
Traffic Monitoring in Software Defined
Networks Using Opendaylight Controller

Duc-Hung Luong(&), Abdelkader Outtagarts, and Abdelkrim Hebbar

Nokia Bell Labs, Nozay, France
{duc_hung.luong,abdelkader.outtagart,

abdelkrim.hebbar}@nokia.com

Abstract. Software Defined Network (SDN) is an emerging approach in net-
work technology appeared in recent years. In the SDN revolution, OpenFlow is
defined as the first communication standard to separates the control plane and
data plane this allows the control plane to be centralized by an OpenFlow
controller. The rise of SDN and OpenFlow has changed the point of view of the
conventional model for network devices. In this paper, we focus on QoS
monitoring in SDN controller using OpenFlow protocol. We propose a moni-
toring method for collecting the statistic and calculating the throughput of link
traffics. We also design a new forwarding algorithm for control plane that avoids
bottleneck and provides load-balancing. To evaluate our algorithm in real time
traffic, we setup a test-bed in Mininet where we design the applications using the
devised algorithm in Opendaylight controller, a fully functional open-source
project with a rich set of API.

1 Introduction

Nowadays, Software Defined Networking (SDN) [1] is becoming an emerging para-
digm in network technology. SDN enables an easy way to control for the future
innovation of network and cloud [2]. Enterprises deploy SDN because it promises
speedy service provisioning flexibility and reduction of operating expenses. In SDN
approach, the control planes are centralized to manage all the network devices. The
controller also computes the routes and installs the corresponding rules to the remote
switches. The installed rules are also changed to quickly adapt to workload or network
infrastructure modifications. Hence, while the traffic engineering (TE) becomes more
and more important in the network, the controller needs to continually monitor the
network devices status and link states.

OpenFlow [3] is the dominant southbound protocol used for SDN context that
connects the control plane and data plane. The OpenFlow controller can poll the
switches by using statistic request messages and collect per-switch and per-flow
statistics from these switches. However, the counter values from statistics messages are
not sufficient for monitoring other QoS parameters such as network throughput and
packet latency.

In this paper, we propose a solution to monitoring throughput performance, an
important parameter of network QoS. Our contribution is to develop a traffic moni-
toring solution using OpenFlow features in a SDN network. Studying and choosing a

© Springer International Publishing AG 2016
S. Boumerdassi et al. (Eds.): MSPN 2016, LNCS 10026, pp. 38–48, 2016.
DOI: 10.1007/978-3-319-50463-6_4



suitable OpenFlow controller is an important task in our work. OpenDaylight [4], a
Java-based open source controller has been chosen for implementing the monitoring
application. This application focuses on the throughput monitoring and flow for-
warding. The prototype demonstrates that this solution is effectively suitable in the
SDN context.

The rest of this paper is organized as following. Section 2 provides a background
and related works regarding the traffic monitoring solution in SDN networks. Section 3
presents our framework running on the controller OpenDaylight. We evaluate the
performance of throughput monitoring through simulation using Mininet [5] in Sect. 4.
Finally, we conclude the paper in Sect. 5 and point out some perspectives for our future
works.

2 Background and Related Works

SDN is considered as the programmable networks with the ability to design and operate
flexibly, thus, it has a lot of attentions for networking innovation. SDN’s architecture
has three-layer model shown in Fig. 1. The application layer includes all applications
that are handled in the network and the infrastructure layer refers to the data plane,
which has been decoupled from the controller. The controller can be considered as the
“brain” of the networks. Its role is the control point to relay information to the hardware
below via Southbound APIs and to the applications above via Northbound APIs.

Fig. 1. Software defined network architecture.

Traffic Monitoring in Software Defined Networks 39



Currently, traffic engineering (TE) is an important paradigm that provides the
mechanism to manage, analyze and predict network behavior. As a result, network
administrator can optimize performance and improve reliability of the network.
Learning from the past, there are some existed solutions of traffic engineering for
conventional network such as Asynchronous Transfer Mode (ATM) [6] network or
Multi-protocol Label Switching (MPLS) [7]. However, the emergence of SDN para-
digm that centralizes the control plane of distributed network devices requires new
intelligent and adaptive TE mechanism. In [8], the authors consider that the scope of
traffic engineering consists in four parts: monitoring for flow management, fault tol-
erance of network, topology update and traffic analysis. In this paper, traffic monitoring
for flow management approach will be considered and focused.

