitively more infor-
mative as example words/phrase representations [63], and graphs are the best
studied data structures in computer science, with a strong relation to logical
languages [64]. The beginning of graph-based data mining approaches was two
decades ago, some pioneering work include [65-67]. According to [64] there are
five theoretical bases of graph-based data mining approaches such as (1) sub-
graph categories, (2) subgraph isomorphism, (3) graph invariants, (4) mining
measures and (5) solution methods. Furthermore, there are five groups of differ-
ent graph-theoretical approaches for data mining such as (1) greedy search based
approach, (2) inductive logic programming based approach, (3) inductive data-
base based approach, (4) mathematical graph theory based approach and (5)
kernel function based approach [68]. However, the main disadvantage of graph-
theoretical text mining is the computational complexity of the graph represen-
tation, consequently the goal of future research in the field of graph-theoretical
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approaches for text mining is to develop efficient graph mining algorithms which
implement effective search strategies and data structures [63].

In [69] a graph-theoretical approach for text mining is used to extract relation
information between terms in “free-text” electronic health care records that are
semantically or syntactically related. Another field of application is the text
analysis of web and social media for detecting influenza-like illnesses [70].

Moreover there can be content-rich relationship networks among biological
concepts, genes, proteins and drugs developed with topological text data mining
like shown in [71]. According to [72] network medicine describes the clinical
application field of topological text mining due to addressing the complexity of
human diseases with molecular and phenotypic network maps.

3.4 Research Track 4 TDM Topological Data Mining

Closely related to graph-based methods are topological data mining methods;
for both we need point cloud data sets - or at least distances - as input. A
set of such primitives forms a space, and if we have finite sets equipped with
proximity or similarity measure functions sim,: S — [0,1], which measure
how “close” or “similar” (q + 1)-tuples of elements of S are, we speak about a
topological space. A value of 0 means totally different objects, while 1 corresponds
to equivalent items. Interesting are manifolds, which can be seen as a topological
space, which is locally homeomorphic (that means it has a continuous function
with an inverse function) to a real n-dimensional space. In other words: X is a
d-manifold if every point of X has a neighborhood homeomorphic to B¢; with
boundary if every point has a neighborhood homeomorphic to B or IB%‘_f_ [73].

A topological space may be viewed as an abstraction of a metric space,
and similarly, manifolds generalize the connectivity of d-dimensional Euclidean
spaces B¢ by being locally similar, but globally different. A d-dimensional chart
at p € X is a homeomorphism ¢ : U — R? onto an open subset of R?, where
U is a neighborhood of p and open is defined using the metric. A d-dimensional
manifold (d-manifold) is a topological space X with a d-dimensional chart at
every point x € X [74].

For us also interesting are simplicial complexes (“simplicials”) which are
spaces described in a very particular way, the basis is in Homology. The rea-
son is that it is not possible to represent surfaces precisely in a computer system
due to limited computational storage; thus, surfaces are sampled and represented
with triangulations. Such a triangulation is called a simplicial complex, and is a
combinatorial space that can represent a space. With such simplicial complexes,
the topology of a space from its geometry can be separated. Zomorodian [74]
compares it with the separation of syntax and semantics in logic.

The two most popular techniques are homology and persistence. The con-
nectivity of a space is determined by its cycles of different dimensions. These
cycles are organized into groups, called homology groups. Given a reasonably
explicit description of a space, the homology groups can be computed with lin-
ear algebra. Homology groups have a relatively strong discriminative power and
a clear meaning, while having low computational cost. In the study of persistent
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homology the invariants are in the form of persistence diagrams or barcodes [75].
For us it is important to extract significant features, and thus these methods are
useful, since they provide robust and general feature definitions with emphasis
on global information, e.g. Alpha Shapes [76]. A recent example for topologi-
cal data mining is given by [77]: Topological text mining, which builds on the
well-known vector space model, which is a standard approach in text mining
[78]: a collection of text documents (corpus) is mapped into points (=vectors) in
R™. Moreover, each word can be mapped into so-called term vectors, resulting
in a very high dimensional vector space. If there are n words extracted from
all the documents then each document is mapped to a point (term wector) in
R™ with coordinates corresponding to the weights. This way the whole corpus
can be transformed into a point cloud data set. Instead of the Euclidean metric
the use of a similarity (proximity) measure is sometimes more convenient; the
cosine similarity measure is a typical example: the cosine of the angle between
two vectors (points in the cloud) reflects how “similar” the underlying weighted
combinations of keywords are. Amongst the many different text mining methods
(for a recent overview refer to [79]); topological approaches are promising, but
need a lot of further research. One of the main tasks of applied topology is to
find and analyse higher dimensional topological structures in lower dimensional
spaces (e.g. point cloud from vector space model as discussed in [80]). A com-
mon way to describe topological spaces is to first create simplicial complexes,
because a simplicial complex structure on a topological space is an expression of
the space as a union of simplices such as points, intervals, triangles, and higher
dimensional analogues. Simplicial complexes provide an easy combinatorial way
to define certain topological spaces [81]. A simplical complex K is defined as a
finite collection of simplices such that ¢ € K and 7, which is a face of o, implies
7 € K, and 0,0’ € K implies cNo’ can either be a face of both o and ¢’ or empty
[82]. One way to create a simplical complex is to examine all subsets of points,
and if any subsets of points are close enough, a p-simplex (e.g. line) is added to
the complex with those points as vertices. For instance, a Vietoris-Rips complex
of diameter € is defined as VR(e) = o|diam(o) < €, where diam(e) is defined as
the largest distance between two points in ¢ [82]. A common way a analyse the
topological structure is to use persistent homology, which identifies cluster, holes
and voids therein. It is assumed that more robust topological structures are the
one which persist with increasing e. For detailed information about persistent
homology, see [82-84].

3.5 Research Track 5 EDM Entropy-Based Data Mining

Information Entropy can be used as a measure of uncertainty in data. To date,
there have emerged many different types of entropy methods with a large num-
ber of different purposes and applications; here we mention only a few: Graph
Entropy was described by [85] to measure structural information content of
graphs, and a different definition, more focused on problems in information and
coding theory, was introduced by Kérner in [86]. Graph entropy is often used for
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the characterization of the structure of graph-based systems, e.g. in mathemati-
cal biochemistry, but also for any complex network [87]. In these applications the
entropy of a graph is interpreted as its structural information content and serves
as a complexity measure, and such a measure is associated with an equivalence
relation defined on a finite graph; by application of Shannons Eq. 2.4 in [88] with
the probability distribution we get a numerical value that serves as an index of
the structural feature captured by the equivalence relation.

Topological Entropy (TopEn), was introduced by [89] with the purpose to
introduce the notion of entropy as an invariant for continuous mappings: Let
(X,T) be a topological dynamical system, i.e., let X be a nonempty compact
Hausdorff space and T': X — X a continuous map; the TopEn is a nonnegative
number which measures the complexity of the system [90].

Hornero et al. [91] performed a complexity analysis of intracranial pressure
dynamics during periods of severe intracranial hypertension. For that purpose
they analyzed eleven episodes of intracranial hypertension from seven patients.
They measured the changes in the intracranial pressure complexity by applying
ApEn, as patients progressed from a state of normal intracranial pressure to
intracranial hypertension, and found that a decreased complexity of intracranial
pressure coincides with periods of intracranial hypertension in brain injury. Their
approach is of particular interest to us, because they proposed classification
based on ApEn tendencies instead of absolute values.

Pincus et al. took in [92] heart rate recordings of 45 healthy infants with
recordings of an infant one week after an aborted sudden infant death syndrom
(SIDS) episode. They then calculated the ApEn of these recordings and found
a significant smaller value for the aborted SIDS infant compared to the healthy
ones.

3.6 Research Track 6 DAV Data Visualization

Visualization is a very important method of transforming the symbolic into the
geometric, offers opportunities for discovering knowledge in data and fosters
insight into data [26]. There are endless examples for the importance of visual-
ization in health, e.g. Otasek et al. [12] present a work on Visual Data Mining
(VDM), which is supported by interactive and scalable network visualization and
analysis. Otasek et al. emphasize that knowledge discovery within complex data
sets involves many workflows, including accurately representing many formats
of source data, merging heterogeneous and distributed data sources, complex
database searching, integrating results from multiple computational and mathe-
matical analyses, and effectively visualizing properties and results. Mueller et al.
[93] demonstrate the successful application of data Glyphs in a disease analyser
for the analysis of big medical data sets with automatic validation of the data
mapping, selection of subgroups within histograms and a visual comparison of
the value distributions. A good example for the catenation of visualization with
ML is clustering: Clustering is a descriptive task to identify homogeneous groups
of data objects based on the dimensions (i.e. values of the attributes). Clustering
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methods are often subject to other systems, for example to reduce the possibil-
ities of recommender systems (e.g. Tag-recommender on Youtube videos [94]);
for example clustering of large high-dimensional gene expression data sets has
widespread application in -omics [95]. Unfortunately, the underlying structure
of these natural data sets is often fuzzy, and the computational identification of
data clusters generally requires (human) expert knowledge about cluster num-
ber and geometry. The high-dimensionality of data is a huge problem in health
informatics general and in ML in particular, and the curse of dimensionality is
a critical factor for clustering: With increasing dimensionality the volume of the
space increases so fast that the available data becomes sparse, hence it becomes
impossible to find reliable clusters; also the concept of distance becomes less
precise as the number of dimensions grows, since the distance between any two
points in a given data set converges; moreover, different clusters might be found
in different sub spaces, so a global filtering of attributes is also not sufficient.
Given that large number of attributes, it is likely that some attributes are cor-
related, therefore clusters might exist in arbitrarily oriented affinity sub spaces.
Moreover, high-dimensional data likely includes irrelevant features, which may
obscure to find the relevant ones, thus increases the danger of modeling artifacts.
The problem is that we are confronted with subjective similarity functions; the
most simplest example is the grouping of cars in a showroom: a technician will
most likely group the cars differently than a mother of three kids (cylinder capac-
ity versus storage capacity). This subspace clustering problem is hard, because
for the grouping very different characteristics can be used: highly subjective
and context specific. What is recognized as comfort for end-users of individual
systems, can be applied in scientific research for the interactive exploration of
high-dimensional data sets [96]. Consequently, iML-approaches can be beneficial
to support finding solutions in hard biomedical problems [48]. Actually, humans
are quite good in comparison for the determination of similarities and dissimilar-
ities - described by nonlinear multidimensional scaling (MDS) models [97]. MDS
models represent similarity relations between entities as a geometric model that
consists of a set of points within a metric space. The output of an MDS routine
is a geometric model of the data, with each object of the data set represented as
a point in n-dimensional space.

3.7 Research Track 7 DAP Privacy

Privacy aware machine learning and privacy preserving machine learning is an
important issue [98,99], fostered by anonymization concepts, in which a record
is released only if it is indistinguishable from k other entities in the data.
k-anonymity is highly dependent on spatial locality in order to effectively imple-
ment the technique in a statistically robust way and in high dimensions data
becomes sparse, hence the concept of spatial locality is not easy to define. Conse-
quently, it becomes difficult to anonymize the data without an unacceptably high
amount of information loss [50]. Consequently, the problem of k-Anonymization
is on the one hand NP-hard, on the other hand the quality of the result obtained



Machine Learning for Health Informatics 13

can be measured at the given factors (k-Anonymity, I-diversity, t-closeness, delta-
presence), but not with regard to the actual security of the data, i.e. the re-
identification through an attacker. For this purpose certain assumptions about
the background knowledge of the hypothetical enemy must be made. With regard
to the particular demographic and cultural clinical environment this is best done
by a human agent. Thus, the problem of (k-) Anonymization represents a natural
application domain for iML.

4 Example Curriculum

Most universities offer excellent courses on machine learning, neural networks,
data mining, and visualization, so a course on ML for HI should be complemen-
tary and follow a research-based teaching (RBT) style, showing the students
state-of-the-art science and engineering example from biomedicine and the life
sciences for discussing the underlying concepts, theories, paradigms, models,
methods and tools on practical cases and examples (Fig.2). For practical rea-
sons the exercises can be done with Python [100], which is to date still the

[ Cognition } [ Visualization J [ Data fusion ]
eN®
Decision [ Interaction M Integration\

| CONCEPTS || THEORIES | PARADIGMS | MODELS || METHODS | TOOLS |

Dimensionality} [ Complexity} [ Unsupervised} [Gaussian P. ] [ Regularization J [ Python ]

[ ReinforcementJ [ Bayesian p(x) J [Supervised ] [ Graphical M. ] { Scaling J [ Church ]
{ Representation } [ Entropy/KL} { Semi-Superv. ] { Neural Nets] [ Aggregation }
[ No-free-lunch } [ Vapnik-Chernov. J [ iML ] [ Kernel/SVM J { Evolution J

{ Multi-Task Learning } [ Transfer Learning } { Multi-Agent-Hybrid-Systems }

{ Data Protection, Safety and Security and Privacy Aware Machine Learning (PAML) }

{ Application, Validation, Evaluation, Impact — Social, Economic, Acceptance, Trust

Fig. 2. The top level view of the contents of the Machine Learning for Health Infor-
matics course at Vienna University of Technology, developed by A. Holzinger. Besides
from focusing on practical examples from biology, biomedicine, clinical medicine and
healthcare, issues including privacy, safety, security, data protection, validation, eval-
uation, social and economic impact, acceptance and trust are important parts of this
course
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most used ML-tool worldwide, and probabilistic programming [101] should be
fostered (with at least a short touch on, e.g., Anglican, Church, or PyMC).
The course 183.A83 at Vienna University of Technology (http://hci-kdd.org/
machine-learning-for-health-informatics-course/) is consisting of twelve lectures
plus practicals for a one-semester course on Master level with the following
contents:

Lecture 01: Introduction and Overview of ML and HI explains the HCI-KDD
approach, shows the complexity of the application area health informatics,
demonstrates what aML can do and shows the limitations of aML, and the
usefulness iML with a human-in-the-loop on practical examples and outlines
some future challenges.

Lecture 02: Fundamentals of Data and Information discusses the underlying
physics of data and biomedical data sources, taxonomy of data, data struc-
tures, data integration, data fusion, and a clinical view on data, information
and knowledge; focuses then on probabilistic information, information theory,
cross-entropy, mutual information and Kullback-Leibler Divergence.

Lecture 03: Dimensionality Reduction and Subspace Clustering provides an intro-
duction into classification vs. clustering, feature spaces, feature engineering, dis-
cusses the curse of dimensionality and methods of dimensionality reduction, and
demonstrates the usefulness of subspace clustering with the expert-in-the-loop;
finally discusses the hard question “what is interesting?” by showing projection
pursuit.

Lecture 04: Human Learning vs. Machine Learning: Decision Making starts with
reinforcement learning and discusses the differences of humans and machines
on the example of decision making under uncertainty, shows then multi-armed
bandits and applications in health and finally gives an outlook on the importance
of transfer learning.

Lecture 05: Probabilistic Graphical Models I starts with reasoning under uncer-
tainty and expected utility theory, highlights the importance of graphs and
knowledge representation in network medicine, shows some basic metrics and
measures and discusses practical examples of graphical model learning and how
to get graphs.

Lecture 06: Probabilistic Graphical Models II continues with graphical models
and decision making, shows factor graphs, graph isomorphism and applications,
Bayes nets, ML on graphs, similarity and correspondence, and probabilistic topic
models for natural language to get insight into unknown document collections,
concluded by Graph bandits.

Lecture 07: Evolutionary Computing for HI I poses medical decision making as
search problem and shows evolutionary principles (Lamarck, Darwin, Baldwin,
Mendel) and applications of evolutionary computing with the special case of
genetic algorithms and k-armed bandits and genetic algorithms (global opti-
mization problem).
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Lecture 08: Evolutionary Computing for HI II continues with examples from
medical applications for EA, discusses natural computing concepts and their
usefulness in principle, focuses then on Ant Colony Optimization and the travel-
ing salesman problem with motivation on protein folding, simulated annealing,
and the human-in-the-loop, and finalizes with multi-agents and neuro evolution.

Lecture 09: Towards Open Data Sets: Privacy Aware Machine Learning moti-
vates privacy, data protection safety and security and discusses anonymization
methods (k-Anonymization, l-diversity, t-closeness, delta-presence, pertubative
approaches, differentially private kernel learning, etc.), and how iML can help
anonymization.

Lecture 10: Active Learning, Multi-Task Learning and Transfer Learning dis-
cusses the principles of active learning, preference learning, active preference
learning with an excursion on PAC-learning, and programming by feedback,
highlights some problems of the human-in-the-loop and continues with MTL
and TL, where humans are still better than machines.

Lecture 11: Machine Learning from Text focuses on natural language under-
standing and the problems involved, and highlights word vectors for sentiment
analysis (continous bag-of-words model, skip-gram model, global vectors for word
embedding) with giving an outline on neural probabilistic language models and
alternative models.

Lecture 12: Discrete Multi-Agent Systems on the topic of stochastic simulation
of tumor kinetics and key problems for cancer research, tumor growth modeling,
cellular potts model, tumor growth visualization and towards using open tumor
growth data for machine learning in the international context [102].

5 Future Challenges

Much future research has to be done, particularly in the fields of Multi-Task
Learning and Transfer Learning to go towards Multi-Agent-Hybrid Systems as
applications of the iML-approach.

5.1 Future Challenge 1: Multi-task Learning

Multi-task learning (MTL) aims to improve the prediction performance by
learning a problem together with multiple, different but related other problems
through shared parameters or a shared representation. The underlying principle
is bias learning based on probable approximately correct learning (PAC learning)
[103]. To find such a bias is still the hardest problem in any ML task and essen-
tial for the initial choice of an appropriate hypothesis space, which must be large
enough to contain a solution, and small enough to ensure a good generalization
from a small number of data sets. Existing methods of bias generally require the
input of a human-expert-in-the-loop in the form of heuristics and domain knowl-
edge to ensure the selection of an appropriate set of features, as such features
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are key to learning and understanding. However, such methods are limited by
the accuracy and reliability of the expert s knowledge (robustness of the human)
and also by the extent to which that knowledge can be transferred to new tasks
(see next subsection). Baxter (2000) [104] introduced a model of bias learning
which builds on the PAC learning model which concludes that learning multiple
related tasks reduces the sampling burden required for good generalization and
bias that is learnt on sufficiently many training tasks is likely to be good for
learning novel tasks drawn from the same environment (the problem of transfer
learning to new environments is discussed in the next subsection). A practical
example is regularized MTL [105], which is based on the minimization of reg-
ularization functionals similar to Support Vector Machines (SVMs), that have
been successfully used in the past for singletask learning. The regularized MTL
approach allows to model the relation between tasks in terms of a novel kernel
function that uses a taskcoupling parameter and largely outperforms singletask
learning using SVMs. However, multi-task SVMs are inherently restricted by the
fact that SVMs require each class to be addressed explicitly with its own weight
vector. In a multi-task setting this requires the different learning tasks to share
the same set of classes. An alternative formulation for MTL is an extension of
the large margin nearest neighbor algorithm (LMNN) [106]. Instead of relying
on separating hyper-planes, its decision function is based on the nearest neigh-
bor rule which inherently extends to many classes and becomes a natural fit
for MTL. This approach outperforms state-of-the-art MTL classifiers, however,
much open research challenges remain open in this area [107].

5.2 Future Challenge 2: Transfer Learning

A huge problem in ML is the phenomenon of catastrophic forgetting, i.e. when
learned one task and transferred to another task the ML algorithm “forgets”
how to perform the learned task. This is a well-known problem which affects ML-
systems and was first described in the context of connectionist networks [108];
whereas natural cognitive systems rarely completely disrupt or erase previously
learned information, i.e. natural cognitive systems do not forget “catastrophi-
cally” [109]. Consequently the challenge is to discover how to avoid the problem
of catastrophic forgetting, which is a current hot topic [110].

According to Pan & Yang (2010) [111] a major assumption in many ML
algorithms is, that both the training data and future (unknown) data must be
in the same feature space and required to have the same distribution. In many
real-world applications, particularly in the health domain, this is not the case:
Sometimes we have a classification task in one domain of interest, but we only
have sufficient training data in another domain of interest, where the latter data
may be in a completely different feature space or follows a different data distrib-
ution. In such cases transfer learning would greatly improve the performance of
learning by avoiding much expensive data-labeling efforts, however, much open
questions remain for future research [112].
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5.3 Future Challenge 3: Multi-agent-Hybrid Systems

Multi-Agent-Systems (MAS) are collections of many agents interacting with each
other. They can either share a common goal (for example an ant colony, bird
flock, or fish swarm etc.), or they can pursue their own interests (for exam-
ple as in an open-market economy). MAS can be traditionally characterized by
the facts that (a) each agent has incomplete information and/or capabilities
for solving a problem, (b) agents are autonomous, so there is no global system
control; (c) data is decentralized; and (d) computation is asynchronous [113].
For the health domain of particular interest is the consensus problem, which
formed the foundation for distributed computing [114]. The roots are in the
study of (human) experts in group consensus problems: Consider a group of
humans who must act together as a team and each individual has a subjec-
tive probability distribution for the unknown value of some parameter; a model
which describes how the group reaches agreement by pooling their individual
opinions was described by DeGroot (1974) [115] and was used decades later for
the aggregation of information with uncertainty obtained from multiple sensors
[116] and medical experts [117]. On this basis Olfati-Saber et al. (2007) [118] pre-
sented a theoretical framework for analysis of consensus algorithms for networked
multi-agent systems with fixed or dynamic topology and directed information
flow. In complex real-world problems, e.g., for the epidemiological and ecological
analysis of infectious diseases, standard models based on differential equations
very rapidly become unmanageable due to too many parameters, and here MAS
can also be very helpful [119]. Moreover, collaborative multi-agent reinforcement
learning has a lot of research potential for machine learning [120].

6 Conclusion

There are uncountable future challenges in ML generally and in the application of
ML to health informatics specifically. The ultimate goal is to design and develop
algorithms which can automatically learn from data, hence can improve with
experience over time without any human-in-the-loop. However, the application
of such aML approaches in the complex health domain seems elusive in the near
future and a good example are Gaussian processes, where aML approaches (e.g.
standard kernel machines) struggle on function extrapolation problems which
are trivial for human learners. Consequently, iML-approaches, by integrating a
human-into-the-loop (e.g. a human kernel [46]), thereby making use of human
cognitive abilities, seems to be a promising approach. iML-approaches can be
of particular interest to solve problems in HI, where we are lacking big data
sets, deal with complex data and/or rare events, where traditional learning algo-
rithms suffer due to insufficient training samples. Here the doctor-in-the-loopcan
help, where human expertise and long-term experience can assist in solving prob-
lems which otherwise would remain NP-hard. A cross-domain integration and
appraisal of different fields provides an atmosphere to foster different perspec-
tives and opinions and is an ideal think-tank and incubator to foster novel ideas
and a fresh look on different methodologies to put these ideas into Business.
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Abstract. The decision tree is one of the earliest predictive models in
machine learning. In the soft decision tree, based on the hierarchical
mixture of experts model, internal binary nodes take soft decisions and
choose both children with probabilities given by a sigmoid gating func-
tion. Hence for an input, all the paths to all the leaves are traversed
and all those leaves contribute to the final decision but with different
probabilities, as given by the gating values on the path. Tree induction
is incremental and the tree grows when needed by replacing leaves with
subtrees and the parameters of the newly-added nodes are learned using
gradient-descent. We have previously shown that such soft trees gener-
alize better than hard trees; here, we propose to bag such soft decision
trees for higher accuracy. On 27 two-class classification data sets (ten
of which are from the medical domain), and 26 regression data sets, we
show that the bagged soft trees generalize better than single soft trees
and bagged hard trees. This contribution falls in the scope of research
track 2 listed in the editorial, namely, machine learning algorithms.

Keywords: Decision trees - Regression trees + Regularization - Bagging

1 Introduction

Trees are frequently used in computer science to decrease search complexity from
linear to log time. In machine learning too, decision trees are frequently used
and unlike other non-parametric methods such as the k-nearest neighbor where
an input test pattern needs to be compared with all the training patterns, the
decision tree uses a sequence of tests at internal decision nodes to quickly find
the leaf corresponding to the region of interest. In classification, a leaf carries the
class label and in regression, it carries a constant which is the numeric regression
value [1,2].

In the canonical hard binary decision tree, each decision node applies a test
and depending on the outcome, one of the branches is taken. This process is
repeated recursively starting from the root node until a leaf node is hit at which
point the class label or the numeric regression value stored at the leaf constitutes
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the output. In the hard decision tree, therefore, a single path from the root to
one of the leaves is traversed and the output is given by the value stored in that
particular leaf.

There are different decision tree architectures depending on the way deci-
sion is made at a node: The most typical is the wunivariate tree where the
test uses a single input attribute and compares it against a threshold value
[2]. In the multivariate linear tree, the test defines a linear discriminant in the
d-dimensional space [3,4]. In the multivariate nonlinear tree, the test can use a
nonlinear discriminant—for example, a multilayer perceptron [5]. In the ommni-
variate tree, the test can use any of the above, chosen by a statistical model
selection procedure [6].

So from a geometrical point of view, in the d-dimensional input space, each
univariate split defines a boundary that is orthogonal to one of the axes; a
multivariate linear split defines a hyperplane of arbitrary orientation, and a
multivariate nonlinear split can define a nonlinear boundary.

In the hierarchical mixture of experts, Jordan and Jacobs [7] replace each
expert with a complete system of mixture of experts in a recursive manner.
Though it can also be viewed as an ensemble method, this architecture defines
a soft decision tree where gating networks act as decision nodes. The soft gating
function in a binary decision node chooses both children, but with probabilities
(that sum up to 1). Hence, the node merges the decision of its left and right
subtrees unlike a hard decision node that chooses one of them.

This implies that in a soft tree for a test input, we are traversing all the
paths to all the leaves and all those leaves contribute to the final decision, but
with different probabilities, as specified by the gating values on each path. In our
proposed extension [8], the tree structure is not fixed but is trained incrementally
one subtree at a time, where the parameters of the node and the leaf values are
learned using gradient-descent.

Because the soft decision tree is multivariate and uses all input attributes in
all nodes, it may have high variance on small data sets. As a variance reduction
procedure, in this paper, we use bagging [9] which has been used successfully
to combine hard decision trees in many applications; in our case of soft decision
trees too, the use of bagging corresponds to averaging over soft trees trained
with different data splits and initial parameter values in gradient-descent, and
hence leads to a more robust estimate.

This paper is organized as follows: In Sect.3, we review the soft decision
tree model and its training algorithm. We discuss bagging soft decision trees in
Sect. 4. We give our experimental results in Sect.5 and conclude in Sect. 6.

Our work on extensions of decision trees falls in the scope of research track
2 of the editorial, namely machine learning algorithms.

2 Glossary and Key Terms

Bagging is an ensemble method where from a single training set, we draw multi-
ple training sets using bootstrapping, with each of these sets we train a different
model, and then combine their predictions, for example, using voting.
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Bootstrapping is a resampling method where we randomly draw from a set with
replacement.

Decision tree is a hierarchical model composed of decision nodes applied to the
input and leaves that contain class labels.

Ensemble contains multiple trained models that are trained separately. In bag-
ging, each of these models is trained on a slightly different data sets and hence
may fail on slightly different cases, so accuracy can be increased by combining
these multiple predictions.

Multivariate model uses all of the input attributes in making a decision whereas
a univariate model uses only one of the input attributes.

Soft decision is different from a hard decision in that if there are m outcomes,
in a hard decision we choose one of the m and ignore the remaining m — 1; in a
soft decision, we choose all m but with different probabilities—these probabilities
sum up to 1.

3 Soft Decision Trees

3.1 The Model

As opposed to the hard decision node which directs instances to one of its chil-
dren depending on the outcome of the test at node m, g.,(x), a soft decision
node directs instances to all its children with probabilities calculated by a gating
function g (x) [7]. Without loss of generalization, let us consider a binary node
where we have left and right children:

Fin(@) = Fy(2)gm(x) + Fi () (1~ gm()) (1)

This is a recursive definition where FZ(x) for example corresponds to the
value returned by the subtree whose root is the left child of node m. Recursion
ends when the subtree is just a leaf, in which case the value stored in the leaf is
returned.

In the case of a hard tree, the hard decision node returns g,,(x) € {0,1},
whereas in a soft tree, g,,(x) € [0, 1], as given by the sigmoid function:

1
= 1T+ expl—(wha + wio)]

gm() (2)

Separating the regions of responsibility of the left and right children can be
seen as two-class classification problem and from that perspective, the gating
model implements a discriminative (logistic linear) model estimating the poste-
rior probability of the left child: P(L|z) = g,,(x) and P(R|z) =1 — g (x).

In a hard tree, because g,,(x) returns 0 or 1, in Eq. (1), the node copies the
value of its left or right child, whereas in a soft tree because g,,(x) returns a
value between 0 and 1, the node returns a weighted average of its two children.
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This allows a smooth transition at the decision boundary, leads to a smoother fit
and hence better generalization. Because the tree is traversed recursively, Eq. (1)
is defined recursively and as a result, all the paths to all the leaves are traversed
and at the root node, we get a weighted average of all the leaves where the weight
of each leaf is given by the product of the gating values on the path to each leaf.

Incidentally, this model can easily be generalized to m-ary nodes where each
node has m > 2 children, by replacing Eq. (1) with a convex combination of the
values of the m children and the sigmoid of Eq. (2) by the softmax.

3.2 Training

Learning the soft decision tree is incremental and recursive, as with the hard
decision tree [8]. The algorithm starts with one node and fits a leaf. Then, as
long as there is improvement, it replaces the leaf by a subtree of a node and its
two children leaves. This involves optimizing the gating parameters at the node
and the values of its children leaves.

The error function is cross-entropy for classification and square loss for regres-
sion (In classification, the final output should be a probability and that is why
for a two-class task, the final output at root is filtered through a sigmoid):

Z(r(t) —y®)2 Regression
E={{ 3
Z rMlogy® + (1 —r®)log(l —y®) Classification )

t

At each growth step, node m, which was previously a leaf is replaced by a
decision node and its two children leaves. The gating parameters (w,,) of the
decision node and the numeric leaf values of the children nodes (2%, z£) are set
to small random values initially and are then updated using gradient-descent:

oF
Awyy,; = g = n(r —y)[Fk(x) — Fi(@)]amgm (@) (1 — gm(z))z;
OF
Azl = gL = n(r — y)Qmgm ()
OF

Azﬁ = —Wazﬁ = 77(7“ - y)am(l - gm(m))

where 7 is the learning factor,

n#root
am = II On,p.tcft9p() + Onp.right(1 = gp())

n=m,p=n.parent

and 6; ; is the Kronecker delta.

Note that only the three nodes of the last added subtree (current decision node
and the leaf values of its children) are updated and all the other nodes are fixed.
But since soft trees use a soft gating function, all the data points have an effect
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on these parameters, whereas in a hard tree, only those data points that fall in
the partition of the current node have an effect. Any input instance should pass
through all the intermediate decision nodes until it reaches the added node and its
leaves and the error should be discounted by all the gating values along the way
to find the “back-propagated error” for that instance (denoted by « above). This
value is then used to update the gating parameters and the leaf values.

In the hierarchical mixture of experts [7], the tree structure is fixed and
the whole tree is learned using gradient-descent or expectation-maximization,
whereas in our case, the tree is built incrementally, one subtree at a time. One
recent work by Ruta and Li [10] is the fuzzy regression tree which is differ-
ent from our work in several aspects. First, their splits are defined over kernel
responses, hence, are univariate (one-dimensional), whereas our gating functions
are multivariate and defined directly over the input space. Second, they apply an
exhaustive search to learn the parameters (as in the hard univariate tree, which
is possible because the splits use a single dimension) whereas we use gradient-
descent.

For cases where the input dimensionality is high, we have previously proposed
to use Ly and Lg-norm regularization where we add a model complexity term
to the usual misfit error of Eq. (3) to get an augmented error [11]:

d
Z |wpmi| Li-norm

E'=E+ XS =0

2
E W, Lo-norm
i=0

and then we use the partial derivative of the augmented error in gradient-descent.
A trades off data misfit and model complexity. w,,; are the gating parameters of
all nodes m in the tree for all attributes i =1,...,d.

Especially as we go down the tree, we localize in parts of the input space
where certain dimensions may not be necessary or when certain dimensions are
highly correlated; at the same time, as we go down the tree, we have fewer data
that reach there; so, regularization helps.

4 Bagging Soft Decision Trees

Bagging, short for bootstrap aggregating, was introduced by Breiman [9]. The
idea is to generate a set of training data from an initial data by bootstrapping,
that is, drawing with replacement, then train a predictor on each training data,
and then combine their predictions. Because drawing is done with replacement,
certain instances may be drawn more than once, and certain instances not at
all.

Different training data will differ slightly and the resulting trained predic-
tors can be seen as noisy estimates to the ideal discriminant; combining them
removes noise and leads to a smooth estimator with low variance, and hence
better generalization [12].
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Decision trees are frequently used in bagging and here we use soft decision
trees to see if we also have the advantage due to bagging when we combine
soft trees. The soft decision tree has multivariate splits and risks overfitting
when the input dimensionality is high and data set is small; hence averaging by
combination will have a regularizing effect.

Additional to the randomness due to data, there is also the randomness due
to the initialization of parameters before gradient-descent; averaging over trees
will also average this randomness out. A single soft tree may overfit due to noisy
instances in the data or a bad initialization, but we expect the majority of the
models to converge to good trees and hence by combining their predictions, we
get an improved overall estimate.

Figure 1 shows the pseudocode of the algorithm BaggedSoftTree that creates
B soft trees for a data set A containing N instances. For each, first we build a
bootstrap sample D; of size N by drawing with replacement from the original
X (Line 2). Because the new set also contains N instances and drawing is done
with replacement, the new set may contain certain instances multiple times and
certain instances may not appear at all. Therefore, D; will be similar to X but
also slightly different. Then on each D;, we learn a soft tree 7; (Line 3).

These trees will be similar but also slightly different due to the randomness in
training, both due to their sampled data and also the initialization of parameters.
As the last step, for any new given test data, we combine the predictions of these
soft trees using a committee-based procedure, such as voting.

BaggedSoftTree(X, B)

1 fori=1to B

2 D; = BootStrap(X)

3 7; = LearnSoftTree(D;)

4 end for

5 Return prediction by aggregating classifiers 7;

Fig. 1. The pseudocode of the algorithm that creates bagged soft trees consisting of B
soft trees for a data set X.

5 Experiments

5.1 Setup

We compare single and bagged soft decision trees with single and bagged hard
decision trees on classification and regression data sets. Our methodology is as
follows: We first separate one-third of the data set as the test set over which we
evaluate the final performance. With the remaining two-thirds, we apply 5 x 2-
fold cross-validation, i.e. we randomly separate the data into two stratified parts
five times, and for each time, we interchange the roles of the parts as training
set and validation set, which gives a total of 10 folds for each data set.
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In bagging, we train and combine 100 models. In combining the output of the
100 trees to get the overall output, in regression we use the median of the 100
predictions, and in classification we take a vote over the 100 class predictions.

We compare soft and hard trees, single and bagged, in terms of their error on
the left-out test set. We give a table where for each data set separately we show
the average and standard deviation error for all compared tree algorithms. To
compare the overall performance on all data sets, we use Nemenyi’s test in terms
of average ranks on all data sets and check for statistically significant difference
[13]: On each data set, we rank the methods in terms of their average error so
the first one gets the rank of 1, the second rank 2, and so on. Then we calculate
the average rank of each method and Nemenyi’s test tells us how much difference
between ranks in significant.

5.2 Classification Data Sets

We compare the soft tree (Soft) with C4.5 tree (Hard), linear discriminant tree
(Ldt) (which is a multivariate hard tree) [4], and the bagged versions of Soft,
Hard, and Ldt trees (Softp, Hardp, Ldtp) on 27 two-class classification data
sets from the UCI repository [14].

Ten of these classification data sets are from the medical domain: Breast is
a breast cancer database obtained from the University of Wisconsin Hospitals,
Madison, Haberman contains cases from a study on the survival of patients who
had undergone surgery for breast cancer, Heart is a database concerning heart
disease diagnosis, Parkinsons is composed of a range of biomedical voice mea-
surements from 31 people, 23 with Parkinson’s disease, Pima contains patients
with diabetes who are females at least 21 years old of Pima Indian heritage, Pro-
moters contains E. coli promoter gene sequences (DNA) with associated imper-
fect domain theory, Spect describes diagnosing of cardiac Single Proton Emission
Computed Tomography (SPECT) images. Acceptors and Donors are splice site
detection data sets and the trained models should distinguish ‘GT’ and ‘AG’
sites occurring in the DNA sequence that function as splice sites and those that
do not [15]. Polyadenylation datasets contains polyadenylation signals in human
sequences [16].

Table 1 shows the average and standard deviation of test errors of Hard,
Ldt, Soft, Hardg, Ldtg, and Softg on the separate data sets, where we see that
bagged soft tree most of the time has the smallest error. Figure 2 shows the result
of post-hoc Nemenyi’s test applied on the average ranks of these algorithms in
terms of their error on all data sets.

We see that the bagged soft tree has the lowest average rank (slightly above
1) and is significantly better than all other tree variants. The bagged versions
of Ldt and Hard are only as good as a single soft tree. The single soft tree is
significantly more accurate than single Ldt or hard tree. Ldt is also multivariate
but uses hard splits; the fact that the soft tree (bagged or single) is more accurate
than Ldt shows that it is the softness of the split that leads to higher accuracy
rather than whether the split is uni or multivariate.
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Table 1. On two-class classification data sets, the average and standard deviation of

O.T. Yildiz et al.

test errors of Hard, Ldt, Soft, and their bagged versions, Hardg, Ldtp, and Softg.

Dataset Hard Ldt Soft Hardpg Ldtg Soft g
acceptors | 16.1 £2.0/9.6 £ 0.8 |87 +0.7 |1824+0.1/87+05 |81+0.5
artificial 1.1+18 15+£19 |1.1+18 [1.1£18 [0.7+16 |0.7+1.6
breast 6.7+ 11 [494+06 [3.5+£07 4.7+08 [47+0.7 [3.1+£04
bupa 386 £4.1/39.1 £34(39.7+ 42 354 +36 382+23/365+27
donors 77+04 |54+£03 |5.7+04 |724+04 |54+£02 53+0.3
german 29.9 £ 0.0 25.8 +£2.0[24.04+ 3.0 299 £ 0.0|/27.0+ 2.8/23.2 4+ 0.8
haberman |26.6 £ 0.3|27.2 £ 1.5/25.9 + 1.8/26.5 £ 0.0|/26.5 £ 0.0(24.7 + 1.6
heart 283 £4.7/18.4+23]19.7+3.4 247 +6.0/18.4+ 22157+ 1.3
hepatitis 221 £44/204+£29(20.2+24 208 +1.2/20.2+ 1.6[18.7 + 2.4
ironosphere | 13.1 +1.912.3 +2.2/11.5 +2.0/94 + 3.2 [124 +1.9|11.6 + 1.3
krvskp 1.24+04 45+£07 |[1.84+06 [1.2+£05 [4.7+0.7 1.8 +0.2
magic 17.5 + 0.6 16.9 + 0.1 |14.7 +£ 0.5 |16.4 + 0.3|16.7 £ 0.2 | 13.9 + 0.1
monks 12.8 + 7.8/ 23.8 £82|0.0+ 0.0 [11.9 +4.6/24.0£ 2.0/0.0 £ 0.0
mushroom (0.0 + 0.1 |[1.84+0.5 [0.1£00 [0.1+0.1 [09+02 |0.1+£0.1
musk2 55+06 [64+03 |43£07 53+0.1 [63+02 [3.8+£0.3
parkinsons |13.8 +2.3|13.5 £ 2.5|14.3 + 2.7/ 14.0 £ 3.1 | 14.8 £ 4.1 109 + 0.9
pima 279 +£34/23.1+1.4(249 +2.0 242+ 1.2/22.6+1.0/23.6 + 1.0
polyaden 3056 +£1.3/226 +0.6/229+0.5(29.2+0.5/224 +04|22.1+0.3
promoters |26.1 +9.9|34.4 +£9.4|15.3 + 6.7 14.7 £ 9.7 31.7 £ 5.9/ 10.8 + 4.0
ringnorm | 12.2 £ 11228 £ 0399+ 1.7 |72+ 0.7 |22.7+0.3|/5.1+0.3
satellited7 |154 +£15[16.7+ 14124+ 1.4 /122 +£0.5|/16.7 £ 0.6 |11.5 + 0.6
spambase 9.9+ 0.7 |10.1+£0.7|75+05 [81+04 |[984+04 |72+0.3
spect 19.1 +2.8/20.1 +£24(19.6 £ 24204 +2.1/21.1 £0.0|17.4 + 3.3
tictactoe 23.8+£22/31.9+£24/1.8+£03 221+£25/29.4+1.0/1.6+£0.0
titanic 21.8 £0.5/22.4+ 04215+ 0.2 22.1 £0.0/22.7+0.2|21.5 + 0.2
twonorm 170 £ 0.7/20+ 0.1 [214+0.2 |48+ 0.7 204+0.1 [2.04+0.1
vote 52+0.7 [67+26 [51+£09 49+02 |[64+11 (46 +0.6

5.3 Regression Data Sets

We also compare soft regression trees (Soft) with the univariate regression tree
(Hard) and their bagged versions, Softp and Hardp, on 26 regression data sets
[17].



