
Lilian Bossuet · Lionel Torres Editors

Foundations
of Hardware
IP Protection

Foundations of Hardware IP Protection

Lilian Bossuet • Lionel Torres
Editors

Foundations of Hardware
IP Protection

123

Editors
Lilian Bossuet
Laboratoire Hubert Curien
Jean Monnet University
Saint-Étienne
France

Lionel Torres
Laboratoire LIRMM
Université de Montpellier 2
Montpellier
France

ISBN 978-3-319-50378-3 ISBN 978-3-319-50380-6 (eBook)
DOI 10.1007/978-3-319-50380-6

Library of Congress Control Number: 2016958975

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The increasing production costs of electronic devices and changes in the design
methods of integrated circuits has led to emerging threats in the microelectronics
industry such as counterfeiting, illegal copying, reverse engineering and theft. The
designing process of a microelectronic Very Large Scale Integration (VLSI) circuit
evolved, in last decades, towards a continuously growing « design-reuse » method
trend. It is structured today with standard functional blocks vendors (around 50
companies worldwide) delivering « Intellectual Property » blocks, i.e. « IPs ».
Those companies face a strong counterfeiting as many other industrial domains,
with a strong impact on their business model without any technical solutions to
exactly count the dissemination of their models in terms of physical unit devices.
Since more than a decade, IP protection has become a critical issue for the micro-
electronic industry. Electronic devices are increasingly becoming the target of
counterfeiting, cloning, illegal copy, theft and malicious hardware insertion (such as
hardware Trojans). All these threats cost a lot of money and time to the legal
industry. For example in 2014, electronic items counterfeiting was estimated to
account for about 7% of the semiconductor market, which represents a loss of around
US$ 22 billion in 2014 for the lawful semiconductor industry. Moreover, these
threats’ impacts are huge employment loss and customer dissatisfaction. However,
unlike for software in computer science, protection of hardware IP is not fully
included in electrical engineering curriculum. Most of the VLSI designers are not
aware about the threats and the means of protection. This book aims to fill the gap by
highlighting promising works that attempt to meet the IP protection challenge.

The electronic industry needs solutions to fight against theft, illegal cloning and
reverse engineering of intellectual properties. More precisely, designers need
salutary hardware, i.e. embedded hardware systems, hardly detectable/difficult to
circumvent, inserted in an integrated circuit or a virtual component, used to provide
intellectual property information (e.g. watermarking or hardware licensing) and/or
to remotely activate the circuit or IP after being manufactured and during its use.
When discussing about IP protection, the Digital Right Management
(DRM) concept is certainly an important issue for the IP market. The Digital Rights
Management (DRM) principle is generally well known for the exchange of files

v

(music, video, etc.), or software management. Specialized solutions concerning
professional software are behind a business called “Software License
Management”. The concept of DRM can be transposed to the IP world, which is a
really new concept on this area.

We hope that the readers of this book will learn how an IP can be threatened and
to increase the security of the IP by using several different means (hardware
obfuscation/camouflaging, watermarking, fingerprinting (PUF), functional locking,
remote activation, hardware Trojan detection, protection against hardware Trojan,
use of secure element, digital right management, ultralightweight cryptography,
etc.). This book will not be like a cookbook as each IP needs specific protection
scheme; but it will be like a reference book for design space exploration of security
means of IP protection.

Saint-Étienne, France Lilian Bossuet
Montpellier, France Lionel Torres

vi Preface

Contents

1 Digital Right Management for IP Protection. 1
Lionel Torres, Pascal Benoit, Jérome Rampon, Renaud Perillat,
Dominic Spring, Gael Paul, Stephane Bonniol and Lilian Bossuet

2 Turning Electronic Circuits Features into On-Chip Locks. 15
Brice Colombier, Lilian Bossuet and David Hély

3 Logic Modification-Based IP Protection Methods:
An Overview and a Proposal . 37
Brice Colombier, Lilian Bossuet and David Hély

4 IP FSM Watermarking . 65
Edward Jung and Lilian Bossuet

5 Side Channel Analysis, an Efficient Ally for IP Protection. 85
Lilian Bossuet and Cédric Marchand

6 Hardware Obfuscation: Techniques and Open Challenges 105
Georg T. Becker, Marc Fyrbiak and Christian Kison

7 An Application of Partial Hardware Reverse Engineering
for the Detection of Hardware Trojan . 125
Franck Courbon

8 Linear Complementary Codes: Novel Hardware Trojan
Prevention and Detection Approach . 149
Xuan Thuy Ngo, Sylvain Guilley and Jean-Luc Danger

9 Ultra-Lightweight Implementation in Area of Block Ciphers 177
Cédric Marchand, Lilian Bossuet and Kris Gaj

10 Enhancing Secure Elements—Technology and Architecture 205
Bertrand Cambou

Index . 233

vii

Chapter 1
Digital Right Management for IP
Protection

Lionel Torres, Pascal Benoit, Jérome Rampon, Renaud Perillat,
Dominic Spring, Gael Paul, Stephane Bonniol and Lilian Bossuet

1.1 Introduction

The digital rights management (DRM) is mostly known for the exchange of media
files and proprietary software. Specific solutions (e.g., flexlm [1], safenet [2], rlm
[3]) are available for professional software, and are at the source of a sector called
software license management (SLM). The principle of DRM is well known for
managing audio or video file types for access to music or movies in particular
around the issues of illegal downloading (excessive infringement to the early
2000s). The methods that apply (secure platform type “iTunes”, package deals of
type “deezer”) does not counteract the primary need that is addressed in the IP
authentication, circuits, and fight against counterfeiting. Similarly, in the software
field, the business model of software vendors imposes to control their income.
Said SLM protection systems have established for 30 years in this sector. Many
people are familiar to write software license codes obtained from the provider to
switch modes from demonstration on 30 days to a permanent mode. The most
common and accessible example is probably the Microsoft Office suite. What we
propose to develop is close to SLM concept, in taking the principle of master-slave
type used by SLM solutions. It should be noted that marking solutions (identifi-
cation, bar code, RFID) are available on the market, however the advantage of our
approach is to be much more integrated (and indeed secure). The concept of DRM

L. Torres (✉) ⋅ P. Benoit
LIRMM, UMR CNRS, University of Montpellier, Montpellier, France
e-mail: Lionel.Torres@lirmm.fr

J. Rampon ⋅ R. Perillat ⋅ D. Spring ⋅ G. Paul ⋅ S. Bonniol
Algodone Company, Montpellier, France

L. Bossuet
Laboratoire Hubert Curien, CNRS UMR 5516, Université Jean Monnet,
42000 Saint-Etienne, France

© Springer International Publishing AG 2017
L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,
DOI 10.1007/978-3-319-50380-6_1

1

can also be applied to other fields, and in particular to the one of hardware design.
While the DRM concept is accepted and widely used in the software area, this is not
the case for the hardware. Indeed, there are no industrial solutions proposed so far,
and this becomes an international concern to protect these digital rights, like the
recent DARPA projects to fight against counterfeiting and improve the traceability
of integrated circuits [4].

Chip counterfeiting is less mediatized than other problems; nevertheless, its
consequences can be fatal when we look at the number of electronic devices in a
connected hospital or objects related to human. For instance, between 2006 and
2010, the US retailer Vision-Tech circuits delivered almost 60,000 counterfeit
circuits to its clients, including the US Navy, Raytheon Missile System [5]. Since
then, many cases of counterfeit circuits used in sensitive applications have been
reported in the US (military equipment) [6] and are increasingly relayed in the press
[7]. The problem of counterfeit integrated circuits has increased significantly in
recent years. For example, the number of electronic circuits counterfeits seized by
US Customs from 2001 to 2011 has been approximately multiplied by 700 [7].
Between 2007 and 2010, US Customs seized 5.6 million counterfeit electronic
products [8]. The estimate of counterfeiting is a minimum of 7 % of the semi-
conductor market [9], which represented a loss of about $ 22 billion in 2014 for the
legal industry. It is therefore crucial and strategic to implement research projects to
protect the intellectual property of IC designers.

In 2013, about 2,000 new ASIC circuits of projects were performed, with high
design costs, and nearly 100,000 projects with FPGA circuits to lower design costs,
were initiated [10]. These circuits are found in many consumer electronics (smart-
phones, tablets, laptops, game consoles, connected objects, etc.) and even
safety-critical systems (cars, avionics, military, space, nuclear). For 15 years, nearly
all of these new circuits use predefined blocks called Intellectual Property (“IPs”)
because of their numerous benefits (proven functionality, compatibility, perfor-
mance, time-to-market, cost and patent enforcement). The design-reuse trend is
growing steadily and now it is possible to find more than 100 IP-based elements in a
new circuit (e.g., memory, processors, peripherals, communication protocols). The
share of IP components represents an average percentage around 70 % of the circuit,
up to 90 % in some cases. In order to make this market growing while guaranteeing a
return on investment to developers of companies that supply IPs, it is essential to
provide an automated control system of IP rights. It is possible to estimate the
amount of counterfeited integrated circuits, mainly due to seize from customs ser-
vices. However, for the IP market it is not possible to observe directly the inner parts
of the hardware, since IPs are virtual components when looking at their physical
implementations. However, it is clear that IP vendors are threatened in the same way
as the circuit provider and undoubtedly they are even more at risk because the copy
of an IP is much simpler than a circuit. The key point under the IP activation will be
tied to the ability to ensure the uniqueness of the considered component. In the
following sections, a dedicated IP (smart lock IP) is discussed, this one based on a
Master-Slave protocol brings new features to activate IP features.

2 L. Torres et al.

1.2 Smart Lock DRM IP Principle

We propose a solution allowing to an IP vendor to take under control the number of
sold IPs. Indeed, since no DRM solutions for hardware exist yet, IP Vendors do not
have any feedback on how the IP is really used by a customer. The latter can then
produce an unlimited number of chips without acknowledging the IP Vendors on
the actual number of integrated circuits that are deployed in the market.

As described in Fig. 1.1, currently on the design chain only legal agreements are
considered between the IP vendor, IP customer and in some rare cases with the
manufacture. The main problem is that the IP vendor has only a partial view of the
use of his IP into the final system. To protect its IPs, IP vendors simply need to
insert a smart lock IP, which is fully compatible with traditional digital design and
verification methodologies.

The main principle of the smart lock IP is the following. Once the chip is
manufactured (or the FPGA programmed), each distinct physical instance (each IC
devices of FPGA devices) requires a unique runtime license key to activate the
functions protected with the smart lock IP. Even though an IP customer may
produce thousands or millions of identical devices, each one of them actually
requires a unique runtime license key for its activation. The main advantage of our
solution is its simplicity: design once, and activate every single IP use (before
activation the IP is in standby mode waiting the activation code).

Considering the similar IP integration as presented in Figs. 1.1 and 1.2 proposes
two major modifications. The first one is at the IP level where an activation code is
inserted. This activation code allows to activate or not the IP. This activation
mechanism could be done by inserting logic at the IP level (enabling flip-flop,
combinational path control, XOR gates, etc. …). This activation code is included
into the activation license. The second principle is based on a primitive that is used
in the smart lock IP: a physically unclonable function (PUF). The PUF will serve as

Fig. 1.1 Classical IP flow integration

1 Digital Right Management for IP Protection 3

a unique device identifier. A PUF is a physical object that can take inputs and
generate unpredictable outputs; it is unclonable in that the input/output behavior of
a physical copy of one PUF will differ from that of the original one due to some
uncontrollable randomness in the process variations. Many literatures are available
on PUF, but also some commercial products are now available, as PUF proposed,
for instance, by [11, 12] or [13]. After device manufacturing (or during the man-
ufacturing process) the PUF is extracted allowing to have a unique signature per
chip. This PUF is used to generate the license (we consider herein that the license is
the ciphered stream including activation code of the IP, this license is authenticated
and certified on chip) and this license will activate or not the IP. An on-chip license
verification block is used to read the identifier associated with the device.

1.3 State of the Art

This state of the art is divided in two parts, the first part is dedicated to the PUF
architecture, which is the basis for identification process for DRM flow and the
second section is about fingerprint solutions and IP protection.

1.3.1 PUF Principles

The physical unclonable function (PUF) is a hardware security primitive that
exploits some physical randomness, introduced explicitly or indirectly into a
device, to generate device unique information used to address security-related

Fig. 1.2 Smart lock IP system principle

4 L. Torres et al.

problems. Basically, a PUF is a function that one-way maps a set of inputs, namely
challenges, to a set of outputs, defined as responses, forming a set of
challenge-response pairs (CRPs) that are unique for each device where the PUF has
been implemented. Moreover, PUFs should be unclonable and tamper evident,
meaning that it is unfeasible for an attacker to build another PUF providing the
same original CRPs set, and that invasive attacks destroy the PUF, as they can be
easily detected. Furthermore, PUF responses should be persistent and unpre-
dictable, and it should not be possible to discover the applied challenge given its
output response. Figure 1.3 is an illustration of the behavior of a silicon PUF when
three chips from the same wafer embed the same PUF, they are packaged in three
integrated circuits, and after receiving the same challenge, each PUF provides a
unique, unpredictable, and steady response by performing an extraction of the
entropy which comes from variations in the CMOS process.

Among all types of PUFs, this section focuses on silicon PUFs, introduced [14],
exploiting variations in integrated circuit manufacturing, inherently random across
different dies and wafers, to generate robust, unclonable, unpredictable, and
chip-specific outputs. Due to their underlying mechanism, silicon PUFs do not
require any alteration of manufacturing processes, and several designs are available
for both field-programmable gate arrays (FPGAs) and application-specific inte-
grated circuits (ASICs).

Since exploited properties are electrical, the responses are inherently affected by
noise. The environmental and working conditions, such as the temperature and the
supplied voltage, can alter PUFs responses. For this reason, often the PUF is
followed by a code corrector block to guarantee the uniqueness of the response.
According to different physical sources of imperfections, silicon PUFs can be
categorized in delay-based PUFs and memory-based PUFs. While the former

PUF

Entropy
extrac on

PUF

Entropy
extrac on

PUF

Entropy
extrac on

IC_A

IC_B

IC_C

Response A
101001011

Response B
01100010

Response C
110011101

Unpredictable
Unique
High steadiness

Challenge
01101010011011

Fig. 1.3 Illustration of the behavior of PUF

1 Digital Right Management for IP Protection 5

requires additional hardware resources, because it involves a time measurement, the
latter is based on the random power-up values of storage elements, inherently
present in practically any Integrated.

The most discussed memory-based PUF are the SRAM PUF [14] and the D
flip-flop PUF [15]. As for the delay-based category, there are the Arbiter PUF [16],
the Ring Oscillator (RO) PUF [17–19], the Butterfly PUF [20], and the Ander-
son PUF [21] for the delay-based family. SRAM PUFs are not suitable for all
FPGA families, hence the introduction of D flip-flop PUFs. Arbiter PUFs and
Butterfly PUFs require layout symmetry that is hard to satisfy on FPGAs due to the
lack of routing control. Conversely, the RO PUF [22] is suitable for every silicon
technology, and hence can be easily adopted as PUF technique for both the FPGA
and ASIC technology. Indeed, the RO is a primitive easily implementable in terms
of design.

1.3.2 Fingerprint and IP Protection

PUF are systems therefore allowing embedded measurement of physical changes in
the manufacturing process, they are part of an authentication category by physical
characterization commonly called fingerprinting. There are other methods of fin-
gerprinting operating system such as power consumption, such as the method
proposed [23] and generalized by [24], or temperature evolution as the method
proposed by the company ALGOTRONIX [25]. These two methods are interesting
to copy detection but unlike PUF, they do not allow the implementation of a
challenge/response protocol (or client/server) to identify and unlock remote IP.

When fingerprinting is not possible, the designer has the possibility to add an
hardware detectable tag to differentiate its IP and to detect a copy. This is known as
watermarking. Regarding watermarking, state of the art is wide and it was featured
in a recent study [26]. One of the difficulties of the methods of watermarking
consists of the tag verification; many methods of marking do not propose a simple
method to check these tags [24]. Moreover, as indicated, watermarking is a tech-
nique for the detection of copy but without preventing it.

In addition to PUF approaches, it is necessary to consider the state of the art of
security approaches, including FPGAs made, namely by considering technical
security of their configuration file (called bitstream). The aim is mainly to ensure
that the bitstream is secure enough to prevent all forms of cloning. Works such as
[27–32], have been taken up by manufacturers such as Xilinx, Altera, and
Microsemi to propose commercial solutions. However, one cannot really talk about
DRM, but most of FPGA bitstream protection techniques.

Furthermore, the company KayaInstrument [33] offers a generic solution and ad
hoc to protect against any FPGA bitstream cloning, using an addi-silent component.
However, if this solution is interesting, it does not offer the possibility to authen-
ticate IP or activate them. Moreover, it is not possible to use this solution when
there are multiple IP. This case is complicated, few studies have addressed in [34]

6 L. Torres et al.

or [35] a solution based on a complex protocol involving a third trusted entity as
described into [36]. The work [37] or more recently [38] propose to intervene
directly at the FPGA manufacturer.

The work of the Algotronix company for the world of FPGA [39] in 2002 shows
that a solution could be based on an asymmetric protocol and a secret key contained
in the FPGA. If this work has opened the DRM path in the world of FPGA, the fact
remains that the proposed solution is dependent on FPGA vendors, it requires a
public key encryption algorithm and this one is complex to design on a minimum
area of silicon. As mentioned, lot of works have been proposed for FPGA world,
and some have proposed extensions for SoC approach. The DRM flow that we
consider is a generic flow for any target (FPGA or SoC), considering a trusted
framework from license generator to activation code of the IP. But clearly another
aspect not considered in this chapter is the fact that DRM is a way to better
monetize IPs and the silicon market [40].

1.4 DRM Flow

An example of the process for protecting and activating an IP block will now be
described in more detail (Fig. 1.4).

While this example is based on the protection of an IP block, as mentioned
above, in alternative embodiments it could be applied to the protection of other

Fig. 1.4 Proposed DRM flow

1 Digital Right Management for IP Protection 7

types of circuits. At the IP vendor, a database (1) for example stores one or more IP
blocks represented in a hardware description language such as plain RTL (Register
Transfer Level).

An IP protector block (IP PROTECTOR) comprises software for executing an IP
protection function, which is used to modify one or more of the IP blocks from the
database to render the circuit inactive (refer to activation code described in previous
section). In particular, the IP block is altered such that an activation code is required
to unlock its functionalities.

The modification of the IP block for example involves inserting, into the
hardware description file, one or more logic gates into one or more signal paths of
the IP block. These logic gates for example permit the propagation of the unaltered
signal along the signal path only if one or more correct activation bits are provided
at one or more input nodes of the inserted logic gates. Only the protected IP will be
delivered to the designer or the end-user.

In the case that the license is generated by the IP vendor, the activation code
needed for unlocking the protected IP block or blocks of the integrated circuit is
provided to the license generator. The license generator is used to generate a HW
license, which is transmitted to the license server (the smart lock DRM IP) of the
end-user device (in fact the license could be stored in some non-volatile memory or
any permanent storage depending of the system configuration and accesses).

The license generator receives also the device identifier (PUF) from the final
device too. So, the license is essentially based on this identifier (PUF) and on the
activation code. In some cases, the license also incorporates other data. These data
for example indicates any limit on the duration of activation of an IP block, in the
case that the license is a temporary license. It may also indicate a limitation of the
license to one or more hardware types, such as a technology of ASIC, FPGA
family, or specific features of an IP that are to be unlocked. We can imagine also
that IP activation is depending of different sources of sensors: GPS position,
temperature, acceleration, and so on, enabling features depending of the environ-
ment. Of course the generated license is ciphered and a specific derivation key
function (based on the PUF) is used to generate the ciphered key.

Another interesting approach to consider is that rather than the license being
generated directly by the IP vendor, the license could be generated by a third party
(generally certified) by a web service through a SaaS mode. In all cases the same
principle of license generator is used.

1.5 DRM Integration in SoC

At circuit level, the smart lock IP is distributed in several elements into the SoC. As
described into Fig. 1.5 the activation logic is directly inserted on each IP to protect.
For each IP, by a small integrated wrapper it is possible to define several features:
full activation or not, partial activation or not, activation delay, demo mode, and so
on. An integrated master-server is able to deliver in secure way a dedicated key for

8 L. Torres et al.

each IP to enable these services. Theses keys are on-chip provided by an integrated
master-server and transmitted to the IP by a secure link (based on challenge
responses mechanism). The integrated trusted server is the entity in charge to

Fig. 1.5 Smart lock IP SoC integration

Fig. 1.6 Smart lock IP integration on video codec architecture

1 Digital Right Management for IP Protection 9

receive the HW license. This license may come from the SaaS framework or
directly from a secure flash memory. The integrated master-server is also in charge
to extract the PUF of the device and the PUF signature will serve as public/private
key protocol and to identify the device. Instead of a PUF an OTP or anti-fuse
structure could be used.

Of course, all the exchanges between the integrated trusted master-server and
external communications are ciphered, and a public/private protocol is used to
enable this trusted communication. Figure 1.5 gives the main synoptic on how that
the smart lock IP is integrated into the SoC design.

Based on this concept, a first architecture has been proposed to validate the
overall concept on real IP, this one proposes a video codec, with a DPRAM IP
storing the video frame, a I2C controller for external links and application control, a
VGA core able to propose basic image processing algorithms, and a video capture
IP allowing to be connected to an external digital camera. As describes on Fig. 1.6,

Fig. 1.7 SoC layout based on the smart lock IP

10 L. Torres et al.

for each IP a license client is added to each IP permitting the IP activation under the
control of the trusted license server. A secure bus is also proposed to connect the
trusted license server to the client server of each IP. The protocol is based on a
challenge–response authentication. As mentioned in previous section, license server
extracts the PUF (or the device ID) and receives and decodes the ciphered license
providing specific activation keys for each IP.

A full implementation in 65 nm CMOS technology is proposed to validate the
overall concept. Figure 1.7 shows the actual SoC layout. The overall SoC is about 1
Million of gates for 6mm2 silicon fingerprint. The trusted license server itself is
about 60Kgates (6 % of the overall design).

1.6 Conclusion

We proposed in this chapter, a technology able to manage hardware digital rights
(DRM) in a very similar way to the principles of software licensing solutions. This
solution could fix strong issues of the semiconductor market: recurrent revenue in
the IC world, leading business models not available in IC world, i.e., “in-app”
purchase mode, Upgrade, Upsell, Try-before-you-buy, Pay-per-Use, and so on.

We show also how this DRM solution could really be implemented as an IP for
SoC or FPGA platform. This IP is based on a DRM controller, a dedicated wrapper
for IP activation, and a chip identity can possibly be implemented with a physical
unclonable function (PUF) delivering a unique ID for a given manufactured chip.

The smart lock IP delivers features to build an on-chip hardware infrastructure
enabling a secure licensing of hardware component instances, per manufactured
chip.

Three components are necessary

• The IP Activator is used to instrument components for feature-based activation;
• The Sensor Authenticator is used to deliver a safe chip identity mechanism. It is

the reference for the license generation;
• The DRM Controller to extract the chip identity for license request and then to

read the license and activate the instrumented hardware elements (IP/IC).

The approach described is a hardware license generator working in SaaS mode
(during the manufacturing process or not). It includes some Silicon Management
System based on a Hardware Development Kit and a Software Suite to generate the
Hardware license. Multiple instrumented IPs from different vendors at different
levels of hierarchy can be connected with one DRM Controller and one authenti-
cated Sensor, through a specific bus. At design phase, designer simply needs to
insert the DRM controller, which is fully compatible with traditional digital design
and verification methodologies. Once the chip is manufactured or the FPGA pro-
grammed, each distinct physical instance requires a unique runtime license key to
activate the functions protected with a secured license protocol. Even though

1 Digital Right Management for IP Protection 11

thousands or millions of identical devices are produced, each one of them requires a
unique license key to control its activation at operational runtime. The objective of
this work was really to demonstrate that DRM is now a real concept, easy to include
in new SoC platform and bringing new facilities for the end-user application.
Finally, the proposed solution is fully compatible with the actual design flow and
manufacturing process avoiding additional constraints.

References

1. FlexLM, Solution for applications producers, http://www.flexerasoftware.com/
2. SafeNet, World leading data protection and software monetization, http://www.safenet-inc.

com/
3. RLM, Reprise license manager, http://www.reprisesoftware.com
4. DARPA, http://www.darpa.mil/news-events/2014-02-24
5. A.Z.P.E. Chaudhry, Protecting Your Intellectual Property Rights, The Global Growth of

Counterfeit Trade (2013)
6. S. Maynard, Trusted foundry be safe. be sure. be trusted. Trusted Manufacturing of Integrated

Circuits for the Department of Defenses (2010), http://www.trustedfoundryprogram.org
7. C. Gorman, Counterfeit chips on the rise (2012)
8. AGMA, Alliance for Gray Markets and Counterfeit Adatement, http://www.agmaglobal.org
9. M. Pecht, S. Tiku, Bogus! Electronic manufacturing and consumers confront a rising tide of

counterfeit electronics. IEEE Spectrum (2006)
10. Gartner, http://www.gartner.com
11. https://www.intrinsic-id.com
12. http://www.ictk.com/servicenproduct/puf
13. http://secure-ic.com/sic-trusted-puf
14. B. Gassend, D. Clarke, M. Van Dijk, S. Devadas, Silicon physical random functions, in

Proceedings of the 9th ACM Conference on Computer and Communications Security (ACM,
2002), pp. 148–160

15. D.E. Holcomb, W.P. Burleson, K. Fu, Power-up SRAM state as an identifying fingerprint and
source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)

16. V. van der Leest, G.-J. Schrijen, H. Handschuh, P. Tuyls, Hardware intrinsic security from D
flip-flops, in Proceedings of the Fifth ACM Workshop on Scalable Trusted Computing (ACM,
2010), pp. 53–62

17. D. Lim, J.W. Lee, B. Gassend, G.E. Suh, M. Van Dijk, S. Devadas, Extracting secret keys
from integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(10), 1200–
1205 (2005)

18. G.E. Suh, S. Devadas, Physical unclonable functions for device authentication and secret key
generation, in Proceedings of the 44th Annual Design Automation Conference (ACM, 2007),
pp. 9–14

19. A. Maiti, J. Casarona, L. McHale, P. Schaumont, A large scale characterization of RO-PUF,
in 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)
(IEEE, 2010), pp. 94–99

20. A. Maiti, P. Schaumont, Improved ring oscillator puf: an fpga friendly secure primitive.
J. Cryptol. 24(2), 375–397 (2011)

21. S.S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, P. Tuyls, The butterfly puf protecting ip on
every fpga, in IEEE International Workshop on Hardware-Oriented Security and Trust, 2008.
HOST 2008 (IEEE, 2008), pp. 67–70

12 L. Torres et al.

http://www.flexerasoftware.com/
http://www.safenet-inc.com/
http://www.safenet-inc.com/
http://www.reprisesoftware.com
http://www.darpa.mil/news-events/2014-02-24
http://www.trustedfoundryprogram.org
http://www.agmaglobal.org
http://www.gartner.com
https://www.intrinsic-id.com
http://www.ictk.com/servicenproduct/puf
http://secure-ic.com/sic-trusted-puf

22. J.H. Anderson, A puf design for secure fpga-based embedded systems, in Proceedings of the
2010 Asia and South Pacific Design Automation Conference (IEEE Press, 2010), pp. 1–6

23. M. Barbareschi, G.D. Natale, L. Torres, Ring oscillators analysis for security purposes in
Spartan-6 FPGAs. Elsevier Microprocess. Microsyst. doi:10.1016/j.micpro.2016.06.005

24. S. Kerckhof, F. Durvaux, F.X. Standaert, B. Gérard, Intellectual property protection for FPGA
designs with soft physical hash functions: first experimental results. HOST, pp. 7–12 (2013)

25. C. Marchand, L. Bossuet, E. Jung, IP watermark verification based on power consumption
analysis. SOCC 2014

26. C. Marsh, T. Kean, D. Mclaren, Protecting designs with a passive thermal tag. ICECS,
pp. 218–221 (2008)

27. B. Le Gal, L. Bossuet, Automatic low-cost IP watermarking technique based on output mark
insertion. J. Des. Autom. Embed Syst. 16(2), 71–92 (2012). Springer

28. L. Bossuet, G. Gogniat, W. Burleson, Dynamically configurable security for SRAM FPGA
bitstreams. Int. J. Embed. Syst. 2(1/2), 73–85 (2006). Interscience Publishers

29. Y. Hori, A. Satoh, H. Sakane, K. Toda, Bitstream encryption and authentication with
AES-GCM in dynamically reconfigurable systems. FPL, pp. 23–28 (2008)

30. S. Drimer, M.G. Kuhn, A Protocol for Secure Remote Updates of FPGA Configurations.
ARC, Springer, LNCS, vol. 5453, pp. 50–61 (2009)

31. F. Devic, B. Badrignans, L. Torres, Secure protocol implementation for remote bitstream
update preventing replay attacks on FPGAs. FPL, pp. 179–182 (2010)

32. A. Braeken, J. Genoe, S. Kubera, N. Mentens, A. Touhafi, I. Verbauwhede, Y. Verbelen,
J. Vliegen, K. Wouters, Secure remote reconfiguration of an FPGA-based embedded system.
ReCoSoC, pp. 1–6 (2011)

33. L. Bossuet, V. Fischer, L. Gaspar, L. Torres, G. Gogniat, Disposable configuration of
remotely reconfigurable systems. Microprocess. Microsyst. Embed. Hardw. Des. 39(6), 382–
392 (2015). Elsevier

34. http://www.kayainstruments.com
35. S. Drimer, T. Güneysu, M.G. Kuhn, C. Paar, Protecting multiple cores in a single FPGA

design (2008), http://www.saardrimer.com/sd410/papers/protect_many_cores.pdf
36. J. Vliegen, D. Koch, N. Mentens, D. Schellekens, I. Verbauwhede, Practical feasibility

evaluation and improvement of a pay-per-use licensing scheme for hardware IP cores in
Xilinx FPGAs. J

37. E. Simpson, P. Schaumont, Offline hardware/software authentication for reconfigurable
platforms. CHES, Springer, LNCS vol. 4249, pp. 311–323 (2006)

38. T. Guneysu, B. Moller, C. Paar, Dynamic intellectual property protection for reconfigurable
devices. ICFPT (2007)

39. L. Zhang, C.H. Chang, A pragmatic per-device licensing scheme for hardware ip cores on
SRAM-based FPGAs. IEEE Trans. Inf. Forensics Secur. 9(11), 1893–1905 (2014)

40. T. Kean, Cryptographic rights management of FPGA intellectual property cores, in
Proceedings Tenth ACM International Symposium on FPGAs, Monterey CA, 2002 42.
Global Semiconductor

41. Global Semiconductor Alliance, http://gsaglobal.org

1 Digital Right Management for IP Protection 13

http://dx.doi.org/10.1016/j.micpro.2016.06.005
http://www.kayainstruments.com
http://www.saardrimer.com/sd410/papers/protect_many_cores.pdf
http://gsaglobal.org

Chapter 2
Turning Electronic Circuits Features into
On-Chip Locks

Brice Colombier, Lilian Bossuet and David Hély

2.1 Introduction and Context

Following Moore’s law, electronic systems are increasingly complex and powerful.

Their complexity is following a similar trend, forcing designers to adopt a modular

approach when designing such systems. Thus, a design-and-reuse approach is fol-

lowed, in which functional building blocks are put together by system integrators.

These blocks are provided by IP cores designers, who must transfer their complete

design in order to have it implemented correctly. However, such a situation neces-

sarily leads to abuses, since the designer cannot control the number of instances

implemented from its original design. It results in overbuilding IP cores and coun-

terfeiting of integrated circuits, and the trend is growing. Multiple cases have been

reported in recent years [1–3].

In order to answer this issue, the circuit can be provided as initially locked. It is

then nonfunctional and should be unlocked in order to be used. The unlocking pro-

cedure can be initiated only by the designer, allowing precise audit of the number of

instances of the protected design. This is referred to as hardware metering [4]. In case

the design has been obtained illegally, either from overbuilding or counterfeiting, it

remains locked and therefore unusable.

There are several ways to achieve locking of a circuit. Among them, modifying

the combinational logic is a way. It is presented in details in Chap. 3.

B. Colombier (✉) ⋅ L. Bossuet

Hubert Curien Laboratory, UMR CNRS 5516, University of Lyon, Saint-étienne, France

e-mail: b.colombier@univ-st-etienne.fr

L. Bossuet

e-mail: lilian.bossuet@univ-st-etienne.fr

D. Hély

LCIS, Grenoble Institute of Technology, Valence, France

e-mail: david.hely@lcis.grenoble-inp.fr

© Springer International Publishing AG 2017

L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,

DOI 10.1007/978-3-319-50380-6_2

15

http://dx.doi.org/10.1007/978-3-319-50380-6_3

16 B. Colombier et al.

Another interesting approach is to look into hardware Trojans [5] that target

Denial-Of-Service attacks. Such attacks are closely related to the kind of remote

locking we want to achieve here. Therefore, the actual means that are used by hard-

ware Trojans to trigger and achieve a Denial-Of-Service attack could be turned into

remote locking techniques. It effectively turns malicious hardware into salutary hard-

ware [6]. In order to be worth considering from the designer’s perspective, a design

protection scheme must also be cheap in terms of additional hardware resources

required to implement it. Indeed, if the economic losses associated with the ille-

gal actions are actually less expensive than the protection scheme itself, the latter

becomes unsuitable. Therefore, the protection scheme should be as lightweight as

possible, and occupy a very small area on the protected chip. This characteristic is

very common for hardware Trojans, which are usually found in the form of tiny and

stealthy modifications of the original design.

The point here is to achieve locking by targeting very sensitive components. These

components should be crucial to the proper functioning of the system. Thus, their

disablement will render the system absolutely unusable, indeed achieving locking of

the whole design. These points of action can be thought of as single points of failure,

which correct behaviour is absolutely necessary to the overall system.

In this chapter, we show that such points can be found in the vast majority of

complex electronic systems [7]. This is valuable since the design protection scheme

should be usable for any type of design and should not depend on specific design

features.

This chapter is organised as follows. Section 2.2 identifies the features which

could be turned into on-chip locks and provides a comparison of them using several

criteria. Section 2.3 shows how such features can be modified to disturb the circuit’s

operation. Section 2.4 gives implementation results on FPGA. Two reference designs

and two FPGA families were used. Section 2.5 proposes a discussion on partial lock-

ing, which is an interesting way to provide a circuit in evaluation mode.

2.2 Features Usable as Locking Means

Figure 2.1 shows a complex electronic system. We highlighted the following com-

mon features which can be turned into on-chip locks:

1. The clock circuitry,

2. The inputs/outputs,

3. The processor,

4. The interconnection buses,

5. The system controller,

6. The analogue components.

2 Turning Electronic Circuits Features into On-Chip Locks 17

Fi
g.
2.
1

S
o
C

fe
a
tu

r
e
s

w
h
ic

h
c
a
n

b
e

tu
r
n
e
d

in
to

o
n
-
c
h
ip

lo
c
k

s

18 B. Colombier et al.

2.2.1 Clock Circuitry

The first feature that is immediately identifiable as a locking point is the clock circuit.

Indeed, it is a universal feature found in most digital designs. Moreover, good oper-

ation of the circuit is heavily dependent on the clock signal. Thus by acting on the

clock signal, it is possible to disable the circuit, making it effectively locked. Another

interesting characteristic of the clock is that its frequency is related to the device’s

performances. Hence by dynamically shifting the clock frequency, it is possible to

alter the performances of the circuit. This could be used to provide an evaluation

version of the device, operating at a lower frequency and exhibiting a lower level of

performance.

2.2.2 Inputs/Outputs

All electronic designs have input and output ports to interact with other components.

By temporarily disabling these ports, it is possible to prevent new data to be sent to

the design. Even though it does not make the design unusable itself, it makes it almost

useless, since it is then not possible to interact with it anymore.

2.2.3 Processor

When a processor is present in a digital design, it is usually a central compo-

nent. Such processor can be either hardwired or soft-core. A soft-core processor

is described in a hardware description language and implemented in reconfigurable

resources. In essence, the processor executes a sequence of instruction. One way to

alter its functionality is then to prevent the execution of new instructions.

2.2.4 Buses

Interconnection buses are the backbone of complex systems. They allow multiple

IP cores to communicate. The integrity of the information exchanged between the

different sub-modules of a system is a crucial requirement. Therefore, by altering

this information, it is possible to render the system nonfunctional.

2.2.5 System Controller

The control logic of complex designs is usually handled by an FSM. By modifying

this FSM’s states, it is possible to alter the operation of the circuit. Another possi-

bility is to add extra states to control access to the normal mode of operation.

2 Turning Electronic Circuits Features into On-Chip Locks 19

2.2.6 Analogue Components

In order to handle physical data, a design can integrate analogue components. Such

components are precisely calibrated to suit the needs of the designer. By altering this

calibration, their behaviour can be altered.

Another important analogue component of the design is the power supply module.

By shutting down specific areas of the design, they can be efficiently disabled. This

feature is called power gating and is already implemented in some designs to reduce

power consumption.

2.2.7 Global Comparison

After identifying these features, we can have a first overview of their pros and cons.

Table 2.1 presents a qualitative comparison.

The first criterion used to evaluate the features is the impact on performance.

It describes how the performance of the circuit is affected during normal operation.

Modifying the clock circuitry has low impact on the performance, although the clock

characteristics such as the jitter can be affected if the modification is poorly handled.

Acting on the inputs/outputs, the FSM or the processor does not have any impact

on the circuit’s performance. Conversely, modifying the buses can lead to slower

data rates and increase the latency. Similarly, modifying the calibration of analogue

components can reduce their efficiency.

The second criterion is the ease of locking/unlocking. It quantifies how simple it

is to implement locking using the corresponding feature. It also shows how easy it

is to fall back into normal behaviour after an unlocking request has been received.

For example, acting on the clock circuitry or the inputs is simple. They can be easily

disabled and enabled again. On the other hand, modifying the processor to be able

Table 2.1 Qualitative comparison of the presented features when being used as on-chip locks

Feature modified

for locking

Evaluation criterion

Impact of the

locking scheme

on performance

Ease of dynamic

(un)locking

Efficiency/impact

on functionnality

Partial

locking

Overall

suitability

Clock Low High High yes ∙ ∙ ∙
Inputs/outputs None High Medium no ∙ ∙ ◦
Processor None Medium High no ∙ ∙ ◦
Buses Medium Medium High no ∙◦◦
FSM None Low High no ∙◦◦
Analogue parts Medium Low Medium yes ∙◦◦

20 B. Colombier et al.

to stop it can be complicated. Similarly, tampering with the buses can lead to unex-

pected behaviour. In both cases, correctly coming back to normal behaviour might

not be guaranteed. When modifying the FSM, locking refers to entering “hidden”

states, corresponding to altered operation. Therefore, locking or unlocking requires

to have access to the FSM inputs. This is not guaranteed, and most designs do not

allow to transition between FSM states so easily. Similarly, modifying the calibration

of analogue components can be hard to achieve.

When modifying a feature to achieve locking, the impact on the circuit function-

ality should be as high as possible, to make is completely unusable. Disabling the

clock, processor, buses or entering “hidden” FSM states systematically leads to com-

plete locking. On the other hand disabling the inputs/outputs or altering the char-

acteristics of analogue components has medium impact, which will depend on the

usage.

Finally, partial locking is possible with some of the described features. We define

partial locking as a state in which the design has a correct behaviour, but has a lower

level of performance. This is achievable only by acting on the clock or the ana-

logue components. Modifying the clock frequency directly affects the designs per-

formance. Likewise, altering the calibration of analogue components can make them

perform poorly.

The final column on the right of Table 2.1 gives an overall suitability estimation

for the feature. It estimates how suited the feature is in order to be turned into an

on-chip lock.

2.3 Practical Transformation into On-Chip Locks

We now give means how to turn the features presented in Sect. 2.2 into on-chip locks.

Analogue components modification is not discussed here.

2.3.1 Clock Circuitry

In practise, acting on the clock circuitry can be achieved in two ways. The first one

is to use a modified clock-gating module. The second one makes use of the recon-

figuration capabilities of some phase-locked loops (PLLs).

2.3.1.1 Clock Gating

An already approved method to act on the clock is clock gating. It is commonly

used to reduce power consumption by not clocking the unused regions of the circuit.

Therefore, it could also be used to make the circuit unusable.