In traffic monitoring paradigm, the monitoring application requires accurate and
timely link statistics and device states. The traditional traffic monitoring using two
approaches for measurement methods: active measurement and passive measurement.
The active measurement method injects additional packets in to networks and monitors
its behaviors. The simple example is the use of “ping” to determine the end-to-end
connection status, compute the packets loss and discover the topology of networks.
However, this measurement method produces interferences in to networks as well as
being a cause of overhead. As opposed to active measurement, passive measurement is
another approach for network monitoring while it does not inject traffic in to networks.
This method measures the network traffic by observation and without generated
overhead thus it does not influence network performances. However, passive method
does not achieve results with good accuracy and is not always feasible for all networks.

Currently, there are some measurement protocols for the conventional network such
as SNMP (RFC 1157) [9], NetFlow [10] from Cisco, sFlow [11] from InMon… Simple
Network Management Protocol (SNMP) is an application layer protocol that uses
passive sensors to help administrators in monitoring the network status. SMNP regu-
larly polls the switches and requires scheduling carefully to monitor the entire network.
However, SMNP is not suitable for flow-based monitoring and will not be considered
in the present paper. NetFlow periodically collects the traffic information to NetFlow
collector so that, the overall flow statistics are estimated based on these achieved
samples. SFlow works similarly and uses time-based to collect packet sampling.

In SDN context, OpenFlow [3] protocol is chosen as the communication standard
between the controller and network devices. OpenFlow enables controller to per-flow
and per-switch monitoring that picked up in the several recent researches. OpenNetMon
[12] is an active measurement tool designed as a Python-based module for POX con-
troller [13]. This application monitors per-flow quality of service (QoS) metrics by
adaptively polling switches at adaptive rates. OpenNetMon uses an adaptive method for
changing the polling interval of statistic requests. Presented as a passive method,
FlowSense [14] uses the controller messages such as PacketIn and FlowRemoved to
manage the network and predict per flow link utilization. This method enables moni-
toring the SDN networks with zero measurement cost. Instead of actively querying the
switches, the controller only uses the information from PacketIn messages and Flow-
Removedmessages. The traffic parse module in the controller captures flow traffic hence
controller estimates the traffic utilization. FlowSense proposes a zero cost approach to
monitor networks; however the estimation of FlowSense obtains inaccurate results due

40 D.-H. Luong et al.



to long idle-time out before receiving FlowRemoved message. Payless [15] is another
query-based monitoring framework for flow statistic collection of different levels.
Payless monitoring provides a set of well-defined API which is very useful for different
network applications to monitor and collect data based on it. OpenTM [16] is a moni-
toring scheme that estimates the traffic matrix (TM) of OpenFlow networks. This
module is an application implemented for NOX, the first open-source OpenFlow con-
troller. OpenSample [17] proposes the mechanism to monitor in real-time, low latency
and flexible. It takes the advantage of sFlow to monitor high-speed networks.

In order to satisfy our context, we also study for choosing adaptable SDN con-
troller. There are variety of OpenFlow controllers, with different languages and sup-
ported environments [18, 19]. NOX [20] is the first OpenFlow controller, but it is not
the heavily implemented or used. NOX is a multi-threaded and C++ based program.
Although NOX supports graphical interface and visualization tool, however its
weakness is lack of documentation and performance. POX [13] is a Python-based
OpenFlow controller inherited from NOX controller. In comparing to NOX, POX is
more familiar to implement and use because of providing a web based interface.
Beacon [21] is another Java-based OpenFlow controller that supports both event-driven
and multi-thread. Same as Beacon, Floodlight [22] is Java-based framework under
Apache licensed. Its core architecture is modular and provides many components,
including topology management, device management, path computation and web
access. Ryu [23] is a component-based frame work which has a set of predefined
components. Ryu is implemented in Python and is supported by NTT labs. The
components of Ryu can be modified, extended and customized for specific application.
More recently, ONOS [24] offer a distributed SDN controller with similar features.
However, ONOS focuses on specific tasks of service providers and will be not con-
sidered. In this paper, we investigate Opendaylight [4] for implementing our moni-
toring algorithm. Opendaylight is a Java-based open-source controller supported by
many network vendors. Furthermore, Opendaylight has highly modular architecture
with a rich set of APIs and features for SDN network.

