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Abstract

Hydrocarbons represent “energy-rich” growth substrates for aerobic microorgan-
isms and in principle allow high growth yields. In contrast, the energy gain with
hydrocarbons in many anaerobic microorganisms is very low. The maximum gain
of energy per mol of hydrocarbon degraded in the catabolism is predicted from
calculated AG values. Some anaerobic degradation reactions of hydrocarbons
with very low-energy gain as well as anaerobic activation reactions of hydrocar-
bons deserve particular attention from a bioenergetic point of view.
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1 Introduction

The study of microbial growth with hydrocarbons and their degradation often gets
into energetic aspects, even though at a glance the metabolism of hydrocarbons is not
basically different from that of other organic compounds. The overall metabolism in
a chemotrophic organism follows the universal bifurcate carbon flow: One part of the
carbon substrate together with sources of other elements (N, P, S, Fe, etc.) is used for
synthesis of cell components, a process referred to as anabolism (synthetic metab-
olism, assimilation). The anabolic “upgrading” of the substrate requires and dissi-
pates much energy, which is usually provided in the form of ATP and derived from
another part of the carbon substrate. This part of the substrate necessarily undergoes
degradation; the degradative substrate flow is referred to as catabolism (energy
metabolism, dissimilation). Still, there are some energetic peculiarities in the metab-
olism of hydrocarbons which deserve attention. (1) First, even though flammability
of hydrocarbons at the air implies “energy richness,” they are not energy rich under
all circumstances. In the absence of oxygen, hydrocarbons are less energy rich than
for instance the less flammable glucose. Whereas the latter provides energy for
various modes of fermentative growth, fermentation of saturated, aromatic, and
many other unsaturated nonaromatic hydrocarbons is energetically not feasible';
this is one reason why they tend to be preserved in deep reservoirs. (2) Second,
hydrocarbons are chemically unreactive at room temperature. Their use in the
metabolism has to begin with an activation reaction, the introduction of a functional
group, which may require and “waste” energy from the overall energy budget of the
microorganism. Also energies of transition states in the activation reactions have
been of interest for a mechanistic understanding. (3) Third, for the theoretical
treatment of energy conservation with hydrocarbons as well as for the estimation
of microbial cell mass involved in hydrocarbon (petroleum) bioremediation, growth
yields (cell mass produced per amount of hydrocarbon utilized) are of interest. This
chapter briefly addresses some of these energetic peculiarities and quantitative
aspects of hydrocarbon metabolism (Fig. 1).

2 Some Basic Thermodynamic Aspects of Hydrocarbons

Hydrocarbons, the main constituents of oil and gas, are the major source of energy in
our industrialized society. A prominent property of hydrocarbons is thus their
“energy richness.” More precisely, this term expresses that energy is released if
they are oxidized with oxygen and that the amount of energy released per unit mass
(the gravimetric energy density) of a liquid or solid hydrocarbon is higher than that
from the oxidation of many other chemical compounds or elements (Appendix
Table 5). In the case of gaseous hydrocarbons, a high volumetric energy density is

'A fermentable hydrocarbon is, for instance, the unsaturated acetylene. Also some other unsaturated
hydrocarbons are, at least theoretically, fermentable.
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Fig. 1 The metabolism of hydrocarbons in chemotrophic microorganisms follows the universal
bifurcate substrate flow into cell synthesis and degradation. A peculiarity in comparison to the
metabolism of most non-hydrocarbon substrates is the activation which may require and dissipate
energy

obvious if compared to that of other gases (Appendix Table 5). This “energy
richness” is due to the high affinity of the two constituents, hydrogen and carbon,
for oxygen and to the absence of oxidized carbon groups (such asC — OHorC = O
groups). The low atomic masses of hydrogen and carbon® is another factor that
contributes to the high gravimetric energy density. It is the high gravimetric energy
density which, together with the abundance of hydrocarbons in the form of petro-
leum, has made them ideal fuels for vehicles and aircrafts. Another technical
advantage is the formation of volatile products (CO,, H,O vapor).

Feasibility and maximum energy gains of formulated stoichiometric reactions are
expressed by their free energy changes, the AG -values. If a reaction is feasible under
the given conditions (exergonic reaction), the AG-value is negative by convention.
A positive value necessarily indicates that the reaction can in principle not occur
under the given conditions (endergonic reaction), and a value of zero indicates that
reactants and products are in equilibrium. Most reactions in chemistry and biology
are associated with liberation of heat to the surroundings (exothermic reactions),

’H, 1.008; C, 12.011.
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which is expressed by their heat or enthalpy® changes (AH-values). Some reactions
consume heat from the surroundings (endothermic reactions), and a few of such type
also occur in microorganisms. Free energy or enthalpy changes are calculated from
free energies (Z,f formation (AG;-, sometimgs also termed G;-) or enthalpies of
formation (AH,, sometimes also termed H), respectively, which are given for
standard conditions* and for which there is a broad data basis. Appendix Table 6
compiles the values under standard conditions for several hydrocarbons and a
number of other compounds which often appear in catabolic reactions. For a reaction

aA+bB—-c C+dD )

(with a, b, c, d being the stoichiometric factors), the standard free energy change
(viz., for all compounds at standard conditions) is the difference

AG = (c AG,C+d AG}D) - (a AG,A +b AG}B) @)

Calculation of the free energy change AG for nonstandard activities (a, in case of
gases termed fugacity; a must not be confused with the stoichiometric factor a)
considers the “nonchemical” energy change associated with dilution or concentra-
tion (“volume work”) of each component. These are logarithmic functions involving
the gas constant and absolute temperature, the sum of which modifies the free energy
change for standard activities, AG>“"%"“ according to

a. - a
AG = AGStandard 4 RTIn C D (3)
al - ab
A 9B
T'in this equation must be the temperature for which the underlying AG> "% value

has been given (viz., usually 298.15 K), and AG values at other temperatures cannot
be calculated by this equation.’ The activities (effective concentrations) of solutes, a,
can be usually substituted with acceptable precision by the actual concentrations in
mol 17'; similarly, the fugacities (effective pressures) of gases can be substituted by

3Heat change of reaction under constant pressure.