2 Turning Electronic Circuits Features into On-Chip Locks 21

Fig. 2.2 Clock-gating module acting on a clock buffer (in dark-grey)

To achieve clock gating, we insert a specific module on the clock signal path. This

module is shown in Fig. 2.2. It does not require to add extra logic on the clock signal

path itself, but rather makes use of the clock-enable inputs of existing clock buffers.

Here, the clock-enable input can be driven by three different signals. The first

one, which corresponds to a high logic level (Vcc), allows to leave the clock signal

unchanged. In this case, the circuit is totally unlocked. The second one is the result

of the comparison between the output of an n-bit counter and the n-bit value 1. Thus,

the clock buffer is only active when the counter is equal to 1. In practical terms, the

output frequency is then divided by 2n, where n is the size of the counter.

In this case, the output clock does not have a 50 % duty cycle. Instead, the duty

cycle 𝛼 obtained from the division is given in Eq. 2.1.

𝛼 =
tH
T

=
t∕2
n.t

= 1
2n

(2.1)

In such case, if the frequency is chosen to be divided by a large number, the

duty cycle can drop to low values. However, if the setup times were not violated

with the original frequency, then they will not be either with the divided frequency.

The waveforms obtained from the three different modes presented here are shown

in Fig. 2.3: Fig. 2.3a shows the original clock and Fig. 2.3b shows the divided clock.

Here, the division factor is 2. We see that the duty cycle is not 50 % but 25 %. This

can be useful to provide the design in “evaluation” mode. The operating frequency

is twice lower, and so is the performance. Finally, Fig. 2.3c shows the gated clock.

In this mode, the design does not function at all.

Acting on the clock has multiple advantages. First of all, it is a powerful way

to completely disable the circuit. If the clock is not provided, most of the circuit’s

elements do not operate. Then, it requires very few additional logic resources. In the

module presented in Fig. 2.2, only one counter, one comparator, one multiplexer and

one D flip-flop are used. It also allows to reduce the operating frequency, effectively

getting the circuit to operate in evaluation mode.

22 B. Colombier et al.

a Original clock

b Divided clock

c Gated clock

Fig. 2.3 a Original clock, b divided clock c gated clock

The main drawback of such a scheme is that it inherently requires to alter the clock

distribution network. This can be problematic in certain designs because the clock

distribution network is usually very precisely tuned to meet timing requirements.

Therefore, next subsection proposes another way to act on the clock signal, by

dynamically modifying the PLL configuration.

2.3.1.2 Dynamic Phase-Locked Loop (PLL) Reconfiguration

Another way to act on the clock signal is to directly deal with the phase-locked loop

(PLL). In most of the integrated circuits, the clock signal is handled by a PLL. It

allows to generate multiple clean clock signals, which can have a different frequency,

to different parts of the circuit. It is then distributed by the clock tree.

In modern FPGAs, such as Altera Arria V, Cyclone V or Stratix V families [8], the

PLL can be dynamically reconfigured. That is, the multiplication and division factors

can be dynamically tuned. The PLL is then actually used as a frequency synthesiser.

The output frequency of the PLL is given by the following formula:

fout = fin.
M
N.C

(2.2)

C is the post-scale output counter. M is the feedback counter. N is the prescale

counter. The values for M, N and C can be dynamically changed in order to tune the

operating frequency.

In order to do this on FPGAs, a vendor-specific IP core must be instantiated. It

is controlled by a dedicated finite state machine (FSM), responsible for providing

the C, M and N values. Once the parameters have been sent, the actual reconfigu-

ration starts. The PLL unlocks, and then locks again on the new frequency. This is

illustrated in Fig. 2.4.

2 Turning Electronic Circuits Features into On-Chip Locks 23

normal operation reconfiguration evaluation mode

Fig. 2.4 Output clock during a reconfiguration

The normal mode of operation corresponds to the maximum frequency. Then the

PLL is reconfigured, and locks again to the new frequency. This one is lower and

corresponds to the circuit operating in evaluation mode.

The main advantage of using the PLL as a frequency synthesiser is the flexibility

it provides. Indeed, by individually setting the M, N and C parameters, it is possi-

ble to precisely tune the frequency. Moreover, since the reconfiguration process is

natively supported by the PLL, the designer ensures that the output clock meets the

specifications.

On the other hand, such reconfiguration feature might not be found in all the PLLs.

For example, only recent versions of Altera’s FPGAs support this feature. Another

drawback is the area overhead. Indeed, instantiating the reconfiguration engine and

the controlling FSM requires a lot of logic resources. This will be extensively dis-

cussed in Sect. 2.4.1.

2.3.2 Inputs/Outputs

2.3.2.1 Embedded Flip-Flops

In most of the designs, the inputs are synchronised to be handlled properly and avoid

metastable states. The D flip-flops used to achieve this synchronisation often have an

enable input. This enable input prevents new data to be sampled by the D flip-flop

if it is driven low. By controlling this enable input, it is then possible to prevent the

design from receiving new data from its inputs.

For example, for most of the FPGAs, the input/output blocks embed this type of

D flip-flops. In order to specifically use this D flip-flop, some directives should be

inserted in the design.

For Altera devices:

ATTRIBUTE useioff : BOOLEAN;

ATTRIBUTE useioff OF e : SIGNAL IS true;

24 B. Colombier et al.

For Xilinx devices:

ATTRIBUTE IOB : STRING;

ATTRIBUTE IOB OF e : SIGNAL IS‘‘TRUE’’;

For Lattice devices:

USE DIN TRUE CELL ‘‘e’’;

USE DOUT TRUE CELL ‘‘e’’;

The advantage of such technique is to reuse existing elements of the design. By

using flip-flops which are already implemented, the overhead is very limited. It also

has a strong impact on design operation, since it prevents new data to be loaded.

However, it requires a specific type of flip-flop, since an enable input is necessary.

2.3.2.2 Fuses/Anti-fuses

In 2014, Basak et al. also proposed to act on the inputs of a circuit to get it to operate

properly or not [9]. They propose to integrate anti-fuses in the chip’s pins. Those

anti-fuses are blown or not according to an authentication key. If the wrong key

is supplied, then the wrong fuses are blown and the device is not usable. After the

fuses are blown, the correct inputs and outputs are accessible and the device operates

normally.

An interesting feature here is that if a system integrator obtains an integrated cir-

cuit on which fuses are already blown, then it is obviously a refurbished one. There-

fore, such scheme also helps in fighting other types of threats on design intellectual

property.

2.3.3 Processor

2.3.3.1 Processor’s Programme Counter

Among complex systems, some integrate a soft-core processor in the FPGA fabric

in order to execute programmes. Such processor is described in a hardware descrip-

tion language and instantiated. Altera Nios II [10] and Xilinx MicroBlaze [11] are

examples of proprietary soft-core processors. An example of open-source soft-core

processor is the Plasma CPU, available on the IP cores repository Opencores [12].

Moreover, some SoC actually include a wired processor. For example, recent Altera

Cyclone V SoCs integrate a dual-core ARM Cortex-A9 processor.
1

1
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html.

https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html

2 Turning Electronic Circuits Features into On-Chip Locks 25

In order to disable a processor, acting on the programme counter, also called

instruction pointer, is a very effective solution. The programme counter is a reg-

ister that gives the address of the instruction being currently executed. Therefore, by

controlling its value, it becomes possible to prevent new instructions from being exe-

cuted. This can effectively halt the processor. Moreover, such halting can be set and

released multiple times during the device’s lifetime, allowing to achieve evaluation

periods for instance. Therefore, acting on the programme counter is a versatile way

to license the device. In case of counterfeiting or overbuilding, it can also obviously

be used to render the processor unusable by permanently forcing the programme

counter to a fixed value.

The detailed locking process is presented in Algorithm 1.

Algorithm 1: Backup and locking procedure

if locking request then
if No branching or long instruction going on then

if No branching or long instruction coming then
PCbackup ← PC

Wait for ongoing instruction to finish then
PC ← “000...000”

instruction ← NOP
Locking completed

The first thing to do is to intercept the locking request. After that, it is important

to verify that no problematic instruction is currently being executed. Indeed, if this

is the case, then the return to normal operation is uncertain. Problematic instructions

are long and branching instructions. Long instructions cannot be stopped during their

execution and should terminate before. Similarly, during a branching instruction,

the locking request should be postponed. This might cause the branching instruc-

tion to be skipped. The locking request should also be postponed if a problematic

instructions is meant to be executed during the next clock cycle. In order to detect

these instructions, the opcodes corresponding to problematic instructions can be

read directly from the memory bus. These opcodes are provided by the processor’s

designer. This decision is based on practical experiments. It is important to ensure

that a correct backup of the processor’s current state is possible. Locking requests are

not time-critical and can be postponed for several clock cycles to ensure processing

integrity.

After that, the current value of the programme counter is stored in a dedicated

register: PCbackup. At the end of the running instruction, which is not problematic,

the programme counter is set to a nonfunctional value. In Algorithm 1, we took the

example of the zero value (“000...000”) but this can be different depending on the

processor. The instruction register is set to NOP. This is to avoid executing the same

instruction over and over when the processor is locked. It could modify its internal

state and make the return to normal operation impossible.

26 B. Colombier et al.

Finally, the locking process is considered as completed.

In order to return to normal operation, the previous programme counter value

should be restored. This is shown in Algorithm 2.

Algorithm 2: Restore procedure

if unlocking request then
PC ← PCbackup

Wait for instruction to be loaded then
Unlocking completed

An interesting feature of this locking scheme is that it is fully reversible. Indeed,

if the locking procedure has been followed properly, the instruction during which the

locking occurred is not problematic. Therefore, the system can then be unlocked and

start again without problem.

2.3.4 Buses

Buses integrity is crucial for correct communication between the different compo-

nents of a system. Integrity can be more precisely defined in two terms: value and

position. Thus data from a bus is sound if it has a correct value and it is correctly

ordered.

Therefore, by acting on either the value or the position of the bus data, we can

alter the bus operation. The first option is then to scramble the bus lines. The second

option is to randomly mask the bus data.

For the subsequent Sects. 2.3.4.1 and 2.3.4.2, we assume that the bus is error free.

The input value is identical to the output value during normal operation.

2.3.4.1 Deterministic Scrambling

A bus can be defined as the following function f :

f ∶ {0, 1}n → {0, 1}n (2.3)

∀x ∈ {0, 1}n ∶ f (x) = x (2.4)

It can thus be referred to as the identity function.

We define a deterministic scrambling function 𝜎 as :

𝜎 ∶ {0, 1}n → {0, 1}m with n ≥ m (2.5)

2 Turning Electronic Circuits Features into On-Chip Locks 27

∀x ∈ {0, 1}n ∶ 𝜎(x) ≠ x (2.6)

However, such function can be heavy to implement. The requirement given in

Eq. (2.6) is hard to fulfil for all x.

Therefore, we can define a relaxed version of the deterministic scrambling func-

tion 𝜎R as :

𝜎R ∶ {0, 1}n → {0, 1}m with n ≥ m (2.7)

such that for most of the input values:

𝜎R(x) ≠ x (2.8)

In fact, the relaxed version is sufficient for the usage we consider here. Indeed,

disturbing a bus for even half of the input values is enough to render the overall

system unusable.

The other point is to make the scrambling controllable by an additional input such

that the scrambler can be turned on and off. A simple 2-to-1 n-bit multiplexer can

be used to this end, selecting between the original bus data and the scrambled one.

This is shown on Fig. 2.5.

From a practical point of view, implementing a scrambler is trivial. An n-bit cir-

cular shifter defined as 𝜎R(xi) = xi−1 mod n and shown in Fig. 2.6 is efficient. It is only

a relaxed deterministic scrambler since it does not alter the data if it consists or only

0 s or only 1 s.

Fig. 2.5 Integration of the

scrambler on an n-bit bus

Fig. 2.6 8-bit circular

shifter

28 B. Colombier et al.

However, there are even more trivial structures which can be used to scramble the

bus. We do not give more details here as the chosen method is strongly dependent

on the bus purpose.

Implementation details can require to add extra specifications to the scheme

shown in Fig. 2.5. As shown on Fig. 2.1 of this chapter, a scrambler can be added to

the address bus of the shared memory. This is a suitable choice, since reading from

a wrong memory address disturbs the system heavily. However, writing to an unau-

thorised memory address could potentially alter the ability of the system to recover

once the scrambler will be deactivated. For instance, the programme memory could

be irremediably altered. Therefore, in this case, the bus should be scrambled only

during read operations, not write.

2.3.4.2 Pseudo-random Masking

Another way to corrupt a bus is to act on the actual data which is transmitted through

it. To this end, pseudo-random masking can be used.

In order to get pseudo-randomness, we use a linear feedback shift register (LFSR).

Then, the shift register state bits are XOR-ed bitwise with the bus lines. For an n-bit

bus, an n-bit shift register is used. If the feedback polynomial is carefully chosen, i.e.

is primitive, a 2n − 1 clock cycles period can be obtained. This is shown in Fig. 2.7.

Similarly, the note made in the previous section about implementation-specific

issues also applies to the pseudo-random masking scheme.

In order to reduce the power overhead induced by the LFSR, it can be clocked at

a lower frequency then the nominal one of the design. Indeed, power consumption

is proportional to the operating frequency.

2.3.5 Finite State Machine

The first way to modify the FSM is to add extra states before the original reset state.

This is described in Sect. 2.3.5.1. The second option is to duplicate intermediate

states to stop normal operation if the correct key is not provided. This is detailed in

Sect. 2.3.5.2.

Fig. 2.7 Pseudo-random masking of a bus using an LFSR

2 Turning Electronic Circuits Features into On-Chip Locks 29

2.3.5.1 Pre-reset States

The first possibility to modify the FSM is to add extra states before the original reset

state [4, 13, 14]. This way, when the system is powered up or reset, it starts again

in these extra states. In order to reach normal operation, the design must transact

from one extra state to the other until it reaches the original reset state. If the state

transitions of the extra states are only known to the original designer, then an attacker

will not be able to reach the original reset state. The only possibility would be to

explore all the extra states until the original reset state is reached.

The extra states can come at no cost if the original state machine is encoded in a

way that so-called don’t care states exist. If the FSM’s states follow binary encoding,

then an M-state FSM must use at least ⌈log2(M)⌉ D flip-flops to store the current

state’s value. If the number of flip-flops used is n, then there are 2n −M states which

are not used. These are don’t care states. They can be used to encode the extra states.

A graphical representation of the modified FSM is shown in Fig. 2.8.

In this example, the original FSM includes five states. ⌈log2(5)⌉ = 3, so three

flip-flops are needed for state encoding. However, three flip-flops can encode 23 = 8
states. Therefore, the three don’t care states can be used as pre-reset states.

The new reset state is S′0. In order to transact to the original reset state S0, the

correct values for K0, K1 and K2 should be sent. If one key bit is wrong, then S′0 is

reached again.

The advantage of such technique is to have low overhead since it makes use of

don’t care states. It has several drawbacks though. First of all, from a security point

of view, this locking scheme exhibits a key even though it is not secure on its own.

This can be misleading and get the designer to consider the scheme secure. However,

security should rely on a cryptographic primitive. Second of all, transitions from one

state to the other could be detected by the transient power consumption of switching

flip-flops which encode the current state. Thus, finding the right key becomes trivial.

One option explored to make the scheme more secure is to initialise the state flip-

flops to a random value, given by the response of a PUF to a specific challenge [4].

Fig. 2.8 Pre-reset states with key (K0K1K2) = 110

30 B. Colombier et al.

Since only the designer knows the PUF’s challenges/responses pairs, only he can

find out the start-up state associated with a challenge. Therefore, in order to reach

the original FSM, he must provide the system integrator with the right sequence of

inputs to provide to the FSM. However, this only makes each FSM instance behave

differently. It does not account for the two drawbacks previously described. Further-

more, it does not consider the variability of PUF’s responses. If the PUF’s response

differs, the start-up state expected by the designer is different than the actual one of

the powered-up device. Thus, the designer cannot provide the appropriate sequence

of inputs to unlock the circuit.

Another option to modify the FSM is to duplicate specific states. This is described

in the following section.

2.3.5.2 Duplicated States

Similarly, it is possible to use don’t care states to duplicate some intermediate states.

This is described in [15] and shown in Fig. 2.9. In this example, state S2 is duplicated.

The transitions from S1 to one of the duplicated states S21, S22, S23 and S24 is

controlled by the output of a PUF, called random unique block in [15]. After that,

in order to transition to the next state, here S3, a specific key must be applied to the

FSM’s inputs. This key is associated with the PUF’s response and known only by the

designer. If the wrong key is applied, the FSM does not transition to the next state

and remains locked.

The advantages and drawbacks of this method are the same as the ones describes

in Sect. 2.3.5.1.

Fig. 2.9 Duplicated states S21, S22, S23 and S24

2 Turning Electronic Circuits Features into On-Chip Locks 31

2.4 Implementation on FPGA and Results

We implemented the on-chip locks proposed in Sect. 2.3 on FPGA. We first give

the cost for all solutions in terms of hardware resources. We then them implement

on reference designs to estimate the implementation overhead. All the results are

given with optimisation for lowest area. We used Quartus II 13.1 and ISE 13.4 for

synthesis.

2.4.1 Hardware Resources

The experimental results obtained are given in Table 2.2. The implementation was

carried out on two FPGA families: Altera Cyclone III and Xilinx Spartan 3. They

are provided as the number of 4-input look-up tables (LUTs) and D flip-flops used

for the implementation.

First, we can see that logic resources usage is very low for all the locks, except for

the PLL reconfiguration. Indeed, in this case, the heaviest module is the one respon-

sible for achieving the reconfiguration. It is provided by the FPGA manufacturer and

can hardly be modified or optimised.

Conversely, all the other locks require very few logic resources. The most light-

weight one consists in acting on the enable input of the input/output flip-flops. For

buses, we give the required resources in terms of the bus width. They are always

proportional to the bus width. When extra states are added to the FSM, either as pre-

reset or duplicated states, the resources overhead grows logarithmically with respect

Table 2.2 Implementation results of on-chip locks alone on Altera Cyclone III and Xilinx Spartan

3

Modified feature On-chip lock #4-input LUTs #D flip-flops

Clock circuitry Reconfigurable PLL
a

(+ control FSM)

247(+55) 118(+18)

Clock-gating module 9 6

Inputs/outputs Inputs/outputs DFF

enable

0 0

Interconnection bus Deterministic

scrambling
b

8n/5 0

Pseudo-random

masking
b

n n

FSM Pre-reset states
c

log(n) log(n)

Duplicated states
c

log(n) log(n)

a
Only on Cyclone III, not available on Spartan 3

b
Of an n-bit bus

c
For n extra states

32 B. Colombier et al.

Table 2.3 Required resources to implement the original designs

Unmodified Altera Cyclone III Xilinx Spartan 3

design #4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Ethernet

controller

275 108 357 99

Plasma CPU 2395 452 2901 394

to their number. We did not take into account here the possibility to reuse don’t care
states. This would reduce the required resources even further.

Modifying the programme counter is a specific process for each processor. This

is detailed in Sect. 2.4.2.2 for the Plasma CPU.

2.4.2 Reference Designs

We then propose to implement the locks on two reference designs: an Ethernet con-

troller and a soft-core processor. Both designs are available on the Opencores web-

site [12]. For comparison, we give the resources required to implement the original

designs in Table 2.3.

2.4.2.1 Ethernet Controller

The first reference design is an Ethernet controller. It is a fairly small design, mainly

consisting in an FSM.

We first modified the clock circuitry. On the one hand, the clock-gating module

requires 3 % more combinational fabric and 6 % more D flip-flops. The resources

overhead is then rather low. On the other hand, implementing a reconfigurable PLL

doubles the required resources, and is clearly not practical.

As expected, acting on the D flip-flop enable input requires no extra resources.

When acting on the bus, scrambling is cheaper than masking. We implemented

them both on a 32-bit bus. Scrambling requires extra combinational logic, around 9 %

more. On the other hand, pseudo-random masking needs D flip-flops to implement

the LFSR. Therefore, the associated overhead is quite high, around 30 % more D

flip-flops.

Finally, we also modified the FSM in both ways. First, we added 32 pre-reset

states. Even if it only requires one extra flip-flop, the combinational logic handling

the transitions between the extra states is heavy, and requires almost 25 % more

resources. Then, we duplicated one of the state 32 times. Similarly, only one extra

flip-flop was added to the design but the requirement for combinational logic exceeds

70 % here, which is excessive.

2 Turning Electronic Circuits Features into On-Chip Locks 33

Table 2.4 Implementation of on-chip locks on the Ethernet controller

Modified Altera Cyclone III Xilinx Spartan 3

design #4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Clock-gating

module

284 (+3 %) 114 (+6 %) 367 (+3 %) 105 (+6 %)

PLL

reconfiguration

522 (+90 %) 226 (+109 %) Not available

Inputs/outputs

DFF enable

275 (+0 %) 108 (+0 %) 357 (+0 %) 99 (+0 %)

Deterministic

scrambling
a

297 (+8 %) 108 (+0 %) 388 (+9 %) 99 (+0 %)

Pseudo-random

masking
a

313 (+14 %) 140 (+30 %) 391 (+9 %) 131 (+32 %)

32 pre-reset states 343 (+25 %) 109 (+1 %) 425 (+19 %) 100 (+1 %)

Duplicated state

(x32)

493 (+80 %) 109 (+1 %) 612 (+71 %) 100 (+1 %)

a
For a 32-bit bus

All the results of the implementation on the Ethernet controller are shown in

Table 2.4.

For a design of this size, we can then estimate that only input/output locking is

suitable. Adding a clock-gating module can be also considered, since the overhead

is still rather low. All the other modifications lead to an important overhead.

2.4.2.2 Plasma CPU

A larger design is now presented, the soft-core processor Plasma CPU.

Here, the clock-gating module is even cheaper in terms of resources. However,

PLL reconfiguration remains expensive, with 13 % more combinational resources

and 30 % more D flip-flops.

Like before, using integrated input/output D flip-flops adds no logic resources.

Modifying the bus becomes affordable with this kind of large designs. Scrambling

it in a deterministic way induces almost no overhead. Pseudo-random masking leads

to low overhead, below 8 % Therefore, it can be implemented as a powerful way to

disturb the bus data.

Since the Plasma CPU does not comprise an FSM, pre-reset and duplicated states

could not be implemented on this design.

Finally, being able to control the programme counter value is also quite expensive

and requires 10 % extra resources. However, this was implemented on an already

existing design. We assume it could be implemented in a more lightweight way if

this feature was taken into account during the design phase.

All the implementation results are provided in Table 2.5.

34 B. Colombier et al.

Table 2.5 Implementation of on-chip locks on the Plasma CPU

Modified design Altera Cyclone III Xilinx Spartan 3

#4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Clock-gating

module

2399 (+0.17 %) 458 (+1 %) 2932 (+1 %) 400 (+2 %)

PLL

reconfiguration

2697 (+13 %) 588 (+30 %) Not available

Inputs/outputs

DFF enable

2395 (+0 %) 452 (+0 %) 2901 (+0 %) 394 (+0 %)

Deterministic

scrambling
a

2430 (+1 %) 452 (+0 %) 2894 (+0 %) 394 (+0 %)

Pseudo-random

masking
a

2446 (+2 %) 484 (+7 %) 2927 (+1 %) 426 (+8 %)

Programme

counter halt

Not implemented 3186 (+10 %) 428 (+9 %)

a
For a 32-bit bus

On larger designs, implementing more complex locks is possible. The associated

overhead is limited, and even multiple locks could be integrated.

2.5 Discussion: Partial Locking

For some of the features presented previously, it is possible to achieve partial locking.

Partial locking can refer to the following features:

∙ Lower performance: lower operating frequency...

∙ Less features: reduced instruction set...

∙ Limlited period of use: trial period.

However, the system is still perfectly functional.

Such partial locking feature is very interesting from the point of view of the

designer. In fact, it allows the designer to provide the design in evaluation mode.

This way, the design can be thoroughly tested by the future user before buying it.

With the increasing number of designs provided as IP cores, this allows to support

a business model similar to the one used in for software distribution. The product

is first provided as an evaluation version and can then be fully unlocked to perform

optimally. This offers interesting flexibility to the licensing model.

What is important to partially lock a design is to choose a locking scheme that

provides some granularity. Among the modifications we have shown in the previous

sections, acting on the clock circuitry is the only one able to achieve this. Indeed, as

said before, the clock frequency is directly related to the performance of the design.

Therefore, acting on the clock frequency using a clock-gating module or by dynam-

ically reconfiguring the PLL is a way to tune system performance.

2 Turning Electronic Circuits Features into On-Chip Locks 35

In order to implement this kind of functionality, a controller should also be imple-

mented to handle the different states in which the system can operate: locked, evalua-

tion or unlocked. Different commands and the associated unique keys are controlling

the transitions from one state to another. It leads to additional resources overhead,

which must be taken into account.

2.6 Conclusion

This chapter shows how some features, already existing in most electronic designs,

can be turned into powerful on-chip locks. Since they are already present, using

them lead to low resources overhead. We provide different techniques about how to

effectively implement these locks. We also give details on partial locking. This can

help to achieve a more flexible licensing model for IP cores, allowing to provide

devices in evaluation mode.

The most suited way to modify a design to make it lockable seems to be the mod-

ification of the clock circuitry. It is lightweight and can effectively tune the perfor-

mance of the design.

References

1. Frontier-Economics, Estimating the global economic and social impacts of counterfeiting and

piracy, in Business Action to Stop Counterfeiting and Piracy (BASCAP), Tech. Rep. (2011)

2. C. Gorman, Counterfeit chips on the rise. IEEE Spectrum 49(6), 16–17 (2012)

3. U. Guin, K. Huang, D. DiMase, J.M. Carulli, M. Tehranipoor, Y. Makris, Counterfeit integrated

circuits: a rising threat in the global semiconductor supply chain. Proc. IEEE 102(8), 1207–

1228 (2014)

4. Y. Alkabani, F. Koushanfar, Active hardware metering for intellectual property protection and

security, in USENIX Security (Boston MA, USA, 2007), pp. 291–306

5. R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware: identifying and

classifying hardware trojans. Computer 43(10), 39–46 (2010)

6. L. Bossuet, D. Hély, SALWARE salutary: hardware to design trusted IC, in Workshop on Trust-
worthy Manufacturing and Utilization of Secure Devices, TRUDEVICE (2013)

7. B. Colombier, L. Bossuet, Functional locking modules for design protection of intellectual

property cores, IEEE International Symposium on Field-Programmable Custom Computing
Machines (Vancouver, Canada, 2015), p. 233

8. Altera. Implementing fractional pll reconfiguration with altera pll and altera pll reconfig ip

cores (2015)

9. A. Basak, Y. Zheng, S. Bhunia, Active defense against counterfeiting attacks through robust

antifuse-based on-chip locks, in IEEE 32nd VLSI Test Symposium (Napa CA, USA, 2014), pp.

1–6

10. Altera. Nios, https://www.altera.com/products/processors/overview.html

11. Xilinx. Microblaze, http://www.xilinx.com/products/intellectual-property/microblazecore.

html

12. Opencores, http://www.opencores.org

https://www.altera.com/products/processors/overview.html
http://www.xilinx.com/products/intellectual-property/microblazecore.html
http://www.xilinx.com/products/intellectual-property/microblazecore.html
http://www.opencores.org

36 B. Colombier et al.

13. R.S. Chakraborty, S. Bhunia, Security against hardware trojan through a novel application of

design obfuscation, in International Conference on Computer-Aided Design (ACM, 2009), pp.

113–116

14. R.S. Chakraborty, S. Bhunia, HARPOON: an obfuscation-based soc design methodology for

hardware protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(10), 493–1502

(2009)

15. Y. Alkabani, F. Koushanfar, M. Potkonjak, Remote activation of ICs for piracy prevention and

digital right management. in IEEE/ACMInternational Conference on Computer-aided Design,

(Beijing, China, 2007), pp. 674–677

Chapter 3
Logic Modification-Based IP Protection
Methods: An Overview and a Proposal

Brice Colombier, Lilian Bossuet and David Hély

3.1 Introduction and Context

Design data protection schemes can be classified into two categories. Passive ones

detect that counterfeiting of over-usage took place, but do not stop it. Conversely,

active protection schemes actually prevent the infringement to occur in the first place.

They do so by modifying the design in order to make it resilient to such threats.

Chapter 2 gives an overview of the available features in most electronics design that

can be turned into powerful locks. The current chapter focuses on protection means

that require a modification of the combinational logic.

The first feature which can be achieved by logic modification is to controllably

disturb the outputs. This allows the designer to make the circuit unusable. In order to

return to normal operation, a “key” must be provided to the circuit. We use the word

“key” here as a generic term, not as a cryptographically strong sequence of digits.

This key is provided by the designer, who can therefore record how many times the

key has been delivered, and how many instances of the circuit are activated. Such

“count of the produced ICs” is called hardware metering [1]. It can be achieved by

different means, which are presented in the next section.

The second feature which can justify logic modification is to slow down reverse-

engineering. By adding extra logic gates, recovering the circuit functionality from a

high-resolution picture [2] of the layout or a netlist can become extremely difficult.

Logic obfuscation is one of the ways to do this, and is also presented.

B. Colombier (✉) ⋅ L. Bossuet

Hubert Curien Laboratory, UMR CNRS 5516, University of Lyon, Saint-Étienne, France

e-mail: b.colombier@univ-st-etienne.fr

L. Bossuet

e-mail: lilian.bossuet@univ-st-etienne.fr

D. Hély

LCIS, Grenoble Institute of Technology, Valence, France

e-mail: david.hely@lcis.grenoble-inp.fr

© Springer International Publishing AG 2017

L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,

DOI 10.1007/978-3-319-50380-6_3

37

http://dx.doi.org/10.1007/978-3-319-50380-6_2

38 B. Colombier et al.

One of the key features of all logic modification-based protection schemes is the

selection of the sites to modify. Those sites are the ones on which extra gates will be

inserted. Different techniques can be used to this end, such as random selection [3],

fault-analysis [4], etc. A trade-off between efficiency and computation time must be

done by the designer. For example, finding the best place to insert a masking gate

can be very time consuming, as shown in [4]. A novel technique which uses graph-

analysis methods is presented. It selects the sites to modify orders of magnitude

faster than fault analysis-based techniques, yet achieving better outputs disturbance

than simple random selection.

Finally, all the schemes mentioned above need to be integrated in a complete

design protection module. Indeed, even though many previous works try to exhibit

security features in their protection schemes, such security can only be reached by

using a dedicated cryptographic function. This is discussed in more details in the

final section.

This chapter is organized as follows. In Sect. 3.2, we provide a formal frame-

work for logic modification-based protection schemes by defining logic encryption,

logic obfuscation, logic masking, and logic locking and give examples for each. In

Sect. 3.3, we present a new graph-based algorithm that selects the optimal nodes

to be modified to achieve logic locking of a combinational netlist. In Sect. 3.4, we

present the results of implementation, specifically the logic resources overhead and

analysis time. In Sect. 3.5, we evaluate the proposed method and develop associated

metrics. In Sect. 3.6 we describe a threat model and perform a security analysis of

the protection schemes considered. In Sect. 3.7, we discuss design considerations. In

particular, we emphasize the need to introduce a cryptographic primitive to ensure

security, and to not rely on the logic/masking module to fulfill this objective.

3.2 A Formal Foundation for Logic Protection Schemes

An increasing number of works are trying to find a way to protect the intellectual

property of IP designers and fabless IC designers by acting on combinational logic.

Unfortunately, most of these works make incorrect use of the terminology, i.e., logic
encryption, logic obfuscation, logic masking and logic locking are used without a

formal definition. This chapter takes the opportunity to propose a formal founda-

tion for logic protection schemes. In this section, we provide formal descriptions

and definitions of the logic protection schemes in order to strictly evaluate their dif-

ferent contributions to the literature. In all the following subsections, the original

(not protected) n-input, l-output logic function is formalized by a Boolean function

f {0, 1}n → {0, 1}l.

3 Logic Modification-Based IP Protection Methods . . . 39

3.2.1 Logic Encryption

The term “logic encryption” is used when a specific symmetric encryption function

𝜉f over GF(2l) is applied to f . Formally, it is not logic encryption. The term is not

specific. Encryption of the Boolean function f is the correct expression. The result

of this encryption is the Boolean function f ′{0, 1}n → {0, 1}l. f ′ is given by the fol-

lowing expression, where k is the secret key:

f ′ = 𝜉f (f , k)

𝜉f is a symmetric encryption function if and only if an inverse function 𝜓f exists

that uses the same secret key k for decryption, and is defined as follows:

𝜓f (f ′) = 𝜓f (𝜉f (f , k), k) = f (3.1)

Functions 𝜉f and 𝜓f must meet the following requirements:

∀(ki, kj) ∈ ({0, 1}m, {0, 1}m), ki ≠ kj

𝜉f (f , ki) ≠ 𝜉f (f , kj) (3.2)

𝜓f (𝜉f (f , ki), ki) ≠ 𝜓f (𝜉f (f , ki), kj) (3.3)

Functions 𝜉f and 𝜓f also have to satisfy the following requirements, where Corr
is the function that computes Pearson’s correlation coefficient.

∀k ∈ {0, 1}m ∶ Corr(𝜉f (f , k), f) ≃ 0 (3.4)

∀k ∈ {0, 1}m ∶ Corr(𝜓f (𝜉f (f , k), k), 𝜉f (f , k)) ≃ 0 (3.5)

One of the consequences of the last expression is that the mean of the Hamming

distance between the input and the output of the encryption/decryption functions is

close to 50 % (ideally exactly 50 %) as described by the following expressions when

the mean of the Hamming distance is computed for all the inputs of the Boolean

function f :

∀k ∈ {0, 1}m ∶
∑

HD(𝜉f (f {0, 1}n, k), f {0, 1}n)
2n − 1

≃ 50% (3.6)

∀k ∈ {0, 1}m ∶
∑

HD(𝜓f (𝜉f (f {0, 1}n, k)), 𝜉f (f {0, 1}n))
2n − 1

≃ 50% (3.7)

Some works [4–6] consider this last property as proof of security. This is a mis-

take, since it is possible to obtain the same result with a function that does not achieve

40 B. Colombier et al.

Fig. 3.1 Example of logic encryption

encryption. For instance, inverting the first n∕2 bits of the output of f leads to a 50 %

Hamming distance. Similarly, inverting every input of odd order leads to the same

result. In both cases, the mean of the Hamming distance as described in (3.6) is equal

to 50 % but the correlation defined in (3.4) is not zero.

These works are presented as “logic encryption,” even though this is absolutely

not the case. The authors of these works defined “logic encryption” as: “logic encryp-
tion hides the functionality and the implementation of a design by inserting some
additional gates called key-gates into the original design” [5]. With this definition,

logic encryption does not respect the expressions (3.1) to (3.7). Consequently, we

claim that all works presented as “logic encryption” are inaccurate because in fact,

they only propose to mask the logic functionality. The security level of such masking

functions is very low compared with proper encryption.

A didactic example of true “logic encryption” is given by considering the follow-

ing 3-input Boolean function f {0, 1}3 → {0, 1}1:

f (A,B,C) = A.B.C

Figure 3.1 is a diagram of the encrypted logic circuit. This includes the origi-

nal logic circuit which computes the Boolean function f , the encryption function 𝜉f
which computes the encrypted Boolean function f ′ using an embedded secret key

k and the decryption function 𝜓f which outputs the correct result of the Boolean

function f if and only if the correct key k is applied on the external key input.

This didactic example shows that the area overhead of true logic encryption is

always prohibitive since it requires the implementation of encryption and decryption

functions. Note that the security level of such a protection depends on the key size.

Nowadays a secure implementation of a symmetric cipher has to use at least a 128-

bit key. All protection schemes that include a secret key that has only a few bits fail

to provide the designer with any security because of the feasibility of a brute force

attack.

3.2.2 Logic Obfuscation

Logic obfuscation comes from the field of computer science in which develop-

ers wish to protect source codes against unauthorized reading and understanding.

3 Logic Modification-Based IP Protection Methods . . . 41

The following definition of code obfuscation is proposed by Hachez [7]: Transform a
program P into another program P’ harder to reverse engineer with the same observ-
able behavior. If P fails to terminate or terminates with an error, then P’ fails to
terminate or terminates with an error. Otherwise, P’ must terminate and produce
the same output as P. Hardware obfuscation consists in applying this definition to

the hardware field, by changing the logic, FSM, or other part of a design without

changing the system behavior.

When the logic part of a circuit is obfuscated, a design modification 𝛾f is applied to

f . The result of this design modification is the Boolean function f ′′{0, 1}n → {0, 1}l.

𝛾f (f) = f ′′

The function 𝛾f must meet the following requirement for any input x ∈ {0, 1}l:

∀x ∈ {0, 1} ∶ f ′′(x) = f (x) (3.8)

Some works present logic obfuscation but do not fulfill requirement (3.8)

[8, 9]. Most of these works use a secret key that changes the behavior of the original

logic function. These works are typical cases of logic masking, which is presented

in Sect. 3.2.3.

It is possible to try to perform obfuscation at the logic-gate level but this usually

implies a large overhead. Indeed, obfuscation techniques aim to increase reverse-

engineering time. The time is at least linear with the area [10]. Increasing the area

increases the time needed for reverse engineering. As a consequence, the main design

modification rule for obfuscation is to not follow the usual design rules for efficient

implementation of a Boolean function. Usually, laws and theorems of Boolean logic

are applied to Boolean functions in order to reduce the number of gates (i.e., the area)

of the final hardware implementation. To obfuscate an implementation of a Boolean

function, these laws and theorems are followed in the opposite way, i.e., they increase

the size of the hardware implementation.

Two strategies are used in the first step of obfuscation: develop and obscure. To

develop a Boolean function, the designer can use the canonical disjunctive normal

form (also called min-term canonical form) in which the Boolean function is repre-

sented and implemented as a sum ofmin-terms. As a didactic example, let us consider

the following 3-input Boolean function f {0, 1}3 → {0, 1}1:

f (A,B,C) = A.B.C

This Boolean function could be developed using the following canonical disjunc-

tive normal form (first obfuscation step).

f ′′(A,B,C) = A.B.C + A.B.C + A.B.C + A.B.C + A.B.C + A.B.C + A.B.C

42 B. Colombier et al.

f and f ′′ follow requirement (3.8). Figure 3.2a, b show the logic diagrams of the

two functions with only 2-input AND and OR gates and inverters (other types of

gates could also be used).

In order to obscure a Boolean function, the designer can apply to f ′′ some

of the Boolean logic laws (absorption, complementary, common identities, etc.)

and DeMorgan’s theorem to increase the number of gates used in the hardware

implementation. For example, by also using some redundant logic operations, f ′′
is described by the following Boolean expression:

f ′′(A,B,C) =A.B + A.B + A.B + B.C + A.C + A.C + B.C + A.C + B.C + A

+ B + C + A.B + A⊕ C + A⊕ B + A.C + B.C

Again f and f ′′ follow requirement (3.8). Figure 3.2c shows the logic diagram of

f ′′ after this second step of obfuscation. The designer can also insert dummy logic

to further increase the reverse engineering effort.

Table 3.1 shows the logic resources required for each logic circuit in Fig. 3.2. For

each circuit, the number of gates is shown for each type (inverter, 2-input and gate,

2-input or gate and 2-input xor gate), along with the gate equivalent metric. The area

overhead is given for the two hardware implementations of f ′′. As mentioned above,

the increase in reverse-engineering time for each obfuscated logic circuit (in com-

parison with the original logic circuit) is supposed to be equal to the area overhead.

For example, the time required to reverse engineer circuit shown in Fig. 3.2c is 14.58

times greater than the time required to reverse engineer the original circuit.

Due to the high area overhead, such logic obfuscation is not suitable for most

applications. Moreover, the hardware design of the obfuscated circuit has to be per-

formed by hand to avoid logic optimization by the synthesis tool. It is possible to

mix a light logic obfuscation with obfuscation at another level. Indeed, hardware

obfuscation is also possible at the HDL [11, 12] or layout levels [13, 14].

The above description of logic encryption and logic obfuscation allows us to

affirm that none of the published works that present “logic encryption” or “logic

obfuscation” meet the formal requirements of these two techniques. Most of these

works in fact describe “logic masking” or “logic locking.” In the remainder of this

section we present logic masking and logic locking techniques.