3 System Design

3.1 Methodology

In an OpenFlow controller, the controller regularly queries StatisticsRequest message
to retrieve the statistics of switches, ports, flows and flow tables of network switches. In
the present work, we focus on the statistics of switch ports and flows via StatisticReply
messages.

However, as specified in OpenFlow standard, we cannot retrieve directly the values
of throughput of ports and flows. The OpenFlow controller only polls the statistics of
switches by the number of transmitted packets or transmitted bytes. Hence, we propose
a solution which regularly retrieves the traffic amount and consider that the throughput
is equal to the average transmission rate by the time unit. In this work, our module
receives the amount of S(bytes) in duration of time t(s) hence, the throughput is
calculated as:

Traffic Monitoring in Software Defined Networks 41



R ¼ S
t
byte=sð Þ ð1Þ

Polling of flows and ports is made regularly by the controller. The value of the
interval duration is the same for each path in the network. In Opennetmon [12], the
authors use the same solution in the monitoring module of POX controller. However,
they consider the random or round robin policies that are not suitable for large scale
network. In the present work, we only use the round robin policy to facilitate the
solution because of the small network environment.

3.2 Architecture Design

In this section, we describe two modules for Opendaylight controller for throughput
monitoring and packet forwarding in OpenFlow-based network.

Throughput monitor. As presented in the previous section, OpenFlow is a
vendor-neutral standard communication that defines the interaction between controllers
and switches. OpenFlow protocol-plugin is the southbound module that connects
directly with the switches (real or virtual switch). In this work, the monitoring module
regularly requests the OpenFlow protocol plugin to send StatisticsRequest messages to
the switches. There are some types of statistics message such as vendor, flows, table,
port in which we are interested to request the port state statistics. The switch that
receives this request responds by a StatisticsReply message. More specifically in
Opendaylight, OpenFlow protocol-plugin module implements services to capture and
parse this message from switches. In our case, the information on switch ports and
flows carried by the statistic message are collected and processed by the statistics
module. We mainly focus on the number of packets and bytes passed by all ports to
calculate the throughput. By storing the packets count and bytes from previous port
state, the delta of these counters is obtained to determine the current transmission rate
for each link. These values of throughput statistics are locally stored in the OpenFlow
plug-in module. Another database is created in the controller to store all the statistics of
port states and flow states. When OpenFlow protocol plug-in detects a change of a
statistics counter, it automatically notifies the upper layer to update the database. Inside
of the controller core, the AD-SAL module provides another service to read the
statistics of all components in the network. Additionally, we modified the Statis-
ticsManager module to retrieve the throughput data. This module also provides the
APIs to the monitoring application. The user also retrieves the data by using REST -
client via northbound interfaces (Fig. 2).

Packet Forwarding. Actually, when a conventional switch receives a packet, it learns
the mapping between MAC address and port to match. If the switch already knows the
specific destination, the packet is sent directly to the correct target switch port.
Otherwise, the packet is flooded out all ports like in a hub. This functionality is called
Layer 2 learning switch. In case of a flow-based switch managed by a controller, when
a switch receives a new packet that is not matched with any installed flow table, it
encapsulates the payload into a PacketIn message and sends this message to the

42 D.-H. Luong et al.



controller. The controller responds for installing a path using one or more FlowMod
message and resends another PacketOut to the destination switch. In our application,
we consider the routing in Layer 3 to find the shortest path. It is also looking for a new
path while link utilization value of the shortest path is high. The decision to modify the
packet path is based on the throughput result computed by the monitoring module. This
method allows avoiding the collision and packet loss because the full link capacity is
used at main path. It also provides the network load balancing because based on
changing the path to the destination.