4T =298.15K (25°C); standard activity of solutes, a = 1; standard (partial) pressure of gases =

101 kPa (standard fugacity = 1).
SAGS4ard yalues at temperatures other than 298.15 K can be calculated via the integrated “Delta-
version” of the Gibbs-Helmholtz equation (2 %)p = 24 Assuming that temperature dependence
of AH within the range of physiologically relevant temperatures is negligible, the free energy
change at temperatures other than 298.15 K (but at standard activities) is

T . T .
AGStandard — AG 1— AH
r 298.15 + 298.15

The same result is obtained from AG = AH — TAS S by assuming that AH and AS are essentially
constant within the range of physiologically relevant temperatures.
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their pressures in atm, an otherwise obsolete unit.® With such simplification, as well
as with R = 8.315 x 107°kJ K 'mol~!, T = 298.15 K (25°C), the common use of
kJ as energy unit, and Inx = 2.303 1g x, (3) converts to

: [c]° D]
AG=AG +5.71 Ig AF [B}b (at 298.15K) €))
Hydrocarbons in the aqueous surroundings of microorganisms can be often consid-
ered with good approximation to have the activities of their gaseous, liquid, or solid
standard states, Viz., dxydrocarbon = 1, or [Hydrocarbon| = 1. For instance, if a gaseous
hydrocarbon at standard pressure dissolves in water and reaches the dissolution
equilibrium (AG of transfer = 0), it is thermodynamically treated like the gas,
even though the dissolved concentration is in the range of 107>M (Appendix Fig. 6).
The same holds true for liquid hydrocarbons: Despite the extremely low saturation
concentration of long-chain alkanes in water, the hydrocarbon dissolved in water has
the activity (strictly speaking the chemical potential) of the pure liquid hydrocarbon
phase. If inorganic (fully oxidized) Carbon is involved, also acid-base dissociation
has to be Considered (Appendix Fig. 7).

The free energy data (Appendix Table 6) reveal some basic and sometimes
“counterintuitive” thermodynamic properties of hydrocarbons. Many hydrocarbons
are metastable (thermodynamically unstable; AGf positive) with respect to the
elements, even though decay into the elements is usually “kinetically inhibited.” In
the case of acetylene (ethyne), however, compression at room temperature can
trigger the release of the energy in a violent decay into the elements. For this reason,
compressed welding acetylene in steel bottles must be stabilized by adsorption to a
carrier such as acetone. But also hydrocarbons that are stable with respect to the
elements (even the rather stable ethane) are metastable with respect to decay into
native carbon and methane, the most stable hydrocarbon:

2CyHg — CGraphite + 3CH,y

AG = —43.3kJ(mol C,Hg) ' )
In the presence of CO, or bicarbonate, even methane is metastable:
CHy + CO; — 2CGraphite +2H,0 ©)
AG" = —29.2kJ(mol CHy) ™"
CHy + CO; — 2CGraphite +2H,0 7

AG" = —29.2kJ(mol CH,) ™"

®The apparent correctness of the old unit atm is due to the fact that it is numerically equivalent with
standard fugacity = 1. Activities and fugacities are by definition without units, and the formally

correct approximated substitution would ay = &?’3?7"’;“”, etc. Here, the use of the modern unit Pa or

kPa for [A], etc. is coherent.
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Nevertheless, formation of elemental carbon by reactions (5, 6, and 7) is kinetically
strongly inhibited and has not been observed in abiotic or biotic systems at room
temperature. But once the element has been formed by geothermal metamor-
phism of buried biomass or petroleum (Tissot and Welte 1984), it is the thermo-
dynamically stable species of carbon as long as additional reducing or oxidizing
components are absent. In the presence of a mild oxidant, not the element but
rather CO, and its ionic forms, HCO;~ and CO;% ", are the thermodynamically
stable forms of carbon. Other forms or intermediate oxidation states (H,C = O,
CO,HCOOH, C; -compounds, etc.), like all natural organic compounds, are
metastable’ with respect to a conversion to CHy, CO, and H,0, even without
involvement of an oxidant or reductant. If on the other hand a reductant with
negative enough redox potential is present, the only stable form of carbon is CHy.
Again, intermediate oxidation states (CH3OH, reduced C,-compounds, etc.) are
metastable. The stability “regions” of the mentioned carbon species are elegantly
illustrated in a plot of the redox potential versus the pH (E-pH-diagram, Pourbaix
diagram; Fig. 2).

Another thermodynamically interesting principle is revealed in the homolo-
gous series of n-alkanes. n-Alkanes become increasingly unstable with increasing
chain length, whereas the heat of formation shows an opposite trend (Fig. 3).®
The heat is the energy released during C—H bond formation from the elements
(even though such alkane formation is not observed in reality). Hence, the
thermodynamically feasible disintegration of a long-chain alkane into its ele-
ments would consume heat:

CisH34 — 16 Cgraphite + 17Hp

AG" = —49.8kJ(mol CsHaq) ™" ®)
AH" = +454.4k)(mol CsHa4) "

This thermodynamically “allowed” cooling of the surroundings (and the system),
which is a decrease in the entropy of the surroundings, is explained by the numer-
ically higher entropy increase of the reacting system; the molecules of the gaseous
H, that are formed in high number carry a high amount of “hidden heat.” Further-
more, the homologous n-alkane series reveals the transition from gaseous to liquid
hydrocarbons (n-butane/n-pentane), which is mirrored by a discontinuity of the AH;-

"The extremely low hypothetical equilibrium concentrations of these species can be calculated.
8Lir‘learity in the series of the higher alkanes may be a “pre-assumption” and basis for calculation of
AGy or AH, values of compounds in homologous series via incremental additions. In the numerous
sources of thermodynamic data, the original basis underlying such data is often difficult to
trace back.

°Also, the highly ordered (“improbable”) structure of the long-chain alkane contributes to thermo-
dynamic instability.



