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Abstract

Peptidoglycan constitutes one of the major “Achilles heels” of bacteria because
it is an essential component for cell integrity, and its metabolism is the target for
a great number of antibacterials of different natures, e.g., antibiotics such as
B-lactams and vancomycin, host immune system antimicrobial peptides, and
bacteriocins. Peptidoglycan synthesis requires the translocation, across the
plasma membrane, of the polymer building block, a disaccharide-pentapeptide.
This event is performed via the attachment of the subunit to a lipid
carrier, undecaprenyl-phosphate. Lipid intermediates called lipids I and II are
generated through the sequential transfer of N-acetylmuramoyl-pentapeptide
and N-acetylglucosamine moieties from nucleotide precursors to the lipid
carrier by MraY and MurG transglycosylases, respectively. The last membrane
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intermediate, lipid II (undecaprenyl-pyrophosphate-N-acetylmuramoyl(-penta-
peptide)-N-acetylglucosamine), can be further enzymatically modified through
the addition of functional groups, amino acids, or peptides, before being flipped
towards the outer leaflet of the plasma membrane where the final transfer of
the peptidoglycan subunits to the growing polymer is catalyzed by penicillin-
binding proteins. The integral membrane proteins FtsW, Mur], and AmJ
are thought to play a major role in the translocation process; however, the
exact mechanism and the role of these molecular determinants is yet to be
established. The lipid carrier is generated via a pathway involving two steps,
first a polymerization reaction of isopentenyl-pyrophosphate catalyzed by
the essential cytosoluble UppS enzyme, yielding undecaprenyl-pyrophosphate,
followed by a dephosphorylation step ensured by a yet unknown enzyme.
At each final transfer of a subunit to the elongating peptidoglycan, the lipid
carrier is released in the pyrophosphate form, which is recycled to guarantee
the high rate of polymer synthesis. Several integral membrane undecaprenyl-
pyrophosphate phosphatases, from two distinct protein families and
having their active site facing the extracytoplasmic side, have been identified,
BacA and PAP2 enzymes. These enzymes can readily dephosphorylate
the released lipid carrier precursor. Thereafter, the lipid is flipped back to
the inner side of the membrane, by a yet unknown mechanism, in order to
be reused as a glycan acceptor for a new round of peptidoglycan
polymerization.

1 Introduction

Peptidoglycan (PG) is an essential component of the cell envelope of almost all
bacteria. It is a complex heteropolymer composed of long glycan chains made up of
alternating N-acetylglucosamine (GIcNAc) and N-acetylmuramic acid (MurNAc)
residues linked by p1—4 bonds. Moreover, the glycan chains are cross-linked by
short peptides attached to the p-lactoyl group of each MurNAc residue (Vollmer et al.
2008). Its main function is to preserve cell integrity by withstanding the inner
osmotic pressure. It also contributes to the maintenance of a defined cell shape and
is involved in the processes of cell elongation and division (den Blaauwen et al.
2008). Since the inhibition of its biosynthesis or its degradation generally causes cell
lysis, PG constitutes an attractive target for the design of new antibacterial agents
(Bugg et al. 2011). The biosynthesis of this polymer (Fig. 1a) is a three-stage
process, which takes place in the cytoplasm (synthesis of nucleotide precursors), at
the plasma membrane (synthesis of lipid intermediates and their translocation), and
in the extracytoplasmic space (PG polymerization) (Lovering et al. 2012). The
second stage can be summarized as follows: first, the 1-phospho-MurNAc-penta-
peptide moiety from UDP-MurNAc-pentapeptide is transferred to the membrane
polyprenol carrier undecaprenyl-phosphate (Css-P), yielding lipid 1. Thereafter, the
addition of a GIcNAc residue from UDP-GIcNACc to lipid I leads to the formation of
lipid II which in many bacteria, especially Gram-positive species, is enzymatically
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modified (Fig. 1b). The disaccharide-pentapeptide moiety is then translocated
through the membrane to reach the outer face, where the transglycosylation
(TGase) and transpeptidation (TPase) reactions (stage 3), catalyzed by penicillin-
binding proteins (PBPs), take place. The TGase reaction releases the lipid carrier in
the undecaprenyl pyrophosphate form (Css-PP) that is actively recycled. The whole
biosynthesis of PG has been the subject of several reviews (Barreteau et al. 2008;
Boubhss et al. 2008; Sauvage et al. 2008; van Heijenoort 2010; Teo and Roper 2015).
Here, we essentially focus on the metabolisms of the lipid I, lipid II, and Css-P.