3.2.3 Logic Masking

Logic masking consists in inserting xor or xnor gates in the data path of the logic

circuit of a Boolean function in order to change the logic behavior of the circuit if

the wrong masking key is applied. It was first proposed in [3]. Let us consider that a

Boolean function f {0, 1}n → {0, 1}l could be represented as a set of i Boolean sub-

functions {f0, f1,… , fi−1}. Logic masking of the Boolean function f by using the i-bit

3 Logic Modification-Based IP Protection Methods . . . 43

(a)

(b)

(c)

Fig. 3.2 a Original boolean function implementation, b Boolean function implementation after

a first step of logic obfuscation, c Boolean function implementation after a second step of logic

obfuscation

44 B. Colombier et al.

Ta
bl
e
3.
1

L
o
g
ic

re
s
o
u
r
c
e
s

r
e
q
u
ir

e
m

e
n
ts

a
n
d

ti
m

in
g

o
v
e
r
h
e
a
d

fo
r

re
v
e
r
s
e
-
e
n
g
in

e
e
r
in

g
o
f

th
e

c
ir

c
u
it

s
d
e
s
c
r
ib

e
d

in
F

ig
.
3
.2

B
o
o
le

a
n

f
u
n
c
ti

o
n

L
o
g
ic

c
ir

c
u
it

#
L

o
g

ic
g
a
te

s
G

a
te

e
q
u

iv
a
le

n
t

A
r
e
a
/r

e
v
e
r
s
e
-

e
n

g
in

e
e
r
in

g
ti

m
e

o
v
e
r
h
e
a
d

in
v

an
d

or
xo
r

f
F

ig
u
r
e

3
.2

a
1

2
4
.0

1
–

f
a
f
te

r
fi

r
s
t

s
te

p
o
f

o
b
f
u
s
c
a
ti

o
n

F
ig

u
r
e

3
.2

b
3

1
4

6
3
5
.4

1
+

8
8
3

%

f
a
f
te

r
s
e
c
o

n
d

s
te

p
o
f

o
b
f
u
s
c
a
ti

o
n

F
ig

u
r
e

3
.2

c
6

1
2

1
7

2
5
8
.4

7
+

1
4
5
8

%

3 Logic Modification-Based IP Protection Methods . . . 45

Fig. 3.3 Example of logic

masking

masking key k = {k0, k1,… , ki−1} is described by the following expression, where

f ′′′ is a Boolean function f {0, 1}n → {0, 1}l and ⊖ is the xor or xnor Boolean oper-

ator:

f ′′′ = {f0 ⊖0 k0, f1 ⊖1 k1,… , fi−1 ⊖i−1 ki−1}

∀j ∈ [0, i − 1]
{

if ⊖j ≡ xor → kj = 1 → fj ⊖ kj = fj
if ⊖j ≡ xnor → kj = 0 → fj ⊖ kj = fj

(3.9)

The correct masking key k is found by using the laws in (3.9), and considering

the type of inserted gate. As a didactic example, let us consider the following 3-input

Boolean function f {0, 1}3 → {0, 1}1:

f (A,B,C) = A.B.C

This Boolean function could also be described by the following expression:

⎧
⎪
⎨
⎪
⎩

f (A,B,C) = f1(f0(A,B),C)
f0(X,Y) = X.Y

f1(X,Y) = X.Y

A didactic example of logic masking of the Boolean function f is given in Fig. 3.3,

where ⊖0 is an xnor gate and ⊖1 is an xor gate. According to the laws in (3.9), we

can determine the correct masking key k = {0, 1} needed to obtain the original logic

behaviour. In Fig. 3.3, additional masking gates are in gray.

Efficient insertion of the masking scheme has to be achieved without reducing

performance (mainly by limiting the insertion of gates on the critical path) or increas-

ing area overhead (by limiting the number of additional gates without using too few

bits for the masking key k). For example, works presented in [4, 15] propose to use

heuristics to reduce overhead.

3.2.4 Logic Locking

Logic locking allows the designer to insert or, and, nor or nand gates in the data path

of the logic circuit of a Boolean function in order to lock the output to a fixed logic

level (0 or 1) if the wrong unlocking key is applied. Let us consider that a Boolean

function f {0, 1}n → {0, 1}l can be represented as a set of i Boolean subfunctions

{f0, f1,… , fi−1}. Logic locking of the Boolean function f by using the i-bit unlocking

46 B. Colombier et al.

Fig. 3.4 Example of logic

locking

word k = {k0, k1,… , ki−1} is described by the following expression when f ′′′′ is a

Boolean function f {0, 1}n → {0, 1}l and ⊙ is the and or or Boolean operator:

f ′′′ = {f0 ⊙0 k0, f1 ⊙1 k1,… , fi−1 ⊙i−1 ki−1}

∀j ∈ [0, i − 1]
{

if ⊙j ≡ and → kj = 1 → fj ⊙ kj = fj
if ⊙j ≡ or → kj = 0 → fj ⊙ kj = fj

(3.10)

The correct unlocking key k is found by using the laws in (3.10), and considering

the type of inserted gate. As a didactic example, let us consider the following 3-input

Boolean function f {0, 1}3 → {0, 1}1:

f (A,B,C) = A.B.C

This Boolean function could be expressed by the following expression:

⎧
⎪
⎨
⎪
⎩

f (A,B,C) = f1(f0(A,B),C)
f0(X,Y) = X.Y

f1(X,Y) = X.Y

A didactic example of logic locking of the Boolean function f is given in Fig. 3.4

where ⊙0 is an and gate. In this very simple example, only one gate is used to lock

the logic behavior of the circuit. By following the laws in (3.10) we can determine

the correct unlocking word k = 1 to obtain the correct behaviour. In Fig. 3.4 the addi-

tional locking gate is in gray.

Like for logic masking, the insertion of the locking gates has to be achieved with-

out reducing performance and increasing area overhead. In the following section, we

present a new method based on the graph analysis of an RTL netlist, which achieves

efficient and secure logic locking.

Like in logic obfuscation and masking, it is possible to lock a circuit by acting on

parts/levels other than the logic level. For example, recent works propose to lock the

finite-state-machine [16, 17] or the input/output ports [18].

3.3 Proposed Graph Analysis-Based Logic Locking Scheme

As mentioned in Sect. 3.2.4, what we propose here is a new technique to select the

nodes to include in the logic locking process. Indeed, since logic locking requires

3 Logic Modification-Based IP Protection Methods . . . 47

the insertion of extra logic gates, it is necessary to find the optimal place in the

combinational netlist on which these extra gates should be inserted. According to

the previously proposed definition, logic locking is the propagation of a fixed logic

value from an internal node to one or several output(s). To achieve this, we need to

identify sequences of gates that could propagate such a logic value. To this end, we

represent the netlist as a graph. This representation is a convenient way of analyzing

relations between logic gates and finding the optimal paths in a netlist that could

propagate the logic locking value.

3.3.1 Implementation of Logic Locking

Before building the graph, we must identify the characteristics leading to the propa-

gation of a locking value in a sequence of logic gates. First, it is worth noting that a

specific controlling value exists for nonlinear logic gates. If this controlling value is

applied to one of the logic gate’s inputs, then the output is forced to a fixed, known

value. For instance, setting one of the inputs of an and gate to 0 will set the output to

0. Table 3.2 summarizes the controlling values for the four 2-input nonlinear logic

gates.

Next, for every node in the netlist, we define two values: Vlocks and Vforced. Vlocks
is the controlling value of the gate that comes after this node. For instance, if a node

is the input of an or gate, then Vlocks = 1. Vforced is the value to which the node will

be forced. For instance, if a node is the output of an or gate, Vforced = 1. It should

be noted that in some cases Vlocks = {0, 1}. This occurs if the node has a fan-out

higher than one and spans gates with different controlling values. A node is useful for

logic locking if it is forced to the controlling value of the following gate. Therefore,

for sequences of nodes that can propagate a locking value, all the nodes meet the

following criterion:

𝐂𝐫𝐢𝐭𝐞𝐫𝐢𝐨𝐧 𝟏 ∶ Vforced ∈ Vlocks

If Criterion 1 is verified for all the nodes in a sequence of nodes, then this sequence

is able to propagate a locking value. In this case, forcing the first node to its con-

trolling value will set all the nodes in the sequence at a fixed logic value. This is

illustrated in Fig. 3.5.

Table 3.2 Controlling value and associated output value for 2-input nonlinear logic gates

Logic gate Controlling value Output value
a

and 0 0

nand 0 1

or 1 1

nor 1 0

a
when the controlling value is applied to one of the inputs

48 B. Colombier et al.

1
1 0 0 0

Fig. 3.5 Propagation of a locking value in a sequence of logic gates

Fig. 3.6 Conversion from logic gates to graph elements

With this in mind, one can see how an output can be forced to a fixed logic value.

By inserting logic gates at specific locations in the netlist, the designer will be able to

set controlling values and force the outputs to a fixed value. The aim here is to select

the most appropriate nodes, namely those at the beginning of sequences of gates like

the one presented in Fig. 3.5. To achieve this aim, graph exploration techniques are

used, and are presented in the following sections.

3.3.2 Graph Building

The original design file is an RTL description of the combinational netlist. The first

step is to convert it into a directed acyclic graph. We chose to represent the netlist’s

nodes as vertices and the Boolean functions as edges. An example of conversion

from logic gates to graph elements is shown in Fig. 3.6.

This is repeated for all logic gates of the netlist. A toy example of a netlist con-

verted into a graph is shown in Fig. 3.7.

In order to identify which nodes satisfy criterion 1, Vlocks and Vforced are computed

for all the nodes in the netlist (i.e., all the vertices in the graph). This is done as

follows: outgoing edges are used to compute Vlocks, while incoming edges are used

to compute Vforced. By convention, for the sake of the following computations, Vlocks
is set to {0, 1} for the outputs. Table 3.3 shows Vlocks and Vforced values computed for

all the vertices of the graph shown in Fig. 3.7.

3 Logic Modification-Based IP Protection Methods . . . 49

Fig. 3.7 Conversion from netlist to graph

Table 3.3 Vlocks and Vforced values for all the nodes of the netlist shown in Fig. 3.7

Node Vforced Vlocks Node Vforced Vlocks

G1 – 0 G8 0 0

G2 – 0 G9 1 0

G3 – 1 G10 1 0

G4 – 1 G11 0 {0, 1}
G5 – 0 G12 0 1

G6 – 0 G13 1 {0, 1}
G7 – 0 G14 0 {0, 1}

The next step is to identify which nodes cannot propagate the locking value. This

means they do not fulfill criterion 1. If a node does not meet this criterion, its incom-

ing edges are deleted. Thus in the previous example, incoming edges are deleted for

G9, G10, and G12.

What is obtained at this stage is a highly disconnected graph, because the vast

majority of vertices do not fulfill criterion 1. Since we want to achieve logic locking,

connected components that do not contain any output must be removed from the

graph. After applying this method to the graph in the previous example, we obtain

the one shown in Fig. 3.8. The original netlist is shown too, and a path that can

propagate a locking value is highlighted.

The final graph obtained at this stage comprises nodes that can all propagate a

locking value to the output if they are forced to a specific logic value. Some of them,

however, are better candidates, because they span a greater number of outputs or are

more deeply integrated in the netlist. The selection algorithm used to identify the

best nodes to act on is described in the following section.

50 B. Colombier et al.

Fig. 3.8 Final graph and the original netlist showing a path that can propagate a locking value

3.3.3 Graph Analysis for Selection of Optimal Locking Nodes

At this stage, the graph is composed of several connected components. They all

include at least one output, and are made of vertices that represent nodes able to

propagate a locking value. These connected components can be classified in the four

different categories depicted in Fig. 3.9.

In the first situation, shown in Fig. 3.9a, there is only one source vertex. Therefore,

since the graph is directed, this vertex necessarily spans all the outputs, and can lock

them all. It is consequently selected as the node to lock.

The second possibility, shown in Fig. 3.9b, occurs when a connected component

comprises multiple source vertices but only one output. In order to embed the locking

node as deeply as possible in the netlist, the distance between all source nodes and

the output is computed. The furthest node from the output is selected as the node to

lock.

In the case depicted in Fig. 3.9c, there are multiple source vertices too. Some

source vertices, however, do not span all the outputs. In order to lock as many out-

puts as possible with the smallest number of nodes to be modified, only the nodes

spanning all the outputs are kept. If many nodes span all the outputs, then, as previ-

ously, the furthest one from the output is selected.

In the last situation, shown in Fig. 3.9d, multiple source vertices span multiple

outputs, but none spans them all. The way to proceed here is to sort the source ver-

tices according to the number of outputs they span. Next, they are greedily selected

and added to the list of nodes to lock. This process is carried out until all the outputs

are locked.

Note that the situations described above are sorted according to their computa-

tional complexity. The last case, which is the most computationally expensive, is also

by far the least frequent.

One we have a list of nodes to modify, the last step is to add the extra locking

gates that will be responsible for forcing these nodes to a specific value if the wrong

key is applied.

3 Logic Modification-Based IP Protection Methods . . . 51

Fig. 3.9 a One source

vertex, b Multiple source

vertices, one output, c
Multiple source vertices,

multiple outputs, one (or

more) source vertex spans all

the outputs, d Multiple

source vertices, multiple

outputs, no vertex spanning

all the outputs

One source vertex

Multiple source vertices, one output

Multiple source vertices, multiple outputs, one
 (or more) source vertex spans all the outputs

Multiple source vertices, multiple outputs,
no vertex spanning all the outputs

(a)

(b)

(c)

(d)

52 B. Colombier et al.

1
1 0 0 0

Fig. 3.10 Type of gate to insert according to the Vforced value and the associated unlocking bit

Fig. 3.11 Lockable netlist, inserted locking gates are in gray. The unlocking word is (K1K2) =
“10”

3.3.4 Netlist Modification

Now that we know which nodes to act on, the extra logic gates must be inserted.

They will force these nodes to a specific value. The value to which each node must

be forced is given by Vlocks, the controlling value of the subsequent gate. If a node

must be forced to 0, then an and gate is used. If a node must be forced to 1, then an or
gate is used. This is shown in Fig. 3.10. The associated unlocking bit is the inverse

of the controlling value of the inserted logic gate.

Coming back to the previous example, the nodes to be modified are G1 and

G12. For G1, Vlocks = 0 and for G12 Vlocks = 1. Then the associated unlocking word

(K1,K2) is “10.” An and gate is used to force G1 to 0 if the wrong unlocking bit is

applied, in this case: 0. An or gate is used to force G12 to 1 if the wrong unlocking

bit is applied, in this case: 1. The final, lockable netlist is shown in Fig. 3.11.

3.4 Implementation Results

3.4.1 Logic Resources Overhead

The logic locking algorithm was implemented in Python, and makes use of the

igraph module to handle graphs. We implemented the locking scheme on ITC’99

3 Logic Modification-Based IP Protection Methods . . . 53

Fig. 3.12 Logic resources overhead obtained for logic locking

combinational benchmarks [19]. The netlists are described in VHDL. These bench-

marks range from 1–225 k gates. The logic resources overhead is measured as the

percentage of logic gates that must be added to the netlist in order to make it totally

lockable. Results are shown in Fig. 3.12. The average resources overhead is 2.9 %.

This is acceptable, and almost twice lower than the one authors obtained in [4].

Another interesting feature here is that the overhead remains approximately the same

despite the increase in the number of gates in the original design. Protecting large

netlists is consequently not more expensive than protecting smaller designs.

3.4.2 Analysis Time

Taking a step back, a major feature that will ensure the protection schemes are widely

adopted is usability. It describes how easy it is for a designer to protect the IP core

once it has been designed. In order to increase usability, a key point is the amount of

time required to make the netlist lockable. Since these protection techniques could

be integrated in EDA tools, the computation time should be reasonable. In Fig. 3.13,

we provide a comparison of the computation time required to protect a netlist with

both logic locking and logic masking methods. These results were obtained by exe-

cuting the Python scripts on an Intel i5-4570 workstation, operating at 3.2 GHz and

embedding 16Gb of RAM.

As can be seen in Fig. 3.13, the logic locking based method is more than ten thou-

sand times faster than the method based on the logic masking. For instance, analyzing

a 3,500-gate netlist requires four and a half hours with the method proposed in [4],

whereas with the graph-analysis method, it takes less than one second. We extended

our study to very large netlists of up to 225k gates. It turns out that the computation

time increases quadratically. However, even for very large netlists, the computation

54 B. Colombier et al.

Fig. 3.13 Time required to analyze and modify the netlist

time is reasonable. For the largest one that includes 225k gates, slightly more than

hour is required to make it lockable.

When it comes to the execution time, the main difference between the two protec-

tion methods is that the one proposed in [4] uses fault simulation to locate the nodes

to modify. It relies on external tools that employ computationally heavy methods.

Conversely, our protection technique is based on graphs, which are an effective way

of representing netlists. In the context of EDA integration, our method is thus much

more suitable and computationally more effective.

3.5 Evaluation

3.5.1 Correlation

In [4], the authors evaluate the efficiency of their locking scheme using the Hamming

distance between the output of the original design and the output of the design when

the wrong key is applied on the key inputs (i.e., when logic masking is activated).

According to these authors, obtaining a 50 % Hamming distance on average is a proof

that the protection scheme is efficient. However, we have shown in Sect. 3.2 that even

simple circuits can exhibit such a characteristic, and that 50 % Hamming distance is

simply one consequence of a zero correlation. We consequently use correlation to

evaluate the efficiency of the protection scheme. The correlation is computed using

Pearson’s coefficient. The results are shown in Table 3.4. Since the standard deviation

is zero when the outputs are locked by logic locking, Pearson’s correlation coefficient

is not defined. It can be considered as zero though, because when the output is locked,

it provides no information about the normal behavior. Two methods are compared

for logic masking: random and fault analysis-based node selection. Random selection

3 Logic Modification-Based IP Protection Methods . . . 55

Ta
bl
e
3.
4

P
e
a
r
s
o
n
’s

c
o
r
r
e
la

ti
o
n

c
o
e
ffi

c
ie

n
t

c
o
m

p
u
te

d
fo

r
d
iff

e
r
e
n
t

n
o
d
e

s
e
le

c
ti

o
n

m
e
th

o
d
s

a
n
d

k
e
y

s
iz

e
s

B
e
n
c
h
m

a
rk

K
e
y

s
iz

e
L

o
g
ic

m
a
s
k
in

g
L

o
g
ic

lo
c
k
in

g

R
a
n
d
o
m

[
3

]
F

a
u

lt
a
n

a
ly

s
is

[
4

]
G

r
a
p
h

a
n
a
ly

s
is

c
4
3
2
,

7
o
u
tp

u
ts

,
1
8
9

n
o
d
e
s

3
2

b
it

s
0
.2

7
2

0
.0

1
2

0

6
4

b
it

s
0
.1

5
3

0
.0

1
9

0

1
2
8

b
it

s
0
.0

2
6

0
.0

1
4

0

c
5
3
1
5
,

1
2
3

o
u
tp

u
ts

,
2
3
6
2

n
o
d
e
s

3
2

b
it

s
0
.9

0
2

0
.5

5
4

0

6
4

b
it

s
0
.8

7
3

0
.3

5
7

0

1
2
8

b
it

s
0
.8

2
0

0
.2

7
7

0

c
7
5
5
2
,

1
0
8

o
u
tp

u
ts

,
3
6
1
2

n
o
d
e
s

3
2

b
it

s
0
.9

5
2

0
.2

5
4

0

6
4

b
it

s
0
.9

2
0

0
.2

3
5

0

1
2
8

b
it

s
0
.7

6
1

0
.2

1
7

0

56 B. Colombier et al.

[3] rapidly becomes inefficient when the circuit’s size increases. Randomly inserting

128 xor gates in a 3,612-node netlist only reduces the correlation to 0.761. Fault

analysis-based logic masking is more efficient, and reduces the correlation faster as

the key size increases. For large netlists, however, it fails to reduce it significantly. For

example, the correlation only drops from 0.254 to 0.217 when the key size increases

from 32 to 128 bits on C7552. For larger designs such as the ones considered in

Sect. 3.4, the performance will probably be even worse.

We can conclude from this observation that correlation should not be used to eval-

uate a protection scheme. It is a cryptographic property, which should be only used

in the appropriate frame. We give more details about security in Sect. 3.7. Instead of

correlation, we propose a metric to evaluate protection schemes based on the inser-

tion of extra logic gates, which is presented in the following subsection.

3.5.2 Logic Locking Metric

The intrinsic feature of a protection scheme based on the insertion of extra logic

gates is altering the outputs using the extra gates. Therefore, two characteristics can

be used to evaluate how effective these schemes are. The first one is: how many

inputs are spanned by each extra logic gate? This is related to the amount of gates

that have to be inserted to ensure total locking. If one gate locks multiple outputs, it

is obviously more efficient than if multiple gates are required. The locking ratio is

defined as follows:

Locking ratio =
#outputs

#locking gates
(3.11)

Since the locking gates should be inserted as deeply as possible into the netlist,

a second metric is: how far is the inserted gate from the outputs? The number of

logic levels between the locking gate and the outputs is consequently also computed.

The average distance between the inserted gates and the outputs is computed as the

average number of logic levels on the shortest path between the inserted gates and

every output that is reachable from them. The results we obtained when applying our

graph-based insertion method for logic locking are presented in Table 3.5.

We can see that the number of outputs spanned by each locking gates is very

close to 1. This basically means that, mostly, one logic locking gate is responsible

for forcing one output. This is discussed in the following section. We can also see

that the number of logic levels between the locking gates and the locked outputs is

low. This could be a problem if the attacker has access to the RTL description of

the design. Indeed, if the locking gates are located very close to the outputs, then

the attacker can identify them easily and possibly modify the netlist to bypass the

locking circuitry. This is why the locking gates need to be embedded as deeply as

possible in the netlist.

3 Logic Modification-Based IP Protection Methods . . . 57

Table 3.5 Evaluation of the proposed node selection technique by locking ratio and mean distance

to outputs

Benchmark #logic gates Locking ratio Average distance to

outputs (logic levels)

c432 160 1.75 1.43

b10_C 172 1.13 1

b13_C 289 1.13 1.13

c880 383 1.63 3.39

b07_C 383 1.32 1.16

c1355 546 1.03 2

b04_C 652 1.02 1.11

b11_C 726 1.03 1.19

c1908 880 1.04 1

b05_C 927 1.82 1.52

b12_C 944 1.1 1.18

c2670 1193 1.68 2.38

c3540 1669 1.1 1.82

c5315 2307 1.68 2.07

c6288 2416 1.03 1

c7552 3512 1.16 1.5

b14_1_C 6569 1.15 1.48

b15_C 8367 1.12 1.69

b14_C 9767 1.16 1.42

b15_1_C 12543 1.12 2.06

b21_1_C 13898 1.14 1.33

b20_1_C 13899 1.14 1.32

b20_C 19682 1.15 1.36

b21_C 20027 1.14 1.29

b22_1_C 20983 1.14 1.35

b22_C 29162 1.15 1.36

b17_C 30777 1.11 1.76

b17_1_C 38116 1.11 1.97

b18_1_C 105102 1.12 1.74

b18_C 111241 1.12 1.74

Average: 1.22 1.56

To this end, dummy logic levels can be inserted between the locking gate and

the output, thereby achieving additional logic obfuscation as described in Sect. 3.2.

For instance, an or gate can be replaced by the three gates depicted in Fig. 3.14.

G is the node to be forced and K is the locking/unlocking input. Another node is

picked randomly and used for the dummy logic. As depicted, the output value is

58 B. Colombier et al.

Fig. 3.14 or locking gate

replacement with an extra

logic level

G
K

A

0
1 G

1

G
1

0
A

either 1 or G, which means that locking is successful. Obviously, the increase in

reverse engineering effort comes at the price of an increased area overhead. In order

to add one logic level, three gates are inserted instead of one. If the designer wants

to add a second dummy logic level, then the structure must be duplicated. Then five

gates are inserted. The logic resources overhead is then n(2k + 1), where n is the

number of locking gates to be inserted and k is the number of dummy logic levels. In

order to limit the overhead, dummy logic levels can be used only for the nodes that

are too close to the outputs.

3.6 Security Analysis

3.6.1 Threat Model

To evaluate the security of logic locking, we must first distinguish the threat model of

the actual context. Since we are trying to protect IP cores against illegal cloning, we

must assume that the attacker has access to the original design, and can implement

it. We make a stronger assumption by not limiting the number of implementations.

Our aim for logic locking is only to make illegal copies nonfunctional. Thus, we first

assume that the designer has access to the inputs used to unlock the design, i.e., the

inputs to which the unlocking word encrypted with the secret key must be applied to

unlock the circuit and to use it. In practical terms, the designer is able to write in a

specific memory inside the chip, which will unlock the circuit if the correct value is

provided. Moreover, since the designer appears to be legitimate at first sight, he also

has access to test vectors.

3.6.2 Hill-Climbing Attack

Considering the threat model described above, a major concern expressed in [20] is

the ease of a hill-climbing attack. It was described as an attack against the logic

masking technique presented in [3]. However, it turns out to be equally efficient

against logic locking. This is due to the tight link between the masking/locking inputs

and the outputs. The attack procedure for logic masking described in [20] is as fol-

lows. First, pick a random key and apply it on the unlocking inputs. Compute the

3 Logic Modification-Based IP Protection Methods . . . 59

Hamming distance between the actual and the expected output, given by the test

vectors. Flip the first bit of the key. If the Hamming distance increases, then flip this

bit again and repeat the action for all the bits of the key. Otherwise, if the Hamming

distance decreases, move on to the next bit. The method is similar for logic locking,

except that instead of using the Hamming distance as the function to minimize, the

number of locked outputs is used. The main concern here is that, since there is a

gradient toward the correct key in the key space, it can be easily recovered. In other

words, the Hamming distance between the actual and expected output grows linearly

with respect to the number of wrong key bits when logic masking is applied. Sim-

ilarly, the number of outputs that are locked and the number of wrong key bits are

correlated.

This is due to the fact that, as shown in Table 3.5, the ratio of the number of

inserted gates to the number of outputs is close to one. In most cases, one gate is

responsible for locking one output. This is a serious security concern. In this case,

the security of the protection system is as low as the greatest number of key bits influ-

encing one output. If the key bits and the outputs are connected pairwise, then the

overall security level is 1 bit. In the following section, we discuss countermeasures

against hill-climbing attacks.

3.6.3 A Partial Countermeasure Against Hill-Climbing
Attack

In order to avoid hill-climbing attacks, the correlation between the unlocking inputs

and the outputs has to be reduced. One unlocking input should have an impact on

multiple outputs, in order to hide the internal relation. Similarly, every output should

be locked by several key inputs.

One possible countermeasure is to add some redundancy between the locking

gates and the key inputs. This can be achieved by adding inputs to the locking gates.

These inputs are connected to key inputs that have the same value as the first key

input of the locking gate. For example, two locking gates for which the key bit is

1 can be associated, as depicted in Fig. 3.15. It follows that in order to obtain the

correct values for G0mod and G1mod, both K0 and K1 must have the correct value.

It can be extended to add more key inputs to the locking gates, and more redundancy.

However, this countermeasure is only partially effective. Indeed, it only increases the

equivalent security level to the number of inputs added to the locking gates. Making

it secure would require the locking gates to have a very large number of inputs, which

is not feasible.

After another look at the previously described characteristic, it is very similar to

the diffusion property of cryptographic functions. This led us to adopt another design

plan for the protection scheme. Thus the logic locking module is only responsible

for disturbing the original behavior. Security is ensured by using a separate crypto-

graphic primitive. The overall architecture is described in the following section.

60 B. Colombier et al.

Fig. 3.15 Partial

countermeasure against

hill-climbing attack

Fig. 3.16 Trade-off between locking strength and resources overhead

3.7 Architecture of a Complete Design Data Protection
Scheme

3.7.1 Area/locking Strength Trade-Off

Before examining the whole protection scheme architecture, let us focus on the

implementation of the logic locking module. After the graph has been built and ana-

lyzed, the final graph contains nodes that are all able to propagate a locking value.

The method presented in Sect. 3.3.3 to select the best nodes to modify selects as few

nodes as possible in the connected components to ensure total locking, but all the

other nodes are also able to lock the associated output. Therefore, some extra locking

gates can be added to increase the locking strength. Indeed, if the locking signal is

carried by only one wire, it could be subject to side channel attacks such as optical

injection [21] and its logic value can be flipped. In fact all the nodes found in the

connected components of the final graph can be modified to increase the locking

strength. This comes at the cost of increased logic resources overhead. This design

trade-off is illustrated in Fig. 3.16, where the logic resources related to minimum

overhead and maximum locking strength are given for all ISCAS’85 benchmarks.

For b15_C for instance, the minimum overhead to achieve total functional locking is

4.52 %. However, up to 29 % extra resources can be added to further strengthen logic

3 Logic Modification-Based IP Protection Methods . . . 61

Original netlist and modified netlist with lowest area overhead

Modified netlist with maximum locking strength and separated key bits

(a)

(b)

Fig. 3.17 a Original netlist and modified netlist with lowest area overhead. b Modified netlist with

maximum locking strength and separated key bits

locking. The designer can decide on the acceptable resources overhead and increase

the associated locking strength accordingly.

An example is given in Fig. 3.17. The original netlist and the netlist modified

for logic locking with minimal overhead are shown in Fig. 3.17a. There is only one

node forced, and one unlocking bit input. On the other hand, since all nodes G0, G2
and G4 can propagate a locking value, they can all be forced to increase the locking

strength. This is shown in Fig. 3.17b. Three locking gates are inserted. The associated

unlocking bits must all be set to their correct value in order to get the correct output.

Of course, it comes at the price of an increased area overhead.

3.7.2 On the Need for a Cryptographic Primitive

In [4], the authors claim to achieve security by reaching 50 % Hamming distance

between the original and masked outputs. Since in this case, security is not based on

a cryptographic primitive, it is easily broken and [20] showed how it was possible to

recover the key using a basic hill-climbing attack.

Only the system integrators allowed by the designer to unlock the IP core should

be able to do so. If provable security is necessary, there is no other way than using

a cryptographic primitive to obtain it. Another advantage is that such primitives, if

chosen carefully, have been subject to a variety of attacks. Therefore, their security

has been tested. The designer can then pick a strong cryptographic primitive that has

successfully resisted multiple attacks, and implement it carefully. This will provide

provable security of access to the normal operation of the IP core. For that reason,

using a cryptographic primitive is necessary.

62 B. Colombier et al.

Fig. 3.18 Architecture of the proposed design protection module

3.7.3 Architecture

Owing to such considerations, we are now able to define the general architecture of

the design protection scheme. It is depicted in Fig. 3.18.

The first block is the cryptographic primitive, which ensures secure access and

avoids simple attacks. Using a lightweight, hardware-oriented algorithm is a good

option here to limit the area overhead. The second block is a PUF, acting as a unique

identifier, which is necessary in the case of IP distribution to uniquely identify all the

instances of a particular design. It allows the designer to have a database containing

all the IP core instances and their associated key. This is used to derive the key

encrypting the unlocking word. In this way, it helps fulfill the following requirement:

owning the key for one instance of the design should not help in unlocking another

instance. Different types of PUFs are available, such as the TERO-PUF [22], the

butterfly PUF [23] or the arbiter PUF [24]. It could also be achieved in the form of a

secret word stored in nonvolatile memory. An error-correction module corrects the

PUF’s response. Finally, the unlocking word is deciphered and sent to the locking

module. The locking module can implement logic encryption, masking or locking. Its

role is to make the circuit unusable if the message sent to the cryptographic primitive

is not the right unlocking word encrypted with the correct key associated with the

circuit.

3.8 Summary

Design data protection schemes modifying the logic are a powerful way to render the

circuit harder to reverse-engineer or unusable if it has been counterfeited. Several

techniques to modify the logic are available, namely logic encryption, obfuscation,

masking, or locking. They act on specific sites of the combinational logic part of the

design. The method to select the sites to act on must be computationally efficient to be

easily used, but also select the best sites. A graph analysis-based method is presented,

which is fast and effective. Finally, we present design considerations, which include

the integration of the logic modification in a wider protection scheme, in order to

provide cryptographic strength and per-device uniqueness.

3 Logic Modification-Based IP Protection Methods . . . 63

References

1. Y. Alkabani, F. Koushanfar, Active hardware metering for intellectual property protection and

security, in USENIX security, USA, Boston, MA, Aug 2007, pp. 291–306

2. I. McLoughlin, Reverse engineering of embedded consumer electronic systems, in IEEE 15th
international symposium on consumer electronics, Singapore, Singapore, June 2011, pp. 352–

356

3. J.A. Roy, F. Koushanfar, I. Markov, EPIC: ending piracy of integrated circuits, in Design,
automation and test in Europe (2008), pp. 1069–1074

4. J. Rajendran, H. Zhang, C. Zhang, G.S. Rose, Y. Pino, O. Sinanoglu, R. Karri, Fault analysis-

based logic encryption. IEEE Trans. Comput. 64(2), 410–424 (2015)

5. J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Logic encryption: a fault analysis perspective, in

Design, automation& test in Europe conference, Dresden, Germany, March 2012, pp. 953–958

6. S. Dupuis, P. Ba, G. Di Natale, M. Flottes, B. Rouzeyre, A novel hardware logic encryption

technique for thwarting illegal overproduction and hardware trojans, in IEEE International
On-Line Testing Symposium, Girona, Spain, Platja d’Aro, June 2014, pp. 49–54

7. G. Hachez, A comparative study of software protection tools suited for e-commerce with con-

tributions to software watermarking and smart cards, Ph.D. dissertation, Université Catholique

de Louvain, March 2003

8. J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Security analysis of logic obfuscation, in Annual
design automation conference, San Francisco CA, USA, June 2012, pp. 83–89

9. R.S. Chakraborty, S. Bhunia, HARPOON: an obfuscation-based SoC design methodology for

hardware protection. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 28(10), 1493–1502

(2009)

10. R. Torrance, D. James, The state-of-the-art in semiconductor reverse engineering, in Proceed-
ings of the design automation conference, DAC 2011, San Diego, California, USA, 5–10 Jun

2011, 2011, pp. 333–338

11. M. Brzozowski, V.N. Yarmolik, Obfuscation as intellectual rights protection in VHDL lan-

guage, in International conference on computer information systems and industrial manage-
ment applications, IEEE Computer Society, Elk, Poland, Jun 2007, pp. 337–340

12. U. Meyer-Baese, E. Castillo, G. Botella, L. Parrilla, A. Garca, Intellectual property protec-

tion (IPP) using obfuscation in C, VHDL, and verilog coding, in SPIE defense, security, and
sensing, Orlando, Florida, USA, Jun 2011

13. J. Rajendran, M. Sam, O. Sinanoglu, R. Karri, Security analysis of integrated circuit camou-

flaging, in ACM conference on computer & communications security, Berlin, Germany, Nov

2013, pp. 709–720

14. SypherMedia, Circuit camouflage technology (2012)

15. A. Baumgarten, A. Tyagi, J. Zambreno, Preventing IC piracy using reconfigurable logic barri-

ers. IEEE Des. Test Comput. 27(1), 66–75 (2010)

16. E. Jung, C. Hung, M. Yang, S. Choi, An locking and unlocking primitive function of FSM-

modeled sequential systems based on extracting logical property. Int. J. Inf. 16(8), 6279–6290

(2013)

17. M.T. Rahman, D. Forte, Q. Shi, G.K. Contreras, M.M. Tehranipoor, CSST: preventing distrib-

ution of unlicensed and rejected ICs by untrusted foundry and assembly, in IEEE international
symposium on defect and fault tolerance in VLSI and nanotechnology systems, Netherlands,

Amsterdam, Oct 2014, pp. 46–51

18. A. Basak, Y. Zheng, S. Bhunia, Active defense against counterfeiting attacks through robust

antifuse-based on-chip locks, in IEEE 32ndVLSI test symposium, USA, Napa CA, Apr 2014,

pp. 1–6

19. S. Davidson, ITC’99 benchmark circuits—preliminary results, in IEEE international test con-
ference, NJ, USA, Atlantic City, Sept 1999, p. 1125

20. S.M. Plaza, I.L. Markov, Protecting integrated circuits from piracy with test-aware logic lock-

ing, in International conference on computer aided design, San Jose, CA, USA, Nov 2014

64 B. Colombier et al.

21. S.P. Skorobogatov, R.J. Anderson, Optical fault induction attacks, in International workshop
on cryptographic hardware and embedded systems, San Fransisco CA, USA, Aug 2002

22. L. Bossuet, X.T. Ngo, Z. Cherif, V. Fischer, A PUF based on transient effect ring oscillator and

insensitive to locking phenomenon. IEEE Trans. Emerg. Top. Comput. 2(1), 30–36 (2014)

23. S.S. Kumar, J. Guajardo, R. Maes, G.J. Schrijen, P. Tuyls, The butterfly PUF protecting IP on

every FPGA, in IEEE international workshop on hardware-oriented security and trust, USA,

Anaheim CA, Jun 2008, pp. 67–70

24. J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. van Disk, S. Devadas, A technique to build a secret

key in integrated circuits for identification and authentication applications, in Symposium on
VLSI circuits, Jun 2004, pp. 176–179

Chapter 4
IP FSM Watermarking

Edward Jung and Lilian Bossuet

4.1 Introduction

Hardware design reuse has been the viable solution to deal with the ever-increasing
logic density in the semiconductor industry. For instance, an application-specific
integrated circuit (ASIC) architecture can be designed using previously designed
subcomponents or subsystems. Hardware design intellectual property (IP) is a
design unit that can be viewed as an independent subcomponent of a complete
design (e.g., SOC design.) Examples of design unit include abstract algorithm,
technique, or methodology that can make the design better as well as physical
design blocks such as embedded controllers and fully routed netlist. This can result
in new products to be on the market in time and at a cost-effective way. The newly
developed subcomponents can also be tested and deposited as new design IPs in the
IP library for future reuse.

Despite the attractiveness of reuse-based design, IP owners and vendors have
encountered IP piracy and infringement. In practice, most design IPs are secured by
deterrent and protection mechanisms. Deterrent protections are usually provided by
patents, copyrights, contracts, trademarks, and trade secrets. But this only dis-
courages the misuse of IPs. Protection mechanisms are more proactive than the
deterrent solution. It usually uses technical means such as cryptographic algorithms,
dedicated hardware, or even chemicals to prevent unauthorized access to the
IP. Protecting design IPs using encryption and other protection mechanisms make

E. Jung (✉)
Computer Science Department, Kennesaw State University,
Marietta, GA 30060, USA
e-mail: ejung4@kennesaw.edu

L. Bossuet
Laboratoire Hubert Curien, CNRS UMR 5516, Université Jean Monnet,
42000 Saint-Etienne, France
e-mail: lilian.bossuet@univ-st-etienne.fr

© Springer International Publishing AG 2017
L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,
DOI 10.1007/978-3-319-50380-6_4

65

IP piracy more difficult and more expense. However, detection schemes such as a
watermark can enable IP owner to identify the occurrence of IP piracy. Both the
hardware design reuse and the IP piracy and infringement problems are well versed
in [1].

As a solution to the problem of protecting hardware IPs, one of the key initia-
tives known as Salware was proposed [2]. Also, a variety of techniques at various
levels and/or at different stages of the design process have been proposed. In
particular, many interesting methods have been developed for solving IP protection
problems: graph partitioning [3], constraint-based optimization [4], graph coloring
[5], information hiding [6], FPGA mapping and designs [7], and high-level
behavioral optimization [8, 9].

Controllers are an important component in designing an embedded hardware
system. The design of a controller can be specified using a synchronous finite-state
machine (FSM). The purpose of this chapter is to introduce the basic concepts of
intellectual property (IP) watermarking and approach to secure design IPs of control
units modeled in a synchronous finite-state machine (FSM) from unauthorized use.
In general, an FSM watermarking consists of two processes: an embedding process
and a verification process. We focus on the embedding process in this chapter.

4.1.1 Basic Concepts of IP Watermarking

The generic IP watermarking scheme is shown in Fig. 4.1, similar to the model
[10]. It consists of the embedding and detection (i.e., verification) processes. The
embedding process is a mapping of the form O×K ×W → eO, where the object to be
protected is denoted by O, a watermark by W, and a watermark key by K. Its outputeO is a watermarked object. The detection process produces as an output either the
recovered watermark W or some kind of confidence measure C indicating how

likely an object-under-test eO′ is distinguishable from the watermarked object eO. An
object can be in a variety of forms. For instance, an object may include the creative
design of digital systems or ICs such as a sequential logic component, which can be
modeled as a finite-state machine (FSM).

Fig. 4.1 Generic IP watermarking process

66 E. Jung and L. Bossuet

4.1.2 Types of Watermarking System

In general, we can classify the types of FSM IP watermarking systems into five
categories as below [10]:

• Distinguishing fM′ from eM (Type I): a Type I system uses both a copy of the
watermarked FSM device and the original watermarked device, and yields a

“yes” or “no” answer to the question: is fM′ distinguishable from eM?

