Creating an Easy to Use and High Performance
Parallel Platform on Multi-cores Networks

Viet Hai Ha'®), Xuan Huyen Do?, Van Long Tran®, and Eric Renault?

1 College of Education, Hue University, Hué City, Vietnam
haviethai@gmail.com
2 College of Sciences, Hue University, Hué City, Vietnam
doxuanhuyen@gmail.com
3 SAMOVA, Télécom SudParis, CNRS, Université Paris-Saclay,
9 rue Charles Fourier, 91011 Evry Cedex, France
{van_long.tran,eric.renault}@telecom-sudparis.eu

Abstract. How to easily exploit the performance of network using
multi-core processors nodes is the purpose of many researches includ-
ing CAPE (Checkpointing Aided Parallel Execution). CAPE uses the
checkpointing technique to bring the simplicity and high performance
of OpenMP — a high performance and easy-to-use standard of parallel
programming API on shared-memory architecture — onto distributed-
memory architectures. Theoretical analysis and experimental results
have proved that CAPE has ability of providing a high performance
and complete compatibility with OpenMP standard. This article aims
at introducing how to use multiple processes on calculating nodes to
increase performance of CAPE with the initial results.

Keywords: CAPE - Checkpointing Aided Parallel Execution
OpenMP - Parallel programming - Distributed computing - HPC

1 Introduction

1.1 OpenMP

OpenMP [1] is an API providing a high level abstraction for parallel program-
ming on shared-memory architectures. It consists of a set of environment vari-
ables, directives and functions that support easily converting sequential C/C++
or Fortran programs into parallel programs.

OpenMP uses fork-join model with thread as the basic parallel structure. Ini-
tially, the program consists of only one master thread processing sequence code.
Whenever meeting an OpenMP parallel directive, this master thread spawns
a team work including itself and a set of slave threads (phase fork) and tasks
are divided into these threads. After the slave threads have finished their tasks,
the result is updated in the memory space of the main master thread and they
can finish work (phase join). So, after this phase, the program remains only one
thread as the original program.

© Springer International Publishing AG 2016
S. Boumerdassi et al. (Eds.): MSPN 2016, LNCS 10026, pp. 197-207, 2016.
DOI: 10.1007/978-3-319-50463-6_16

198 V.H. Ha et al.

OpenMP uses a relaxed-consistency, shared-memory model. All OpenMP
threads have access to a place to store and to retrieve variables, called the
memory. In addition, each thread is allowed to have its own temporary view
of the memory. Currently, OpenMP has only been completely installed for the
shared-memory architecture because of the complexity of the installation of all
the requirements of OpenMP on the other memory model. This is the motivation
for many researches to be conducted with the objective of installing OpenMP
on the distributed-memory architecture. However, there is not any result having
met the two requirements of fully compatibility with OpenMP standard and high
performance. The most prominent alternatives may include the use of SSI [2];
SCASH [3]; compiled into MPT [4,5]; the use of Global Array [6]; and Cluster
OpenMP [7]. Even with Cluster OpenMP, a commercial product from Intel also
requires the use of its own more directives (not belonged in OpenMP standard)
in some cases. And therefore, it is not a fully compatible installation of OpenMP.

1.2 CAPE

Principle of CAPE: CAPE (Checkpointing Aided Parallel Execution) [8] is
a new approach to install OpenMP on distributed-memory systems. CAPE uses
process as the basic parallel unit, instead of using thread in original OpenMP.
With CAPE, all the most important tasks of the fork-join model are automati-
cally implemented using checkpointing technique, including the division of task
to slave processes, extraction of results slaves-ones and the updating these results
in the memory space of the master process.

Deployment model: Figure 1 illustrates CAPE deployment diagram. In there:

Master node: plays the role of master thread in the operating model of
OpenMP. Accordingly, it executes the code section of the master process, dis-
tributes the job to slave processes and receives the results achieved by slave
processes after completing the parallel code blocks. These tasks are performed
by the modules:

— User Application: the user’s program code, originally written in the origi-
nal language (CAPE is supporting with C language) along with OpenMP
directives. This program has been translated by the CAPE program into a
standard C code and then continues to be translated into machine code by a
conventional C compiler, such as GCC of GNU.

— Distributor: This is the program which sets nodes in the system and dis-
tributes tasks for nodes. Distributor basing on IP of node to distinguish the
nodes and activate the program on those nodes with the corresponding para-
meter. Currently, the distributor is installed by a Shell program, with the
input parameters are the IP of the nodes in the system as well as the role of
those nodes in the operational model of CAPE.