2 Biosynthesis of Lipid | by MraY

The formation of lipid I from UDP-MurNAc-pentapeptide and Css-P is catalyzed
by MraY, which belongs to the superfamily of polyprenyl phosphate N-acetyl-
hexosamine 1-phosphate transferases (PNPT) (Price and Momany 2005), includ-
ing enzymes involved in the biosynthesis of other cell surface polymers (WecA,
TagO, etc.). MraY is an integral membrane enzyme with ten transmembrane
segments and periplasmic N- and C-terminal ends (Bouhss et al. 1999). Cytoplas-
mic loops (especially the so-called loop E) are involved in substrate recognition
and catalysis. Owing to its integral membrane nature, MraY proved to be difficult
to purify. Nevertheless, orthologs from Bacillus subtilis, Escherichia coli, and
some other species were purified using either suitable detergents or nanodisc-
containing cell-free systems (Bouhss et al. 2004; Henrich et al. 2016). Crystal
structures of MraY from Aquifex aeolicus have been solved as the apoenzyme
(Fig. 2a) (Chung et al. 2013) or in complex with muraymycin D2 (MD2; Fig. 2b)
(Chung et al. 2016), a naturally occurring ribosamino-uridine inhibitor which is
competitive toward the nucleotide substrate (Tanino et al. 2011). Both the apoen-
zyme and the enzyme-inhibitor complex crystallized as a dimer with a hydropho-
bic tunnel at the dimer interface large enough to accommodate phospholipids.
After binding MD2, MraY undergoes large conformational rearrangements near
the active site, especially at the level of loop E (Fig. 2b). A two-step catalytic
mechanism with an enzyme-phospho-MurNAc-pentapeptide covalent intermedi-
ate was first proposed from experiments carried out with crude membrane extracts
(van Heijenoort 2010). However, recent data obtained with the pure enzyme are
rather in favor of a one-step mechanism without covalent intermediate
(Fig. 2c), consistent with a random bi-bi model (Al-Dabbagh et al. 2016; Liu
et al. 2016). Site-directed mutagenesis and examination of the crystal structure
helped identifying certain active site residues. Three aspartyl and one
histidyl residues are particularly important for catalysis: D98, D99, D231, and
H289 in B. subtilis and D117, D118, D265, and H324 in 4. aeolicus. One of
the aspartyl residues (D231/265) interacts with an essential Mg”" ion which binds
the pyrophosphate bridge of the nucleotide substrate (Chung et al. 2013). Another
residue (D98/117) deprotonates a hydroxyl group of the lipid substrate prior to the
nucleophilic attack of UDP-MurNAc-pentapeptide by Css-P (Al-Dabbagh et al.
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Fig. 2 (a) Structure of MraY from 4. aeolicus (PDB entry, 4J72). Only one protomer is colored,
the other one is shown in grey. Each transmembrane segment is colored from the red (N-terminus)
to the blue (C-terminus). (b) Zoom at MraY active site in the apoenzyme (up) and in the complex
with the MD2 inhibitor (down) (PDB entry, SCKR). (¢) Proposed one-step MraY reaction mech-
anism. The amino acid numbering is that of the B. subtilis sequence. Uri uridine, Css undecaprenyl
chain, R p-lactoyl-pentapeptide