Softg
Soft

Fig. 2. On two-class classification data sets, the result of Nemenyi’s test applied on the
ranks of Hard, Ldt, Soft, Hardg, Ldtg, and Softp in terms of error. Indicated points
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are the average ranks and a thick underline implies no significant difference.

Table 2. On the regression data sets, the average and standard deviation of errors of

Hard and Soft trees and their bagged versions, Hard g, and Softg.

Dataset Hard Soft Hardp Soft g

abalone 0.53 £ 0.01|0.41 £ 0.01 | 0.50 £+ 0.02 | 0.41 + 0.01
add10 0.24 £+ 0.01|0.08 £+ 0.01 | 0.19 + 0.00 | 0.05 + 0.00
bank32fh | 0.50 + 0.01 | 0.40 £+ 0.01 | 0.46 + 0.01 | 0.40 + 0.01
bank32fm |0.12 4+ 0.00 | 0.04 4+ 0.00 | 0.10 £ 0.00 | 0.04 £ 0.00
bank32nh | 0.59 4+ 0.01 | 0.45 4+ 0.01 | 0.56 + 0.01 | 0.43 £ 0.00
bank32nm | 0.41 + 0.02 | 0.20 £ 0.00 | 0.34 + 0.01 | 0.19 £ 0.00
bank8fh 0.30 £ 0.01|0.26 £ 0.01 | 0.28 £+ 0.01 | 0.26 + 0.01
bank8fm | 0.08 4+ 0.00 | 0.04 4+ 0.00 | 0.08 £+ 0.01 | 0.04 £ 0.00
bank8nh 0.69 4+ 0.02 | 0.56 £+ 0.02 | 0.65 £+ 0.02 | 0.56 + 0.02
bank8nm |0.37 & 0.03 | 0.12 4+ 0.01 | 0.35 £+ 0.02 | 0.10 £ 0.01
boston 0.34 £ 0.09|0.23 £ 0.03|0.27 £+ 0.05 | 0.24 + 0.02
comp 0.03 4 0.00 | 0.02 £ 0.00 | 0.08 £ 0.00 | 0.02 + 0.00
concrete 0.93 4+ 0.05|0.23 4+ 0.02| 0.67 = 0.03 | 0.22 &+ 0.01
kin32fh 0.73 £ 0.03|0.32 £ 0.01 | 0.64 £+ 0.01 | 0.32 + 0.01
kin32fm 0.61 £ 0.02|0.08 £+ 0.00 | 0.51 + 0.01 | 0.07 + 0.00
kin32nh 0.94 £ 0.02|0.75 £ 0.03|0.92 £ 0.03 | 0.75 + 0.02
kin32nm | 0.90 4+ 0.01 | 0.62 4+ 0.03 | 0.87 £+ 0.01 | 0.60 £ 0.01
kin8fh 0.54 £+ 0.02|0.26 £+ 0.00 | 0.42 + 0.02 | 0.26 + 0.00
kin8fm 0.32 £ 0.01|0.03 £ 0.00 | 0.22 £ 0.01 | 0.03 + 0.00
puma8fh |0.42 + 0.01 | 0.38 & 0.01 | 0.39 £+ 0.01 | 0.38 £ 0.01
puma8nh |0.40 4+ 0.02 | 0.36 4+ 0.01 | 0.37 £+ 0.01 | 0.35 £ 0.01
puma8fm | 0.07 £ 0.00 | 0.05 £ 0.00 | 0.08 £ 0.00 | 0.05 £ 0.00
puma8nm | 0.06 + 0.01 | 0.05 4+ 0.00 | 0.08 £ 0.00 | 0.04 £ 0.00
puma32fh | 0.59 4+ 0.01 | 0.59 4+ 0.01 | 0.59 £+ 0.01 | 0.59 £ 0.01
puma32fm | 0.04 4+ 0.00 | 0.07 &+ 0.01 | 0.08 £ 0.01 | 0.06 £ 0.00
puma32nh | 0.39 £ 0.01 | 0.43 £ 0.02 | 0.36 £ 0.01 | 0.41 £ 0.01
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Table 2 shows the average and standard deviation of errors of Hard, Soft,
Hardp, and Softp on each data set separately. Figure3 shows the result of
Nemenyi’s test applied on the ranks of the error rates of these algorithms.

We see again that the bagged soft tree has the lowest rank; the bagged
soft tree is significantly more accurate than the single soft tree and they are
significantly better than both the hard tree and bagged hard tree. Bagging the
hard tree leads to some improvement in terms of average rank but the difference is
not significant here. Note that this does not mean bagging hard trees is useless,
it is only with respect to the others that the difference between them seems
insignificant—single and bagged hard trees rank mostly in 3rd and 4th ranks.

1 2 3 4

Softg —— Hardpg

Soft Hard
Fig. 3. On the regression data sets, the result of Nemenyi’s test applied on the ranks
of errors of Hard and Soft trees and their bagged versions, Hardg, and Softs.

6 Conclusions and Future Outlook

The soft tree has several advantages: First, it provides a continuous fit whereas
the hard tree has a discontinuous response at the leaf boundaries. This enables
the soft tree to have smoother fits and hence lower bias around the split bound-
aries. Second, the linear gating function enables the soft tree to make oblique
splits in contrast to the axis-orthogonal splits made by the univariate hard tree.

In our previous experiments [8], we see that these two properties improve
accuracy and also reduce the number of nodes required to solve a regression or
a classification problem. Soft trees seem especially suited to regression problems
where the gating function allows a smooth interpolation between the children of
a node.

Here, we build on top of the soft decision tree model and show how its
accuracy can be further improved by bagging. We see that on both classification
and regression problems, we get significant improvement in terms of accuracy
by bagging soft decision trees.

Bagging averages over both the randomness in sampling of data and the
randomness in the initialization of parameters (before gradient-descent) and this
leads to a smoother fit and better generalization.

Bagging is only one way to build an ensemble. We previously worked on meth-
ods for training and pruning an ensemble [12] and combining them to construct
uncorrelated metaclassifiers [18] and these ensemble construction approaches can
also use soft decision trees as the base learner.
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Another possible future direction is in combining multiple sources: In some

applications, there are multiple views or representations associated with each
instance that complement each other and one possible future work is to train
different soft trees with different views and then combine their predictions.

Even with a single representation, different soft trees can use different ran-

domly chosen subsets of the features [19] and we can have soft random decision
forests—these are possible future research directions.
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Abstract. The paper reviews a new perspective to discover and com-
pute discrete dynamics, which is based on MP grammars. They are a
particular type of multiset rewriting grammars, introduced in 2004 for
modeling metabolic systems, which express dynamics in terms of finite
difference equations. MP regression algorithms, providing the best MP
grammar reproducing a given time series of observed states, were intro-
duced since 2008. Applications of these grammars to the analysis of bio-
logical dynamics were developed, and their flexibility to model complex
and uncertain phenomena was apparent in the last years. In this paper
we recall the main features of this modeling framework, by stressing
their peculiarity to afford complex situations, where classical continuous
methods cannot be applied or are computationally prohibitive. Moreover,
the computational universality of MP grammars of a very simple type
is shown, and one of the most relevant cases of MP biological models is
shortly presented.

Keywords: Discrete dynamics - Dynamics inverse problem - MP
grammar - MP regression - Metabolic computing - Machine Learning -
Biomedical informatics

1 Introduction

If we consider the emergence of computability, since the years around 1930,
and its relationship with classical mathematical concept of algorithm, we eas-
ily realize that, from an initial logical mathematical kernel of concepts (related
to famous Hilbert’s program), the notion of computation continued to enlarge
its perspectives, by including technical and conceptual aspects, where informa-
tion, inference, and uncertainty become essential notions of any computation
engine, in a wide sense, or shortly, (informational) machine. In fact, the initial
idea underlying the Leibnitz-Hilbert research line, aimed at discovering a uni-
versal calculus ratiocinator, almost contemporarily, found the limitative Godel
result, and strictly related to it, Turing’s computational universality. Therefore,
machines able to run any possible algorithm exist, but they cannot deduce all
the theorems of powerful theories (e.g. including all arithmetic truths).
However, the following research in computer science, made widely available
complex computational tools of increasing efficiency, and determined a rich inte-
gration of results and knowledge from different fields such as cybernetics, artifi-
cial intelligence (solution spaces and algorithms for exploring them), numerical
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analysis, optimization, statistics (see [1] for a more detailed analysis of the field).
This situation radically changed the terms of “Leibnitz’s dream”, passing from
the goal of discovering machines that deduce the truths of rich mathematical
theories, to machines that can help us to infer theories that explain the data
collected from a given phenomenon. This is the essence of Machine Learning
(ML) and the reason of its centrality in the historical development of com-
puter science, along the tracks of its founders, Wiener, Shannon, Turing, and
von Neumann.

From a technical point of view, a common aspect to many “inferential”
approaches are the so called inverse problems, which also played a central role
in many mathematical fields. In general terms, the objective of these problems
is not that of finding particular solutions satisfying some constraints, but con-
versely, discovering constraints that underly to data collected in a given context.
Let us provide a basic example, a Chomsky grammar generates a set of strings,
by means a suitable process of string manipulation. Therefore, in this case, an
inverse problem arises when a set of strings is given and a grammar is required
that is able, possibly within an error threshold, to generate the given strings. In
this sense the MP theory, which we are going to introduce, provides methods
for automatically, and approximately, solving a wide class of inverse problems
(especially, from biological contexts), discovering some dynamical laws that rule
an observed dynamics. For this reason, statistics, optimization, and numerical
analysis are implicitly internalized in the MP regression algorithms, which yield
the inferential motor of MP theory. This perspective motivates the pertinence
of MP theory to the wider field of Machine Learning.

MP grammars are discrete dynamical systems arisen in the context of mem-
brane computing [2]. They introduce a deterministic perspective where multiset
rewriting rules are equipped with state functions that determine the quantities
of transformed elements. The attribute MP comes from the initial context sug-
gesting MP grammars, focused on expressing metabolic processes in the context
of P systems (multiset rewriting rules distributed in compartments) introduced
by Paun [3-6]. Applications in modeling biological systems were developed in
the last years [7-16], as well as, methods of MP regression, were defined, in order
to determine MP grammars able to generate observed time series of given phe-
nomena (MP-Dynamics Inverse Problems, shortly MP-DIP). Very often, such
kind of inverse process, unravels possible MP grammars, underlying real sys-
tems that make evident hidden mechanisms inherent to deep internal logics. MP
regression algorithms use a wide spectrum of techniques, from algebraic manipu-
lation and Least Square Evaluation, to statistical methods, and to genetic algo-
rithms, by obtaining, in many cases, high levels of accuracy in the solutions
[2,7,11,13,17-25]. A great number of concepts and algorithms developed within
MP theory were implemented in public software platforms equipped with exam-
ples and technical documentation [26,27] (see also some related links: http://
mptheory.scienze.univr.it/, http://mplab.sci.univr.it/plugins/mpgs/index.html,
http://mplab.sci.univr.it/, http://www.cbme.it /software/Software.php).


http://mptheory.scienze.univr.it/
http://mptheory.scienze.univr.it/
http://mplab.sci.univr.it/plugins/mpgs/index.html
http://mplab.sci.univr.it/
http://www.cbmc.it/software/Software.php
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2 Glossary

2.1 Multiset:

Is a set of elements each considered with a positive integer occurrence multiplic-
ity. If we generalize the usual brace set-theoretic notation, then {a,a,b,b,b, c}
denotes a multiset with two occurrences of a, three occurrences of b, and one
occurrence of ¢. In the notation above, the order of occurrence of a, b, ¢ is not
relevant, but only the number of times they occur. Other equivalent notions are
very often used in literature. A molecule is a multiset of atoms. Many basic
chemical laws are easy consequences of this definition of molecule.

2.2 MP Variable

Is an entity assuming values, in a given set, in dependence on some contexts.
Very often contexts are instants of time.

2.3 MP State

Are the current values assumed by some variables (w. r. t. state is considered).

2.4 MP Grammar

Is a set of rules of type “left-side” — “right-side” : “regulator”. Right and left
sides are multisets of variables, and regulator is a function defined on the states
of some variables. At any step, each rule decreases the current values of each left
variable instance and increases the current value of each right variable instance.
The amount of increase/decrease, called flux, is the value that the regulator
assumes in the current state of its variables.

2.5 MP Graph

Is a representation of an MP grammar by means of a two level graph (nodes,
multi-edges, and inter-edges), where edges connect a set of source nodes to a set
target nodes, and inter-edges connect a set of source nodes to only one target
node (sets of nodes may be empty) (Fig.1).

2.6 Time Series

Is a sequence of states. The states of this sequence are assumed to be located
along a discrete and oriented line of time. Starting from an initial state, by
iteratively applying all the rules of an MP grammar, we get a time series of
states.
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2.7 Discrete Dynamical System

Is a set S of states and a function § from S to S [28]. From an initial state, by
applying iteratively the function §, a time series is generated. Therefore an MP
grammar is a particular kind of Discrete Dynamical System.

2.8 Discrete Dynamics Inverse Problem

Is the search for an MP grammar that generates a given time series.

3 State of the Art

3.1 MP Grammars

An MP grammar G is a discrete dynamical system based on a set X of variables,
and a state space constituted by the assignments of values to variables X. Let N
be the set of natural numbers. Assuming variables in some order, if X is a finite
set of n € N variables, the set of possible states of G coincides with the set R™
of real vectors of dimension n. A dynamics function d¢ is associated to G that
provides a next state function, which changes the variable values, according
to an increase-decrease variations specified by all the rules (if a variable does
not occur in a rule, its value remains unchanged). Namely, a reading of “MP”
is the basic Minus-Plus mechanism of the rules of an MP grammar. A formal
definition follows.

Definition 1. An MP grammar G is given by a structure [11]:
G=(X,R,9)
where:

1. X is a finite set of real variables;

2. R is a finite set of rules (usually we denote by n is the number of variables
and m the number of rules). Each rule v € R is expressed by o, — [, with
ay., B multisets over X (a multiset over X is functions assigning a natural
number, called multiplicity, to every x € X ). Therefore, a,-(z) and 5,(y)
denote the multiplicities of x and y in o, and in B, respectively;

3. @ ={¢p, | r € R} is the set of regulators, or flux functions

or:R* - R

from states of variables to real numbers. A requlator p, associates to any state
s € R™ a positive or null value u = ¢,(s), called “fluz”, that establishes an
updating of the current state of variables, by decreasing any variable x occur-
ring in «, by the value u - a,.(x), and by increasing any variable y occurring
in B, by the value u - B,-(y).



Grammars for Discrete Dynamics 41

A wvariation function Ag(s), is associated to every variable x € X of G, such
that:
Ac(s)e = Z(ﬂr(x) — ar(z))er(s).

reR
and
Ag(s) = (Ac(8)e)zex

(superscript T denotes transposition, so that Ag(s) is viewed a column
vector).

The dynamics d¢ of G is given by (subscript G is omitted when it is implicitly
understood):

0c(s) = s+ Ag(s)

When an initial state so is given, then an MP grammar G, starting from it,
generates a time series of states (56(50))»0’ by iteratively applying the dynamics
Sfunction §. - O

An MP grammar is completely defined by its rules and regulators (variables are
those occurring in the rules). When variables are equipped with measurement
units (related to their interpretation), and a time duration is associated to each
step, the MP grammar is more properly called an MP system.

It is easy to show that the dynamics of an MP grammar can be naturally
expressed by a system of (first-order) recurrent equations, synthetically repre-
sented in matrix notation (see [11] for details). In fact, rules define the following
matrix, called rule stoichiometric matrix.

A= (ﬁr(m) - O‘T(‘/L’))GJEX,TEI%

If fluxes are given by vector U(s) (superscript T stands for transposition):

U(s) = (¢r())ier

and the vector of variable variations A(s) is given by:

A(s) = (Aa(9))rex

then, the system of variable variations can be expressed by (x is the usual matrix
product):

A(s) = A x U(s).
This formulation of MP grammar dynamics, introduced in [17], is called EM A
(Equational Metabolic Algorithm) and allows us to generate a sequence of states
from any given initial state.

Example 1. Tt is easy to verify that the following MP grammar generates, as
values of variable x, the Fibonacci sequence, starting from the initial state x = 1,
y = 0 (@ denotes the empty multiset of variables).

-y :x (1)
y—wx oy (2)
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(r=lLy=0=@=Ly=1)=>@=2,y=1)=>(x=3,y=2)= (x =
5,y=3)...

Ezample 2. The following grammar provides a predator-prey dynamics.

-z : 0.061 z+0.931
x—y : 0.067-2+0.15 y (3)
y—0 : 0.154-y+ 0.403,

Matrix A below is the stoichiometric matriz of MP grammar in Example 2.

1-10
A= (0 1 —1) (4)

MP grammars have an intrinsic versatility in describing oscillatory phenom-
ena [11,14].

The schema of MP grammars given in Example 2, called bicatalyticus [11],
has an input rule r; and an output rule 3 (incrementing and decrementing the
variable x and y, respectively). Both rules are regulated by the same variable
that they change (a sort of autocatalysis), while the transformation rule r5 from
x to y is regulated by both variables (bicatalysis). An MP grammar of this type
provides a simple model for predator-prey dynamics firstly modeled in differential
terms by Lotka and Volterra [29]. The model assumes a simple schema ruling the
growth of the two populations z,y (preys and predators): preys grow by eating
nutrients taken from the environment (according to some reproduction factor)
and die by predation, while predators grows by eating preys and naturally die
(according to some death factor). When predators increase then preys are more
abundantly eaten and therefore they decrease. But prey decrease results in a
minor food for predators which start to decrease (by providing a consequent
increase of preys). This means that the increase of predators produces, after
a while, their decrease (and symmetrically, a corresponding inverse oscillation
happens for preys) (Fig.2).

Ezample 3. The following grammar, obtained by using MP regression (see next
subsection), provides sine and cosine dynamics with linear regulators (z = 0,
y = 1 is the initial state). It was proved in [30] that this is exactly the grammar
deduced from the classical analytical and geometric definitions of sine and cosine
functions. In other words, the MP regression algorithm, which we will introduce
in the next section, is able to discover the logic implied by deep mathematical
properties of circular functions.

r:0—x : ki-z
rorx—y : ke (z+y) (5)
rs:y—0 : k3-y

where k; = 0.000999499833375, ko = 0.000999999833333 and ks =

0.001000499833291 (the coefficient estimates are truncated to the 15th decimal
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Fig. 1. The structure of MP graphs.

digits, according to the accuracy of the computer architecture used during the
computation). MP grammar (5) provides a very precise sine/cosine oscillator,
with maximum absolute error of order 10714,

A natural way of expressing MP grammars by means of graphs, called MP
graphs, was introduced in [31]. In an MP graph rules (or reactions) are multi-
edges connecting variables nodes (sources) to other variable nodes (targets)
entering and exiting, respectively, from a rule node. Moreover a regulation inter-
edge goes from some variable nodes, called tuners, to a rule node, for indicating
the variable nodes regulating the rule, according to a function, called regula-
tor, which is put as label of the regulation inter-edge. Input and output nodes
are considered in correspondence to rules with left and right parts consisting of
the empty multi-set. From this representation, an interesting interplay results
among the notions of membrane, object, and variable. In fact objects can be

2

%, 4

Fig. 2. The MP graph of the prey-predator grammar.
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considered as membranes including all the same type of matter, where the quan-
tity corresponds to the multiplicity (if matter are tokens) or to some measure
associated to the object. But at same time, membranes are particular objects,
and variables are membranes when the (positive) value assumed by them, are
seen as the quantities of matter that they include.

Dynamics inverse problems were the beginning of modern science aimed at
discovering the motion laws of planets around the sun. In general, a typical
problem of mechanics is the determination of motion laws: from the observed
motion to the underlying equations deduced from the knowledge of the forces
acting on bodies. The approach we will outline here is similar, but here the
forces as “causes of motion changes” are not assumed. Rather, we are interested
in inferring a possible (approximate) internal logic regulating how (instead that
why) changes of variables are cooperatively organized in a given system. This of
course is a solution less precise and less explicative than the classical approach
(usually based on ordinary differential equations). However, very often, in very
complex systems with poor information about the causes acting in a system, it
is the only possibility that can be realistically investigated. In the context of
MP theory, a DIP can be formulated in the following way. Given a time series
S = (8i)i=o0,1,...t of observed states (equally spaced in time), find the MP grammar
able to generate S within a given approximation threshold. In formal terms this
means to solve, with the best approximation, the following equation where G is
the unknown value:

(55(50))i:0,1,...t =5

General and specific cases of DIP were intensively investigated, in the context
of the MP theory, in the last ten years (see [11] for a detailed account, and [14—
16,25-27,32] for new developments and applications to biological modeling).

3.2 MP Regression

Let us suppose that we observe some time series of states. Very often the time
series related to an inverse dynamics problem is not sampled at regular time
intervals. In this case a preprocessing phase is appropriate for determining an
interpolation curve fitting the observed values along the observation points, by
obtaining a time series uniformly spaced in time:

(sli]]i <t eN)

then, we can read the equation EM A by reversing the known values with the
unknown ones. In fact, by writing the variation vector:

si + 1] — sli] = A[4]
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and, assuming n variables and m rules, then we get the following system (see [7]),
where fluxes U[i] are the unknown values:

A x Uli] = A[i). (6)

For the determination of the regulators that provide the best approximate
solution of Eq. (6), we apply a procedure we call stoichiometric expansion (see
[19,22,23)).

Given a positive integer ¢, let us assume that the regulators we are searching
for can be expressed as linear combinations of some basic regressors

91,925---,9d

which usually include constants, powers, and products of variables, plus some
basic functions which are considered suitable in the specific cases under investi-
gation:

Y1 =c1,191 +C1,292 + ...+ C1,a9d (7)
P2 = 2,191 + C2292 + ... + 2,494

©m = Cm,191 + Cm,292 +...+ Cm,d9d-

Equation (7) can be written, in matrix notation, in the following way, where
Uli] is the column vector of regulators evaluated at state s;, G[i] the column
vector of regressors evaluated at the same state, and C is the matrix m x d of
the unknown coefficients of regressors:

Uli] = C x GJg. (8)
Substituting the right member of Eq. (8) in Eq. (6), we obtain the following
system of equations (A is the stoichiometric matrix):

A x C x G[i] = A[i]. (9)

Now, if we consider ¢ systems of type (9), for 1 <+ < ¢, and if n is the num-
ber of variables, we obtain nt equations with md unknown coefficients of C. If
nt > md and the system has maximum rank, then we can apply a Least Square
Evaluation which provides the coefficients that minimize the errors between left
and right sides of the equations. These coefficients provide the regulator repre-
sentations that we are searching for.

By elaborating on Eq. (9) it is proved that matrix C is given by the following
equation (see [11,23]), where the stoichiometric expansion is joint to the Least
Square Approximation method and ® denotes the Kronecker product defined in
Table 1, and vec(C) is matrix C after the vectorization operation, where all the
colums of C are concatenated in a single column vector.

Theorem 1. The coefficients of regressors that best approximate regulators are
given by the following equation:

vee(C) = (A2 G)T x (A®G)) ™ x (A8 G)T x vee(DD). (10)



46 V. Manca

Table 1. Kronecker product of two real matrix A, B of dimension n X m and ¢ X d
respectively, having dimension nt x md, and constituted by nm blocks B; ;, such that,
ifA=(a;; |1 <i<m, 1<j<m),then (A® B);; = a;,;B (all the elements of B
are multiplied by a; ;).

a1,1B al’lB alﬁmB

a27lB az’zB . 027mnB

A®B = (11)

an1B an2B ... anmB.

3.3 Algorithms of MP Regression

MP regression can be realized with different kinds of algorithms. The first
method of regression was based on a kind of inductive method, where the sys-
tem EM A for computing the dynamics is extended in a kind of system, called
OLGA, determining the fluxes of each step [17,33]. From the fluxes for a num-
ber of steps, regulators can be approximated. The weak point of this method is
that it relies on the evaluation of the initial values of fluxes. This evaluation, in
general, is not easy to be obtained, therefore errors in the initial values of fluxes
can determine a bad evaluation of regulators. However, this was the initial algo-
rithm from which the following ones emerged. Other two methods overcome the
limitation of OLGA by means of a direct evaluation of regressors by using some
initial functions called regressors. LGSS is an algorithm [11,19,22,23] based on
the stoichiometric expansion that applies methods of statistical regression, by
using a stepwise methodology. In fact, stoichiometric expansion is a powerful
method to get regulators, by Least Square Estimation, but it is efficient only if
the right regressors are provided as input. Therefore stepwise strategy is a mech-
anism devoted to the best choice of regressors that have to be given as input of
the stoichiometric expansion. The main idea of stepwise is to start by a small
set of regulators (for example constant and linear functions), then step by step
a new regressor (from a fixed set of possible functions) is added to be evaluated
(together with those of the previous step) and its addition is performed only if
it improves the dynamics approximation. Moreover, after an addition of a new
regressor another trial is executed, by trying to remove one regressor from the
previous set (apart the last one inserted), in the case this removal could melio-
rate the dynamics approximation. The evaluations of insertion and deletion are
based on classical statistical tests (related to Fischer distribution and variance
analysis). Another MP regression method, MP-GenSynth, also uses the stoichio-
metric expansion, but tries to obtain the best regressors for this expansion, by
using a genetic algorithm approach [24-26], that is, by replacing statistics by
an evolutionary strategy. Specific mechanisms are used for the tuning of the
evolutionary process and for improving the adaptability and the robustness of
the method. Both LGSS and MP-GenSynth were developed in public domain
platforms available in the sites mentioned in the introduction. It is whorthwile
to remark that LGSS is a multi-platform software including several components
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for comparing and integrating MP regressions with classical methods of regres-
sion (ordinary differential equations, non linear optimization methods, graphical
tools, components for random generations, and so on).

3.4 Input-Output and Positive MP Grammars

Any MP grammar has an equivalent grammar (providing the same dynamics)
where rules have an input or output form (with the empty multiset () on the
right or on the left of the rule) [11]. Equivalence is intended in dynamical terms,
that is, two MP grammars are (dynamically) equivalent, with respect a set of
variables common to the two grammars, when these variables change in the same
way in the two MP grammars.

The following theorem holds.

Theorem 2. Any MP grammar can be equivalently represented in terms of
input-output rules. Moreover, any system of (first order) recurrent equations
can be expressed in terms of some MP grammar with input-output rules.

Proof. In fact, any rule « — [ : ¢ that is not an input-output rule can be
transformed into the set of rules z — 0 : ¢ (output rule) for every = € a, and
) — y : ¢ (input rule) for every y € 5. Of course the effect of applying a — §: ¢
is the same of applying all these input-output rules.

Conversely, Any system of (first order) recurrent equations (where values of
variables at step n + 1 depend on values of variables at step n) can be expressed

by a system of equations, for j =1,2,...,n:

Aj(s) = Prj(s) + ...+ Prj(s) = Qu5(s) ... — Qn(s)
then we can consider n variables x1,...,2;,...z, with rules ) — z; : P, ; for
i=1,2,...kand j=1,2,...n;and rules x; — 0 : Q; ; for i =1,2,...h. O

For example, Fig. 3 shows the MP graph of an MP input-output grammar
equivalent to that given in Fig. 2, where in the input-output grammar p; = @3
is equal to o of the previous grammar, while ¢4 of the input-output grammar
is equal to @3 of the previous grammar.

The notion of input-output can be applied not only to the rules, but also
to the variables. An external variable (called parameter in [11]) is a variable of
an input rule without flux, therefore, a time series of values is assumed to be
associated to it, in order to compute the dynamics of the grammar. Variables are
called internal if they are not external. An MP grammar with external variables
is also called open. It is not a generator of time series, but a function transforming
the time series of its external variables into the time series of its internal variables.

An MP grammar is non-cooperative when in it each rule has at most one left
variable, and it is monic when this variable occurs at most with multiplicity one.
The following lemma can be proved in a similar way as the previous theorem [11].

Lemma 1. For any MP grammar there exists a monic MP grammar that s
dynamically equivalent to it.
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Fig. 3. The MP graph of a prey-predator input-output grammar.

An MP grammar is positive when, starting from a state where all variables
are positive, then in all the following states variables and fluxes are always pos-
itive. Given an MP grammar G a positive grammar G’, called the positively
controlled grammar associated to G, is defined in the following manner.
The grammar G’ has the same variables and the same rules as G. Moreover, a
regulator ¢’ is defined in G’ in correspondence to each regulator ¢ of G in the
following way. Let s(x) be the value of variable x in the state s, and let p*(s) =
maz{p(s),0}. If we denote by &~ (x) the regulators of rules decreasing the vari-
able z, then regulators ¢’ are defined from the regulators of G by requiring, for
any variable  and for any state s, and for every ¢ € &~ (z), that:

Hs)=0 if S ¢T(s) > s(a) (12)

pEP ()
©'(s) = T (s) otherwise. (13)

A class of positive MP grammars, called reactive MP grammars, can be
defined, by means of reaction weight functions and variable inertia functions.
Namely, if we restrict to the case of monic grammars, this means that in any
state s, for each rule r of type © — y, the regulator is given by:

or(s) = fr(s)/ | D fils) + hals)

leER™ (x)

where R™(x) is the set of rules consuming x, f are the reaction weight func-
tions (indexed by the rule symbols) and h, is the inertia function of variable x
(for input rules, regulators coincide with their reaction weight functions). The
following theorem is proved in [11].

Theorem 3. For any positive MP grammar there exists a dynamically equiva-
lent reactive MP grammar and vice versa.
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3.5 MP Computability

In this section, we extend previous results (see [34,35]) by showing that the class
of positively controlled MP grammars is computational universal, and moreover,
a particular simple form for regulators ensures the computational universality.

Let us consider a definition of register machine which is a variant of the
Minsky’s model given in [36]. It is a construct:

M= (R,1,0,P)

where R is a set {Ry,..., R,} of registers, I C R is the set of input registers,
while O C R is the set of output registers. PP is a program, that is, a sequence of
instructions Iy, ..., I, of the following types:

— Increment of register R, denoted with Inc(R).

— Decrement of register R, denoted with Dec(R).

— Go-to instruction Iy, if register R; = 0, denoted with Jnz(R;,li).
— Halt, stopping the computation.

A computation of M is obtained by putting positive integers in the input registers
(all the other registers implicitly contain zero) and by executing the instructions
of the program in the order they are, apart the go-to instructions that specify
as next instruction to execute one which possibly is not the following one in
the sequential order. When the Halt instruction is executed, the results of the
computation are the numbers put in the output registers.

For example the sum of two numbers greater than zero, which are put in
registers Ry and Ro, is given by the content of register R; at the end of the
computation of the following program:

1: Inc(Ry)

2 : Dec(Ry)
3: Jnz(Ra,1)
4: Halt

Theorem 4. For any Register Machine M there exists a monic positive MP
grammar Gy equivalent to M.

Proof. Given a register machine M with a program of m instruction, we consider
an MP grammar G); with an instruction variable for each instruction I, of M,
plus an extra instruction variable H, and a register variable for each register R;
of M (register variables are denoted in the same way registers are denoted in M).
All register variables are initialized with the same values that the registers have
in M, and all instruction variables are zero. If M has the program consisting of
instruction Iy, Is, ..., I;,, then G has the set of rules R); translating into MP
rules the program of M, according the following procedure.
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Transtation Algorithm from Register Machines to MP Positive
Grammars

Ry ={0—1I:1}

for h =1 to m do

begin

if I}, = Halt then add to Ry, the rule I, — H : I,

if I}, = Inc(R;) then add to Rys the rules ) — R; : Iy and I, — Ipyq 2 I
if Ih = Dec(Rj) then add to RM the rule Rj — (Z) : Ih and Ih — Ih+1 : Ih
if I, = Jnz(R;, k) then add to Ry the rules specified below.

end

O NSO WD

The translation of Halt, Inc, Dec is very clear. In order to translate
Jnz(R;, k), which is the more complex instruction to translate, we follow a
step-by-step method. First, we assume that (the content of) register R; is either
0 or 1. In this case I, = Jnz(R;, k) is translated by the two following rules
(where exponent + is in the sense of Eq. (13)):

1. Ih — Ik : (Rj)+
2. Ih, — Ih+1 : (R] +Ih)+

In fact, if R; = 0 the first rule does not change its variables and the second rule
applies that produces Ij,+1 = 1. Otherwise, if R; = 1 the first rule is active and
the second one is blocked by the control of positivity because its flux is 2, but
I, =1.

If R; can contain any null or positive value, the idea of the translation above
needs to be realized in a more complex way, and some auxiliary variables have to
be introduced: Hj;, Ly, Fy, Fr11, and these MP rules are added to our translation
of the register program (for simplicity sake, in fluxes of rules symbol ()T is
omitted, but implicitly intended).

Rj —>Hj2.[h

I, — Ly : I,
Lh—>Fk:Hj
LhﬂFh+12Lh+Hj
Hj —>RjZFk

Hj —>RjZFh+1
Fk—>IkZFk

Foi1 — Ingr : Frpa

e N i

Here, (if R; > 0), the value 1 from I and 1 from R; are moved, with the
same flux, to the auxiliary variables Hj, Lj, respectively. In this manner, the
same strategy of the translation above can be applied to these copy variables,
by means of the rules (3) and (4). Then, the original value of register R; (that
possibly was decremented) has to be restored, by means of the rules (5) and (6).
In conclusion, the values of copy variables have to be transferred to the original
ones, by means of the rules (7) and (8). In this manner, any register machine
program is translated into a set of MP rules.
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However, we want go a step further, by giving a translation where the MP
rules are regulated by single variables. To this end, rule (4) is replaced by other
rules, where sum of variables does not appear. Namely, an auxiliary variable K},
is added, such that, rules (4) and (5) put in K}, the sum of H; and Lj, and rule
(4) of the translation above is replaced by rule (6) of the new translation. The
overall translation becomes as follows:

Rj—>HjIIh
.Ih—>Lh:Ih
LhHFk:Hj
Hj—>KhIHj
Lh—>Kh2Lh

Ly — Fpyr: Ky
Hj—>RjtFk
Hj*}Rj:Fh—i-l
N IS L R

SO0 NS

—_

Now, let us consider the dynamics of G}y, starting from the initial state
(I; = 1, the remaining instruction variables are set equal to zero), and with the
register variables having as values the contents that the corresponding registers in
M. According to the rules given in Gy, we can easily verify that in Gy, register
variables change according to the program of machine M, and the dynamics of
Gy halts in the configuration that corresponds to the halting configuration of
the machine M (with the same contents of registers). It is easy to verify that
the obtained MP grammar is positive, because, when rules consuming a variable
are more than one, we can check that only one of them has a flux different from
Zero. O

The last part of the proof of previous theorem provides the following general
result ensuring the computational universality for an extremely simple class of
MP grammars (Fig. 4).

Theorem 5. For any Register Machine M there exists a monic positive MP
grammar Gy (dynamically) equivalent to M where regulators are single vari-
ables.

A result given in [11], which is related to the MP grammars as comput-
ing devices, shows that in an MP representation of an algorithm, the notion
of program, as sequence of instructions, it completely replaced by a graph. In
fact when some input tokens are placed in some input membranes, then the
computation flux is determined by the topology of the MP graph. This implies,
that, as far as, efficient realizations of MP graphs are available, they become a
sort of “universal computational circuits”. This possibility suggest to investigate
about possible physical implementations of computational MP graphs (based on
photon movements?) (Fig.5).
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Fig. 4. The basic module of a (monic) MP grammar where regulators are single vari-
ables (the analogy with an electronic valve is clearly apparent).

Fig. 5. The MP graph of an MP grammar variable regulated. Inputs are on the left
and outputs on the right. The whole graph consists of a networks of ternary modules:
left and right variables of an MP monic rule with a variable regulating the rule.

A second aspect of MP computing (or metabolic computing) is related to the
natural representation of circular functions by means of MP grammar [18,30]. In
this way computing with (approximate) real numbers can be done in the same
framework used for integer based computations. Moreover, according to Fourier
representation by trigonometric series, we could reformulate, in terms of MP
grammars, DFT Discrete Fourier Transforms and investigate about the possible
advantages of applying MP grammars to this field.

3.6 Complex Oscillations

MP grammars providing exact periodical dynamics, such as those of circular
functions, can be defined by means of simple rules [18]. However, it is really sur-
prising that when we apply MP regression to time series of sine and cosine func-
tions, we get essentially regulators that are implied by the classical definitions
of these functions, according to their geometrical or analytical characterization
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[30]. This is strong proof the capacity of MP regression of discovering the MP
logic responsible of an observed dynamics.

In [11,14,32] analyses of MP grammars with oscillating behaviors were devel-
oped. Oscillations are a key features of biological phenomena. At end of Chap. 3
in [11] it is argued that this aspect is intrinsically related to the open membrane
organization of life, and to the natural orientation of chemical reactions. MP
grammars allow us to express in rigorous terms this aspect and to investigate on
some important features of oscillations. For example, a precise definition of oscil-
lating system shows that this concept has to be carefully distinguished from the
notion of periodic system. In fact, the oscillator Vega, an MP grammar defined
in [11], is surely oscillating in a very wide interval, but it is shown in [14] that
it is never passes twice on the same point of its state space, and that complex
MP oscillators can be obtained by MP grammars where rules are organized in
overlapping cycles (chains of rules sharing variables, of kind depicted in Fig. 6),
where the more is the number of these cycles, the more is complex the resulting
oscillatory dynamics.

Fig. 6. An example of overlapping cycles in the structure of an MP grammar.

Elaborating on this idea of overlapping cycles, it was possible to design MP
grammars exhibiting chaotic dynamics. Moreover, in [32] it is shown that when
MP regression is applied to time series of chaotic MP dynamics, the regula-
tors responsible of chaos generation are completely recognized, even when chaos
seems to hide any pattern of dynamical regularity.