2 Energetic and Other Quantitative Aspects of Microbial Hydrocarbon. .. 39

0.4 |- i -

Co, (9)

(vl

Fig.2 Stability diagram (Pourbaix diagram) of carbon species. The equilibrium (borderline) redox

potential £ (in V) as a function of pH was calculated from AG/ values (in J) according to E =

AGE  — AG?
Z Lrox FZ Lol 4 00% lg% with n = number of electrons; F = 96,485 C

red

mol~!; a = activity . ITa,, includes the H -activity, the negative logarithm of which is the
pH. Activities or fugacities: CO,, CHy, 1.0; HCO3 ™~ and CO3%~, 1072 (black) or 1.0 (gray). The
borderlines between CO,(g), HCO; ™~ and CO52~ in their standard states represent the pK, values.
Note that the pK,; value for CO,(g) is 7.8 (vertical gray line), whereas that of CO, (aq) is 6.35 (not
shown here), the more commonly known one. The system H,O/H, (electrochemically the same as
2H* /H,) is indicated for comparison

values. This is because liquid pentane has “given off” the heat of condensation to the
surroundings (liquid n-pentane, the real standard state: AH; = —173kJmol™!;
hypothetical gaseous standard state: AH; = —146 kJ mol~!). The discontinuity
of AGy is less pronounced. Liquid pentane as a highly volatile compound
(boiling point, 36.2 °C) is almost in equilibrium with the gaseous state (liquid #-pentane:
AGf = —9.21 kJ mol~'; hypothetical gaseous standard state: AGf = —8.11 kJ mol ).
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3 Energetics of Hydrocarbon Utilization by Microorganisms

The biological utilization of a hydrocarbon can be examined bioenergetically (1) on
the level of the net reaction performed by a microorganism and (2) on the level of
individual enzymatic reactions. Among the latter, those of hydrocarbon activation
are usually of highest interest and therefore briefly addressed in this overview.

3.1 Catabolic Net Reactions of Hydrocarbons from the Energetic
Perspective

The A G of areaction (the “system”) is the maximum amount of energy that a second
system can theoretically conserve via coupling to this reaction under full reversibil-
ity. However, coupling can only proceed outside of the equilibrium, viz., if the
overall reaction of the two systems is more or less irreversible and dissipates free
energy. The actual amount of useful energy provided by the catabolic reactions is
therefore always less than the calculated AG. The subsequent anabolism with many
highly irreversible reactions then dissipates most of the free energy. Table 1 lists
generalized equations for the degradation of hydrocarbons and Table 2 several
particular reactions with naturally important electron acceptors and the associated
energy changes.
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Table 1 Generalized equations for the catabolism (dissimilation, degradation) of hydrocarbons
with various electron acceptors and for the anabolism (assimilation) of hydrocarbons into cell mass
Catabolism

4 C.Hp + (4c +h) Oy — 4c CO; + 2h H,O

10 CcHy, + (8¢ + 2h) NO3;™ + (8¢ + 2h) H" — 10c CO, + (4¢ + h) N, + (4¢ + 6h) H,O

C.Hy, + (4c +h) Fe(OH); + (3¢ + h) CO, — (4c + h) FeCO;3 + (6¢ + 2h) H,O*

8 C.Hy, + (4¢c +h) SO,2™ + (8¢ + 2h) HT — 8¢ CO; + (4c + h) HuS + 4h H,0

8 C.Hy + (8¢ — 2h) H,O — (4c — h) CO; + (4c +h) CHy

Anabolism

4 CcHy + hCO; + (4¢c —h) H,O — (4c + h)(CH,0)

dyss = 0.133/(4c +h) mol g

Yas = (4c 4+ h)/0.133 g mol ™!

17 CcHy + (4h — ¢) CO;, + (14c — 5h) H,O — (4c + h) C4H;05

dyss = 0.165/(4c +h) mol g~}

Yus = (4c +h)/0.165 g mol ™!

17 C.Hy, + (4h — ¢) CO, + (4c + h) NH; + (10c — 6h) H,O — (4c + h) C4HgO,N

dyss = 0.166/(4c +h) mol g~!

Yass = (4 +h)/0.166 g mol ™!

“Because many reactions take place in environments containing inorganic carbon, reactions with
Fe(OH); are for convenience written with the relatively insoluble FeCOj (siderite) as a product

The aerobic oxidation with O, as electron acceptor provides biochemically the
highest amount of energy, methanogenic degradation the lowest. Reactions with
NO, ™ or N,O are even more exergonic than those with O, (Table 2 includes methane
oxidation with nitrite as an investigated example; Ettwig et al. 2008). However, there
is no evidence that the higher energy available with NO, ™ or N,O in comparison to
0, as electron acceptor is conserved; biochemically, O, allows conservation of even
more energy from the same amount of organic substrate. The theoretically higher
energy gain is due to the “extra energy content” of NO, ™ and N,O with respect to
0,: 4NO,” +4H" — 2N, +3 0, +2H,0, AG” = —116 kI(mol NO, ") '; 2
N,O — 2N, + 0,, AG® = —104 kJ(mol N,0) .

One of the least exergonic catabolic reactions is the anaerobic oxidation of
methane (Table 2). Under certain environmental conditions, the net free energy
change under in situ concentrations of the reactants may be only around AG = —

20 kJ mol(CH,) ™" (Nauhaus et al. 2002). The fact that this minute amount is further
shared between two organisms with different metabolism challenges the energetic
understanding of energy conservation under “low-energy” conditions (viz., life at
low chemical potential), a topic developed in the study of other syntrophic associ-
ations (Jackson and Mclnermey 2002; Schink 1997, 2002). Another anaerobic
reaction of a hydrocarbon of thermodynamic interest is the conversion of alkanes
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to methane (Anderson and Lovley 2000; Jones et al. 2008; Zengler et al. 1999), an
endothermic reaction (for explanation, see remark on (8)):

4C¢H34 + 30H,O — 49CH,4 + 15 COz(g)
AG" = —372kJ(mol Cj¢Hag) ' 9)
AH® = 4206KkJ(mol C ¢Hz,) ™"

The Gibbs-Helmholtz equation predicts that the reaction becomes increasingly
exergonic with increasing temperature (Dolfing et al. 2008). The process involves
three organisms, (1) the hexadecane-degrading syntrophs (Cj¢Hsq + 16 H,O —
8CH3;COO™ + 8 H" + 17 H,), (2) acetate-cleaving microorganisms which are
either methanogens (CH;COO~ + H™ — CH4 + CO,) or additional syntrophs
(CH;COO™ + H" +2 H,0 — 2 CO;, + 4 H,), and (3) H,-utilizing methanogens
(CO, +4H; — CHy + 2 HyO). The available energy per transferred acetate, the
“metabolic unit” in this syntrophism, is only around —47 kJ mol~'; this amount is
shared between three organisms. The thermodynamic constraints of this reaction
with respect to petroleum hydrocarbon conversion to methane have been exam-
ined (Dolfing et al. 2008).