2008). Surprisingly, MD2 interacts neither with the three aspartyl residues nor
with the Mg?" ion, suggesting that the mode of binding of this nucleoside
antibiotic differs from that of UDP-MurNAc-pentapeptide (Chung et al. 2016).
MraY is the target of many natural or synthetic nucleoside inhibitors belonging to
the tunicamycin, ribosamino-uridine, uridylpeptide, and capuramycin classes
(Dini 2005). However, owing to toxicity problems, none of them is of clinical
use. MraY is also inhibited by the lysis protein E from bacteriophage ®X174
(Zheng et al. 2009), as well as by cationic antimicrobial peptides containing the
RWxxW motif (Bugg et al. 2016).
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3 Biosynthesis of Lipid Il by MurG

The formation of lipid II from lipid I and UDP-GIcNAc is catalyzed by MurG, which
belongs to the glycosyltransferase B superfamily (Unligil and Rini 2000). MurG is
associated to the inner face of the plasma membrane (Bupp and van Heijenoort
1993). Its purification (Crouvoisier et al. 1999; Ha et al. 1999) and site-directed
mutagenesis of invariant amino acids (Crouvoisier et al. 2007) have been reported
for the E. coli enzyme, and the structures of the orthologs from E. coli and
Pseudomonas aeruginosa have been solved (Brown et al. 2013; Ha et al. 2000;
Hu et al. 2003). Crystal structures reveal that MurG contains two domains separated
by a deep cleft (Fig. 3a). The C-terminal domain harbors the UDP-GIcNAc binding
site, while lipid I is presumably bound by the N-terminal domain (Ha et al. 2000).
The width of the cleft is reduced upon UDP-GIcNAc binding, the enzyme adopting a
more closed conformation (Hu et al. 2003). MurG obeys an ordered bi-bi mechanism
in which UDP-GIcNAc binds first (Chen et al. 2002). An as yet unidentified residue
is believed to deprotonate the C4 hydroxyl group of the MurNAc moiety of lipid I,
thereby generating an oxyanion which attacks the C1 of GlcNAc of the nucleotide
substrate to form an oxycarbenium-ion-like transition state. Finally, the reaction
results in the inversion of the anomeric configuration of GlcNAc in lipid II (Fig. 3b).
MurG is inhibited by uridine-linked transition-state mimics (Trunkfield et al. 2010)
as well as by compounds derived from the screening of chemical libraries (Hu et al.
2004). Recently, steroid-like compound murgocil was found to selectively hinder PG
synthesis in Staphylococci through MurG inhibition (Mann et al. 2013).