3.7 Biological Applications

An interesting application of MP grammars is presented in [16]. Here we started
from the time series of gene expressions of a cancer cell under an effect E that
inhibits the cancer growth factor HER2. After standard procedures of error fil-
tering and data normalization, the expression time series were selected that
show a behavior clearly correlated to the inhibitory effect E. This means that
genes having time series that are constant in time, or with a chaotic shape,
are considered to be scarcely related to E. Therefore, only about one thousand
genes having time series with “regular” shapes were selected. Then we clustered
these curves in eight types: linear-quick-up, linear-slow-up, linear-quick-down,
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linear-slow-down, parabolic-up, parabolic-down, cubic-up-down, cubic-down-up.
Consequently, genes were grouped in eight clusters: C1, C2, C3, C4, C5, C6,
C7, C8, to which an average curve was associated, and which constituted the
variables of a dynamical system under investigation. By means of the LGSS
algorithm, MP grammars over these variables were searched for generating the
related curves. The LGSS algorithm was applied with a set of regressors con-
stituted by simple monomials over the variables. At end, we got a number of
possible MP grammars. One of them had the most reasonable set of regulation
maps, according to the literature about gene regulatory networks (Fig. 7). We
know that the cancer cell presents a resistance to the inhibition of the HER2
factor. Can our MP grammar tell us something about this resistance phenom-
enon? A deduction, coming from the obtained grammar, concerns with clusters
with cubic behavior C7, C8. In fact, from the MP grammar we obtained, with a
very easy translation, a regulation networks among clusters. In this network it
appears clearly that the HER2 factor promotes C7, while inhibits C8. However,
their curves expressions behave in conflict with this HER2 effect. We interpreted
this phenomenon as related to the observed resistance. In fact, a possible expla-
nation of the discordance of behaviors of C7 an C8, with respect to HER2 effect,
could be the chain of regulation influences in the network. Namely, it transforms
the effect of a linear regulation at the beginning of the chain into a non-linear
effect at the end of it (this is a typical situation occurring in MP grammars).
Based on this intuition, the genes in the clusters C1 and C3 (regulating clus-
ters that regulate C7 and C8) were analyzed. The investigations about genes of
clusters C1 and C3 allowed physicians to discover genes whose inhibition deter-
mine the disappearing of resistance, by finding an unknown role of gene E2F2
in breast cancer gene regulations. This is a proof that conceptual analyses based
on MP grammars can reveal deep interactions having important roles in the
observed dynamics. In Table 2 other examples of MP-modeling are listed, with
the corresponding references.

Table 2. MP models obtained by MP Regression.

Belousov-Zhabotinsky, Prigogine’s Brusselator (BZ) [37,38]
Lotka-Volterra, Predator-Prey dynamics (LV) [29,39,40]
Susceptible-Infected-Recovered Epidemics (SIR) [38,41]
Early Amphybian Mitotic Cycle (AMC) [20,42,43]
Drosophila Circadian Rythms (DCR) [38]

Non Photochemical Quenching in Photosynthesis (NPQ) | [44]
Minimal Diabetes Mellitus (MDM) [15,21]
Bi-catalytic Synthetic Oscillator [17]
Synthetic Oscillators [14,18]
Gene Expression Dynamics [15,16]
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Fig. 7. The gene expression network represented by the eight-variables MP grammar
deduced in [16]. Arrows denote promotion, while bars denote inhibition. The dynamics
is obtained during inhibition of the cancer growth factor HER2. Full arrows indicate
the expected behaviors, which contradicts the observed one.

4 Open Problems

This paper presents a new perspective of considering recurrent equations. Usu-
ally, their investigation is aimed at finding analytical methods to solve them or
to determine properties of their dynamics [45]. On the contrary, here we do not
cope with their solutions, because their intrinsic algorithmic (iterative) nature
provides a direct computation of their dynamics. Of course, in this computation
the dynamics at step n can be computed only after computing it in the steps
preceding n, but this is not a real limitation if the computation is performed
automatically and with a good approximation.

Using MP grammars, recurrent equations are constructed by assigning regu-
lators to MP rules. In this perspective, regulators replace forces that in classical
mechanics are the causes of observed motions. In fact, regulators may be related
to a big number of unknown forces, very difficult to individuate and to discrim-
inate. Therefore, regulators express abstract entities of rational and compact
reconstruction of the internal logic underlying an observed dynamics. When the
complexity and the indetermination of systems do not allow us other ways of
analysis, this could be an important chance to the comprehension of phenomena.

We would like to stress that MP regression automatically calculates not only
the values of the coefficients, but also the form of regulators as linear combina-
tions of some primitive functions.

Some open problems naturally arise in the context of MP grammars, some
of them were partially addressed [11], but systemic solutions deserve a further
research and probably new ideas and methods. Some of them are listed below.
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Problem 1. Given a system with thousands variables, how to simplify it in
order to obtain a reduced system that, at same time, retains many important
dynamical aspects of the original one, so that discovering MP grammars for the
reduced system provides a useful knowledge about the investigated system?

Problem 2. When an MP Regression Algorithm is applied, according to dif-
ferent values of its parameters, many possible solutions can be found. How to
systematically evaluate the solutions in order to choose the best one for a given
kind of dynamics inverse problem?

Problem 3. MP Regression algorithms based on different methods have been
developed. How to integrate them in order to improve the adequacy and of the
results?

Problem 4. In the context of biological dynamics, when an MP grammar is
found by means of MP regression, we get a sort of “abstract rule” associated to
an observed dynamics. How to “read” this rule in a significant biological way?
For example, if our variables represent quantities of proteins produced inside
a cell, can the MP rules to be linked to specific mechanisms of gene, or gene
complexes, activations? If only in some cases this could be successfully obtained,
an important achievement would be reached toward the reasons determining
specific forms of biological regulations.

5 Future Outlook

As we claimed in the introduction, MP theory shares many aspects that are
crucial in problems addressed by Machine Learning. Therefore it seems natural
to search for integrative approaches which could bring benefits to both two
fields. This kind of cross-fertilization could be a sure advantage for biomedical
applications. In fact, computational models of pathological processes are a topic
of increasing interest in all the situations where personalized medical approaches
are required in the medical challenges of the next future.
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Abstract. Given its immense growth, scientific literature can be
explored to reveal new discoveries, based on yet uncovered relations
between knowledge from different, relatively isolated fields of research
specialization. This chapter proposes a bisociation-based text mining
approach, which shows to be effective for cross-domain knowledge discov-
ery. The proposed cross-domain literature mining functionality, including
text acquisition, text preprocessing, and bisociative cross-domain litera-
ture mining facilities, is made publicly available within a new browser-
based workflow execution engine TextFlows, which supports visual con-
struction and execution of text mining and natural language processing
(NLP) workflows. To support bisociative cross-domain literature min-
ing, the TextFlows platform includes implementations of several ele-
mentary and ensemble heuristics that guide the expert in the process
of exploring new cross-context bridging terms. We have extended the
TextFlows platform with several components, which—together with doc-
ument exploration and visualization features of the CrossBee human-
computer interface—make it a powerful, user-friendly text analysis tool
for exploratory cross-domain knowledge discovery. Another novelty of
the developed technology is the enabled use of controlled vocabularies to
improve bridging term extraction. The potential of the developed func-
tionality was showcased in two medical benchmark domains.

Keywords: Literature mining - Literature-based discovery : Cross-
context linking terms - Creativity support tools - Human-computer
interaction - Workflows

1 Introduction

Understanding complex phenomena and solving difficult problems often requires
knowledge from different domains to be combined and cross-domain associa-
tions to be taken into account. These kinds of context crossing associations,
called bisociations [1], are often needed for creative, innovative discoveries.
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Bisociative knowledge discovery is a challenging task motivated by a trend of
over-specialization in research and development, which usually results in deep—
but relatively isolated—knowledge islands. Scientific literature too often remains
closed and cited only in professional sub-communities. In addition, the informa-
tion that is related across different contexts is difficult to identify using asso-
ciative approaches, like the standard association rule learning [2] known from
the data mining and machine learning literature. Therefore, the ability of liter-
ature mining methods and software tools to support the experts in their knowl-
edge discovery processes—especially in searching for yet unexplored connections
between different domains—is becoming increasingly important. Cross-domain
literature mining is closely related to bisociative knowledge discovery as defined
in [3]. Assuming two different domains of interest, a crucial step in cross-domain
knowledge discovery is the identification of interesting bridging terms (B-terms),
appearing in both literatures, which carry the potential of revealing the links
connecting the two domains.

This chapter presents a powerful approach to literature based cross-context
knowledge discovery that supports the process of bridging term extraction. The
developed methodology helps the experts in searching for hidden links that con-
nect seemingly unrelated domains. The main novelty of the presented approach is
the combination of document acquisition and text preprocessing facilities with a
new facility for term extraction through ensemble-based ranking of terms accord-
ing to their bisociative potential, which may contribute to novel cross-domain
discoveries. The proposed methodology is implemented in a web-based text min-
ing platform TextFlows'. To this end, the TextFlows platform was connected to
the human-computer interface of system CrossBee [4,5]. In the methodology pre-
sented in this chapter, the CrossBee web application—which we originally devel-
oped as an off-the-shelf solution for finding bisociations bridging two domains—is
used as a user interface to facilitate bridging term discovery through sophisti-
cated document visualization and exploration. This work proposes a further
extension of the methodology by facilitating the use of controlled vocabularies,
enhancing the heuristics capability to rank the actual B-terms at the top of the
ranked term list. With all these features, the TextFlows platform, which now
includes the reusable text analytics workflows combined with the CrossBee doc-
ument exploration interface, has become a publicly available creativity support
tool (CST), supporting creative discovery of new cross-domain hypotheses.

The chapter is organized as follows. Section 2 provides a brief glossary of key
terms that will facilitate a common understanding of the main topics presented
here. Section 3 presents the state-of-the-art in the area of literature-based dis-
covery. Section4 illustrates the problem of bridging term ranking and B-term
exploration through a use case scenario, followed by an overview of the method-
ology. Section 5 comprises the core contribution of this chapter. The TextFlows

! Our new text mining platform, named TextFlows, is publicly available for use
at http://textflows.org. The source code (open sourced under the MIT Licence) is
available at https://github.com/xflows/textflows. Detailed installation instructions
are provided with the source code.
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platform, acting as the enabling technology for implementing the developed
cross-domain link discovery approach, is described in Sect.5.1. The elemen-
tary and ensemble heuristics used in bridging term discovery are described in
Sect. 5.2. Section 5.3 presents details of document acquisition, text preprocessing
and literature based discovery workflows implemented in TextFlows. Controlled
vocabulary extension of the methodology is presented in Sect. 5.4. Evaluation of
the developed methodology on two medical benchmark problems is provided in
Sect. 6, Finally, Sect. 7 concludes with a summary of most important features of
the presented approach and some directions for further work.

2 Glossary

Bisociation: the combination of knowledge from seemingly unrelated domains
into novel cross-domain knowledge.

Bridging term: a term common to two disjoint domains, which is a candidate
for the discovery of new knowledge or for formulation of new hypotheses, acting
as a “bridge” between the two domains.

Literature-based discovery: using academic literature to find previously uncov-
ered connections in existing domain knowledge.

Outlier detection: finding irregular or unusual data instances (documents in the
case of literature mining) that do not conform to the expected distribution.

3 State-of-the-Art

According to Koestler [1], bisociative thinking occurs when a problem, idea, event
or situation is perceived simultaneously in two or more “matrices of though” or
domains. When two matrices of thought interact with each other, the result is
either their fusion in a novel intellectual synthesis or their confrontation in a
new aesthetic experience. He regarded many different mental phenomena that
are based on comparison (such as analogies, metaphors, jokes, identification,
anthropomorphism, and so on) as special cases of bisociation. More recently, this
work was followed by the researchers interested in so-called bisociative knowledge
discovery [6], where—according to Berthold—two concepts are bisociated if there
is no direct, obvious evidence linking them and if one has to cross different
domains to find the link, where a new link must provide some novel insight into
the problem addressed.

In the area of literature based discovery (LBD), Swanson [7] and
Smalheiser [8] developed an approach to assist the user in literature based discov-
ery by detecting interesting cross domain terms with a goal to discover unknown
relations between previously unrelated concepts. The online system ARROW-
SMITH [8] takes as input two sets of titles of scientific papers from disjoint
domains A and C and lists terms that are common to A and C; the resulting
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bridging terms (B-terms) are further investigated by the user for their potential
to generate new scientific hypotheses. They defined the so-called closed discovery
process, where domains A and C are specified by the expert at the beginning of
the discovery process.

Inspired by this early work, literature mining approaches were further devel-
oped and successfully applied to different problems, such as finding associations
between genes and diseases [9], diseases and chemicals [10], and others. [11]
describe several quality-oriented web-based tools for the analysis of biomedical
literature, which include the analysis of terms (biomedical entities such as dis-
ease, drugs, genes, proteins and organs) and provide concepts associated with
a given term. A recent approach by Kastrin et al. [12] is complementary to the
other LBD approaches, in that it uses different similarity measures (such as com-
mon neighbors, Jaccard index, and preferential attachment) for link prediction
of implicit relationships in the Semantic MEDLINE network.

Early work by Swanson has shown that databases such as PubMed can
serve as a rich source of yet hidden relations between usually unrelated top-
ics, potentially leading to mnovel insights and discoveries. By studying two
separate literatures—the literature on migraine headache and the articles on
magnesium—[13] discovered “Eleven neglected connections”, all of them sup-
portive for the hypothesis that magnesium deficiency might cause migraine
headache. Swanson’s literature mining results have been later confirmed by lab-
oratory and clinical investigations. This well-known example has become a gold
standard in the literature mining field and has been used as a benchmark in
several studies, including those presented in [14-16] as well as in our own past
work [17,18]. Research in literature mining, conducted by Petri¢ et al. [17,18],
suggests that bridging terms are more frequent in documents that are in some
sense different from the majority of documents in a given domain. For example,
[18] have shown that such documents, considered outlier documents of their own
domain, contain a substantially larger amount of bridging-linking terms than
the normal, non-outlier documents.

The experimental data used to test the methodology proposed in this work
are papers from the combined migraine-magnesium domain, studied extensively
by Swanson and his followers, as well as the combined autism-calcineurin domain
pair explored in [17,19].

Our contribution in this chapter follows two lines of our past research. First,
it continues the work on cross-domain document exploration in [17,18], which
explore outlier documents as means for literature based discovery. Note that
the problem of finding outliers has been extensively studied also by another
researcher [20] and has an immense use in many real-world applications. Second,
and most importantly, the chapter continues our work on cross-domain bisoci-
ation exploration with CrossBee [5], which is most closely related to the work
described here. CrossBee is an off-the-shelf solution for finding bisociative terms
bridging two domains, which—as will be shown—can be used as the default user
interface to the methodology presented in this chapter. Given that the Cross-
Bee user interface is an actual ingredient of the technology developed in this
work, its user interface is described in some more detail than other LBD systems
mentioned in this section.
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The CrossBee HCI functionality includes the following facilities: (a) Perfor-
mance evaluation that can be used to measure the quality of results, e.g., through
plotting ROC curves when the actual bridging terms are known in advance.
(b) Marking of high-ranked terms by emphasizing them, thus making them eas-
ier to spot throughout the application. (¢) B-term emphasis can be used to mark
the terms predefined as B-terms by the user. (d) Domain separation colors all
the documents from the same domain with the same color, making an obvious
distinction between the documents from the two domains. (e¢) User interface cus-
tomization enables the user to decrease or increase the intensity of the following
features: high-ranked term emphasis, B-term emphasis and domain separation;
this facility was introduced to enable the user to set the intensity of these fea-
tures, given that in cooperation with the experts we discovered that some of
them like the emphasizing features while others do not.

Note that the CrossBee web interface was designed for end-users who are
not computer scientists or data miners and who prefer using the system by
following a fixed sequence of predefined methodological steps. However, for a
more sophisticated user of developer, the weakness of CrossBee is the lack of
possibility to experiment with different settings as well as the lack of possibility
to extend the methodology with new ideas and then compare or evaluate the
developed approaches. As another weakness, the CrossBee web application does
not offer a downloadable library and documentation distribution or extensive
help. These weaknesses were among the incentives for our new developments,
resulting in the TextFlows platform and its elaborate mechanisms for detecting
and exploring bisociative links between the selected domains of interest.

4 Methodology Overview

In cross-domain knowledge discovery, estimating which of the terms have a
high potential for interesting discoveries is a challenging research question. It is
especially important for cross-context scientific discovery such as understanding
complex medical phenomena or finding new drugs for yet not fully understood
illnesses.

In our approach we focus on the closed discovery process, where two dis-
jointed domains A and C' are specified at the beginning of the discovery process
and the main goal is to find bridging terms (see Fig.1) which support valida-
tion of the novel hypothesized connection between the two domains. Given this
motivation, the main functionality of the presented approach is bridging term
(B-term) discovery, implemented through ensemble based term ranking, where
an ensemble heuristic composed of six elementary heuristics was constructed for
term evaluation.

To ensure the best user experience in the process of bridging term discovery
we have combined the visual programming interface of the TextFlows workflow
construction and execution platform with the bridging term exploration system
CrossBee; CrossBee provides a user interface for term and document visualiza-
tion that additionally supports the expert in finding relevant documents and
exploration of the top-ranked bisociative terms.
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Fig. 1. Bridging term discovery when exploring migraine and magnesium document
corpora, with B-terms as identified in [13] in the middle.

4.1 Methodology Illustration

The ensemble based term ranking methodology (using the final ensemble heuris-
tic) is illustrated in Fig. 2.
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Fig. 2. Term ranking approach: first, ensemble heuristics vote for terms, next, terms are
sorted according to their potential B-term (as shown on left). Consequently, bridging
terms with the highest bridging term potential should receive the highest scores (as
shown on the right side).

The user starts the bridging term discovery process in TextFlows by either
constructing a new workflow for cross-domain discovery or by opening an existing
workflow (such as the workflow shown in Fig.4 of Sect.4.2). In the first case,
the user is required to input either a PubMed query or a file with documents
from the two domains, where each line contains a document with exactly three
tab-separated entries: (a) document identifier, (b) domain acronym, and (c) the
document text. The user is able to tailor the preprocessing steps to his own needs
by simply altering the workflow using the TextFlows visual programming user
interface, which enables simple addition, connection and removal of components
from the workflow canvas. In this way, the user can also modify the ensemble of
elementary heuristics, outlier documents identified by external outlier detection
software, the already known bisociative terms (B-terms), and others. When the
user runs the workflows (by clicking the run button) the system starts with
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the process of text preprocessing, followed by the computation of elementary
heuristics, the ensemble bisociation scores and term ranking.

After performing the calculation of bisociative potentials for every term in
the vocabulary in TextFlows, the user is directed to the user-friendly tool Cross-
Bee where one can efficiently investigate cross-domain links pointed out by the
ensemble-based ranking methodology. CrossBee’s document focused exploration
empowers the user to filter and order the documents by various criteria, includ-
ing detailed document view that provides a more detailed presentation of a single
document including various term statistics. Methodology performance analysis
supports the evaluation of the methodology by providing various data which can
be used to measure the quality of the results, e.g., data for plotting the ROC
curves. High-ranked term emphasis marks the terms according to their bisoci-
ation score calculated by the ensemble heuristic. When using this feature all
high-ranked terms are emphasized throughout the whole application thus mak-
ing them easier to spot (see different font sizes in Fig. 3). B-term emphasis marks
the terms defined as B-terms by the user (yellow terms in Fig.3). Domain sep-
aration is a simple but effective option which colors all the documents from the
same domain with the same color, making an obvious distinction between the
documents from the two domains (different colors in Fig. 3). User interface cus-
tomization enables the user to decrease or increase the intensity of the following
features: high-ranked term emphasis, B-term emphasis and domain separation.
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Fig. 3. One of the useful features of the CrossBee interface is the side-by-side view of
documents from the two domains under investigation. The analysis of the “stress” term
from the migraine-magnesium domain is shown. The presented view enables efficient
comparison of two documents, the left one from the migraine domain and the right one
from the magnesium domain. (Color figure online)
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4.2 Methodology Outline

This section describes how the complex methodology was developed as a work-
flow in the TextFlows platform, by presenting the entire pipeline of natural lan-

g

uage processing (NLP) and literature based discovery (LBD) components. The

top-level overview of the methodology, shown in Fig. 4, consists of the following
steps: document acquisition, document preprocessing, heuristics specification,
candidate B-term extraction, heuristic terms scores calculation, and visualiza-
tion and exploration. An additional ingredient shown in Fig.4—methodology
evaluation—is not directly part of the methodology, however it is an important
step of the developed approach.

o 0
&
1. DOC'U.HTIEHI 2. Docum@t  adc | y h~ [ bmc | =
Acquisition Preprocessing bt &)
6. B-Term
4. Candidate Bsterm A > I Vizualization and
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Fig. 4. Methodological steps of the cross-domain literature mining process.

Top-level procedural explanation of the workflow shown in Fig.4 is given

below, while detailed explanations of individual steps of the workflow are
described in Sect. 5.3.

1.

Document acquisition is the first step of the methodology. Its goal is to acquire
documents of the two domains, label them with domain labels and pack both
domains together into the annotated document corpus format.

The document preprocessing step is responsible for applying standard text
preprocessing to the document corpus. The main parts are tokenization, stop-
word tagging, and token stemming/lemmatization.

The heuristic specification step enables detailed specification of the heuristics
to be used for B-term ranking. The user specifies one or more heuristics, which
are to be applied to evaluate the B-term candidates. Note that each individual
heuristic can be composed of other heuristics, therefore an arbitrary complex
list of heuristics can be composed in this step.

The candidate B-term extraction step takes care of extracting the terms which
are later scored by the specified heuristics. There are various parameters
which control which kind of terms are extracted from the documents (e.g.,
the maximal number of tokens to be joined together as a term, minimal term
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corpus frequency, and similar). The outputs are the BoW Dataset (i.e. the
documents in the standard Bag-of-Words (BoW) vector format) and a Bow
Model Constructor. The latter stores the list of all candidate B-terms along
with the information about the input documents from annotated document
corpus as well as the exact data how each document was parsed. This data is
needed e.g., by the CrossBee web application when displaying the documents
since it needs to be able to exactly locate specific words inside a document,
in order to color or emphasize such words.

5. Heuristic term score calculation is the most important step of the methodol-
ogy. It takes the list of extracted B-term candidates and the list of specified
heuristics and calculates a heuristic score for each candidate term for each
heuristic. The heuristics calculation is optimized so that common information
used by different heuristics is calculated only once. The output is structurally
still a list of heuristics, however now each of them contains a bisociation score
for each candidate B-term.

6. Visualization and exploration is the final step of the methodology. It has three
main functionalities. It can either take the heuristically scored terms, rank the
terms, and output the terms in the form of a table, or it can take the heuristi-
cally scored terms along with the parsed document corpus and send them both
to the CrossBee web application for advanced visualization and exploration.
Besides improved bridging concept identification and ranking, CrossBee also
provides various content presentations which further speed up the process of
bisociation exploration. These presentations include e.g., side-by-side docu-
ment inspection (see Fig.3), emphasizing of interesting text fragments, and
uncovering similar documents.

7. Methodology evaluation was introduces as an additional step, which can be
used during the development of the methodology. Its purpose is to calcu-
late and visualize various metrics that were used to assess the quality of the
methodology. Requirement to use these facilities is to allow the actual (prede-
fined) B-terms of the domain of investigation to act as gold standard B-terms
available for evaluating the quality of B-term extraction and ranking.

Evaluation of the methodology was actually performed on two problems: the
standard migraine-magnesium problem well-known in LBD, and a more recent
autism-calcineurin literature mining problem. The evaluation of the methodology
(its results are presented in detail in Sect.6) provides evidence that the users
empowered with the CrossBee functionality of term ranking and visualization
are able to perform the crucial actions in cross-domain discovery more effectively
than with conventional text mining tools.

Note that the described pipeline represents an actual executable workflow
implemented in the online cloud-based workflow composition and execution envi-
ronment TextFlows. The entire workflow, whose components are explained in
detail in Sect. 5.3, is available for public reuse?.

2 http://textflows.org/workflow /486 /.
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5 Methodology Implementation

After presenting the main functionality of the TextFlows platform, this section
presents the core mechanism of bisociative term detection, i.e., the designed
heuristics and the workflows implementing the methodology in TextFlows. The
section concludes by presenting the methodology empowered by using a con-
trolled vocabulary in the search for bridging term.

5.1 The TextFlows Platform

We developed the TextFlows platform?® as an open-source, web-based text min-
ing platform that supports the construction and execution of text mining and
natural language processing workflows. TextFlows was designed as a cloud-based
web application that can be accessed and controlled from anywhere while the
processing is performed in a cloud of computing nodes. TextFlows differs from
comparable text mining platforms by its design that allows that during run-
time the TextFlows platform resides on a server (or on a cluster of machines)
while its graphical user interface that allows workflow construction is served as
a web application accessible from any modern web browser. Furthermore, the
platform’s distinguishing feature is the ease of sharing and publicizing work-
flows constructed in TextFlows, together with an ever growing roster of reusable
workflow components and entire workflows. As completed workflows, data, and
results can also be made public by the author of the workflow, the platform was
used to serve as an integration platform for development of various components
supporting the literature based cross-domain discovery process, and for con-
struction and evaluation of workflows, implementing the methodology proposed
in Sect. 4.2.

Following a modular design, workflow components in TextFlows are
organized into packages which allows for easier distributed development.
The TextFlows packages implement several text mining algorithms from
LATINO#[22], NLTK [23] and scikit-learn [24] libraries. Moreover, TextFlows is
easily extensible by adding new packages and workflow components. Workflow
components of several types allow graphical user interaction during run-time,
and visualization of results by implementing views in JavaScript, HTML or any
other format that can be rendered in a web browser (e.g., Flash, Java Applet).

Below we explain the concept of workflows in more detail, describe the key
text mining concepts of TextFlows and present the newly implemented package
with workflow components supporting literature based discovery.

3 Our platform TextFlows is a fork of data mining platform ClowdFlows [21], adapted
to text mining and enriched with text analytics and natural language processing
algorithms. As a fork of ClowdFlows, it benefits from its service-oriented architec-
ture, which allows the user to utilize arbitrary web-services as workflow components.
In addition to the new functionality, its novelty is a common text representation
structure and the development of ‘hubs’ for algorithm execution.

* LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under
the LGPL license—and is available at https://github.com/LatinoLib/LATINO/.
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Workflows. Executable graphical representations of complex procedures can
be represented as workflows. The workflow model is the main component of the
TextFlows platform and consists of an abstract representation of workflows and
workflow components. The graphical user interface used for constructing work-
flows follows a visual programming paradigm which simplifies the representation
of complex procedures into a spatial arrangement of building blocks. The most
basic unit component in a TextFlows workflow is a processing component, which
is represented as a widget in the graphical representation. Considering its inputs
and parameters, every such component performs a task and stores the results on
its outputs. Different processing components are linked via connections through
which data is transferred from a widget’s output to another widget’s input. An
alternative widget input for a widget are parameters, which the user enters into
the widgets text fields. The graphical user interface implements an easy-to-use
way of arranging widgets on a canvas to form a graphical representation of a
complex procedure.

Workflows in TextFlows are processed and stored on remote servers from
where they can be accessed from anywhere, requiring only an internet connection.
By default each workflow can only be accessed by its author, although the user
can also choose to make it publicly available. The TextFlows platform generates a
specific URL for each workflow that has been saved as public. The users can then
simply share their workflows by publishing the corresponding URL. Whenever
a public workflow is accessed by another user, a copy of the workflow is created
on the fly and added to his private workflow repository. The workflow is copied
with all the data to ensure the experiments can be repeated. This enables the
user to tailor the workflow to his needs without modifying the original workflow.

Key Text Mining Concepts in TextFlows. The key concepts in text min-
ing are a corpus or a document collection, a single document, and document
features [25]. Below we describe the model of corpora, documents and anno-
tations on documents in TextFlows, which are the fundamental parts of our
methodology. When designing TextFlows, the emphasis was on providing com-
mon representations which are passed among the majority of widgets:

Annotated corpus. A document collection is any grouping of text documents
to be used for text analytics purposes. In TextFlows the Python® class that
represents a corpus of documents is called AnnotatedDocumentCorpus (ADC).
An ADC instance contains the collection of documents and its meta-data such
as the authors, creation date, facts and notes about the dataset, etc. Features
are stored in a simple key-value Python dictionary, where keys are strings and
the values can store any Python object.

Annotated document. A single textual data unit within a collection—a
document—is represented by the AnnotatedDocument class. An AnnotatedDoc-
ument instance may vary in size from a single sentence to a whole book. As with

5 https://www.python.org/.
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ADC, AnnotatedDocument instances also contain meta-data, such as author,
date of publication, document length, assigned keywords, etc.

Annotation. Instances of the Annotation class are used to mark parts of the
document, e.g., words, terms or sentences. Each Annotation instance has two
pointers, one to the start and one to the end of the annotated stretch in the
document text. These instances also have a type attribute used for grouping
annotations of similar nature and contain key-value dictionaries of features, used
by taggers to annotate parts of document with specific tags, e.g., annotations of
type “token” that have a feature named “StopWord” with value “true”, represent
stop words in the document.

The Widget Repository. The following paragraphs present a subset of the
TextFlows repository of widgets, which will be used in the workflows that imple-
ment the methodology proposed in Sect. 4.2.

Corpus and vocabulary acquisition. Document acquisition is usually the first step
of every text mining methodology. TextFlows employs widgets which enable load-
ing document corpora, labeling of documents with domain labels and converting
them into the ADC structure. Document corpora can be loaded from files, where
the dataset can be either a single text file, with each line representing a separate
document, or a zip of files in which a document is represented as a file. Also
supported is the upload of Word (.doc or .docx) and PDF files. Together with
the text of the document the files may optionally contain document meta-data.

Corpus manipulation and visualization. TextFlows implements several widgets
for manipulation of ADC data objects. These widgets allow the user to add new
features, extract existing features from the document corpus, split document
corpora (by either specifying conditions or by indices), merge different corpora,
etc. A special widget in the platform is the Document Corpus Viewer widget,
which visualizes the ADC data objects (note that TextFlows design emphasizes
the importance of the ADC common document corpus representation which
is passed among the majority of widgets). The interactive Document Corpus
Viewer widget allows the user to check the results of individual widgets by
visualizing the ADC data object from their outputs.

Text preprocessing. Preprocessing is a very important part of any form of knowl-
edge extraction from text documents. Its main task is the transformation of
unstructured data from text documents into a predefined well-structured data
representation by extracting a high quality feature vector for every document in
a given document corpus.
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Our implementation employs the LATINOS [22], scikit-learn [24] and NLTK”
[23] software libraries for its text preprocessing (and other processing) needs.
These libraries inter alia contain the majority of elementary text preprocessing
procedures as well as a large number of advanced procedures which support the
conversion of a document corpus into a table of instances, thus converting every
document into a table row representation of an instance.

The TextFlows preprocessing techniques are based on standard text min-
ing concepts [25] and are implemented as separate categories. Every category
possesses a unique hub widget, which has the task of applying a preprocessing
technique from its category to the ADC data object. Every such widget is library
independent, meaning that it can execute objects from either LATINO, NTLK
or scikit-learn libraries. A standard collection of preprocessing techniques imple-
mented in TextFlows includes: tokenization, stopword removal, Part-of-speech
(PoS) tagging, as well as stemming and lemmatization.

In the data mining modeling phase (i.e. document classification or heuristic
calculation), each document from the ADC structure needs to be represented as
a set of document features it contains. In TextFlows the Construct BoW Dataset
and BoW Model Constructor widget takes as an input an ADC data object and
generates a sparse BoW model dataset (which can then be handed e.g. to a
classifier). The widget takes as an input also several user defined parameters,
which are taken into account when building the feature dataset. Besides the
sparse BoW model dataset this widget also outputs a BowModelConstructor
instance. This additional object contains settings which allow repetition of the
feature construction steps on another document corpus. These settings include
the input parameters, as well as the learned term weights and vocabulary.

Literature based discovery. This category of widgets supports the literature based
discovery process. The package contains several widgets which specify different
elementary heuristics. As will be described in Sect. 5.2, the basic heuristics are
grouped into one of four categories: frequency-based, TF-IDF-based, similarity-
based, outlier-based. Each category is represented by its own widget and the user
is able to manually select its elementary heuristics through an interactive dialog.
The literature based discovery package also contains several widgets which spec-
ify operations between elementary widgets, such as minimum, maximum, sum,
norim, etc.

The library also contains two widgets which support the specification of
ensemble heuristics, which will be described in Sect.5.2: Ensemble Heuristic
Vote and Ensemble Average Position widget. The first defines an ensemble vot-
ing heuristic (it calculates term votes according to Eq. 1 of Sect. 5.2), while the
latter specifies an ensemble that calculates normalized sum of term position
scores of the inputted heuristics (see Eq. 2 of Sect. 5.2).

5 LATINO (Link Analysis and Text Mining Toolbox library) is open-source—
mostly under the LGPL license—and is available at https://github.com/LatinoLib/
LATINO/.

" Natural Language Toolkit.
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The most important widget from this package is the Calculate Term Heuris-
tic Scores widget which takes as an input several heuristics specifications and
performs the actual calculations. The decision for such an approach—having one
widget which calculates all the heuristics—is that several elementary heuristics
require the same intermediate results. These results can be cached and calcu-
lated only once, which results in faster computation. To this end, the TextFlows
platform uses Compressed Sparse Row (CSR) matrices® to be able to store the
matrix of features in memory and also to speed up algebraic operations on vec-
tors and matrices.’

Literature based discovery package also contains the Ezxplore in CrossBee
widget which exports the final ranking results and the annotated document
corpus into web application CrossBee, which offers manual exploration of terms
and documents. Also, the Rank Terms widget can be used to display the ranked
terms in the form of a table along with their respective scores.

5.2 Implemented Heuristics for Bridging Term Discovery

This section presents different groups of elementary and ensemble heuristics,
which are used for B-term ranking in the core step of the proposed methodology,
i.e. in the heuristic term score calculation step.

The heuristics are defined as functions that numerically evaluate the term
quality by assigning it bisociation score to a term (measuring the potential that a
term is actually a B-term). For the definition of an appropriate set of heuristics,
we define a set of special (mainly statistical) properties of terms, which aim
at distinguishing B-terms from regular terms; thus, these heuristics can also be
viewed as advanced term statistics. All heuristics operate on the data retrieved
from the documents in text preprocessing. Ranking all the terms using the scores
calculated by an ideal heuristic should result in ranking all the B-terms at the
top of a ranked list. This is an ideal scenario, which is not realistic; however,
ranking by heuristic scores should at least increase the proportion of B-terms
at the top of the ranked term list. Formally, a heuristic is a function with two
inputs, i.e. a set of domain labeled documents D and a term ¢ appearing in these
documents, and one output, i.e. a score that represents the term’s bisociation
potential.

We will use the following notation: to state that the term’s bisociation score
b is equal to the result of a heuristic named heurX, we can denote it as b =
heurX (D, t). However, since the set of input documents is static when dealing
with a concrete dataset, we can—for the sake of simplicity—omit the set of input

8 Compressed Sparse Row (CSR) matrices are implemented in the scipy.sparse package
http://docs.scipy.org/doc/scipy /reference/sparse.html.

9 The Calculate Term Heuristic Scores widget also takes as input the BowModel-
Contructor object and the AnnotatedDocumentCorpus. The parse settings from the
BowModelConstructor object are used to construct Compressed Sparse Row (CSR)
matrices, which represents the BoW model. TextFlows uses mathematical libraries
numpy and scipy to efficiently perform the heuristics calculations.
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documents from a heuristic notation and use only b = heurX (t). Whenever we
need to explicitly specify the set of documents to which the function is applied
(never needed for a heuristic, but sometimes needed for auxiliary functions used
in the formula for the heuristic), we write it as funcXp(t). For specifying the
function’s input document set, we have two options: either use D,, that stands for
the (union) set of all the documents from all the domains, or use D,, : n € {1..N},
which stands for the set of documents from the given domain n. In general, the
following statement holds: D, = UN_, D,,, where N is the number of domains.
In the most common scenario, when there are exactly two distinct domains, we
also use the notation D4 for D; and D¢ for Ds, similarly to Swanson’s notation
of symbols A and C' as representatives of the initial and the target domain in
the closed discovery setting, mentioned in Sect. 3.

Base Heuristics. We divide the heuristics into different sets for easier explana-
tion; however, most of the described heuristics work fundamentally in a similar
way—they all manipulate solely the data present in term and document vectors
and derive the terms bisociation score. The exceptions to this are the outlier-
based heuristics, which first evaluate outlier documents and only later use the
information from the term vectors for B-term evaluation.

We can thus define four sets of base heuristics: frequency based, TF-IDF
based, outlier based and similarity based heuristics. In following sections we
describe each set in more detail.'”

Frequency-based heuristics. We first define two auxiliary functions:

— countTermp(t): counts the number of occurrences of term ¢ in a document
set D (called term frequency in TF-IDF related contexts),

— countDocp(t): counts the number of documents in which term ¢ appears in
document set D (called document frequency in TF-IDF related contexts).

We define the following base heuristics:

— freqTerm(t) = countTermp, (t): term frequency in the two domains,
— freqDoc(t) = countDocp, (t): document frequency in the two domains,
— freqRatio(t) = countTermp, (1), torm to document frequency ratio,

countDocp,, (t))
. . . . scountTermp, (t) countTermp,(t)
frquomnRatzoMzn(t) - mln( countTermp, (t)’ countTermp, (t)

term frequencies ratio of the two domains,
— fregDomnProd(t) = countTermp, (t)-countTermp,(t): product of term fre-
quencies of the two domains,

— freqDomnProdRel(t) = coumTerZ’SﬁgtT);i ZZ"EZ;”mD?Q): product of term fre-

quencies of the two domains relative to the term frequency in all domains.

): minimum of

10 Due to a large number of heuristics and auxiliary functions, we use the so called
camel casing multi-word naming scheme for easier distinction; names are formed by
word concatenation and capitalization of all non first words (e.g., freqProdRel and
tfidfProduct).
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TF-IDF-based heuristics. TF-IDF is a standard measure of term’s importance in
a document, which is used heavily in text mining research [26]. In the following
heuristics definitions, we use the following auxiliary functions:

— tfidfq(t) stands for TF-IDF weight of term ¢ in document d,

— tfidfp(t) represents TF-IDF weight of term ¢ in the centroid vector of all
documents d, d € D, where the centroid vector is defined as an average of
all document vectors and thus presents an average document of document
collection D.

Heuristics based on TF-IDF are listed below:

= tfidf Sum(t) = > cp, tfidfa(t): sum of all TF-IDF weights of term ¢ in the
two domains; this heuristic is analogous to freqTerm(t),

— tfidf Avg(t) = Zf‘i%w: average TF-IDF weights of term ¢ across all

domains,

— tfidf DomnProd(t) = tfidfp, (t) - tfidfp,(t): product of TF-IDF weights of
term ¢ in the two domains,

— tfidf DomnSum(t) = tfidfp, (t) +tfidfp,(t): sum of term TF-IDF weights of
term ¢ in the two domains.

Similarity-based heuristics. Another approach to construct a relevant heuristic
measure is to use the cosine similarity measure that is frequently used in text
mining to compute the similarity of documents. We start by creating a repre-
sentational BoW model as a document space and by converting terms into Bow
document vectors. Next, we get the centroid vectors for both domains in the
document space representation. Finally, we apply TF-IDF weighting on top of
all the newly constructed vectors and centroids. We define the following auxiliary
function:

— simCosp(t): calculates the cosine similarity of the document vector of term ¢
and the document vector of a centroid of documents d € D.