(fM′ × eM ×K ×W → f0, 1g). fM′ is a device-under-test and eM is the original
watermarked device.

• Containment of W in fM′ (Type II): a Type II system does not use eM for detection

but answers to the question: does fM′ contain the watermark W?

(fM′ ×K ×W → f0, 1g).
• Extraction of W from fM′ (Type III): Type III systems aim to find where the

watermark W could be in fM′. It requires extracting W from the possibly illegal

copy fM′ and may use eM for detection.

The types of systems above can be used to prove the ownership of IP in court
and control the copying of devices. Many of the currently proposed schemes fall in
this category.

There are two other types of systems we can consider under special circum-

stances. One such system is modeled as fM′ ×K→W , where the exact information

about the watermark can be extracted from fM′ without the availability of eM. This
problem may be the most challenging and it is unknown if such a solution exists.
Finally, we can consider a system that allows any user to read the watermark
W without being able to remove it. In this chapter, the model we follow is a Type I
system.

4.1.3 FSM IP Watermarking: State of the Arts

In this section, we focus FSM IP watermarking and review the related works. For
other types of IP protection approaches, refer to the survey paper [11].

In the early days of FSM IP protection, hiding a secret watermark in a sequential
circuit was first proposed in [12, 13]. In these works, the watermarking was per-
formed by modifying the State Transition Graph (STG) to go through a chosen path
of state transitions with a certain set of inputs (i.e., signatures). The watermark
design was done in such a way that the insertion of the watermark did not have any
effect on the IC’s functionality. The proof of IP ownership was ensured by the fact
that the displayed input-transition behavior would be extremely rare in a nonwa-
termarked circuit. In another work [14], the FSM IP watermarking was based on

4 IP FSM Watermarking 67

extracting the unused transitions in the STG, while extra transitions were added to
satisfy the design goals.

Later, the different idea of hiding information in the unused transitions of FSM
was proposed [6]. They developed a SAT-based algorithm to find the maximal set
of redundant transitions for a given minimized FSM and utilized this redundancy to
hide the information in the FSM without changing the given minimized FSM.
Another interesting solution was proposed [15]. In this work, multiple watermarks
were added to further enhance security and it was shown that hiding multiple
watermarks in STG is an instance of obfuscating a multiple point function with a
general output. The basic idea of this work was to integrate the user-defined
watermarked FSMs (i.e., the designer’s secret) into the original FSM.

More recently, an FSM IP watermarking scheme by making the authorship
information a nonredundant property of the FSM was proposed [16]. In this work,
the watermark bits were interwoven into the outputs of the existing and free tran-
sitions of STG. Pseudo input variables have been reduced and made functionally
indiscernible by the notion of reversed free literals. Then, the reserved literals were
assigned to minimize the overhead of watermarking and made the watermarked
FSM fallible upon removal of any pseudo input variable. They showed the lower or
acceptably low overheads with higher tamper resilience and stronger authorship
proof in comparison with related watermarking schemes. Another method was
proposed [17]. In this work, a set of edges between states were added as a dummy
entity. This was done by controlling state encoding values. The new edges created
by this method were paired with an unused state input combination, and the output
was specified as a don’t-care condition.

These FSM IP watermarking schemes can be modeled as shown in Fig. 4.2. In
the embedding process, the original FSM denoted by M is transformed into M +

which contains redundant information (i.e., new dummy or nonfunctional states
and/or state transitions.) In the verification process, it usually checks how likely a

device-under-test fM′ contains the watermark, or it is distinguishable from the
watermarked device, indicated by confidence measure C. However, these state-level
solutions require accessing internal states (i.e., flip-flop values) using verification
component V (e.g., a partial or full scan chain.).

Fig. 4.2 FSM IP watermarking scheme (with redundancy)

68 E. Jung and L. Bossuet

In general, these FSM IP watermarking methods can be effective as demon-
strated in those papers, especially when the overhead due to the addition of
watermarked data is minimally introduced. However, these redundancy-based
methods have the common limitations of augmenting the original FSM with
additional states and/or state transitions.

4.1.4 Design Philosophy

As briefly mentioned in the previous section, most of the hardware FSM IP pro-
tection solutions have been developed by hiding secret information (e.g., water-
marking) that is intentionally added to the circuit in order to prevent illegal use of
the IC. The value of an IP protection solution has been determined by its efficiency
of implementation in terms of reducing the design overheads (e.g., area, delay,
power). For instance, some nonfunctional states can be added to the original FSM
in order to insert watermarks. In the normal mode of operation, only functional
states are accessed, while the added states (i.e., nonfunctional) are allowed to be
accessed during the watermarking operation. Most of the previous work aimed to
add nonfunctional entities, made as small as possible, to reduce the overheads while
trying to satisfy the watermark design goals such as achieving high robustness or
low coincidence (i.e., a collision) at the same time. Another key characteristic of the
previous work on FSM watermarking is to define a watermark at a state level. For
instance, a watermark can be defined in terms of a set of visited states (usually
nonfunctional states), which are traveled upon by applying specific input signals
known as signatures. In an analogy, this type of approach would be similar to
adding tattoos (either big or small) on the external surface of the human skin to hide
the designer’s secret information.

We challenge this traditional design philosophy by raising the following ques-
tion. Then, we describe a new method.

• Would it be feasible to both construct (i.e., embed) and detect a watermark at an
FSM level without adding nonfunctional entities (e.g., states, state transitions)?

Here, an “FSM-level” watermark refers to the designer’s secret information that
is stored within an FSM itself, instead of an ordered set of individual states. The
advantage of this is twofold: (1) There is no addition of nonfunctional entities
during the embedding process; (2) There is no need to check individual states
during the detection process. This type of approach would be similar to extracting
part of a DNA sequence within the body of a person and using it for the designer’s
secret information.

4 IP FSM Watermarking 69

4.1.5 FSM IP Watermarking: Nonredundancy-Based
Approach

Nonredundancy-based approach is schematically shown in Fig. 4.3. The water-
marked FSM eM� �

is a function of some inherent property within the FSM M itself.
The verification is performed at an FSM level without accessing individual/internal
states (i.e., flip-flops). Confidence measure C indicates how likely the

device-under-test fM′

� �
is distinguishable from the watermarked FSM eM� �

?

In the rest of this chapter, we describe one of nonredundancy-based embedding
methods using a hierarchical state encoding.

4.2 Problem Formulation and Solution Architecture

In this section, basic definitions for the FSM system model are reviewed. Then,
research problems are formulated, followed by solution architecture. Finally, a
motivational example is provided.

4.2.1 Basic Definitions

We provide the basic definitions [18, 19] that will be used throughout this chapter.

Definition 4.1 A synchronous finite-state machine (or sequential machine) is a
quintuple M = ðS, I,O, δ, λÞ, where (i) S is finite nonempty set of states; (ii) I is a
finite nonempty set of inputs; (iii) O is a finite nonempty set of outputs;
(iv) δ: S× I→ S is the transition function; (v) λ: S× I→OðMealy typeÞ,
λ: S→O Moore typeð Þ.

A Mealy-type machine can be converted into a Moore-type machine and vice
versa. Unless it is needed to distinguish one type from the other, Mealy-type
machine is assumed in this chapter. Synchronous finite-state machine (FSM) or
sequential machine (M) will be used interchangeably.

Fig. 4.3 FSM IP watermarking scheme (without redundancy)

70 E. Jung and L. Bossuet

Definition 4.2 A state machine is a triplet M = ðS, I, δÞ, where (i) S is a finite
nonempty set of states; (ii) I is a finite nonempty set of inputs; (iii) δ: S× I→ S is a
transition function.

In the following, we define a general partition on the states of the machine (i.e.,
state partition), and the ordering relation of state partitions.

Definition 4.3 A partition φ on S of the machine M = ðS, I, O, δ, λÞ is a collection
of disjoint subsets of S whose set union is S. That is, φ= fBαg such that
Bα ⋂Bβ =∅ for α≠ β. and ⋃ Bαf g= S..

We refer to the sets of φ as blocks of φ. and designate the block containing s by
BφðsÞ. In writing out a partition, we distinguish blocks with bars and semicolons.

Example 4.1 If S= f1, 2, 3, 4, 5, 6, 7, 8g and partition φ on S has blocks {1, 3, 4,
5}, {2, 6}, and {7, 8}, then we write φ= f1, 3, 4, 5; 2, 6; 7 , 8g.

Note that φ is a set and has elements like any other set. For φ1 and φ2 on S, we
say that φ2 is larger than or equal to φ1, and write φ1 ≤φ2, if and only if every
block of φ1 is contained in a block of φ2.

Example 4.2 If φ1 = f1, 2; 3, 4; 5, 6; 7, 8g and φ2 = f1, 2, 3, 4; 5, 6, 7, 8g, then
φ1 ≤φ2.

Definition 4.4 Two partitions φ1 and φ2 are equal, φ1 =φ2, if and only if φ1 ≤φ2
and φ2 ≤φ1.

We write s≡ tðφÞ if and only if s and t are contained in the same block of φ. That
is, s≡ tðφÞ if and only if BφðsÞ=BφðtÞ.
Definition 4.5 A partition φ on the set of states of M = S, I,O, δ, λð Þ is a closed
partition if and only if s≡ tðφÞ implies that δðs, aÞ≡ δðt, aÞðφÞ for all a in I.

Now, we can define a “multiplication” operation (denoted by) on partitions on a
set.

Definition 4.6 If φ1 and φ2 are partitions on S, then φ1 ⋅φ2 is the partition on
S such that s≡ tðφ1 ⋅φ2Þ if and only if s≡ tðφ1Þ and s≡ tðφ2Þ.
Example 4.3 If φ1 = f1, 2; 3, 4; 5, 6; 7, 8, 9g and φ2 = f1, 6; 2, 3; 4, 5; 7, 8; 9g,
then φ1 ⋅φ2 = f1; 2; 3; 4; 5; 6; 7, 8; 9g.
Definition 4.7 If partition φ1 on S has the same singleton element as S, then the
partition φ1 is called a “zero” partition (denoted by ∅). If partition φ2 on S has one
block containing all elements in S, then the partition φ2 is called an “identity”
partition.

Definition 4.8 If partition φ on S is either “zero” or “identity” partition, then the
partition φ is called a “trivial” partition. Otherwise, it is called a “nontrivial”
partition.

Example 4.4 If S= f1, 2, 3, 4, 5, 6, 7, 8g and partition φ1 = f1; 2; 3; 4; 5;
6; 7; 8g, then φ1 = ∅. If S= f1, 2, 3, 4, 5, 6, 7, 8g and partition

4 IP FSM Watermarking 71

φ2 = f1, 2, 3, 4, 5, 6, 7, 8g, then φ2 is an identity partition. Both φ1 and φ2 are
“trivial.” Both φ1 and φ2 in Example 4.3 are “nontrivial.”

Definition 4.9 A partition φ= fB1; B2; . . . ; Btg on S is an input-consistent (or
input-independent) partition if δ(Bi, a) = δ(Bi, b) for a, b in I, and i = 1, 2, …. t.

That is, the state behavior of a component with an input-consistent partition is
independent of input I. Note that state encoding is done based on partitioning states
into a set of blocks. For instance, if S= f1, 2, 3, 4, 5, 6, 7, 8g and partition φ on
S has three blocks {1, 3, 4, 5}, {2, 6}, and {7, 8}, i.e.,
φ= 1, 3, 4, 5; 2, 6; 7, 8

� �
= fB1;B2;B3g, then one possible way of assigning binary

values to each state in a unique way, known as state assignment or state encoding
(which can be denoted by e1), is B1, 00ð Þ, B2, 01ð Þ, B3, 10ð Þf g. Note, however, that
the relation between the state partition and the state encoding is not a one-to-one
and onto function, since other state encoding e′1ð≠ e1Þ can be made for the same
state partition. For instance, e′1 = { B1, 00ð Þ, B2, 11ð Þ, ðB3, 10Þg≠ e1 for the same
state partition φ.

4.2.2 Research Problems

We are interested in using the FSM state encoding scheme to embed a watermark
which possesses some sequential property (i.e., a cyclic behavior in this work). We
envision of creating a watermark at an FSM level. In particular, two specific
questions are: (1) can a hierarchical state encoding be used to embed a water-
marked FSM ðeMÞ? (2) If so, what are the necessary and sufficient conditions for the
existence of such embedding solution?

The uniqueness of a watermarked FSM should depend on a chosen sequential
property. In illustrating the basic ideas of the proposed embedding approach, we
consider the sequential property of cyclic behavior with the two additional condi-
tions: (1) maximal periodicity and (2) input consistency. The chosen sequential
property will be denoted by P* as a general term, but by a specific notation of pi
when other selection options are available from a set of fp1, p2, . . . , psg. Note that
the property P* is a strong and composite property. The rationale for choosing this
strong property is twofold. First, if P* exists in an FSM, then an effective water-
marking scheme can be designed. Second, P* is one of the common properties in
any embedded controller or sequential FSM designs. For instance, a “t-bit” counter
is typically present in an embedded controller. In general, there is a trade-off
between choosing a strong versus weak property in achieving desirable IP water-
marking solutions.

72 E. Jung and L. Bossuet

4.2.3 Solution Architecture

The general solution architecture, shown in Fig. 4.4, is based on the decomposition
of an FSM. It has two FSM subcomponents, FSMw and FSMr, where FSMw is a
watermarked FSM while FSMr is a residual FSM. The residual FSM is needed to
preserve the original functionality of FSM (i.e., FSM =FSMw⊕FSMr, where ⊕
indicates the concurrent operation). Note that both FSMw and FSMr are state
machines themselves which include the state Sw, Srð Þ, the state transition ðδw, δrÞ,
and output functions ðλw, λrÞ. It can be shown that a given FSM can be always
decomposed into two independent FSMs, i.e., the cascaded/serial decomposition
[19].

λrSrδr

FSMr

λwSwδw

FSMw

O

I

FSM component with FSMw and FSMrFig. 4.4 General solution
architecture

A

C

F

E

D

B

(0/0) (1/1)

(-/0)

(0/0)

(0/0)

(0/0)

(1/1)

(1/1)

(0/0)(1/0) (1/0)

Fig. 4.5 An example FSM
M

4 IP FSM Watermarking 73

4.2.4 Motivational Example

To illustrate the basic ideas of the proposed embedding method, we use the FSM
M as shown in Fig. 4.5 [19]. Note that (x/z) indicates an input x and an output z, and
“_” denotes a don’t-care condition.

The M has the six states {A, B, C, D, E, F}, input x, and output z. The state
transition and the output function are described in the diagram. Figure 4.6 shows
the decomposition of M into two submachines. Here, from the FSM IP water-
marking perspective, the work of decomposition can be interpreted as the extraction
ofMp fromM whereMp shows a cycle of three states: α, β, γ. The successorMs is to
preserve the original functionality of M. This is based on a cascade decomposition.
Note Mp possesses a cyclic state behavior. We propose to use the extracted Mp as
the watermarked FSM.

Using the machine decomposition and state encoding methods (i.e., state
assignment problem) [19], the following state encoding can extract Mp from M:
e1 = {(A, 000), (B, 001), (C, 010), (D, 011), (E, 100), (F, 101)} with {(α, 00), (β,
01), (γ, 10)} and {(a, 0), (b, 1)}. Note that the original states are realized by two
internal states: A = (α, a), B = (α, b), C = (β, a), D = (β, b), E = (γ, a), F = (γ, b).
For instance, the state “A” can be realized by two internal states “α” and “a” using
three flip-flops, if the minimum number of flip-flops is used.

Note that the state encoding above uniquely combines the following two states
together: A and B,C andD, and E and F, producing a three-block partition π = {α; β;
γ} = A,B;C,D;E,F

� �
for Mpð≡FSMwÞ as shown in Fig. 4.7a. No other two-state

combinations (e.g., A and C) except this unique partition π will generate this special
property. For instance, if the partition is made with π′ = A, C; B, D; E, F

� �
, as

shown in Fig. 4.7b, no such property can be generated.

Fig. 4.6 Extraction of Mp from M

74 E. Jung and L. Bossuet

4.3 The Embedding Method

4.3.1 Hierarchical State Encoding

The central ideas of the embedding method lie in (1) extracting a watermarked FSM
FSMwð Þ possessing a sequential property pj

� �
, and (2) performing a specific state

encoding ðeiÞ. The conceptual diagram is shown in Fig. 4.8a. For completeness, the
verification is shown in Fig. 4.8b.
State Encoding: For a given n-state FSM and m, the number of variables (or
flip-flops), there exists potentially many different state encodings. Let Ω be the set
of all possible encodings: Ω= e1, e2, . . . , etf g. The encoding space Ω can be quite
large. In general, the number of flip-flops that can be used is a variable. It makes a
direct impact on the size of the encoding space (i.e., Ωj j= t). One possible case is

(b) Example of other three-block state partitions

A

B

C

D

E

F

(a) Unique three-block state partition (

A

B

C

D

E

F

Fig. 4.7 Uniqueness of the state partition (πÞ generating a specific property P*

Fig. 4.8 Conceptual diagram of embedding and verification

4 IP FSM Watermarking 75

“n=m” and this is known as “hot encoding,” where each state is implemented by a
distinct flip-flop. Another possibility is to use a “minimum” number of flip-flops,
which will guarantee the usage of minimum storage elements ðm= ⌈log2 n⌉Þ. In
general, t= Ωj j≠ s, indicating that there is not always possible to produce a
sequential property pi by every state encoding ei. This condition is indicated by a
pair of ðet, psÞ in Fig. 4.8a.

We are interested in exploring state encoding solutions for nonredundancy. In a
broad sense, this attempt requires not only avoiding any modification of the original
FSM, but also using the minimum number of flip-flops. So, we will use the min-
imum number of flip-flops in this work. However, the basic idea of the proposed
solution is general and it can be extended for any value of “m”, including “ m≥ n”.

Example 4.5 (n = 6, m = 3): For M in Fig. 4.5, using the minimum number of
flip-flops, Ωj j= t = 8 × 7 × 6 × 5 × 4 × 3 = 20, 160, there are six states (A,
B, C, D, E, F), three flip-flops, and eight binary codes {000, 001, 010, 011, 100,
101, 110, 111} are available for the state encodings.
Hierarchical State Encoding: In a hierarchical (h = degree of hierarchy) encod-
ing, multiple state encoding steps are applied. A two-tier state encoding (h = 2) is
considered in this work, since this is consistent with the two-tier architecture (i.e.,
Fig. 4.4) The basic idea can be expanded to a multitier architecture, if needed.

ei = e1i + e2i +⋯+ ehi =⋃h
j=1e

j
i

In a two-tier state encoding, ei = e1i + e2i . In the initial state encoding e1i
� �

, the
goal is to extract a sequential property. Generally, in a tier-1 state encoding, a set of
blocks of state is encoded. During the next step of state encoding e2i

� �
, the number

of states in each block is encoded. The final state encoding ei is then the con-
catenation of e1i and e2i .

Example 4.6 [Two-tier State Encoding]: For M in Fig. 4.5, e1i = {(α, 00), (β, 01),
(γ, 10)} and e2i = {(a, 0), (b, 1)}. Then, ei = {(A, 000), (B, 001), (C, 010), (D, 011),
(E, 100), (F,101)}.
Watermarked FSM: A watermarked FSM ðFSMwÞ can be constructed as a state
machine using the tier-1 state encoding e1i . In general, there is a one-to-one cor-
respondence between e1i and FSMw, meaning that, for a given e1i , we can construct
the corresponding state machine. The detailed process is provided in Sect. 3.2.

Example 4.7 [Watermarked FSM]: For M in Fig. 4.5,
Sw = α, β, γf g, Iw =∅, δw α, að Þ= β, δw β, að Þ= γ, δw γ, að Þ= α for a∈ I.
e1i : α→ 00; β→ 01; γ→ 01. Thus, this defines a state machine which becomes the
watermarked FSM FSMw..

76 E. Jung and L. Bossuet

http://dx.doi.org/10.1007/978-3-319-50380-6_3

4.3.2 Watermarked FSM

The process for embedding a watermarked FSM is described in Fig. 4.9. The input
to the algorithm is an “n”-state FSM. The output is a watermarked FSM, FSMw,
which possesses the property P*. Note that FSMw is a state machine with a triplet
FSMw = ðSw, Iw, δwÞ. The most critical step (Step 1) is to find the maximal
input-independent periodicity pmax.

The algorithm of finding pmax is shown in Fig. 4.10. The underlying idea of
finding pmax is based on identifying the nontrivial input-independent closed parti-
tion with maximal cycle [19]. The complexity of the algorithm for finding pmax is
Oðn2Þ, a polynomial time, since a pairwise state operation is required for the n states
ði.e, Sj j= nÞ in Step 1. Step 3 shows that the number of blocks in the smallest closed
partition πmin is q (< n) and the nontrivial input-consistent partition τ can be set to
πmin since this equality satisfies the condition πi ≥ τ in Step 1. Both determining the
smallest closed partition in Step 2 and finding the number of blocks in πmin in Step 4
are straightforward and can be done in OðnÞ. Overall, the algorithm for extracting
the watermarked FSM is efficient (i.e., at least a polynomial time).

Fig. 4.9 Pseudocode for extracting a watermarked FSM ðFSMwÞ

Fig. 4.10 Pseudocode for finding the maximal periodicity pmaxð Þ

4 IP FSM Watermarking 77

Example 4.8 [Maximal Periodicity]: For M in Fig. 4.5, the maximal periodicity is
pmax = 3 since πmin = τ= A,B;C,D;E,F

� �
= α; β; γf g= π1 and the number of

blocks in πmin is 3. Note that there exists other candidates of input-consistent
partitions, namely, π2 = A,B,C,D;E,F

� �
= fα, β; γg,

π3 = A,B,E,F;C,D
� �

= fα, γ; βg, π4 = C,D,E,F;A,B
� �

= fβ, γ; αg, and
π5 = A,B,C,D,E,F

� �
= fα, β, γg. However, π5 is a trivial input-consistent parti-

tion since it combines all states into a single block, which implies that no useful
information is processed with this state partition. All other partitions above are
nontrivial input-consistent partitions. However, the smallest closed partition is π1.
Hierarchical (Two-tier) State Encoding: Upon determining the partition πmin and
the maximal periodicity pmax, a state encoding ei can be performed by assigning the
minimum number of binary codes to the blocks of the smallest partition. In a tier-1
state encoding, the assignment with a minimum number of binary bits can be made
on the blocks of state fB1;B2;;Bqg in πmin. This is described in Steps 1 and 2
in Fig. 4.11. Pseudocode of tier-1 state encoding (Steps 1 and 2) for the blocks in
the smallest closed partition is associated with FSMw. Pseudocode of tier-2 state
encoding (Steps 3, 4 and 5) for the blocks of partition µ is associated with the
residual FSMr. Once the smallest closed partition ðπminÞ and nontrivial
input-consistent partition ðτÞ are determined, it is simple to perform the initial state
encoding ðe1i Þ using the minimum number of binary bits (Steps 1 and 2). The
complexity of tier-1 state encoding procedure is OðqÞ. Note that Step 2 might not
produce a unique state encoding.

Example 4.9 [State Encoding; Tier-1]: From Example 4.8,
q=3,mw =2, e1i = f α, 00ð Þ, β, 01ð Þ, γ, 10ð Þg. Note that there exists other tier-1 state
encodings possible such as f α, 01ð Þ, β, 10ð Þ, γ, 11ð Þg.

The tier-1 state encoding e1i above defines a watermarked FSM ðFSMwÞ which is
a three-state FSM performing the computation to distinguish three blocks of states
in the partition of A,B;C,D;E,F

� �
= α; β; γf g. To complete the state encoding ei,

a tier-2 state encoding e2i needs to be done. Informally, e2i should distinguish each
state in every block Bi infB1;B2; ;Bqg. This can be done with another
partition μ= fA,C,E;B,D,Fg, as an example.

A general procedure for a tier-2 state encoding e2i is described in Steps (3)−(5) in
Fig. 4.11. Given πmin, finding another partition µ satisfying the condition (i.e.,

Fig. 4.11 Pseudocode of tier-1 and tier-2 state encoding

78 E. Jung and L. Bossuet

πmin ⋅ μ=∅) is straightforward since it can split the states in each block of πmin into
an individual state. Step 3 can be done in polynomial time, Oðq ⋅ Bij jÞ, where q is
the number of blocks in πmin and Bij j is the maximum number of states in the block.
Steps 4 and 5 are similar to the tier-1 state encoding procedure. Example 4.10
shows the results of tier-2 and final state encodings. The final state encoding ei is
made using the concatenation of two tiers of state encodings e1i and e2i .

Example 4.10 From Examples 4.8 and 4.9, μ= A,C,E;B,D,F
� �

= fb1; b2g since
πmin ⋅ μ=∅. Also, r=2,mr =1, e2i = b1, 0ð Þ, b2, 1ð Þf g. For the final state encoding:

ei = e1i + e2i = f A, 000ð Þ, B, 001ð Þ, C, 010ð Þ, D, 011ð Þ, E, 100ð Þ, ðF, 101Þg.

4.4 Analysis

In this section, we provide the analysis of the proposed approach. The limitation of
the proposed approach and the potential solution are also discussed.

4.4.1 Existence of Watermarked FSM

We provide the analysis for the existence of the watermarked FSM possessing the
sequential property P* [19].

Theorem 4.1 The existence of a closed partition π and a nontrivial
input-consistent partition τi on S in a reduced FSM = (I, O, S, δ, λ), where π ≥ τi, is
a necessary and sufficient condition for the existence of the watermarked
FSMw = ðSw, Iw, δwÞ possessing the property P*.

Proof (Necessary part) If the FSMw possesses a closed partition π such that π ≥ τi,
then, for a given state Si and every input in I, the next states must be in the same
block of τi, and therefore in the same block of π. Consequently, for a given initial
state, the block of π in which the state of FSMw is contained after any finite input
sequence depends only on the initial block and on the length of the sequence.

(Sufficient part) If such a watermarked FSM possessing P* exists, there must
exist a cycle of states such that δw(s1, x) = δw(s2, x) = … = δw(sp, x) for any input
x in Iw = I. Then, {s1; s2;…; sp} = π = τi, and the maximal periodicity pmax = pð Þ of
a cycle can be chosen.

4 IP FSM Watermarking 79

4.4.2 Analysis of Proposed Approach (Qualitative)

Based on the comprehensive set of requirements for desirable IP watermarks
described in [11], we analyze the proposed approach qualitatively. As a simple
measure, the compliance of each requirement is indicated by a scale of “H (high
compliance)”, “M (middle)”, or “L (low)”.

• Not relying on the secrecy of the algorithm: one of the oldest security principles
defined by Kerckhoffs [20] says “The system must not require secrecy and can
be stolen by the enemy without causing trouble.” To protect the authorship, the
algorithm should depend on the system properties instead of the secrecy of the
algorithms. The proposed approach is based on extracting system’s sequential
properties (P*) that exist inherently in the system [H].

• Level of reliability: this is further divided into two requirements of robustness
and false positives. Robustness measures the strength of the hidden watermark
against attacks. False positives occur when the detector can find the watermark
in a nonwatermarked design. Both of them are addressed in the following
section (Attack Analysis, Sect. 4.3). The proposed approach satisfies both
requirements [H].

• Affecting the design functionality: watermarking techniques should prove their
soundness against affecting the behavior of original system. In the proposed
approach, the FSM is decomposed into two component FSMs, FSMw and FSMr,
where the original functionality is always preserved [H].

• Preventing an intruder from re-embedding another watermark: this is to
provide the authenticity of the watermark. Watermark designers need to find
techniques to protect their designs from intruders to embed another watermark
in the design. In the proposed scheme, it is likely that the functionality of an
FSM may change and thus detectable, if another watermark is added. However,
the intruder may try to identify another inherent property to create new water-
mark. Thus, this requirement may or may not be satisfied [Not conclusive].

• Embedding enough data to identify ownership: the watermarking scheme
should add enough data to identify the owner of the design. In the proposed
scheme, the maximality pmaxð Þ of periods was used to embed more data.
However, the amount of data at an FSM level (not a state level) can be relatively
small. Note that this requirement is related to another requirement of “Imple-
mentation overhead” below [L].

• Implementation overhead: compared to the original design without water-
marking, the watermarking scheme should not introduce (or minimize) over-
heads, especially in the area, power, and delay overheads. The proposed
approach does not require additions of neither new states/transitions nor new
verification circuitry [H].

• Detection and tracking: watermark embedding is only half the process,
detection (i.e., verification) is the second important aspect in any watermarking
technique. The feasibility of SCA-based detection mechanism was demonstrated
for a set of small-size FSMs [21, 22] [M].

80 E. Jung and L. Bossuet

• Asymmetry: Sharing IP designs poses the same threats as other secret data in the
public domain [11]. Third parties such as brokers and subcontractors need to
know the watermark key for tracking purposes. But, these parties are not con-
sidered trustworthy entities. It was demonstrated that asymmetric watermarking
with the watermark key can be supported [22] [H].

Despite the existence of some deficiency, the proposed approach satisfies most
of requirements at a reasonable level. It would not be technically feasible, if not
impossible, to build a single watermarking solution which can satisfy all of the
requirements at once.

4.4.3 Attack Analysis

IP watermarking attacks can be further categorized in the main classes below, based
on the work [23].

• Removal Attacks: Removal attacks are divided into either elimination attacks or
masking attacks. In elimination attacks, the watermark can be eliminated
completely by an attacker. For instance, the attacker tries to estimate the
watermark and subtract it from the watermarked design. In the proposed
approach, it will be technically infeasible to eliminate the watermarked FSM
without affecting the original functionality since the watermarked FSM itself
performs the subcomputation. On the other hand, masking attacks aim at dis-
torting the watermark detector to disable its ability to sense the presence of the
watermark. This is a verification related. It would be very difficult to disable the
SCA-based verification process, since it is based on contactless verification [21,
22].

• False Positive (Probability of Coincidence or Watermark Collision): the prob-
ability of coincidence was defined as “the odds that an unintended watermark is
detected in a design” [14]. Often, this is used as a measure of watermark
validity. It was demonstrated using a set of small FSMs that the collisions
practically may not be a problem [21, 22].

• Embedding Attacks (Forging): Similar to “Preventing intruders from
re-embedding another watermark” (Sect. 4.2).

4.4.4 The Limitation and Solutions

The proposed approach is based on extracting the inherent sequential property P*
by a hieratical state encoding method. However, if such a property cannot be
extracted due to the inexistence of the property in a given FSM, the proposed
approach cannot be used. The existence of P* is based on specific conditions. The
necessary and sufficient conditions are provided in Theorem 4.1.

4 IP FSM Watermarking 81

If a given FSM cannot be decomposed into a watermarked FSM possessing P*,
we should consider using a weaker condition (e.g., relaxing maximality). But, this
solution will be less desirable since it will further reduce the embedded data (see 4.2
—“Embedding enough data to identify ownership”).

More practical solution would be to remove the condition of input independence.
By doing so, the IP designer can use the specific input values as part of IP
designer’s secret (e.g., watermark input signature). In this case, new or refined
embedding algorithms will need to be developed.

4.4.5 Discussions

The readers might be interested in using a specific state encoding as part of the
designer’s IP: the encoding space Ω= e1, e2, . . . , etf g is quite huge and randomly
guessing a particular encoding can be a difficult task. However, we did not choose
this for the following reasons: first, despite the colossal size of the state encoding
space ð Ωj j= very bigÞ, collisions may occur (see State Encoding Tier-1; Example
4.9). Second, we believe that using the system’s inherent properties can be more
effective in the watermarking application. Another interesting discussion is to see if
more effective sequential properties (instead of a maximal cyclic behavior) can be
used.

4.5 Conclusions

Historically, the problem of state encoding (or state assignment) in sequential
machines, or more generally a regular sequential function, was extensively studied
in 1960s. However, the dominant application areas of the state encoding problem
were sequential circuit optimizations in later decades (i.e., especially during 1980s
and 1990s.) We believe that it can be useful to apply these well-studied areas of
state encoding schemes to other or new application areas, such as FSM IP water-
marking, especially as a way of providing IP protection in embedded controller
designs. This attempt can be beneficial if the IP protection solution can be achieved
without adding any functional overheads (e.g., adding dummy states.).

In this chapter, we described one of the possible approaches for protecting the
design IPs of an embedded controller. For a class of FSMs, based on cascade
machine decomposition and the hierarchical state encoding scheme, we presented
the different types of watermark embedding method which does not require adding
dummy states and/or state transitions. We analyzed the proposed method, which
include addressing both the strengths and the weaknesses, based on the criteria used
in the field of hardware IP protection. Despite the existence of some limitation, we
found that the proposed schemes are favorably evaluated in most of the criteria used
in the field of IP watermarking.

82 E. Jung and L. Bossuet

Acknowledgement The work presented in this paper was realized in the frame of the SALWARE
project number ANR-13-JS03-0003 supported by the French” Agence Nationale de la Recherche”
and by the French “Fondation de Recherche pour l’Aéronautique et l’Espace”.

References

1. M. Tehranipoor, C. Wang (eds.), Introduction to Hardware Security and Trust (Springer
Science+Business Media, LLC, 2012), Chaps. 6 and 17

2. L. Bossuet, D. Hely, Salware: salutary hardware to design trusted IC, in Proceedings of the
Trustworthy Manufacturing and Utilization of Secure Devices Workshop (TRUDEVICE ’13),
Avignon, France (2013), pp. 30–31. http://hal-ujm.ccsd.cnrs.fr/ujm-00833871

3. G. Wolfe, J.L. Wong, M. Potkonjak, Watermarking graph partitioning solutions. IEEE Trans.
Comp.-Aided Des. Integ. Cir. Sys. 21, 1196–1204 (2002). doi:10.1109/TCAD.2002.802277

4. J.L. Wong, G. Qu, M. Potkonjak, Optimization-intensive watermarking techniques for
decision problems. IEEE Trans. Comp.-Aided Des. Integ. Cir. Syst. 23(1), 119–127 (2006).
doi:10.1109/TCAD.2003.819900

5. G. Qu, M. Potkonjak, Analysis of watermarking techniques for graph coloring problem, in
Proceedings of the IEEE/ACM international conference on Computer-aided design (ICCAD
‘98) (ACM, New York, NY, USA, 1998), pp. 190–193. doi:10.1145/288548.288607

6. L. Yuan, G. Qu, Information hiding in finite state machine, in J. Fridrich (ed.), Proceedings of
the 6th international conference on Information Hiding (IH’04) (Springer-Verlag, Berlin,
Heidelberg, 2004), pp. 340–354. doi:10.1007/978-3-540-30114-1_24

7. J. Lach, W.H. Mangione-Smith, M. Potkonjak, Robust FPGA intellectual property protection
through multiple small watermarks, in M.J. Irwin (ed.) Proceedings of the 36th annual
ACM/IEEE Design Automation Conference (DAC ‘99) (ACM, New York, NY, USA, 1999),
pp. 831–836. doi:10.1145/309847.310080

8. F. Koushanfar, Y. Alkabani, Provably secure obfuscation of diverse watermarks for sequential
circuits, in Proceedings of the International Symposium on Hardware-Oriented Security and
Trust (HOST ‘10), (2010), pp. 42–47. doi:10.1109/HST.2010.5513115

9. B. Le Gal, L. Bossuet, Automatic low-cost IP watermarking techniques based on output mark
insertions, in Design Automation for Embedded Systems, vol. 16, issue 2 (Springer Science
+Business Media, 2012), pp. 71–92. doi:10.1007/s10617-012-9085-y

10. F.A. Petitcolas, R.J. Anderson, M.G. Kuhn, Information hiding—a survey, in Proceedings of
the IEEE, 87(7), 1062–1078 (1999). doi:10.1109/5.771065

11. A.T. Abdel-Hamid, S. Tahar, E.M. Aboulhamid, A survey on IP watermarking techniques, in
Design Automation for Embedded Systems, vol. 9 (Springer Science+Business Media, Berlin,
2004), pp. 211–227. doi:10.1007/s10617-005-1395-x

12. A.L. Oliveira, Robust techniques for watermarking sequential circuit designs, in Irwin, M.
J. (ed.) Proceedings of the 36th annual ACM/IEEE Design Automation Conference (DAC
‘99) (ACM, New York, NY, USA, 1999), pp. 837–842. doi:10.1145/309847.310082

13. A.L. Oliveira, Techniques for the creation of digital watermarks in sequential circuit design.
IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys. 20(9), 1101–1117 (2001). doi:10.1109/43.
945306

14. I. Torunoglu, E. Charbon, Watermarking-based copyright protection of sequential functions.
IEEE J. Solid-State Circuits 35(3), 434–440 (2000). doi:10.1109/4.826826

15. F. Koushanfar, I. Hong, M. Potkonjak, Behavioral synthesis techniques for intellectual
property protection. ACM Trans. Des. Autom. Electron. Syst. 10, 3, 523–545 (2005). doi:10.
1145/1080334.1080338

16. A. Cui, C.H. Chang, S. Tahar, A.T. Abdel-Hamid, A robust FSM watermarking scheme for IP
protection of sequential circuit design. IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys. 30(5),
678−690 (2011). doi:10.1109/TCAD.2010.2098131

4 IP FSM Watermarking 83

http://hal-ujm.ccsd.cnrs.fr/ujm-00833871
http://dx.doi.org/10.1109/TCAD.2002.802277
http://dx.doi.org/10.1109/TCAD.2003.819900
http://dx.doi.org/10.1145/288548.288607
http://dx.doi.org/10.1007/978-3-540-30114-1_24
http://dx.doi.org/10.1145/309847.310080
http://dx.doi.org/10.1109/HST.2010.5513115
http://dx.doi.org/10.1007/s10617-012-9085-y
http://dx.doi.org/10.1109/5.771065
http://dx.doi.org/10.1007/s10617-005-1395-x
http://dx.doi.org/10.1145/309847.310082
http://dx.doi.org/10.1109/43.945306
http://dx.doi.org/10.1109/43.945306
http://dx.doi.org/10.1109/4.826826
http://dx.doi.org/10.1145/1080334.1080338
http://dx.doi.org/10.1145/1080334.1080338
http://dx.doi.org/10.1109/TCAD.2010.2098131

17. M. Lewandowski, R. Meana, M. Morrison, S. Katkoori, A novel method for watermarking
sequential circuits, in Proceedings of the IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST’12), San Francisco, CA, pp. 21–24 (2012).
doi:10.1109/HST.2012.6224313

18. J. Hartmanis, R.E. Stearns, Algebraic Structure Theory of Sequential Machines (Prentice-Hall
International Series in Applied Mathematics) (Prentice-Hall, Inc. (1996), Upper Saddle River,
NJ, USA

19. Z. Kohavi, Switching and Finite Automata Theory, 2nd edn. (McGraw-Hill, 1978)
20. A. Kerckhoffs, La Crytographie Militaire. Journal des sciences militaires, 9, 5–38 (1883). 161

−191 (February 1883)
21. E. Jung, S. Choi, Identification of IP control units by state encoding, in IEEE Computer

Society Annual Symposium on VLSI, July 2015, pp. 216–220. doi:10.1109/ISVLSI.2015.43
22. C. Marchand, L. Bossuet, E. Jung, IP watermarking verification based on power consumption

analysis, in Proceedings of the 27th IEEE International System-on-Chip Conference (SOCC
’14), Las Vegas, Sept 2014, pp. 330–335. doi:10.1109/SOCC.2014.6948949

23. I.J. Cox, M.L. Miller, J.A. Bloom, C. Honsinger, Digital watermarking (Morgan Kaufmann
Publishers, 1998)

84 E. Jung and L. Bossuet

http://dx.doi.org/10.1109/HST.2012.6224313
http://dx.doi.org/10.1109/ISVLSI.2015.43
http://dx.doi.org/10.1109/SOCC.2014.6948949

Chapter 5
Side Channel Analysis, an Efficient Ally
for IP Protection

Lilian Bossuet and Cédric Marchand

5.1 Introduction

One of the solutions for the IP designers to protect their intellectual property is to be
able to detect the presence of a copy of an IP embedded in a digital device by using
IP identification. Works on IP watermarking and IP fingerprinting try to provide the
IP identification service [1]. But, most of the time the published solutions are not
practical mainly because of the complexity of the watermarking/fingerprinting
verification scheme [2, 3]. If watermarking and fingerprinting are efficient to prove
an illegal copy of IP, the industrial detection of integrated circuit counterfeiting in
the supply chain needs rapid and contactless checking of intellectual property data.
For both these applications, providing a secure and discreet mean of data commu-
nication is a challenging work. We think that the use of side channel analysis, usually
performed for physical attacks on cryptographic algorithms implementation, could
be an efficient solution. The power consumption and the electromagnetic radiation of
an integrated circuit are two interesting side channels for IP watermarking verifi-
cation and discreet transmission of intellectual property data. This chapter presents
two works that try to exploit these two side channels in the case of IP protection.