4 Modifications of Lipid Intermediates

PG is subjected to many types of modifications leading to an important variability of
its chemical structure within the bacterial world, which can be involved in resistance
towards various antibacterial agents or modulate bacterial recognition by host
immune systems. These modifications occur at various steps of its biosynthesis,
but those undergone at the level of lipids I and II are especially amidation and extra
amino acids or protein attachment (Fig. 1b). For example, the LtsA protein from
Corynebacterium glutamicum is responsible for the amidation of PG meso-A,pm
residues (Levefaudes et al. 2015). LtsA catalyzes the transfer of an amino group
from L-glutamine onto the carboxyl group of lipid II meso-A,pm. Amidation can
also occur on the glutamate residue of lipid 11, as in Staphylococcus aureus where the
glutamine amidotransferase-like protein GatD and the Mur ligase homolog MurT in
concert catalyze the formation of p-isoglutamine at position 2 of the peptide stem
(Figueiredo et al. 2012; Miinch et al. 2012). PG is the point of covalent attachment of
cell envelope proteins (Dramsi et al. 2008). In Gram-negative bacteria, Braun’s
lipoprotein seems to be the unique PG-linked protein (Braun and Rehn 1969).
This 58 amino acid-long triacylated protein is anchored in the outer membrane. In
E. coli, the side chain amine of the C-terminal lysine residue of Braun’s lipoprotein is
linked to the a-carboxyl group of the meso-A,pm residue of lipid II, and the
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formation of this bond is catalyzed by one of the four L,p-transpeptidase activities
identified in this species (Magnet et al. 2007). The major modifications of lipid II are
performed in Gram-positive bacteria by different enzymes responsible for the
addition of interpeptide bridges required for PG polymerization (transpeptidation)
in these species. The Fem transferases synthesize interpeptide bridges from activated
glycine or L-amino acids as aminoacyl-tRNAs (Mainardi et al. 2008). For instance,
FemX, FemA, and FemB peptidyltransferases from S. aureus synthesize a penta-
glycine interpeptide bridge by successive incorporations of a first glycine residue
(FemX), the next two glycines (FemA), and finally the last two glycines (FemB) to
the e-amino group of L-Lys of lipid II peptide stem (Schneider et al. 2004). In
Enterococcus faecium, the interpeptide bridge consists of a single p-amino acid (p-
aspartic acid), the addition of which is performed by Aslg,, an enzyme of the
ATP-grasp superfamily; activation occurs through the formation of p-aspartyl phos-
phate in an ATP-dependent reaction (Bellais et al. 2006). The amino group of the
interpeptide bridge of lipid II from Gram-positive bacteria is also the site of
attachment of specific proteins. This covalent attachment is ensured by the sortase
family of transpeptidases, which have been shown to be essential in pathogenesis
(Bradshaw et al. 2015).

5 Flipping of Lipid Il

Once synthesized and possibly modified, lipid II is translocated toward the outer
leaflet of the plasma membrane to allow the transfer of the PG building block
(disaccharide-peptide) to the growing polymer by the PBPs (TGase and TPase
reactions) (Fig. 1a). The knowledge of the molecular determinant(s) and the mech-
anism of this flipping event represent the “Holy Grail” in this research field, and
recent progresses have opened intense debates as several protein “flippase” candi-
dates have arisen. The integral membrane FtsW protein and its orthologs (RodA,
SpoVE) from the SEDS (shape, elongation, division, and sporulation) superfamily
have long been considered as playing a central role in this process because of their
presence in virtually all PG-containing bacteria, their essentiality, and their interac-
tion with other PG biosynthesis enzymes in the so-called elongasome and divisome
complexes (Boyle et al. 1997; Fraipont et al. 2011). Moreover, Mohammadi et al.
have reported biochemical evidence for a flippase activity of FtsW after its recon-
stitution into lipid II-containing liposomes (Mohammadi et al. 2011). In their in vitro
assays, a fluorescent 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) analogue of lipid II
was used, which emphasized that the presence of FtsW in liposomes enhances the
translocation of NBD-lipid II from one leafiet of the bilayer to the other, as shown by
a sharp increase in fluorescence extinction with a fluorescence quencher. These data,
supporting a direct role of FtsW in flipping lipid II, did not put an end to the story as
Mur] (or MviN), another contender for this activity, was strengthened. The integral
membrane protein MurlJ, which is essential for PG biosynthesis in E. coli, belongs to
the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily
(Hvorup et al. 2003; Inoue et al. 2008; Ruiz 2008). Wzx, another member of this
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superfamily, mediates, by an as yet unknown mechanism, the translocation of Css-
PP-linked intermediates in the biosynthesis pathways of enterobacterial common
antigen (ECA), O-antigen from lipopolysaccharides (LPS), capsule, and other cell
surface polymers (Islam and Lam 2013). Sham et al. recently designed an elegant
in vivo assay to demonstrate the involvement of MurJ in lipid II translocation (Sham
et al. 2014). They expressed in AmurJ E. coli cells a functional cysteine-containing
variant of MurJ which can be inhibited by a sulfhydryl-reactive reagent. Then, they
showed that upon MurlJ inhibition, the newly synthesized lipid II was no more
accessible to the colicin M toxin, a lipid [I-degrading enzyme acting exclusively at
the periplasmic side of the membrane (see below), strongly suggesting an arrest of
lipid II translocation in these conditions. The authors concluded that Mur] was the
essential lipid II flippase and that other factors catalyzing this event in E. coli were
therefore unlikely to exist. Nevertheless, the support of MurJ as a general lipid 11
flippase was hindered by the fact that MurJ was not essential in B. subtilis and that no
flippase activity was observed in Mohammadi et al.’s in vitro assay in MurJ-
containing liposomes (Fay and Dworkin 2009; Mohammadi et al. 2011). The
nonessentiality of MurJ in B. subtilis let the MurJ’s supporters to argue that an
alternate lipid II flippase could exist in this bacterium. A search for such an ancillary
translocase highlighted a synthetic lethal phenotype caused by the inactivation of
Mur] together with AmJ (alternate to MurJ), another membrane protein with no
sequence similarity with MurJ, FtsW, or other transporters (Meeske et al. 2015).
Furthermore, AmJ from B. subtilis was able to support the growth of Mur]-
inactivated E. coli cells, undoubtedly showing that MurJ and AmJ display a redun-
dant function. As to whether FtsW and/or MurJ/AmJ are themselves part of the
translocase or function as essential partners or regulators of the latter and the
mechanism by which this event occurs remain largely to be deciphered, and this
exciting debate seems to be far from being closed (Ruiz 2016).