3.2 Hydrocarbon Activation from the Energetic Perspective

As any chemical or biochemical reaction, the activation reaction of hydrocarbons
involves two energetic aspects. These are the net AG of the reaction (and its share
in the overall catabolic AG), and the energy level which during the activation
reaction is attained by the energy-rich short-lived transition state in the active site
of the hydrocarbon-activating enzyme; an apparent transition state may further
resolve into elementary reactions upon closer examination (Fig. 4). Net free
energy changes of several activation reactions of hydrocarbons are listed in
Table 3.

The activation of a hydrocarbon by introduction of a functional group to allow
further metabolic processing is usually not a problem from a merely thermodynamic
point of view. For instance, an O,-independent hydroxylation of methane by dehy-
drogenation at a hypothetical “methane dehydrogenase” employing a mildly oxidiz-
ing biological agent such as cytochrome ¢(Cyt cox /Cyt Creq, E° = E°' = 4+0.245 V)
would be thermodynamically allowed:

CHy + 2Cyt c[Fe’™] + H,0 — CH30H + 2Cyt c[Fe*™] + 2H*
(10)
AG" = —16kJ(mol CHy) ™"

The problem lies in the high energy barrier, mainly due to the apolar and very stable
C—H bond that must be attenuated by an appropriate biocatalyst. Despite the
astounding capabilities of enzymes to decrease energy barriers of chemically diffi-
cult reactions, there is not always the ideal biochemical solution to any activation
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catabolic
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Proceeding reactions

Fig. 4 Free energy changes during a fictive reaction of a hydrocarbon (S; in principle any other
substrate) converted to an end product (P), free energy change of the activation reaction, and free
energies of transition states at the activating enzyme. The scheme is a simplification because it does
not display any electron acceptor that allows oxidation and the indicated free energy changes

problem. Not every thermodynamically possible but kinetically inhibited reaction
can be catalyzed to take place at any rate.'® To overcome the activation barrier and to
reach high rates in such cases, activating enzymes invest an extra input of energy that
is not conserved and makes the activation highly irreversible. Oxygenases which
involve a strong oxidant (0,/2 H,O, E° = + 0.818 V) and produce water besides
the organic activation product are such energy-“wasting” catalysts that achieve high
rates. The reaction with methane is

CH,4 + O, + NADH + H* — CH30H + NAD" + H,O

AG" = —344kJmol™! an

The sacrifice of energy to achieve activation via oxygenases is also reflected by the
consumption of reducing equivalents detained from the energy-conserving

'°A prominent example is nitrogenase: Despite the long evolution of nitrogen fixation, an enzyme
type has not evolved that catalyzes the thermodynamically feasible N, reduction with H, or
energetically equivalent electron donors without an investment of energy.



47

2 Energetic and Other Quantitative Aspects of Microbial Hydrocarbon. . .

(panunuoo)
(1002)
‘T’ 1R
snqey] SE— 01 [g— ~00D — HOH — HO[* HD H °J] — D00-+—_00D — HD = HD — DOO_+£ HD *H %D auan[o,
(1002)
URE
snqey 6€— 01 ¢~ | _00D — HOH — HO[( fHD) — HO — ()] — D00-+_00D — HO = HD — D00-+fHD — THD — ¥ ouey[y-u
(1002)
'R
snqey 1€— 01 Lg— _00D — HOH — HD[fHD] — D00_+_00D — HD = HD — D00_+ HD SQUBISN
Jdjejewiny 0) uonIppy
(002
Joney],
pue
ewiyg 0¢+ g0D —SH+ fHD — S — N0D + 90D — S — S — 0D + "HD SUBYIRN
3SBJINPAI JA] SWAZUI0I-[AYIAI
(L002)
BLRE
[9PPIM see— Y(HO)"H?D-0 + [Surpkoar — HQVN ‘serpawan]] «— 2Q + 9H%D ouozuog
J[onae pOUBIOPEXIH
SIYL 89¢— LAVN +O%H + HOD — "*H'D « yH+HAVN + %0 + *HD — '*H*'D -u
(L002)
BLRE
[oppIm SIrE— +AVN + O%H + HO*HD < +H + HAVN +%0 + "HD sueyON
UONBUIGAXOIP PUB -OUOJA]
oouarpay | (10w Y),.0V RIGTERIEN | punoduwod
10 ,.HV aomcmso ‘uoneanoe
AS10U0 9314 Jo odA,

(paajoaur are suojoid J1 ‘4 = Hd) SUONIPUOd pIepue)s 10 USAIS I8 sanjeA papnjoul
u20q 2AeYy suonoeal [eonoylodAy Ajoind os[y "SUOQIEOOIPAY ONEWOIR PUB ‘PAJRINESUNOUOW ‘PIJRINIES JO SUONJBAI UONBANOR JO SOISIOUQ 221 € 3jqel



F. Widdel and F. Musat

48

unoIq-AxXoqred se yons siouop [Axoqred judjod 0} ojqeredwos AJ[eonadious aq Aewr jet]) Jouop [AX0qIed [eonoyodAy