— Monitor: this program is both a checkpointer (snapshot progress of process)
and also a management application program. In checkpointer role, it is a
discontinuous incremental checkpointing [9], take on two main tasks are:

Creating an Easy to Use and High Performance Parallel Platform 199

Master node

User Application

Slave node n

User Application

Slave node 2

User Application

Fig. 1. CAFE deployment model

Slave node 1

User Application

(1) make the snapshot progress in each specific code to initialize the sta-
tus for the processes at the slave nodes at the beginning point of the parallel
code; and (2) extract the implementation results of the parallel sections of
code in slave nodes. Absolutely, it is also responsible for updating the memory
space of the process by the snapshot processes which increase discretely at the
identified locations. In the role of managing application program, the mon-
itor is responsible for initializing application program; communicating and
exchanging data between nodes including allocating the tasks, and sending
calculation results from the slave nodes to the master one, etc.

Slave nodes: are the nodes performing the calculations in the parallel code.
At those nodes, only two modules are the user’s applications, which are required
to play the role of calculation; and monitor. The operating model at these nodes
is generating application program of users according to the requests sent from
the distribution of master node, receiving calculation requirements, performing
calculations and extracting calculation results back to the master node.

Results: CAPE has been developed and installed to achieve the parallel
OpenMP directives such as parallel for, parallel section. We have carried
out experiments on a square matrix multiplication, with various sizes from
3000 x 3000 to 12000 x 12000, for calculating the number of nodes varies between
2 and 30 [10]. Figure 2 shows the acceleration coefficient (speedup) of CAPE over
the number of machines and different matrix sizes. The dashed lines represent
the theoretical maximum increase. This chart shows clearly that the solution
CAPE achieved very good results, with the measured speed ratio is in the range

200 V.H. Ha et al.

35 : : : - - -
—— Theoretical maximum speedup A
—+— 12000x12000 e
30 L —— 9000x9000 i
—#— 6000x6000
3000x3000
25 + 1
g 20 + 1
e
Q
3 15 |
) g 1
/ i
/;‘-//
10 t S 1
gy
5 | S _
//{.u"
0 . 4 L L . .
0 5 10 15 20 25 30 35

number of nodes

Fig. 2. Speedup of CAPE

of 75 to 90% in compare with the increase in the theoretical maximum accelera-
tion coefficient. To some extent, the graph also performs the scalable (scalable)
of CAPE when the speed line is almost linear, and no sign of a significant decline
in the knotty calculations.

Disadvantages on Multicore Systems: Multi-core processor is a single
processor with two or more independent processing units, each unit can inde-
pendently execute commands of programs. Nowadays, all new computers have
2 to 8 core processors; it leads to the popularity of computer networks with
multicore nodes. In order to reduce calculation time, application programs can
exploit the capabilities of multicore processors by running different parallel parts
of programs on these cores. OpenMP is a typical example of this direction by
using multithread execution model as mentioned in Sect. 1.1.

With the current execution model of CAPE, in each calculation node, there is
only one process running application programs. Moreover, this is a single process
and is not divided into sub-threads. Therefore, at each calculation node, the com-
mands of the application programs are sequentially executed. This can be clearly
seen when looking at the graph measuring the execution parameters of system
while running a CAPE program, as shown in Fig. 3. As seen on this chart, only the
third core is fully exploited, while the other core is nearly inactive. Thus, the calcu-
lation resources of the system are being wasted and effectively exploiting them can
reduce the running time of programs, i.e. increase the efficiency of their executions.

Creating an Easy to Use and High Performance Parallel Platform 201

CPU History

100% {
0%

Q%

!

2 |
|

)

0%
Sseconcs

B} i
CPU1 1,0% [cpu2 2,0% [cpu3 100,0% [cpua 2,0%

Fig. 3. Ratio of exploiting cores while running one process on each calculation node

2 Using Multiple Processes in Calculating Nodes
to Increase Performance of CAPE in Multi-cores
Systems

2.1 Principle

It should be noted that according to the execution model of CAPE, at the slave
nodes, application code are sub-parts of parallel sections in original OpenMP
programs. As consequence, these codes are potential in parallelization. There-
fore, the general direction to effectively exploit the calculation resources in slave
nodes is doing two things: (1) continue to divide the task at each node into
subcomponents; and (2) make them concurrently running on different cores of
processor. With multi-task operating systems today, the application program is
not necessary to implement the second explicitly; it is taken over by the oper-
ating system. Meanwhile, with multi-process and multi-thread programs that
use many calculation resources, the operating system will distribute calculat-
ing resources in an optimal way. For computers using multi-cores processors,
the cores normally are load balancing. Thus, in the case of CAPE, only the first
task has to be performed, by organizing the code in multi-process or multi-thread
models. In there, multi-process model can be implemented directly by running
multiple applications on a slave node, i.e. multiple processes on one physical
machine. In this way, for each running time, the program will create a process
and it will take a calculation part of parallel code.