6 Synthesis and Recycling of the Lipid Carrier

Css-P is a general lipid carrier for cell surface polymers subunits, which are
synthesized in the cytoplasm and must be transported throughout the plasma mem-
brane (e.g., PG, teichoic acids, LPS O-antigen) (Manat et al. 2014). Therefore, a
unique Css-P pool must be shared by several metabolic pathways in a single cell,
implying a fine-tuned synchronization in the synthesis of these various polymers.
The (re)generation and delivery of this essential lipid should thus be tightly con-
trolled. However, to date, little is known about these regulation processes. Css-P
originates from the dephosphorylation of its precursor, Css-PP, itself being generated
by de novo synthesis or released after each TGase reaction at the periplasmic side of
the membrane (Fig. 1a). The de novo synthesis of Css-PP is catalyzed by the
essential cytosoluble UppS enzyme belonging to the cis prenyltransferase family
(Teng and Liang 2012). UppS performs eight sequential condensations of the five-
carbon building block, the homoallylic isopentenyl pyrophosphate substrate
(Cs-PP), with the allylic 15-carbon-chain trans, trans-farnesyl pyrophosphate
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(C,5-PP), yielding di-trans, octa-cis-Css-PP. Several structures of UppS in the
apo-form (Fujihashi et al. 2001) and in complex with C;s-PP, Cs-PP and the Mg*"
ion cofactor (Guo et al. 2005), together with several mutagenesis and kinetic studies
(Teng and Liang 2012) have provided considerable knowledge of this catalytic
process. As an essential enzyme, UppS is another potential target for novel antibac-
terials; therefore, UppS inhibitors are searched through different approaches (Jukic
et al. 2016). UppS forms a dimer, with each protomer enclosing a deep hydrophobic
cleft which accommodates the isoprenoid carbon tail during its elongation (Fig. 4a).
UppS binds first the allylic C,s-PP substrate, triggering a conformational change that
allows this binary complex to further bind Cs-PP, whose phosphate groups interact
with an aspartyl residue from the active-site tunnel entrance (E. coli UppS D29
residue) via a magnesium bridge. A concerted mechanism was proposed, in which
the release of the pyrophosphate group from the allylic substrate and the nucleophilic
attack of C;5-PP Cl-atom by Cs-PP C4-atom, ending in the formation of a new
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double bond, occur simultaneously (i.e., no carbocation intermediate being formed)
(Fig. 4b). The catalytic aspartyl D26 residue was then proposed to play a central role
by controlling the migration of Mngr from Cs-PP to C;5-PP, where the metal ion may
then facilitate the C;5-PP pyrophosphate group dissociation, concomitantly to the
nucleophilic attack. The length of the final product is controlled by a molecular ruler
mechanism, where bulky residues from the bottom of the tunnel block further
condensation reaction via steric hindrance (Ko et al. 2001). Therefore, the newly
synthesized Css-PP pushes away a so-called entrance loop, which allows the relax-
ation of the active-site tunnel ready for a new cycle of synthesis.