Ajoind & se 912100BO[BXO [JIM UONR[NO[RD B UO Paseq SI dgueyd AS10ud 2oy Judsald ay [, ‘paynuapl 10 pajsadSns usaq J0U dARY IOUOP PUB IOLLIED [AXOQIRD Vg
sosAeue [EOIWAYD JO SISeq A U0 Pa)saFsns usaq dAey suone|Axoqie),

uonoear [eonaYodAH,

(LL6T 'Te 12 Joney] A 8ET'T =,V WOY Pajg[no[ed) | _[oW (Y9617~ = ,,OV L AYN

+ O < H + HAVN + 2050 * |_10W [} §'8FI— = OV “HOHD — '*HS'D < QS0 + FHD — '*HS'D :suonoeor [eurioj SUIMO[[O} oy JO wng,
(A 0Z€°0—) HAVN/ VN Jo 1o uey [enuatod Xopal 9A1ESAU SSI] JO 10UOP UOIII[D UB Il OIUOTIOXS SS3] 9q PINOM,

PAAJOAUT d1e su0joId JT POJEDIPUI ST, DV,

PIOQ Ul PaZI[ensIA SI JURIIBAI SUO JO B,

(£002)
e
[POPPIM 1e— H — #2100 + 00D — *H*D < _00D — 210D + H?D gouazueyg
(£002)
e
[9PPIM v HO®HD — HOH — “HO — *HD < O%H + “HO = HD — “HD — *HD duazueg
Eets-znefso
(£002)
e R
[9PPIAM L= HOHD — HOH — “HD — *HD <~ O%H + “HD = HDO — “HD — *HD Louamyg
puoq 3[qnop paje[osI 0} J1d)eM JO uonIppy
souarRpey | ([_tow ) ,.0V uonoeay punodwoo
10 OV jPSueyd ‘uoneanoe
A310U0 901 Jo odA1,

(panunuod) € sjqey



2 Energetic and Other Quantitative Aspects of Microbial Hydrocarbon. .. 49

respiratory chain: The oxygenase reaction consumes two reducing equivalents from
the metabolism, and the insertion of the oxygen atom to yield the alcohol “cancels”
two additional reducing equivalents; hence, four reducing equivalents are consumed.
Despite the significant amount of free energy dissipated and reducing power con-
sumed by oxygenase reactions, this drain is not critical. The total free energy from
the aerobic oxidation in this example is

CH4 +20, — CO, + 2H,0

AG" = —818kJ(molCH,) ™' (12)

From the totally available 8 [H] per methane, 4 [H] are still available for the
respiratory chain. With higher hydrocarbons, the drain of energy and reducing
equivalents are even less relevant.

An activation of hydrocarbons under anoxic conditions excludes oxygen'' and in
the case of many catabolic net reactions with low-energy gain strongly restricts the
energy that can be dissipated to achieve activation. A reaction with particularly low
net energy gain is the anaerobic oxidation of methane with sulfate (Table 2).
The activation reaction is most likely a reversal of the methyl-coenzyme M reductase
(Mcr) reaction, the final step in methanogenesis which is exergonic under stan-
dard conditions (CoM — S — CH3; + HS — CoB — CoM — S — S — CoB + CHy4,
AG° = —30 [£10] kJ mol~'; Shima and Thauer 2005; Thauer and Shima 2008).
For methane activation, the standard free energy of the reverse Mcr (rMcr)
reaction in methane oxidizing archaea would thus be +30 [£10] kJ mol~'. Meth-
ane activation with the disulfidle CoM — S — S — CoB can therefore only take
place if the products CoM —S — CH3; and HS — CoB are kept at very low
concentration by effective scavenge in subsequent reactions. With respect to
energy conservation in the total process, such a highly “concentration-controlled”
reaction would be advantageous because it would be always very close to the
equilibrium and not dissipate much energy.

For the activation of the strong C — H-bond of methane (absolute value, —440
kJ mol~!; McMillen and Golden 1982) by a thiyl radical or a Ni'" center, which may
be the most critical step, a decrease of the activation energy by a “dual-stroke
engine” mechanism was proposed (Thauer and Shima 2008). rMcr has presumably
two active sites, like Mcr. The release of the products from one site may transfer
conformational energy to the other site where the substrates enter the reaction.
However, this does not influence the equilibrium of the net activation reaction.

Methane activation via a reversal of the Mcr reaction is not only of mechanistic
but also of kinetic interest. The positive standard free energy change of the rMcr
reaction sets severe limits to the rate of the formation of the initial intermediates.

""The utilization of chlorate by facultatively anaerobic bacteria for hydrocarbon metabolism
(Chakraborty and Coates 2004; Tan et al. 2006) involves O, that is generated from an intermediate
(ClO0;~ — CI” + 0,).
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Using the Haldane equation,'> which connects the catalytic efficiencies of the
forward and back reactions through an enzyme with the thermodynamic equilibrium
constant of the reaction, the first step in AOM was estimated to be slower by a factor
between 102 and 1077 than the final step in methanogenesis (Shima and Thauer
2005; Thauer and Shima 2008). Also, the rate of the subsequent enzymatic step may
be drastically limited by the low near-equilibrium concentrations of methyl-
coenzyme M and coenzyme B. The high content of the apparent rMcr in naturally
enriched anaerobic methane oxidizers (Kriiger et al. 2003) may be a means to
compensate for the slowness of the enzyme.

The carbon—carbon addition of non-methane hydrocarbons at their methyl or
methylene group to fumarate is slightly exergonic (Table 3) and to our present
knowledge not associated with energy conservation. However, in view of the net
energy gain with non-methane hydrocarbons under anoxic conditions, such a loss is
“affordable.” Only methane activation in an analogous way to yield methylsuccinate
would be critical in an oxidation of methane with sulfate. The suggested mechanistic
steps are an abstraction of a specific glycyl hydrogen in the polypeptide chain by a
protein-activating enzyme (yielding —Gly” —), subsequent hydrogen abstraction from a
cysteyl group by the glycyl radical (yielding —CysS™—), abstraction of a methyl
hydrogen from toluene (yielding C¢Hs—"CH, ), addition of the benzyl radical to
fumarate (yielding the benzylsuccinyl radical), and quenching of the radical to yield
free benzylsuccinate and regenerate the cysteyl radical for the next catalytic round
(Boll et al. 2018). Quantum chemical modeling of this reaction, for which a crystal
structure of the enzyme was not available, supported the feasibility of the suggested
steps (Himo 2002, 2005). The rate-limiting step was calculated to be the addition of
the benzyl radical to fumarate.