2.2 Implementation Details

To create multiple processes by running multiple applications on a slave node, it
is necessary to modify the distributor in the CAPE deployment model so that the
application program is initialized many times with different parameters. There-
fore, in each slave node, there are many application processes that performed differ-
ent parts of the parallel sections. This is easily done as shown in the example below,
in which the system has three nodes including one master node with IP address is
192.168.122.1 and two slave nodes with IP address respectively is 192.168.122.179,
and 192.168.122.223. The name of application program is mulmt.

The original code of the distributor is a Shell script, when only one process
of application program on each slave node is shown below (in which the ordinal
number is added for the convenience of the presentation).

202 V.H. Ha et al.

1. #!bin/sh

2. folder=/home/hahai/cape2/cdv9

3. prog=mulmt

4. num_nodes=2

5. master=192.168.122.1

6 nodel=192.168.122.179

7. mnode2=192.168.122.223

8. ${folder}/dbpf -f ${folder}/${prog}t -a ${master}

-k ${num_nodes} -o 0

ssh ${nodel} ${folder}/dbpf -f ${folder}/${prog}

-a ${master} -k ${num_nodes} -o 1 &

10. ssh ${node2} ${folder}/dbpf -f ${folder}/${prog}
-a ${master} -k ${num_nodes} -0 2 &

11. exit O

©

Explanation:

— Line 1: Specify interpreter Shell sh will be used

— Line 2: Specify the location of CAPE program

— Line 3: Specify the name of application program

— Line 4: Number of slave nodes

— Line 5: IP of the master nodes

— Line 6,7: IP of the slave nodes

— Line 8: Initialize the monitor and the application program on the master node

— Line 9,10: Initialize the monitor and the application program on the first and
the second slave nodes

— Line 11: Exit Program

With the command lines above, the system will be initialized when the user
execute this shell programs at the master node. Meanwhile, by the command
at line 8, the monitor (dbpf) will start and it enables the application program
(mulmt). The parameters of master IP address, number of slave nodes, and
indicators of process are also transferred. Because the process index transferred
is 0 (parameter - o 0), the application program should know it will act as the
master node in the execution model of CAPE. The command lines number 9
and 10, are executed by the remote invocation ssh with IP address of the slave
node. The other parameters are the same as in the command line number 8,
except the process index is not 0 so that the application may know it is a slave
node in the execution CAPE model. It can be noticed that with each slave node,
there is only one call to the application program so there is only one application
process is initialized. Moreover, when analyzing the conversion model of CAPE
serves for transferring the OpenMP parallel constructs, it can be seen that in the
slave nodes the application code is sequentially performed. Therefore, at each
slave node, there is only one single process of application programs. This makes
CAPE can not fully exploit the capabilities of multi-core processors, as stated in
Sect. 1.2. In order to overcome this drawback in the way of running many times
the application program on each slave node, the command lines number 9 and

Creating an Easy to Use and High Performance Parallel Platform 203

10 will be cloned as shown in the code below, in which the application program
is run twice on each slave node. Finally, the code of distributor is rewritten with
the lines number 4 and 9, 10 are modified as below, while the other lines remain
as original codes.

4. num_nodes=4

9. ssh ${nodel} ${folder}/dbpf -f ${folder}/${prog}
-a ${master} -k ${num_nodes} -0 1 &

9a. ssh ${nodel} ${folder}/dbpf -f ${folder}/${prog}
-a ${master} -k ${num_nodes} -0 2 &

10. ssh ${node2} ${folder}/dbpf -f ${folder}/${prog}
-a ${master} -k ${num_nodes} -o 3&

10a.ssh ${node2} ${folder}/dbpf -f ${folder}/${prog}
-a ${master} -k ${num_nodes} -0 4 &

In which:

— Line 4: is modified to have 4 slave processes.