5.1.1 Side Channel Analysis

In the area of security, the techniques used to attack and to defend have always been
similar and the means designed for attacks can sometimes be used for protection.
A well-known threat in cryptographic engineering is side channel analysis

L. Bossuet (✉) ⋅ C. Marchand
Laboratoire Hubert Curien, Jean Monnet University, Saint-Etienne, France
e-mail: lilian.bossuet@univ-st-etienne.fr

© Springer International Publishing AG 2017
L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,
DOI 10.1007/978-3-319-50380-6_5

85

(SCA) [4, 5]. SCA are widely used in cryptographic engineering as passive attacks
because they make it possible to retrieve secret information (such as secret keys)
with relatively few measurements and sometimes using inexpensive equipment.
SCA attacks work even when the algorithm has been shown to be robust against
algebraic cryptanalysis. Most of the dynamic characteristics of both hardware and
software implementations of cryptographic primitives can be used for side channel
analysis: computation time, power consumption, electromagnetic radiation, optical
radiation, even the sound produced during computation. These physical quantities
are thus widely exploited during SCA that aim to understand the circuits behavior
(or to discover the secret information they contain, such as the secret keys required
by the encryption/decryption process) by jointly analyzing the cipher algorithm, the
data it produced (cipher texts) or received (plaintexts) and the information leaked by
the side channel. This analysis is typically performed using statistical tools. The
Fig. 5.1 gives us the general presentation of a SCA targeting a hardware imple-
mentation of a cipher (the symmetric cipher AES in the Fig. 5.1).

However, the techniques used for side channel analysis can also be used to
implement a salutary hardware [6] for IP protection: e.g., for reading intellectual
property data from the device or for device authentication (watermark checking).

5.1.2 Use Cases for IP Protection

Reading hidden data of intellectual property (such as watermarking and/or finger-
printing) can be used in two ways during the lifetime of an integrated circuit. First,
the system integrator or the end user may want to check if all the items in a set of
integrated circuits he/she purchased are authentic. To do so, they check a watermark
on all integrated circuits, and authenticate each one of them as illustrated in the top
half of Fig. 5.2. Alternatively, a designer can check that his IP has not been copied
and illegally integrated in another system. To do so, he/she can compare a water-
mark he/she owns and the one on the integrated circuit, as illustrated in the bottom
half of Fig. 5.1. If they are identical, he/she can prove that the integrated circuit
manufacturer has used his IP illegally.

AES

KEY

plaintext ciphertext

Device under attack
(FPGA/ASIC/SoC/μP)

Noisy side-channel

Power consumption, EM radiation, light
emission, temperature, computation time

Measurment apparatus Leakage function L Side-channel analysis

Leakage model M

KEY

Fig. 5.1 General presentation of the side channel analysis of the hardware implementation of a
cipher (or decipher)

86 L. Bossuet and C. Marchand

Some published works propose spy circuitry using side channels to identify the
embedded intellectual property (hidden transmission of IP information, such as
watermark or PUF response, on the side channel). For example in [7], the thermal
channel representing a contactless communication was used to transfer information
from an embedded tag to a remote receiver. However, the embedded thermal tag
used in this commercial solution requires a relatively large area (255 Spartan-3
slices). In [8], the authors propose to use two shift registers to generate a recog-
nizable signature-dependent pattern in the power consumption to reveal the IP
signature. Power consumption was also used in [9] to communicate the IP water-
mark data using classical differential power analysis (DPA [4]). To reinforce such
work, the authors of [10] propose to use the power supply signal of an IP as a
physical hash function for fingerprinting.

This chapter completes this rapid state of the art by presenting a scheme of FSM
watermarking verification using power consumption analysis (Sect. 5.2) and the
high-speed and contactless transmission of IP information by using the electro-
magnetic channel (Sect. 5.3).

5.2 FSM Watermarking Verification Scheme Using Power
Consumption Analysis

In this section, we address the problem of verification of watermarked finite state
machines (FSMs) presented in the Chap. 4 of this book. The verification scheme of
the IP watermark uses a correlation analysis based on the measurement of the power
consumption of an IC. In order to make this verification possible, a lightweight
component which amplifies the side channel leakage is added to the IP. This
component only highlight the state transition of the FSM by bringing nonlinearity
but does not interfere with the working FSM. In addition, it reduces the risk of

Fig. 5.2 Two scenarios of IP protection, (top) detection of integrated circuit counterfeiting from a
set of identical referenced integrated circuits and (bottom) cloning detection of an integrated circuit
or an IP from a device of a competitor

5 Side Channel Analysis, an Efficient Ally for IP Protection 87

http://dx.doi.org/10.1007/978-3-319-50380-6_4

collision between different IPs with the same FSM. A preliminary version of this
work was presented during the conference SOCC 2014 [3].

5.2.1 Principle

The purpose of this section is to demonstrate that it is possible to verify a water-
marked finite state machine (FSM) using SCA. To perform the analysis, the owner
of the IP provides a device produced in a trusted manner (i.e., the device contains
only what the owner created without alterations). This device is called reference
device (RefD) and is used as reference in the watermarked FSM verification pro-
cess. Then, the goal is to determine if a device under test (DUT) contains the same
watermarked FSM as the RefD. The power consumption of this RefD is compared
to the power consumption of the DUT using the proposed correlation methods.

As presented in Chap. 4 of this book, the watermarked FSM is input-consistent
(i.e., input-independent) and cyclic, so it is not necessary to verify state transitions
in the two devices using a specific input sequence. Indeed, if the state sequence
resulting from one input contains more transitions than the watermarked FSM
periodicity, then verification is possible. The same input sequence is sent to the two
devices to be sure that the state sequence has the same length for the RefD and for
the DUT.

To verify if a DUT contains the same watermarked FSM as the RefD, a large
number n of power consumption traces are measured on the RefD and grouped in a
set called Tref . The same number n of power traces are measured on the DUT and
grouped in the set called TDUT . Then k traces of Tref are selected using a function
which randomly selects k distinct elements uniformly inside a set X (noted UX kð Þ).
This function can be defined as follows:

∀k∈ 1; n½ �½ �,UX kð Þ= e1, e2, . . . , ekf g,
such that ∀i, j∈ 1, k½ �½ �, i≠ j⇔ei ≠ ej

ð5:1Þ

The mean of selected traces is calculated and used as a unique reference to the
correlation computation. This averaged trace is noted Aref and defined as
Aref =meanðUTref kð ÞÞ. The same operation is repeated to calculate a number m of k-
averaged traces with the set TDUT . The set noted ADUT contains these m k-averaged
traces and is defined by

ADUT = meanðUTDUT kð ÞÞf gm. ð5:2Þ

When all k-averaged traces are calculated, the correlation between Aref and each
element of ADUT is computed using the Pearson coefficient defined by:

88 L. Bossuet and C. Marchand

http://dx.doi.org/10.1007/978-3-319-50380-6_4

ρ ðx, yÞ= ∑l
i=1 xi − x ̄ð Þ ⋅ ðyi − y ̄Þffi

∑l
i=1 ðxi − x ̄Þ2 ⋅ ∑l

i=1 ðyi − y ̄Þ2
q , ð5:3Þ

where x and y are two traces of length l and x ̄ is the mean of x. Since only one k-
averaged trace for the RefD and m k-averaged traces for the DUT are used; all
variations of the computed correlation coefficients must be due to the DUT and not
to the RefD.

The result of this process is a set of m correlation coefficients. Figure 5.3 shows
this calculation process with a schematic. When all m coefficients are computed, the
analysis is performed using statistical tools such as the mean or the variance of the
correlation coefficients.

5.2.2 Experimental Results

By using the correlation computation process previously described, some experi-
ments are performed in order to verify a watermarked FSM in a real device. For the
following experiment, four FSMs are designed. The first one, called FSM_A, is an
8-bit binary-counter. The second FSM (FSM_B) is an 8-bit Gray-counter. An AES
Sbox is added to the FSM_A and FSM_B to create FSM_C and FSM_D, respec-
tively. Sbox uses an 8-bit input. An additional watermark is fixed to the same
randomly chosen value Wk in FSM_C and FSM_D. Figure 5.4 shows these four
reference FSMs with schematics.

The four FSMs are implemented inside four Altera Cyclone III FPGAs in order
to create four different RefDs (FSM_A, FSM_B, FSM_C, FSM_D). Four DUTs
ðDUT#1, DUT#2, DUT#3, DUT#4Þ are created by implementing the same FSMs in

Fig. 5.3 Correlation calculation flow with one device under test (DUT) and one reference device
(RefD)

5 Side Channel Analysis, an Efficient Ally for IP Protection 89

four other Altera Cyclone III FPGAs. Note that these experimental results are also
obtained using only one Cyclone III for all measurements. Therefore, the proposed
work is insensitive to the CMOS variation process [3].

For each RefDs, 10,000 power consumption traces are measured to create the
following sets of traces: TFSM A, TFSM B, TFSM C and TFSM D. The same measure-
ments are performed with the four DUTs to create the following sets:
TDUT#1 , TDUT#2 , TDUT#3 and TDUT#4 .

For this experiment, correlation coefficients are calculated with
k=50 and m=20 (see [3] for the selection methodology of these parameters).
Using a set of power consumption traces TFSM X with X ∈ A,B,C,Df g, the aver-
aged reference trace AFSM X is defined by AFSM X =meanðUTFSMX

50ð ÞÞ. And using a
set of measured traces TDUT#Y ðY ∈ 1, 2, 3, 4f gÞ, the set ADUT#Y , which contains 20

50-averaged traces, is defined by ADUT#Y = meanðUTDUT#Y
50ð ÞÞ

n o
20
.

Correlation coefficients are calculated between AFSM X and each trace of ADUT#Y .
The resulting set of 20 correlation coefficients is noted CXY , 50. For generic
parameters k and m, the set CXY , k is defined by CXY , k = ρ AFSMX ,ADUT#Y ðiÞð Þ,f
i∈ .15em 1,m½ �.15em½ �g.
Figure 5.5 shows these calculated sets of correlation coefficients grouped by

RefD. For X ∈ A,B,C,Df g, the sub-picture titled FSM_X presents the following
sets of correlation coefficients:CX1, 50, CX2, 50, CX3, 50 and CX4, 50. By observing
this sub-picture, it is possible to determine intuitively which DUT contains the
FSM_X.

In order to automatically determine which DUT contains which FSM, some
distinguishers need to be considered. The means and the variance of the correlation
coefficient sets are selected as potential distinguishers. Table 5.1 presents the mean
of sets CXY , k (noted CXY , k) with X ∈ A,B,C,Df g and Y ∈ 1, 2, 3, 4f g and Table 5.2
presents the variance of these sets (noted varðCXY , kÞ). In these two tables, the last

δ S
(Binary)

λ O

WK

AES
Sbox
(RAM)

8 bits

clk

δ S
(Gray)

λ O

WK

AES
Sbox
(RAM)

8 bits

clk

O

O

δ S
(Binary)

λ O
clk

δ S
(Gray)

λ O
clk

FSM_A – 8 bits Binary-counter

FSM_B – 8 bits Gray-counter

FSM_C – 8 bits Binary-counter with Sbox and WK

FSM_D – 8 bits Gray-counter with Sbox and WK

Fig. 5.4 The four tested FSMs

90 L. Bossuet and C. Marchand

column gives a confidence distance of the distinguisher for each row. This confi-
dence distance is a percentage representing the distance of the distinguisher value
between the two best DUTs according to one reference FSM_X X ∈ A,B,C,Df gð Þ.
In order to define this confidence distance, the followings functions are introduced:

0.6

0.7

0.8

0.9

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

C
or

re
la

tio
n

C
or

re
la

tio
n

C
or

re
la

tio
n

FSM_A FSM_B

FSM_C FSM_D

Fig. 5.5 Verification of watermarked FSM with k = 50 and m = 20

Table 5.1 Means of the different sets of correlation coefficients

DUT#1 DUT#1 DUT#1 DUT#1 Δmean (%)

FSM_A 0.989 0.880 0.765 0.673 11
FSM_B 0.790 0.983 0.317 0.966 1.7
FSM_C 0.914 0.605 0.962 0.319 5
FSM_D 0.464 0.830 −0.057 0.965 14

Table 5.2 Variance of the different sets of correlation coefficients

DUT#1 DUT#1 DUT#1 DUT#1 Δvar (%)

FSM_A 1.02e-6 6.09e-5 8.86e-5 2.26e-4 98.3
FSM_B 9.22e-5 8.40e-6 2.26e-4 1.93e-5 56.5
FSM_C 5.28e-5 1.73e-4 2.89e-5 2.15e-4 36.4
FSM_D 1.68e-4 4.38e-5 2.34e-4 1.83e-5 58.2

5 Side Channel Analysis, an Efficient Ally for IP Protection 91

• max2ðEÞ is the function which returns the second highest element of the set E,
• min2ðEÞ is the function which returns the second smallest element of the set E.

Considering the mean as distinguisher, the confidence distance ðΔmeanÞ is
defined by:

ΔmeanðXÞ=100* 1−
max2 CXY , k; Y ∈ 1, 2, 3, 4f g� �� �
max CXY , k; Y ∈ 1, 2, 3, 4f g� �� �

" #
ð5:4Þ

For the variance, the confidence distance is noted Δvar and defined by:

ΔvarðXÞ=100* 1−
min varðCXY , kÞ;Y ∈ 1, 2, 3, 4f gf gð Þ
min2 varðCXY , kÞ; Y ∈ 1, 2, 3, 4f gf gð Þ

� �
ð5:5Þ

For the two distinguishers, mean and variance, the higher the confidence dis-
tance, Δmean and Δvar respectively, is the better the distinguisher is.

By using the variance as the distinguisher it is certain that DUT#1, DUT#2,
DUT#3 and DUT#4 respectively contain FSM_A, FSM_B, FSM_C and FSM_D.
Indeed, for each row the confidence distance is very high (from 36.4 to 98.3 % in
Table 5.2). The use of the mean as a distinguisher is less efficient. The confidence
distance is too small for FSM_B and FSM_C to be reliably distinguished (1.7 % and
5 % respectively in Table 5.1). Nevertheless, it is shown that taking the maximum
value of the mean may distinguish the good DUT without error. But, in the presence
of noise during measurement, incorrect results may be obtained by relying upon
such a small confidence distance.

This experiment shows us that the variance is a more reliable distinguisher than
the mean. This can be explained by the fact that all the studied circuits are strongly
synchronized with the clock; thus, two devices with different FSMs inside can be
highly correlated because of clock synchronicity. Using variance as a distinguisher
is better because it highlights the transition between states better than the mean,
which highlights the clock synchronicity.

5.3 Electromagnetic Communication of IP Data

Efficient IP identification scheme needs to be contactless, rapid and ultra-
lightweight. Up to now, these three characteristics are not available in the state
of the art. To meet these requirements, in this chapter we propose an
ultra-lightweight binary frequency shift keying (BFSK) transmitter to forward IP
identity (that could generated, for example by a feedback shift register or a physical
unclonable function [11]) discreetly using an electromagnetic channel. Such circuit
is usually called “spy circuitry.” Using the electromagnetic channel, it is possible to
contactless check the presence of an IP inside a digital device. A preliminary
version of this work was presented during the conference VLSI-SOC 2015 [12].

92 L. Bossuet and C. Marchand

5.3.1 Principle

Previous works on the electromagnetic attacks targeting true random number
generators (TRNGs) showed that electromagnetic radiation can be used very effi-
ciently for both active (fault injection [13]) and passive (side channel analysis [14])
attacks. Compared to power analysis, the attacker measuring the near-field elec-
tromagnetic emissions can obtain additional partial information about the device,
since, unlike measurement of power consumption, electromagnetic radiation can be
measured locally. One of the main advantages of this side channel is that it is
impossible to hide the leak concerning electromagnetic radiation by using a global
countermeasure. Moreover, the electromagnetic test bench is not expensive (less
than USD 10K without an oscilloscope, which is the most expensive component).
Last but not least, a spectral analysis of the electromagnetic radiation provides
information on the oscillating structure, such as a ring oscillator [14]. For all these
reasons, we use the electromagnetic channel for our IC/IP identification scheme. To
this end, we designed an ultra-lightweight BFSK transmitter.

As mentioned above, salware and malware can be based on similar principles.
The same is true for the proposed BFSK principle, which can be used to design both
salware (i.e., IP identity transmitter) and malware (i.e., stolen data transmitter
driven by a hardware Trojan), as illustrated in Fig. 5.6. There are two differences
between using the BFSK as salware or malware. First, IP identification is activated
outside the device by an ID checker, while the Trojan is activated internally. For
example, the Trojan can be activated by a specific event (e.g., specific input
sequence, internal data value, system state) or by predefined timing (e.g., a specific
number of clock cycles) [15, 16]. Second, the enable signal of the BFSK transmitter
is provided outside the salware: it is the same signal as that used to activate the IP
identification. For malware, the BFSK transmitter’s enable signal is driven inter-
nally by the hardware Trojan control logic. In this case, the Trojan activates the
enable signal when it is ready to send the stolen data. Note that an enable signal is
required in both applications to reduce the power consumed by the ring oscillator.

IP iden fica on (PUF,
watermarking)

Hardware Trojan

BFSK
transmi er

BFSK
transmi er

Ac va on
Stolen data

ID data

Enable

Integrated Circuit

SALWARE

MALWARE

Enable

Electromagne c
radia on

Electromagne c
radia on

Fig. 5.6 Electromagnetic transmission of data (i.e., IP identification data or stolen secret data by a
hardware Trojan such as the secret key for symmetric cipher)

5 Side Channel Analysis, an Efficient Ally for IP Protection 93

Moreover, a permanently activated transmitter could be detected more easily by a
spectral analysis of electromagnetic emanations of the device and could also cause
local heating and premature aging of the chip.

5.3.2 Ultra-Lightweight Digital BFSK Transmitter

Electromagnetic radiation is an efficient side channel since, unlike measurement of
power consumption, electromagnetic radiation can be measured locally and con-
tactless. For this reason, we use the electromagnetic channel for our IP identification
scheme. To this end, we designed an ultra-lightweight BFSK transmitter which
could be activated outside the device by an ID checker or internally by a specific
event (e.g., specific input sequence, internal data value, system state). Note that an
enable signal is required to reduce the power consumed by the ring oscillator.
Moreover, a permanently activated transmitter could be detected more easily by a
spectral analysis of electromagnetic emanations of the device and could also cause
local heating and premature aging of the chip.

BFSK is one of the common modulation schemes used in digital communica-
tion. The binary data are sent using a sinusoidal carrier at two frequency tones f0
and f1, representing high (‘1’) and low (‘0’) logic levels. The binary data arriving at
the transmitter input at certain bitrates determine the commutation of the tones at
the transmitter output. The proposed BFSK transmitter uses a dedicated config-
urable ring oscillator, as shown in Fig. 5.7. The configurable ring oscillator is
designed using one multiplexor, N + K delay elements, and a feedback chain
controlled by a NAND gate for activation of transmission to reduce power con-
sumption. Actually, the transmitter is used only during a short time when the enable
signal is high, and it consumes power only during this small piece of time. The
power consumption of this transmitter is thus completely negligible.

Input data controls the multiplexor, as shown in Fig. 5.7. When input data is
low, the ring oscillator uses N delays and its oscillation frequency is f0. When input
data is high, the ring oscillator uses N + K delays and its oscillation frequency is f1.
Since the ring oscillator’s oscillation frequency decreases with an increase in the
number of delay elements, frequency f0 is higher than frequency f1. These two
frequencies have to be selected according to the bandwidth of the electromagnetic

0

1

Input data
Enable

N delays
K delays

Fig. 5.7 Architecture of the ultra-lightweight digital BFSK transmitter based on a configurable
ring oscillator

94 L. Bossuet and C. Marchand

analysis platform, which is used to acquire and measure the transmitted signal. The
bandwidth of our test bench, which is described in the Sect. 5.3.3 of this chapter,
was limited to 100 MHz and 1 GHz by the low-noise amplifier.

The proposed BFSK transmitter was first implemented in Microsemi FUSION
flash based FPGA (130 nm CMOS technology) containing 600K logic gates
(M7AFS600). The device contains 13824 tiles, each tile can be used to implement
one D-flip-flop or one configurable multiplexor-based logic block implementing
any 3-input logic function.

The configurable number of delays in the ring oscillator of the proposed BFSK
transmitter makes it possible to select precisely the two frequencies f0 and f1 using
parameters N and K. Table 5.3 lists the ring oscillator frequencies and the number
of Fusion tiles used by the BFSK transmitter for five values of N and K, with
N ranging from 0 to 4, and K ranging from 1 to 5. According to Table 5.3, f0 can be
chosen between 119 MHz (N = 4) and 385 MHz (N = 0) and f1 can be chosen
between 70 MHz (N = 4, K = 5) and 280 MHz (N = 0, K = 1). The exact value

Table 5.3 Hardware
implementation results of the
BFSK transmitter

N K F0
(MHz)

F1
(MHz)

Fusion
tiles

LUT4 EG

0 1 385 280 3 2 4.67
2 383 210 4 3 5.34
3 384 151 5 4 6.01
4 385 130 6 5 6.68
5 381 111 7 6 7.35

1 1 272 189 4 3 5.34
2 272 156 5 4 6.01
3 270 120 6 5 6.68
4 271 106 7 6 7.35
5 269 93 8 7 8.02

2 1 168 144 5 4 6.01
2 169 124 6 5 6.68
3 169 100 7 6 7.35
4 168 91 8 7 8.02
5 168 79 9 8 8.69

3 1 146 128 6 5 6.68
2 147 112 7 4 7.35
3 146 92 8 5 8.02
4 145 84 9 6 8.69
5 144 74 10 7 9.36

4 1 123 110 7 6 7.35
2 121 98 8 7 8.02
3 122 83 9 8 8.69
4 121 77 10 9 9.36

5 119 70 11 10 10.03

5 Side Channel Analysis, an Efficient Ally for IP Protection 95

of f0 depends on the number of delay elements, but also on the placement and
routing of the transmitter. For the values N and K listed in Table 5.3, the frequency
variation was less than 1.7 % (the maximum frequency deviation in Table 5.3 is
2 MHz when N = 4).

The number of tiles used by the BFSK transmitter is very low, i.e., from 3 tiles
(N = 0, K = 1) to 11 tiles (N = 4, K = 5). These values are equivalent to less than
0.022 % and less than 0.080 % of the total number of tiles included in the targeted
600K-gate FUSION FPGA, respectively. This very small number of tiles is very
promising for good dissimulation of the BFSK transmitter inside the sea of
gates/tiles. The number of FUSION tiles required by the BFSK transmitter is given
by the following Eq. (5.5).

Number FTiles=N +K +2 ð5:5Þ

In order to estimate the number of resources needed for implementation with
Xilinx SRAM FPGA or Altera SRAM FPGA, Table 5.3 gives the number of
4-input look-up-tables (LUT4) used by the BFSK transmitter with such FPGAs.
The number of LUT4 required by the BFSK transmitter is given by the following
Eq. (5.6).

Number LUT4=N +K +1 ð5:6Þ

To evaluate the logical resources needed by the BFSK transmitter in ASIC
implementations, the right-hand column in Table 5.3 gives the number of equiva-
lent gates (EG) in the transmitter. The gate count was estimated using the Virtual
Silicon standard cell library based on the UMC L180 0.18 µm 1P6 M Logic pro-
cess (UMCL18G212T3 [17]). The delay gates are replaced by more efficient
standard NOT gates. The gate count of a standard NOT gate is 0.67 EG, and that of
the standard multiplexor, 2.33 EG. The standard NAND gate uses 1 EG. So the
number of gates of the whole BFSK transmitter ranges from 4.67 EG (N = 0,
K = 1) to 10.03 EG (N = 4, K = 5). Note that one flip-flop requires between 5.33
EG and 12.33 EG to store a single bit [17].

Such a transmitter is clearly ultra-lightweight in both FPGA and ASIC imple-
mentations. The small logical resources requirement of the proposed spy circuitry
makes reverse engineering it harder, although not impossible [18]. Even with recent
CMOS technologies, the attacker can reverse engineer ICs using a scanning elec-
tron microscope and an automatic tool for circuitry extraction [18, 19]. Neverthe-
less, the smaller the piece of hardware used for BFSK transmitter the harder it is to
detect during reverse engineering. Detection of the transmitter using standard
Trojan detection methods [20, 21] is not feasible because the transmitter does not
change the data path of the circuit and because of the ultra-low signal-to-noise ratio
on the electromagnetic channel, as shown in our experimental results below (see the
Sect. 5.3.3 of this chapter).

96 L. Bossuet and C. Marchand

5.3.3 Experimental Results

The electromagnetic radiation of the device was evaluated using the near-field
electromagnetic analysis test bench described in [14]. The border between the far
field and the near field can be considered to be about 23 mm from the device,
depending on the hardware concerned. The most important part of the test bench is
the acquisition chain. It determines the signal-to-noise ratio and measurement
precision.

The chain, as presented Fig. 5.8, is composed of:

• A Langer magnetic probe with a frequency range of from 30 MHz to 3 GHz and
a spatial resolution of approximately 500 µm.

• A Miteq low-noise amplifier with a frequency range of from 100 MHz to
1 GHz.

• A Tektronix real-time signal analyzers RSA5106B with a frequency range from
1 Hz to 6.2 GHz [22].

As presented in Fig. 5.8, the device to be tested (the board) is fixed to a XYZ
table with repeatability of movement of 1 µm. The test bench, including the
acquisition chain, XYZ table, FPGA configuration and power supply variations, is
controlled by a computer. This test bench was first developed for electromagnetic
attacks of TRNGs [13], and [14].

The targeted FPGA for the experimental work is an Altera Cyclone III EP3C25
that uses a 65 nm CMOS technology. It contains 24624 four-inputs LUT and
608256 RAM bits.

Real Time
Signal Analyser

Low Noise Amplifier

Programmable
Power Supply

Magne c
Probe

XYZ Table

Fig. 5.8 Near-field electromagnetic analysis test bench

5 Side Channel Analysis, an Efficient Ally for IP Protection 97

Electromagnetic analysis of IC is contactless, local, and can be spatial or/and
temporal. This last point makes it possible to perform frequency analysis of the
electromagnetic emanation. In the your bench the spectral range is limited to
100 MHz and 1 GHz. Standard devices aimed at direct BFSK demodulation cannot
be used for these relatively high frequencies. Available integrated BFSK demod-
ulators are limited to a few dozen megahertz. For this reason, we developed a
dedicated BFSK demodulation scheme for our needs, in which a spectral analysis of
the low-noise amplifier output (a component of the test bench) is performed to
measure the f0 and f1 spectral contribution. The transmitted high (low) level is
detected when f1 spectral contribution is higher (lower) than that of f0.

For the coherent demodulation of the electromagnetic radiation, we propose a
slippery window spectral analysis. Indeed, overall spectral analysis masks the
effects of the no stationarity of the signal and therefore provides no information
about its temporal evolution. Slippery window spectral analysis is a
three-dimensional representation of the signal: amplitude, frequency, and time. It
requires two quantities Fw, the width of the FFT window frame and the difference
Δτ between two frames. For our experiment, we chose Fw equal to 16384 points
(214-point FFT) and Δτ equal to 100 points. For each frame, the FFT provides the
software demodulator with the amplitude of signals f0 and f1 which enables the
demodulator to distinguish between a transmitted ‘1’ or ‘0.’

To illustrate data transmission from the circuit via the EM channel, we used a
shift register that stored the following 16-bit sequence: “0101000111110011.” The
clock frequency of the shift register is 1 MHz. When the enable signal of the
transmitter is given, the sequence is sent cyclically to the BFSK transmitter, which
transmits it via the electromagnetic channel. The following gives the result of the
coherent demodulation obtained at a 1 Mbps bit rate, which served as a proof of
concept.

Figures 5.9 and 5.10 present the temporal evolution of the spectral analysis
(amplitude) of the BFSK transmitter’s electromagnetic emission when N = 6 and
K = 10, which corresponds to the following frequencies: f0 = 289 MHz (Fig. 5.9)
and f1 = 119 MHz (Fig. 5.10). Notice also that we placed a small antenna in the
close vicinity of the ring. With N = 6 and K = 10 the BFSK transmitter uses only
17 four-inputs LUT of the FPGA that represents 0.065 % of the available logical
resources of the used Altera FPGA for theses experimental results.

The used Tektronix real-time signal analyzers [22] allows us to obtain spectral
cartography with direct reading of the patent that contains the transmitted data
sequence. Figure 5.11 shows the spectral cartographies obtained at f0 = 289 MHz
and f1 = 119 MHz.

Without knowledge of the BFSK parameters, the electromagnetic transmission
cannot be easily detected because it cannot be distinguished from spectral noise.
The signal-to-noise ratio of the BFSK transmission is −135 dB for a 1 GHz
bandwidth. Such an ultra-low SNR represents efficient protection against unwanted
BFSK transmitter detection via a side channel. However, knowing the N and
K parameters, the BFSK designer can calibrate the demodulation (determine the

98 L. Bossuet and C. Marchand

0101000111110011

Fig. 5.9 Amplitude versus time evolution of the spectral analysis at f0 = 289 MHz

0101000111110011

Fig. 5.10 Amplitude versus time evolution of the spectral analysis at f0 = 119 MHz

5 Side Channel Analysis, an Efficient Ally for IP Protection 99

two frequencies) by electromagnetic analysis of the ring oscillators based on the
differential spectral analysis as described in [14].

5.3.4 Comparison with State-of-the-Art Spy Circuitries
Using a Side Channel

Table 5.4 compares the implementation of the proposed ultra-lightweight BFSK
transmitter with other recently published state of the art methods. Table 5.4 gives
the spy circuitry application (App.) for each reference; this may be IP protection
(IPP) or hardware Trojan (HT) or both (for the presented work, PW [12]). In

01
01

00
01

11
11

00
11

01
01

00
01

11
11

00
11

Fig. 5.11 Spectral cartographies center (red trace) on f0 = 289 MHz (left) and on f1 = 119 MHz
(right) with 1 Mbps data rate

Table 5.4 Summary of characteristics of spy circuitries exploiting side channels

App. References YoP Side channel Hardware resources Target Bit rate
@1 MHz

IPP [7] 2008 Thermal
emanation

255 Spartan-3 slices Xilinx
Spartan-3

14 × 10−3

bps

[8] 2008 Power
consumption

16 * 16-bit circular
shift registers

Xilinx
Spartan-3
and Virtex-II

400 bps

[9] 2010 Power
consumption

16-bit circular
shift-register

Xilinx
Virtex-II Pro

1 kbps

HT [23] 2009 Power
consumption

8 parallel D-flip-flops
or 16-bit circular
shift register

Xilinx
Spartan-3E
and Virtex-II
Pro

970 bps

[25] 2013 Power
consumption

16-bit circular shift
registers per bit

Xilinx
Virtex-5

1.9 kbps

Both PW [11] 2015 Electromagnetic
emanation

1 configurable ring
oscillator (like a
D-flip-flop in ASIC)

Altera
Cyclone III

1 Mbps

100 L. Bossuet and C. Marchand

addition, Table 5.4 gives the year of publication (YoP), the side channel used, the
hardware resources required only for the leakage generator (for example, we do not
take the hardware used for IP watermark generation or the Trojan’s payload into
account). Unfortunately, the principles compared do not use the same hardware. For
the sake of correctness, we give the implementation results as they are presented in
the referenced papers. Nevertheless, the implementation bitrate of these previously
published works can be roughly compared with our proposed solution. Based on
published data, we computed the bitrate of all the proposals by using the number of
clock cycles needed to send information via the side channel. For all the references
presented in this table, the bitrate was computed using a 1 MHz frequency for data
synchronization (same frequency is used during the experimental works presented
previously).

As can be seen in Table 5.4, the proposed work reaches the highest bitrate. The
reason for such a good performance is first that we use a spectral analysis of the
local electromagnetic leak based on a simple frequency modulation. Except for [7],
all the other solutions use a global measurement of power consumption, which
reduces the signal-to-noise ratio of the information leaked via the side channel. Our
proposal is clearly the smallest spy circuitry ever published. Although solutions
based on circular shift registers are well adapted to last generation FPGA families,
since the 16-bit shift registers can be designed using only one look-up table, they
are not suitable for ASIC technologies. Currently, an ASIC implementation of a
16-bit shift register requires 16 flip-flops whereas the solution we propose occupies
an area equivalent to only one D-flip-flop.

In this chapter, we present the proposed spy circuitry for IP protection, but it can
also be used for hardware Trojan. Most of the other proposals could also be used for
both applications. Note that in 2012, Kasper et al. proposed to use the work initiated
in [23] for hardware Trojan or IP watermarking implementation [24]. However, by
using electromagnetic emanation and a configurable ring oscillator, the proposed
solution is the most convincing for industrial applications (e.g., those aimed at IP
protection) because of its very small area and high bitrate.

5.3.5 Industrial Scenarios Using the Proposed P Protection

According to the previous section, in comparison with other works, our propose
goes clearly toward using a spy circuit in an industrial context for IP protection.
Two industrial scenarios are presented in the following. The first scenario is the
identification of embedded IP in the supply chain. This identification is used in
order to be sure to do not use counterfeiting (fake) devices.

It is therefore crucial and strategic to be able to detect counterfeit IC as soon as
possible in the supply chain (this is particularly crucial for military and space grad
devices). Figure 5.12 shows a possible framework to manage the device under test
(control the enable signal) and check the IP identification by using an EM probe, an
amplifier and a dedicated acquisition system including a spectral analysis and the

5 Side Channel Analysis, an Efficient Ally for IP Protection 101

proposed demodulation method. Due to the high bit rate of the proposition solution
the identification of the ID requires less than 500 µs (with 1 Mbps bit rate). This
counterfeiting detection could be completed by other physical (invasive or not) and
optical inspection [26].

The second scenario occurs when an IP designers would like to verify the illegal
presence of its IP inside a device (ASIC or FPGA). In this case the proposed
transmitter provides to the identification scheme a data like a PUF [27] or a
watermarking. Watermarking is a technique of steganography which provides the
ownership of an IC (or an IP) by checking for the presence of hidden information
called the watermark [2, 3]. Most of the watermarking methods proposed in the
literature need a complex verification scheme. Nevertheless it is possible to use
power consumption as proposed in [2] but it is easy and cheap to use global
countermeasure in order to mask the power consumption due to the watermark [28].
Using electromagnetic emanation in this scenario is better because as electromag-
netic emanation is local it is really hard to mask it by using a global countermea-
sure. Moreover, in this paper we have shown that due to the SNR of BFSK signal, it
is unrealistic to try to detect it without the precise knowledge of the used fre-
quencies for data transmission.

5.4 Conclusion

IP protection has become crucial topics for hardware security due to the lack of trust
in IP market. In this chapter we have first presented an IP watermarking verification
scheme that exploits the power consumption of an integrated circuit. Experimental
results are presented and prove that it is possible to clearly identify different FSMs
with the same watermark key (Kw) and the same FSM with a different watermark
key too. Thus, our method is robust against some kinds of collisions. In addition,
the verification scheme is insensitive to the CMOS process variation. Then, we have
presented an ultra-lightweight transmitter of IP identity using the electromagnetic
side channel. Based on a configurable ring oscillator, our solution exploits a BFSK

Fig. 5.12 Rapid and contactless IP identification in the supply chain by using EM transmission of
IP’ ID

102 L. Bossuet and C. Marchand

signal to transmit information by way of the electromagnetic channel. By per-
forming a slippery window spectral analysis of the near-field electromagnetic
emanations captured locally over the BFSK transmitter circuitry, the proposed
transmission achieves a high bitrate (experimentally at less 1 Mbps), which has not
been achieved before. Moreover, the transmitter occupies very small area less than
the requirement of a small D-flip-flop. Such a small requirement of logical
resources makes reverse engineering of the chip very difficult and detection of the
transmitter using standard Trojan detection methods is not feasible.

Acknowledgment The work presented in this paper was realized in the frame of the SALWARE
project number ANR-13-JS03-0003 supported by the French “Agence Nationale de la Recherche”
and by the French “Fondation de Recherche pour l’Aéronautique et l’Espace.”

References

1. B. Colombier, L. Bossuet, Survey of hardware protection of design data for integrated circuits
and intellectual properties. IET Comput. Digital Tech. 8(6), 274–287 (2014)

2. B. Legal, L. Bossuet, Automatic low-cost IP watermarking technique based on output mark
insertion. J. Des. Autom. Embedded Syst. 16(2), 71–92 (2012). Springer

3. C. Marchand, L. Bossuet, E. Jung, IP watermark verification based on power consumption
analysis, in Proceedings of the 27th IEEE International System-on-Chip Conference, SOCC
2014 (2014), pp. 330–335

4. P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in M. Wiener (ed.), Proceedings of the
19th Annual International Cryptology Conference, CRYPTO 1999. Lecture Notes on
Computer Science, vol. 1666 (Springer, 1999) pp. 388–397

5. N. Kamoun, L. Bossuet, A. Gazel, Experimental Implementation of 2ODPA attacks on AES
design with flash-based FPGA Technology, in proceedings of the 22nd IEEE International
Conference on Microelectronics, IMC 2010, pp. 407–410

6. L. Bossuet, D. Hely, SALWARE: Salutary hardware to design trusted IC, in Workshop on
Trustworthy Manufacturing and Utilization of Secure Devices, TRUDEVICE 2013 (2013)

7. C. Marsh, T. Kean, D. Mclaren, Protecting designs with a passive thermal tag, in Proceedings
of the 15th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2008
(2008), pp. 218–221

8. D. Ziener, J. Teich, Power signature watermarking of IP cores for FPGAs. J. Signal Process.
Syst. 51, 123–136 (2008). Springer

9. G.T. Becker, M. Kasper, A. Moradi C. Paar, Side-channel based watermarks for integrated
circuits, in Proceedings of the IEEE International Symposium on Hardware-Oriented Security
and Trust, HOST 2010 (2010), pp. 30–35

10. S. Kerckhof, F. Durvaux, F.X. Standaert, B. Gérard, Intellectual property protection for FPGA
designs with soft physical hash functions: first experimental results, in Proceedings of the
IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2013
(2013), pp. 7–12

11. S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.R. Sadeghi, I. Verbauwhede, C. Wachsmann,
PUFs: Myth, fact or busted? a security evaluation of physically unclonalble functions cast in
silicon, in Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems,
CHES 2012, Lecture Notes on Computer Science, vol. 7428 (Springer, 2012), pp. 283–301

12. L. Bossuet, P. Bayon, V. Fischer, Contactless transmission of intellectual property data to
protect FPGAs designs, in Proceedings of the IFIP/IEEE International Conference on Very
Large Scale Integration, VLSI-SOC 2015 (2015), pp. 19–24

5 Side Channel Analysis, an Efficient Ally for IP Protection 103

13. P. Bayon, L. Bossuet, A. Aubert, V. Fischer, F. Poucheret, B. Robisson P. Maurine,
Contactless electromagnetic active attack on ring oscillator based true random number
generator, in Proceedings on International Workshop on Constructive Side-Channel Analysis
and Secure Design, COSADE 2012, Lecture Notes in Computer Science, vol. 7275 (Springer,
2012), pp. 151–166

14. P. Bayon, L. Bossuet, A. Aubert, V. Fischer, EM leakage analysis on true random number
generator: frequency and localization retrieval method, in Proceedings of the Asia Pacific
International SymposiumandExhibition onElectromagnetic Compatibility, APEMC2013 (2013)

15. R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware: identifying and
classifying hardware trojans. IEEE Comput. 43(10), 39–46 (2010)

16. M. Tehranipoor, F. Koushanfar, A survey of hardware trojan taxonomy and detection, IEEE
Des. Test Comput. 27(1), 10–25 (2010)

17. Virtual Silicon Inc. 0.18 μm VIP Standard Cell Library Tape Out Ready, Part Number:
UMCL18G212T3, Process: UMC Logic 0.18 μm Generic II Technology: 0.18 μm, 2004

18. R. Torrance, D. James, The state-of-the-art in semiconductor reverse engineering, in
Proceedings of the 48th Design Automation Conference, DAC 2011, (ACM/EDAC/IEEE,
2011), pp. 333–338

19. P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Tan, A. Tiwari, N. Shankar, S. Seshia,
S. Malik, Reverse engineering digital circuits using structural and functional analyses, in
IEEE Trans. Emerg. Top. Comput. (2013)

20. D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B Sunar, Trojan detection using IC
fingerprinting, inProceedings of the IEEE Symposiumon Security andPrivacy (2007), pp. 296–310

21. Y. Jin, Y. Makris, Hardware trojan detection using path delay fingerprint, in IEEE
International Workshop on Hardware-Oriented Security and Trust, HOST 2008 (2008),
pp. 51–57

22. Tektronix, RSA5000 Series, Spectrum Analyzers Datasheet (2015). http://www.tek.com/sites/
tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-
37W2627414_1.pdf

23. L. Lin, M. Kasper, T. Güneysu, C. Paar, W. Burleson, Trojan side-channels: lightweight
hardware trojans through side-channel engineering, in Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2009, Lecture Notes in Computer
Science, vol. 5747 (Springer, 2009), pp. 382–395

24. M. Kasper, A. Moradi, G.T. Becker, O. Mischke, T. Güneysu, C. Paar, W. Burleson, Side
channels as building blocks. J. Cryptogr. Eng. 2(3), 143–159 (2012). Springer

25. S. Kutzner, A. Poschmann, M. Stöttinger, TROJANUS: An ultra-lightweight side-channel
leakage generator for FPGAs, in Proceedings of International Conference on
Field-Programmable Technology, ICFPT 2013 (2013), pp. 160–167

26. M. Tehranipoor, U. Guin, D. Forte, Counterfeit Integrated Circuits—Detection and
Avoidance (Springer, 2015)

27. L. Bossuet, X.T. Ngo, Z. Cherif, V. Fischer, A PUF based on a transient effect ring oscillator
and insensitive to locking Durvaux, F.X. Standaert, and B. Gérard phenomenon. IEEE Trans.
Emerg. Top. Comput. 2(1), 30–36 (2014)

28. N. Kamoun, L. Bossuet, A. Ghazel, Correlated power noise generator as a low cost DPA
countermeasure to secure hardware AES cipher, in Proceedings of the International
Conference on Signals, Circuits and Systems, SCS 2009 (2009), pp. 1–6

104 L. Bossuet and C. Marchand

http://www.tek.com/sites/tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-37W2627414_1.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-37W2627414_1.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-37W2627414_1.pdf

Chapter 6
Hardware Obfuscation: Techniques
and Open Challenges

Georg T. Becker, Marc Fyrbiak and Christian Kison

6.1 Introduction

There are many applications for IC reverse-engineering. While there are legitimate

reasons for IC reverse-engineering, some have malicious intend such as IP infringe-

ment and technological espionage. Particularly, Intellectual Property (IP) theft and

counterfeit products are a major challenge for the industry. In many cases, the ini-

tial step in counterfeiting or stealing of IP is to reverse-engineer a chip or IP core in

order to integrate the IP into one’s own design illegitimately. Hence, there are various

reasons why hardware companies demands obfuscation methods to hamper reverse-

engineering of their designs. For security-critical devices reverse-engineering can

also be a potential attack vector. An adversary can leverage reverse-engineering to

disclose internal details of the design in order to enable further attacks on the system.