The algorithm used for monitoring and forwarding works as following. Firstly, the
controller creates a list of rules that will be processed to install the flow. When the
controller receives a PacketIn message, the application extracts the IP address of the
destination host. Then, it looks up the destination host (dest_host) which corresponds to
this IP address from the IP host table. The current switch (curr_switch) that sent
PacketIn and the destination switch (dest_switch) that connects to this host is also
tracked. By using Dijkstra algorithm [25], we can find the shortest path between
curr_switch and dest_switch. This solution determines a unique path to destination and
loop-avoiding in the network. From this path, the next_switch is defined as the next hop
that connects directly with the curr_switch. The new flow is created with the IP address
of the destination and the action is set to the egress port of curr_switch. We create a
new rule that indicates that the flow will be processed by curr_switch. This rule is also
added to the list of rules in order to the controller fabricates a new FlowMod message
for curr_switch.

The results from monitoring module allow us to calculate the ‘curr_switch –

next_switch’ link throughput value and to compare this value to a fixed threshold.
In case the link throughput exceeds the threshold, the link between curr_switch and
next_switch is temporary disabled and another shortest path is computed. From this
new path, we find the new_next_switch and the link respectively. We continuously

Fig. 2. Diagram of monitoring module and forwarding in Opendaylight

Traffic Monitoring in Software Defined Networks 43



compute the link throughput of the new link and compare it to the old link between
curr_switch and next_switch. If the capacity rate of the new link is higher than the older
one, we install the new flow on the temporary path.

4 Evaluation and Results

In this section, we present the performance of a demo for monitoring the throughput
and forwarding the packet flows. For this application, two modules have been devel-
oped as described in previous sections. We will consider a topology with 6 switches
and two scenarios for the demo (Fig. 3).

4.1 Evaluation

Monitoring module. Firstly, we consider the monitoring scenario while we try to
capture the real-time traffic of link OF1 – OF5. In this scenario, the network topology is
shown in the Fig. 3. We set the bandwidth of links between OF1 – OF2, OF1 – OF3,
OF1 – OF4, OF1 – OF5 at 5 Mbps, 10 Mbps and 30 Mbps respectively. We use Iperf
[26] packet generator to send and receive TCP packets between a pair of hosts. By
running in client-server mode, Iperf will send TCP packets traffic to specific hosts at
specific bandwidths. For example, H5 host runs Iperf at server mode and other hosts
run Iperf in client mode. Traffic is generated from H2, H3, H4, to H5 with transmission
rates of traffic equal to the max capacity value allowed on each link.

Figure 4 shows the results of the simulation during 1000 s. We firstly send 5 Mbps
of traffic from H2 to H5 at time t = 0 s using Iperf. After 300 s, we continuously
transmit the traffic from H3 to H5. This traffic has a transmission rate equal to the max
traffic between H3–H5. Hence, from t = 300 s, H5 receives the traffic at 10 Mbps that

Fig. 3. Forwarding scenario for monitoring module

44 D.-H. Luong et al.



equals to the cumulative traffic sent from H2 and H3. Similarly, at t = 500 s we
generate the traffic from H4 to H5 and the total traffic of link H1 – H5 consequently
increases until 20 Mbps.

Forwarding scenario. In this scenario, the link bandwidths are set equally to 10 Mbps
for every link in the network and the demonstration considers the connection path
between H5 and H6 to verify the algorithm (Fig. 5).

Firstly, we consider the normal scenario to obtain the default behavior of network.
We send the ICMP packet via the ping command in Mininet to confirm the paths. The
shortest path found from H5 to H6, using Dijkstra [25] routing algorithm, is via OF1,
OF4 and OF6. The flows installed in the switches are listed in Table 1. The Web GUI
of Opendaylight can be used to check that the flows have been successfully installed.