— Line 9: is cloned into lines 9 and 9a, with the process index in line 9a is
2. Thus, in the first slave node, there is 2 times the application program is
executed, i.e. there are 2 processes are created for the parallel code.

— Line 10: is processed in the same way of line 9, which is cloned into line 10
and line 10a, with process index is 3 and 4 respectively.

3 Experiments

To evaluate the feasibility as well as the performance of the proposed method,
we have tested it with the matrix multiplication problem on a cluster with nodes
equipped an Intel Core i3 processors (2 cores - 4 threads) running at 3.5 GHz,
4GB RAM, uses Ubuntu 14:04, connected by 100 Mb/s Ethernet. The experi-
ments were conducted with two scenarios are varying number of processes on the
slave nodes and the matrix sizes. Some of the test results are presented below.

3.1 Taking Advantages of Multi-core Processors

Due to many application processes with high requirement of calculation resources
running in concurrent, the capacity of multi-core processors are exploited bet-
ter. This is clearly shown in the graph the proportion of the execution of the
processors. Such as the case of 4 processes running on each slave node, the ratio
of the core activities reaches 100%, as seen on the chart in Fig. 4. These results
are very different from the case in which there is only one application process
on each slave node, when only one core is exploited with its full capacity, while
the other ones are nearly inactive, as shown in Fig. 3. All proved that the use of
multiple processes has better exploited the performance of multi-core processors.

204 V.H. Ha et al.

CPU History

—_—

- % o)
[cPu1 100,0% [cPu2 100,0%

[cpu3 100,0% [cPu4 100,0%

Fig. 4. Ratio of exploiting cores while running multiple processes on each slave node

3.2 Acceleration with Different Processes on Each Slave Node

To evaluate this, we have tested on a system with 11 nodes (1 master node, and
10 slave nodes); with the matrix size is 6000 x 6000. The experiment is conducted
with the number of application processes on each slave node respectively is 1,
2 and 4. Note that the case of running one application process is also the case
with the old execution model of CAPE.

The chart shows that the execution time decreases when running multiple
processes. For the case of running 2 processes, execution time is reduced to nearly
a half in comparing with the case running one process. This is reasonable cause
for each node at this section, the number of calculation commands that are the
ones that consumes the most calculation resources, are reduced by a half. For the
case of running 4 processes, the processing time is decreased but it is also greater
than the case of 2 processes. This can be explained by the mechanism of CAPE,
whenever executing an application process, it is always accompanied by a process
of monitor. Therefore, in fact, when running 4 processes of application program,
there are up to 8 processes implemented in parallel. Although monitor process
does not take too much calculation resources, it also has a certain influence on
the distribution of system resources.

On the side of the master node, the result is good while running two processes
in which the execution time also reduced by approximately a half. However, in
the case of using 4 processes, the time strongly increases, even higher than the
case of using one process. This result is unreasonable if we don’t analyze it care-
fully. Back to the results in Fig.2, when using an application process on each
slave node, CAPE can generate a nearly linear speedup with the number of
nodes, i.e. the number of calculation processes, including the maximum number
of calculation nodes is 30. Consequently, there are two main causes of the abnor-
mal increase of the execution time. The first is the architecture of the processors,
with 2 real cores and 4 threads, instead of 4 real cores. The second is due to
the multiple processes in the slave nodes have overlapping IP addresses when
processing requests of setting the socket from these nodes, that causes a con-
flict and this needs time for solving. This is also the cause of the system failure
when increasing the number of the processes on each slave node. However, this
conclusion needs to be tested by conducting experiments and measurements in
more details.

As shown in the Fig.5, it is also the preliminary conclusion that with the
machines using 2 cores — 4 threads, the optimal number of processes is 2.

Creating an Easy to Use and High Performance Parallel Platform 205

120
100
80

60
E Slave node

Execution time (s)

40 Master node

20

Number of processes

Fig. 5. Compare the execution time of program with different number of processes

3.3 Acceleration with Different Problem Sizes

To evaluate the scalability according to the problem sizes of multiple processes
model, a similar experiment was conducted, with 6 nodes (5 slave nodes and
1 master node), using 4 processes on each slave node. The results of measure-
ment are shown in the diagram in Fig. 6. These results are accordance with the
complexity of matrix multiply problem.