For example, implementation attacks such as side-channel or fault attacks exploit

implementation structures and thus an attacker gaining knowledge of the used imple-

mentation and countermeasures gains a significant attack advantage. In addition to

these malicious goals, reverse-engineering can also be used to detect patent infringe-

ments and IP theft as well as to identify Hardware Trojans.

As a consequence, hardware obfuscation techniques that hamper reverse-enginee-

ring are of great interest. In this chapter, we present and discuss state-of-the-art

hardware obfuscation techniques at two distinct levels. Hardware obfuscation at the

layout level targets the extraction of the device’s netlist. To be more precise, the

underlying principle is to prevent the distinct identification of combinatorial gates.

In Sect. 6.2, we provide a summary of the proposed layout-level obfuscation tech-

niques and additionally a security evaluation. However, not every case of IP piracy

starts with reverse-engineering of the targeted Integrated Circuit (IC). For example,

most IP provides do not manufacture their own chips, but only sell IP cores in the

G.T. Becker (✉) ⋅ M. Fyrbiak ⋅ C. Kison

Department of Electrical Engineering and Information Technology,

Ruhr Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany

e-mail: georg.becker@ruhr-uni-bochum.de

© Springer International Publishing AG 2017

L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,

DOI 10.1007/978-3-319-50380-6_6

105

106 G.T. Becker et al.

form of hard and soft IP cores. In these scenarios, the adversary is already in pos-

session of the netlist (without the need of IC reverse-engineering).

In order to prevent the disclosure of internal details, obfuscation transformations

at the netlist level are required. In Sect. 6.3, we present and discuss the state-of-the-

art proposed netlist-level obfuscation methods and automatic reverse-engineering

capabilities. Furthermore, we address various limitations and open challenges for

the different netlist-level obfuscation techniques.

6.2 Layout-Level Obfuscation

The first step in reverse-engineering of a targeted Application Specific Integrated

Circuit (ASIC) is to obtain precise images of each chip’s layer and subsequently to

identify the individual gates and their connectivity. Based on this information, the

netlist of the design can be derived which enables the reverse-engineer to analyze the

design as well as to make copies of it. Hence, the principal goal of layout-level obfus-

cation is to hamper this netlist disclosure by the use of special combinatorial gates

that cannot be correctly identified via visual reverse-engineering techniques by using

a Scanning Electron Microscope (SEM). Layout-level obfuscation has been of inter-

est in the industry for many years—the first patents date back to the 1980s [1]. How-

ever, despite the industry’s ongoing interest in this topic, it has been largely ignored

by the the scientific community and only recently the first works have appeared

[2–5].

In the following, we introduce several proposals of how layout-level obfuscation

can be realized. Particularly, we illustrate the so-called camouflage gates or look-
alike gates that are utilized instead of standard cells in order to prevent the visual

identification of the implemented logic function. These camouflage gates are the

main building block in layout-level hardware obfuscation.

6.2.1 Camouflage Gates

The main idea of camouflage gates is to hide the logic function of the gates in design

layers that are hard to detect visually. The main assumption of most camouflage

gates is that metal layers and polysilicon layers are easily recognizable using visual

reverse-engineering techniques such as SEMs. Hence, the goal of building camou-

flage gates is to create gates that are identical at these layers but still have a dif-

ferent functionality. The most common way to achieve this is to only change the

dopant masks, i.e., to build gates that are identical on all design layers and only dif-

fer in the dopant polarity in some active areas. For example, this technique is used

in [2, 3, 5]. A different approach is to use a mixture of real and dummy contacts

to camouflage the functionality of the obfuscated gates [4]. The main idea behind

this is that extra effort is needed to reverse-engineer the contacts. However, com-

6 Hardware Obfuscation: Techniques and Open Challenges 107

pared to dopant-based obfuscation, contact-based obfuscation is considerably easier

to reverse-engineer. A more detailed analysis of the difficulty of reverse-engineering

both dopant-based and contact-based obfuscation—as well as no obfuscation at all—

is provided in Sect. 6.2.4.

Obfusgate camouflage gates: In the following, the main idea behind dopant-based

camouflage gates is explained using the example of a camouflage gate called Obfus-
gate, which has been proposed in [3]. The heart of the Obfusgate is a so-called

Obfuscell. Depending on the dopant polarity in its active areas, an Obfuscell can

be configured to be either an inverter, a buffer (input = output), or to output a con-

stant ‘1’ or ‘0’. Figure 6.2a shows the layout of an Obfuscell. It has three active areas

A1, A2, and A3. The dopant polarity within these areas define the configuration.

To create a buffer for example, the input needs to be connected to the output via

A2 as illustrated in Fig. 6.2b. For example, the active area A2 can be used to build a

direct connection between the input and output. This is achieved by doping the entire

active area A2 positively. On the other hand, if the middle region of A2 is doped neg-

atively, this creates a p-n-p junction and hence a diode in cut-off. This is depicted in

Fig. 6.3a. Hence, using different dopant polarity in the active area, one can connect

or disconnect inputs. All dopant-based camouflage gates are based on this main idea

[2, 3, 5]. In the Obfuscell design, the active areas A1 and A3 have the layout of

a pmos and nmos transistor respectively (see Fig. 6.3b) for the doping of a pmos

transistor) and hence can also create connections to the output. Figure 6.2b shows

the four different possible configurations of the Obfuscell. An inverter is configured

using A1 and A3 as pmos and nmos transistors respectively and disabling the con-

nection in A2 as described above. If the Obfuscell is connected as a buffer, area A2

is doped positively and hence a connection is formed. Simultaneously, the two tran-

sistors in A1 and A3 needs to be “disabled”, i.e., their outputs should be floating.

How this can be done is depicted in Fig. 6.3d at the example a pmos transistor (area

A1). The source contact which is connected to VDD is doped negatively instead of

positively which basically creates a well-contact and a n-p junction to the output,

i.e., a diode in cut-off. Hence, the output (drain) is floating and therefore the transis-

tor is “disabled”. Similarly, Fig. 6.3c shows how the drain can be connected to the

input (connected to VDD) by doping the entire region positively. This way the active

area A1 can be used to set the output to a constant one as needed for the “always 1”

configuration (see Fig. 6.2b for details).

Hence, depending on the dopant polarity in A1, A2, and A3, the Obfuscell is

either an inverter, a buffer (i.e., input = output), a constant “1” or a constant “0”.

This Obfuscell is then used as a building block to build Obfusgates that form the

obfuscated standard cell library. Figure 6.1 depicts the structure of an “Obfusgate”.

It consists of five “Obfuscells” and a four-input NAND gate. Depending on the con-

figuration of the Obfuscells (i.e., on their dopant), the Obfusgate can implement

many different logic functions. For example, configuring all Obfuscells as buffers

results in a four-input AND gate. Configuring the four Obfuscells that are used as

inputs as inverters on the other hand results in a four-input NOR gate. In total, 162

different configurations, each with a unique logic behavior, can be realized with an

108 G.T. Becker et al.

Fig. 6.1 Schematic of a single Obfusgate that consists of five Obfuscells together with a four-

input NAND gate. Depending on the configuration of the Obfuscells, the Obfusgate can realize

162 different logic functions

(a) (b)

Fig. 6.2 a Layout view of the Obfuscell which has three active regions A1, A2, and A3 whose

dopant polarity defines the logic function of the gate. The gate can be configured as a inverter,

buffer, “always 1” or “always 0” gate as shown on the right side (b)

Obfusgate as depicted in Fig. 6.1. Furthermore, by setting an Obfuscell that is con-

nected to an input of the Obfusgate to a constant “1”, this input has effectively been

turned into a “dummy input”. Setting two input Obfuscells to a constant “1” and the

other Obfuscells to a buffers results in an two input AND gate. The two inputs that

are set to a constant “1” are the “dummy inputs” since the signal connected to these

inputs has no effect on the output. Therefore, any signal can be connected to such an

input, creating “dummy wires”. Note that an attacker cannot distinguish between a

dummy input and a regular input and hence this technique can increase the obfusca-

tion significantly (Fig. 6.3).

DPD-LUT camouflage gates: Shiozaki et al. [5] used a different approach to build

dopant-based camouflage gates. Their design is based on a 2-bit look-up table (LUT)

similar to the LUTs used in FPGA designs. The input to these LUTs are special

read-only memory cells called Diffusion Programmable ROM (DP-ROM) that are

“programmed” using the dopant polarity. They function in exactly the same way as

in the active area A2 of the Obfuscell and depicted in Fig. 6.3a. Each DP-ROM cell

consists of two of these active areas and depending on the configuration of the dopant

the output of the cell is either connected to VDD or GND.

6 Hardware Obfuscation: Techniques and Open Challenges 109

(a) (b)

(c) (d)

Fig. 6.3 Cross section view of the active areas. In a active area A2 is depicted configured in “cut-

off”, i.e., the input is disconnected from the output. By also doping the middle part positively the

configuration is changed to a direct connection between the input and output. Active area A1 can

be used as a pmos transistor as depicted in (b). In c the active area A1 is doped positively instead

of negatively which results in a constant connection between input (connected to VDD) and the

output. How a floating output can be realized for A1 is shown in (d). Only the source region of A1

is doped negatively which results in a n-p junction between source and drain, i.e., a diode in cut-off

The camouflage gate, which is called Diffusion Programmable Device Look-up

Table (DPD-LUT), is depicted in Fig. 6.4. A DPD-LUT can be configured to any

two-input logical function, i.e., it can realize 24 = 16 different functions. We would

also like to note that this design approach is not restricted to two-input LUTs. In an

analogous manner, it is possible to build a three-input DPD-LUT or, as in FPGAs,

four- or five-input LUTs. Using larger LUTs will likely result in a larger overhead

but also in a higher grade of obfuscation. The smallest overhead could probably

be achieved by combining DPD-LUTs of different sizes. However, the distribution

110 G.T. Becker et al.

Fig. 6.4 The structure of a

DPD-LUT. It consists of four

DP-ROM cells and a

two-input multiplexer

structure with the inputs A
and B and the output Y . Any

2-bit logical function can be

implemented with such a

DPD-LUT cell

DP-ROM

DP-ROM

DP-ROM

DP-ROM

A
B

Y

4-to1 mul plexer structure

of differently sized DPD-LUTs might help an attacker gain some insight into the

obfuscated design. Questions like this have not been researched yet, and hence it

is not clear to what extent the combination of different look-alike gates into one

common obfuscated standard cell library can decrease obfuscation strength.

SMI’s approach: Cocchi et al. proposed two different strategies to build camou-

flage gates [2]. The first one is to construct custom camouflage gates whose logic

function is hard to reverse-engineer but which are easily identifiable as camouflage

gates, similar to the approaches of Malik et al. and Shiozaki et al. Unfortunately,

no details are provided on how this is achieved and how many different functions

one look-alike gate can implement. The second strategy proposed is to use existing

standard cells and to only modify a few in order to create a new functionality. Since

these modifications are hard to detect, a reverse-engineer will mistake the camouflage

gate for a “normal” standard cell and hence will come up with a faulty netlist. The

advantage of this approach is that only a few camouflage gates might offer enough

obfuscation in certain situations, while greatly reducing the introduced overhead.

However, the disadvantage is that a single camouflage gate offers less obfuscation

since it usually can only realize very few different logic functions. How exactly Coc-

chi et al. modified the standard cells and how many different functions such a cell

can implement has not been disclosed. However, this approach shares many simi-

larities with the dopant-level hardware Trojans presented at CHES 2013 [6], which

also change the functionality of standard cells while making the detection of these

modifications as hard as possible. Basically, the gates are modified as also done in

the Obfuscell by connecting outputs to VDD or ground and removing transistors

as depicted in Fig. 6.3. Hence, there is a large overlap in the construction of cam-

ouflage gates and stealthy layout-level hardware Trojans, and the Obfusgate design

was inspired by these Trojans.

6 Hardware Obfuscation: Techniques and Open Challenges 111

6.2.2 Obfuscating the Connectivity:

Camouflage gates obfuscate the logic function of individual gates. However, they

do not conceal the connectivity, i.e., a reverse-engineer can still see which gates are

connected with each other. Ideally, a reverse-engineer should not infer the function

of a block after it has been obfuscated. But the connectivity of the individual gates

reveals a lot of useful information to a reverse-engineer. This was illustrated in [3]

with the example of the block cipher PRESENT [7]. The PRESENT round function

is depicted in Fig. 6.5a. The key insight is that when camouflage gates are used, the

logic of the gates are not known but. When grouping cells that are connected with

each other together, the resulting graph would look like Fig. 6.5b. The white boxes

represent blocks whose logic function is not known to the reverse-engineer due to the

use of camouflage gates. However, since the connections are known, it is not difficult

to, e.g., to identify the 4-bit SBoxes used in PRESENT, since they are functions with

four inputs and exactly four outputs. The fact that four-input functions as, e.g., eight-

input functions reveals a lot of information to a reverse-engineer about the employed

encryption function.

Hence, since a lot of information is not obfuscated, camouflage gates by them-

selves are not enough to prevent reverse-engineering if the attacker’s goal is to col-

lect information about the design structure or to identify the location of certain IP

blocks within a chip. In order to solve this problem, the Obfusgate library heavily

uses “dummy wires” that conceal the connectivity. More than half of the obfusca-

tion gates in the AES SBox and PRESENT round functions originally are two-input

gates. Each Obfusgate that is configured as a two-input gate has two dummy inputs

and hence also two dummy wires. In the proof-of-concept implementation of the

Substitution and Permutation Layer of PRESENT, 941 dummy wires and 1103 nor-

mal wires are used [3] This very large amount of dummy wires effectively hides the

connectivity and hence the structure of the design since an attacker cannot differ-

entiate between dummy wires and real wires. However, it is important to note that

(a) PRESENT round function (b) PRESENT round function with
obfuscated combinatorial gates

Fig. 6.5 a Figure of the PRESENT round function, taken from [7]. b When the combinatorial

gates are replaced with camouflage gates, a reverse-engineer does not know the logic function of

the SBoxes any longer. The structure of the round function on the other hand is still clearly visible

due to the wires connecting the individual blocks and registers

112 G.T. Becker et al.

this level of obfuscation comes with a large area overhead. Furthermore, the current

version randomly connects the dummy wires. While this works for small designs

such as the PRESENT round function, for larger designs the routing overhead would

increase to a level that would make routing impossible. Hence, just random connec-

tions do not scale for large designs. Thus, how to efficiently obfuscate connectivity

information at the layout level is an interesting open research problem. In general,

the addition of dummy wires or connections can also be achieved using the camou-

flage gates proposed in [2, 4, 5]. This can be realized by inserting additional gates

that only have the purpose of creating dummy wires. Again, the optimum number of

additional gates and how to integrate them has not been analyzed and is therefore an

open question.

6.2.3 Further Obfuscation Techniques

Besides using camouflage gates, other techniques to hamper reverse-engineering at

the layout level have been proposed. For example, reverse-engineering non-volatile

memory can be more difficult as reverse-engineering combinatorial memory [8].

The idea is therefore to not implement the entire design using normal combinatorial

gates but also include non-volatile memory cells that are programmed after manu-

facturing. The content of these memory cells then determines the logic behavior of

the chip. For example, this technique could be combined with DPD-LUT camou-

flage gates: Instead of using DP-ROM cells that are programmed based on dopant

polarity, other non-volatile memory cells that are programmed after manufacturing

can be used. One advantage of using non-volatile memory is that this also prevents

the factory from over-producing the ICs. After manufacturing the fabricated chips

are non-functional and hence only the IP owner can program and hence activate the

chips.

Another technique which makes layout-level reverse-engineering is the use of

special filler cells [2]. Typically, in a digital chip there often gaps between gates due

to routing constrains, etc. These gabs are usually filled with so-called “filler cells” to

fulfill certain design rules. These filler cells can be easily identified as non-functional

cells during reverse-engineering. The idea is to instead use cells that look like legit-

imate gates, i.e., replace the non-functional filler cells with (non-functional) camou-

flage gates. Since a reverse-engineer does cannot easily distinguish these cells from

functional camouflage gates, this can significantly increase the required reverse-

engineering effort.

6.2.4 Reverse-Engineering Camouflage Gates

Ideally, camouflage gates make it impossible to reverse-engineer the gates using

visual techniques by optical means. Having a process to determine a precise dop-

6 Hardware Obfuscation: Techniques and Open Challenges 113

ing level and impurity is of outmost importance for the chip production and their

failure analysis. Special processes are necessary to measure impurities and dopants.

Therefore, the dopant-based and via-based camouflage gates do not prevent reverse-

engineering in general, but rather hamper the process. In this section, we briefly

discuss several reverse-engineering techniques that are able to reveal the functional-

ity of the proposed camouflage gates. Notably these techniques emerged from failure

analysis, trying to locate faults in dopant concentrations, defects, or impurities.

Delayering and Hardware Reverse-Engineering: The art of Hardware Reverse-

engineering begins at the Printed Circuit Board (PCB) and package level of the IC

piece of hardware. First the IC is cropped out or de-soldered from the PCB. Please

note that this step is nontrivial for some flip-chip packages with underfill. The chal-

lenge to protect the die is becoming ever more difficult with reduced die size and

thickness. Second, the package has to be removed by wet-chemical or mechanical

means. Hereby, again, the die is to be protected from any harm which often results

in choosing wet-chemical depackaging, as the die is protected by the seal-layer
1

from

the front side. The backside offers enough silicon in the bulk to withstand carefully

applied depackaging processes as well. The bonding wires are of special concern,

as newer copper bondings are, compared to gold bonding wires, hard to preserve.

For the invasive hardware reverse-engineering the wires can be neglected once their

connectivity is known or the connectivity can be derived. Advanced techniques for

finding bonding wire connectivity can be done by (3D) X-Ray or selective packaging

delayering with a mill.

Once the die is fully recovered, the die is alternately delayered and digitalized

by optical means or in a SEM/Focused Ion Beam (FIB). The following delayering

processes are, again, a combination of different wet-chemical and mechanical pol-

ishing. Here it is of outmost importance for the quality of the process, to handle

the equipment in an experienced way. Planarization of the current layer with a huge

surface to thickness ratio is one, if not the hardest challenge to master. Please note

knowing your Region of Interest (ROI) comes very handy at this point, as the pla-

nar surface can be reduced significantly. The reverse-engineer can pinpoint his ROI

while neglecting the rest of the chip [9]. Different metals and glasses have to be

investigated and selectively removed without destroying functional information of

the IC [8].

Digitalizing and imaging is done in a SEM or FIB derivate in current state-of-

the art reverse-engineering. With modern technologies sizes hitting the diffraction

limit of optical microscopes, are more advanced visualizing tools mandatory. One

the one hand this has the drawback of a moderate investment, but on the other hand

can result in smaller images when the color information from optical images drop

out. During the image acquiring, a brightness yield from the metals, to the vias

and a brightness difference to the background is created due to different substance

(electrical-)properties. A clear brightness yield from the SEM/FIB images is ben-

eficial for the post-processing as it allows to distinguish between vias, wires and

Spin-on dielectric (SOD), shown in Fig. 6.6.

1
passivation, often SiO2.

114 G.T. Becker et al.

Fig. 6.6 The brightness allows to distinguish between wires, vias, and the SOD. Metal 1 in an

older technology is shown. The brighter dots are vias between Metal1 and Metal2

Post-processing is done in software after every layer has been digitalized in tile

images. The tile images are stitched, vectorized, and finally reverse-engineered to

get their functional interpretation. This is a very tedious and repetitive task that can

be (semi-)automated to support the reverse-engineer. Different approaches for post-

processing are out of scope of this work.

Voltage Contrast: By exploiting the very nature of n-wells and p-wells, a reverse-

engineer can observe a brightness yield from secondary electrons or ions using a

SEM or FIB [10]. Particularly, Sugawara et al. [11] demonstrate the use of Volt-

age Contrast (VC) to distinguish the vias connectivity with a clear brightness yield

Fig. 6.7. Notably, it is not trivial in practice to obtain meaningful results from the

brightness yield, especially if the ROI is large (in the worst-case the ROI covers

the whole chip). In the event, the layer images raise doubts, a reverse-engineer can

enhance the doping contrast [12]. The VC shown in by Sugawara et al. [11] can be

automatically included during the delayering process with a SEM, which is a state-

Fig. 6.7 Reversing stealthy dopant-level circuits. A brightness yield indicates the possible dopant

regions. Taken from [11]

6 Hardware Obfuscation: Techniques and Open Challenges 115

Fig. 6.8 Dash Etching. The right picture shows a CMOS cell with p+
dopant regions, stained with

a blue/green effect depending on the applied etching time and the dopant concentration. Figure

taken from [14]

of-the-art hardware reverse-engineering equipment due to the shrinking technology

size.

Chemical Etching and Staining Distinguishing the dopant characteristics is often

accompanied by measurement of the dopant concentration. This technique is com-

monly employed in failure analysis and quality control processes of silicon wafer

vendors. Based on chemical etch rates or chemical staining, the dopant area can

be distinguished [12–14]. For example, the chemical optimal dash etching exhibits

different colors of p-regions and n-regions, cf. Fig. 6.8. An overview of different

chemical recipes and practical approaches is given by Beck [13].

It is noteworthy that a major drawback of chemical dash etching is the optical

equipment. This limits the reverse-engineer to large areas, due to the optical diffrac-

tion limit. Particularly, might become a challenge for future shrinking technology

sizes, where the (stealthy) dopant areas shrink with the cell size. Advanced tech-

niques to measure etchant rates, e.g., with a SEM should be considered.

ScanningMicroscopy: In order to detect single point defects or local faults covering

a few atoms of impurities, mainly two techniques for lateral doping sensitivity profil-

ing have been established: Scanning Capacitance Microscopy (SCM) and Scanning

Spreading Resistance Microscopy (SRRM). While SCM is based on capacitance

differences in the substrate, SRRM is derived from the Atomic Force Microscopy

(AFM) [15]. As a consequence of their small-area approaches and the required equip-

ment, they are not recommended for identification of stealthy dopant areas. They are

capable to do so, but take a lot of time. Nevertheless they are listed for the sake of

completeness.

6.3 Netlist-Level Obfuscation

The successful extraction of a chip’s netlist has various implications ranging from

counterfeiting/cloning to technology espionage, cf. Sect. 6.1. However in several sce-

narios, the adversary possesses the netlist in the form of hard or soft IP cores or an

untrusted foundry obtains the netlist via the chip’s blueprint. To counteract IP piracy,

several counterfeit avoidance methods such as secure split test and the use of Phys-

ical Unclonable Functions (PUFs) were proposed. Additionally, watermarking and

116 G.T. Becker et al.

IP protection schemes are a related strand of research, however this work focuses on

netlist reverse-engineering and netlist obfuscation.

Adversary Model: Before presenting the details regarding netlist-level reverse-

engineering and obfuscation transformations, we briefly recap the adversary model

in this scenario. We assume that the adversary has access to the flattened gate-level

netlist without any a priori high-level information such as synthesis options or hierar-

chy structures. The high-level adversarial goal can be coarsely defined as information

disclosure of how a design works in detail, in order to leverage further attacks.

6.3.1 Netlist Reverse-Engineering Techniques

In the following, we summarize the state-of-the-art in the field of algorithmic reverse-

engineering of gate-level netlists. A discussion of the available techniques is vital in

order to analyze the strength of an obfuscation technique. Furthermore, an overview

of all published methods supports the classification of a reverse-engineering task by

means of time.

In 1999, Hansen et al. [16] reported several strategies for a human reverse-engineer

to extract high-level information from the ISCAS-85 benchmark suite. The strategies

include the identification of common library components such as decoders or adder

units and the analysis of repeated modules such as in data-path circuits. Shi et al. [17]

introduced a technique to algorithmically extract Finite State Machines (FSMs) from

a flattened netlist based on their inherent implementation structure. In particular,

FSMs are detected based on an enable tree as well as strongly connected component
identification approach. This technique is employed in the subsequent work of Shi

et al. [18], where the netlist (with eliminated FSM) is analyzed and its functional

modules extracted. In 2012, a technique for matching an unknown subcircuit against

abstract library components was introduced by Li et al. [19]. The technique is based

on pattern mining of the simulation traces as well as model checking. The subse-

quent work by Li et al. in [20] identified word-level structures which provides a more

abstract, high-level view of the design. This work is furthermore taken as a basis for

algorithmic component identification such as counters, register files and adders, etc.

[21, 22]. A challenging task for functional identification is the potentially permuted

input mapping of the reference circuit and the design under investigation. Gascón

et al. [23] addressed this problem with a template-based approach in 2014.

After this brief recap of (semi-)algorithmic reverse-engineering capabilities, we

highlight various obfuscation techniques. Furthermore, we discuss their advantages

and limitations according to the published reverse-engineering techniques. First, we

present control and data flow obfuscation strategies and second, reconfiguration-

based methods.

6 Hardware Obfuscation: Techniques and Open Challenges 117

6.3.2 Control Flow Obfuscation

A notable challenge from a reverse-engineer’s point of view is to make sense of the

design’s control flow to disclose information how different modules interact with

each other. Control flow obfuscation refers to a set of transformations to hamper this

analysis, particularly by modification of an FSM.

Hardware Metering refers to a conglomeration of tools and security protocols to

enable the design house the post-manufacturing control of a produced device. In

particular, this methodology introduced in 2001 allows an unique way to identify

each IC by a passive or active fingerprint [24]. Note that this strand of research is

also related to obfuscation as the identification circuitry should be hard to reverse-

engineer.

Internal active hardware metering can be seen as a form of control flow obfusca-

tion [25]. The original FSM of the design is augmented by several states, cf. Fig. 6.9.

In particular, the initial value of the FSM registers is determined by the output of a

PUF. Only if the correct input sequence (and thus the correct traversal of the FSM

states) is given, the augmented FSM ends up in the initial state of the original FSM

and hence the design operates correctly. A key feature of this technique is that the

number of Flip Flops (FFs) influences the number of possible states exponentially

and hence provides a lightweight solution to the issue of an unique IC identifier.

A related technique is combinatorial locking (external active hardware meter-

ing). This technique extends combinatorial logic networks with the addition of

XOR/XNOR nodes [26] or the gate is hidden in reconfigurable logic [27]. Only if the

correct key value is applied to the input of the added nodes, the circuit is equivalent

to the original one. However the claimed security of several subsequent works in

this field is challenged by the recent work of Subramanyan et al. [28]. The proposed

attack is based on satisfiability checking that practically unlocked the vast majority

Preceding STG
“Obfuscated Mode”

Original STG
“Normal Mode”

start

Fig. 6.9 Example: FSM Obfuscation with preceding State Transition Graph (STG) based on

Fig. 1a in [32]

118 G.T. Becker et al.

of allegedly locked designs. A detailed summary and discussion of the diverse hard-

ware metering techniques is outside the scope of this work and hence the interested

reader is referred to [29].

A similar FSM-based obfuscation technique to provide anti-piracy features such

as authentication was proposed by Chakraborty et al. in 2008 [30]. An FSM is added

to the circuitry whose inputs are the primary design inputs and it has one output.

Furthermore this output is XORed with a few selected nodes of the design. Conse-

quently, the FSM outputs a logical one as long as the correct input sequence is not

applied to the primary input and only for the correct sequence the FSM transits into

the state that outputs a logical zero, so that the design is equivalent to the unobfus-

cated one. In a subsequent work [31], the FSM output is extended by an additional

signal that represents the output of a logical OR of the input variables. Later on, the

method was applied to Register Transfer Level (RTL) via synthesis, application of

the obfuscation on netlist-level, and subsequent decompilation to generate the obfus-

cated RTL [32].

Limitations: All denoted techniques have the fundamental limitation that merely the

control flow (via the FSM) is obfuscated, but the inherent circuit structure for sub-

components is preserved (even if gates are appended to the output of combinatorial

subcomponents). Thus, a practical evaluation is vital regarding the influence of the

different automatic techniques in the presence of control flow obfuscation. Further-

more, all enumerated techniques should be evaluated regarding the FSM reverse-

engineering technique by Shi et al. [17]. Particularly, all security analyses do not

address the issue of reverse-engineering from the last state of the obfuscation cir-

cuitry that transits to the original initial state of the design to the best of the authors

knowledge. As the design is somehow locked for an invalid input sequence, an adver-

sary would search for conditions such as multiplexers or enable signals where a

meaningful output is generated (or at least a larger set of node influences the pri-

mary output), e.g., based on established techniques such as SAT solvers. Depending

on the state transition graph, an inversion may result in an exponential number of

input pattern candidates, however the complexity should be evaluated practically.

Another fundamental limitation is the structure of the obfuscation circuitry itself.

For example, Chakraborty et al. [31] utilize a special enable signal in their technique.

First, the signal that enables the correct behavior has a large fan-out cone and its tar-

get gates are XOR elements. Second, each node in the set of selected nodes where

an XOR gate is added to the output is chosen by a metric. Such inherent structures

leak information regarding the implementation and might be identified using meth-

ods such as pattern matching or SAT solvers. Overall, all enumerated techniques

should be evaluated regarding the statements in the limitation as well as the FSM

reverse-engineering technique by Shi et al. [17].

6 Hardware Obfuscation: Techniques and Open Challenges 119

6.3.3 Combined Data and Control Flow Obfuscation

To address the fundamental limitations of control flow obfuscation transformations,

several works combined the FSM-based alteration with data flow obfuscation to gen-

erated malformed output instead of locking the device as described in the following.

In 2010 Chakraborty and Bhunia [33] presented a technique that partially consists

of the prior outlined FSM alteration. Particularly, the authors demonstrated how the

FSM can be interwoven with the design in order to hamper isolation of the FSM. In

addition to the FSM obfuscation, the data flow is obfuscated through generation of

phony output, if the system is not in a valid state (depending on the primary input

sequence). This is realized by assignment of different arithmetic/logical functions to

the output of the obfuscated module.

A further combined obfuscation transformation was presented by Li et al. in [34].

The key element of their methodology is the incorporation of the entire design and

not only the FSM. Thus, also general circuitry such as adders or memory circuitry

is transformed by the obfuscation. To be more precise, the obfuscation strategy is

based on several methods that moves registers in sequential circuitry, encodes the

circuit with a bijective function that is applied before and after the register stage,

and addition of logic conditions under that a register value is updated. Sergeichik

et al. adapted the concept of opaque predicates for hardware in [35]. The underly-

ing principle of opaque predicates is to generate a constant output during runtime

in order to hamper static analyses. Particularly, the authors insert special constant

generating circuitry on the Hardware Description Language (HDL)-level, e.g., an

Linear Feedback Shift Register (LFSR) where all FF values are zero or a latch-based

circuit.

Limitations: Although the combination of control and data flow obfuscation def-

initely increases the reverse-engineer’s efforts, the denoted obfuscation circuitries

are static by nature. If the reverse-engineer makes sense of a structural obfuscated

subcircuit, then this subcircuit will not change its functionality at some subsequent

point in time. Notably, these described obfuscation techniques focus on ASICs

and not on field-programmable hardware such as field-programmable gate arrays

(FPGAs). Similar to the control flow obfuscation transformations, the proposed tech-

niques were not evaluated regarding publicly known algorithmic reverse-engineering

approaches, cf. Sect. 6.3.1. The decrease of information disclosure by these auto-

matic techniques could improve the justification for the proposed obfuscation trans-

formations.

6.3.4 Reconfiguration Obfuscation

In order to change the designs’ appearance during runtime, several works exploit

reconfiguration features to obfuscate a design. Notably, this methodology requires

120 G.T. Becker et al.

runtime field-programmable hardware features, however it addresses the generic lim-

itation of the prior described techniques.

Porter et al. proposed an obfuscation transformation based on dynamic polymor-

phic reconfiguration in [36]. The underlying principle is the gate replacement imple-

mented by the dynamic reconfiguration feature of FPGAs as well as Look-up tables

(LUTs). In particular, the different gates are realized by different configurations of

the LUTs. Furthermore, signals are added to the design in order to hide function

signatures. To preserve the semantic of the obfuscated function, a recovery key is

utilized and subsequently added to the output of the reconfigured circuit. In 2013

Gören et al. extended an FSM-based obfuscation technique (see Sect. 6.3.2) with

PUFs and a dynamic reconfiguration scheme, in order to provide a low-cost FPGA

bitstream protection [37]. The FSM state transition depends several PUF instances

that are implemented in distinct partial configuration bitstreams reconfigured dur-

ing runtime. Depending on the stored PUF outputs, the design is either locked or

unlocked.

Limitations: The reconfiguration features provide a significant advantage as the

adversary has to reverse-engineer has to analyze a reconfigurable part for each par-

tial design. However, the work by Porter et al. can be simulated and thus reverse-

engineered (certainly with increased efforts). Similarly to the control flow-based

obfuscation, the work by Gören et al. suffers from the generic limitation that only

the FSM is transformed by the obfuscation (and the rest of the design remains

unchanged).

6.4 Conclusion

Hardware obfuscation techniques are demanded by the industry to hamper IP piracy

and technological espionage. Particularly, obfuscation transformation aim to increase

the adversary’s efforts in reverse-engineering a target device or design. In this

chapter, we addressed hardware obfuscation at the layout levels as well as the

netlist level. In terms of layout-level obfuscation, relatively few public information

is available. While obfuscation is been in use for many years, how exactly—and

how effectively—it is being used is not discussed publicly. Only very recently was

the first scientific paper published in that regard. Most of these layout-level obfus-

cation techniques are based on the idea to construct camouflage gates based on

changes of the dopant polarity in the active area. However, several visual reverse-

engineering techniques exists that can detect the dopant polarity in an active area.

These techniques require additional steps and equipment compared to traditional

layout reverse-engineering and hence can make reverse-engineering considerably

harder. However, none of the layout level obfuscation techniques can completely

prevent reverse-engineering. In general, form a research perspective, many unan-

swered questions remain in this area. Furthermore, the fact that the companies that

specialize on reverse-engineering do not reveal their techniques to the public, esti-

6 Hardware Obfuscation: Techniques and Open Challenges 121

mating the cost of reverse-engineering a design with and without layout obfuscation

is currently very difficult.

Several works proposed diverse methods to realize obfuscation transformations

on the netlist-level ranging from control flow-based techniques to reconfiguration-

based methods. However, we identified various limitations for the different

approaches especially regarding the security considerations. The coarse adversary

model for obfuscation should be regarded in detail with respect to the system model

and the defensive goal. Particularly, reverse-engineering of a design in order to dis-

close IP and patching of a design in order to eliminate locking features are ele-

mentary different goals. Furthermore, a fundamental issue for the majority of the

analyzed works is the omission of the automatic reverse-engineering techniques,

cf. Sect. 6.3.1. Particularly, an evaluation of the diverse obfuscation transformations

combined with the reverse-engineering techniques is viable for future research in this

area. Additional to the obfuscation transformations, the reverse-engineering tech-

niques have to be further explored in order to improve both the obfuscation transfor-

mations as well as the modeling of real-world adversarial capabilities.

Overall, hardware obfuscation provides a powerful set of tools to increase an

adversary’s reverse-engineering efforts. To really understand the level of obfuscation

and security achieved by the different techniques, it is also crucial to understand the

capabilities of reverse-engineers. Unfortunately, often the public knowledge of the

state-of-the-art reverse-engineering techniques is limited since reverse-engineering

companies do not publish their methods. In many cases, the real advantage of the

different obfuscation technologies are therefore hard to estimate in practice. In gen-

eral, there are still more open then solved research questions in the area of hardware

obfuscation.