The base heuristics are the following:

— simAvgTerm(t) = simCosp, (t): similarity of term ¢ to an average term, i.e.
the distance from the center of the cluster of all terms,
- simDomnProd(t) = simCosp, (t)-simCosp,(t): product of similarity of term

t to the centroids of the two domains,

simCosp, (t) simCosp, (t)
simCosp, (t)’ simCosp, (t)
frequency ratios of the two domains.

— simDomnRatioMin(t) = min( ): minimum of term’s

Outlier-based heuristics. Outlier detection is an established area of data min-
ing [20]. Conceptually, an outlier is an unexpected event, entity or—in our case—
an irregular document. We are especially interested in outlier documents since
they frequently embody new information that is often hard to explain in the con-
text of existing knowledge. Moreover, in data mining, an outlier is occasionally a
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primary object of study as it can potentially lead to the discovery of new knowl-
edge. These assumptions are well aligned with the bisociation potential that we
wish to optimize, thus, we have constructed several heuristics that harvest the
information possibly residing in outlier documents.

We concentrate on a specific type of outliers, i.e. domain outliers, which are
the documents that tend to be more similar to the documents of the opposite
domain than to those of their own domain. The techniques that we use to detect
outlier documents [18] is based on using classification algorithms to detect outlier
documents. First we train a classification model for each domain and afterwards
classify all the documents using the trained classifier. The documents that are
misclassified—according to their domain of origin—are declared as outlier doc-
uments, since according to the classification model they do not belong to their
domain of origin.

We defined three different outlier sets of documents based on three classifi-
cation algorithms utilized. These outlier sets are:

— Dc¢g: documents misclassified by the Centroid Similarity (CS) classifier,

— Dpgp: documents misclassified by the Random Forest (RF) classifier,

— Dgy p: documents misclassified by the Support Vector Machine (SVM) clas-
sifier.

Centroid similarity is a basic classifier model implemented in our system. It
classifies each document to the domain whose centroid’s TF-IDF vector is the
most similar to the document’s TF-IDF vector. The description of the other
two classification models is beyond the scope of this chapter, as we used exter-
nal procedures to retrieve these outlier document sets; a detailed description is
provided by [18].

For each outlier set we defined two heuristics: the first counts the frequency
of a term in an outlier set and the second computes the relative frequency of a
term in an outlier set compared to the relative frequency of a term in the whole
dataset. The resulting heuristics are listed below:

— outFreqCS(t) = countTermp,,(t): frequency of term ¢ in the CS outlier set,

— outFreqRF (t) = countTermp,,(t): frequency of term ¢ in the RF outlier set,

— outFreqSV M(t) = countTermpg,,, (t): frequency of term ¢ in the SVM out-
lier set,

— outFreqgSum(t) = countTermp4(t) + countTermp,, (t) + countTermpg.,
(t): sum of frequencies of term ¢ in all three outlier sets,

— outFreqRelCS(t) = countTermpes (), yolative frequency of term ¢ in the CS

countTermp,, (t)
outlier set,
— outFreqRelRF(t) = %W relative frequency of term ¢ in the RF
outlier set,

— outFreqRelSVM(t) = countTermbsy (1), yolative frequency of term ¢ in the

countTermp,, (t)
SVM outlier set,
_ countTermp g (t)+countTermpp, . (t)+countTermpg,, ., (1)
— outFreqRelSum(t) = countTerma @)

sum of relative term frequencies of term ¢ in all three outlier sets.
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Ensemble Heuristics Construction. Ensemble learning is a known approach
used in machine learning for combining predictions of multiple models into a final
prediction. It is well evidenced [27] that the resulting ensemble model is more
accurate than any of the individual models used to build it as long as the models
are similarly accurate, are better than random, and their errors are uncorrelated.
There is a wide variety of known and well tested ensemble techniques, such
as bagging, boosting, majority voting, random forest, naive Bayes, etc. [28].
However, these approaches are usually used for the problem of classification
while the core problem presented in this work is ranking. Nevertheless, with the
rise of the areas like information retrieval and search engines’ web page rankings,
ensemble ranking is also gaining attention in the ranking community [29].

One possible—and probably the most typical—approach to designing an
ensemble heuristic from a set of base heuristics consists of two steps. In the
first step, the task is to select member heuristics for the ensemble heuristic
using standard data mining approaches like feature selection. In the second step,
equation discovery is used to obtain an optimal combination of member heuris-
tics. The advantage of such approach is that the ensemble creation does not
require manual intervention. Therefore, we performed several experiments with
this approach; however, the results of an ensemble were even more overfitted to
the training domain. Consequently, we decided to manually—based on experi-
ence and experimentation—select appropriate base heuristics and construct an
ensemble heuristic. As the presentation of numerous experiments, which support
our design decisions, is beyond the scope of this chapter, we describe only the
final solution, along with some reasoning about choosing the heuristics.

The ensemble heuristic for bridging term discovery, which we constructed
based on the experiments, is constructed from two parts: the ensemble voting
score and the ensemble position score, which are summed together to give the
final ensemble score for every term in the corpus vocabulary. Each term score
represents the term’s potential for joining the two disjointed domains.

The ensemble voting score (sY°'¢) of a given term ¢ is an integer, which
denotes how many base heuristics voted for the term. Each selected base heuristic

h; gives one vote (s f"the = 1) to each term, which is in the first third in its
ranked list of terms and zero votes to all the other terms (Sf‘)the 0). The

voting threshold one third (%) was set empirically grounded on the evaluation of
the ensemble heuristic on the migraine-magnesium domain and is based on the
number of terms that appear in both domains (not one third of all the terms).
Formally, the ensemble voting score of term ¢; that is at position p; in the ranked
list of n terms is computed as a sum of individual heuristics’ voting scores:

vote vote 1, p<n/3
S YL R b "

— otherwise

Therefore, each term can get a score S”Ote €{0,1,2,...,k}, where k is the number
of base heuristics used in the ensemble. The ensernble position score (s£??) is

calculated as an average of position scores of individual base heuristics. For each
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Pos s calculated as
VR

in position scores being in the interval [0,1). For an ensemble of k heuristics,
the ensemble position score is computed as an average of individual heuristics’

position scores:

. . oy . n—pi .
heuristic h;, the term’s position score s np L which results

1 k 1 K n—p
pos __ pos —Vj
S, T Zsty‘,hi Tk n (2)
i=1 i=1
The final ensemble score is computed as:
0= S S0 3)

Using the proposed construction we make sure that the integer part of the ensem-
ble score always presents the ensemble vote score, while the ensemble score’s
fractional part always presents the ensemble position score. An ensemble posi-
tion score is strictly lower than 1, therefore a term with a lower ensemble voting
score can never have a higher final ensemble score than a term with a higher
ensemble voting score. Consequently, every final ensemble score falls into interval
[0,k + 1), where k is the number of base heuristics used in the ensemble.

The described method for ensemble score calculation is illustrated in
Tables 1-5. In Table 1 the base heuristics scores are shown for each term. Table 2
presents terms ranked according to the base heuristics scores. From this table,
the voting and position scores are calculated for every term based on its posi-
tion, as shown in Table 3. For example, all terms at position 2, i.e. t1, t6, and
t6, get voting score 1 and position score 4/6. Table4 shows the exact equation
how these base heuristics voting and position scores are combined for each term.
Table 5 displays the list of terms ranked by the calculated ensemble scores.

. Table 2. Terms Table 3. Voting and position
Table 1. Base heuristic L. .
ranked by base scores based on positions in
seores heuristics the ranked lists
L 3193 8‘246 8333 Pos. [ 7 | ha | hs Pos. [ 51775, [ 075,
2 [0.26[0.15]0.10 L |t ta |fs L |1 |(6-1)/6=5/6
. . : 2 t1 |t6 |16 2 1 (6—2)/6 = 4/6
t3 0.51]0.220.79
3 ts [t1 | ta 3 0 (6—-3)/6 =3/6
t4 0.45]0.840.73
t5  |0.41]0.15|0.11 4l lts |t 4 |0 (6-4)/6 = 2/6
- . . 5 ts |t2 |15 5 0 (6—5)/6 =1/6
t6 0.99]0.64 |0.74
6 to |t5 | L2 6 0 (6—6)/6=0/6

Note that at the first sight, our method of constructing the ensemble score
looks rather intricate. An obvious way to construct an ensemble score of a term
could be simply to sum together individual base heuristics scores; however, the
calculation of the ensemble score by our method is well justified by extensive
experimental results on the migraine-magnesium dataset described in Sect. 6.
The final set of elementary heuristics included in the ensemble is the following:
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Table 4. Calculation of ensemble heuristic score

(S;)Ot}; +S§JOJ(LEZ +S;}J03:Zs ) + (8;:05;11 +Sfjoshz +Sfoil\3 )/k _SUOte + Spos = Sty‘
n=( 1 + 0 + 0 )+ (4/6 + 3/6 + 2/6 )/3= 1 T 9/18 =1.50
b=( 0 4+ 0 + 0 )+(0/6 + 1/6 + 0/6 )/3= 0 + 1/18 =0.06
5=(00 + 0 + 1 )+(3/6+2/6+ 5/6)/3= 1 +10/18=1.56
w=(C 0 4+ 1 + 0 )+(2/6+5/6+ 3/6))3= 1 4+10/18=1.56

St,:( 0 + 0 4+ 0 )+(1/6 +0/6 + 1/6 )/3= 0 + 2/18 =0.11
=1 + 1 + 1 )+(5/6 4+ 4/6 + 4/6 )/3= 3 +13/18=3.72
Table 5. Ranked list of terms produced by the ensemble
t6 (3.72), [t2, t3] (1.56), t1 (1.50), t5 (0.11), t2 (0.06)
— outFreqRelRF — outFreqSum
— outFreqRelSVM — tfidfDomnSum
— outFreqRelCS — freqRatio

Detailed justification is presented in [30].

5.3 Workflows Implementing Individual Steps of the Methodology

The workflow for cross-domain literature mining, presented in Sect. 4.2, is pub-
licly available for sharing and reuse within the TextFlows platform. The workflow
integrates the computation of heuristics, described in Sect. 5.2, and is connected
to the term exploration interface of the online system CrossBee, which supports
the user in advanced document exploration by facilitating document analysis
and visualization.

Document Acquisition Workflow (Step 1). The first step of the workflow
from Fig. 4 is composed of several components described below. The components
are responsible for the following tasks:

1.1. load literature A into annotated document corpus data structure

1.1.1. load raw text data from a file (this component could be replaced by load-
ing documents from the web or by acquiring them using web services),
where each line contains a document with exactly three tab-separated
entries: (a) document identifier, (b) domain acronym, and (c¢) the docu-
ment text,

1.1.2. build the annotated document corpus from the raw data, i.e. parse the
loaded raw text data into a collection of documents and assign a domain
label (e.g., literature A, docsA, migraine) to the documents to enable
their identification after merging with literature B,

1.2. load literature B into the annotated document corpus data structure (indi-

vidual components are aligned with the components 1.1),
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1.3. merge the two literatures into a single annotated document corpus
structure,

1.4. optional check of document acquisition by visual inspection of the created
COrpus.

The document acquisition workflow is shown in Fig.5. The output is the
annotated document corpus consisting of the acquired documents labeled with
domain labels.

€
] ~
S K- 1 D a
1.1.1 Load file 1.1.2 Load Document m RN m 1.4 Display
Corpus . & Document Corpus
: 1
; -1 ol ey e [ S
1.2.1 Load file 1.2.2 Load Document 1.3 Merge Corpora adc: Annotated
Corpus Document Corpus

Fig. 5. Document acquisition workflow.

Text Preprocessing Workflow (Step 2). The document acquisition step is
followed by the text preprocessing step, which is itself a workflow implemented as
shown in Fig. 6. The main components here are tokenization, stopwords labeling
and token stemming or lemmatization. The output of this step is structurally
equal to the input; however every document in the annotated document corpus
now contains additional information about tokens, stopwords and lemmas.

bled
- D—a 35 oic [0 o B o BLT i B i [N
adc: Annotated | tin | tor | Ltar adc: Annotated
Document Corpus 2.1 Tokenizer Hub 2.2 Stop Word 2.3 Stem/Lemma Document Corpus
Cstr | asg; | tgr ] Tagger Hub Tagger Hub
ab cd m
and) ED 2.2.2 Stopwords abed [EHP
2.1.1 Regex the Tagger
Tokenizer 2.3.1 Lemma Tagger

2.2.1 Stop Word Sets LemmaGen

Fig. 6. Document preprocessing workflow.

The individual components perform the following tasks:

2.1 split documents to tokens (the basic units for further text processing),

2.1.1. create tokenizer object (simple tokenizer based on regular expressions),

2.2. tag stopword tokens by using a stopword tagger (component 2.2.2),

2.2.1. load standard English stopwords,

2.2.2. define the stopword tagger using the standard English stopwords only
(the detected stopwords are used in candidate B-term extraction step),
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2.3. lemmatize tokens by applying the LemmaGen lemmatizer'! [31],
2.3.1. create an instance of LemmaGen lemmatizer.

Heuristics Specification Workflow (Step 3). While the heuristics specifi-
cation step is the core part of our methodology, this step only specifies which
heuristics are selected and how these heuristics should be combined into the
ensemble heuristic. The actual calculation is performed later in the heuristic
term score calculation step.

(Rﬂ,'
B 3 g D
3.1.1 Frequency- [ heu | -
based heuristics <o,
 heu | Bor, [ heu | 3.3.1 Ensemble  heu | S [ heu B heu | *
o - Heuristic Vote e | - .
#‘_’E [ st ] { heu | 7 heu: Heuristic
5 based { heu | = *,'! = [ heu | Specification
3.1.2 TF-IDF-base .
heuristics m m 3.4 Heuristic Sum
. 3.3.2 Ensemble
<Ro, 3.2 Heuristic X .
#E it J Normalization Average Position

3.1.3 Outlier-based
heuristics

Fig. 7. Heuristic specification.

Heuristic specification displayed in Fig. 7 is the outcome of our research about
the base term heuristics and their combination into the ensemble heuristic pre-
sented in Sect.5.2. Which heuristics to use and how to combine them is based
on the experiments on the real data that we performed as a part of the research
presented in this chapter—these experiments are presented in more detail in
[30]. The findings resulted in the setting shown in Fig. 7, which is a good choice
when applied on new data. Nevertheless, the setting and the choice of the base
heuristics is fully customizable and can be freely configured to better suit the
needs of new applications.

The output of this procedure is a specification of a complex ensemble heuris-
tic, which computes the term bisociation scores. The components in the heuristic
specification perform the following tasks:

3.1. define base heuristics (see Sect.5.2 for details about the base heuristics
selection),

3.1.1. define TF-IDF based heuristic tfidfDomnSum,

3.1.2. define term frequency based heuristic freqRatio,

3.1.3. define outlier based heuristics outFreqRelRF, outFreqRelSVM, outFre-

qRelCS, outFreqRelSum

3.2. for every inputted heuristic defines a new heuristic that normalizes the

scores to the range [0,1) and outputs a list of new heuristic specifications,

1 TLemmaGen is an open source lemmatizer with 15 prebuilted european lexicons. Its
source code and documentation is publicly available at http://lemmatise.ijs.si/.
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3.3. combine the six heuristics into a single ensemble heuristic

3.3.1. define an ensemble voting heuristic that includes votes of the six heuristics
(ensemble voting score, see Eq. 1),

3.3.2. define a calculated heuristic that calculates normalized sum of position
scores of the six heuristics (ensemble position score, see Eq. 2),

3.4. define the final ensemble heuristic by summing the ensemble voting heuris-
tics, which results in the number of terms heuristics’ votes in the range
from 0 to 6 (integer value), and the calculated normalized sum of heuristics
scores in the range from 0 to less than 1 (final ensemble score, see Eq. 3).

Candidate B-term Extraction Workflow (Step 4). Another core step of
the workflow is candidate B-term extraction, shown in Fig. 8. Although it con-
tains only one component, it has a very important and complex goal of trans-
forming the inputted annotated document corpus into the BoW model in order
to represent documents in the form of feature vectors of term occurrences in
the documents (for the purpose of visualization of documents and the need of
highlighting and emphasizing of specific terms). Another task of this step is to
capture the exact parsing procedure, which is needed in order to perform var-
ious computations which are performed in the advanced heuristic term scores
calculation step. The outputted BowModelContructor object also contains the
vocabulary of all terms.

ca -
» [ adc  adc | a | bmc | bmc: Bow Model
Constructor
adc: Annotated m B
Document Corpus 4.1 Construct Bow  ds | »

Dataset and Bow

Model Constructor ds: Bow Dataset

Fig. 8. Candidate B-term extraction.

Heuristic Term Score Calculation Workflow (Step 5). Figure9 shows a
structurally simple methodological step of heuristic term score calculation that
contains only one component. The inputs to the procedure are the annotated
document corpus, the BoWModelContructor and the heuristics specification.
Based on the information present in the BoWModelContructor, the algorithm
calculates various frequency and TF-IDF document features vectors, which are
used to calculate the specified heuristics scores for all the terms. The calculation
results in the same heuristic structure as defined in the heuristic specification
step, however the ensemble heuristic at the top level, as well as all elementary
heuristics, now contain their calculated scores of the terms. The scores of the
top-level heuristic are intended to represent terms’ bisociation scores and are
typically used as a basis for the final term ranking.
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adc: Annotated
Document Corpus

- D
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hsc: Heuristics Scores
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Specification

Fig. 9. Heuristic term score calculation.

B-Term Visualization and Exploration Workflow (Step 6). This step
of the methodology implements a workflow shown in Fig. 10. It enables visual-
ization and exploration of the ranked list of B-terms. There are four inputs to
this step. The first and the most important are the ensemble heuristic scores
of the extracted candidate B-terms. Inputs Annotated Document Corpus and
BoW Dataset are used by the online application for cross-context bisociation
exploration CrossBee, which needs the exact information about term extraction
from documents to be able to align the terms back with the original documents
in order to visualize them; while the BoW Model Constructor provides the con-
structed vocabulary. The goals of the created components are the following:

-

adc: Annotated

Document Corpus Cade 0 sdc |
= D Com B
bmc: Bow Model « e
Constructor IEI m
L hsc | [ ds ]
~» B3 c D
ds: BowW Dataset 6.1 Explore in
CrossBee
CRo, 3
6.1.1 Load and heu | #{'E | tbl ] bl | %\.
preprocess actual B- 6.2 Rank Terms 6.2.1 Display Table
terms
= -

hsc: Heuristic Scores

Fig. 10. B-term visualization and exploration.



Bridging Term Discovery for Cross-Domain Literature Mining 83

6.1. explore the final results in a web application CrossBee, which was designed
specifically for the purpose of bisociativity exploration (expressed either
through terms or through documents),

6.1.1. optional expert specified B-terms may be provided to CrossBee in order to
emphasize them in the text and to deliver a feedback about the bisociative
quality of the provided ranking. If available, these terms are loaded and
preprocessed using the same preprocessing techniques as described in the
document preprocessing step,

6.2. rank the terms

6.2.1. display the ranked terms in the form of a table along with their respective

scores.
« o,
* 7.2.1 ROC curves
L evr |
bmc: BoW Model
Constructor " bme 0 apv | apv e Ml pcd | 7.2.2 Evaluation
; Pt | L = ‘ Results to Table
bl IZ! 7.2 Prepare ﬂ |.|.,
7.1.1 Load and = performance curve
preprocess actual B- data 7.2.3 Performance
terms 7.1 Actual and Chart
* m Predicted Values Caip | IC
hsc: Heuristic Scores 7.2.4 VIPER: Visual
Performance
Evaluation

Fig. 11. Methodology evaluation.

Methodology Evaluation Workflow (Step 7). The last step of the proposed
methodology is the methodology evaluation step, implemented as a workflow
shown in Fig.11. There are three inputs to the process: the heuristic scores of
one or more evaluated heuristics (which presents the result of all the preced-
ing methodological steps), the BowModelContructor (which contains the corpus
vocabulary) and additional information about the actual B-terms (required in
order to assess any kind of quality measures). Note that, in order not to overflow
the overall methodology workflow of Fig.4 with additional information, the list
of actual bridging terms was not shown as an additional step of the methodology.
Instead, it is implemented as a separate subprocess in the methodology evalu-
ation workflow, which is responsible for loading and preprocessing the actual
B-terms.

The components of the methodology evaluation workflow perform the follow-
ing tasks:

7.1. prepare pairs of actual and predicted values, which are used to calculate
different information retrieval measures in step 7.2,
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7.1.1. if available, load the actual (expert identified) B-terms, which present
the gold standard terms used to evaluate the quality of the methodology
and preprocess them using same techniques as in document preprocessing
step,

7.2. calculate different measures, such as precision, recall, and the Fj-measure,

ROC curves and the AUC (Area Under Curve) values,

7.2.1. display ROC curves graphically,

7.2.2. compare information retrieval measures in the form of a table,

7.2.3. compare information retrieval measures in the form of a bar chart,

7.2.4. display and compare the Fj-scores in the advanced VIPER performance
evaluation chart [32] component.

The methodology evaluation functionality presented in this section is not
part of the actual workflow for cross-domain knowledge discovery; however, it
is indispensable when developing a new approach. Description of this step con-
cludes the section presenting the key parts of the methodology.

5.4 Methodology Empowerment with Controlled Vocabulary

This section describes a new ingredient of the methodology: the use of a con-
trolled vocabulary for improving B-term detection and ranking. The motivation
for using predefined controlled vocabularies is to reduce the heuristic search
space which, consequently, reduces the running times of B-term discovery algo-
rithms. Controlled vocabularies ensure consistency and resolve ambiguity inher-
ent in normal human languages where the same concept can be given different
names. In this way, they improve the quality and organization of retrieved knowl-
edge, given that they consist of predefined, authorized terms that have been
pre-selected by the designers of the vocabulary that are experts in the subject
area. Controlled vocabularies solve problems of homographs and synonyms by a
bijection between concepts and authorized terms.

MeSH (Medical Subject Headings) is a controlled vocabulary used for index-
ing articles for PubMed, designed by The National Library of Medicine (NLM).
Figure 12 shows a top-level example of the MeSH structure and hierarchy. The
2015 version of MeSH contains a total of 27,455 subject headings, also known as
descriptors. Each descriptor is assigned a unique tree number (shown in square
brackets in Fig. 12) that facilitates search and filtering. Most of the descriptors
are accompanied by a short description or definition, links to related descriptors,
and a list of synonyms or very similar terms (known as entry terms). Because of
these synonym lists MeSH can also be viewed as a thesaurus.

We have implemented a vocabulary construction tool called MeSH filter as
an interactive widget in the TextFlows platform. This implementation uses syn-
onym lists from the MeSH 2015 database, available online'?. The interface to
the developed interaction widget is designed to enable the selection of descrip-
tors of interest from the hierarchy of descriptors. Its final output is a text file

12 http://www.nlm.nih.gov/mesh /filelist. html.
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Nervous System Diseases [C10]
Central Nervous System Diseases [C10.228]
Brain Diseases [C10.228.140]
Headache Disorders [C10.228.140.546]
Headache Disorders, Primary [C10.228.140.546.399]
Migraine Disorders [C10.228.140.546.399.750]
Alice in Wonderland Syndrome [C10.228.140.546.399.750.124]
Migraine with Aura [C10.228.140.546.399.750.250]
Migraine without Aura [C10.228.140.546.399.750.450]
Ophthalmoplegic Migraine [C10.228.140.546.399.750.725]
Tension-Type Headache [C10.228.140.546.399.875]
Trigeminal Autonomic Cephalalgias [C10.228.140.546.399.937]

Fig. 12. Example of MeSH structure and hierarchy.

containing all the terms that belong to the user selected descriptors from the
MeSH hierarchy.

This section describes how we have upgraded the proposed methodology
with the ability to use a predefined controlled vocabulary for reducing the B-
term search space. This not only increases efficiency of the heuristic calculation
algorithms, but also tends to improve the relevance of top ranked B-terms due to
reduced ambiguities in human languages. The upgraded methodology is shown in
Fig. 13. Compared to the initial methodology shown in Fig. 4, the new workflow!?
includes two new steps: vocabulary acquisition and vocabulary preprocessing.
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Fig. 13. Methodological steps of the cross-domain literature mining process.

In order to ensure the proper matching between terms from the vocabu-
lary and document corpus, the vocabulary file must be preprocessed using the
preprocessing techniques, described in Sect. 5.3, which were also used for pre-
processing the document corpus in Step 2. After vocabulary preprocessing in

'3 This workflow is publicly available at http://textflows.org/workflow/497/.
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Step 4, the produced vocabulary file is used in Step 5 to filter out terms from
the document corpus that do not appear in the vocabulary. A procedural expla-
nation of the new steps of the upgraded workflow of Fig. 13 is presented.

Vocabulary Acquisition (Step 3)

— One term per line: Every single line in the text file represents one separate
term. Only terms which appear in this file are later used in the heuristic
calculation steps of the methodology.

— Synonym format: Additionally, term synonyms are listed after the term, sep-
arated by commas.

term; — synonym,,, synonymy...

Every synonym in the document corpus is then substituted with the term,
which appears at the first position in the corresponding line.

Vocabulary Preprocessing (Step 4). This step is responsible for applying
the same standard text preprocessing to the predefined vocabulary that is used
also to preprocess the document corpus. Similarly, the main components here
are tokenization, stopwords labeling and token stemming or lemmatization.

Candidate B-Term Extraction (Step 6). After completing the preprocess-
ing steps, the resulting whitelist output is used in Candidate B-term Extraction
step for filtering out terms that are not part of the controlled vocabulary.

6 Experiments and Results

This section presents the evaluation of the presented literature based discov-
ery methodology. We have applied different base and ensemble heuristics on
two problems: the standard migraine-magnesium literature mining benchmark
problem used in the Swanson’s experiments [13], and a more recent example of
using literature mining for uncovering the nature of relations that might con-
tribute to better understanding of autism, originated in [19,33]. In both cases,
our methodology successfully replicated the results known from the literature.

6.1 Experimental Setting

The evaluation was performed based on two datasets (or two domain pairs,
since each dataset consists of two domains)—the migraine-magnesium dataset
[13] and the autism-calcineurin [33] dataset—which can be viewed as a training
and test dataset, respectively. The training dataset is the dataset we employed
when developing the methodology, i.e. for creating a set of base heuristics as
well as for creating the ensemble heuristic. The results of the evaluation on
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the training dataset are important, but need to be interpreted carefully due
to a danger of overfitting the dataset, as described in [30]. The test dataset
is used for the evaluation of the methodology in a real-life setting. The well-
researched migraine-magnesium domain pair [13] was used as a training set. In
the literature-based discovery process Swanson managed to find more than 60
pairs of articles connecting the migraine domain with the magnesium deficiency
via 43 bridging concepts (B-terms), which are listed in Table 6.'* In testing the
developed methodology we aimed at rediscovering the 43 B-terms by ranking
them as high as possible in the ranked list of potential B-terms that include
Swanson’s B-terms and terms that are not in the Swanson’s B-term list.

Table 6. B-terms for the migraine-magnesium dataset identified in [13].

15 ht 16 convulsive 31 prostaglandin

2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin el
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity

5 anti inflammatory 20 epilepsy 35 seizure

6 anticonvulsant 21 epileptic 36 serotonin

7 antimigraine 22 epileptiform 37 spasm

8 arterial spasm 23 hypoxia 38 spread

9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 inflammatory 40 stress

11 calcium blocker 26 nifedipine 41 substance p

12 calcium channel 27 paroxysmal 42 vasospasm

13 calcium channel blocker 28 platelet aggregation 43 verapamil

14 cerebral vasospasm 29 platelet function

15 convulsion 30 prostacyclin

Table 7. B-terms for the autism-calcineurin dataset identified in [33].

1 synaptic 6 bcl 2 11 22q11 2

2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin

4 radiation 9 asbestos

5 working memory 10 deletion syndrome

For the test dataset we used the autism-calcineurin domain pair [33]. Like
Swanson, Petri¢ et al. also provide B-terms, 13 in total (listed in Table7),
whose importance in connecting autism to calcineurin (a protein phosphatase)
is discussed and confirmed by the domain expert. In view of searching for B-
terms, this dataset has a relatively different dimensionality compared to the
migraine-magnesium dataset. On the one hand it has only about one fourth of
the B-terms defined, while on the other hand, it contains more than 40 times

14 Note that Swanson did not state that this was an exclusive list, hence there may
exist other important bridging terms which he did not list.
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Table 8. Comparison of some statistical properties of the two datasets used in the

experiments.
migraine-magnesium autism-calcineurin
Retrieval Source PubMed PubMed
Query terms “migraine” - “magnesium” | “autism”- “calcineurin”
Additional conditions | Year < 1988 /
Part of paper used Title Abstract

Document Statistics

Number

8,058 (2,415-5,633)

15,243 (9,365-5,878)

Doc. with B-term 394 (4.89%) 1,672 (10.97%)

Avg. words per doc 11 180
Term statistic Avg. term per doc. 7 173
Distinct terms 13,525 322,252
B-term candidates 1,847 78,805
Defined B-terms 43 13

as many potential B-term candidates. Therefore, the ratio between the actual
B-terms and the candidate terms is substantially lower—approximately by fac-
tor 160, i.e. the chance to find a B-term among the candidate terms if picking
it at random is 160 times lower in the autism-calcineurin dataset then in the
magnesium-migraine dataset. Consequently, finding the actual B-terms in the
autism-calcineurin dataset is much more difficult compared to the migraine-
magnesium dataset.

Both datasets, retrieved from the PubMed database using the keyword query,
are formed of titles or abstracts of scientific papers returned by the query.
However, we used an additional filtering condition for selecting the migraine-
magnesium dataset. For fair comparison we had to select only the articles pub-
lished before the year 1988 as this was the year when Swanson published his
research about this dataset and consequently making an explicit connection
between the migraine and magnesium domains.

Table 8 states some properties for comparing the two datasets used in the
evaluation. One of the major differences between the datasets is the length of
an average document since only the titles were used in the migraine-magnesium
dataset, while the full abstracts were used in the autism-calcineurin case. Conse-
quently, also the number of distinct terms and B-term candidates is much larger
in the case of the autism-calcineurin dataset. Nevertheless, the preprocessing of
both datasets was the same. We can inspect higher numbers in the migraine-
magnesium dataset which points to the problem of harder classification of doc-
uments in this dataset, which is also partly due to shorter texts.

6.2 Evaluation Procedure

The key aspect of the evaluation is the assessment of how well the proposed
ensemble heuristic performs when ranking the terms. Two evaluation measures
were used in the evaluation of the developed methodology: the standard Area
under the Receiver Operating Characteristic analysis and the amount of B-terms
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found among the first 5,10, 20, 100, 500 and 2,000 terms in the heuristics’ ranked
list of terms.

First, we compared the heuristics using the Area under the Receiver Operat-
ing Characteristic (AUROC) analysis [34]. The Receiver Operating Character-
istic (ROC) space is defined by two axes, where the horizontal axis scales from
zero to the number of non-B-terms, and the vertical axis from zero to the num-
ber of B-terms. An individual Receiver Operating Characteristic (ROC) curve,
representing a single heuristic, is constructed in the following way:

— Sort all the terms by their descending heuristic score.

— For every term of the term list do the following: if a term is a B-term, then
draw one vertical line segment (up) in the ROC space, else draw one horizontal
line segment (right) on the ROC space.

— If a heuristic outputs the same score for many terms, we cannot sort them
uniquely. In such case, we draw a line from the current point p to the point
p+(nb, b), where nb is the number of non-B-terms and b is the number of terms
that are B-terms among the terms with the same bisociation score. In this way
we may produce slanted lines, if such an equal scoring term set contains both
B-terms and non-B-terms.

AUROC is defined as the percentage of the area under ROC curve, i.e. the
area under the curve divided by the area of the whole ROC space.'® Besides
AUROC we also list the interval of AUROC which tells how much each heuristic
varies among the best and the worst sorting of a possibly existing equal scoring
term set. This occurs due to the fact that some heuristics do not produce unam-
biguous ranking of all the terms. Several heuristics assign the same score to a
set of terms—including both the actual B-terms as well as non B-terms—which
results in the fact that unique sorting is not possible.'® In the case of equal
scoring term sets, the inner sorting is random (which indeed produces different
performance estimates), however the constructed ROC curve corresponds to the
average ROC curve over all possible such random inner sortings.

From the expert’s point of view, the ROC curves and AUROC statistics are
not the most crucial information about the quality of a given heuristic. While
in general it still holds that a higher AUROC reflects a better heuristic, we
are more interested in the ranking from the perspective of the domain expert
(the end-user of the our system) who is usually more interested in questions like:

5 If a heuristic is perfect (it detects all the B-terms and ranks them at the top of
the ordered list), we get a curve that goes first just up and then just right with
an AUROC of 100%. The worst possible heuristic sorts all the terms randomly
regardless of being a B-term or not and achieves AUROC of 50%. This random
heuristic is represented by the diagonal in the ROC space.

6 In such cases, the AUROC calculation can either maximize the AUROC by sorting
all the B-terms in front of all the other terms inside equal scoring sets or minimize it
by putting the B-terms at the back. The AUROC calculation can also achieve many
AUROC values in between these two extremes by using different (e.g., random)
sortings of equal scoring sets. Preferable are the heuristics with a smaller interval
which implies that they produce smaller and fewer equal scoring sets.
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(a) how many B-terms are likely to be found among the first n terms in a ranked
list (where n is a selected number of terms the expert is willing to inspect, e.g., 5,
20 or 100), or (b) how much one can trust a heuristic if a new dataset is explored.
Therefore, we also performed an evaluation using an alternative user oriented
approach, which evaluates the ranking results adapted to the user’s needs. This
evaluation estimates how many B-terms can be found among the first 5, 10, 20,
100, 500 and 2,000 terms on the ranked list of terms produced by a heuristic.

6.3 Results on the Migraine-Magnesium Dataset

Table 9 shows the comparison of ranking performance for the ensemble and all the
base heuristics on the migraine-magnesium dataset. The heuristics are ordered by
their AUROC. The second and third column in the table represent heuristics’
average AUROC score'” and its AUROC interval, respectively. When looking
at the ensemble heuristic scores in Table9, we notice that it achieves higher

Table 9. Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset.

Heuristic name AUROC Number of B-terms among top n ranked terms
Average | Interval | 5 10 20 50 100 | 200 | 500 1,000 | 2,000

outFreqRelSvm 58.78% | 1.26% |0.12]0.24|0.48 |1 1.63 | 5.88 | 14.44 | 29 43
outFreqRelSum 58.19% | 0.65% 0 0.2810.83|1.82|3.68|6 15 27 43
freqDomnRatioMin | 57.34% | 4.71% 0.14 | 0.28 | 0.57 | 1.42 | 2.83 | 5.66 | 14 28 43
outFreqRelRf 56.85% | 1.50% 0.240.480.95|2 4.1516.94 | 14 29 43
outFreqSum 55.41% | 4.06% |0 0 0 0 0 2.44 | 15.06 | 27.16 | 43
outFreqRf 55.20% | 11.07% | 0 0 0 0 0.4 | 5.15|14.86 | 26.34 | 43
outFreqSvm 55.19% | 9.38% 0 0 0 0 0.35|3 14.14 | 26.12 | 43
outFreqRelCs 54.29% | 1.50% 0 0 1 1 2.69|5.07 |11 27 43
freqDomnProdRel 53.23% | 3.08% |0 0 0 0 0 6 14 27 43
outFreqCs 52.34% | 10.51% | 0 0 0 0 0 1.4315.62 | 24.67 | 43
tfidfDomnSum 52.11% | 2.69% 0 0 0 0 1 2 11 26.14 | 43
tfidfAvg 51.31% | 3.63% 0 0 1 1.793.11|5.75|11.84 | 20.9 |43
freqDomnProd 51.20% | 3.36% |0 0 0 0 1 3 13.17 | 27.16 | 43
tfidfDomnProd 51.18% |2.69% 0 0 0 0 1 3 13.5 |27 43
freqRatio 50.51% |39.26% |0 0 1 1 4 5 11.65 | 23.09 | 43
appearInAllDomains | 50.00% | 50.00% | 0.11 0.23|0.46 | 1.15|2.3 | 4.6 |11.49|22.98 |43
tfidfSum 49.65% | 3.63% 0 0 0 0 0 1 9 25.36 | 43
freqTerm 49.60% | 3.78% 0 0 0 0 0 1 8.91 |25.49 |43
freqDoc 49.55% | 3.82% 0 0 0 0 0 1 8.03 |24.79 |43
ensemble 59.05% | 0.26% 1 1 1 5 6 9 18.57 | 28 43

7 In contrast to the results reported in [4,5], the AUROC scores presented in this
chapter take into account only the terms which appear in both domains. This results
in lower AUROC scores, which are thus not directly comparable between the studies.
The reason for this approach is in the definition of a bridging term, where the term
is required to appear in both domain, as it cannot form a connection otherwise.
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AUROC value and lower AUROC interval compared to all the other heuristics.
As mentioned in Sect. 5.2, the ensemble was constructed using also two not
so well performing heuristics (tfidfDomnSum and freqRatio) in order to avoid
overfitting on the training domain. This could have had a negative effect to
the ensemble performance, however, the ensemble performance was not seri-
ously affected which gives evidence of right decisions made when designing the
ensemble.

As mentioned, such AUROC evaluation does not necessarily aligns well with
the methodology evaluation from a user’s perspective. Therefore, the right side
of Table 9 shows the results of an alternative user oriented evaluation approach,
which shows how many B-terms were found among the first 5, 10, 20, 50, 100, 200,
500, 1,000 and 2,000 terms on the ranked list of terms produced by a heuristic.
The ensemble heuristic, described in Sect. 5.2, performing ensemble voting of six
elementary heuristics, resulted in very favorable results on the training migraine-
magnesium domain (as seen in Table9), where one B-term among the first 5
terms, one B-term (no additional B-terms) among the first 20 terms, 6 B-terms
(5 additional) among the first 100 terms, 22 B-terms (16 additional) among first
500 terms and all the 43 B-terms (21 additional) among the first 2,000 terms.
Thus, e.g., if the expert limits himself to inspect only the first 100 terms, he
will find 6 B-terms in the ensemble ranked term list. These results confirm that
the ensemble is the best performing heuristics also from the user’s perspective.
Even though a strict comparison depends on the threshold of how many terms
an expert is willing to inspect, the ensemble is always among the best.

6.4 Results of Using a Controlled Vocabulary
on the Migraine-Magnesium Dataset

In this section we demonstrate that by using a predefined controlled vocabulary
we can increase the heuristics’ capabilities to rank the B-terms at the beginning
of the term list. We have repeated the experiments on the migraine-magnesium
domain, described in Sect. 6.3, except that we now used a predefined vocabulary
constructed from MeSH using the “MeSH filter” widget. As we were particularly
interested in the bridging terms between migraine—a disease—and magnesium—
a chemical element—as well as the circumstances and processes observed between
them, we only selected categories [C] Diseases, [D] Chemicals and drugs and [G]
Phenomena and Processes. In the experiment we used the workflow shown in
Fig. 13. The generated vocabulary was used in the candidate B-term extraction
step as a whitelist filter.