128.00
64.00
32.00
16.00

8.00

4.00

Execution time (s)

2.00

1.00
[7222222)
0.50 %ﬂ%’?e 3000x3000 6000x6000

0.25 i
Matrix size

Fig. 6. Acceleration with different problem sizes

206 V.H. Ha et al.

3.4 Advantages and Disadvantages

The outstanding advantage of this approach is simplicity, the program codes
are almost unchanged (except for editing in the distributor). The experiments
showed the performance is significantly increased, nearly double in the cases
using 2 processes on each slave node. Theoretically, the slave nodes using N-core
processors can run N times the application program to maximum exploit the
processing capabilities. However, each application process requires one monitor
process so the number of application processes in optimal case is less, and in this
experiment, is N/2. This is also the first drawback of this direction. The second
drawback is the possibility of conflicts among the programs on the same node.
Moreover, the use of socket to implement the data transmission on network can
also cause conflicts over resources between the programs and cause error with
the large processes numbers. Finally, the use of multiple independent processes
of the same program requires the slave nodes to have big amount of RAM to
ensure the speed of execution.

4 Conclusion

CAFE, with the basic principles and the initial experimental results have shown
its great potential to become a fully compatible implementation and high per-
formance for OpenMP on distributed-memory architecture. Some researches are
being continued to develop CAPE in many directions towards a fully implemen-
tation of OpenMP on these architectures, as well as in the direction of exploiting
the new architecture of the processor to increase its performance. For networks
using multi-core processors machines, the direction of using multiple processes
on the calculation nodes by running multiple application programs has been
tested and presented in this paper. This is a simple way, without requiring many
changes in CAPE programs and but provides higher performance than the case
of running one process in the previous model. However, there are still many
shortcomings that need to be overcome such as resource conflicts which reduces
the performance and causes system errors. That is one of our directions for
developing CAPE in the near future.

References

1. OpenMP API: OpenMP application programming interface 4.5 (2015)

2. Morin, C., Lottiaux, R., Vallée, G., Gallard, P., Utard, G., Badrinath, R., Rilling,
L.: Kerrighed: a single system image cluster operating system for high perfor-
mance computing. In: Kosch, H., Boszorményi, L., Hellwagner, H. (eds.) Euro-Par
2003. LNCS, vol. 2790, pp. 1291-1294. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45209-6_175

3. Sato, M., Harada, H., Hasegawa, A., Ishikawa, Y.: Cluster-enabled OpenMP: an
OpenMP compiler for the SCASH software distributed shared memory system. Sci.
Program. 9(2, 3), 123-130 (2001)

http://dx.doi.org/10.1007/978-3-540-45209-6_175
http://dx.doi.org/10.1007/978-3-540-45209-6_175

10.

Creating an Easy to Use and High Performance Parallel Platform 207

Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to
MPI. In: Proceedings of 19th Annual International Conference on Supercomputing,
pp. 189-198. ACM (2005)

Dorta, A.J., Badia, J.M., Quintana, E.S., de Sande, F.: Implementing OpenMP
for clusters on top of MPI. In: Martino, B., Kranzlmiiller, D., Dongarra, J. (eds.)
EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 148—155. Springer, Heidelberg (2005).
doi:10.1007 /1155726522

Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to global arrays. Parallel Comput. 31(10),
1114-1139 (2005)

Hoeflinger, J.P.: Extending OpenMP to clusters. White paper (2006)

Renault, E.: Distributed implementation of OpenMP based on checkpointing aided
parallel execution. In: Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E.,
Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 195-206. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-69303-1_22

Ha, V.H., Renault, E.: Discontinuous incremental: a new approach towards
extremely lightweight checkpoints. In: 2011 International Symposium on Computer
Networks and Distributed Systems (CNDS), pp. 227-232, IEEE (2011)

Ha, V.H., Renault, E.: Improving performance of CAPE using discontinuous incre-
mental checkpointing. In: 2011 IEEE 13th International Conference on High Per-
formance Computing and Communications (HPCC), pp. 802-807, IEEE (2011)

http://dx.doi.org/10.1007/11557265_22
http://dx.doi.org/10.1007/978-3-540-69303-1_22

	Creating an Easy to Use and High Performance Parallel Platform on Multi-cores Networks
	1 Introduction
	1.1 OpenMP
	1.2 CAPE

	2 Using Multiple Processes in Calculating Nodes to Increase Performance of CAPE in Multi-cores Systems
	2.1 Principle
	2.2 Implementation Details

	3 Experiments
	3.1 Taking Advantages of Multi-core Processors
	3.2 Acceleration with Different Processes on Each Slave Node
	3.3 Acceleration with Different Problem Sizes
	3.4 Advantages and Disadvantages

	4 Conclusion
	References