References

1. H. Pechar, Circuit to prevent pirating of an mos circuit, US Patent 4,583,011, 15 April 1986

2. R.P. Cocchi, J.P. Baukus, L.W. Chow, B.J. Wang, Circuit camouflage integration for hardware

ip protection, in Proceedings of the 51st Annual Design Automation Conference (DAC 14),
New York, NY, USA, 2014 (ACM, 2014), pp. 153:1–153:5

3. S. Malik, G.T. Becker, C. Paar, W.P. Burleson, Development of a layout-level hardware obfus-

cation tool, in VLSI (ISVLSI), 2015 IEEE Computer Society Annual Symposium on July 2015,

pp. 204–209

4. J. Rajendran, M. Sam, O. Sinanoglu, R. Karri, Security analysis of integrated circuit camou-

flaging, in Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security (ACM, 2013), pp. 709–720

5. M. Shiozaki, R. Hori, T. Fujino, Diffusion programmable device: the device to prevent reverse

engineering. IACR Cryptology ePrint Archive 2014, 109 (2014)

6. G.T. Becker, F. Regazzoni, C. Paar, W.P. Burleson, Stealthy dopant-level hardware Trojans, in

Cryptographic Hardware and Embedded Systems (CHES 2013) (LNCS, Springer, 2013)

7. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J. Robshaw, Y. Seurin,

C. Vikkelsoe, Present: an ultra-lightweight block cipher, in Proceedings of the 9th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES 07) (Springer, Berlin,

Heidelberg, 2007), pp. 450–466

122 G.T. Becker et al.

8. S.E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi, L. Wang, J. Chandy,

M. Tehranipoor, A survey on chip to system reverse engineering. ACM J. Emerg. Technol.

Comput. Syst. (JETC), 13(1), 1–34 (2016). Article 6

9. C. Kison, J. Frinken, C. Paar, Cryptographic Hardware and Embedded Systems—CHES 2015:
17th International Workshop, Saint-Malo, France, 13–16 Sept 2015, Proceedings, chapter

Finding the AES Bits in the Haystack: Reverse Engineering and SCA Using Voltage Contrast

(Springer, Berlin, Heidelberg, 2015), pp. 641–660

10. S. Prejean, B. Davis, L. Herlinger, R. Johnson, R. Parente, M. Santana, Special Techniques
for Backside Deprocessing (Desk Reference. A S M International, In Microelectronics Failure

Analysis, 2011)

11. T. Sugawara, D. Suzuki, R. Fujii, S. Tawa, R. Hori, M. Shiozaki, T. Fujino, Reversing stealthy

dopant-level circuits, in Cryptographic Hardware and Embedded Systems (CHES 2014),
LNCS, vol. 8731 (Springer, 2014), pp. 112–126

12. E. Le Roy, R. Pajak, F. Baiocchi, Dopant imaging on front surface of silicon devices with a

coaxial photon-ion column, in ISTFA 2005: Proceedings of the 31st International Symposium
for Testing and Failure Analysis (ASM International, 2005)

13. F. Beck, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (Wiley-

Interscience, 1998)

14. Silicon Pr0n: silicon just the way you like it. Last visited Feb 2016. http://siliconpr0n.org/wiki/

doku.php?id=start

15. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley-Interscience,

2006)

16. M.C. Hansen, H. Yalcin, J.P. Hayes, Unveiling the ISCAS-85 benchmarks: a case study in

reverse engineering. IEEE Des. Test Comput. 16(3), 72–80 (1999)

17. Y. Shi, C.W. Ting, B.-H. Gwee, Y. Ren, A highly efficient method for extracting fsms from

flattened gate-level netlist, in International Symposium on Circuits and Systems (ISCAS 2010),
Paris, France, 30 May–2 June 2010, pp. 2610–2613

18. Y. Shi, B.H. Gwee, Y. Ren, T. Khaing, C.W. Ting, Extracting functional modules from flat-

tened gate-level netlist, in 2012 International Symposium on Communications and Information
Technologies (ISCIT), (2012) pp. 538–543

19. W. Li, Z. Wasson, S.A. Seshia, Reverse engineering circuits using behavioral pattern mining, in

2012 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2012,

San Francisco, CA, USA, 3–4 June 2012, pp. 83–88

20. W. Li, A. Gascón, P. Subramanyan, W.Y. Tan, A. Tiwari, S. Malik, N. Shankar, S.A. Seshia,

Wordrev: finding word-level structures in a sea of bit-level gates, in 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2013, Austin, TX, USA, 2–3

June 2013, pp. 67–74

21. P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W.Y. Tan, A. Tiwari, N. Shankar, S.A.

Seshia, S. Malik, Reverse engineering digital circuits using structural and functional analyses.

IEEE Trans. Emerg. Top. Comput. 2(1), 63–80 (2014)

22. P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, S. Malik, Reverse engi-

neering digital circuits using functional analysis, in Design, Automation and Test in Europe,
DATE 13, Grenoble, France, 18–22 Mar 2013, pp. 1277–1280

23. A. Gascón, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanovic, S. Malik, Template-based

circuit understanding, in Formal Methods in Computer-Aided Design, FMCAD 2014, Lau-

sanne, Switzerland, 21–24 Oct 2014, pp. 83–90

24. F. Koushanfar, G. Qu, Hardware metering, in Proceedings of the 38th Design Automation Con-
ference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 490–493

25. Y. Alkabani, F. Koushanfar, Active hardware metering for intellectual property protection and

security, in Proceedings of the 16th USENIX Security Symposium, Boston, MA, USA, 6–10

Aug 2007

26. J.A. Roy, F. Koushanfar, I.L. Markov, EPIC: ending piracy of integrated circuits, in Design,
Automation and Test in Europe, DATE 2008, Munich, Germany, 10–14 Mar 2008, pp. 1069–

1074

http://siliconpr0n.org/wiki/doku.php?id=start
http://siliconpr0n.org/wiki/doku.php?id=start

6 Hardware Obfuscation: Techniques and Open Challenges 123

27. A. Baumgarten, A. Tyagi, J. Zambreno, Preventing IC piracy using reconfigurable logic barri-

ers. IEEE Des. Test Comput. 27(1), 66–75 (2010)

28. P. Subramanyan, S. Ray, S. Malik, Evaluating the security of logic encryption algorithms,

in IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015,

Washington, DC, USA, 5–7 May 2015, pp. 137–143

29. F. Koushanfar, Introduction to Hardware Security and Trust, chapter Hardware Metering: A

Survey (Springer, New York, NY, 2012), pp. 103–122

30. R.S. Chakraborty, S. Bhunia, Hardware protection and authentication through netlist level

obfuscation, in 2008 International Conference on Computer-Aided Design, ICCAD 2008, San

Jose, CA, USA, 10–13 Nov 2008, pp. 674–677

31. R.S. Chakraborty, S. Bhunia, HARPOON: an obfuscation-based soc design methodology for

hardware protection. IEEE Trans. CAD Integr. Circuits Syst

32. R.S. Chakraborty, S. Bhunia, Security through obscurity: an approach for protecting register

transfer level hardware IP, in IEEE International Workshop on Hardware-Oriented Security
and Trust, HOST 2009, San Francisco, CA, USA, 27 July 2009, pp. 96–99

33. R.S. Chakraborty, S. Bhunia, RTL hardware IP protection using key-based control and data

flow obfuscation, in VLSI Design 2010: 23rd International Conference on VLSI Design, 9th
International Conference on Embedded Systems, Bangalore, India, 3–7 Jan 2010, pp. 405–410

34. L. Li, H. Zhou, Structural transformation for best-possible obfuscation of sequential circuits, in

2013 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2013,

Austin, TX, USA, 2–3 June 2013, pp. 55–60

35. V. Sergeichik, A. Ivaniuk, Implementation of opaque predicates for fpga designs hardware

obfuscation. J. Inf. Control Manage. Syst. 12(2) (2014)

36. R. Porter, S.J. Stone, Y.C. Kim, J.T. McDonald, L.V.A. Starman, Dynamic polymorphic recon-

figuration for anti-tamper circuits, in 19th International Conference on Field Programmable
Logic and Applications, FPL 2009, Prague, Czech Republic, 31 Aug–2 Sept 2009, pp. 493–497

37. S. Gören, O. Ozkurt, A. Yildiz, H.F. Ugurdag, R.S. Chakraborty, D. Mukhopadhyay, Partial

bitstream protection for low-cost fpgas with physical unclonable function, obfuscation, and

dynamic partial self reconfiguration. Comput. Electr. Eng. 39(2), 386–397 (2013)

Chapter 7
An Application of Partial Hardware Reverse
Engineering for the Detection of Hardware
Trojan

Franck Courbon

7.1 Introduction

In Hardware Trojan (HT) detection research activities, several families of techniques

have been studied and proposed [1]. The choice of the detection technique can be cho-

sen based on performing a vulnerability analysis regarding HT insertion risk within

the entire production chain. Once the associated chain of trust is known, possible

locations of interest for applying the detection are identified. The goals of the detec-

tion technique can vary depending on the final application of the circuit.

In this study, the case of a secure circuit development supply chain such as that

used for smart card production, is taken as an example. The role of a software devel-

oper who receives the circuit from a chip maker is considered as a hypothetical sce-

nario. The selection of the HT detection technique is driven by the following para-

meters: detection time available, type of HT detected, detection success rate, size of

the HT detected, robustness regarding process variation, golden model availability,

and the cost of detection. They have different weights depending on the given IC

application.

The main contribution of our work is to introduce a novel HT detection method-

ology based on visual inspection of a single layer of Integrated Circuits (ICs). This

provides a global image of the circuit where only the transistors’ active regions are

visible. Every standard cell (without knowing its function) is localized and then com-

pared with a circuit reference. We offer a low-cost, fast and efficient partial reverse

engineering methodology combined with an image processing based final detection.

F. Courbon (✉)

Computer Laboratory, University of Cambridge, Cambridge, UK

e-mail: frc26@cam.ac.uk

F. Courbon

Gemalto Security Evaluation Labs, La Ciotat, France

F. Courbon

Ecole des Mines de Saint-Etienne, CMP-GC/LSAS, Gardanne, France

© Springer International Publishing AG 2017

L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,

DOI 10.1007/978-3-319-50380-6_7

125

126 F. Courbon

The method is applied to a real case of detection on university test chips: a gen-

uine circuit (claimed to be manufactured under a fully trusted environment) and a

Hardware Trojan (HT) infected chip. Both circuits are chemically prepared to access

the transistors’ active region before reconstructing the entire surface of this single

chip layer. It results in an image so-called in this chapter the ‘entire IC transistors’

active region image’. Image processing allows then a comparison between the entire

IC transistors’ active region image and the trusted circuit reference image. On top

of detecting the HT, the number of modified gates and their localization are also

retrieved. This application highlights the efficiency of our methodology while being

in line with the integrated circuit’s life cycle constraints.

7.2 Integrated Circuits, Malicious Hardware Modifications
and Base of Retro-Engineering

7.2.1 Smart Card Like Integrated Circuits

As Hardware Trojans are physically implemented in integrated circuits, we first

describe their structure, taking as an example a 90 nm technology node current smart

card type IC. Several elements from the transistor to a specific function are manu-

factured using different physical layers from the active regions to the top metal layer,

Fig. 7.1. The substrate, made of Silicon (Si.), allows manufacturing of the different

lithography steps and handling of the component. Figure 7.1 highlights the weak

thickness of the different physical layers expressed in µm whilst the width and the

Fig. 7.1 Typical smart card like IC elements and layers

7 An Application of Partial Hardware Reverse Engineering . . . 127

length of a device are expressed in several mm, from chip backside to chip frontside

we find:

∙ A 130µm Silicon substrate thickness (smart card), covers the main volume of the

circuit, and has no active properties,

∙ a transistor level made of active regions (wells and doped area) for transistor’s

drain and source and poly-Si for transistor’s gate,

∙ a standard cell level made of transistors and metal1 layer,

∙ a specific function or register level made of standard cells interconnected in metal2

and metal3,

∙ power and clock signals are generally present in metal4 and metal5,

∙ insulators are present between each layer (a via interconnects two successive

layers).

7.2.2 Reverse Engineering

Reverse engineering techniques have historically been developed to perform the

opposite of a typical process flow used to build integrated circuits (IC). Nowadays,

IC reverse engineering can be used for different purposes. A given company can

analyze its own product for validation, debugging, Hardware Trojan detection, or

failure analysis. The same company might also be interested in reverse engineering

competitors’ products for other needs, such as looking for IP infringements, extract-

ing obsolete circuit specifications, or reverse costing. Reverse engineering can be

applied from a complete product or system composed of a printed circuit board with

multiple integrated circuits to a single transistor parameter, as shown in Fig. 7.2.

Typical IC reverse engineering methods need a collection of images coming from

each metal layer—up to around 15 for advanced semiconductor processes—that have

to be individually and successively prepared. This requires a high-level skill, years of

expertise, expensive equipment, high precision, and time. Once these layers’ images

are acquired, the main remaining task is to reconstruct the connections between each

layer and extract the chip’s netlist (description of the connectivity of an integrated

circuit). Some papers deal specifically with image processing to recover integrated

Fig. 7.2 Reverse engineering range of resolution

128 F. Courbon

circuit information [2–5]. Some specialized companies achieve automated reverse

engineering by using data extraction tools not readily available to the (academic)

research community. The cost of a full chip reverse engineering is estimated to be

several tens of thousands euros for a 130 nm technologic node chip containing 100 k

logic gates. The global cost can also be evaluated in terms of processing time and

delay, the need to send samples out of premises, the need for experts, high-end tools,

and the need to have multiple samples.

7.2.3 Hardware Trojan Taxonomy and Threats

Hardware Trojans have various properties [6], as shown in Table 7.1, and no detec-

tion technique covering all kind of HTs has been proposed so far. For instance,

detection methods such as Side Channel Analysis (SCA) and delay-based detection,

affected by process and measure variations, reach a low detection rate, require large

data sets and may not cover any HTs size or activity. Closer to our approach, only

simulations have been done on a partial reverse engineering hardware trojan detec-

tion [7] and only top metal layer hardware trojan detection tests have been performed

on FPGA design tool images [8].

One of the key factors defining a HT detection method is the detection rate. As

Hardware Trojans can have various physical characteristics, even a ‘full’ hardware

reverse engineering which is cost and time expensive [9] will not be ‘100 %’ efficient.

For instance, it does not cover parametric Hardware Trojans [10]. Inherently being

a solution for HT detection, we choose to investigate and develop partial hardware

reverse engineering capabilities. The goal is to visualize, save, and analyze physical

elements of ICs that are usually non accessible by different microscopy means.

Table 7.1 Hardware Trojan taxonomy

Design phase Abstraction

level

Activitation Effects Location Physical

characteristic

Specification System level Always on Change

function

Processor Distribution

Design Development

environment

Internally time

based

triggered

Degrade perf. Memory Size

Fabrication RT level Internally

physical cond.

triggered

Leak

information

I/O Parametric

type

Test Gate level Externally

user triggered

Denial-of-

service

Power supply Functional

type

Assembly and

Package

Transistor

level

Externally

component

triggered

Clock Layout-same

structure

Physical level Layout-change

structure

7 An Application of Partial Hardware Reverse Engineering . . . 129

7.3 Accessing Information by Microscopy Means

7.3.1 Bacskide Non-destructive Imaging

It has to be noted that state of the art backside non-destructive imaging, Fig. 7.3,

does not achieve a resolution good enough to distinguish standard cell modification.

Through this document, we will see a choice of a frontside destructive approach

which is fast, low-cost and efficient for our need.

7.3.2 Layer of Interest to Be Accessed

Also along this document, we will see that the part of interest (the transistors’ active

layer) is located between the metal layers and the Silicon substrate. Using visible

light microscopy, Fig. 7.4, does not permit to reach the layer of interest.

Fig. 7.3 No distinguishable differences within standard cells using backside imaging

Fig. 7.4 Frontside and backside visible light acquisitions of an integrated circuit

130 F. Courbon

Fig. 7.5 Optical and SEM comparison

7.3.3 Choosing Electron Microscopy

Nowadays, a large number of imaging possibilities exist. Our choice directly goes

for the Scanning Electron Microscope as its intrinsic features contribute to the suc-

cess of the methodology. Nevertheless, it is noted that optical microscopes can also

give enough information to distinguish modified and non-modified cells as seen in

Fig. 7.5, where 130 nm standard cells are present.

SEM and optical images are obtained in seconds and acquisition routine can be

defined without any operator intervention. Nevertheless, SEM permits a large depth

of view, no nonuniform illumination matter. It has to be noted that SEM is, at the

moment, seen as bespoke equipments in some security schemes [11] despite their

everyday use in fields like materials or natural sciences. As a consequence, it is

possible to rent such equipment in various mutualized platforms or universities for

less than hundreds euros per hour. Finally, processing all those individual images is

achievable without much effort in terms of competences, resources, cost, and time.

7.4 Proposal of a Novel HT Detection Methodology

After highlighting the integrated circuit’s structure, reverse engineering capabilities

and Hardware Trojan properties, we propose a novel approach for detecting Hard-

ware Trojans. The proposed methodology is based on previously achieved works in

the security characterization of integrated circuits field [12].

A partial reverse engineering approach has been developed to spot critical cells

in terms of security and permitting to retrieve ‘prints’ of standard cells, Fig. 7.6. To

check the integrity of integrated circuits, the same approach is used and the complete

methodology is made of three steps.

The proposed Hardware Trojans detection methodology, Fig. 7.6, consists in

preparing the circuit (1st step), acquiring and aligning images (2nd step) and com-

paring information retrieved from the device under test with a genuine reference (3rd

step).

7 An Application of Partial Hardware Reverse Engineering . . . 131

Fig. 7.6 Three steps methodology proposal based on the extraction of standard cell ‘prints’ [13]

7.4.1 Step 1: Sample Preparation

The chip is first prepared to access a layer where any standard cell modification or

addition would be visible.

Reaching top metal layers Depending on the package type, wet etching (hot fuming

nitric acid), decapsulation dedicated machine, or even sharp tools, can be used to

reach the top metal layer. At this stage, it is not possible to observe the standard

cells/transistors with frontside imaging: the different metal layers will obstruct the

frontside acquisition, and a metal shield can also be present.

Removing all metal layers The integrated circuits thus need a preparation [14] to

distinguish physical disparities in the component. We access the BULK layer using

Hydrofluoric (HF) acid. The acid bath removes all di-electric present under those

metal layers. ICs are simply soaked into this acid bath for several minutes. One can

see the remaining Tungsten plugs lying over the remaining surface of the component.

They normally form a contact between Metal1 and diffusion.

Rendering the surface free of artifacts Once the acid bath performed and the sam-

ple rinsed with acetone, it is necessary to clean the integrated circuit. To remove wet

etching residues, the integrated circuit can be placed into an ultrasonic cleaner for

about 5 min. The transistor’s active region is now clearly distinguishable.

7.4.2 Step 2: Automatic Image Alignment and Registration

The image acquisition is performed with a Scanning Electron Microscope (SEM).

Images are individually saved and then registered together to obtain a global image;

132 F. Courbon

the entire IC transistors’ active region image. Standard cell localizations are extracted

from the entire IC transistors’ active region image to be compared with identical

information from a genuine reference.

Setting up the Scanning Electron Microscope

Scanning Electron Microscope (SEM) properties Within a SEM chamber, a current

going through a filament allows creating electrons. Those electrons are then acceler-

ated before hitting the specimen surface. The depth of penetration mainly depends on

the accelerating voltage and the specimen atomic number. Secondary electrons are

emitted from the specimen and collected by a dedicated secondary electrons detec-

tor (in-lens or not). A grayscale intensity image is at last obtained depending on the

number of collected electrons. Current SEM features are about 500kX magnification

and about a few nm lateral resolution.

SEM parameters Multiple standard SEM parameters have to be considered: the type

of detector, working distance, accelerating voltage, detector current, contrast, lumi-

nosity, astigmatism, focus, and scanning speed. Moreover, the user needs to set the

tilt, the rotation, and the XY placement.

Multiple image acquisition

Defining area and magnification to scan Despite roughly knowing the Hardware

Trojan area over our test samples, we want to gather images of the entire IC to val-

idate our methodology. Thus, the full IC is ‘framed’ to be the area to acquire. The

scanning area being defined, the software returns the real coordinates (in 𝜇m) under

a calibrated equipment. Afterwards, the magnification is set up: the larger the mag-

nification, the better the resolution. However, this has a direct impact on the speed

of acquisition. For our purposes, the magnification has been chosen depending on

the ability to distinguish cells while not being too time consuming.

Automating the acquisition Once the magnification, the image overlay and the scan-

ning area defined, acquisition routines, including SEM actions and setup, can be

written. Afterwards, those acquisitions need to be stitched together to form the entire

IC transistors’ active region image. The automatic image acquisition is based on a

script that includes four basic principles. It defines the matrix to go through, move

the stage to each matrix cell, add idle state to collect the full image information and

save each displayed image.

All chip registration Images have been acquired and saved in a working directory

where information about scan direction and acquisition number is saved. They are

then offline registered to construct a single image of the full circuit for each case.

Using open source libraries or softwares, a phase transformation based algorithms

implementation answers this need.

7 An Application of Partial Hardware Reverse Engineering . . . 133

7.4.3 Step 3: Hardware Trojan Detection

The genuine reference can either be a golden circuit or a design file. A circuit with a

manufacturing flow that is fully done in-house, or more probably the first batch of a

product, can be considered genuine. They do not allow an adversary to introduce a

Hardware Trojan. Thus, to detect HT insertion using a genuine circuit, substep D1 in

Fig. 7.6, an entire IC transistors’ active region image is obtained over both circuits.

Genuine and tested circuit images are then processed to identify hardware malicious

modifications.

Comparing the entire IC transistors’ active region image with a design file is also

possible. It involves the application of pattern recognition algorithms. The technique

requires either a graphical file, such as the GDSII, or a text file, such as a DEF file.

The first technique consists of modifying the GDSII polygon view to get closer to the

real physical shapes (or inversely obtaining polygons from the real physical shapes).

The second technique comparing the entire IC transistors’ active region image with

a text design file (such as a DEF file) first requires a count of the occurrences of each

standard cell in the circuit. The final detection compares the position of recognized

standard cells (shapes) with the position included in the DEF file.

Only transistors’ active regions remain after our preparation technique and are

acquired over the full integrated circuit. The standard method used to retrieve logic

gate functionality is to overlay the active region of the transistors, the polysilicon

layer, and the first metal layer to draw the circuit schematic and then simulate it. We

don’t go through this typical reverse engineering process but instead we correlate the

entire IC transistors’ active region image and a genuine reference. More information

is given in Sect. 7.6.

Image processing either permits to correlate two circuits prepared and acquired

the same way or correlate data from a prepared circuit and a genuine reference. Each

shape recognized in the entire IC transistors’ active region image allows adding an

entry to a database file. It contains the pattern number, the occurrences number and

the [X, Y] coordinates for each shape recognized.

Plus, we get enough information to make a classification between cells and to

optionally form an hypothesis on a gate’s function. For instance, regarding other

gates in the design, flip-flop gates contain one of the most important number of tran-

sistors [15]. We isolate in Fig. 7.7 a single pattern visible on the entire IC transis-

tors’ active region image but acquired at a larger magnification. The PMOS transis-

tors’ location is the side of the column having the larger width. The opposite side

is NMOS transistors’ location. The different transistor gates’ positions after etching

can be noticed. For instance, in this pattern, we are able to distinguish around 13
different gates for each MOS side, leading to a standard cell with something like

26 transistors. Therefore, this important number of transistors is representative of a

flip-flop.

134 F. Courbon

Fig. 7.7 Identification of a 130 nm technology node flip-flop pattern at 18k× magnification [16]

Specifications Design
Chip

Manufacturing
Test and
Dicing

Wafer
Assembly Test Personalization Customer

delivery

Sensitive data loaded

Integrated Circuit manufacturer
System manufacturer

&
Chip manufacturer

Possible injection entry points by malicious entities

System manufacturer

1 2

1 2Our HT detection application
(during wafer assembly step)

Possible second HT detection
(during test step)

Fig. 7.8 Left Adapted IC flow with HT detection, right applied at wafer reception

7.5 Methodology Advantages

7.5.1 IC Flow Compliancy

When it comes to choosing a potential Hardware Trojan detection method, we have

to consider the IC’s life cycle. For instance, previous investigations [6] give the

level of trust of each integrated circuit fabrication step from the specification to the

IC’s deployment. All steps between the IC specifications and the package test are

described as untrusted. Some of those IC life cycle steps are done in-house for a sys-

tem manufacturer and therefore appear trusted with our system manufacturer point

of view. We adapt the supply chain with our HT detection technique proposal.

7 An Application of Partial Hardware Reverse Engineering . . . 135

Table 7.2 Summary of method advantages

Time slot present at wafer reception

Detection only requires few hours

No yield impact

Low application cost if equipment rented

Robust versus process variations

Robust versus setup measure variations

Validated proof of concept

Application by nonexpert

Independent of the technology node

The technique is IC life cycle ‘friendly’ and placed at the wafer reception, as illus-

trated in Fig. 7.8. At last, the two steps ‘Chip manufacturing’ and ‘Test and dicing’

are those which become trusted with the application of our HT detection proposal.

7.5.2 Industrial Advantages

As the detection is directly based on the hardware level of the component, maximum

efficiency is reachable. This efficiency rate is robust regarding both process and setup

measure variations. One interesting point is that even a non-multidisciplinary expert

can apply such a methodology. The application cost itself is low regarding the entire

integrated circuit design flow. We also note that the fabrication yield is not impacted

as only nonfunctional ICs are picked from the wafer up. The idea is to take nonfunc-

tional ICs that are representative of the remaining functional integrated circuits. The

percentage of functional ICs being checked depends on the ICs made with exactly

the same flow (lithography masks and parameters, number of circuit manufactured

at once (stepper), localization of nonfunctional integrated circuits). We sum up the

main advantages of our HT detection methodology in Table 7.2.

7.6 The Three Different Detection Scenarios

In this Sect. 7.6, a four standard cell Hardware Trojan is simulated in order to illus-

trate the different detection scenarios previously reported in Fig. 7.6. The Hardware

Trojan is simulated by directly adding four gates instances taken from the entire IC

transistors’ active region image of a 1 mm
2

hardware ciphering test circuit [17]. In

this example, the entire IC transistors’ active region image is obtained from 64 indi-

vidual images acquired at 2.2k× magnification including a 10 % overlap.

136 F. Courbon

7.6.1 Golden Circuit

Once transistors’ active regions acquired, the intention to compare a couple of cir-

cuits, a genuine circuit and a circuit to test is trivial. Thus, sample preparation and

image acquisition steps are performed over two different circuits: a golden circuit

and a circuit to test. Mainly due to the preparation type, acquired images under the

microscope can show some local differences, such as the presence of remaining supe-

rior layers at some locations. Moreover, when preparing the golden circuit and each

new selected chip poses some challenges. The application of acids has to be identical

in terms of time and concentration. Moreover, using the same SEM parameters may

not result in the same resulting image. We report strong image intensity differences

between two successive acquisitions of the same sample in Fig. 7.9.

A direct image subtraction can not check if any circuit modification has been

inserted. Indeed, images are not acquired using exactly the same SEM parameters,

the chip does not have the same orientation, and the scanned area is not exactly the

same. Therefore, some image processing has to be applied in order to register an

image according to other one and then reveal differences between the images. We

highlight the four simulated additional gates in Fig. 7.10 using the golden circuit

approach.

7.6.2 GDSII File

A golden model circuit may not be available, e.g., if no fully trusted manufacturing

process is available. Starting from the same image, we describe how to compare the

entire IC transistors’ active region image with a graphical Computer Aided Design

(CAD) file, the GDSII. Figure 7.11 is composed of a flip-flop standard cell GDSII

where only n-wells and p-wells implanted zone is kept under the CAD tool. On the

Fig. 7.9 Same chip, different SEM grayscale intensity values

7 An Application of Partial Hardware Reverse Engineering . . . 137

Fig. 7.10 Detecting

simulated Hardware Trojans

with golden circuit approach

Table 7.3 Detection case using modified GDSII data

Localization 1 Localization 2

Physically extracted

Modified GDSII

NCC coefficient Large Small

Hardware Trojan presence No Yes

second shape, standard closing morphology image processing and dilation are used.

It permits to facilitate the correlation to be performed over the manufactured device.

At a specific location, if the correlation coefficient significantly drops, a circuit

modification is detected. The HT is detected and its location known as shown in

Table 7.3.

Fig. 7.11 GDSII layout and

modified GDSII

138 F. Courbon

Table 7.4 Detection with a text CAD file

Name Localization

in DEF file in

µm

Total number

of occurrences

Extracted

view

Number of

recognized

occurrences

Localization

of recognized

instances in

pix.
FF1 DX1, DY1,

DX2, DY2,

DXn, DYn

Nrec Nrec RX1, RY1,

RX2, RY2,

RXn, RYn

7.6.3 DEF File

Another Computer Aided Design (CAD) tool output file can be used as a reference,

the DEF file. It may be easier to transmit the DEF file as this CAD tool extracted

text file does not contain connection information between standard cells. In this type

of file, each standard cell name is written as does its location in 𝜇m relative to the

origin. The idea is to first class all the instances by standard cell types and add each

similar one to obtain a number of similar shapes to retrieve over the circuit under

test. For example, we obtain localizations of the given flip-flop over the complete

circuit by taking a flip-flop cell instance as pattern to recognize, Fig. 7.12. A standard

correlation tool based on normalized cross correlation is used [18].

Each detected pattern is visualized as a white rectangle. The pattern detection

matrix is also stored into a file storing recognized elements and their [X, Y] positions.

As illustrated in Table 7.4, if the number of gates present in the DEF file, Nocc, dif-

fers from the number of recognized occurrences,Nrec, a circuit modification has been

introduced within the test device. Localizations of gates should also correlate if the

Fig. 7.12 Recognized

flip-flop localizations

7 An Application of Partial Hardware Reverse Engineering . . . 139

chip is Trojan-free. In this physically simulated HT insertion, Nocc is four instances

smaller than Nrec, it corresponds to the group of four gates highlighted in Fig. 7.12.

7.7 Applying the Methodology to a Real Detection Case

Having the opportunity to work with two versions of a circuit [19], one infected

and the other genuine, the application of our methodology is straightforward, as

illustrated in Fig. 7.13. The two entire IC transistors’ active region image has been

obtained by applying the partial reverse engineering methodology.

7.7.1 The ASICs and Equipments Used

The circuits used to validate our HT detection methodology are hardware implemen-

tations of ciphering algorithms and hash functions. Their size is thus smaller than

typical Integrated Circuits. These ICs, manufactured in a 0.18µm technology node,

are 1 mm long by 1 mm wide, Fig. 7.14.

For the application of the developed methodology, HF acid and an ultrasonic

cleaner permit to access transistors’ active area in tens of minutes. After rinsing the

sample, we use a Zeiss Ultra 55 to acquire integrated circuit images similar to the

Fig. 7.13 Detection choice: golden model correlation

140 F. Courbon

Fig. 7.14 Left Couple of ASICs being processed, right SEM platform

ones visible in the screens of the SEM in Fig. 7.14. We use open source algorithms

to process acquired images.

7.7.2 The Hardware Trojan

The Hardware Trojan has been inserted at the mask level in GDSII format. It has been

designed to be stealthy in terms of additional footprint and activity. The first asset of

this HT resides in its number of additional gates. No extra Silicon has been used for

the modification covering about 0.5 % of the integrated circuit. The HT trojan uses

about 190 gate equivalent (GE). The inserted Hardware Trojan is combinational,

30-bits sequence, and triggers a Denial-of-Service (DoS) as payload. Its features are

summarized in Table 7.5.

7.7.3 Getting the Entire IC Transistors’ Active Region Image

The previously depicted methodology has been applied over both circuits. We first

show the importance of cleaning the samples after using the wet etching bath (HF

acid) in Fig. 7.15. It allows similar preparation results for both circuits and hence

helps the future correlation made between the two entire IC transistors’ active region

images.

According to CMOS technology and designer practices we know that a chip syn-

thesized logic is organized in columns delimited by vcc and ground lines linked to the

substrate. In Fig. 7.16, we show that the image registration result does not give any

inconvenient artifacts. The process is performed automatically and in a few minutes

for a full circuit.

The so-called entire IC transistors’ active region images for both circuits are

shown in Fig. 7.17. Approximatively 20 min were required to obtain each image,

7 An Application of Partial Hardware Reverse Engineering . . . 141

Table 7.5 Properties of the Hardware Trojan present in the device under test

Design phase Abstraction

level

Activitation Effects Location Physical

characteristic

Specification System level Always on Change

function

Processor Distribution

Design Development

environment

Internally time

based

triggered

Degrade perf. Memory Size

Fabrication RT level Internally
physical
cond.
triggered

Leak

information

I/O Parametric

type

Test Gate level Externally

user triggered

Denial-of-
service

Power supply Functional
type

Assembly and

Package

Transistor

level

Externally

component

triggered

Clock Layout-same

structure

Physical level Layout-
change
structure

Fig. 7.15 Left A few transistors’ active areas after wet etching, Right same area after ultrasonic

bath application

respectively a set of ‘9× 11’ and ‘9× 12’ images. The magnification is 2k× and a

secondary electron detector is used.

As seen in the simulated case, overlaying both images does not permit a straight-

forward way to find differences between them. Even being successive reconstructed

acquisitions, images show intensity differences. Each sample is placed on a Carbon

tape leading to a non-flat surface. Moreover, the sample holder can be tilted and the

stage has to be translated and rotated to align the image of the second IC. Unlike

optical microscopy, SEM imaging focus is almost non impacted over the full cir-

cuit area, the depth of field is much larger. However, it affects the matter/electron

142 F. Courbon

Fig. 7.16 Left First acquisition, middle second acquisition, right output aligned image

Fig. 7.17 SEM acquisitions covering the entire surface of genuine and infected ICs

interaction surface and thus the integrated circuit size actually seen on display and

saved.

7 An Application of Partial Hardware Reverse Engineering . . . 143

Adding the fact that the area to scan is manually defined twice, both final recon-

structed IC images can not be directly compared.

7.7.4 Detecting the HT Knowing Its Location

We take advantage of the knowledge of the approximate location of the Hardware

Trojan. Its location is shown in Fig. 7.18. Recall that the HT represents 0.5 % of the

total number of standard cells used in the genuine circuit. The two images issued

from each circuit preparation are manually aligned to highlight standard cell differ-

ences between them. For this manual registration, a simple image editor can be used.

We manipulate the rotation, the translation, and the scaling of an image to compare

with the other one. This manipulation enables us to perfectly align a small area (tens

of standard cells only) and thus highlights changes brought to the design. However,

the rest of the test circuit image is not correctly aligned with the genuine circuit

image. Illustrated in Table 7.6 are drifts readings at the four extremities of the over-

laid images. Over this table, misalignments are visible and correspond to a part of the

south-west corner of the overlaid image (overlay done on HT area only which is more

central). For instance, the same magnification over the south-west area also shows

intensity variation for an identical element visualized in two different acquisitions,

Table 7.6 (top right image).

Fig. 7.18 Global top view
of the integrated circuit with

the area infected, figure

extracted from [19]

144 F. Courbon

Table 7.6 Observed drift during manual registration and overlay differences

Localization X drift in pix. Y drift in pix.

North-West -6 -2

South-West -9 -10

North-East 15 19

South-East 12 16

Fig. 7.19 Left Infected circuit HT area, right genuine circuit identical area

Besides detecting whether the test circuit is genuine, the technique also allows us

to directly see the elements that have been modified, Fig. 7.19. Over those test cir-

cuits, filler cells have mostly been replaced by shapes whose characteristics (appear-

ances, size) give the hint of flip-flop cells.

To sum up, the proposed methodology allows us to retrieve modified cells over the

device despite the use of two physically different integrated circuits and two different

image acquisitions. Knowing the location of the HT, we validate this approach to

detect Hardware Trojans.

7 An Application of Partial Hardware Reverse Engineering . . . 145

In a real life scenario, we admit that the HT presence is not communicated and

its location even less known. Hence, the next subsection deals with detecting HTs

without any a priori information.

7.7.5 Detecting HT Invariant of Their Location

This part of the methodology is based on a script that can be reused independently on

the images pair. This is a semiautomatic process as we first manually select similar

points over both images, then, based on a given algorithm, we recover transform coef-

ficients canceling rotation, translation, and scaling differences between both images.

We apply those coefficient weights to the second IC image. We then save the modified

second IC image and load both images under a common image editor. Both images

are finally overlaid, Fig. 7.20. Differences between the genuine and the infected inte-

grated circuit are thus highlighted.

Table 7.7 gathers all the different methodology steps for this golden circuit detec-

tion application. The necessary operating/developing time is also given to highlight

one of the main advantages of our proposed methodology, the small amount of time

required.

Fig. 7.20 Final image

obtained, zoomed in to the

HT area

146 F. Courbon

Table 7.7 Hardware Trojan detection global process

Tasks Role Operating time/(development

time)

Metal layer removal Accessing the BULK layer 10 min/(0 min)

Cleaning bath Removing wet etching residues 10 min/(0 min)

SEM parameters set Imaging standard cell active

regions

15 min/(0 min)

Full IC #1 SEM acquisition Automated acquisition process

for IC #1

20 min/(15 min)

Full IC #2 SEM acquisition Automated acquisition process

for IC #2

20 min/(NA)

Multiple Image Alignment Registering each IC subparts 3 min/(20 min)

Reference & DUT images

registration

Preparing the final overlay 2 min/(20 min)

Final images overlay & DUT

images registration

Highlighting the HT presence 1 min/(2 min)

7.8 Conclusion and Perspectives

7.8.1 Conclusion

The demand for integrated circuits free of Hardware Trojan will continue to increase

in the future. Regarding this threat, we propose a novel partial hardware reverse engi-

neering methodology. The methodology includes sample preparation, image acqui-

sition and image processing to detect any malicious hardware modification. First,

sample preparation allows reaching transistors’ active regions. Second, Scanning

Electron Microscopy (SEM) permits to automatically acquire transistors’ informa-

tion over the full circuit. At last, image processing allows registering subset of IC

images and detecting any difference compare to a genuine device. The proposed

methodology has advantages in terms of efficiency, speed, cost, process and setup

variation robustness, technology node robustness, yield impact and manufacturing

flow compliancy. This technique has been successfully validated on real ICs. In less

than an hour and with less than 200 Euros of equipment when renting, a small com-

binational Hardware Trojan (few dozens of gates) is successfully and almost auto-

matically detected within a 40k gates IC.

7.8.2 Perspectives

Future investigations could involve:

∙ Non-destructive Hardware Trojan detection: an infrared camera could be used to

see through the IC’s Silicon substrate. It would be interesting to have enough res-

olution to compare the genuine IC with the noninfected one,

7 An Application of Partial Hardware Reverse Engineering . . . 147

Fig. 7.21 Further image processing, left binary image, right filled shape image

∙ ECO cells or sub-active region HT detection: modifying or adding a step to the

proposed methodology would be interesting to check Engineering Change Orders

(ECO) cells connections and sub-dopant status,

∙ HT detection practical application without hard-golden: as stated in this chapter,

a CAD-tool output file (such as GDSII or DEF file) could be used as golden ref-

erence,

∙ applying more image processing techniques over the entire IC transistors’ active

region image as shown in Fig. 7.21. Indeed, only the shape of a cell could be of

interest. Shape statistics could also be sorted out to gain information over the cir-

cuit design.

Acknowledgements This work has been done within the HOMERE project funded by the French

Government (BPI-OSEO) under grant FUI#14. This work has also been funded by the ANRT

CIFRE funding #2012–2008. It leads to the obtention of my Ph.D. entitled ‘Partial hardware reverse

engineering for ‘fine-grained’ laser fault injection and efficient hardware trojan detection’. All

my investigations could not have been realized without my industry supervisor Philippe Loubet-

Moundi, my academic supervisor Jacques J. A. Fournier and my Ph.D. director Assia Tria, thank

you so much. I would also like to thank my industrial team, my academical team and people in

charge of cleanroom facilities. Many thanks to the ETH Zurich Integrated Systems Laboratory for

making samples available to us, http://asic.ethz.ch/cg/2011/Chipit.html. Last but not least, acknowl-

edgment to Jeunese Payne and David Llewellyn-Jones for proofreading and more generally to the

University of Cambridge Computer Laboratory to let me the time to write this chapter.

References

1. M. Tehranipoor, F. Koushanfar, A survey of hardware trojan taxonomy and detection. IEEE

Des. Test Comput, 27(1), 10–25 (2010)

2. S. Blythe, B. Fraboni, S. Lall, H. Ahmed, U. de Riu, Layout reconstruction of complex silicon

chips. IEEE J. Solid-State Circuits 28(2), 138–145 (1993)

3. N.G. Bourbakis, A. Mogzadeh, S.J. Mertoguno, C. Koutsougeras, A knowledge-based expert

system for automatic visual vlsi reverse-engineering: VLSI layout version. IEEE Trans. Syst.