The results of the methodology using a controlled vocabulary on the
migraine-magnesium domain are presented in Table11. The comparison of the
heuristics’ capabilities to rank the B-terms at the beginning of the term list in
the migraine-magnesium domain from Tables9 and 11 shows an advantage of
using the controlled vocabulary. By inspecting the number of B-terms found
in the ranked first n terms, we notice that using the controlled vocabulary
in the migraine-magnesium domain resulted in a much higher concentration of
Swanson’s B-terms among the best ranked terms.
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Table 10. B-terms for the migraine-magnesium dataset identified in [13]. The 17 terms
which are crossed out were not part of the used controlled vocabulary, therefore heuris-
tics were unable to identify them as B-term candidates.

15ht 16 convulsive 31 prostaglandin

2 5 hydroxytryptamine 17 -eoronary-spasm 32-prestaglandinel
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4-anti-aggregation 19 diltiazem 34-reaetivity

5 anti inflammatory 20 epilepsy 35 seizure

6 anticonvulsant 21 epileptic 36 serotonin
Fantimigraine 22 epileptiform 37 spasm

Rarterial spasm 23 hypoxia B8 spread

9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 inflammatory A40-stress

A caleium blocker 26 nifedipine 41 substance p

12 calcium channel 27 paroxysmal 42 vasespasm

13 calcium channel blocker 28 platelet aggregation 43 verapamil

14 cerebral vasospasm 29 platelet function

15 convulsion 30 prostacyclin

As explained in Sect.5.4 a predefined controlled vocabulary can greatly
reduce the B-term search space. As a side effect, we were unable to: (a) per-
form AUROC evaluation comparison due to different number of terms in the
vocabulary—As a result, Table 11 provides only evaluation which lists the num-
ber of B-terms found in the ranked first n terms, (b) detect all B-terms, identified
by Swanson (the crossed out B-terms in Table 10 were not part of the used con-
trolled vocabulary); this could be solved using larger controlled vocabularies,
though we must be careful not to overfit the vocabulary to the expected results.

On the other hand, results show that using a predefined controlled vocab-
ulary not only increases the efficiency of the heuristic calculation algorithms,
but also tends to improve the relevance of top ranked B-terms. Consequently,
the described approach enables the user to perform the exploration task more
effectively, potentially leading to new discoveries.

6.5 Results on the Autism-Calcineurin Dataset

In this section we show how our methodology performs on a new independent
test dataset—the autism-calcineurin domain—which was not used in the devel-
opment of the methodology. As discussed, the dimensionality of the autism-
calcineurin dataset is considerably different and less favorable compared to the
migraine-magnesium dataset.

Table 12 shows that the performance of individual base heuristics significantly
changes compared to the migraine magnesium dataset (Table9), however, the
ensemble heuristic is still among the best and exposes small uncertainty. This
gives us the final argument for the quality of the ensemble heuristic since it out-
performs all the other heuristics (except for the freqRatio base heuristic) when
comparing the AUROC scores, as well as the numbers of B-terms found in the
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Table 11. Comparison of base and ensemble heuristics capacity to rank the B-terms
at the very beginning of the term list for the migraine-magnesium dataset using a
controlled vocabulary.

Heuristic Name Number of B-terms among top n ranked terms
5 10 |20 |50 100 200 500 1,000/ 2,000
freqDomnRatioMin |0.59|1.18|2.37|5.92|13.25|20 26 |26 26

outFreqSum 0 1 27515 15.53 |17.06 |26 |26 26
freqDomnProdRel 0 1 2 5.67 19 20 26 |26 26
outFreqRf 1 1 2 6.2812.16 | 17.5 |26 |26 26
outFreqSvm 1 1 2.5 |5.16|11.7416.79 |26 |26 26
outFreqCs 0 0 2.455.6 |10.22|17.06 |26 |26 26
tfidfDomnSum 0 1 1 4 10 19 26 |26 26
freqDomnProd 0 1 1 4 9 19 26 |26 26
tfidfDomnProd 0 1 1 4 9 19 26 |26 26
outFreqRelRf 0.67]1.33 |2 5 7 14.75 126 | 26 26
freqDoc 0 0 1 2.5 |7.82 |17.1 |26 |26 26
tfidfSum 0 0 1 2.25|7.5 17.35 |26 |26 26
freqTerm 0 0 1 2.25|7.56 |17.43|26 |26 26

appearInAllDomains | 0.39 | 0.78 | 1.56 [ 3.9 |7.81 |15.62 26 |26 26

outFreqRelSum 0.4210.83/1.29 |4 9 15 26 |26 26
tfidfAvg 0 1.422.47|5.63|7 13 26 |26 26
outFreqRelSvm 0.45/0.91|1.82/3.25|10 15 26 |26 26
outFreqRelCs 0.31/0.63 |1 5 7.06 |14 26 |26 26
freqRatio 0 1 1 2 5.96 | 14.56 |26 | 26 26
ensemble 1 3 4 9 13 19 26 |26 26

most interesting ranked list lengths (up to 20, 100, 500 terms). The ensem-
ble finds one B-term among 10 ranked terms, 2 among 200 and 3 among 500
ranked terms out of the total of 78,805 candidate terms that the heuristics have
to rank. The evidence of the quality of the ensemble can be understood if we
compare it to a baseline, i.e. the appearInAllDomn heuristic which denotes the
performance achievable without developing the methodology presented in this
work. The baseline heuristic discovers in average only approximately 0.33 B-
terms before position 2,000 in the ranked list while the ensemble discovers 6;
not to mention the shorter term lists where the ensemble has even a better ratio
compared to the baseline heuristic.

6.6 Results of Using a Controlled Vocabulary
on the Autism-Calcineurin Dataset

In this section we replicated the experiments, described in Sect.6.4, using a
predefined controlled vocabulary on the autism-calcineurin dataset. Similarly,
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Table 12. Comparison of base and ensemble heuristics capacity to rank the B-terms
at the very beginning of the term list for the autism-calcineurin dataset.

Heuristic Name AUROC Number of B-terms among top n ranked terms
Average | Interval | 5|10 |20 | 50 100 | 200 | 500 | 1,000 | 2,000 5,000 | all
freqRatio 95.10% [0.16% |1/1 |1 |1 1 1 1 3 5 8.99 |13
tfidfSum 88.78% [0.06% |0/0 |0 |0 1 1 1 2 4 5 13
tfidfDomnProd 88.61% [0.05% |0|0 |0 |0 0 0 1 1 4 6 13
tfidfDomnSum 88.33% [0.02% |0/0 |0 |0 1 1 2 2 4 5 13
freqTerm 87.80% |0.80% |0/0 |0 |0 1 1 1 2 3 5 13
freqQDomnProd 87.69% |0.73% |0/0 |0 |0 0 0 0 1 2 6 13
freqQDomnProdRel 85.77% [0.69% |00 |0 |0 0 0 0 1 1 [§ 13
outFreqRf 85.05% |7.91% |00 |0 |0 0 1 1 1.34 14.37 |7.4 13
outFreqSum 84.33% |5.80% |0/0 |0 |0 0 1 1 3 4 8.4 13
outFreqCs 80.50% |10.05% (0/0 |0 |0 0 1 1 1 4 7.17 |13
freqDoc 79.01% | 2.53% |[0/0 |0 |0 0 1 1 2 2 5 13
outFreqSvm 75.15% | 17.55% (0|0 |0 |0 1 1 1.46 | 4 4.67 |5.44 |13
tfidfAvg 73.56% 0.06% |1|1 |1 |1 1 1 1 1 3 6 13
outFreqRelRf 72.44% 10.03% |0|0 |0 |O 1 1 1 1 1 2 13
outFreqRelSum 67.24% |0.03% |00 |0 |O 0 1 1 2 2 2 13
outFreqRelCs 64.40% |0.19% |0|0 |0 |0 0 0 0 0 0 1.49 |13
outFreqRelSvm 58.39% | 0.17% [0/0 |0 |0 0 0 0 0 1.25 |2 13
appearInAllDomains | 50.00% | 50.00% |00 |0 |0.01/0.02/0.03|/0.080.17 /0.33 |0.83 |13
freqDomnRatioMin |24.93% |1.12% |00 |0 |0 0 0 0 0 0 0 13
ensemble 90.10% |[0.00% |01 |1 |1 1 2 3 4 6 8 13

Table 13. B-terms for the autism-calcineurin dataset identified by [33]. The four terms
which are crossed out were not part of the used controlled vocabulary, therefore heuris-
tics were unable to identify them as B-term candidates.

1-synaptic 6 bcl 2 1122112

2 synaptic plasticity 7 type 1 diabetes 12 maternal hvpothyvroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin

4 radiation 9 asbestos

5-working-memeory 10 deletion syndrome

we wanted to increase the heuristics’ capabilities (in the workflow illustrated
in Fig. 13) to rank the B-terms at the beginning of the term list. We used the
same predefined vocabulary as with the migraine-magnesium domain, which
was constructed from MeSH using the following categories: [C] Diseases, [D]
Chemicals and drugs and |G] Phenomena and Processes were used for building
the controlled vocabulary (Table 13).

Inspecting the heuristics’ capabilities to rank the B-terms at the beginning
of the term list in the autism-calcineurin domain (Tables 12 and 14) shows the
advantage of using a controlled vocabulary. The increase in the number of B-
terms found in the ranked first n terms when using the controlled vocabulary
is even more significant than in the migraine-magnesium domain. The ensemble
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Table 14. Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset using a controlled
vocabulary.

Heuristic Name Number of B-terms among top n ranked terms
5 10 |20 |50 |100 |200 |500 |1,000 2,000 5,000

outFreqSvm 0 0 0 0.5 |2 4 4.8 |7 8.92 |9
outFreqSum 0 0 0 0 0 4 5.56 | 7 8 9
tfidfDomnProd 0 0 0 0 0 3 4 7 9 9
freqQDomnProd 0 0 0 0 1 3 4 7 9 9
freqRatio 1 1 1 1 2 3 3.6 [6.01 |9 9
freqQDomnProdRel 0 0 0 0 0 1 4 7 9 9
outFreqCs 0 0 0 0 0 2 6.59 |7 7.82 |9
thdfSum 0 1 1 1 1 2 3 7 9 9
tfidfDomnSum 0 1 1 1 1 2 3 7 9 9
freqTerm 0 1 1 1 1 2 3 6.21 |9 9
freqDoc 0 1 1 1 1 2 3 6 8 9
outFreqRf 0 0 0 0 0 1 2.65|5.59 [6.99 |9
outFreqRelSvm 0 0 1 1 1 1 2 3 9 9
tfidfAvg 1 1 1 1 1 2 2 4 7 9
outFreqRelCs 0 0 0 0 0 0 2 3 7 9
outFreqRelSum 0 0 0 0 0 1 1 3 7 9
appearInAllDomains | 0.01 | 0.03 | 0.06 | 0.14 | 0.28 | 0.55 | 1.38 |2.76 |5.52 |9
outFreqRelRf 0 0 0 0 0 0 0 2 6 9
freqDomnRatioMin | 0 0 0 0 0 0 1 2 6 9
ensemble 1 1 1 2 2 2 4 6 8 9

heuristic finds the first B-term among the top 5 ranked terms (before only among
top 10) and the second B-term among the top 50 ranked terms (before only
among 200). These results confirm the findings that controlled vocabularies can
increase the heuristics’ capacities to rank the B-terms at the beginning of the
term list and, thus, provide a more efficient exploration task to the end-user of
the platform.

7 Conclusions and Future Outlook

This chapter presents the TextFlows platform together with its cross-context lit-
erature mining facility, which in combination with the term exploration engine
CrossBee supports the expert in advanced document exploration, aimed at facil-
itating document retrieval, analysis and visualization. The combination of the
two systems forms a creativity support tool, helping experts to uncover not yet
discovered relations between seemingly unrelated domains from large textual
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databases. As estimating which terms have a high bisociative potential is a
challenging research question, we proposed a complex methodology which was
developed as a pipeline of natural language processing an literature based dis-
covery components in the TextFlows platform. The visual programming user
interface of TextFlows not only enables the user to tailor the methodology steps
to his own needs but also allows experiment repeatability and methodology reuse
by other users and developers.

This chapter contributes also the evaluation of a number of specially designed
heuristic functions that provide a bisociation score quality estimate for each
term. These base heuristics can be—based on the type of term features they
exploit—divided into the following sets: frequency based, TF-IDF based, sim-
ilarity based, and outlier based. Another contribution is the development of
the improved ensemble-based heuristic, which employs a set of base heuristics
to ensure robustness and stable performance across the datasets. We evalu-
ated the ensemble based methodology on two domains, migraine-magnesium
and autism-calcineurin, showing that the proposed methodology substantially
reduces the end-user’s burden in terms of the length of the term list that needs
to be inspected to find some B-terms. Furthermore, it was shown that by using
a predefined vocabulary we can increase the heuristics’ capacities to rank the
B-terms at the beginning of the term list. Indeed, by applying this approach in
the migraine-magnesium and autism-calcineurin domains we got a higher con-
centration of B-terms among the best ranked terms. Consequently, the user is
presented with a simpler exploration task, potentially leading to new discoveries.

In future work we will introduce additional user interface options for data
visualization and exploration as well as advance the term ranking methodology
by adding new sophisticated heuristics which will take into account also the
semantic aspects of the data. Besides, we will apply the system to new domain
pairs to exhibit its generality, investigate the need and possibilities of dealing
with domain specific background knowledge, and assist researchers in different
disciplines in their explorations which may lead to new scientific discoveries.

This research perfectly demonstrated the importance of the HCI-KDD [35]
approach of combining the best of two worlds for getting insight into complex
data, which is particularly important for health informatics research, where the
human expertise (e.g. a doctor-in-the-loop) is of great help in solving hard prob-
lems, which cannot be solved by automatic machine learning algorithms other-
wise [36]. There is much research in this area necessary in the future.
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Abstract. Routinely collected data in hospital Electronic Medical
Records (EMR) is rich and abundant but often not linked or analysed for
purposes other than direct patient care. We have created a methodology
to integrate patient-centric data from different EMR systems into clin-
ical pathways that represent the history of all patient interactions with
the hospital during the course of a disease and beyond. In this paper, the
literature in the area of data visualisation in healthcare is reviewed and
a method for visualising the journeys that patients take through care is
discussed. Examples of the hidden knowledge that could be discovered
using this approach are explored and the main application areas of visu-
alisation tools are identified. This paper also highlights the challenges of
collecting and analysing such data and making the visualisations exten-
sively used in the medical domain.

This paper starts by presenting the state-of-the-art in visualisation of
clinical and other health related data. Then, it describes an example clin-
ical problem and discusses the visualisation tools and techniques created
for the utilisation of these data by clinicians and researchers. Finally,
we look at the open problems in this area of research and discuss future
challenges.

Keywords: Visualisation - Big data + Clinical pathways - Data min-
ing - Knowledge discovery - Data quality - Decision making - Medical
informatics

1 Introduction

Hospitals routinely collect data related to the interaction of patients with dif-
ferent departments and medical specialties. Traditionally this information was
recorded in paper notes yet more recently there has been an increasing shift
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towards the adoption of electronic medical records, as the statistics from the
Electronic Medical Record Adoption Model (EMRAM) demonstrate (http://
himss.eu/emram), yet in many cases, researchers may still need to collate infor-
mation manually [1] and methodologies to facilitate this process are relatively
unexplored [2]. Clinical data is typically complex and may pertain to diag-
noses, admissions and discharges, prescriptions, treatments, biomarkers and
blood tests, outcomes and other clinical findings. As a result, patients leave
footprints on many hospital systems, but such prints are not often connected
to provide a pathway indicative of their journey through care, nor are they
presented at the aggregated level. In the context of important diseases such as
cancer or stroke, the journey of patients from diagnosis to outcome would pro-
vide a unique perspective that could aid clinicians to better understand disease
processes and provide valuable information on optimal treatment. Hence, an
initial challenge is to gather data from multiple EMR systems and construct
meaningful data structures that can encompass all of the relevant information
pertaining to a given patient and a given disease over time. We have named such
data structures clinical pathways and have provided a methodology to build them
[2,3]. Note that some researchers refer to clinical pathways as the standardised
and normalised therapy pattern recommended for a particular disease [4]. Other
researchers have focused on mining common pathways that show typical disease
progression based on hierarchical clustering and Markov chains [5]. Our path-
ways relate to the journey followed by the patient through care and they may
align with the recommended guidelines for a particular disease but may also
deviate from it.

Visualisations of pathways, at the individual or aggregate level, when well
presented and of high quality, could help clinicians to interact with such data
and give them a view of patients and disease progression that was otherwise
hidden away in databases. This would enable them to utilise the power of the
big data in their environment, a very topical subject which currently holds much
promise. For example, Shneiderman et al. [6] state that “while clinical trials
remain the work horse of clinical research there is now a shift toward the use of
existing clinical data for discovery research, leading researchers to analyse large
warehouses of patient histories”. The visualisation of this big data is a critical
topic and the specific subject of this paper.

In the context of medical data mining, clinical pathways, as we define them,
require consistent pre-processing techniques, innovative data mining methods
and powerful and interactive visualisation techniques. They also present the
challenges of data privacy which has to always be maintained when dealing with
patients’ data. We discuss some of these challenges and present some solutions
in this paper, particularly focusing on the visualisation aspects.

This paper is organized as follows: to ensure a common understanding we
provide a short glossary in Sect. 2; we examine work on visualisation of medical
data that is relevant in the context of the problem we present in Sect.3; we
then provide some background information about clinical pathways, their con-
struction, their visualisation and the challenges of such an approach in Sect. 4.
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We then discuss the processes of visualization of aggregated pathways in Sect. 5
and their areas of application in Sect. 6. Finally, we discuss problems in the field
and conclude with prospects for the future.

2 Glossary and Key Terms

Electronic Medical Record (EMR): can be characterised as “the complete set of
information that resides in electronic form and is related to the past, present
and future health status or health care provided to a subject of care” [7].

Medical Informatics: is the interdisciplinary study of the design, development,
adoption and application of IT-based innovations in healthcare services deliv-
ery, management and planning [8]. Medical informatics is also called health care
informatics, health informatics, nursing informatics, clinical informatics, or bio-
medical informatics.

Data Mining: is an analytic process designed to explore large amounts of data in
search of consistent patterns and/or systematic relationships between variables,
and then to validate the findings by applying the detected patterns to new
subsets of data [9].

Medical Patterns: these are frequently appearing sequences of treatments, diag-
noses, etc., that are associated with unusually positive or negative outcomes [10].

Visual Analytics: denotes the science of analytical reasoning facilitated by visual
interactive interfaces [11].

Data Quality: includes (physical) quality parameters such as: Accuracy, Complete-
ness, Update status, Relevance, Consistency, Reliability and Accessibility [12].

Clinical Pathway: in the context of this paper it is defined as an ordered set of
patient-centric events and information relevant to a particular clinical condition
[3]. It can be considered as a suitable data structure for routine data extracted
from EMRs that records the actual journey of the patient for a given condition.
Others have defined it as “a map of the process involved in managing a common
clinical condition or situation” [13]. Hence in the second definition the clinical
pathway may embody the ideal or recommended pathway and enumerate regular
medical behaviours that are expected to occur in patient care journeys and may,
therefore, serve as a checkpoint for the performance of the actual pathway.

Temporal abstraction: this refers to the task of creating interval-based concepts
or abstractions from time-stamped raw data. In the context of electronic clinical
data, data summaries of time-oriented data can help for example when physicians
are scanning a long patient record for meaningful trends [14].

Clinical guidelines: are systematically developed statements designed to help
practitioners and patients decide on appropriate healthcare for specific clinical
conditions and/or circumstances [15]. They may articulate a desired clinical
pathway.
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3 State-of-the-Art

One of the main characteristics of clinical data is its temporal nature. EMRs
are composed of longitudinal event sequences which can sometimes be a
concurrent set of treatments for various conditions undertaken by a patient over
time. Another important characteristic is the complexity of the data, which can
include many different data types, support many levels of granularity and is
associated with extensive domain knowledge that may be required for context.
Additionally, the type of analysis we want to support may require techniques
that take into account individual patients, or aggregate at the cohort level. As
we are focusing on visualisation, we need to generate visual user interfaces that
can represent such complexity efficiently and effectively without overwhelming
the user. We need to provide query engines and mining methods that can deal
with the temporal and complex nature of the data with efficient interactions. We
also need to ensure that the systems produced are evaluated effectively, which is
difficult when evaluation requires the involvement of busy medical practitioners.
In this section, we review how researchers have tackled some of these problems
so far.

As a starting point, reviews and surveys on the subject of visualisation of
EMR data provide a good introduction to this topic. Turkay et al. [16] give a
recent introduction to the visualisation of large biomedical heterogeneous data
sets and point out the need for mechanisms to improve the interpretability and
usability of interactive visual analyses. They also stress the challenge of inte-
grating data from additional sources, such as the “microscopic” world (systems
biology), the “omics” world or the “macroscopic” (public health informatics)
world, as we move towards precision medicine.

Rind et al. [17] provide a survey comparing a number of state-of-the-art
visualisation research systems for EMR, and separately give examples of visu-
alisations produced by commercial systems. They also give a summary of other
reviews of this subject. Roque et al. [18] also give comparisons of the key infor-
mation visualisation systems for clinical data. Similarly, West et al. [19] provide
a systematic survey of works between 1996 and 2013. Their article is part of
a special issue dedicated to visual analytics to support the analysis of complex
clinical data [20]. Lesselroth and Pieczkiewicz [21] discuss a number of strategies
for visualising EMRs. More generically, methods for visualising time oriented
data have also been surveyed [22].

Time oriented clinical data has been considered to be important by a number
of researchers. Early work on visualisation of personal histories [23] produced a
system called Lifelines that used graphical time scales to produce a timeline
of a single patient’s temporal events. Medical conditions could be displayed as
horizontal lines, while icons indicated discrete events, such as physician consul-
tations. Line colour and thickness were used to illustrate relationships or the
significance of events. Application of Lifelines to medical records was further
explored in [24]. Lifelines is the basis for many other systems that visualise
time oriented clinical data. The evolution of Lifelines produced a system called
Lifelines2 [25] that displays multiple patient histories aligned on sentinel events
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to enable medical researchers to spot precursor, co-occurring, and after-effect
events.

Further work by the same team resulted in LifeFlow [26], which presents a
prototype for the visualisation of event sequences involving millions of patients.
LifeFlow was one of the first systems to provide an overview and enable the
answering of questions such as “what are the most common transfer patterns
between services within the hospital”. Hence Lifeflow attempts to summarise
all possible sequences, together with the temporal spacing of events within the
sequences. It provides one visual abstraction that represents multiple timelines
so it addresses the problem of aggregation. In terms of the interaction capability,
which has become a key issue in visualising clinical information, LifeFlow [26]
provides zooming, sorting, filtering and enables further exploration of events by
hoovering the cursor over parts of the visualisation. It also enables the user to
select non-temporal attributes as the basis for aggregation. This enables com-
parison between different groups.

Shahar et al. [14] also worked with temporal clinical data. In particular they
discuss the extraction of temporal abstractions from electronic data. Such tempo-
ral abstractions combine a domain knowledge-base with interval-based concepts.
A quoted example is the abstraction of Bone Marrow toxicity from raw individual
hematological data. The domain knowledge in this case would establish the con-
text such as following Bone Marrow Transplantation using a particular therapy
protocol. A simpler abstraction may be fever from multiple measures of raised
temperature over time. Temporal abstractions can support intelligent decision-
support systems or be used for the monitoring of clinical guidelines. However,
Shahar et al. argue that temporal abstractions can only be truly useful in a clin-
ical setting if they are accompanied by interactive visualisation and exploration
capabilities which can also take into account medical domain knowledge. For
this, they developed a system called KNAVE-II, a development of a previous
system [27]. The work does not provide, however, capabilities for aggregation of
patients according to some dynamic criteria. In further work [28], the authors
provided such capability under a system called VISITORS.

The issue of introducing context when evaluating patterns in a clinical setting
is also important in other scenarios. For example, Duke et al. [29] present a
system for incorporating knowledge such as a patient’s relevant co-morbidities
and risk factors when evaluating drug-drug interactions to improve the specificity
of alerts.

Analysis based on comparison of cohorts is also prevalent. Huang et al. [30]
describe a system for exploratory data analysis through a visual interactive envi-
ronment to show disease-disease associations over time. The system simplifies
visual complexity by aggregating records over time, clustering patients and filter-
ing association between cohorts. The main visualisation methods used to study
disease trajectories over time are Sankey diagrams [31].

Wong et al. [32] proposed INVISQUE, an interactive visualisation to support
both medical diagnosis and information analysis and discussed the key issues
that need to be addressed when designing interactive visualisation systems for
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such purposes. CareVis [33] is another system, specifically designed to provide
visualisation of medical treatment plans and patient data, including contextual
information on treatment steps. It utilises a language called Asbru, designed
to represent clinical guidelines and protocols in eXtensible Markup Language
(XML). Challenges of the data include hierarchical decomposition, flexible exe-
cution order, non-uniform element types and state characteristics of conditions.
CareVis utilises multiple integrated views [34] to represent logical and temporal
aspects of the treatment data. The views can be coupled with colour, brushing
and navigation propagation, hence elements in one view can be linked to the
same elements in the other views allowing for interaction with the visualisation.

Another recent work using Asbru, following from CareVis, and specifically
designed to analyse compliance with clinical guidelines is presented by Bodesin-
sky et al. [35]. The authors use visualisation to integrate information about
executed treatments with Computer Interpretable Guidelines. Combining views
from observation, treatment and guidelines is becoming increasingly important
in the clinical setting.

Very recent work on visualisation of temporal queries, which enables clini-
cians to extract cohorts of patients given temporal constraints is presented by
Krause et al. [36]. Retrospective cohort extraction in the traditional way involves
a long and complex process and requires involvement from doctors and SQL
query specialists. SQL queries do not cater well for temporal constraints and
query engines may not optimise well such queries, making the process difficult
and inefficient. A system called COQUITO is proposed as a visual interface
for building COhort QUeries with an ITerative Overview for specifying tempo-
ral constraints on databases. The query mechanism is implemented by a visual
query user interface and provides real-time feedback about result sets. It also
claims to be backed by a Temporal Query Server optimized to support complex
temporal queries on large databases. Another system for constructing visual
temporal queries is DecisionFlow [37]. DecisionFlow enables interactive queries
on high-dimensional datasets (i.e. with thousands of event types).

Given the amount of complex data that needs to be visualised in the context
of medical systems, one common problem is the dense display that can result and
the difficulty this represents for the user. For example, Kamsu-Foguen et al. [38]
discuss the need for intelligent monitoring systems that can help users with the
massive information influx. This may require the capturing of domain knowledge
to form a physiological/process model as part of the expert interface. It may
also require the use of machine learning to improve interaction of machines
and humans (e.g. reducing data input by inducing entries based on previous
interactions). The software proposed can integrate visual and analytical methods
to filter, display, label and highlight relevant medical information from patient-
time oriented data. At the same time, it can learn from interactions between
medical staff and the system in a particular context, such as modification of
a prescription. It could then be used for instance to capture domain expert
knowledge in respect to medical guideline compliance.

An issue that is also now receiving attention is the efficiency of visual analytic
algorithms as dataset grows. According to Stolper et al. [39] “in the context of
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medical data, it is common to find datasets with tens of thousand of distinct
type of medical events, thousands or even millions of patients and multiple years
of medical data per patient.” There are typically delays in the workflow of ana-
lysts launching queries, inspecting results, refining queries and adjusting para-
meters and relaunching queries. In this scenario, Stolper et al. propose the use
of progressive visual analytics that enable analysts to explore meaningful partial
results of an algorithm as they become available and interact with the algorithm
to prioritise subspaces of interest. The interface also enables the user to adjust
parameters as algorithms are running, re-start the running but also store results
obtained until that point so that the user can resume previous run if required.

There are parallels between information visualisation and data mining [40].
Visual Data Mining can integrate the human in the data exploration process and
can be seen as a hypothesis generation process based on visualisations [41]. Data
Mining analysis is also being applied to clinical data in conjunction with visu-
alisation techniques in order to extract knowledge, for example by identifying
outliers and deviations in health care data [42]. For clinical pathways, pathway
mining is also prominent and often associated with process mining using clinical
workflow logs to discover medical behaviour and patterns [4]. Perer and Wang
[10] have integrated frequent pattern mining and visualisation so that the result-
ing algorithms can handle multiple-levels of detail, temporal context, concur-
rency and outcome analysis and visualise the resulting frequent event sequences
from EMR. This has resulted in a prototype system, Care Pathway Explorer
[43], which can correlate medical events such as diagnosis and treatments with
patient outcome. The system has a user-centric visual interface which can rep-
resent the most frequent patterns mined as bubbles, with the size corresponding
to number of times a particular event occurs. It also uses Flow Visualisation to
see how the bubbles connect to each other.

Measuring the quality of the data to be used in an important issue, as rou-
tinely collected data can be of variable quality. It would be very useful for any
system that works with EMR to provide some quality measurements that can be
used for the purposes of including or excluding records for further queries and
clinical studies. For example, Tate et al. [44] elude to work in this area as part of
their attempt to construct a system that enables querying of large primary care
databases to select GP practices for clinical trials based on suitability of patient
base and measures of data quality.

Another important topic is the visualisation of biological and “omics” data
[16]. In systems biology, Jeanquartier et al. [45] carried out a large survey of data-
bases that enable the visual analysis of protein networks. Systems such as the
NAViGaTOR 3 extend the basic concept of network visualisation to visual data
mining and allow the creation of integrated networks by combining metabolic
pathways, protein-protein interactions, and drug-target data [41]. Other tech-
niques, such as multilevel glyphs, have been proposed as a multi-dimensional
way to visualise and analyse large biomedical datasets [46] and there is still a
high demand for specialized and highly integrative visual analytic approaches
in the biomedical domain [40], particularly as we move towards personalised
medicine.
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The evaluation of information visualisation tools is one of the open challenges
in this area. Often carried out by controlled experiments and the production of
usability reports, this are however described by Shneiderman and Plaisant [47]
as helpful but falling short of expectations. They describe a new paradigm for
evaluation in the form of Multi-dimentional In-depth Long-term Case studies
(MILCs) that may begin with careful steps to gain entry, permission and partic-
ipation of subjects and be followed by intense discussions which provide key data
for evaluations. As MILCs provide multiple methods, given multiple perspectives
on tool usage, they are presented as providing a compelling case for validity and
generality. However, they would require substantial investment in longitudinal
ethnographic studies of large groups which may not be forthcoming.

In the context of evaluation, Pickering et al. [48] recently proposed a step-
wedge cluster randomised trial. This was to test the impact of their system,
AWARE (Ambient Warning and Response Evaluation), on information manage-
ment and workflow on a live clinical intensive care unit setting. Such trials are
not commonly conducted, but can give real measures of efficiency of data utili-
sation and may be a good method of evaluation. They outcome was connected
with time spent in data gathering with and without the system and measures
were gathered by direct observation and survey.

4 Visualisation of Patient-Centric Pathways

The development of patient-centric pathways and related visualisation tools was
first conceptualised as a way to plot and study biomarker trends over time for
individual patients with a specific condition. This was carried out in a case
study on prostate cancer, where the Prostate Specific Antigen (PSA) was the
biomarker test used. The PSA is typically used to measure activity of the cells in
the prostate, both benign or malignant, and guidelines for the management and
screening or prostate cancer suggest that the PSA test can be read at certain
time points to help understand disease progression. As a result, a typical patient
will have several PSA readings during their journey through care and in their
pathways.

4.1 Pathways

A pathway is comprised of activities each containing the patient identifier, the
event code from a pre-defined dictionary of codes, the time when the activity
occurred (in days, zeroed at diagnosis date) and the value pertaining to that
specific activity. For example, activity A4 at time 105 (days after diagnosis)
describing the surgical removal of the prostate (event code S) for patient id
8 would be described as Ay = (8,105,S5, “M61.1”. In this example, the value
pertaining to surgical activity code S is the procedure code for the type of
surgical operation. We used the OPCS 4.5 Classification of Interventions and
Procedures coding and, in this case, code M61.1 refers to a total excision of
prostate and its capsule. The activity in this example would, in turn, be part
of a pathway, illustrated in Table 1. The pathway data model is defined in more
detail in [3].
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4.2 Development of a Graph Plotting System

A first support system was developed to plot the biomarker trends based on
the pathways data model [3]. This allowed the computation of charts showing
the complete PSA trend for each patient in the dataset. The resulting charts
were then divided by treatment type and this provided interesting results and
posed additional clinical questions. Analysis of the charts, working together
with the clinical team, was critical to determine further system requirements
and future developments, including a novel graphical representation of path-
ways data, described later. The data model can be revisited and data elements
can be added or removed, making this approach reproducible in other clinical
domains and extensible to different levels of granularity.

The inspection of PSA trend plots made clear that these should contain addi-
tional information in order to explain, for example, why the biomarker values
dropped from abnormal to normal levels at particular points in time. For exam-
ple, the most significant drops in PSA should be associated with a particular
radical treatment. This led to the development of a more sophisticated visuali-
sation system, capable of interpreting the pathways and transforming them into
meaningful yet concise graphical representations. The purpose of such visual-
izations is to summarise complex clinical information over large periods of time
into a single graph.

A graph generating system was developed together with the pathways engine,
and comprised an architecture similar to that of the Model-view-controller [49]
(MVC). In this implementation, the architecture, specific for building graphical
representations of pathways, encompasses the following elements with specific
purposes:

— the Data Model, responsible for maintaining the definitions and rules for the
interpretation of the pathways data using an extended dictionary that contains
information on how events are drawn;

— the Plot Engine, a controller that communicates user or system requests and
is responsible for the interaction between the model, the view and the system;

— the Graphical User Interface (containing the view), that receives instructions
based on the model and generates a graphical representation of a pathway.
This dynamic interface can also allow users to interact with the graphs by
communicating information back to the engine.

Figure 1 depicts the architecture of the system. Information available from a
Data Store is transformed according to definitions set out by the Data Model
and it is then fed to the Plot Engine. In turn, the engine utilises rules on how
to draw the graph that is ultimately sent to the Graphical User Interface.

4.3 Graphical Representation

Figure 2 shows the layout of a graph, or pathway plot, and the areas of the graph
where information is displayed. The y-axis represents the biomarker values (in
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Table 1. Annotated example of a pathway for patient id 8 with 7 activities and 4
distinct data elements (code P - PSA test, D - Diagnosis, G - Histological Gleason
Grade and S - Surgery).

Pathway Activity | Time | Code | Value | Description

P = Aq —-51 |P 13.6 | This patient’s first activ-
A = (8,-51, P,13.6), ity was a PSA test (values
Az = (8,0,D,2), in ng/ml). In this case the
Az = (8,1,G,“4+43"), reading was abnormal (>4
Aq = (8,105, S,“M61.17), ng/ml) 51 days before diag-
As = (8,106, G,“3+47), nosis

Ag = (8,183, P,0.05),
A7 = (8,456, P,0.05)
)

Az 0 D 2 Diagnosis  event, value
shows tumour staging. In
this case stage 2 indicates
the tumour is confined
to the prostate capsule.
At this point, a biopsy
was undertaken (poorly
recorded in our EMR
systems at the time)

As 1 G 443 |The result of the histo-
logical assessment of the
Gleason grade, that is, the
degree of cell differentia-
tion, in this case a Gleason
sum of 7

Ay 105 | S M61.1 | The patient then underwent
surgery, with an OPCS
procedure code of M61.1
indicating total excision of
prostate and its capsule

As 106 |G 344 | The revised Gleason grade
with a more complete sam-
ple taken from the surgical
operation was still a Glea-
son sum of 7 but now pre-
dominantly showing more
of type 3 than type 4

Ag 183 | P 0.05 Post-treatment PSA test
was carried out showing a
value less than 0.1, denot-
ing effective  treatment
in reducing the amount
of PSA produced in this
patient

Az 456 | P 0.05 | Follow-up PSA test reaf-
firming that the treatment
was successful around a
year after the treatment
was performed
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Fig. 1. Architecture of the graph generating system.

this case, PSA) and the x-axis represents time, in days, zeroed at diagnosis date.
The biomarker readings are plotted in the center and events (such as treatments
or death) are marked with a vertical line (Line).

Treatments and other events can be colour-coded and, above the plot, the
corresponding pathway code (e.g. S for Surgery) is shown in the Line headings
area. The footer area displays additional information pertaining to events (such
as Gleason grades, i.e. the level of cell differentiation seen in the biopsy, or
patient age at diagnosis) and the right column area on the right of the plot
displays additional information on the patient that is not time-dependent, such
as deprivation score, additional diagnoses or alerts.

The graph generating system includes additional interaction capabilities and
analysis tools. Rather than relying on static graphical representations of the
pathways, the MVC architecture embedded within the system, produces real-
time plots of the pathways, as they are read from the database. Dynamic inter-
actions were also introduced enabling users to zoom in, re-scale and navigate the
pathway plot. This is particularly important as the scales of the plots may render
some drawn objects too close to each other. A mechanism for graphical conflict
resolution (i.e. avoiding overlapping elements) was also introduced. Examples of
pathway plots produced by this system are given in Sect. 6.
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Fig. 2. The schematic layout of a pathway plot.

5 Visualization of Aggregated Pathways

We now explore how to aggregate pathways in a visualisation. The pathways data
model enables the production of succinct sequences of activity codes. Truncat-
ing the sequence strings (i.e. collapsing sequentially repeating elements into one)
enables the aggregation of pathways with similar sequential activities. We devel-
oped a web-based software, called ExploraTree, to produce and display an inter-
active tree of the full cohort of prostate cancer patients based on the available
data elements. The technologies used include HTML, CSS, JSON, JavaScript
and the InfoVis toolkit. The pathways engine was used to produce the correct
data format for a tree representation using JSON and the JavaScript InfoVis
toolkit.

In order to accurately aggregate patients with similar sequences of activities,
new data elements were introduced in the data dictionary. In the core data
dictionary, a patient’s death was encoded by only one data element (code Z).
In the new encoding, patients who died of prostate cancer were kept with code Z
while those who died of other causes were identified with code Y and those who
survived, with code X. This ensures that all patients have a terminal element
indicating whether they are alive at the end of their follow-up period. Because in
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this cohort not all patients are followed-up the same amount of time, all terminal
elements (X,Y,Z) were given additional child nodes that represent the amount
of time the patients were followed-up in years (1 to 5 and ‘+’ for over 5 years).
The aggregated pathways tree is illustrated in Fig. 3.

Figure 3 shows the cohort tree and highlighted sequence (P, D, H, P, X), that
is, patients who started their pathway with one or more PSA tests (code P,
n=1596), followed by a diagnosis of cancer (code D, n=1502), hormone therapy
as first treatment (code H, n=747), other PSA test(s) (n=>557) and finally
were last seen alive in this cohort (code X). 90% of patients with the highlighted
pathway (n = 266) were followed-up 3 or more years and one patient was followed-
up less than one year.

This aggregation also allows comparing patients that followed similar path-
ways but who died of prostate cancer ({P, D, H, P,Z)). In the case of patients
with a sequence prefix (P, D, H, P), 9% (n=48) died of prostate cancer (code
Z), 13% died of other causes (code Y), 48% survived, and the remaining patients
continued with other activities (H - Hormone Therapy, W - Active Surveillance,
R - Radiotherapy, S - Surgery).

Visualising the cohort in this manner is important as it enables the selection
of subsets of data for specific clinical studies as well as an inspection of the
sequential routes that patients take through care. The sequence highlighted in
Fig. 3 corresponds to the most common route (with most support on each node
sequentially).