The dephosphorylation of Cs5-PP represents the ultimate step in the formation of
the carrier lipid, which occurs in the course of de novo synthesis and also recycling
(Fig. 1a). In contrast to the previous step that involves the single and essential UppS
enzyme, the dephosphorylation of Cs5-PP can be catalyzed by four different integral
membrane enzymes in E. coli (El Ghachi et al. 2004, 2005). These enzymes belong
to two distinct protein families: BacA, which constitutes a novel family of phospha-
tases present in a majority of bacteria, and three members of the ubiquitous PAP2
family (phosphatidic acid phosphatases of type 2) named PgpB, YbjG, and LpxT
(formerly YeiU). Multiple genes inactivation is then required to elicit a lethal
phenotype, raising the question of the significance of such a redundancy of enzymes
for a single function. BacA requires a divalent metal ion for activity, with Ca®"
providing the highest activity as observed in vitro (Chang et al. 2014; Manat et al.
2015). BacA enzymes display two regions with a strong degree of conservation,
which likely harbor active site residues. Mutagenesis studies have shown that BacA
requires, especially, three amino acid residues belonging to these conserved regions
(S24, E21, and R174) in order to display its activity both in vivo (functional
complementation assay) and in vitro (kinetic analysis) (Manat et al. 2015). BacA
membrane topology studies strongly suggested that these catalytic residues are
facing the periplasm (Fig. 5). The PAP2 enzymes form a large family of integral
membrane and soluble phosphatases with various substrates and physiological
functions (Sigal et al. 2005). Interestingly, PgpB displays a dual function as being
involved, in addition to Css-P metabolism, in the synthesis of phosphatidylglycerol
through phosphatidylglycerol phosphate dephosphorylation (Dillon et al. 1996).

BacA PAP2 (PgpB, YbjG, LpxT)

(e

e
(5

Periplasm

[}

Fig. 5 Schematic representation of the Css-PP phosphatases from E. coli



228 H. Barreteau et al.

All PAP2 enzymes likely share a similar catalytic mechanism, which has been
proposed to rely on a catalytic triad with one aspartyl and two histidyl residues.
Based on biochemical and structural studies of different PAP2 enzymes, the catalysis
should occur via a nucleophilic attack of the phosphate anhydride bond of Cs5-PP by
a catalytic histidine, leading to the formation of a phospho-histidine enzyme inter-
mediate and the release of Css5-P (Ishikawa et al. 2000). The aspartyl residue may be
involved in a charge relay system allowing this nucleophilic attack, while the
additional histidine may protonate the leaving Css-P product. In a second step, the
phosphate group is released through its transfer to a water molecule, generating
inorganic phosphate, or to another specific acceptor molecule. In such a way, LpxT
enzyme catalyzes the transfer of a phosphate group from Css-PP onto the lipid A
moiety from LPS (Touzé et al. 2008a). Even though the physiological role of the
resulting phosphorylated lipid A is yet unknown, LpxT takes part in a complex
network of LPS modifications which are involved in bacterial adaptation to various
conditions (Herrera et al. 2010; Kato et al. 2012). This unexpected phospho-
transferase activity further suggests that other Cs5-PP phosphatases may also exhibit
similar activities with specific acceptor molecules (Manat et al. 2014). Interestingly,
the active site residues of PAP2-type Cs5-PP phosphatases are also oriented towards
the periplasm, as demonstrated by several biochemical studies and recently con-
firmed by the 3D structure of PgpB (Fan et al. 2014; Tatar et al. 2007; Touzé et al.
2008Db). The periplasmic orientation of the active sites of BacA and PAP2 suggests
that these enzymes are rather involved in the recycling of Css-PP. Indeed, the latter
lipid is released at the outer leaflet of the plasma membrane as a product of TGase
reactions, and it is therefore readily accessible to BacA and PAP2 enzymes. In
contrast, it is unclear how the de novo synthesized Css-PP, present at the inner
leaflet after its synthesis by UppS, is dephosphorylated. As to whether a yet
unidentified Css-PP phosphatase with a cytoplasm-oriented active site exists or
whether the Css-PP flips toward the outer leaflet in order to be dephosphorylated
needs further investigations. Another open issue concerns the mechanism by which
the lipid carrier is translocated back to the inner leaflet, once dephosphorylated at the
periplasmic side, in order to be reused as sugar acceptor for another cycle of PG (and
other polymers) synthesis.