4 Quantitative Aspects of Cell Synthesis
4.1 ATP and Growth Yields

The more exergonic a catabolic reaction and the higher the efficiency of ATP
synthesis (proportion of total free energy conserved in ATP), the more cell mass
can be synthesized from a given substrate. The quantitative treatment of the effi-
ciency of free energy conservation in the form of ATP and the amounts of cell mass
formed with various substrates are subjects of an own area of research in microbi-
ology. In this research, the measurable molar growth yield is of central interest,

12The Haldane equation describes the connection between the equilibrium concentrations of the
reactants and products and their kinetic constants k., and K,,. The equilibrium constant is also
thermodynamically given by the concentrations at AG = 0. In case of the reaction S — P, the

s (P kw/Ky _ —AGT/(RT)
connection is <[S] o " = e )

cat/ Bm
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besides calculated free energy changes and ATP yields known from well-established
pathways such as glycolysis.

The molar growth yield, Y, is defined as the amount of cell dry mass, X (in g) per
amount of totally consumed substrate, S (in mol). On the other hand, for indication
of the energy gain from the catabolism, a growth yield with respect to the dissim-
ilated (viz., the energy yielding) proportion of the substrate, Sg;s, would be a more
meaningful definition:

i (gmol™)  Yaiss = X (gmol™) (13a,b)
Stot Siss

However, the latter definition and distinctive subscripts are not very common.
S4iss can be determined experimentally by quantifying the biomass, X, and the
consumed electron acceptor (O,, NO; ™, Fe or S0O427) or at least one of the
products (CO,, N,, Fe'™ or H,S). The chemically formulated stoichiometric
relationship between substrate and product (Table 1) then reveals Sg;ss, which leads
to Yg4iss (13b). The fraction of the dissimilated substrate as part of the totally
consumed substrate in anaerobic bacteria is usually much higher than in aerobic

bacteria:
(Sdiss> > <Sdiss) (14)
Stot anaerobic Stot aerobic

Some measured growth yields of aerobic and anaerobic hydrocarbon utilizing
microorganisms are listed in Table 4.

If consumption of the electron acceptor or formation of the catabolic product
has not been quantified, or if only a Y value (13a) has been reported, Yg;ss can be
calculated. With S, for the assimilated amount of substrate, the totally consumed
substrate is

Stot = Sdiss T Sass (15)
Division by the obtained cell mass yields

Stol _ Sdiss + Sass

= 1
X X X (16)
and with definitions (13a, b)
1 1 Sass
i s 17
Y Ydiss * X ( )

The expression S,s/X may be termed the assimilatory substrate demand, d, (in mol
g~ 1). The reciprocal term X/S, can be defined as another type of yield, the amount
of cell mass (in g) obtained per assimilated amount of substrate (in mol), and
designated Y,. The connection is thus dyss = 1/Y . This leads to
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1 1 1

== + (18)
Y Ydiss Yass
Rearrangement leads to
Yass' Y
Ygiss = 19
diss Yass v ( )

The values for d,g or Y, are calculated from chemically formulated stoichiom-
etries. This requires the assumption of bulk formulas for cell dry mass. The
simplest bulk formula is that of carbohydrates, (CH,O). For aerobic
methanotrophs, the formula (C4HgO,N) was used (van Dijken and Harder
1975). A simpler N-free variant with the same bulk oxidation state of carbon is
(C4H,0;3) (Pfennig and Biebl 1976). A precise yet more complicated formula,
(C4.36Hg 2401 37N}, was determined for an aerobic bacterium grown with hepta-
decane (Bonin et al. 1992). Considering the oxidation state of carbon is more
important than including nitrogen. Because in the case of hydrocarbons the
substrate carbon is more reduced than cell mass carbon, CO, is included in the
assimilation equations (Table 1).

Now, also the fraction of the dissimilated substrate as part of the totally
consumed substrate can be calculated even if only a Y value is available from
the literature:

Sdiss Yass -Y
- 20
SIOI YdSS ( )

For instance, for aerobic growth with hexadecane (M = 226.45), a growth yield by
mass of 1 g (g C15H34)_l has been reported, which equals a molar growth yield of
Y =226 g (mol C¢Hs4)"". The assimilation equation is

17 C16H34 + 120 C02 + 54H2O — 98 C4H703 (21)
das = 1.68 x 107> molg™!; Yy = 594 gmol ™!
Equation (19) yields Y 4iss = 366 g mol~!. The fraction of the dissimilated substrate is

S diss
Stot

= 0.62 (or 62%) (22)

Above all, Y values are expected to provide information about the ATP yield as a
parameter of high relevance to understand the efficiency of or losses in the energy flow:

Free energy of catabolic reaction

1
Free energy in formed ATP

!

Free energy (or ATP) consumed for cell synthesis
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The ATP yield or gatp is the amount of ATP (in mol) formed per amount of
dissimilated substrate (in mol). At first glance, the concept appears straightforward.
From anaerobic pathways with biochemically known garp, as for instance the
homolactic fermentation of glucose (gorp = 2), the amount of cell mass obtained
per mol ATP, the so-called Y5tp, can be calculated from the determined growth yield
via Yatp = Ydiss/gatp- If for another bacterium of interest, the g arp is unknown but
Y4iss has been determined, this should in principle allow to calculate the desired garp
parameter via garp = Ydiss/ Yarp. However, there is a serious drawback in that
determined Yarp values, viz., the energy expenses for biomass synthesis, vary
enormously for different growth substrates and among various bacteria. This is not
surprising because synthesis of an amount of biomass for instance from free acetate
as the growth substrate needs more ATP than synthesis from carbohydrates and
amino acids added to the medium. But even with the same substrate for biosynthesis,
determined Yarp values among bacteria vary significantly.