Selected Pathway (n=5) *PDHPX

15.021% “
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1904 =1 ss 1 s o1
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Fig. 3. CaP VIS ExploraTree software displaying a selected pathway (patients with the
same sequential activities). The selected pathway nodes are highlighted and terminal
nodes are marked as red for patients that died and green for patients that were last
seen alive in this cohort. (Color figure online)
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It is possible to add more meaning to the visualisation and the pathways by
introducing additional data elements and remodeling the data dictionary. For
example, instead of using a single code for diagnosis it is possible to have a
breakdown of the tumour staging or Gleason grade at diagnosis so as to group
similar sequences with this information instead. However, due to the small size
of this cohort, increasing granularity in the pathways dictionary would result in
fewer patients in each node. For this reason no additional changes were made to
the pathways dictionary used for the ExploraTree, but our approach is flexible
enough to allow such modifications.

6 Application Areas

This section lists four broad areas where visualisation tools have been applied
and are expected to be most useful. Pathway plots illustrating relevant examples
are given for each of the areas.

6.1 Decision Support and EMR Enhancement

Recommendations for further research in clinical decision support and expert
systems [50] suggest that software that integrates complex data and generates
graphical representations is needed to support the analysis and understanding
of the data. Visualisations could also be used to enhance EMR systems as these
do not typically provide visually meaningful summaries of patient-centric data.

The pathways software was developed so that additional clinical information,
such as histopathology text reports, descriptive statistics, and graphical repre-
sentation could all be available in one place. This created an environment that
enables evidence based medicine, supports decision making. Clinicians are able
to retrieve similar cases by searching the desired pathway sequences and visually
inspect them, thereby gaining insights to support their decisions. In addition,
other information derived from domain knowledge such as PSA kinetics (how
fast PSA readings are doubling in time and rate of increase, both predictive of
outcome) can be shown in the developed system before or after diagnosis and
treatment. The flexible pathways data model has also enabled other aspects to
be incorporated. For example, rules can be applied to measure adherence to
guidelines.

Figure 4 shows four pathway plots for the same patient, a 69 year old diag-
nosed with tumour stage 3 prostate cancer and a Gleason sum of 9. Plot A
shows the original plot where the PSA is seen to have dropped after the patient
underwent hormone therapy (code H). The thick red line at the end of the path-
way denotes when the patient died. When producing this pathway’s plots, the
dictionary was extended so that the treatments retrieved from the local cancer
registry (and additional source of validation data) appear with a suffix “1” in
the vertical lines’” headings (code H1). In this case, regarding the date when the
patient first commenced hormone therapy, a time discrepancy of 51 days was
seen between the two data sources, where the hospital recorded the later date.
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Fig. 4. Four pathway plots of the same patient (175) with sequence (P, D, H, P). Plot A
shows the original plot with the PSA trend alone. Plot B shows the same information as
plot A with additional Alkaline Phosphatase readings and their normal range (shaded
area). Plot C shows Creatinine readings and Plot D shows the same information and
hospital events (code K). (Color figure online)

Hence this serves to inform on data quality issues (further discussed in the next
section). The discrepancy in dates in this case did not introduce uncertainty as
the effect of the treatment is seen in the subsequent PSA readings.

The pathway plot in Fig. 4 then shows a PSA relapse in the last two readings.
Shortly after the last PSA reading, the patient died of a pulmonary embolism
(ICD 126) and prostate cancer (ICD C61) as a secondary condition leading to
death. Shortly before death the patient was diagnosed with a secondary and
unspecified malignant neoplasm of inguinal and lower limb nodes (ICD C77.4).
This was revealed by the additional data collected on hospital episodes and is
presented in the visualisation.

Figure4 Plot B shows an additional element of the pathway, a blood test,
Alkaline Phosphatase (ALP) and its normal range in the shaded area. When
a patient’s advanced cancer metastasises to the bones, ALP can be increased
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due to active bone formation. Indeed studies have shown that prostate cancer
patients with a serum ALP reading of more than twice the normal upper limit
had a significantly lower survival rate than their respective counterparts [51].
This is observed in this pathway, although, an increased ALP could be due to
other reasons such as an obstructed bile duct or liver disease.

Lastly, plots C and D supplement the pathway with another blood test, Cre-
atinine. Creatinine has been reportedly associated with more advanced disease
and decreased survival [52]. However, any condition that impairs the function
of the kidneys is likely to raise the creatinine levels in the blood and act as a
confounding factor. In plot C, a flare in the values of Creatinine readings was
observed within the first 3 months. By introducing additional data elements
from the hospital episode statistics in plot D, a hospital episode (marked with
pathway code K) was found with an associated primary diagnosis of acute kid-
ney failure. Additional detail on episodes is obtainable by interacting with the
visualisation. Although a kidney stone was not coded in this (or any) episode
for this patient, a catheterisation of the bladder was performed during the same
hospital visit, and an inspection of the patient notes confirmed a kidney stone
was the cause of the acute kidney failure. The second hospital episode in this
pathway, also marked with code K, was for the removal of the catheter, and the
last hospital episode included a diagnosis of a secondary and unspecified malig-
nant neoplasm of inguinal and lower limb nodes and a pulmonary embolism,
caused by the first. This level of information that can be added to the pathway
would also allow, for example in other cases, to evaluate renal impairment and
prostate cancer. Indeed, in this respect, it has been reported that renal impair-
ment in men undergoing prostatectomy represents substantial and unrecognised
morbidity [53].

The introduction of additional detail helped to explain the Creatinine flare
for this patient and provided interesting insights that would otherwise not be
easily explored. The pathway plots provided sufficient information for the inter-
pretation of the pathway yet highlighted potential issues with the quality of the
data. Indeed discrepancies in treatment dates across data sources may intro-
duce additional challenges. As such, it is important to be able to differentiate
between pathways that have sufficient information and provide an accurate rep-
resentation of the patient’s history and those that do not. The evaluation of the
completeness and utility of the generated pathways for investigating biomarker
trends is explored in more detail in the next section.

6.2 Data Quality

Methods for the evaluation of data quality dimensions are lacking [54] and
visualisation tools can play an important role in quality assurance. Since the
development of the pathways framework, one of the first and foremost concerns
pertained to the quality of the data being visualised. For the first time since
EMR systems were introduced in our hospital, it was possible to visualise inte-
grated data and observe inconsistencies in the ways in which information had
been recorded over time. By expanding the data dictionary to include additional
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information from an external data source, the regional Cancer Registry, it was
possible to identify incongruent data across sources.

Figure5 shows a pathway plot of a patient with Gleason grade 7 prostate
cancer who underwent a radical prostatectomy. Information from the Cancer
Registry was obtained to validate treatment data and this is included with code
S1. In this case, the dates and details of the procedure are in agreement and
this patient could easily pass for having a complete record. When plotting the
pathway, however, a visual inspection highlighted a significant drop in the PSA
values for which there is no clear justification based on the information available.
It is unlikely that the PSA values dropped below the 4 ng/ml normal threshold
without an intervention. This means that either the treatment date is incorrect
in both sources or there is missing information as the patient is likely to have
received treatment from another provider while the blood tests continued to be
performed by the same laboratory. In this case the plausibility and concordance
data quality dimensions were assessed with this visualisation.

Time (yrs)
Total: 7.5 (7.3) D
S
S1
1!
PSA

Stage: 2
Gleason: 3+4
Age: 75.2

Fig.5. A Pathway plot for a patient diagnosed with Gleason grade 7 prostate cancer
who underwent a radical prostatectomy (code S).



116 J.H. Bettencourt-Silva et al.

Other data quality examples include mismatch of treatment dates (as seen
earlier in Fig. 4) and missing or implausible information. Based on the pathways
framework, rules can be devised to inspect individual pathways and determine
how complete they might be. For example, in previous work [3] rules pertaining
to the availability, positioning and substantiation of the drops in PSA were pro-
posed to determine which pathways would be eligible for further clinical research.

6.3 Cohort Selection, Analysis and Research

Two of the preliminary interests in developing graphical representations of path-
ways were to compare the shapes of the biomarker curves and also to be able to
aggregate patients with similar features. Having pathways expressed as sequences
of activity codes has helped to develop the ExploraTree tool, seen in Fig. 3.
Depending on how the data points and outcomes are modelled, the trees pro-
duced will have varying degrees of granularity and clinical interest. In the exam-
ple shown earlier, ExploraTree is aggregating patients with similar data points
appearing sequentially in time. However, codes for PSA tests (P) could be further
broken down into abnormal (say, A) and normal (N) PSA values and this would
create more clinically meaningful groups. The ExploraTree software can then
help to select relevant cohorts for research, to determine if there are enough mem-
bers in a particular group of interest and to facilitate recruitment for prospective
studies.

Pathway plots allow more detailed and complex information to be presented
in a single graphical representation. This enables researchers to observe sev-
eral data points together and to study new outcomes. For example, Fig. 6 plots
Haemoglobin in addition to the PSA and shows normal perioperative bleeding
when the patient underwent surgery. This information is not usually examined
together yet it enables the assessment of the effect that surgical procedures have
on patients and also, the length of time it takes for them to recover after surgery.
The latter is an interesting current research question that arised from the visual
inspection of the pathways. It is also possible to determine and study different
outcomes such as hormone escaped, development of metastases or biochemical
recurrence after treatment. Research on services and adherence to guidelines is
also possible using the pathway framework [3]. Integration of clinical EMR data
with “omics” data is also a topic that should deserve attention in future devel-
opments. Pathways with this additional information can be more valuable for
precision medicine and their visualisations should also help take knowledge of
clinical practice out of the hospitals and bring it to biologists, geneticists and
other scientists.

6.4 Knowledge Discovery Support

Visualisation tools are often overlooked when working on knowledge discovery
problems in healthcare. One of the most common barriers in machine learning in
healthcare is that the models and results produced are not intelligible and work
in this area is becoming more topical [55]. Decision trees continue to be the gold
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standard of intelligible models and more work is needed to create visualisation
tools that describe complex models.

Data and process mining techniques are often suggested for the analysis of
workflows and pathways, however, most of these techniques have been found
unsuitable when applied to heterogeneous routine clinical data. The evaluation
of the quality of event logs in process mining relies on trustworthiness (recorded
events actually happened), completeness and well defined semantics [56]. These
can be achieved by selecting pathways with required data points using the path-
ways framework. The visualisation system allows for the close inspection and
contextualisation of pathways, illustrating particular paths with similar features.
It has been reported that a combination of visual analytics with automated
process mining techniques would make possible the extraction of more novel
insights from event data [56] and further work in this area is needed.

The pathways framework through its graphical representations could also be
an interesting way of representing a model, whereby an ideal pathway would
be presented and then compared to actual pathways and deviation could be
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Fig.6. A Pathway plot showing the effect of a prostatectomy in the Haemoglobin
and PSA readings. The green shaded area depicts the normal range for Haemoglobin.
(Color figure online)
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measured, although further work in this area is required. Additional analysis of
the shape of the curves represented (for example, clustering of biomarker trends)
is also possible using this framework and some work has already been done in
this area using fusion methods [57].

7 Open Problems

Some of the main problems relating to the improvement of health and healthcare
with interactive visualisation methods are reviewed by Shneiderman et al. [6],
Aigner et al. [58], Caban and Gotz [20], and West et al. [19]. Some of these
challenges arise because healthcare must become more “predictive, preemptive,
personalised and participative” [6]. Although the efforts described in Sect. 3 and
our own efforts are directed to some of this challenges, most systems described to
not provide completely satisfactory responses. The open problems summarised
from the papers above and from the work presented here include:

— An enduring problem in visualising clinical data is the scale and complexity
of the data. Data is not only vast in terms of the number of records but it also
includes several different data types (e.g. numeric, categorical, text, images),
semantic structures inherent of time data such as cycles and re-occurrences
and intertwining conditions and treatment processes. Visual techniques must
analyse data in the context of this complexity and summarise it in order to
assist busy clinicians with getting timely information in the right format. This
requires tools that enable the user to see the overall perspective with powerful
yet simple visualisations and then look for anomalies and drill for details of
predictable risks early.

— The systems must be capable of scaling up to cohort analysis. Visualising
one patient’s trajectory can enable monitoring of treatment process for that
particular patient. However, it is often necessary to scale the analysis to a
cohort of patients as clinicians can then compare responses of diverse patients
and assess effectiveness of therapy in the larger scale.

— Context and domain knowledge is very important in clinical decision making
so systems must be able to efficiently represent domain knowledge and reason
with it to make temporal abstractions, to look at conditions in the context
of many clinical parameters such as co-morbidities, medication and history. It
may also be desirable to compare cohorts across clinicians, time periods and
geographical locations.

— It is increasingly necessary to provide systems that can facilitate multi-
disciplinary decision making. Such teams may involve nurses, social workers,
physicians and patients. Hence the presentation of knowledge, flexible query-
ing and analysis should accommodate the demands of multiple users with
different perspectives and needs. Visualisation tools should play an important
role in delivering and interacting with patient data.

— It is often necessary to understand similarity in the context of heterogeneous
data but this is not a well developed area of research. Data mining tasks
such as classification, clustering, association rules and deviation detection need
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to be developed to work with heterogeneous temporal data and to produce
intelligible results and meaningful visualisations.

— Data that is routinely collected is plagued by missing values, erroneous values
and inaccuracies. Systems that analyse such data must be well equipped to
deal with uncertainty. However, uncertainty is a well known open problem in
computing. Issues of data quality take their own dimension in a time oriented
scenario and can require specific treatment [59]. It is necessary to pre-process
the data to uncover data quality issues and exclude dubious data from further
analysis. It is also important to quantify data quality dimensions by producing
standard measures that can be presented (visually) alongside the data. In
addition, presentation of uncertainty in a meaningful way, for example in the
context of risk, is still an open research area.

— Currently, according to Kopanitsa et al. [60], there is a gap in transforming
knowledge from domain model to interface model. Hence there is a need to
turn hard-coded user interfaces into generic methods by a process of stan-
dardisation. Standardisation exists for data storage and exchange and they
provide a good basis for further efforts. This may also make data more acces-
sible to patients, which may be an important consideration for personalised
and participative medicine.

— The design of better interfaces was highlighted as a challenge early on [61] and
continues to be an open issue. In particular application of cognitive engineering
methods [62] may be beneficial for informing design and for uncovering infor-
mation needs in clinical systems. There is a requirement for analysing and
understanding the process of visual interaction, for example by using logs.
Interaction with the visualisation tools is key and must cater for different
types of users with different priorities as already discussed.

8 Conclusion and Future Outlook

A picture can arguably be worth a thousand words and in the case of the path-
ways, a pathway plot is worth, on average, 188 activities using our prostate
cancer cohort. For immediate decision-making by clinicians at the point of care,
information should be brief and easily interpreted [63] and visualisation tools, if
well designed, have a great potential to become part of clinical practice by sum-
marising complex activities in one graphical representation. However, optimal
visualisation of clinical data is complex and several open problems remain.

In this paper, clinical pathways were used to demonstrate the potential
of visualising routinely collected data using a case study on prostate cancer.
The underlying data model enables the summarisation and extension of path-
ways as well as the aggregation of similar sequences. It is also possible to capture
and plot pathways with concurrent elements and to develop algorithms to fur-
ther explore the data and investigate quality issues. Furthermore, the pathways
framework has facilitated interpretation, communication and debate between
experts. More work is now needed to assess similar tools in other settings and
domains. In this paper, four key areas that hold promise in the future of visual-
isation in healthcare were identified: decision support and EMR enhancement;
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data quality; cohort selection, analysis and research; and knowledge discovery.
Further work in each of these areas will bring clinical practice closer to the best
available evidence and improve the quality and utility of the big data that is
available in EMR systems.
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Abstract. Segmentation of focal (localized) brain pathologies such as
brain tumors and brain lesions caused by multiple sclerosis and ischemic
strokes are necessary for medical diagnosis, surgical planning and disease
development as well as other applications such as tractography. Over the
years, attempts have been made to automate this process for both clini-
cal and research reasons. In this regard, machine learning methods have
long been a focus of attention. Over the past two years, the medical
imaging field has seen a rise in the use of a particular branch of machine
learning commonly known as deep learning. In the non-medical computer
vision world, deep learning based methods have obtained state-of-the-art
results on many datasets. Recent studies in computer aided diagnostics
have shown deep learning methods (and especially convolutional neural
networks - CNN) to yield promising results. In this chapter, we provide
a survey of CNN methods applied to medical imaging with a focus on
brain pathology segmentation. In particular, we discuss their character-
istic peculiarities and their specific configuration and adjustments that
are best suited to segment medical images. We also underline the intrin-
sic differences deep learning methods have with other machine learning
methods.

Keywords: Brain tumor segmentation - Brain lesion segmentation -
Deep learning - Convolutional Neural Network

1 Introduction

Focal pathology detection of the central nerveous system (CNS), such as lesion,
tumor and hemorrhage is primordial to accurately diagnose, treat and for future
prognosis. The location of this focal pathology in the CNS determines the
related symptoms but clinical examination might to be sufficient to clear iden-
tify the underlying pathology. Ultrasound, computer tomography and conven-
tional MRI acquisition protocols are standard image modalities used clinically.
The qualitative MRI modalities T1 weighted (T1), T2 weighted (T2), Proton
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density weighted (PDW), T2-weighted FLAIR, (FLAIR) and contrast-enhanced
T1 (T1C), diffusion weighted MRI and functional MRI are sensitive to the
inflammatory and demyelinating changes directly associated with the underlying
pathology. As such, MRI is often used to detect, monitor, identify and quantify
the progression of diseases.

For instance, in multiple sclerosis (MS), T2 lesions are mainly visible in white
matter (WM) but can be found also in gray matter (GM). MS lesions are more
frequently located in the peri-ventricular or sub-cortical region of the brain.
They vary in size, location and volume but are usually elongated along small
vessels. These lesions are highly heterogeneous and include different underly-
ing processes: focal breakdown of the BBB, inflammation, destruction of the
myelin sheath (demyelination), astrocytic gliosis, partial preservation of axons
and remyelination. Similarly, in Alzheimer’s disease (AD), white matter hyper-
intensity (WMH) which are presumed to be from vascular origin, are also visible
on FLAIR images and are believe to be a biomarker of the disease. Similar to
vascular hemorrhages, ischemic arterial or venous strokes can be detected with
MRI. MRI is also used for brain tumor segmentation which is necessary for mon-
itoring the tumor growth or shrinkage, for tumor volume measurement and also
for surgical planning or radiotherapy planning. For glioblastoma segmentation
different MRI modalities highlight different tumor sub-regions. For example T'1
is the most commonly used modality for structural analysis and distinguish-
ing healthy tissues. In T1C the borders of the glioblastoma are enhanced. This
modality is most useful for distinguishing the active part of the glioblastoma
from the necrotic parts. In T2, the edema region appears bright. Using FLAIR
we can distinguish between the edema and CSF. This is possible because CSF
appears dark in FLAIR.

The sub-regions of a glioblastoma are as follows:

— Necrosis—The dead part of the tumor.

— Edema—Swelling caused by the tumor. As the tumor grows, it can block the
cerebrospinal fluid from going out of the brain. New blood vessels growing in
and near the tumor can also lead to swelling.

— Active-enhanced—Refers to the part of the tumor which is enhanced in T1C
modality.

— Non-enhanced—Refers to the part of the tumor which is not enhanced in T1C
modality.

There are many challenges associated with the segmentation of a brain
pathology. The main challenges come from the data acquisition procedure itself
(MRI in our case) as well as from the very nature of the pathology. Those chal-
lenges can be summarized as follows:

— Certainly the most glaring issue with MR images comes from the non-standard
intensity range obtained from different scanners. Either because of the various
magnet strength (typically 1.5, 3 or 7 Tesla) or because of different acquisition
protocol, the intensity values of a brain MRI is often very different from one
hospital to another, even for the same patient.
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— There is no reliable shape or intensity priors for brain tumors/lesions. Brain
pathology can appear anywhere in the brain, they can have any shape (often
with fuzzy borders) and come with a wide range of intensities. Furthermore,
the intensity range of such pathology may overlap with that of healthy tissue
making computer aided diagnosis (CAD) complicated.

— MR images come with a non negligible amount of white Rician noise intro-
duced during the acquisition procedure.

— Homogeneous tissues (typically the gray and the white matter) often suffer
from spacial intensity variations along each dimension. This is caused by a
so-called bias field effect. The MRI bias is a smooth low-frequency signal that
affect the image intensities. This problem calls for a bias field correction pre-
processing step which typically increase intensity values at the periphery of
the brain.

— MR images may have non-isotopic resolution leading to low resolution images,
typically along the coronal and the saggital views.

— The presence of a large tumor or lesion in the brain may warp the overall
structure of the brain, thus making some procedures impossible to perform.
For example, large tumors may affect the overall symmetry of the brain thus
making left-right features impossible to compute. Also, brains with a large
tumors can hardly be registered onto a healthy brain template.

Methods relying on machine learning also have their own challenges when
processing brain images. To count a few:

— Supervised methods require a lot of labeled data in order to generalize well
to unseen examples. As opposed to non-medical computer vision applications,
acquiring medical data is time consuming, often expensive and requires the
non-trivial approval of an ethical committee as well as the collaboration of
non-research affiliated staff. Furthermore, the accurate ground truth labeling
of 3d MR images is time consuming and expensive as it has to be done by an
highly trained personnel (typically a neurologist). As such, publicly-available
medical datasets are rare and often made of a limited number of images. One
consequence of not having enough labeled data is that the models trained on
it are prone to overfitting and perform poorly on new images.

— In supervised learning, we typically estimate maximum likelihoods and thus
assumes that the examples are identically distributed. Unfortunately, the
intensity variation from one MRI machine to another often violates that
assumption. Large variations in the data distribution can be leveraged by
having a sufficiently large training dataset, which is almost never the case
with medical images.

— Classic machine learning methods rely on computing high dimensional feature
vectors which make them computationally inefficient both memory-wise and
processing-wise.

— Generally in brain tumor/lesion segmentation, ground truth is heavily unbal-
anced since regions of interest are very small compared to the whole brain.
This is very unfortunate for many machine learning methods such as neural
networks whose assumption is that classes have similar size.
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— Because of the variability of the data, there is no standard pre-processing
procedure.

Most brain lesion segmentation methods use hand-designed features [22,59].
These methods implement a classical machine learning pipeline according to
which features are first extracted and then given to a classifier whose training
procedure does not affect the nature of those features.

An alternative would be to learn such a hierarchy of increasingly complicated
features (i.e. low, mid and high level features). Deep neural networks (DNNs)
have been shown to be successful in learning task-specific feature hierarchies [10].
Importantly, a key advantage of DNNs is that they allow to learn MRI brain-
pathology-specific features that combine information from across different MRI
modalities. Also, convolutions are very efficient and can make predictions very
fast. We investigate several choices for training Convolutional Neural Networks
(CNNs) for this problem and report on their advantages, disadvantages and
performance. Although CNNs first appeared over two decades ago [51], they
have recently become a mainstay for the computer vision community due to their
record-shattering performance in the ImageNet Large-Scale Visual Recognition
Challenge [48]. While CNNs have also been successfully applied to segmentation
problems [4,34,54], most of the previous work has focused on non-medical tasks
and many involve architectures that are not well suited to medical imagery or
brain tumor segmentation in particular.

Over the past two years, we have seen an increasing use of deep learning in
health care and more specifically in medical imaging segmentation. This increase
can be seen in recent Brain Tumor Segmentation challenges (BRATS) which is
held in conjunction with Medical Image Computing and Computer Assisted
Intervention (MICCAT). While in 2012 and 2013 none of the competing meth-
ods used DNNs, in 2014, 2 of the 15 methods and in 2015, 7 of the 13 methods
taking part in the challenge were using DNNs. In this work we explore a num-
ber of approaches based on deep neural network architectures applied to brain
pathology segmentation.

2 Glossary

Cerebral Spinal Fluid (CSF): a clear, colorless liquid located in the middle
of the brain.

Central Nervous System (CNS): part of the nervous system consisting of
the brain and the spinal cord.

Diffusion Weighted Image (DWI): MR imaging technique measuring the
diffusion of water molecules within tissue voxels. DWI is often used to visualize
hyperintensities.

Deep Neural Network (DNN): an artificial intelligence system modeled on
human brain where through a hierarchy of layers, the model learns low to high
features of the input.
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Convolutional Neural Network (CNN): type of DNN adopted for imagery
input. Number of parameters in a CNN is significantly less than that of a DNN
due to a parameter sharing architecture made feasible by convolutional opera-
tions.

FLAIR image: an MRI pulse sequence that suppresses fluid (mainly cere-
brospinal fluid (CSF)) while enhancing edema.

Gray Matter (GM): large region located on the surface of the brain consisting
mainly of nerve cell bodies and branching dendrites.

High-grade glioma: malignant brain tumors of types 3 and 4.
Low-grade glioma: slow growing brain tumors of types 1 and 2.

Multiple Sclerosis (MS): disease of the central nervous system attacking the
myelin, the insulating sheath surrounding the nerves.

Overfitting: in machine learning the overfitting phenomenon occurs when the
model is too complex relative to the number of observations. Overfitting reduces
the ability of the model to generalize to unseen examples.

Proton Density Weighted (PDW) image: MR image sequence used to
measure the density of protons; an intermediate sequence sharing some features
of both T1 and T2. In current practices, PDW is mostly replaced by FLAIR.

T1-weighted image: one of the basic MRI pulse sequences showing the differ-
ence in the T1 relaxation times of tissues [25].

T1 Contrast-enhanced image: a T1 sequence acquired after a gadolinium
injection. Gadolinium changes signal intensities by shortening the T1 time in its
surroundings. Blood vessels and pathologies with high vascularity appear bright
on T1 weighted post gadolinium images.

T2-weighted image: one of the basic MRI pulse sequences. The sequence high-
light differences in the T2 relaxation time of tissues [26].

White matter hyperintensity: changes in the cerebral white matter in aged
individuals or patients suffering from a brain pathology [64].

3 Datasets

In this section, we describe some of the most widely-used public datasets for
brain tumor/lesion segmentation.

BRATS benchmark. The Multimodal BRain Tumor image Segmentation
(BRATS) is a challenge held annually in conjunction with MICCAI conference
since 2012. The BRATS 2012 training data consist of 10 low- and 20 high-grade
glioma MR images whose voxels have been manually segmented with three labels
(healthy, edema and core). The challenge data consisted of 11 high- and 5 low-
grade glioma subjects no ground truth is provided for this dataset. Using only
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two basic tumor classes is insufficient due to the fact that the core label contains
structures which vary in different modalities. For this reason, the BRATS 2013
dataset contains the same training data but was manually labeled into 5 classes;
healthy, necrosis, edema non-enhanced and enhanced tumor. There are also two
test sets available for BRATS 2013 which do not come with ground truth; the
leaderboard dataset which contains the BRATS 2012 challenge dataset plus 10
high-grade glioma patients and the BRATS 2013 challenge dataset which con-
tains 10 high-grade glioma patients. The above mentioned datasets are available
for download through the challenge website [2].

For BRATS 2015, the size of the dataset was increased extensively'. BRATS
2015 contains 220 brains with high-grade and 54 brains with low grade gliomas
for training and 53 brains with mixed high and low grade gliomas for test-
ing. Similar to BRATS’13, each brain from the training data comes with a 5
class segmentation ground truth. BRATS’15 also contains the training data of
BRATS’13. The ground truth for the rest of the training brains is generated by a
voted average of segmented results of the top performing methods in BRATS’13
and BRATS’12. Although some of these automatically generated ground truths
have been refined manually by a user, some authors have decided to remove from
their training data brains for which they believe the ground truth was not accu-
rate enough [36,46,79]. This dataset can be downloaded through the challenge
website [2].

All BRATS datasets, share four MRI modalities namely; T1, T1C, T2,
FLAIR. Image modalities for each subject were co-registered to T1C. Also, all
images were skull stripped.

Quantitative evaluation of the model’s performance on the test set is achieved
by uploading the segmentation results to the online BRATS evaluation sys-
tem [2]. The online system provides the quantitative results as follows: The
tumor structures are grouped in 3 different tumor regions. This is mainly due to
practical clinical applications. As described by Menze et al. (2014) [59], tumor
regions are defined as:

1. The complete tumor region (including all four tumor structures).
2. The core tumor region (including all tumor structures exept “edema”).
3. The enhancing tumor region (including the “enhanced tumor” structure).

Depending on the year the challenge was held, different evaluation metrics
have been considered. For each tumor region, they consider Dice, Sensitivity,
Specificity, Kappa as well as the Hausdorff distance. The online evaluation system
also provides a ranking for every method submitted for evaluation. This includes
methods from the 2013 BRATS challenge published in [59] as well as anonymized
unpublished methods for which no reference is available.

ISLES benchmark. Ischemic Stroke Lesion Segmentation (ISLES) challenge

started in 2015 and is held in conjunction with the Brain Lesion workshop as

! Note that the BRATS organizers released a dataset in 2014 but quickly removed it
from the web. This version of the dataset is no longer available.
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part of MICCAI ISLES has two categories with individual datasets; sub-acute
ischemic stroke lesion segmentation (SISS) and acute stroke outcome/penumbra
estimation (SPES) datasets [1].

SISS contains 28 brains with four modalities namely: FLAIR, DWI, T2 TSE
(Turbo Spin Echo), and T1 TFE (Turbo Field Echo). The challenge dataset
consists of 36 subjects. The evaluation measures used for the ranking were the
Dice coefficients, the average symmetric surface distance, and the Hausdorff
distance.

SPES dataset contains 30 brains with 7 modalities namely: CBF (Cerebral blood
flow), CBV (cerebral blood volume), DWI, Tlc, T2, Tmax and TTP (time
to peak). The challenge dataset contains 20 subjects. Both datasets provide
pixel-accurate level ground truth of the abnormal areas (2 class segmentation).
The metrics used to gauge performances are the Dice score, the Hausdorff dis-

tance, the recall and precision as well as the average symmetric surface distance
(ASSD).

MSGC benchmark. The MSGC dataset which was introduced at MICCAI
2008 [76] provides 20 training MR cases with manual ground truth MS lesion
segmentation and 23 testing cases from the Boston Childrens Hospital (CHB)
and the University of North Carolina (UNC. For each subject T1, T2 and FLAIR
are provided which are co-registered. While lesions masks for the 23 testing cases
are not available for download, an automated system is available to evaluate
the output of a given segmentation algorithm. The MSGC benchmark provides
different metric results normalized between 0 and 100, where 100 is a perfect
score and 90 is the typical score of an independent rater [76]. The different
metrics (volume difference “VolD”, surface distance “SurfD”, true positive rate
“TPR” and false positive rate “FPR”) are measured by comparing the automatic
segmentation to the manual segmentation of two experts at CHB and UNC.

4 State-of-the-Art

In this section, we present a brief overview of some methods used to segment
brain lesions and brain tumors from MR images.

4.1 Pre Deep Learning Era

These methods can be grouped in two major categories: semi-automatic and
automatic methods. Semi-automatic (or interactive) methods are those relying
on user intervention. Many of these methods rely on active deformable models
(e.g. snakes) where the user initializes the tumor contour [42,84]. Other semi-
automatic methods use classification (and yet machine learning) methods whose
raw input data is given through regions of interest drawn inside and outside
the tumor [8,37,38,44,86]. Semi-automatic methods are appealing in medial
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imaging applications since the datasets are generally very small [29,40]. Auto-
matic methods on the other hand are those for which no user interaction is
made. These methods can be generally divided in two groups; The first group
of methods are based on anomaly detection where the model estimates inten-
sity similarities between the subject being segmented and an atlas. By doing so,
brain regions which deviate from healthy tissue are detected. These techniques
have shown good results in structural segmentation when using non-linear reg-
istration. When combined with non-local approaches they have proven effective
segmentation diffuse and sparse pathologies such as MS [32] as well as more com-
plex multi-label gliomas [45,63,66]. Anomaly detection is not limited to brain
tumor/lesion detection but is a key core of health informatics [41].

The second group of methods are machine learning methods where a dis-
criminative model is trained using pre-defined features of the input modalities.
After integrating different intensity and texture features, these methods decide
to which class each voxel belongs to. Random forests have been particularly pop-
ular. Reza et al. [67] used a mixture of intensity and texture features to train
a random forest for voxelwise classification. One problem with this approach
is that the model should be trained in a high-dimensional feature space. For
example, Festa et al. [24] used a feature space of 300 dimensions and the trained
random forest comprised of 50 trees. To train more descriptive classifiers, some
methods have taken the approach of adding classes to the ground truth [9,87].
Tustison et al. [78] does this by using Gaussian Mixture Models (GMMSs) to get
voxelwise tissue probabilities for WM, GM, CSF, edema, non-enhancing tumor,
enhancing tumor, necrosis. The GMM is initialized with prior cluster centers
learnt from the training data. The voxelwise probabilities are used as input fea-
tures to a random forest. The intuition behind increasing the number of classes
is that the distribution of the healthy class is likely to have different modes for
WM, GM and the CSF and so the classifier would be more confidant if it tries
to classify them as separate classes. Markov random field (MRF) as well as con-
ditional random field (CRF) are some times used to regularize the predictions
[35,52,58,78]. Usually the pairwise weights in these models are either fixed [35]
or determined by the input data. They work best in case of weak classifiers such
as k-nearest neighbor (kNN) or decision trees and become less beneficial when
using stronger classifiers such as convolutional neural networks [70].

Deformable models can also be used as post-processing where the automatic
method is used to initialize the counter as opposed to user interaction in semi-
automatic methods [39,45,63,66].

4.2 Deep Learning Based Methods

As mentioned before, classical machine learning methods in both automatic
and semi-automatic approaches use pre-defined (or hand-crafted) features which
might or might not be useful in the training objective. As opposed to that, deep
learning methods learn features specific to the task at hand. Moreover, these
features are learnt in a hierarchy of increasing feature complexity which results
in more robust features.
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Recently, deep neural networks have proven to be very promising for medical
image segmentations. In the past two years, we have seen an increase in use of
neural networks applied to brain tumor and lesion segmentations. Notable men-
tions are the MICCAI’s brain tumor segmentation challenge (BRATS) in 2014
and 2015 and the ISLES challenge in 2015 where the top performing methods
were taking use of convolutional neural networks [22,23].

In spite of the fact that CNNs were originally developed for image classifica-
tion, it is possible to use them in a segmentation framework. A simple approach
is to train the model in a patch-wise fashion as in [15], where for every training
(or testing) pixel 4, a patch x; of size n x n around 4 is extracted. Given an image
S, the goal is to identify class label y; given x; for all i € S.

Although MRI segmentation is a 3d problem, most methods take a 2D app-
roach by processing the MRI slice by slice. For these methods, training is mostly
done patch wise on the axial slices. Zikic et al. [88] use a 3 layer model with 2
convolutional layers and one dense layer. The input size of the model is chosen
19 x 19, however, since the inputs have been down sampled by a factor of 2, the
effective receptive field size is 38 x 38. Mazx pooling with stride of 3 is used at
the first convolutional layer. During test time, down sampled patches of 19 x 19
are presented to the model in sliding window fashion to cover the entire MRI
volume.

The model by Havaei et al. [35] consists of two pathways; a local pathway
which concentrates on the pixel neighborhood information and a global pathway
which captures more the global context of the slice. Their local path consists
on 2 convolutional layers with kernel sizes of 7 x 7 and 5 x 5 respectively while
the global path consists of one convolutional layer with 11 x 11 kernel size. In
their architecture, they used Mazout [30] as activation function for intermediate
layers. Training patch size was 33 x 33, however during test time, the model was
able to process a complete slice making the overall prediction time drop to a
couple of seconds. This is achieved by implementing a convolutional equivalent
of the dense layers. To preserve pixel density of the label map, they used stride
of 1 for max pooling and convolutions.? This architecture is shown in Fig. 1.

Havaei et al. [35] also introduced a cascaded method where the class prob-
abilities from a base model are concatenated with input image modalities to
train a secondary model similar in architecture than the base model. In their
experiments, this approach refined the probability maps produced by the base
model and brought them among the top 4 teams in BRATS 2015 [36].

Pereira et al. [61] also adopted a patch wise training with input size experi-
mented with CNNs with small kernel size (i.e. 3 x 3) as suggested by [74]. This
allowed them to have deeper architecture while maintaining the same receptive
field as shallow networks with bigger kernels. They trained separate models for

2 Using stride of n means that every n pixel will be mapped to 1 pixel in the label
map (assuming the model has one layer). This causes the model to loose pixel level
accuracy if full image prediction is to be used at test time. One way to deal with
this issue is presented by Pinheiro et al. [62]. Alternatively we can use stride of 1
every where in the model.
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Fig. 1. The proposed architecture by Havaei et al. [35]. First row: TWOPATHCNN.
The input patch goes through two convolutional networks each comprising of a local
and a global path. The feature maps in the local and global paths are shown in yel-
low and orange respectively. Second row: INPUTCASCADECNN. The class probabilities
generated by TWOPATHCNN are concatenated to the input of a second CNN model.
Third row: Full image prediction using INPUTCASCADECNN.

HG and LG tumors. For the HG, their architecture consists of 8 convolutional
layers and 3 dense layers while the LG model was a bit shallower containing 4
convolutional layers and 3 dense layers. They used max pooling with stride of
2 and dropout was used only on the dense layers. Leaky rectified linear units
(LRLU) [55] was used for activation function. This method achieved good results
in BRATS 2015 challenge, ranking them among the top 4 winners. The authors
also found data augmentation by rotation to be useful. That said, the method
comes with a major inconvenience which is for the user to manually decide the
type of the tumor (LG or HG) to process.

Dvorak et al. [20] applied the idea of local structure prediction [19] for brain
tumor segmentation where a dictionary of label patches is constructed by clus-
tering the label patches into n groups. The model is trained to assign an input
patch to one of the n groups. The goal is to force the model to take into account
labels of the neighboring pixels in addition to the center pixel.

The methods discussed above treat every MRI modality as a channel in CNN
the same way color channels are treated in CNN in other computer vision appli-
cations. Rao et al. [65] treat these modalities as inputs to separate convolutional
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Fig. 3. CEN-s: The proposed architecture by Brosch et al. [11].

streams. In this way, they train 4 separate CNN models each on a different modal-
ity. After training, these models are used as feature extractors where features from
all 4 models are concatenated to train a random forest classifier. The CNNs share
the same architecture of 2 convolutional layers of kernel size 5 x 5 followed by 2
dense layers. Every CNN takes as input 3 patches of size 32 x 32 extracted from
3 dimensions (i.e. axial, sagittal, coronal) around the center pixel.
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Segmentation problems in MRI are often 3d problems. However, employing
CNNs on 3d data remains an open problem. This is due to the fact that MRI vol-
umes are often anisotropic (especially for the FLAIR modality) and the volume
resolution is not consistent across subjects. A solution is to pre-process the sub-
jects to be isotropic [32,59]. However, these methods only interpolate the data
and the result ends up being severely blurry when the data is highly anisotropic.
One way to incorporate information from 3d surroundings is to train on orthogo-
nal patches extracted from axial, sagittal and coronal views. The objective would
then be to predict the class label for the intersecting pixel. This is referred to
as 2.5d in the literature [65,73]. Havaei et al. [35] experimented by training on
2.5d patches. They argued since BRATS 2013 train and test data have different
voxel resolutions, the model did not generalize better than only training on axial
view patches. Vaidya et al. [81] and Urban et al. [79] used 3d convolutions for
brain lesion and brain tumor segmentation. Using 3d convolution implies that
the input to the model has an additional depth dimension. Although this has the
advantage of using the 3d context in the MRI, if the gap between slices across
subjects varies a lot, the learnt features would not be robust. In a similar line
of thoughts, Klein et al. [47] also used 3d kernels for their convolutional layers
but with a different architecture. Their architecture consists of 4 convolutional
layers with large kernel sizes on the first few layers (i.e. 12 x 12 x 12, 7 x 7 x 7,
5% 5 x5, 3x 3x 3) with input patch size of 41 x 41 x 41. The convolutional
layers are followed by 2 dense layers.