7 Antibacterials Targeting PG Lipid Intermediates and Cs5-P
(Re)generation

Lipid II is a well-validated drug target, especially in Gram-positive bacteria, where
it is relatively well accessible from the outside due to the absence of an outer
membrane. Many antibacterials bind lipid II in a noncovalent way. They are
usually polar and of small size, and most of them are cyclic peptides,
depsipeptides, or post-translationally modified peptides. Vancomycin is probably
the most famous lipid II-targeting antibacterial, and it is also the only one of
clinical use. This glycopeptide tightly binds to the p-Ala-p-Ala moiety of lipid II
peptide stem, thereby inhibiting PG polymerization (TPase reactions) (Perkins



12 Lipid Intermediates in Bacterial Peptidoglycan Biosynthesis 229

1969). The glycodepsipeptide ramoplanin, which is currently in the late stage of
clinical development for the treatment of Clostridium difficile infections, has been
known for a long time to inhibit TGase reactions. Recent studies have proposed
ramoplanin to form membrane amphipathic symmetric dimers sequestrating lipid
II, possibly at the level of its pyrophosphoryl moiety (Hamburger et al. 2009).
Other antibacterials, such as a few lantibiotics and proteins from the colicin M
family, target lipid II on various epitopes. Among the lantibiotics, which are gene-
encoded peptides produced by some strains of bacilli (Willey and van der Donk
2007), the type-A nisin exhibits a dual mode of action by interfering with PG
synthesis and also by disrupting the electric potential of the plasma membrane.
Nisin uses the pyrophosphate moiety of lipid II as a docking site, which improves
its efficiency to form pores in the membrane (Breukink and de Kruijff 2006). The
type-B lantibiotic mersacidin is thought to bind to the GlcNAc moiety of lipid II,
thereby inhibiting TGase reactions without pore formation (Brotz et al. 1998).
Despite the fact that the molecular details of the latter interaction are yet to be
resolved, an NMR study revealed conformational changes of mersacidin upon lipid
IT binding, suggesting a conformational adaptability of this class of antibiotic that
might be central to their mode of action (Hsu et al. 2003). The colicin M protein
and its orthologs display a unique phosphodiesterase enzymatic activity towards
lipid II, releasing undecaprenol and pyrophospho-disaccharide-pentapeptide as
dead end products, thus leading to cell death (El Ghachi et al. 2006). Unlike the
other lipid II-targeting compounds, these proteins are produced by Escherichia,
Pseudomonas, Pectobacterium, and Burkholderia genera and are active against a
narrow range of related species (Barreteau et al. 2009; Grinter et al. 2012). This
specificity is due to their mode of access to the periplasm of the target cell that
relies on specific interactions with proteins used as receptors and translocation
machineries (Cascales et al. 2007). In the search for new antibiotics, the exploita-
tion of uncultured bacteria could be a fruitful approach. For example, the Gram-
negative soil bacterium Eleftheria terrae produces a 1.2-kDa compound named
teixobactin, which inhibits the growth of methicillin-resistant S. aureus,
vancomycin-resistant Enterococcus, and Mycobacterium tuberculosis, but is not
active against Gram-negative bacteria (Ling et al. 2015). Even though it also
interacts in vitro with lipid T and Css-PP, the formal mechanism of action of
teixobactin was shown to rely on an interaction with the pyrophosphoryl and
MurNAc moieties of lipid II.