These problems are treated by the calculation of theoretical ATP demands for
the synthesis of biomass with its diverse fractions (polysaccharides, protein, etc.)
from starting substrates and by consideration of the fractions of energy or ATP that
do not lead to productive growth. This nonproductive consumption of energy or
ATP is interpreted as maintenance energy (Pirt 1965; Tempest and Neijssel 1984),
an uncoupling of the anabolism from the catabolism at varying extent, or an extra
“spill” of energy (Russell 2007) in addition to the “regular” dissipation. In the
concept of Pirt (1965), the proportion of the substrate consumed per time for
maintenance rather than for productive growth is regarded as a constant that is
independent of the growth rate, 4. Hence, the slower the growth of a bacterium and
the lower the biomass production per time, the higher the proportion of the
substrate consumed for maintenance. If therefore growth yields of an organism at
different growth rates are extrapolated to a theoretical infinitely high growth rate
(no time required for growth) in a plot of 1/Y4 versus 1/u, the proportion
of the substrate consumed for maintenance should become zero. At 1/u= 0
(u = 00) the theoretically highest growth yield, Y™** (more precisely Yy;ss™ ) is
obtained that is used to gain information about grp and Yarp. Such concepts have
been applied to vast series of non-hydrocarbon substrates (Heijnen and van Dijken
1992; Stouthamer 1988). In the case of hydrocarbons, aerobic methanotrophs
(Leak and Dalton 1985; van Dijken and Harder 1975) and degraders of long-
chain alkanes (Erickson 1981; Ferrer and Erickson 1979) have been of interest for
such mainly theoretical studies.

If the catabolism of a substrate is likely to involve conventional biochemical
reactions (B-oxidation, citric acid cycle, dehydrogenations with NAD" and
flavoenzymes, etc.) and an aerobic respiratory chain, a garp value can be also
predicted from the ATP-yielding reactions. Via Yarp values determined in other

3The garp is conceptually related to the P/2e™ ratio in aerobic and anaerobic respiration which
indicates the number of ATP molecules formed per electron pair transported in the respiratory chain
(in aerobes also P/O ratio). However, the garp also includes ATP from substrate level
phosphorylation.



56 F. Widdel and F. Musat
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Cy5Ha~CH, M CisHy~OH,0H —m CyghlyCHO —am CygH,"COOH —am C5H,~CO-SCoA
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NAD-H NAD-H NAD-H
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[ATP]
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Catabolism:
CeHsy +24.50, 516 CO, + 17 H,O
AG® =-10 393 kJ (mol C,¢H,,)™"

Fig. 5 Reducing equivalents and ATP synthesis in the aerobic catabolism of hexadecane
(Ci6H3z, M = 226.45). Reducing equivalents from enzyme-bound FADH, enter the respiratory
chain at the quinone (Q) level. The assumed proton translocation in the respiratory chain underlying
this scheme is 10 H" /NADH and 6 H /QH,. A phosphorylation yield of 1 ATP per 3.5 H" was
arbitrarily assumed here (based on the commonly assumed range of 1 ATP per 3 to 4 H"). The
resulting net ATP yield is thus 124 mol ATP per mol C;¢H34, 0.55 mol ATP per g Cy6H34, or 5.3 mol
ATP per mol O,. For comparison, glucose (C¢H;20¢, M = 180.16) would yield 10 NADH and
2 QH, allowing formation of 32 ATP via respiration; with 4 ATP from glycolysis and the
tricarboxylic acid cycle, the net yield is 36 mol ATP per mol C4H;,04, 0.20 mol ATP per g
CsH;,0g, or 6.0 mol ATP per mol O,

studies, a Y™™ can be subsequently predicted and compared to an experimentally
determined one. As an example, Fig. 5 presents the catabolic scheme for aerobic
degradation of hexadecane with g, rp = 124 (mol/mol). According to the free energy
change of the reaction (—10 392 kJ mol~!; Fig. 5), the average energy need for ATP
synthesis would be 100 kJ (mol ATP) ™' Ifa Yxrp of 10 g cell dry mass (mol ATP) ™'
is assumed that is likely for cell synthesis from the hexadecane-derived acetate units
(Erickson 1981; Stouthamer 1988), this would lead to Ygss = 1240 g cell mass

(mol Cy¢Has) ™" The Y value is obtained via a transformation of (19):

_ Yass : Ydiss

== == 23
Yass + Ydiss ( )

This yields (with the above Y, = 594 g mol~') a value of ¥ = 401 gmol ',
which would be a yield by mass of 1.77 g cell mass (g C16H34)71. This may be
regarded as an “ideal” yield with hexadecane. The fraction of dissimilated hexa-
decane would be only
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CH, (0) _ 183K CH, (9)
a=719 g mm oo ee a=1.00
(AG,=—34.4) +16.3kJ) AGP = —50.75 kJ
Gas phase
---------- 0 kJ-t-1-0 kJ 0 kJ-t-1 0 kJ ---------
Water phase
CHj (9) _ S CH, (aq)
a=1.00 S — a=0.00139
AGF =—34.4 kJ +16.3 kJ (AG; =—50.75)

All free energie values per mol

Fig. 6 The two standard states (framed) of methane. Aqueous methane, CH,(aq), in its standard
state which corresponds to a very high partial pressure has a higher energy content than gaseous
methane, CH,4(g), in its standard state. Hence, indication of the AG® oder AG® 'of a formulated
reaction involving methane must indicate the applied standard state. Calculation of the free energy
change of a reaction for real (measured) pressures or concentrations (according to (4)) must yield the
same result with each standard state. Application of the gaseous standard state for calculation is also
justified if there is no gas phase. Most natural conditions will be closest to the gaseous standard
state. The AG/ of CH,4 (aq) was calculated via the solubility of 0.00139 mol 1™'atm~! (Wilhelm
et al. 1977), assuming that this concentration is numerically equivalent with the activity of CH,
(aq) that is in equilibrium with CHy4 (g) of standard pressure. In seawater, the dissolved methane
concentration in equilibrium with gaseous methane of standard pressure is lower (Yamamoto et al.
1976), even though this has the same activity as methane in pure water

S diss
Stot

= 0.32(or32%) (24)

Most of the substrate is therefore assimilated. The lower yields from experiments
(Table 4) indicate significant energy consumption for maintenance or by uncoupling.