Kamnitsas et al. [43] used a combination [35,61,79] applied to lesion seg-
mentation. In their 11 layer fully convolutional network which consisted of 2
pathways similar to [35], they used 3d convolutions with small kernel sizes of
3 x 3 x 3. Using this model, they ranked among the winners of the ISLES 2015
challenge.

Stollenga et al. [75] used a long short term memories (LSTM) network applied
on 2.5d patches for brain segmentation.

As opposed to methods which use deep learning in a CNN framework,
Vaidhya et al. [80] used a multi-layer perceptron consisting of 4 dense layers.
All feature layers (i.e. the first 3) were pre-trained using denoising auto-encoder
as in [83]. Input consists of 3d patches of size 9 X 9 x 9 and training is done on
BRATS dataset with a balanced number of class patches. However, similar to
[35], fine tuning was done on unbalanced data reflecting the real distribution of
label classes.

Inspired by [57], Brosch et al. [12] presented the convolutional encoder net-
works (CEN) for MS lesion segmentation. The model consists of 2 parts; the
encoder part to extract features and up sampling part for pixel level classifica-
tion®. The convolutional encoding part of the model consists of 2 3d convolutional
layers in valid mode* with kernel size 9 x 9 x 9 on both layers followed by an RLU
activation function. The up sampling part of the model consists of convolutions

3 In the literature this way of up sampling is some times wrongly referred to as
deconvolution.
4 Valid mode is when kernel and input have complete overlap.
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Second Phase

Fig. 4. Effect of second phase training proposed by [35]. The figure shows how the
second phase regularizes the predictions and removes false positives.

in full mode® which results in up sampling the model. Balancing label classes is
done by introducing weights per class in the loss function. They improved on this
method in [11] by introducing CEN-s, where they combine feature maps from
the first hidden layer to the last hidden layer. As shown in Figs.2 and 3, this
model is very similar to the U-Net by Ronneberger et al. [68] with the difference
that the U-Net uses interpolation for up sampling as opposed to CEN-s where
convolutions are used and transformation weights are learnt during training.
Also U-Net is deeper with 11 layers while CEN-s contains only 4 layers. Weights
of the model are initialized by RBM unsupervised training. Combining feature
maps from shallow layers to higher layers (also referred to as skip or shortcut
connections) are popular in semantic segmentation [33,54].

5 Open Problems

5.1 Preparing the Dataset

Preparing the dataset in a proper way can play a key role in learning. In this
chapter we discuss important aspects of dataset preparation for medical imaging.

Pre-processing. As mentioned before, the grayscale distribution of MR images
is dependant on the acquisition protocol and the hardware. This makes learning
difficult since we expect to have the same data distribution from one subject to
another. Therefore, pre-processing to bring all subjects to similar distributions
is an important step. Also, it is desirable that all input modalities to the model
have the same range so one modality does not have prior advantage over others
in deciding the output of the model. Among the many pre-processing approaches
reported in the literature, the followings are the most popular:

— Applying the N4/N3 bias field correction [20,31,32,35,49,78,88]. Kleesiek
et al. [46] and Urban et al. [79] did not apply bias field correction, instead they

5 Full mode is when minimum overlap is a sufficient condition for applying convolution.
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performed intensity normalization with mean CSF value which they claim to
be more robust and effective.

— Truncating the 1% or 0.1% quantiles of the histogram to remove outliers from
all modalities have also proven to be very effective [35,78,80].

— Histogram normalization which is mostly done by matching histogram of every
modality to their corresponding template histogram [6,32,61,80].

— Zero mean unit variance on every modality [20,35] or the selected training
patches [61].

Shuffling. Introducing the data to the model in a sequential order results in
biasing the gradients and can lead to poor convergence. By sequential order,
we mean training first on data extracted from a subject, then training on data
extracted from another subject, and so on until the end of the training set. Gen-
erally it is a good idea to shuffle the data randomly prior to training. Depending
on the dataset, MRI subjects can be are very different in terms of noise and even
intensity distribution. Therefore, it is important to shuffle the entire dataset so
the model would not overfit to the current training subject and forget it is previ-
ous findings. It is desirable that the distribution from which we introduce training
examples to the model doesn’t change significantly (i.e. the training examples
lie on the same manifold). An advantage of patch-wise training over full image
training is that in patch-wise training every mini batch contains patches from
different slices of different subjects while in full image training, there is no shuf-
fling at pixel level.

Balancing the Dataset. Imbalanced dataset is when class labels are not
approximately equally represented. Unfortunately, brain imaging data are rarely
balanced due to the small size of the lesion compared to the rest of the brain.
For example, the volume of a stroke is rarely more than 1% of the entire brain
and a tumor (even large glioblastomas) never occupy more than 4% of the brain.
Training a deep network with imbalanced data often lead to very low true pos-
itive rates since the system gets to be biased towards the one class that is over
represented.

Ideally, we would want to learnt features invariant to the class distribution.
This can be done by balancing classes. One approach is to re-sample from the
training set so we get an equal number of samples for every class. Another
approach is to weight the loss for training examples based on their frequency
of appearance in the training data [12,68]. Sampling from the training set can
be done randomly [69-71], or follow an importance sampling criterion to help
the model learn things we care about (for example border between classes). For
Havaei et al.’s [35] patch-wise training method, the importance sampling is done
by computing the class entropy for every pixel in the ground truth and giving
training priority to patches with higher entropy. In other words, patches with
higher entropy, contain more classes and so would be good candidates to learn
the border regions from.



Deep Learning Trends for Focal Brain Pathology Segmentation in MRI 139

Training on balanced dataset makes the model believe all classes are
equiprobable and thus may cause some false positives. In order to compensate
for this, one should account for the imbalanced nature of the data in a second
training phase during which only the classification layer is trained, the other
feature layers being fixed. This allows to regularize the model and remove some
false positives. The effect of the second phase training is presented in Fig. 4.
Ronneberger et al. [68] took a different approach which is best suited for full
image training. In their approach, they compute the distance of every pixel to
class borders and, based on that, a weight is assigned to every pixel. A weight
map is created for every training image and is used in the loss function to weight
every sample differently.

Pereira et al. [61] balance classes mainly by data augmentation. In their case,
data augmentation can be a transformation applied on a patch or simply increase
the size of the dataset by using patches from similar datasets. For example using
patches from brains with high-grade glioma when training a low-grade glioma
model.

5.2 Global Information

Adding context information has always been a subject of interest in medical
image analysis [3,17,18]. Since anatomical regions in closeup view can appear
similar and borders may be diffused in some parts due to lack of contrast or
other artifacts, additional context is needed to localize a region of interest.

In CNN, it is possible to encode more contextual information by increasing
the portion of the input image each neuron sees (directly or indirectly). Although
it is possible to increase the receptive filed of a neuron on the input image through
series of convolutional and pooling layers of stride 1, using strides greater than
one is computationally more efficient and results in more robust features. By
doing so, the model looses precision of spatial information which is needed for
segmentation purposes. To take advantage of both worlds, some authors [11,68]
learn a global understanding of the input by down sampling the information to
smaller size feature maps which are later up sampled and combined with feature
maps of lower layer that preserve the spacial information.

Havaei et al. [35] took a different approach where they add a second global
convolutional pathway in parallel to a local convolutional pathway. The output
feature maps of these two pathways are concatenated before going through the
classification layer. This two-pathway approach allows to learn simultaneously
global and local contextual features.

5.3 Structured Prediction

Although CNNs provide powerful tools for segmentation, they do not model
spatial dependencies. To address this issue, many methods have been proposed
to take the information of the neighboring pixels in the label image into account.
These methods can be divided into two main categories. The first category are
methods which consider the information of the neighboring labels in an implicit
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way while providing no specific pairwise term in the loss function. An example
of such approach is provided by Havaei et al. [35] which refine predictions made
by the first CNN model by providing the posterior probabilities over classes
as extra input to a second CNN model. Roth et al. [70] also use a cascaded
architecture to concatenate the probabilities of their first convolutional model
with features extracted from multiple scales in a zoom out fashion [60]. The
second category of methods are ones that explicitly define a pairwise term in the
loss function which is usually referred to as Conditional Random Field (CRF)
in the literature. Although it is possible to train the CNN and CRF end to end,
usually for simplicity, the CRF is trained or applied as post processing secondary
model to smooth the predicted labels. The weights for the pairwise terms in the
CRF can be fixed [37], determined by the input image [37] or learned from the
training data [70]. In their work Roth et al. [70] trained an additional convent
model between pairs of neighboring pixels.

Post-processing methods based on connected components have also proved to
be effective to remove small false positive blobs [35,61,80]. In [70], the authors
also try 3d isotropic Gaussian smoothing to propagate 2D predictions to 3d and
according to them, Gaussian smoothing was more beneficial than using CRF.

5.4 Training on Small or Incomplete Datasets

Deep neural networks generalize better on new data if a large training set is
available. This is due to the large number of parameters present in these models.
However, constructing a medical imaging dataset is an expensive and tedious
task which causes datasets to be small and models trained on these datasets
prone to overfitting. Even the largest datasets in this field do not exceed a few
hundred subjects. This is much lower than datasets like ImageNet which contains
millions of images.

Another problem arises from incomplete datasets. Medical imaging datasets
are often multi-modal with images obtained from acquisitions of MRI (T1, T2,
proton density, DWL, etc.) [59], or an anatomical MRI image (T1 or T2) coupled
with another modality such as SPECT or PET scans [53]. However, not all
modalities are available for every subject. How to effectively use the incomplete
data rather than simply discarding them is an open question. Another scenario is
how to generalize on subjects with missing modalities. In this section we review
several effective approaches to train on small and/or incomplete datasets

Data Augmentation. Increasing the size of the dataset by data augmentation
is commonly employed in machine learning to enrich a dataset and reduce over-
fitting [48]. Flipping the image, applying small rotations, warping the image are
common practices for this purpose [16,48,68]. Roth et al. [70] and Ronneberger
et al. [68] use non-rigid deformation transformations to increase the size of their
dataset and report it to be a key element for their models. The type of data
augmentation technique depends on the anatomy of the data and the model
being used. For example, Pereira et al. [61] only tested with rotation for data
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augmentation because the label of the patch is determined by the center pixel.
They used angles multiple of 90° and managed to increase the size of the dataset
4 times. They found data augmentation to be very effective in their experiments.

Transfer Learning. Deep learning has made significant breakthroughs in com-
puter vision tasks due to training on very large datasets such as ImageNet. Ima-
geNet contains more than 1.2 million training examples on over 1000 classes.
To improve generalization on smaller dataset, it is common to first train a base
model on a large dataset such as ImageNet and then re-purpose the learnt fea-
tures to a second target model to be fine tuned on an application-specific dataset
which is often much smaller in size. Yosinski et al. [85] show that the trans-
ferability of the features depends on how general those features are and the
transferability gap increases as the distance between the tasks increase and fea-
tures become less general such as the higher level features. But still, transferring
weights from a generic pre-trained model to a more specific one is better than
initializing weights randomly.

Transfer learning can take 3 forms. The first one is to generate features from
the base model and then train a classifier such as SVM or logistic regression with
those generated features [5,7,28]. Bar et al. [7] use an ImageNet pre-trained base
model to extract features. These features are concatenated with other hand-
crafted features before being introduced to an SVM classifier. Van et al. [2§]
used overfeat pre-trained weights to generate features for lung tumor detection.
To facilitate with the RGB channels, 3 2D channels are extracted from axial,
saggital and coronal views. SVM is used as classifier.

Although this way of transfer learning has proved to be somewhat success-
ful, the degree of it is usefulness depends on how much the source and target
datasets are similar. When that is not the case, a transferring method is to fine-
tune the features on the target dataset [13,14,27,56]. Gao et al. [27] uses this
fine-tuning scheme to detect lung disease in CT images. To accommodate for the
RGB channels of the base model which has been pre-trained on ImageNet, three
attenuation scales with respect to lung abnormality patterns are captured by
rescaling the original 1-channel CT image. Carneiro et al. [13] uses this method
to reach state-of-the-art results on the InBreast dataset. Shin et al. [73] reported
experimental results in 3 scenarios for Lymph node detection. (1) No transfer
learning (2) transfer the weights from another model and only training the clas-
sification layer (i.e. weights from other layers are frozen), (3) transfer the weights
from another model and fine tune all layers. According to their experiments, the
best performance was achieved in the 3rd scenario where the weights of the model
are initialized from previously trained model and then all layers are fine tuned on
the Lymph node dataset while freezing the weights of the first model achieved
least performance. This is expected since the two datasets are very different
and the features learnt by model trained on ImageNet are not general enough
to be used as on a medical imaging dataset. Tajbakhsh et al. [77] conducted a
similar study on transferring pre-trained weights of AlexNet on ImageNet to 4
medical imaging datasets. Based on their findings, initializing the weights to a
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pre-trained model and fine-tuning all layers should be preferred to training from
scratch regardless of the size of the dataset. However, if the target dataset is
smaller we should be expecting a better gain in performance compared to when
the target dataset is sufficiently large. They also observed that transfer learning
increases the convergence speed on the target model. Also, since the natural
scene image datasets such as ImageNet are very different to medical imaging
datasets, we are better off fine-tuning all the layers of the model as opposed to
fine tuning only the last few layers. Van et al. [28] cam to a similar conclusion.

A third approach to transfer learning is to initialize the model to weights
which have been pre-trained separately in an unsupervised way using models
such as Autoencoders or RBMs [50]. This allows the weights of the main model
to be initialized in a better basin of attraction [21]. In their lung segmentation
problem where they had access to a large un-annotated dataset and a smaller
annotated dataset, Schlegl (2014) [72] use convolutional restricted boltzmann
machine to pre-train a CNN model in an unsupervised fashion. A shallow model
is used as it helps the unsupervised model to learn more general features and
less domain specific features.

Missing Modalities. Different modalities in MRI need to be acquired sepa-
rately and it often happens that different subjects are missing some modalities.
The most common practice is to prepare the dataset using modalities which exist
in most subjects. This leads to either discarding some subjects from the dataset
or discarding some modalities which are not present in all subjects. Another
approach is to impute the missing modalities by zero or the mean value of the
missing modality. Li et al. [53] used a 3 dimensional CNN architecture to predict
a PET modality given a set of MRI modalities. Van et al. [82] proposed to syn-
thesize one missing modality by sampling from the hidden layer representations
of a Restricted Boltzmann Machine (RBM). They perform their experiments on
BRATS 2013 using patch wise training approach. For every training patch, they
train the RBM with every modality to learn the joint probability distribution of
the four modalities. At test time, when only one of the modalities is missing they
can estimate the missing modality by sampling from the hidden representation
vector.

6 Future Outlook

Although deep learning methods have proven to have potential in medical image
analysis applications, their performance depends highly on the quality of pre-
processing and/or post processing. These methods tend to perform poorly when
input data do not follow a common distribution which is often the case. Learning
robust representations which are invariant the noise introduced by the acquisition
is needed. Unsupervised learning or weakly supervised learning might hold the
key to this problem. Also methods based on domain adaptation might help us
learn representations which better explain the anatomy of the brain and can
better generalize across datasets.
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Abstract. Epilepsy is one of the most common neurological disorder.
This disorder can be diagnosed by non-invasive examinations, such as
electroencephalography, whose records are called electroencephalograms
(EEG). The EEG can be stored in medical databases for reusing in
future. In these data, one can apply data mining process supported by
machine learning techniques in order to find patterns that can be used
for building predictive models. This paper presents an application of the
cross-correlation technique and the kNN algorithm for classification in a
set with 200 EEG segments in order to differentiate normal and epilep-
tic (abnormal) signals. The results were evaluated using 10-fold cross-
validation and contingency table methods. With the evaluation using
cross validation, it was not found statistically significant difference for
classification using kNN. The contingency table results found that the
kNN with £ = 1 and k = 7 performed better for classifying abnormal
and normal EEG, respectively. Also, the kNN with £ = 1 and k = 7 were
more likely to correctly classify normal and abnormal EEG, respectively.

1 Introduction

According to the World Health Organization (WHO)!, one in four people will
have a mental or neurological disorder. Currently, these disorders reaches approx-
imately 700 million people in the world. Epilepsy is the fourth most com-
mon neurological disorder and affects approximately 50 millions people in the
world [26,29].

Epilepsy can be diagnosed by electroencephalography, whose records are
called electroencephalograms (EEG), which is a non-invasive examination result-
ing from monitoring of the variation of electrical activity over time generated
by neuron populations [4,10]. The EEG signals are stored in databases in order
to maintain and to complement the clinical history of patients and be reused by
experts to auxiliary in decision making processes for diseases diagnosis [21].

However, with the increasing storage of information in medical databases,
their manual analysis becomes an infeasible task. Also, the EEG can contain
patterns which are difficult to be identified by naked eye. Thus, methods and

! http://www.who.int.
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tools must be developed to assist in the analysis and management of such exam-
inations [13].

In this sense, data mining (DM) process supported by machine learning (ML)
methods can be applied in different fields to support data analysis and manage-
ment. This process in conjunction with ML techniques, have motivated several
researchers to build descriptive and predictive models [28]. To do so, the data must
be in a proper format, e.g., attribute-value table. For EEG signals representation,
several features can be extracted from these data [14].

The aim of this study is to classify EEG segments into normal or abnormal
(epileptic) class using the ML technique called k-nearest-neighbors (kNN).

This paper is organized as follows: Sect. 2 presents a glossary and key terms
related to this work; Sect. 3 reports the EEG database used in this work, the
technique applied to extract features in EEG segments and the methods used
to build and evaluate the classification performance; Sect. 4 describes the results
and discussion in terms of the classification effectiveness obtained with the appli-
cation of the approach proposed in the database; Sect.5 presents the final con-
siderations; and Sect. 6 reports proposals for future work.

2 Glossary and Key Terms

Epilepsy is a neurological disorder occasioned by epileptic seizures [19)].

Epileptic seizures are signals and/or symptoms due the electrical activity
disturbances of the brain [8].

International 10-20 system is a recognized method used in order to distribute
electrodes in the scalp for capturing EEG signals. These electrodes are divided
into particular locations, considering a distance around between 10 and 20% of
the head circumference [10].

Peak value is the maximum value of a time series (TS).

Root mean square is the equivalent voltage of the EEG and it is obtained by
multiplying the peak value by a quarter of a sine wave (sin(45°) or 0.707) [16].

Centroid, also called first moment of area, is the geometric center of a wave [6].

Equivalent width is the wave width from the peak value of a wave [6].

Mean square abscissa is the spreading of wave amplitude on the centroid [6].

3 Materials and Methods

3.1 EEG Dataset

The data used in the experiments of this study compose a public EEG database
available from [2]. The EEG signals of this database were sampled by a 128-
channel amplifier system using an average common reference. These EEG were
sampled considering a rate of 173.61 Hz applying 12-bit analog-to-digital conver-
sion and filtered using band-pass at 0.53-40 Hz (12 dB/oct.). The international
10-20 system electrode placement was used for sampling.
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Fig. 1. Normal EEG segment sample.

In this EEG database there are 100 single channel EEG segments with 23.6 s
duration sampled, from different subjects. Also, these segments were distributed
into five sets and they were selected and removed artifacts, such as eyes move-

ments and muscle activities. Following, the recording conditions of each set are
described:

— A: Healthy volunteers recordings with eyes open;

— B: Healthy volunteers recordings with eyes closed;

— C: Recordings of the hippocampal formation of the opposite hemisphere of
the brain from patients with epilepsy;

— D: Epileptogenic zone recordings from patients with epilepsy;

— E: Seizure activity recordings, which were selected from all recording sites
showing ictal activity from patients with epilepsy.

Figures1 and 2 show a normal (health) EEG and an abnormal (epileptic)
EEG samples, respectively.

Two sets were used in this work, such as set A (normal) and E (abnormal),
according to previous works [3,15]. This way a total of 200 EEG segments were
used.

3.2 Feature Extraction

In this work, the cross-correlation (CC) [3] method was applied to extract fea-
tures in EEG segments in order to represent them in a format suitable for build-
ing classifiers. Feature extraction is an essential task for data representation,
influencing the performance for building models [15].

CC is a mathematical operation that measures the level of similarity between
two signals [22,23] and can be calculated using Eq. 1, where z and y are the
signals, n is the signal length and m is the time shift parameter denoted by
m={-n+1,..,3,2,1,0,1,2,3,...,n — 1}.
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So, the CC method generates a cross-correlogram (CCo) with length 2xn—1,
where the j-th CCo value is the CC obtained using the time shift m = 5 — n.

Figures 3, 4, and 5 show the CCo of two healthy EEG segments, the CCo
of an epileptic and healthy EEG segments, and the CCo of two epileptic EEG
segments, respectively.

From CCo, the following features can be extracted [3]:

— Peak value (PV):

PV = max(CCo) (2)
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For feature extraction based on CCo, initially, an EEG segment is selected
as reference, decreasing by 1 the number of instances. Following, this reference
EEG is used for building CCo with all other EEG segments [15].

3.3 Building of Classification Models

After feature extraction, the k-nearest-neighbors (kKNN) method was used for
classification of EEG segments into two classes (normal or abnormal). This
method classifies each new example through measuring its similarity with exam-
ples previously labeled (training set) by domain experts. For this operation,
distance measures can be used to measure similarity among examples, e.g., the
Euclidean distance. Also, it is important to emphasize that the kNN technique
does not build a classifier (predictive model), i.e., the training set is the classi-
fication model itself. The kNN classifies a new example by majority vote of its
neighborhood, i.e., the most predominant class in its k-neighbors [1,28].

For binary classifiers, which are applied in two classes classification problem,
the k value chosen usually is an odd number in order to avoid ties [12]. In this
work, the kNN was applied for £ = 1, 3, 5, 7, and 9.

The kNN advantages include: easy implementation, fast training, and gener-
alization easy to understand, important characteristic for extracting knowledge
in data outside computational area. Therefore, for the classification using kNN,
its performance varies according to the value k, e.g., a small value is sensible to
noise and a large value, although reducing the noise effect in the classification
allows its neighborhood to include examples belonging to another class, i.e., the
boundaries between classes can be less distinct [7].

3.4 Model Evaluation

The performance of predictive models are evaluated according to their hits in
predicting the class of new examples. The evaluation can be performed by means
of cross-validation (CV) method. This method divides the data examples into
k equal-sized samples (k folds), which the k-th sample consists of the test set
and the k-1 remaining samples compose the training set. Thus, each example of
the test set is classified by the kNN using the training set. Afterwards, in the &
results of the folds, statistical measures can be calculated, such as average error
and standard deviation (SD), to evaluate the classification performance [20]. In
addition, statistical tests can be performed to compare the performance of the
models in order to verify the existence of the statistically significant difference
between them, considering a specific significance level.

Also, the classifiers can be evaluated by means of contingency table (CT)
method, which a table type in matrix format used to measure the relationship
among nominal variables regarding the class, i.e., the CT verifies whether the
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variables belong or do not belong to the same class. For example, the CT vari-
ables could represent the problem of classifying EEG into normal or abnormal
(epileptic) class. Particularly, the following attributes can be calculated from
CT [9]:

— Negative predictive value (NPV): calculates the percentage of instances
without abnormalities in relation to the total of examples that were classified
into normal class;

— Positive predictive value (PPV): measures the percentage of instances
with abnormalities in relation to the total examples that were classified into
abnormal class;

— Specificity: computes the percentage of instances that were not classified
into abnormal class in relation to the total number of examples classified as
normal;

— Sensitivity: estimates the percentage of instances that were classified into
abnormal class related to the total number of examples classified as abnormal.

In this sense, the Java® language and the software development platform
named NetBeans® were used to build a tool for the feature extraction based on
CCo. The WEKA tool [18] was used for performing and evaluating the classifiers
using the kNN algorithm, which classifies examples of the test set by calculating
its similarity with the training set [1]. The software GraphPad Instat© was used
to perform statistical analysis.

4 Results and Discussion

The features based on CCo were used and evaluated in previous works. In [15],
CCo and other features with ML methods such as Support Vector Machines,
Binary Decision Tree and Naive Bayes were used for classification of healthy
and epileptic EEG. In [5], CCo with artificial neural network (ANN) was used
for heart beat categorization. In [23], CCo with ANN and kNN was used for
classification of real high frequency of power transformer windings. In [17], CCo
based on logistic regression algorithm was used for classification of motor imagery
tasks for brain-computer interface. Also, CCo with ML techniques were used in
other related works [11,24,25,27].

In this work, CCo features were extracted from a set of 200 EEG segments.
This set is divided into two sets: 100 normal EEG segments (set A) and 100
abnormal EEG (set E). Posteriorly, the first abnormal (epileptic) EEG of a
set was selected as reference to build CCo for each remaining EEG. The CCo
building method used in this work was implemented in Java using NetBeans.

Subsequently, features based on CCo were extracted, which were used for
application of ML techniques to classify EEG segments using kNN algorithm
with k = 1, 3, 5, 7, and 9 by WEKA tool.

2 http://www.oracle.com/technetwork/java/index.html.
3 https:/ /netbeans.org/.
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Table 1. Results of applying the CV method to evaluate the classification using kNN.

k value | Average error (%) | Standard Deviation (%)
1 7.22 5.07
3 6.67 5.59
5 7.22 6.67
7 5.00 2.50
9 8.89 6.01

Afterwards, the kNN performance was evaluated for each k value, based on
predictive accuracy. This evaluation was performed using the CV and the CT
methods, which were performed by WEKA.

The CV method was performed with data divided into ten partitions (10
folds). After, in these partitions, the average error and the SD measures were
calculated. Table 1 shows the evaluation results obtained by CV.

Based on this table, it was found that the classification using algorithm kNN
with & = 7 presents smaller average error and SD than the classification using
this algorithm with & = 1, 3, 5, and 9. To complement this evaluation, a statis-
tical test was performed for paired data aiming verify the occurrence of a sta-
tistically significant difference. The appropriate test type was selected by using
the p-value normality test in the error values generated by 10-fold CV for each
model. This test found that the classification using kNN with £ = 5 and 7 were
not approved, evidencing that the test to be applied should not be parametric.
Thus, the Friedman test [9], considering the significance level of 5%, was applied,
resulting in the p-value of 0.4172, considered not significant. Accordingly, it was
not possible to observe statistically significant difference for accuracy of the KNN
classification with £ = 1, 3, 5, 7, and 9.

Also, the CT was used to evaluate the classification using kNN. Table 2 shows
the correspondent results.

According to this table, the kNN with & = 7 was the approach that get better
performance for classifying normal EEG, corresponding to 99 signals correctly
classified. The kNN with £ = 1 get better performance for classifying abnormal
EEG corresponding to 90 signals correctly classified.

For complement the evaluation using CT, Table3 presents four precision
measures for each built CT.

Based on the Table 3, the kNN with £ = 1 obtained the highest values for the
parameters NPV and sensitivity, which were measured as 91.18% and 90.91%,
respectively, finding that this approach was more accurate to correctly classify
normal EEG segments and was more likely to rightly categorize abnormal EEG
than other approaches used in this work. The kNN with & = 7 obtained the
highest values for the parameters PPV and specificity, which were measured as
98.88% and 99.00%, respectively, finding that this approach was more accurate
to correctly classify abnormal EEG segments and was more likely to rightly
categorize normal EEG.
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Table 2. CT for the classifier built by the kNN algorithm.

k value | Classification | Normal | Abnormal | Total
1 Normal 93 7 100
Abnormal 9 90 99
Total 102 97 199
3 Normal 96 4 100
Abnormal 10 89 99
Total 106 93 199
5 Normal 97 3 100
Abnormal 13 86 99
Total 110 89 199
7 Normal 99 1 100
Abnormal 11 88 99
Total 110 89 199
9 Normal 96 4 100
Abnormal 14 85 99
Total 110 89 199

Table 3. Measures calculated using the built CT.

k value | NPV (%) | PPV (%) | Specitivity (%) | Sensitivity (%)
1 91.18 92.78 93.00 90.91
3 90.57 95.70 96.00 89.90
5 88.18 96.63 97.00 86.87
7 90.00 98.88 99.00 88.89
9 87.27 95.51 96.00 85.86

5 Conclusion

In this work, an approach for extracting features based on CCo in EEG segments
and for classification these signals using ML techniques was presented. The CCo
method was implemented in Java language. The feature extraction was applied
in a set with 200 EEG segments. This set consists of 100 normal EEG and 100
abnormal (epileptic) segments. For building CCo, an abnormal EEG segment
was selected as reference.

Posteriorly, the kNN algorithm with £ = 1, 3, 5, 7, and 9, aided by the
WEKA tool, was applied for classification of the EEG segments into normal or
abnormal class. Afterwards, the results were evaluated according to their hits in
predicting the class of the examples.

For performance evaluation of the models, the CV and CT methods by means
of WEKA were used. In the evaluation using CV method, the kNN with k£ = 7
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reaches lower average error and SD than others k£ values used in the algorithm.
To complement the CV results, the Friedman test was applied in order to verify
the existence of the statistically significant difference. The application of this test
did not find statistic difference among kNN classification for all k& value used in
this work.

The performance evaluation of the models using CT found that the kNN
with k£ = 1 obtained better performance for classifying abnormal EEG and it
was more likely to rightly categorize normal EEG. The kNN with k¥ = 7 obtained
better performance for classifying normal EEG and it was more likely to rightly
categorize abnormal EEG.

6 Future Research

For future works, we include the following activities: performing feature extrac-
tion by CCo using other EEG databases, studying and implementing other fea-
ture extraction methods to expand the EEG representation; applying the CCo
for studying of real EEG related to epilepsy and other diseases diagnosed using
this examination, building predictive models using others ML techniques and
more classes, and using CCo method in EEG processing for automatic genera-
tion of medical reports.

Thereby, with these studies, we expect a greater capacity for prediction of
epileptic seizure and other neurological illness, the building of more accurate and
representative classifiers, a greater support in the diagnosis of brain diseases, the
development of a technique to select EEG segment reference for application of the
CC method, the implementation of a tool for filling in medical textual reports
automatically, and the support in the decision making processes by medical
professionals.
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Abstract. Biosignals have become an important indicator not only for
medical diagnosis and subsequent therapy, but also passive health mon-
itoring. Extracting meaningful features from biosignals can help peo-
ple understand the human functional state, so that upcoming harm-
ful symptoms or diseases can be alleviated or avoided. There are two
main approaches commonly used to derive useful features from biosig-
nals, which are hand-engineering and deep learning. The majority of
the research in this field focuses on hand-engineering features, which
require domain-specific experts to design algorithms to extract mean-
ingful features. In the last years, several studies have employed deep
learning to automatically learn features from raw biosignals to make
feature extraction algorithms less dependent on humans. These studies
have also demonstrated promising results in a variety of biosignal appli-
cations. In this survey, we review different types of biosignals and the
main approaches to extract features from the signal in the context of
biomedical applications. We also discuss challenges and limitations of
the existing approaches, and possible future research.

Keywords: Feature extraction - Deep learning - Biosignals - Analytical
systems

1 Introduction

Biosignals have become an important indicator for medical diagnosis, subsequent
therapy and passive health monitoring. They contain information about physio-
logical phenomena which reflect human health and wellbeing [1]. They have been
widely used to a variety of applications such as epileptic seizure prediction, sleep
stage scoring, affective computing and arrhythmia detection. Recent advances
in wearable technology have paved a way to remotely and continuously monitor,
record and analyze individuals health status such as number of steps, heart rates,
brain signals [2], and glucose level [3]. Tools for analyzing biosignals are vital
to understand physiological status of each individual, so that appropriate treat-
ments can be provided in a timely manner. One of the most important research
area in biosignals is to develop algorithms to extract features from biosignals
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that can efficiently and compactly represent information relevant to particu-
lar problems. There are two main approaches to derive representative features
from biosignals: hand-engineering and deep learning. Hand-engineering feature
utilizes ingenuity and expert knowledge to implement algorithms to derive rep-
resentative features from data. Deep learning, on the other hand, is an approach
that utilizes multiple layers of linear and/or non-linear functions to learn useful
features from data. In this survey we review feature extraction algorithms devel-
oped to transform biosignals into more meaningful features, and the applications
to which they have been applied. This survey is useful for those who have basic
or advanced knowledge in machine learning, and would like to learn more about
different types of biosignals and the algorithms to extract meaningful features
from them in order to build analytical tools. The paper is organized as follows:
different types of biosignals and the common analytical pipeline will be discussed
in Sect. 3. Two main approaches of feature extraction algorithms are explained
in Sect. 4. Section 5 demonstrates how these algorithms are applied to different
biosignal applications. Challenges and limitations of the existing feature extrac-
tion algorithms are discussed in Sect. 6. Finally, possible future research avenues
are provided in Sect. 7.

2 Glossary and Key Terms

Biosignals: any signals that can be continually measured/monitored in living
organisms.

Hand-engineering Feature: an approach that utilizes ingenuity and expert knowl-
edge to implement algorithms to derive representative features from input data.

Deep Learning: a branch of machine learning that utilizes multi-layer of linear
and/or non-linear processing units to learn multi-level of representations that
facilitate the subsequent machine learning [4].

Epileptic Seizure: a brief episode of a sign and/or symptom due to abnormal
excessive or synchronous neural activity in the brain [5].

Affective Computing: study and development of systems and devices that can
assign computers the human-like capabilities of observation, interpretation and
generation of affect features [6].

Arrhythmia: a group of conditions in which the heart rhythm or heart rate is
irregular.

3 Biosignals

Biosignals refer to any signals that can be continually measured and monitored
from living organisms. They can be categorized into two groups: bioelectrical
and non-bioelectrical. In this section, we will discuss examples of bioelectrical
and non-bioelectrical signals. Then we will describe the common pipeline of
analytical systems for these signals.
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3.1 Electrical Biosignals

Bioelectrical signals reflect electrical activity, provoked by electrically active tis-
sue such as nerves and muscles as the result of the changes in the electric currents
generated by the sum of electrical potential differences across the tissues. The
most commonly used signals include electroencephalogram, electrocardiogram,
electromyogram, electrooculogram and electrodermal activity. Table 1 summa-
rizes these signals and examples of their biomedical applications.

Electroencephalogram (EEG) measures and records the electrical activity
in the brain. The EEG signals are collected by electrodes which are small, flat
metal discs attached on the scalp in certain positions identified by the recordist.
The signals reflect voltage fluctuations resulting from ionic current within the
neurons in the brain. The amplitudes of EEG signals recorded by electrodes are
in the range of microvolts; the main frequencies of interest up to approximately
30 Hz. Based on frequency, EEG waveforms can be broken down into 4 rhythms:
3 wave (>13Hz), o wave (8-13 Hz), § wave (4-8 Hz) and § wave (<4 Hz). One
of the major applications of EEG is diagnosing epilepsy, a condition that causes
repeated seizures which can be observed by abnormal patterns in EEG recording
(details in Sect.5). EEG can also be used to investigate other conditions that
may affect brain function such as sleep disorders, dementia and brain injuries.

Electrocardiogram (ECGQG) is a type of biosignals that records the electrical
activities of the heart. Electrical changes on the skin that arise from the heart
muscle depolarising during each heartbeat are detected by electrodes attached
to the body surface. A single beat of an ECG signal consists of three main
components: the P wave, QRS complex and the T wave. Variations of these
components are associated with different heart characteristics and conditions.
Features such as relative positions, magnitudes and shapes of the waves, as well
as other derived features such as PR interval, PR segment, QT interval and ST
segment, are commonly used by cardiologists while making a diagnosis or inves-
tigation. ECG has been used to provide valuable insights into the prevention,
diagnosis and treatment of cardiac diseases such as arrhythmia.

Electromyogram (EMG) records the electrical activity produced by muscles.
It detects the electrical signals generated by muscle cells when these cells are
electrically or neurologically activated. There are two kinds of EMG: surface
EMG (sEMG), which measures muscle activity from the surface above the mus-
cle on the skin; and intramuscular EMG, which normally uses electrodes (e.g.,
needle electrodes) inserted through the skin into a muscle to record electrical
signals. EMG can be used to identify neuromuscular diseases including muscular
dystrophy, inflammatory myopathy, myasthenia gravis, and others. It can be also
used to study biofeedback, functional anatomy of muscles, firing characteristics
of motor units and excitability of motor neurons [7].

Electrooculogram (EOG) is used to measure the electrical potential differ-
ence between the front (positive pole formed by cornea) and back (negative
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Table 1. Different types of bioelectrical signals and application examples.

Biosignal Tissue/Organ | Applications

Electroencephalogram (EEG) | Brain Seizures detection, sleep analysis
Electrocardiogram (ECG) Heart Arrhythmia detection

Electromyogram (EMG) Muscles Neuromuscular disease detection
Electrooculogram (EOG) Eye Ophthalmological diagnosis, eye tracking
Electrodermal activity (EDA) | Skin Stress monitoring, lie detector

pole formed by retina) of the eye. The signals are detected by electrodes placed
around the eyes, normally in a range of 5-6 millivolts. EOG is important in the
diagnosis of eye diseases such as vitelliform macular dystrophy. Since EOG can
detect eye movement and blinks, it is also commonly used in human—computer
interaction research.

Electrodermal Activity (EDA) refers to the autonomic changes in the elec-
trical properties of the skin. The skin conductance, which can be non-invasively
measured by applying a low constant voltage, is one of the most widely studied
electrodermal components [8]. EDA indicates the changes in autonomic sympa-
thetic arousal that are integrated with emotional and cognitive states [9], there-
fore becomes a common measure of autonomic nervous system activity. EDA has
been used in beiofeedback therapy devices for stress monitoring and polygraph
devices for lie detecting.

3.2 Non-electrical Biosignals

Biosignals can also be non-electrical, including acoustic signals (e.g., phono-
cardiogram, respiration), mechanical signals (e.g., mechanomyogram), magnetic
signals (e.g., magnetocardiogram), optic signals (e.g., photoplethysmogram) and
chemical signals (e.g., partial pressures of oxygen). Measurements such as heart
rate and blood pressure, multi-dimensional signals such as video, events such as
eye blinking and mouse clicking, can also be considered as non-electrical biosig-
nals and they have been applied to several areas such as affective computing
(details will be discussed in Sect. 5.3).

3.3 Common Pipeline of Biosignal Analytical Systems

The common pipeline of analytical systems for biosignals consists of four stages:
pre-processing, feature extraction, feature selection (or dimension reduction),
and model construction. Firstly, biosignals are pre-processed to ensure that only
quality signals can pass to the next stages. This can include removing irrelevant
artifacts from signals, correcting inaccurate signals, normalizing signals into a
desired range of values, and using a filter to exclude unwanted components. Sec-
ondly, features that are meaningful to a certain problem are extracted or derived
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from the pre-processed signals. The algorithms to extract these features are typ-
ically hand-engineered by human experts who know which features are useful for
particular problems. Recently, there have been an increasing number of research
employing deep learning to automate the hand-engineering process. Deep learn-
ing, which consists of multiple layers of linear and/or non-linear processing
units, is capable of deriving meaningful representations (or features) from high-
dimensional input data. Thirdly, it is helpful in some problems to select a subset
of extracted features before using machine learning to construct models (i.e.,
the forth stage). This is because it can speed up the model construction, and
can improve the generalization of the constructed models to prevent overfitting.
Finally, machine learning algorithms are employed to train and construct mod-
els that understand relationships between input (i.e., extracted features) and
their desired output (i.e., labels), and generalize observed data to new situa-
tions. Depending on the domain for which these models are trained, they are
then employed to predict harmful symptoms or classifying diseases.