Now we consider the load balancing scenario. We clear all the existed flows in the
network via RestClient application and northbound API (Fig. 5). We also set the
threshold value for changing the path at 80%. Then we generate some traffic between
OF1 and OF4 such as the threshold is exceeded.

Fig. 4. Results of throughput monitoring

Fig. 5. Forwarding scenario for load balancing

Traffic Monitoring in Software Defined Networks 45



When the traffic between these switches passes the threshold value, the link
between OF1 and OF4 is temporary set unavailable and the controller looks up other
paths for load balancing. The result can be verified when we ping again h5 ping h6, the
path between H5 and H6 is changed by the load balancer. As a result, we obtain
automatically the new shortest path H5 – OF5 – OF1 – OF2 – OF4 – OF6 – H6 (Fig. 5)
and the flow table of these switches has been also changed to complete the path
installation (Figs. 6 and 7).

4.2 Discussion

In this implementation, we design the traffic monitoring application using OpenDay-
light controller. This application automatically monitors the bandwidth utilization of
the links in the network and reactively chooses the best alternative path to destination.
The forwarding component tracks the host location to install per-flow forwarding rules
on the switches. This module also learns from the real-time traffic obtained by moni-
toring module to find other paths. In comparing with existing forwarding algorithms,
we brought some new specific differences detailed below.

Table 1. Flows created in normal scenario

Switch IP of destination Action

OF5 10.0.0.6 Output = Port 2
OF1 10.0.0.6 Output = Port 4
OF4 10.0.0.6 Output = Port 5
OF6 10.0.0.6 Output = Port 6

Fig. 6. Flow table of switch OF1 in default scenario

Fig. 7. Flow table of switch OF1 in load balancing scenario

46 D.-H. Luong et al.



As the switches process too many flows, a bottle neck may occur. When the amount
of data passing through one link in a short time is too large, the latency and packet loss
will be clearly considered. In case of bottle neck, we chose a temporary path for load
balancing and reduction of packet lost rate. We also analyzed the traffic based-on
bandwidth utilization rate. This is an important indication to evaluate the Quality of
Service (QoS) of a network. The installation of per-flow rule is done by all switches
between curr_switch and dest_switch and iterates until all switches are configured. This
method allows avoiding the repeated request of switches to the controller. We find a
temporary path at a given moment but without changing the topology to adapt the
dynamic of network. The link with high utilization will be considered at other moment
to look up the best path. The forwarding module considers the switch acting as Layer 3
switch, that uses the routing module to find the shortest path based on Dijkstra algo-
rithm. This is a simple case of routing algorithm but this mechanism allows choosing
only a single path to host switch and avoiding loop in topology.

5 Conclusion and Perspectives

As the Software Defined Networking becomes an important part of the future network
architecture, we must consider traffic monitoring as one of the important goals to adapt
quickly to the network traffic changing. In this paper, we offer a solution for traffic
monitoring using OpenFlow in Software Defined Networking. While there are many
management protocols in SDN such as SMNP, NetFlow, sFlow…, OpenFlow is
considered as a suitable standard to monitor the traffic in SDN networks. We also study
about OpenFlow framework and we choose OpenDaylight as the best OpenFlow
controller to deploy our implementation. The application consists of two main com-
ponents: monitoring module and forwarding module. In the monitoring module, we
regularly query the switch and calculate the flow bandwidth. The forwarding module
tries to use the results of monitoring module to install per-flow forwarding rules. The
shortest path is found by using Dijkstra algorithm to obtain the best path and avoid
loops in the topology. In the last section, we have shown experimental results using our
test bed.

The application of traffic monitoring in SDN networks presents many challenges. In
this paper, we only use throughput as the QoS parameter for monitoring the traffic. For
the future works, we will investigate other parameters such as latency and packet loss.
The forwarding module in this paper changes the path at the initialization of flow. We
presented a simple scenario for changing the path in the topology. The more complex
scenarios such as automatically deleting a flow, deleting a link are also in the per-
spectives for the future of our works.