4.2 Requirement for Minerals (N, P, Fe)

Growth yields are not only of basic but also of practical interest because they can
be used to estimate the amount of essential minerals required for oil-degrading
bacteria. Since crude oil has an extremely low content of nitrogen, phosphorous,
and iron, these important elements are often the limiting ones in oil biodegrada-
tion. Availability of sulfur is usually not a problem, because oil contains organic
sulfur and many natural waters are rich in sulfate (seawater, 28 mM). In the
environment and in cultures, microorganisms often obtain the limiting elements
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as inorganic species (NH;7,NO;~, H,PO,~ /HPO,? ™, Fe*, Fe'! minerals, etc.).
The above bulk formula for cell mass which considers nitrogen, (C4HgO,N),
suggests a content of 14% N by mass; it does not consider phosphorus and iron.
The extended Redfield ratio, (CHZO)IO6(NH3)16(H3PO4) = <C106H2630110N16P>,
which was derived from the originally determined molar C:N:P ratio of 106:16:1 of
marine phytoplankton (Brewer et al. 1997), considers in addition phosphorus. Carbon
in this formula has the bulk oxidation state as in carbohydrates, which may not very
precisely reflect bacterial cell mass. “Redfield biomass” contains 6.3% N and 0.9% P
by mass. With these ratios, 1 g biomass produced aerobically during complete con-
sumption of 1 g (1.3 ml) hexadecane would need 0.24 g (4.5 x 10*mol) NH4Cl and
0.04 g (0.3 X 10_3m01) KH,;POy4. In a marine environment with for instance 1 pM
combined nitrogen and 0.06 pM phosphate, the microbial cell mass produced with 1 g
hexadecane would consume the nitrogen and phosphorous from roughly 5 m® water.

However, such calculations should be applied reservedly in the study of natural
hydrocarbon bioremediation. A lower in situ growth yield and N and P release from
lysed cells may result in a lower than the calculated need for N and P. On the other
hand, oil as a hydrophobic substrate is not distributed like soluble organic carbon in
the water body but forms buoyant layers. Cells of hydrocarbon-degrading bacteria
largely depend on physical contact with the oil, so that supply of biominerals by
advective transport is a severely limiting factor (Harms et al. 2017). The controlled
use of environmentally friendly immobilized N and P sources (as well as of iron
sources that have not been considered here) that tend to stay in contact with oil may
therefore be a justified method to stimulate oil degradation in eutrophic waters (Ron
and Rosenberg 2010).

5 Research Needs

The application of thermodynamic data to microbial systems as a whole is a
theoretical approach that is basic for the understanding of the overall catabolism of
chemotrophic microorganisms (Thauer et al. 1977). Even though it is not regarded as
an own field of microbiological research, the underlying formalism accompanies the
study of numerous metabolic types of bacteria and may lead to the recognition of
scientifically challenging questions that have not been encountered before. One of
these is clearly the appropriate understanding of how microorganisms conserve
energy at low chemical potential, viz., with low-energy substrates and combinations
of electron donors and electron acceptors with marginal differences in their redox
potential. Prominent processes of such type are anaerobic reactions involving hydro-
carbons, such as the anaerobic oxidation of methane or conversion of non-methane
hydrocarbons to methane by microbial consortia which even have to share the low
net energy gain. Also individual enzymatic reactions in the anaerobic degradation of
hydrocarbons, in particular the activating steps and intermediate energetic states
(energy-rich transition states), need a deeper understanding from an energetic and
kinetic point of view. There may be even open questions concerning growth yields
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and the efficiency of energy conservation during growth with hydrocarbons under
various environmental conditions. Their examination could be relevant for the study
of hydrocarbon bioremediation in oligotrophic aquatic environments.

Appendix

Table 5 Hydrocarbons (methane, propane, n-hexane, and benzene as examples) and other sub-
stances as “energy carriers.” In a reaction with oxygen, liquid hydrocarbons reveal a high gravi-
metric energy density in comparison to many other compounds and elements (calculated for the
highest oxides in their standard state). Gaseous hydrocarbons reveal a high volumetric energy
density

AG® of oxidation with O, AH° of oxidation with O,

Per mass of Per volume of Per mass of

substance substance substance
Substance (kKT kg™") (kI m~3) (KT kg™")
Gases (101 kPa)
H, —117.6 x 10° —9.7 x 10° —141.8 x 10° —11.7 x 103
CH,4 —51.0 x 10° —33.5 % 10° —55.5 % 10° —36.4 x 10°
CsHg —47.8 x 103 —86.2 x 1032 —50.3 x 10° —90.8 x 1032
NH,° —19.9 x 103 —13.8 x 1032 —225 % 10° —15.6 x 10>
H,S° —19.3 x 10° —26.8 x 103* -233x 10° —32.4 % 10%*
Solids or liquids
Li —40.4 x 103 —21.6 x 10° —43.0x 10 | —23.0 x 10°
B —55.2 % 103 —135.7 x 10° —58.8 x 10° | —144.7 x 10°
CoGraphite —32.8x 103 —74.4 x 10° —32.8 % 10° —74.4 x 10°
CeHig —46.7 x 10° —30.8 x 10° —483 x 10> | —31.9 x 10°
CeHs —41.0 x 10° —36.0 x 10° —41.8x 10 | —37.5x 10°
CH;0H —21.9 x 103 —17.5 x 10% —227x10° | —18.1 x 10°
CH;CH,OH —28.8 x 10° —22.8 x 10° —29.7x 10 | —23.5x 10°
CeH1206(a-D- | —16.0 x 10° —25.0 x 10° —156x10° | —24.3 x 10°
Glucose)
Mg —23.4 x 103 —40.8 x 10° —248 x 10 | —43.1 x 10°
Al —29.3 x 103 —79.2 x 10° —31.1 x 10 | —84.0 x 10°
Si —30.5 x 10° —71.1 x 10° —324x10° | —75.5x 10°
Pynite —21.8 x 103 —39.7 x 10° —24.1x10° | —43.9 x 10°
S —11.6 x 103 —22.7 x 10° —123x10° | —24.1 x 10°
Fe —6.6 x 10° —52.3 x 10° —74x10° | —583 x 10°

“For convenience, ideal behavior assumed. In reality, the volumetric energy density will be
somewhat higher

°If Ny(g) is produced

°If H,SO4(1) (1) is produced
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