4 Feature Extraction

4.1 Hand-Engineering Feature

Hand-engineering feature is an approach that utilizes ingenuity and expert
knowledge of human being to implement algorithms to derive representative fea-
tures from data. Generally people tend to employ this approach to build models
for a variety of biosignals applications such as classifying diseases and predicting
harmful symptoms. This is because it can reduce the amount of data used to
build models for such as classifying diseases and predicting harmful symptoms,
and the values of extracted features can be easily interpreted as the algorithm
details steps to transform from data into features.

Fourier and Wavelet Transforms is a typical tool to extract frequency
domain features from time series data. A Fourier transform (DFT) converts
a signal into its counterpart in frequency domain, and Fast Fourier transform
(FFT) rapidly computes such transformations by factorizing the DFT matrix
into a product of sparse factors, including frequency data [10], including magni-
tude, amplitude, phase, power density, and other computation results. The power
density estimation can be made by three different methods: mean squared ampli-
tude (MSA), sum squared amplitude (SSA) and time-integral squared amplitude
(TISA). These results could be used as features for prediction or classification
(e.g. in EEG [11]).

Another popular time-frequency-transformation for feature extraction comes
from wavelet transform. Wavelet transform is designed to address the problem of
nonstationary signals. It involves representing a time function in terms of simple,
fixed building blocks, termed wavelets. A wavelet series is a representation of a
square-integrable (real- or complex-valued) function by a certain orthonormal
series generated by a wavelet. They could be treated as features for biosignals
such as EEG [12-14]. The WT can be categorized into continuous and discrete.
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However, calculating wavelet coefficients for every possible scale can represent
a considerable effort and result in a vast amount of data. Therefore, discrete
wavelet transform (DWT) is often used.

Principal Component Analysis (PCA) is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of possibly corre-
lated variables into a set of values of linearly uncorrelated variables called princi-
pal components. The number of principal components is less than or equal to the
number of original variables. This transformation is defined in such a way that
the first principal component has the largest possible variance (that is, accounts
for as much of the variability in the data as possible), and each succeeding com-
ponent in turn has the highest variance possible under the constraint that it
is orthogonal to the preceding components. The resulting vectors are an uncor-
related orthogonal basis set. The principal components are orthogonal because
they are the eigenvectors of the covariance matrix, which is symmetric. PCA is
sensitive to the relative scaling of the original variables.

4.2 Deep Learning Approach

Deep learning is a branch of machine learning that utilizes multi-layer of linear
and/or non-linear processing units to learn multi-level of representations that
facilitate the subsequent machine learning [4]. There are many types of deep
learning designed to model different types of data. In this section we will describe
only three examples of the most commonly used deep learning algorithms in
biosignal applications: stacked autoencoder, convolutional neural network and
recurrent neural network.

Stacked Autoencoder (SAE) is a neural network consisting of multiple lay-
ers of autoencoders in which the outputs of each layer is fed to the input of the
next layer [15]. An autoencoder is a neural network consisting of only one hidden
layer. It is an unsupervised learning algorithm capable of extracting good fea-
ture representations from a plenty of unlabeled data. By setting the target value
of the autoencoder to be equal to the input, the autoencoder tries to learn a
feature representation that can be used to reconstruct the input. Stacking these
autoencoders, therefore, enables the network to learn useful feature representa-
tions from EEG data, as the subsequent layers can utilize the features learned
from the previous layers to produce even more useful features.

Convolutional Neural Network (CNN) is a neural network consisting of
convolutional and pooling layers [16]. Each convolutional layer contains a set of
neurons that connect to only a local region or a patch of the input (e.g., a time
window in biosignals) in order to detect different patterns. Each neuron contain
a number of trainable parameters, or a filter, which are used to convolve each
patch location to assess the similarity to the pattern encoded on the parameters.
The output generated from all patch locations assemble what is called a feature
map. Each pooling layer aggregates consecutive values of the feature maps (such



Survey on Feature Extraction and Applications of Biosignals 167

as maximum and mean) resulting from the previous convolutional layer. By
properly alternating convolutional and pooling layers, the network can be trained
to learn time-invariant local feature detectors from high-dimensional input such
as images and biosignals.

Recurrent Neural Network (RNN) is a neural network for handling sequen-
tial data. This network maintains what is called a memory (or a hidden state)
to learn temporal dependencies between input and output sequences. Depending
on the arrangement of the network, it is able to map one input to sequences of
output (e.g., image captioning takes an image and outputs a sentence of words),
sequences of input to one output (e.g. sentiment analysis where a given sentence
is classified as expressing positive or negative sentiment), or input sequences
to output sequences (e.g., epileptic seizure prediction where each signal win-
dow is classified as preictal or non-preictal). There are many types of RNNs in
which update and maintain memory in different ways such as Elman RNN [17],
Discrete-time Recurrent Multilayer Perceptrons [18] and Long Short-Term
Memory (LSTM) [19].

5 Biosignal Applications

5.1 Epileptic Seizure Detection and Prediction

Almost 60 million people around the world suffer from epilepsy [20]. It is a neuro-
logical disorder associated with transient, recurrent and unpredictable epileptic
seizures, which are periods of abnormal neural activity in the brain [5]. These
seizures can be diagnosed and detected by long-term monitoring of electroen-
cephalograms (EEGs). Thus a system capable of automatically detecting epilep-
tic seizures in real-time can help neurologists to properly provide treatments for
patients.

In seizure detection problem, a number of algorithms have been proposed to
extract features from EEGs that can be used to differentiate between ictal and
non-ictal states. Fourier transforms have been used to extract features from win-
dowed EEG data such as power spectral density [21,22] and spectral structures
that were organized to maintain spatial and temporal information [23]. Later
wavelet transform has become more popular compared to the Fourier trans-
forms. Some researchers compared seizure detection performance between these
two transforms, and the results showed that the wavelet transforms were bet-
ter [24,25]. Wavelet transform have been employed to decompose EEG data into
frequency bands in order to derive discriminative features such as relative average
amplitude, relative scaled energy, relative power, relative derivative and coeffi-
cient of variation of amplitude [26,27]; correlation dimension (CD) and largest
Lyapunov exponents (LLE) [28-31]; combined seizure index (CSI) [32]; energy,
entropy, mean, minimum, maximum and standard deviation [33,34].

Although a system capable of rapidly and accurately detect epileptic seizures
is necessary, a more advanced system capable of predict seizures’ onsets prior to
their presentation would provide even greater benefits. For instance, it might be
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able to prevent impending seizures through certain therapies, and, therefore, be
able to avoid accidents and limit injury [35].

Similar to the detection problem, the seizure prediction is a binary classi-
fication problem between preictal and non-preictal states. Depending on the
starting time of seizure symptoms, the preictal state can be a period of several
seconds up to several hours before the seizure, and this preictal period varies
across differernt patients [36-40].

A majority of existing seizure prediction research concentrates on deriving
features from EEG signals. These features can be group into two categories:
univariate and multivariate features. The univariate features are extracted from
each EEG electrode signal independently such as Lyapunov exponent [41], spec-
tral power [42], wavelet energy and entropy [43], spike rate [44], and repeating
EEG patterns [45]. The multivariate features, on the other hand, are derived
from pairs or multiple EEG signals in order to represent the relationships (e.g.,
correlation and synchronizations) among these signals such as phase synchro-
nization [46], and relative spectral power [40]. Several studies have shown that
multivariate features demonstrated more promising performance than univariate
features [47-49].

Apart from EEG signals, features extracted from ECG signals have also been
investigated. Heart rate analysis conducted on ECG signal has been considered
as a primary predictor. Ictal tachycardia has been found in some patients of
tonic-clonic epilepsy [50], temporal and frontal lobe epilepsies [51,52]. Moreover,
tachycardia has also been observed to precede the seizure in some patients with
temporal lobe epilepsy [53,54], which has the potential to be used for seizure
prediction. Among them, good results have been demonstrated on newborns as
the signs of their seizures are more subtle [55,56]. However, for elders, due to
complex changes in the ECG occur in physiological and pathological conditions,
the ECG-based detection/prediction process is more complicated.

Instead of relying solely on one particular types of biosignals, several studies
have introduced approaches that utilizes features extracted from both EEG and
ECG signals to improve accuracy and reduce false alarms for seizure detection
and prediction. In seizure prediction, Teixeira et al. [57] introduced a software
package for supporting studies in epileptic seizure prediction including, which
includes feature extraction algorithms for EEG and ECG, and data visualiza-
tion tools. Valderrama et al. [58] extracted a large number of time-frequency
domain features from EEG and ECG for seizure prediction as they believed that
these high-dimensional features could help reduce false alarms. Phomsiricharoen-
phant et al. [59] showed a preliminary results from testing on three events of
seizures that the instantaneous frequency of the first mode of Empirical Mode
Decomposition (EMD) of EEG was significant dropped down simultaneously
with R-R internal variation (inverse of heart beat rate) around 130s before
seizure. Piper et al. [60] investigated the synchronization level between heart
rate variability and EEG activity during preictal state finding that the syn-
chronization is more significant in the group of right hemispheric temporal lobe
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epilepsy. Also Greene et al. [61] demonstrated the potential of EEG and ECG
to complement each other for providing more accurate seizure detection.

There have been several attempts to apply deep learning to implement seizure
detection/prediction algorithms that are less dependent on humans. In seizure
detection, Guler et al. [62] applied Elman RNNs to classify three types of EEG:
healthy, seizure free epileptogenic zone, and epileptic seizure segments. The
Elman RNNs employing Lyapunov exponents were trained with LevenbergMar-
quardt algorithm on EEG. The results demonstrated that the proposed RNNs
can be useful in discriminating EEG. Supratak et al. [63] investigated the pos-
sibility of applying SAEs to learn features from raw EEG data. The SAEs was
trained with a two-step training including: the greedy layer-wise pretraining [64],
and the global fine-tuning to differentiate between ictal and nonictal states. The
preliminary results showed that SAEs have potentials to extract features from
raw EEG data for seizure detection. In seizure prediction, Petrosian et al. [65]
made the first attempt to use discrete-time recurrent multilayer perceptrons,
one type of RNNs, to predict the onset of epileptic seizures both on scalp
and intracranial EEGs. They trained RNNs with raw EEG and its wavelet-
decomposed subbands, in contrast to hand-crafted features from EEG, using
decoupled extended Kalman filter (DEKF) algorithm. The results showed that
it is quite feasible that a preictal period of several minutes preceding seizure
existed. Mirowski et al. [66] employed CNNs to learn relevant subsets of fea-
tures. They first extracted four kinds of EEG synchronization features: maxi-
mum cross-correlation, nonlinear interdependence, dynamical entrainment and
phase synchronization. These features were aggregated to form high-dimensional
features, called patterns, which were then used to train CNNs to discriminate
preictal from interictal patterns. The results demonstrated that CNNs trained
with spatio-temporal patterns of EEG synchronization provided the best seizure
prediction performance.

5.2 Sleep Stage Scoring

Sleep is an important biological phenomenon. People spend approximately one-
third of their life sleeping. The quality of sleep has a significant impact on peo-
ple’s health. Sleep apnea, insomnia and narcolepsy are common diseases, and
about 33% of the world population suffers from insomnia [67]. Thus being able
to monitor how well people sleep is essential for both medical research and prac-
tice, and could improve the quality of people’s life.

EEG signals have been used for monitoring the quantity of sleep and scor-
ing sleep stages. There are two standards for manual sleep stage scoring from
EEG [68,69], and American Academy of Sleep Medicine (AASM) is the most
commonly used one [69]. AASM classifies sleep into five stages: wake stage (W),
rapid eye movement stage (R), and three stages of non-rapid eye movement (N1,
N2 and N3).

Features extracted from sleep EEG can be divided into time-domain and
frequency-domain. The reading eye movement, rapid eye movement, slow eye
movement, eye blinks and major body movement, k complex, vertex shape waves,
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sawtooth waves, transient muscle activity from EEG can be considered as time
precision features [70-72], which mainly consists of statistical measures of the
time series. The frequency features, such as alpha rhythm, low amplitude mixed
frequency activity, sleep spindle, slow wave activity, low chin EMG tone, can be
extracted by using Morlet wavelets and Fourier transform [73-75]. Apart from
these time-domain and frequency-domain features, several studies have proposed
other features that can also be used to differentiate sleep stages such as multi-
scale entropy [76], spectral entropy [75] and renyi’s entropy [73], power-power
correlation and autocorrelation [74].

Apart from EEG signal, features extracted from ECG signals have also been
investigated [77,78]. For example, the inter-beat interval contains features of
heart rate variability (HRV), low frequency (LF, 0.04-0.15Hz) and high fre-
quency (HF, 0.15-0.4Hz) of HRV are associated with stage R, N1, N2 and N3.
Some nonlinear measures, such as detrended fluctuation analysis (DFA) [79] and
fractal component [80], can also be used to classify sleep stages.

Recently, people start to apply deep learning to extract features instead of
hand-crafted features [74,81]. This is partly attributed to the tendency of using
home-care single channel EEG [82] for sleep stage scoring [73,76,83], which cap-
tures less information compared with multi-channel EEG device. Also, sleep
stages are scored according to consistent features, but some of the features are
not consistent. For instance, about 10% of people did not have alpha activity
during walk stage, and another 10% of people had less alpha activity compared
with the others (80%) [69]. This introduces what is called variant problem. Deep
learning might therefore be a better option to model data with complex struc-
tures and variant problem [84].

Deep belief nets (DBNs) [81] was applied to sleep data in order to eliminate
the use of hand-crafted features, and it gave a better accuracy compared to
fine-turn hand-craft features. Orestis et al. [74] also employed stacked spare
autoencoders to reduce the number of features. The results showed a promising
performance.

5.3 Affective Computing

Emotion detection and modelling is the core of affective computing [85-87].
Various methods have been proposed to extract features from sensor signals as
computational predictors of affect. These features are then used to classify the
emotion states in emotion space (e.g. affective dimensions of valence and arousal
[88,89], which suggests that emotion is fundamentally organized by these two
parameters).

Temporal (and mostly physiological) signals such as skin conductance, heart
rate, blood pressure, respiration, pupillary dilation, EEG, speech, and muscle
action potentials can provide information regarding the intensity and quality
of an individuals internal affect experience. Simple statistical features can be
extracted from the average or standard deviation on the time or frequency
domains of the raw or normalized signals [90,91]. There are also more com-
plex extractors, e.g. extractors with Legendre and Krawtchouk polynomials [92]
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and approximate entropy [93,94] using the parameters of linear, quadratic and
exponential regression models fitted to a heart rate signal. Some works detected
the emotion from speech [91,95], with acoustic features (prosody features, e.g.
pitch variables) [96] or speaking rate [97].

Another type of signals comes from events such as user clicking a mouse but-
ton, blinking of eyes, etc. Lesh et al. [98] proposed a method called “frequent
sequence mining”, which finds frequent patterns across different discrete modal-
ities, namely gameplay events and discrete physiological events. The count of
each pattern was then used as an input feature to an affect detector. The effects
of affect on motor-behavior [99] extracted from log-files of mouse and keyboard
actions can be used to analyze correlations with affective state. Some other works
utilized the mouse clicking and movement as features [100,101].

Multi-dimensional signals [102] such as video were also used for extract-
ing features, through facial expression recognition and gesture recognition [103],
where a series of relevant points of the face or body are first detected (e.g., right
mouth corner and right elbow) and tracked along frames, then the tracked points
are aggregated into discrete or continuous features, such as action units [104]
and body contraction index [105]. For gestures recognition, apparentness meth-
ods [106] extract apparent features of hand gestures from 2-D images, which
3-D modeling methods [107] extract features by tracking in real 3D environ-
ment. Compared to 3-D methods, the apparentness methods are less compli-
cated, and easier to be used in real-time computation, however more efforts
should be done to adapt the method into high noise background and the real
application. Adopting mixed modeling methods and describing the features of
static hand gesture with multiple features (such as local profile features and over-
all image matrix features) can achieve higher and more robust tracking results
[108]. Kapur et al. [109] utilized full body skeletal movements captured using
video-based sensor, which included 14 markers, each represented as a point in
3D space (v = [z,y, 2], where z, y, z are the Cartesian coordinates of the markers
position. For each point the velocity (first derivative of position) dv/dt and accel-
eration (second derivative) d?v/dt? were calculated). During the data collection
for gestures recognition, auxiliary equipments such as electromagnetic inductors
[110] and optical reflection signs [111] are typically used. For facial expression
recognition, parameterized structure of the chief parts of humans face [112],
facial action coding system [104], and some other methods [113-115] were used
for feature extraction. There were also some multimodal systems, using variety
of microphones, video cameras as well as other sensors to enlighten the machine
with richer signals from the human [116-118].

Methods of dimensionality reduction on these features include PCA, sequen-
tial forward [119], sequential floating forward [120], sequential backwards [121],
N-best individuals & perceptron [122], and genetic feature selection [123].

Some recent works tried to achieve automatic feature extraction with deep
networks. Stuhlsatz et al. [124] used deep networks for discriminative feature
extraction from arbitrary distributed raw data, with Generalized Discriminant
Analysis [125]. For each considered emotion recognition task, acoustic feature
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vectors of 6552 dimensions were extracted using the openEAR toolkit as 39 func-
tionals of 56 acoustic Low-Level Descriptors (LLDs) including first and second
order delta regression coefficients. In deep network methodologies, information
relevant for prediction can be extracted more effectively using dimensionality
reduction methods directly on the raw physiological signals than on a set of
designer-selected extracted features [126]. Another good property of deep net-
works is that it can handle both discrete and continuous signals; a lossless trans-
formation can convert a discrete signal into a binary continuous signal, which
can potentially be fed into a deep network. Neural networks and Deep networks,
including CNN, can also be used for object recognition in images and thus be
utilized for feature extraction in multi-dimensional signals. Some existing works
include [127-129].

5.4 Arrhythmia Detection

Arrhythmia detection is one of the major biomedical applications of ECG [130].
Arrhythmia is a group of conditions in which the heart rhythm or heart rate
is irregular. There are various types of arrhythmias, including supraventricular
tachycardia, atrial fibrillation, ventricular tachycardia, ventricular fibrillation,
heart block and sick sinus syndrome, each type is considered to be associated
with a patten. Irregular heartbeats produce different morphology or wave fre-
quency compared with normal heartbeats, and such alterations can be identi-
fied by ECG signals. Different approaches have been proposed for extracting
meaningful features from ECG signals and constructing models for arrhythmia
detection. Li et al. [131] introduced an algorithm based on WT to detect QRS
complex of ECG signals. Bachler et al. [132] developed an algorithm suitable
for online real time and offline ECG analysis. In this approach, a set of wavelet
coefficients were extracted from the ECG signal using WT, and used to distin-
guish ECG waves from noise, artefacts and baseline drift. WT-based approaches
were proved to be powerful for ECG feature extraction [131,133,134] and sub-
sequently, a number of methods that combine feature extraction using WT and
classification using machine learning algorithms such as SVM [135,136] and prob-
abilistic neural network (PNN) [137] have been proposed in different studies for
rhythm classification and arrhythmia detection. Feature extraction methods such
as Linear discriminant analysis (LDA) [138], PCA [139], and independent com-
ponent analysis (ICA) [140] are also been applied to ECG signals to extract
features from various waveform properties. Recently, deep learning approaches
have been applied to automated learn and identify features from ECG signals for
arrhythmia detection. For example, Kiranyaz et al. proposed a patient-specific
ECG classification and monitoring system based on adaptive 1D convolutional
neural networks (CNNs) [141]. In another study, Yang et al. used a SAE to
extract feature vector from normalised ECG data, and then used a softmax
regression model as a classifier to differentiate premature ventricular contrac-
tion (PVC) beats and non-PVC beats [142]. Restricted Boltzmann machine was
used by Yan et al. to learn features from ECG data and build a deep belief
network for ECG classification [143].
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6 Open Problems

Most of the hand-engineering algorithms are designed specifically to extract
useful features from biosignals for particular applications. Even though these
algorithms have demonstrated promising results in a number of applications,
designing algorithms to extract features that generalize past experience well to
new situation is, however, still an active research problem. This might be due to
the fact that most of these approaches rely on assumptions or past experiences
observed from a limited set of data. Also most of these algorithms always extract
the same set of features which may not be optimal, as for each patient the fea-
tures that can best represent the characteristics of the underlying problem may
be different. Therefore, these hand-engineering algorithms might not perform
well when applied to new patients. Recent studies have started to apply deep
learning to learn representative features from biosignals. They believe that deep
learning might be able to learn more meaningful features that are not covered
by hand-engineered features [126]. Although these deep learning approaches are
able to achieve relatively good performance compared to the hand-engineering
ones, the process to training deep learning algorithms is, however, computa-
tional expensive. This makes it difficult to frequently incorporate new data into
the trained model. Moreover, in the domain of biosignals, it is also difficult to
interpret and understand the features learned by deep learning, which is different
from other domains such as computer vision.

7 Future Research

Very important is to implement algorithms that integrate knowledge from more
than one types of biosignals to enhance the performance of analytical systems.
Recent advances in wearable technology have paved a way to remotely and con-
tinuously monitor and record multiple types of biosignals from millions of peo-
ple around the world. Even though the quality of the signals might not be as
good as the ones recorded from hospitals or research labs, this allows us to
have access to continuous data that might capture interesting information that
could be analyzed to improve the quality of the treatments in a variety of the
diseases and generate alarms when abnormal patterns are detected. Another
future research area could be to develop algorithms that combine features from
both hand-engineering and deep learning approaches. As deep learning is a data-
driven approach, it might be able to learn features that are complement to the
hand-crafted ones, so that the performance of analytical systems are improved.
By investigating features learned by deep learning, we may have a better under-
standing of the characteristics of many diseases. One problem with this approach
is that such automatic approaches need many training sets, in health informat-
ics we are often confronted with a small number of data sets or rare events,
where automatic algorithms suffer of insufficient training samples, here interac-
tive machine learning with a “doctor-in-the-loop” [145] may be of help.
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Abstract. Modern machine Learning is devoted to the construction
of algorithms and computational procedures that can automatically
improve with experience and learn from data. Defeasible argumentation
has emerged as sub-topic of artificial intelligence aimed at formalising
common-sense qualitative reasoning. The former is an inductive approach
for inference while the latter is deductive, each one having advantages
and limitations. A great challenge for theoretical and applied research in
AT is their integration. The first aim of this chapter is to provide readers
informally with the basic notions of defeasible and non-monotonic reason-
ing. It then describes argumentation theory, a paradigm for implementing
defeasible reasoning in practice as well as the common multi-layer schema
upon which argument-based systems are usually built. The second aim
is to describe a selection of argument-based applications in the medical
and health-care sectors, informed by the multi-layer schema. A summary
of the features that emerge from the applications under review is aimed
at showing why defeasible argumentation is attractive for knowledge-
representation, conflict resolution and inference under uncertainty. Open
problems and challenges in the field of argumentation are subsequently
described followed by a future outlook in which three points of integra-
tion with machine learning are proposed.

Keywords: Defeasible reasoning - Argumentation - Conflict resolution -
Knowledge-representation - Interactive machine learning - Medicine

1 Introduction

The fast-growing field of Machine Learning (ML) is devoted to the construction
of algorithms and computational procedures that can automatically improve
with experience and learn from data. Although ML is increasing in popularity
with a plethora of applications in several fields, and it has proved to be useful
in the identification and extraction of meaningful patterns of data and rules,
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it is often based upon algorithms that implement quantitative manipulation
of training data. These algorithms are frequently used as ‘black-boxes’ and the
inference process that lead to the quantitative output is neglected. In the last two
decades, Defeasible Reasoning (DR) has emerged as sub-topic of artificial intelli-
gence (Al) aimed at formalising common-sense qualitative reasoning. This type
of reasoning is often performed in contexts characterised by high uncertainty,
such as medicine and health care, where available information is usually frag-
mented, partial, conflicting, noisy and multi-dimensional. Defeasible reasoning
can be combined to machine learning inference techniques and a great challenge
for theoretical and applied research in Al is their integration. This challenge
is highly connected to the notion of interactive Machine Learning (iML) [1,2]
being proposed in this book. In particular, as Fig. 1 depicts, on one hand machine
learning might support defeasible reasoning by providing it with quantitative evi-
dence for enhancing reasoning processes. On the other hand, defeasible reason-
ing might contribute to extend and enhance the inferential mechanisms behind
machine learning techniques with more qualitative and transparent reasoning
and by incorporating intelligence and argumentative capacity. The integration
of these two subfields of Al is likely to impact and contribute to design and
develop intelligence agents with greater knowledge extraction, predictive power
as well as argumentative and reasoning capabilities [3]. Machine learning is a
more mature branch of research within artificial intelligence than formal defeasi-
ble reasoning. Therefore the main focus of this chapter is on the latter paradigm
with emphasis on argumentation theory and argument-based systems, the com-
putational approaches to implement defeasible reasoning in practice. The rest of
this document is organised as it follows. Firstly, a glossary describes the core def-
initions and terms of this desk research. Argumentation theory is subsequently
introduced with an emphasis on its role in defeasible reasoning. This is com-
plemented by a detailed description of the multi-layered pattern upon which
argument-based systems are usually built. An overview of practical applications
of argumentation in clinical domains is then presented followed by a description
of the main features and advantages of defeasible reasoning and argumentation
theory in decision-making and knowledge representation. Open problems and
challenges in applied research are then discussed and a summary concludes this
chapter with a future outlook for argumentation and its integration with machine
learning.

supports

Machine learning‘ ’Defeasible reasoning

extends

Fig. 1. Interaction of argumentation and machine learning
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2 Glossary and Key Terms

Machine learning (ML): subfield of computer science devoted to the design of
computational procedures able to learn from and perform prediction of data.

Default knowledge: kn owledge routinely employed by humans in a reasoning
process even if the preconditions for its application are only partially known.

Defaults: specific inference rules employed in default knowledge.

Monotonicity: property of a reasoning process in which conclusions are not
affected by new pieces of evidence and, as a consequence, the set of available
conclusions monotonically increases.

Non-monotonicity: property of a reasoning process in which conclusions can be
retracted in the light of new pieces of evidence, and as a consequence, the set of
available conclusions can decrease in cardinality.

Defeasible reasoning(DR): a type of reasoning with the non-monotonicity prop-
erty based upon reasons that are defeasible. This reasoning does not produce a
complete and final demonstration of a claim, instead it acknowledges corrigibility
and fallibility of a conclusion.

Argumentation theory (AT): a multidisciplinary area of artificial intelligence that
provides state-of-the-art computational models of defeasible reasoning.

Argument: piece of evidence considered in a defeasible reasoning process. Typi-
cally an argument is built upon a set of assumptions or premises, a method of
reasoning and a conclusion.

Undermining attack: a type of conflict in which an argument is attacked on one
of its premises by another argument whose conclusion negates that premise.

Rebutting attack: a type of conflict that occurs when an argument negates the
conclusions of another argument.

Undercutting attack: a type of conflict that occurs when an argument uses a
defeasible inference rule that is attacked by another argument arguing that there
is a special case that does not allow the application of the rule itself.

Semantics: a formal criterion to determine which arguments of an argumentation
graph can be accepted.

3 State-of-the-Art: Defeasible Argumentation Theory

3.1 Defeasible Reasoning

The capability of deriving defeasible conclusions with partial information is an
important aspect of modern medical systems. In order to achieve such a capabil-
ity, humans routinely resort to the so-called default knowledge, a main feature of
which is that it can be used in a reasoning process even if the preconditions for
its application are only partially known. These preconditions, whose truth is not
explicitly verified, are assumed to hold defeasibly, that means in the absence of
explicit information to the contrary. In the event that new information becomes
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available and the falsity of such preconditions can be deduced, then the conclu-
sions derived from the application of the default knowledge have to be retracted.
This type of reasoning is known as defeasible reasoning [4]. Default knowledge is
represented by using defaults that are specific inference rules. These are expres-
sions of the form: p(z) : j1(x), ..., jn(z) — c(x) where p(x) is the prerequisite of
the default, j(z) is the justification and c¢(x) is the consequent. If p(x) is known
and if j(x) is consistent with what is known, then ¢(x) can be defeasibly deduced.
In other words, if it is believed that the prerequisite is true, and each of the n
conditions (justifications) can be assumed since they are consistent with current
beliefs, then this leads to believe the truth of the conclusion. Defeasible rea-
soning, unlike standard deductive reasoning, is non-monotonic. Intuitively this
means that adding new premises may lead to removing, rather than adding new
conclusions. More specifically, if the conclusion p follows from a set of premises A
(denoted as A F p), in standard monotonic reasoning it also holds that A, B+ p
namely ¢, if and only if any additional set of premises B is added to A, the con-
clusion p is still valid. This property is called monotonicity: conclusions are not
affected by new evidence hence the set of conclusions monotonically increases.
This is not the case in real life in general and in medicine, health care in partic-
ular where reasoning is often non-monotonic: conclusions can be retracted when
new evidence is available. Consider the following example [5]:

— X has undergone breast cancer surgery and subsequently radiotherapy.
— Radiotherapy minimises the risk of cancer recurrence, so possibly
— X has a low risk of breast cancer recurrence.

If in addition to the fact that X has undergone cancer surgery and subsequently
radiotherapy, it is found out that

— X had a cancer with high degree of lymph node involvement,

then the conclusion that X has a low risk of cancer recurrence has to be retracted,
as a special exception has been raised.

Non-monotonic logic relies on the idea that the pieces of knowledge employed
in a reasoning activity such as X has a low risk of cancer recurrence may admit
exceptions and it is impossible to include a full list of exceptions within the
reasoning rules [4]. In these cases, the premise of a certain rule is only partially
specified and a conclusion can be derived from the premises, assuming that
no exception occurs, that means that all the implicit premises of the rule are
satisfied. In the case where an exception subsequently arises then the derived
conclusion has to be retracted. The basic idea of non-monotonic inferences is
that, when more information is obtained, some previously accepted inference
may no longer hold. Defeasible reasoning has increasingly gained attention in
the medical sector because it supports reasoning over partial, incomplete and
dynamic evidence and knowledge, where several exceptions can arise according
to various circumstances. Argumentation theory (AT), an important sub-field
of artificial intelligence (AI), provides state-of-the-art computational models of
defeasible reasoning (DR).
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3.2 Argumentation Theory

Argumentation theory (AT), often referred to as argumentation, is a multi-
disciplinary research subject ranging from law to philosophy and linguistic, with
aspects borrowed from psychology and sociology [6,7]. AT has gained interest in
artificial intelligence as it provides the basis for computational models inspired
by the way humans reason [8]. These models have extended classical reasoning
approaches, based on deductive logic, that were proving increasingly inadequate
for problems requiring non-monotonic reasoning and explanatory reasoning not
available in standard non-monotonic logics [9]. AT focuses on how pieces of
evidence, seen as arguments, can be represented, supported or discarded in a
defeasible reasoning process, and it investigates formal approaches to assess the
validity of the conclusions inferred [6]. AT has been employed for tasks like
practical reasoning, decision support, dialogue and negotiation [6,10-12] as well
as for knowledge representation [13,14]. It differs from many traditional mono-
lithic non-monotonic logics because it envisages a modular and intuitive process,
supporting the explanation of each reasoning step, making the reasoning and
inference processes more explanatory.

In a nutshell, argumentation deals with the interactions between possibly con-
flicting arguments, arising when different parties, participants or artificial agents
argue for and against some conclusions or when different pieces of evidence, even
conflicting, are available [12]. Arguments can be regarded as ‘tentative proofs for
propositions’ [15] in a logical language whose axioms represent premises in the
domain under consideration. In general, the premises are not consistent because
they may lead to incompatible conclusions. These conflicts may arise either dur-
ing the defeasible reasoning activity of a single human/agent or in the context
of a dialogue between multiple humans or artificial agents. These modes are
referred to as monological and dialogical argumentation, respectively. Accord-
ingly, monological models [16] focus on the internal structure of an argument,
meaning its components (like premises, rules, conclusions) and their relations.
Dialogical models focus instead on argument conflicts and their resolution and
typically regard arguments as monolithic entities, whose internal structure is
abstracted away as far as the conflict resolution process is concerned. Roughly
speaking, monological models concern the production and construction of argu-
ments while dialogical models concern management of their conflicts, that means
the actual arguing process. A third classification of models, referred to as rhetor-
ical models, has also been proposed (Table 1) in which neither the monological
nor the dialogical structure is considered [16]. Here, the rhetorical nature of
arguments is stressed. More specifically, the audience’s perception of arguments
and how they can be employed as a means of persuasion is taken into account
[17,18].

In the literature of argumentation, models belonging to one category dif-
ficultly belong to the other categories. For instance, dialogical models do not
address the internal representation of an argument and do not consider their
perception by an audience. However, according to [16], in order to design intel-
ligent systems that incorporate powerful argumentative capabilities, the micro-
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Table 1. Classification of argumentation models

Monological Dialogical Rhetorical

Structure | Micro Macro Persuasive

Foundation | Arguments as tentative | Defeasible reasoning | Audience’s perception

proofs of arguments

Linkage Connecting a set of Connecting a set of | Connecting arguments
premises to a claim at arguments in a in a persuasive way
the level of argument dialogical structure

structure of an argument, its relation with other arguments as well as the rhetor-
ical structure should be addressed. The internal representation of an argument
should clearly relate premises to conclusions, and at an external level, the argu-
ment should be considered within the set of the other arguments it interacts
with. Eventually, the perception by an audience is important because in real life
implementations, arguments are built to achieve predefined objectives, accord-
ing to the participating agents’ believes. The general idea is that argumentation
systems formalise non-monotonic reasoning as the internal construction of argu-
ments (micro-structure) as well as their comparisons for and against certain
conclusions (macro-structure). The construction of arguments, based on a the-
ory, is monotonic that means an argument remains the same even if the theory is
expanded with new information. Non-monotonicity is expressed in terms of inter-
action between conflicting arguments. This is because the additional information
may generate stronger arguments that in turn defeat previous arguments.
Argumentation systems and the notion of an argument are typically con-
structed upon an underlying logical language and around an associated notion
of logical consequence. As mentioned before, this notion of consequence is
monotonic. New information can not invalidate existing arguments as con-
structed, but can only be responsible for the generation of new counterargu-
ments. Some argument-based applications assume a particular and well-defined
logic whereas other leave the underlying logic part of the context of application
or even totally undefined. In the case the logic is left unspecified, the system
can be instantiated with different alternative logics, thus they are often referred
to as frameworks rather then systems. Beside the chosen underlying language,
argumentation systems are generally built upon five layers [19] (Fig. 2):

definition of the internal structure of arguments
definition of conflicts between arguments

evaluation of conflicts and definition of valid attacks
definition of the dialectical status of arguments
accrual of acceptable arguments

CU o=
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Translation of

knowledge-base

into interactive
defeasible arguments

‘ 1) structure of arguments

‘ 2) conflicts of arguments

3) evaluation of conflicts
Elicitation of

knowledge-base &
resolution of 4) dialectical
inconsistencies status of arguments

5) accrual of
Final inference acceptable arguments

Fig. 2. Five layers upon which argumentation systems are generally built

3.3 Layer 1: Definition of the Internal Structure of Arguments

The internal representation of arguments is addressed by monological mod-
els. Often an argument is internally represented with a set of premises
(P1, Py, ..., P,), and a conclusion (C) follows from them with the application
of some rule (—).

Argument : Py, Py, ..., P, — C

Many argumentation systems do not make any distinction between premises.
However, arguments actually used in human reasoning may follow a more artic-
ulated structure where different premises play different roles, as in the argument
model first introduced by Toulmin [20] composed of six parts (Fig. 3).

— Claim (C): an assertion/claim (conclusion) potentially controversial;

— Data (D): statements specifying facts/beliefs previously established related
to a situation in which the claim is made;

— Warrant (W): statement that justifies the derivation of conclusion from data;

— Backing (B): a set of information that ensures the trustworthiness of a war-
rant. It is the grounds underlying the reason. A backing is invoked when the
warrant is challenged;

— Qualifier (Q): a statement that expresses the degree of certainty associated
with the claim;

— Rebuttal (R): a statement introducing a situation in which the conclusion
might be defeated.

Toulmin’s model plays a significant role in highlighting the elements that
form a natural argument, providing a useful basis for knowledge representa-
tion. Another well-known monological paradigm has been proposed by Reed and
Walton to model the notion of arguments as product [21,22]. Tt is based upon
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Fact (D) So (probably) (Q)  Conclusion (C)

since

Warrant (W)
because

Backing (B) Rebuttal (R)

unless

Fig. 3. An illustration of the Toulmin’s argument representation

the notion of an argumentation scheme and it is useful for identifying and eval-
uating a variety of argumentation structures in everyday discourse [16]. These
argumentation schemes are aimed at capturing common stereotypical patterns
of reasoning that are non-monotonic and defeasible in nature [13]. Consider the
example presented in [8] in which two parts, A and B, are discussing chemother-
apy, and that B is not in favour of it because P thinks that it has a high emo-
tional impact on the person due to the risk of alopecia phenomenon and should
be discouraged. B’s argument is:

Argument: Dr. B (expert in psychology) says that chemotherapy affects the
emotional state of the patient

It appears that B’s argument is implicitly an appeal to expert opinion. In
addition, it is evidently an instance of argument from consequences. These two
schemes can be used by B to build a point of view. B is claiming that negatively
affecting the emotional state is a bad consequence of an action. The argument
is based upon the assumption that, since the bad outcome is a consequence
of chemotherapy, therefore chemotherapy should not be applied. This can be
represented by the following argumentation chain:

— Dr. B., an expert psychologist, says that chemotherapy negatively affects emo-
tional state, because he has knowledge of patients emotions;

— chemotherapy negatively affects emotional state;

— negatively affecting the emotional state is a bad thing;

— anything that leads to bad consequences is a bad practice;

— chemotherapy is a bad practice.

Walton identified 25 different argumentation schemes, each including a set
of critical questions such as:

‘is the expert E in a position to know about the proposition P?’

Critical questions provide a sort of checklist about the validity conditions for the
application of a specific argument scheme. Intuitively, critical questions make the
defeasibility of argument schemes explicit and indicate some canonical ways to
build the relevant counterarguments. For further information on monological
approaches to argumentation, readers can refer to [16]. The Toulmin’s model
[20] as well as the Reed and Walton’s approach [21,22] do not specify the way
different argument structures can be aggregated nor how they can interact or
conflict in the dynamics of an argumentation process.
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3.4 Layer 2: Definition of the Conflicts Between Arguments

Monological models, aimed at representing the internal structure of arguments
are complemented by dialogical models, focused on the relationships between
arguments and, in particular, their conflicts. The latter investigates the issue of
invalid arguments that appear to be valid (fallacious arguments). Conflicts, often
referred to attacks or defeats, and sometimes with slightly different meanings,
are the key notions in argumentation theory. In the AT literature several kinds of
conflicts have been considered. Here the classification proposed in [23] is stressed.
This encompasses three classes of conflicts (Figs. 4, 5, and 6):

— undermining attack: occurs when an argument is attacked on one of its
premises by another whose conclusion negates that premise;

— rebutting attack occurs when an argument negates the conclusions of another;

— undercutting attack occurs when an argument uses a defeasible inference rule
and is attacked by arguing that there is a special case that does not allow the
application of the rule itself [24].

c® ok
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A: ‘alcohol consumption is low according B: the alcohol level from a blood test is
to X so X has a low risk of recurrence’ high so X has a high alcohol consumption

Fig. 4. Undermining attack: A is undermined by B

3.5 Layer 3: Evaluation of Conflicts and Definition of Valid Attacks

Conflict between arguments, although an important notion, does not embody any
approach for the determination of the success of an attack, from one argument
to its target. Generally an a