References

1. Open network foundation: software-defined networking: the new norm for networks. https://
www.opennetworking.org/

2. Weldon, M.K.: The Future X Network: A Bell Labs Perspective. Nokia BellLabs,
Murray Hill (2016)

Traffic Monitoring in Software Defined Networks 47

https://www.opennetworking.org/
https://www.opennetworking.org/


3. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev. 38(2), 6974 (2008)

4. OpenDaylight controller. https://www.opendaylight.org/
5. Mininet. https://www.mininet.org/
6. de Prycker, M.: Asynchronous Transfer Mode: Solution for BroadBand ISDN, Ellis

Horwood, Ltd., (1993)
7. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Lable Switching Architecture.

Internet draft, draft-ietf-mpls-arch-01.txt (1998)
8. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engineering in

SDN - OpenFlow networks. Comput. Netw. 71, 1–30 (2014)
9. Simple Network Management Protocol. https://www.ietf.org/rfc/rfc1157.txt
10. NFC 3954: Cisco system NetFlow Services Export Version 9. http://tools.ietf.org/html/

rfc3954.html
11. Phaal, P., Lavine, M.: sFlow Version 5. http://www.sfow.org/
12. van Adrichem, N.L.M., Doerr, C., Kuipers, F.A.: Opennetmon: network monitoring in

openflow software-defined networks. In: Network Operations and Management Symposium
(NOMS) (2014)

13. POX controller. https://www.noxrepo.org/pox/
14. Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., Madhyastha, H.V.: FlowSense:

monitoring network utilization with zero measurement cost. In: Roughan, M., Chang, R.
(eds.) PAM 2013. LNCS, vol. 7799, pp. 31–41. Springer, Heidelberg (2013)

15. Chowdhury, S.R., Bari, M.F., Ahmed, R., Boutaba, R.: PayLess: a low cost network
monitoring framework for software defined networks. In: Proceedings of the 14th IEEE/IFIP
Network Operations and Management Symposium, NOMS 2014 (2014)

16. Tootoonchian, A., Ghobadi, M., Ganjali, Y.: OpenTM: traffic matrix estimator for OpenFlow
networks. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp. 201–
210. Springer, Heidelberg (2010)

17. Suh, J., Kwon, T., Dixon, C., Rozner, E., Felter, W., Carter, J.: OpenSample: a low latency,
sampling-based measurement platform for SDN, IBM report (2014)

18. Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., Sherwood, R.: On controller
performance in software-defined networks. In: Hot-ICE12 Proceedings of the 2nd USENIX
Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (2012)

19. Khondoker, R., Zaalouk, A., Marx, R., Bayarou, K.: Feature-base comparison and selection
of Software Defined Networking (SDN) controllers. In: World Congress on Computer
Applications and Information Systtems (WCCAIS) (2014)

20. NOX controller. https://www.noxrepo.org/
21. Beacon controller. https://www.standford.edu/display/Beacon/Home/
22. FloodLight controller. https://www.projectfloodlight.org/floodlight/
23. Ryu controller. https://www.github.io/ryu
24. Open Network Operation System (ONOS). http://www.onosproject.org
25. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271

(1959)
26. Iperf, The network bandwidth measurement tool. http://iperf.fr/

48 D.-H. Luong et al.

https://www.opendaylight.org/
https://www.mininet.org/
https://www.ietf.org/rfc/rfc1157.txt
http://tools.ietf.org/html/rfc3954.html
http://tools.ietf.org/html/rfc3954.html
http://www.sfow.org/
https://www.noxrepo.org/pox/
https://www.noxrepo.org/
https://www.standford.edu/display/Beacon/Home/
https://www.projectfloodlight.org/floodlight/
https://www.github.io/ryu
http://www.onosproject.org
http://iperf.fr/

	Traffic Monitoring in Software Defined Networks Using Opendaylight Controller
	Abstract
	1 Introduction
	2 Background and Related Works
	3 System Design
	3.1 Methodology
	3.2 Architecture Design

	4 Evaluation and Results
	4.1 Evaluation
	4.2 Discussion

	5 Conclusion and Perspectives
	References