The (re)generation of the lipid carrier is also the target of antibacterial com-
pounds. Bacitracin, a mixture of related cyclic peptides produced by some strains of
B. subtilis, tightly binds to the pyrophosphoryl moiety of Css-PP. The sequestration
of Cs5-PP prevents an efficient production of the active form of lipid carrier, Css-P,
thus inhibiting PG biosynthesis (Siewert and Strominger 1967; Stone and
Strominger 1971). In E. coli, the overexpression of Css-PP phosphatases-encoding
genes was proven to overcome bacitracin cytotoxicity (El Ghachi et al. 2004). Css-P
was also shown to be the target of friulimycin, produced by Actinoplanes friuliensis
(Schneider et al. 2009), and of laspartomycin C, produced by Streptomyces
viridochromogenes (Kleijn et al. 2016). Both lipopeptides are branched with C;4
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and C,s fatty acids, respectively, and they act by Css-P sequestration, preventing
lipid II formation.

8 Research Needs

The biosynthesis of PG lipid intermediates by the essential MraY and MurG
enzymes is now well decrypted, numerous kinetic and structural studies providing
good knowledge of these enzymatic steps. Nevertheless, substrate recognition and
mechanistic details are further required to get an in-depth comprehension of these
reactions, which requires higher resolution, substrate-liganded protein structures.
This knowledge offers a framework for the study of mechanisms of action of yet
identified inhibitors and the design or the high-throughput screening of novel
molecules for therapeutic applications. The enzymatic modifications of lipid II,
which are bacterial strain-specific, represent an important field of investigation.
These modifications are either essential, such as the addition of peptide bridges in
Gram-positive bacteria, or required for adaptation to certain environmental condi-
tions (e.g., resistance towards PG-targeting antibacterials and modulation of host
immune response). The physiological functions of these modifications, the enzy-
matic processes underlying these structural changes, and their regulation need more
research efforts. The design of antibacterials directed against these enzymatic steps
can be an interesting approach to target specific pathogens without disturbing the
whole microbiota. As already mentioned, the mechanism of lipid II translocation
across the plasma membrane is the subject of a passionate controversy with several
contenders as the true flippase. Whether these different candidates participate in that
process and the way the latter is conducted remain largely to be deciphered through
more genetic, biochemical, and structural studies. It will be of particular interest to
highlight the role of the isoprenoid lipid, which is a universal glycan carrier. It is
conceivable that the particular structure of this lipid may play a decisive role in the
translocation event. This step is considered as an attractive drug target because it
may be readily accessible from the extracytoplasmic side of the membrane. The (re)
generation of the lipid carrier constitutes another interesting field of research espe-
cially with recent findings in the function and properties of the multiple Cs5-PP
phosphatases. The emphasized LpxT phosphotransferase reaction suggests that other
PAP2 enzymes may perform comparable reactions with specific acceptor molecules.
The physiological functions of such reactions, including the LpxT-dependent lipid A
modification, will have to be further addressed. The role of the multiplicity of Css-PP
phosphatases in a single bacterium, their regulation, and their mechanism of action
will also have to be examined. The fact that all Css-PP phosphatases yet identified
exhibit a periplasm-oriented active site suggests their involvement in lipid carrier
recycling, raising the question of the de novo synthesis pathway which requires a
similar enzymatic reaction. Finally, the mechanism of translocation of Css-P back to
the inner leaflet of the plasma membrane, to be reused, is another open question.
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