Man Cybern. Part A 32(3), 428–436 (2002)

http://asic.ethz.ch/cg/2011/Chipit.html

148 F. Courbon

4. D. Lagunovsky, S. Ablameyko, M. Kutas, Recognition of integrated circuit images in reverse

engineering, in International Conference on Pattern Recognition, vol. 2, 1998, pp. 1640–1642

5. G. Masalskis, R. Navickas, Reverse engineering of CMOS integrated circuits (2008)

6. R. Chakraborty, S. Narasimhan, S. Bhunia, Hardware Trojan: threats and emerging solutions,

in High Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE International,
2009, pp. 166–171

7. C. Bao, D. Forte, A. Srivastava, On application of one-class SVM to reverse engineering-

based hardware Trojan detection, in 2014 15th International Symposium on Quality Electronic
Design (ISQED), 2014, pp. 47–54

8. S. Bhasin, J.-L. Danger, S. Guilley, X. Ngo, L. Sauvage, Hardware Trojan horses in cryp-

tographic ip cores, in 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2013, pp. 15–29

9. R. Torrance, D. James, The state-of-the-art in ic reverse engineering, in CHES 2009, pp. 363–

381

10. R. Kumar, P. Jovanovic, W. Burleson, I. Polian, Parametric Trojans for fault-injection attacks

on cryptographic hardware. Cryptology ePrint Archive, Report 2014/783 (2014), http://eprint.

iacr.org/

11. https://www.commoncriteriaportal.org/files/supdocs/ccdb-2013-05-002.pdf, (2013)

12. F. Courbon, J.J.A. Fournier, P. Loubet-Moundi, A. Tria, Combining image processing and

laser fault injections for characterizing a hardware AES. IEEE Trans. CAD Integr. Circuits

Syst. 34(6), 928–936 (2015), doi:10.1109/TCAD.2015.2391773

13. F. Courbon, Partial hardware reverse engineering applied to fine grained laser fault injection

and efficient hardware Trojans detection. Theses, Ecole Nationale Supérieure des Mines de

Saint-Etienne (2015), https://tel.archives-ouvertes.fr/tel-01258054

14. F. Beck, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques. ser.

Quality and Reliability Engineering Series (Wiley, 1998), http://books.google.fr/books?id=

7VNfvKjlzYAC

15. H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication,

1st edn. (New York, USA, 2008)

16. F. Courbon, P. Loubet-Moundi, J.J.A. Fournier, A. Tria, Increasing the efficiency of laser fault

injections using fast gate level reverse engineering, in 2014 IEEE International Symposium
on Hardware-Oriented Security and Trust, HOST 2014, Arlington, VA, USA, May 6–7, 2014,

2014, pp. 60–63, doi:10.1109/HST.2014.6855569

17. J.J.A. Fournier, J. Rigaud, S. Bouquet, B. Robisson, A. Tria, J. Dutertre, M. Agoyan, Design

and characterization of an AES chip embedding counter measures. IJIEI 1(3/4), 328–347

(2011), doi:10.1504/IJIEI.2011.044101

18. J. Lewis, Fast normalized cross-correlation. Vis. Interf. 10(1), 120–123 (1995)

19. M. Muehlberghuber, F.K. Gürkaynak, T. Korak, P. Dunst, M. Hutter, Red team vs. blue team

hardware Trojan analysis: detection of a hardware Trojan on an actual ASIC, in HASP 2013,
The Second Workshop on Hardware and Architectural Support for Security and Privacy, Tel-
Aviv, Israel, June 23–24, 2013, 2013, p. 1, doi:10.1145/2487726.2487727

http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.commoncriteriaportal.org/files/supdocs/ccdb-2013-05-002.pdf
http://dx.doi.org/10.1109/TCAD.2015.2391773
https://tel.archives-ouvertes.fr/tel-01258054
http://books.google.fr/books?id=7VNfvKjlzYAC
http://books.google.fr/books?id=7VNfvKjlzYAC
http://dx.doi.org/10.1109/HST.2014.6855569
http://dx.doi.org/10.1504/IJIEI.2011.044101
http://dx.doi.org/10.1145/2487726.2487727

Chapter 8
Linear Complementary Codes: Novel
Hardware Trojan Prevention and Detection
Approach

Xuan Thuy Ngo, Sylvain Guilley and Jean-Luc Danger

8.1 Introduction

The semiconductor industry has spread across borders in the time of globalization.

Different design phases of an integrated circuit (IC) may be performed at geograph-

ically dispersed locations. This coupled with the outsourcing design and fabrication

to increase profitability has become a common trend in the semiconductors industry.

However, this business model comes with an ample scope of introducing malicious

behavior to a part of the IC. The adversary has enough scope to tamper the supply

chain by maliciously implanting extra logic as hardware Trojan horse (HT) circuitry

into an IC [30]. This raises serious concerns about security and trustworthiness of

imported products employed in critical applications like military, health, transporta-

tion, etc. HT can be introduced in an IC at several points right from the register

transfer level (RTL) source code to lithographic masks fabrication. An attacker can

change a design netlist or subvert the fabrication process by manipulating design

masks, without affecting the main functionality of the design [2].

Any HT is composed of two main components [29]:

∙ Trigger: is the part of HT used to activate the malicious activity,

∙ Payload: is the part of HT used to realize/execute the malicious activity.

Figure 8.1 shows an example of one simplistic HT. In this archetype HT, the trig-

ger is a simple AND gate: it tests the equality of the inputs A and B to 1; the payload

is an XOR gate: it inverts the intermediate net C if the trigger is active.

An adversary can introduce a HT which might be designed to disable or destroy

a system at some future time, or to leak confidential information such as secret keys

X.T. Ngo (✉) ⋅ S. Guilley ⋅ J.-L. Danger

Telecom Paristech, 46 rue Barrault, 75013 Paris, France

e-mail: xuanthuy.ngo146@gmail.com

S. Guilley ⋅ J.-L. Danger

Secure-IC SAS, 5510 Cesson-Sevigne, France

© Springer International Publishing AG 2017

L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,

DOI 10.1007/978-3-319-50380-6_8

149

150 X.T. Ngo et al.

Fig. 8.1 Minimalist

hardware Trojan horse

example
C CmodifiedA

B

Trojan active

PayloadTrigger

covertly to an adversary [28] by putting them to output channels. In [27], the author

demonstrates an attack on a (purported military-grade) chip using a malicious back-

door. The backdoor allows the attacker to disable all the security of the chip, repro-

gram cryptographic part, access secret keys, modify low-level silicon features, access

unencrypted configuration bitstream, or permanently damage the device. Thus pro-

tection against HT is an open problem and an active research topic.

HT detection is an extremely challenging problem; traditional structural and func-

tional tests do not seem to be effective in targeting and detecting HTs. Since HT

can be introduced during different design phases, the nature of HT differs from one

design phase to the others. Therefore, it is difficult to find a unique detection tech-

nique for all HT. For instance, automatic test pattern generation (ATPG) methods

which are used in manufacturing test for detecting defects generally operate on the

netlist of the HT-free circuit. Existing ATPG algorithms cannot target HT activa-

tion/detection directly [31] because HTs are designed such that they are silent most

of their lifetime and have very small size relative to their host design, with featuring

limited contribution into design characteristics. Such HTs are most likely connected

to nets with low controllability and/or observability [6, 31].

The state-of-the-art principle in detection strategies of HT can be widely classified

into two categories, viz. invasive and noninvasive [15].

Noninvasive HT detection is done by comparing the performance characteristics

of an IC with a known good copy also known as the “golden circuit.” Detecting HT

in a noninvasive manner can be done either at runtime or in the testing phase. The

runtime detection mechanism is combined with the countermeasures, as once a HT

is detected at runtime, attempts are made to try and continue operating by bypass-

ing the HT. For runtime, Bloom et al. detail a HT detection approach that uses both

hardware and software to detect two types of HT which are DoS (Denial of Service)

and combined hardware and software HT [7]. Abramovici and Bradley added recon-

figurable DEsign-For-ENabling-SEcurity (DEFENSE) logic to the functional design

to implement real-time security monitors [1]. McIntyre et al. detect the presence of

HTs by executing functionally equivalent processes on multiple hardware process-

ing elements [21]. The testing phase detection methods attempt to enhance tradi-

tional IC testing, or use side-channel analysis. For logic testing, Jha and Jha present

a randomisation-based technique which probabilistically compares the functional-

ity of the design of the circuit with the implemented circuit [18]. Chakraborty et al.

suggest to test rare occurrences on an IC rather than testing for correctness [11]. The

tester determines rare states that can occur within a circuit module. For side-channel

8 Linear Complementary Codes: Novel Hardware Trojan . . . 151

analysis, Agrawal et al. present a type of detection mechanism [3]. Some known

good copies of the IC are obtained and fingerprinted using one or more side-channel

parameters. Other chips can then be tested against these fingerprints like path delay

in [19]. Power supply transient signal analysis is used as the side channel by Rad

et al. [24]. They aim at determining the smallest HT that they can find using this tech-

nique, which can be as low as three additional gates. Banga and Hsiao [6] propose

the “sustained vector technique” that is able to magnify the side-channel differences

(based on power draw) between circuits infected with HTs and those that are not.

Invasive methods try to (prophylactically) modify the design of IC to prevent the

HT or to assist another detection technique. One prevention method against HT has

been presented by Chakraborty et al. at ICCAD 2009 [9]. It is inspired by obfuscation

methods [4, 10] initially intended to protect against IC counterfeiting. In this paper,

authors obfuscate the original design by increasing the total number of reachable

states of the original circuit. These states are partitioned into two parts: an original

state space and an isolation state space. The original state space will be reached using

a specific input pattern (as a secret key). Moreover, with any wrong input pattern,

the IC will fall in the isolation state space. This space is constructed such that, once

entered, it cannot be exited and outputs will never be correct.

Another technique, nicknamed ODETTE [5], aims at changing the polarity of the

flip-flops (also known as DFFs). This option can be achieved at low cost, since DFFs

of standard libraries (provided by the founders) feature two complementary outputs

(called Q and Q). This coding is akin to Vernam cipher, where each bit of the state is

masked with one bit of secret. Authors claim that it is able to obfuscate partially the

circuit. In [12], authors present a logic gates encryption technique using an external

key to prevent HT insertion.

The drawback of these prevention methods in the state of the art is that they obfus-

cate only the state machine of the IC. This means that only the control part is pro-

tected, while the combinational part is unprotected. Moreover in papers presented

in [9, 12], when the IC is well configured to reach the original state using static con-

figuration keys, it operates normally and cannot resist others physical attacks. The

prevention method, ODETTE [5], is more intended to raise the HT activity for a

better detectability than a proactive prevention. Furthermore, each bit of the state is

masked with one bit of secret.

In this chapter, we intend to find a more flexible solution, where the number of

“mask” bits can be chosen, thus allowing the designer to adjust the security level.

We propose the concept of “encoded circuits”, a provable randomization method

using the linear complementary pair (LCP) codes C and D to prevent HT insertions.

Encoded circuits are realized by encoding all internal registers (sequential part) of

the target design with a binary code C and followed by addition (XOR) of random

masks in its supplementary code D. Once the sequential part is encoded, the combi-

national part can be easily obfuscated by exploiting the “flatten” option of the netlist

synthesis tool. It merges the logic part of encoder/decoder circuit with the combina-

tional part of the target circuit. Thus, the state is totally encoded and the structure of

original combinational part is totally lost when synthesized together with the encoder

152 X.T. Ngo et al.

and decoder circuit. After encoding, the complexity of the design increases which

obfuscates the real functionality of the IC. Using our coding method, we manage,

to some extent, to protect both control and data parts. Moreover, we can not only

protect against HT insertion attack but also against other physical attacks because of

the use of random masks.

Our technique is closely based on the private circuits of Ishai, Sahai, and Wagner

presented at CRYPTO 2003 [17]. Private circuits were proposed to protect against

probing attacks which ensures no information leakage with ≤ d probes, d being a

security parameter. In this chapter, we go even further by proposing two security

parameters dTrigger and dPayload. The parameter dTrigger, which is the dual distance

of code D, ensures that HT connected to less than dTrigger registers or nodes will

not retrieve useful information. And the parameter dPayload, which is the minimal

distance of code C, ensures that any HT modifying less than dPayload will be detected.

So “encoded circuit” is at the same time prevention and runtime detection method.

dTrigger and dPayload parameters can be chosen independently in order to increase the

prevention capacity or detection capacity. And the overhead will depend to these two

parameters. In this chapter, we provide the rationale behind the encoded circuits.

We first describe the theoretical background of encoded circuits based on theory

of codes. Thereafter, we detail the techniques to choose and generate LCP codes for

encoding a circuit. Then, we present the design flow for encoding method integration.

Practical application of encoded circuits is demonstrated on a simple microprocessor,

SIMON cryptographic coprocessor as well as an AVR processor. We show that the

technique can be applied to any circuit to prevent HT insertion. After, we present

how LCP codes could be optimized to reduce its hardware implementation overhead.

In the end, we discuss about the efficient of encoded circuit method against other

physical attacks.

The rest of this chapter is structured as follows. Section 8.2 gives the concept of

encoded circuit method. Section 8.3 presents the definition of security parameters as

well as the properties of LCP codes. Section 8.4 shows how LCP can be integrated

automatically on design flow using scripts. Section 8.5 demonstrates case studies

of LCP method on different circuits. Then the optimization algorithm of LCP is

presented in Sect. 8.6. The performance of encoded circuits against other physical

attacks as SCA and FIA are tested in Sect. 8.7. The comparison of LCP method with

those in the state of the art is given in Sect. 8.8. Finally we conclude in Sect. 8.9, and

give some perspectives.

8.2 Encoded Circuit Concept

In this section, we detail the rationale of encoded circuits. We first describe the basic

principle of encoded circuits. Next, we define security objective which determines

the choice of codes for encoded circuits.

8 Linear Complementary Codes: Novel Hardware Trojan . . . 153

As presented in Sect. 8.1, a HT can be globally seen as a composition of two part:

∙ Trigger: which reads the target circuit state (to trigger its malicious function).

∙ Payload: which writes on the target circuit state (to realize its malicious function).

One can observe from HT structure that to compute the good trigger value, an

attacker must have knowledge of the circuit. In a complex circuit, a trigger must

be connected to a number of nets (or I/O pads) in order to be controllable and effi-

cient. If the HT depends on very few signals, then the HT activation rate increases,

which makes it detectable. Therefore, HT acts as a “probing (or side-channel) sta-

tion” which is built into the circuit.

The principle behind encoded circuit is very basic. Every IC is composed of

two distinct kinds of logic cells: sequential (D flip-flop or register) and combina-

tional. In practice, it is known that registers are easily recognizable, because they

are much larger than combinational gates. For instance, in the 130 nm technology

of ST-Microelectronics, the size of a D flip-flop (in short: DFF) varies from 30 to

50µm
2
, while INVERTER (IVLLX05), NOR (NR2LL), and NAND (ND2LL) sizes

are, respectively, 4.03, 6.05, and 6.05 µm
2
. A section of a layout is shown in Fig. 8.2

containing both combinational and sequential logic. The yellow blocks in Fig. 8.2

are DFF or sequential logic and the red blocks are combinational gates. We can

easily notice that DFF is larger than combinational logic gates. DFF gates can be

recognized directly in an IC. It can be seen Fig. 8.3 that DFF stands out clearly

from combinational logic. Another motivation for probing the DFF output is that the

X1

X2
X3

Fig. 8.2 Floor plan of an IC with D flip-flops (in yellow)

154 X.T. Ngo et al.

X1 X2

X3X4

X5

X6X7

Fig. 8.3 Layout of an ASIC with D flip-flops [23] (in gray)

signals at DFF output are synchronized. Therefore, it is easier for an attacker to insert

HT using the inputs or outputs of these registers as activation conditions. Thanks

to this observation, we propose to apply the concept of “private circuits” [16, 17],

which is used to encode mask all gates of the target circuit, only on internal registers.

This protection is initially designed to resist the theft of probed signals. Our encoded

circuit method goes beyond, insofar as it shall resist against more connection than a

mere probing attack. Another specificity of our protection is that it impedes both the

trigger and payload parts of a supposedly inserted HT. Using the encoding system,

we can transform the original data of all sequential logic cells to the encoded and

masked data, hence protecting them.

Let us call x the state, that is to say, the set of all sequential resources. We denote

by k the number of state bits in the original circuit. It is encoded as follows:

∙ a code C of length n, which is applied on x. For the sake of simplicity, we assume

that C is a linear Boolean code.

∙ some random numbers y of (n − k) bits, which serve as a pool of entropy to mask

the encoded state. The masks are also encoded, by a code D, of size (n − k) and

dimension n. As a result, the encoded and masked state z is the exclusive-or of one

code word of C and D each.

If C and D are supplementary, the encoded x and y can be retrieved from z. We denote

by G and H the generator matrices of C and D. It is thus required that the n × n square

matrix

(
G
H

)

be of full rank n.

8 Linear Complementary Codes: Novel Hardware Trojan . . . 155

Fig. 8.4 Principle of

“circuit encoding”

n bits

encoded and masked state: z = xG ⊕ yH

n − k bitsk bits

useful information: x mask: y

HG

K

J

(optional)

useful information: x mask: y

The decoding logic allows to recover x from z. This operation is also a linear

function that maps elements of 𝔽 n
2 to 𝔽 k

2 (i.e., not injective). And we denote by J and

K decoding generating matrices of C and D.

Next, we can also check the random numbers which belong to the code D. If the

state z is corrupted by some means, that would also impact x and y. Therefore, it

is relevant to recover y from z, which can be done by a linear function of generator

matrix K.

The encoding/decoding functions are summarized in Fig. 8.4. Unless otherwise

mentioned, we will assume in the sequel that C and D are supplementary. We denote

supplementary pair codes, such as C and D, “LCP” (for “Linear Complementary

Pair”). This term has been coined by Massey in [20]. A full schematic of the encoding

principle is illustrated in Fig. 8.5; added blocks are represented in blue color.

156 X.T. Ngo et al.

Original circuit

merging
Combinational

merging
Combinational

Encoded circuit

Combi

�=?

alarm

RNG

Combi

Combi Combi
k k

O
ri
gi
na

l
St
at
e outputs

inputs

k n

n z
x

n − kn − k

E
nc
od

ed
St
at
e

KH

random numbers

encoder
Random Random

decoder

n

J

in
pu

ts

Decoder
J

k ou
tp
ut
s

y

Decoder Encoder
G

Fig. 8.5 Architecture of “Encoded Circuit,” exemplified on a canonical Moore machine

8.3 Encoded Circuit Method Properties

8.3.1 Security Objective

We intend to apply the notion of private circuits, discussed by Ishai, Sahai and Wag-

ner at CRYPTO 2003 (see [17]). They introduce a security metric d. Let d be an inte-

ger. They design a method to realize circuits such that probing any tuple of strictly

less than d equipotentials does not allow to derive any information about the real

data manipulated by the circuit. Their construction has a quadratic complexity in d.

Specifically, if the circuit has initially k gates, the size of the encoded & masked

circuit they propose is (k ⋅ (d + 1)2).
In our construction, we focus on the encoding of the k registers (there are much

less registers than combinational gates in most circuits). This simplifies the problem,

as the functionality of a register is simply the “identity function,” which is linear.

This is why linear codes are suitable in our case, which will further result in lower

complexity of the protected circuit.

Specifically, in our method, we apply a linear complementary pair codes C and D.

A pair of codes C and D is LCP if they are complementary. We define the minimal

distance of C and the dual distance of D as 2 distinct security parameters d
Payload

and

d
Trigger

.

A characterization of the two parameters of LCP codes is the following:

∙ dTrigger: insures that HT, which probes d
Trigger

− 1 (or less) bits of the encoded &

masked state z, does not disclose any information on x.

8 Linear Complementary Codes: Novel Hardware Trojan . . . 157

∙ dPayload: insures that HT, which modifies d
Payload

− 1 (or less) bits of the encoded

& masked state z, cannot produce a valid codeword.

This is feasible, as stated in the following properties.

Property 1 The encoding of x as z = xG ⊕ yH, where y is a uniformly distributed
mask in 𝔽 n−k

2 , does not reveal any information on x provided up to dTrigger − 1 bits of
z are known, if and only if D is of dual distance dTrigger.

Proof The mask y is applied additively on the encoded state xG as yH. The prop-

erty that is required is that any tuple of size strictly less than d be balanced. As

y is assumed uniformly distributed in 𝔽 n−k
2 , the distribution of any such tuple is

unchanged (hence uniform) if and only if the code D is of dual distance d
Trigger

(or

more).

Property 2 Let us consider the encoding of x as z = xG ⊕ yH, where y is a uni-
formly distributed mask in 𝔽 n−k

2 . Any fault on z of Hamming weight strictly smaller
than dPayload can be detected, if and only if C is of minimal distance dPayload.

Proof The state z is modified into z ⊕ 𝜀, for some random 𝜀 ∈ 𝔽 n
2 . By supplemen-

tary of C and D, there exists a unique ordered pair (e, f) ∈ 𝔽 k
2 × 𝔽 n−k

2 such that

𝜀 = eG ⊕ fH. A detection strategy consists in checking whether or not the mask has

been altered, i.e., zK
?
= y. This verification does not jeopardize the security model

of Property 1 since x is not uncovered, only y. By linearity of the fault injection,

the equality (z ⊕ 𝜀)K = y happens if and only if 𝜀K = 0 ⟺ f = 0, i.e., 𝜀 ∈ C.

As 𝜀 = 0 is pointless (since without observable effect), harmful (since undetected)

faults only happen if and only if 𝜀 ∈ C⧵{0}. In particular, a necessary condition for

the fault to be undetected is that the Hamming weight of 𝜀 be greater than or equal

to the minimal distance d
Payload

of code C.

Now, given that the minimal distance d
Payload

of C and the dual distance d
Trigger

are a

security parameter, they are set as high as possible. Therefore, have LCP codes C and

D of greatest possible minimal distance and dual distance simultaneously improves

the resistance against HT insertion and FIA?

Now, how to determine the parameters d
Trigger

and d
Payload

? The rationale is the

following: large HT can be detected by various means (optical inspection of the chip,

SCA, etc.). So, the minimal size of a HT that would be difficult to identify is captured

by distances d
Trigger

and d
Payload

. A stealthy HT below those distances would have

uncontrollable trigger and would certainly be captured red-handed when executing

its payload.

Using the LCP codes, the sequential part of a circuit can be well encoded. Never-

theless, it is still possible to insert a HT. An attacker that can isolate all blocks of an

encoded IC (i.e., combinational part, encoder data G, encoder noise H, and decoder

data J) can bypass the prevention by inserting a HT which probes directly at the

inputs of encoder block (or at the output of decoder block, etc.). This is all the more

possible as the IC is synthesized (i.e., generated) hierarchically. Using the flattening

158 X.T. Ngo et al.

option for the netlist synthesis, we will merge these blocks together (combinational

part, encoder for data, encoder for noise and decoder for data) for protecting the com-

binatorial part of encoded circuit. Therefore, it becomes a challenge for an attacker

to reverse the real functionality of the IC for HT insertions.

8.3.2 LCP Code Properties

For the construction of LCP codes, we need to create two space vectors C and D
(seen as linear codes) that are supplementary, i.e., C ⊕ D = 𝔽 n

2 , with those additional

constraints:

1. D must be of dual distance d
Trigger

;

2. C must be of minimal distance d
Payload

.

In our application, C is used to encode original state of k bits; therefore, the dimen-

sion of C is k and the dimension of D is n − k. So, for a given k, we search for the

smallest n ≥ k such that

1. there exists a code D of parameters [n, n − k] and of dual distance d
Trigger

, i.e.,

there exists a code C′ = D⟂
of parameters [n, k, d

Trigger
],

2. there exists a code C of parameters [n, k, d
Payload

].

We write the generating matrix G of C in a systematic form G =
(

Ik M
)
, where

M is a k × n − k matrix. Similarly, we write the generating matrix H of D as H =(
N In−k

)
, where N is a (n − k) × k matrix.

Proposition 3 The three following statements are equivalent:

1. The matrix
(

G
H

)

=
(

Ik M
N In−k

)

is invertible;

2. The matrix Ik ⊕ MN is invertible.
3. The matrix In−k ⊕ NM is invertible.

Corollary 4 When it is invertible (see Proposition 3), the inverse of matrix(
Ik M
N In−k

)

is given by

(
Ik M
N In−k

)−1

=
(

(Ik ⊕ MN)−1 M(In−k ⊕ NM)−1
N(Ik ⊕ MN)−1 (In−k ⊕ NM)−1

)

.

Remark 5 There is one particular case where the codes C and D are orthogonal. In

this time, the minimal distance of C is also the dual distance of D. It means that

dTrigger = dPayload. Indeed, in this case, H is the parity check matrix of code C, i.e.,

GH𝖳 = 0, or equivalently, HG𝖳 = 0, and there exists an orthogonal projection. It

can be checked that J = G𝖳(GG𝖳)−1. If z = xG ⊕ yH, then zG𝖳 = xGG𝖳
⊕ yHG𝖳 =

8 Linear Complementary Codes: Novel Hardware Trojan . . . 159

x(GG𝖳), which simplifies to zG𝖳(GG𝖳)−1 = x. Indeed, let z = xG ⊕ yH. Then zG𝖳 =
xGG𝖳

⊕ yHG𝖳 = x(GG𝖳), hence zG𝖳(GG𝖳)−1 = x. And K = H𝖳(HH𝖳)−1. In this

time, LCP codes become linear complementary dual (LCD) codes. And in the state

of the art, there are several methods for generating LCD codes [20] (for example

Quadratic-Residu Codes, ReedSolomon codes etc.).

8.4 Automated Design Flow for Encoded Circuit

We briefly described the theory of encoded circuits in previous section. The method

to encode a standard digital circuit is straightforward, which makes it easy to auto-

mate. The fully automated design flow for encoding a given hardware to protect

against HT insertion is shown in Fig. 8.6. The flow can be divided into six distinct

steps which are as follows:

Logic Synthesis This step is native to any design flow. The user synthesizes a HDL

description of the design with a synthesis script (in TCL), which constraints the

tool to flatten the netlist (e.g., “ungroup -flatten -all” in Encounter RC

from Cadence). This step ensures that we enter into the paradigm of the Moore

machine such that all sequential elements are gathered into a global state. Next,

we check that the design is coded in a way such that there is no logic from the

clock and reset inputs till the flip-flops. Finally, the synthesizer is constrained not

to use flip-flops that “compute,” e.g., flip-flops with an enable or two inputs (it is

usual to find these gates in standard cell libraries, because they are dedicated to

the test of the circuit). So, we use only non-test flip-flops which can be enforced

by the “set_attribute avoid true libcell libcell_location”

TCL constraint in Cadence Encounter Compiler. The synthesis exports the netlist

as design.v.

Split Design This is the first step of modified design flow: We identify and separate

the sequential part of the design from the combinational part. For the sequential

part, it is also important to keep the initial value at reset for each flip-flop. The final

wildcard comprises various loads. The number of DFF is k, and their initial state is

denoted as x0 ∈ 𝔽 k
2 . For the combinational part of the circuit, it is sufficient to remove

all the flip-flops, followed by addition of a from_seq input and a to_seq output

Fig. 8.6 Design flow for encoding method integration

160 X.T. Ngo et al.

bus (of bitwidth k). The automation is achieved with Python. This step generates two

files: design_comb.v and design_seq.v.

Add Combinational Code In this step, the user inputs the security parameters d
Trigger

and d
Payload

. Using the value k derived from the previous step, the script generates

HDL code for matrices G, H, J, and K for a suitable n. Next the file design_
comb.v is connected with the HDL of matrices G, H, J, and K as shown in Fig. 8.5.

The connection between matrices and the combinational circuit is done automati-

cally using a Python script. This step generates design_comb_coded.v at the

output and the hierarchical structure of the file is kept intact at this stage. Also, at this

stage, the random number generator (RNG) which produces (n − k) bits of random

numbers at every clock period is considered as a black-box.

Encode Sequential Part The input of this step is design_seq.v. This step com-

prises regeneration of with data input/output as a bus of bitwidth n, and programmed

with encoded initial state x0G at reset. In other words, k flip-flops in the uncoded state

are replaced by n flip-flops in the encoded state, keeping the equivalent state at reset.

Synthesize Encoded Design This step takes netlists design_comb_coded.v,

design_seq_coded.v along with a RNG description rng.v and a wrapper

circuit design_coded_wrapper.v as inputs. The function of the wrapper cir-

cuit is to connect the combinational and sequential part of the encoded circuit, while

keeping the same interface as original design. All the files are fed to a logic synthe-

sizer to generate a flattened netlist of the encoded design, i.e., design_coded_
flat.v.

Place and Route The rest of the design flow is same as the standard design flow. In

this step, the designer gives the synthesized netlist design_coded_flat.v. The

design is then placed and routed to generate the final layout (GDSII).

8.5 Case Studies

In this part, we apply the encoded circuit method on three test circuits: Nanoproces-

sor, SIMON processor, and AVR processor.

8.5.1 Case Studies I: Nanoprocessor

For the first experiment, we choose nanoprocessor [32], which is a 8-bit processor

without pipeline and requires 3 clock cycle to execute every instruction. It has 16
basic instructions, and operates using an external 256 bytes memory.

8 Linear Complementary Codes: Novel Hardware Trojan . . . 161

Table 8.1 Synthesis results of nanoprocessor-encoded circuit method, and security parameters

IC (Code) Gates Area

(µm
2
)

n k dTrigger dPayload

Original ([37,37,1,1]) 199 1181 37 37 1 1

Encoded ([73,37,13,13]) 1001 6926 73 37 13 13

Encoded ([86,42,17,17]) 1410 9717 86 37 17 17

Encoded ([89,45,17,17]) 1754 11296 89 37 17 17

Encoded ([73,37,17,12]) 1159 7377 81 37 17 12

Encoded ([73,37,17,8]) 1151 7324 81 37 17 8

Encoded ([49,37,5,3]) 433 3137 49 37 5 3

The unprotected nanoprocessor gives the following after synthesis:

∙ 37 sequential cells (flip-flops),

∙ 208 combinational cells.

Thus we have k ≥ 37 for the nanoprocessor netlist.

First, we constructed the LCP codes with d
Trigger

= dPayload for nanoprocessor. We

apply a LCP codes [73,37,13,13], i.e., k = 37, n = 73 [8]. Since k = 37 equals num-

ber of flip-flops in nanoprocessor, this is the smallest code which can be applied.

The security parameter d
Trigger

= d
Payload

of this code is 13, i.e., an attacker should

connect or modify to at least 13 DFF to implement an effective HT. To achieve

a larger security parameter, the dimensions must be increased. We found another

LCP codes of dimensions [89,45,17,17] and a shortened code derive from it, i.e.,

[86,42,17,17] [20]. Both these codes will result in a better protection at the cost of

chip area.

Then, we constructed another set of LCP codes with d
Trigger

≠ d
Payload

. In this

time three different LCP codes with parameters [73,37,17,12], [73,37,17,8] and

[49,37,5,3] are applied. The process to apply the three codes is exactly the same.

The result of synthesis for the encoded nanoprocessor is presented in Table 8.1.

This table shows the total gates, the area as well as the LCP code parameters as

length, codeword, and security parameters d
Trigger

and d
Payload

. We can notice that

the number of sequential gates increased from 37 to 73∕86∕89∕81∕49. It is logical

because we encoded k flip-flops into n. The combinational logic part also increased

due to the integration of G,H,K, and J matrices. Pre-synthesis and post-synthesis

simulations are performed to ensure that the encoded processor works correctly.

We can also notice that with the codes with different security parameters, we can

reduce the overhead from 9717 to 7377/7324 µm
2

(new codes) with the same d
Trigger

parameter. And the area is reduced from 7377 to 7324µm
2

by reducing the d
Payload

from 12 to 8 in the new codes. So with a smaller d
Payload

, we can reduce the overhead

of encoded method. For the last codes example ([49,37,5,3]) of the nanoprocessor,

the overhead of this code is < 3×. It could be acceptable for certain applications.

162 X.T. Ngo et al.

Table 8.2 Synthesis results of encoded circuit method, and security parameters for the SIMON

coprocessor

IC (Code) Gates Area

(µm
2
)

n k dTrigger dPayload

Original ([109,109,1]) 300 1919 109 109 1 1

Encoded ([110,109,2,1]) 560 3567 110 109 2 1

Encoded ([140,109,10,6]) 3107 20239 140 109 10 6

Encoded ([123,109,5,3]) 2348 15249 123 109 5 3

8.5.2 Case Study II: SIMON Cryptography Coprocessor

In the second case study, we use a lightweight crypto-processor SIMON. This

cipherblock use a 32-bits plaintext and 64-bits of key and compute 32-bit cipher-

text after 32 rounds. The unprotected SIMON gives the following after synthesis:

∙ 109 sequential cells (flip-flops),

∙ 300 combinational gates.

Thus we have k = 109 for the original SIMON netlist.

It is interesting to compare “encoded circuits” with “private circuits” [17]. Private

circuits have an overhead quadratic with d
Trigger

. For example, for d
Trigger

= 2 (i.e.,

resistance to a single probe attack), the overhead is 39.7× in area (results obtained

on Virtex5 FPGA). For the sake of comparison, we coded SIMON with LCP codes

such that d
Trigger

= 2 and d
Payload

= 1. Table 8.2 shows that the overhead is only 1.9×,

for the same level of security, using LCP.

In addition, Table 8.2 also presents the results of two LCP codes [140,109,10,6]
and [123,109,5,3] on SIMON. This application shows that the encoding method can

be used for very different ICs. These encoded SIMON circuits are also implemented

on the FPGA to evaluate their performance against physical attacks. The analyses

against physical attacks are presented in Sect. 8.7.

8.5.3 Case Study III: AVR Processor

In order to validate the automated insertion of encoding method, we use a larger cir-

cuit: an AVR processor. Specifically, we consider the AVR V14 downloaded from

http://opencores.org/. This processor has 32 × 8 general-purpose registers and 23
interrupt vectors. In this case study, we repeat the same method as for the nanoproces-

sor. In the flat netlist of AVR, there are 468 sequential gates. Therefore, we con-

structed the LCP codes [936,468,31,31] for AVR processor. The results of the

encoded AVR processor are also presented in Table 8.3

The encoder and decoder matrices G, H, and J matrices suitable in dimension for

the AVR are represented in Fig. 8.7. The blue pixels are symbols for a 1, whereas

the blank pixels stand for a 0. The synthesis results for those matrices are given in

http://opencores.org/

8 Linear Complementary Codes: Novel Hardware Trojan . . . 163

Table 8.3 Synthesis results of AVR processor encoded circuit method, and security parameters

IC (Codes) Gates Area

µm
2

n k dTrigger dPayload

Original ([468,468,1,1]) 2082 14015 468 468 1 1

Encoded ([937,468,31,31]) 94969 586213 937 468 31 31

G Matrix

k

n

H Matrix

n
−

k

n

J Matrix

n

k

Fig. 8.7 Encoder and decoder matrices for the “encoded circuit” protection of the AVR core

Table 8.4 Synthesis results of G, H, and J matrixes for k = 468
Design Number of Logic gates

(number)

Total area

(µm
2
)

Total power

(nW)

Rows Columns

G matrix 468 937 22811 137008 48059549

H matrix 469 937 26624 150248 56778482

J matrix 937 468 52546 302725 118381722

Table 8.4. We notice that the number of logic gates, power, and area increases signif-

icantly because of the complexity of G, H, and J matrixes. Certainly our protection

can be optimized. Therefore, in the next section, we present the methodology used

to optimize the LCP codes by keeping the same security parameters.

164 X.T. Ngo et al.

8.6 Optimization of LCP Code

8.6.1 Methodology

We aim at minimizing the hardware cost of the coding and decoding matrices, for

a given pair of complementary codes C and D. It is very difficult to estimate the

minimum number of gates required to synthesize the four applications of interest,

namely x ↦ xG, y ↦ yH, z ↦ zJ, and z ↦ zK. A single-bit output, which consists in

the application of a linear Boolean function, can be written very simply. For instance,

let us denote by G[i, j] the elements of matrix G. Then, let us denote by Gj, 1 ≤ j ≤ n,

the coordinate j of x ↦ xG. It is equal to Gj(x) =
⨁

1 ≤ i ≤ k
G[i, j] = 1

xi, which requires a

number of exclusive-or gates equal to the number of ones in the column of index j
of G minus the number one. Thus, an upper bound on the number of exclusive-or

gates required to synthesize the function x ↦ xG is the number of ones in G minus

the number n. Of course, better results can be obtained by considering the coordi-

nates not individually, but as a whole. Therefore, optimizations known as common
subexpression elimination (CSE) can apply.

Still, unless the matrices are specially crafted, CSE will not improve a lot the size

of the implementation. Thus, the number of ones in G is a good approximate indicator

of the complexity to implement it in hardware. Consequently, we decide to quantify

the cost of a matrix multiplication by this figure. In this respect, we introduce the

notion of Hamming weight of a matrix. It is also sometimes referred to as the grand
sum of the matrix.

Definition 6 The Hamming weight of a matrix G with elements in 𝔽2 is equal to its

number of ones. It is denoted as wH(G).
In summary, our objective is to find a pair of complementary codes C and D, of

generator matrices, respectively, G and H, such that conditions on distances are met,

and such that

Cost(G,H) = wH

((
G
H

))

+ wH

((
G
H

)−1
)

(8.1)

is minimal.

Some literature exists on the topic of making matrices sparse [13]. However, in

this section, we use an empirical method. Indeed, it is not obvious to assess the effect

of working on matrices and their inverses simultaneously. As we shall see, our goal

can be formulated as a genetic algorithm.

The idea is the following. We first find G and H such that the matrix

(
G
H

)

is

invertible, based on some constraints. Refer for instance to [22, Sect. III]. Then, we

randomly change the basis vectors of codes C and D spawned by generator matrices

G and H, and test for a decrease in Cost(G,H).

8 Linear Complementary Codes: Novel Hardware Trojan . . . 165

To do so, we notice that any change of basis in G consists in linear combinations

between the rows of G, which amounts to the left multiplication of G by an invertible

matrix S. Indeed, owing to the invertibility of S, the matrix k × n matrix SG is also a

maximal rank k. Therefore, a simultaneous basis change for C and D can be achieved

by the following matrix multiplication:

(
G′

H′

)

=
(

S 0
0 T

)(
G
H

)

.

In this equation, the new generator matrix of C (resp. D) is G′
(resp. H′

). We insist

that whatever the invertible matrices S and T , respectively, of size k × k and (n −
k) × (n − k), G′ = SG and H′ = TH generate codes with identical parameters as C
and D. When the choice for the new generating matrices G′

and H′
is done, so is

J′ = JS−1
and K′ = KT−1

, because

(
J′ K′) =

(
G′

H′

)−1

=
(

J K
)
(

S−1 0
0 T−1

)

.

Now, exploring all possible basis changes through S and T is computationally

infeasible. Moreover, application of random matrices S and T immediately turns the

density into ≈n2 (random matrix, with as many ones as zeroes). We have collected

statistics based on 70,000 applications of random S and T . We have plotted them in

Fig. 8.8; it can be seen that the grand sum starting from the situation where G and H
are in systematic form (hence sparse). Clearly, although the initial value is 13160, the

weight moves to value around n2 = 19600 as soon as we multiply them by a random

S or T .

Therefore, we explore the repetitive execution of a probabilistic algorithm, where

the update of the generator bases is done:

Fig. 8.8 Evolution of the

grand sum when changing

for a fully different base

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 12000 14000 16000 18000 20000 22000

P
ro

ba
bi

lit
y

Hamming weight of G, H, J, K

Initial value (13160)

Average density (19600)

166 X.T. Ngo et al.

∙ exclusively on G or H,

∙ by a simple linear combination consisting in adding two (different) base vectors

to derive a new one.

The new bases are kept only if the total cost (Eq. (8.1)) is smaller. In this respect,

this method is referred to as a genetic algorithm.

Algorithm 1: Genetic algorithmic to minimize the cost (Eq. (8.1)) of the pair

of codes.

Input : G =
(

Ik M
)

and H =
(

N In−k
)

matrices, such that Proposition 3 is fulfilled.

Output: G′
and H′

, spanning the same codes as G and H, but with smaller cost (Eq. (8.1)).

1 cost_ref ← wH

((
G
H

))

+ wH

((
G
H

)−1
)

2 while True do
3 S ← Ik
4 T ← In−k

5 coin
$

⟵ {0, 1} /* Working either on (G, J) or on (H,K) */
6 if coin = 1 then

7 i
$

⟵ {1… k}

8 j
$

⟵ {1… k}⧵{i}
9 S[i, j] ← 1

/* Left multiplication of G by S yields G, where jth
row is added in-place to ith row */

10 else

11 i
$

⟵ {1… n − k}

12 j
$

⟵ {1… n − k}⧵{i}
13 T[i, j] ← 1

/* Left multiplication of H by T yields H, where jth
row is added in-place to ith row */

14 end

15 M ←

(
S 0
0 T

)(
G
H

)

16 cost_new ← wH (M) + wH
(
M−1)

17 if cost_new < cost_ref /* New record. Updating the state */
18 then
19 cost_ref ← cost_new

20 G ← SG
21 H ← TH

/* Break the infinite loop if cost_ref is “good enough”
*/

22 end
23 end
24 return (G′

,H′) = (G,H)

8 Linear Complementary Codes: Novel Hardware Trojan . . . 167

8.6.2 Application on a LCP Pair of Codes

Algorithm 1 is applied on some codes. For instance, we use the example of the

SIMON block cipher coprocessor described in Table II of [22]. It has parameters

[140, 109, 10, 6], meaning that, in the complementary pair C and D,

∙ the length of C and D is 140,

∙ the dimension of C and D is 109 and 140 − 109 = 31,

∙ the dual distance of D is d
Trigger

= 10, and

∙ the minimal distance of C is d
Payload

= 6.

Before optimization, this code has cost (as per Eq. (8.1)) equal to 13160. After a cou-

ple of minutes, Algorithm 1 optimizes the cost to 11283, i.e., a reduction of 14.3%.

Notice that the expected density of the (G,H, J,K) matrices output by Proposi-

tion 3 is

n + 1
2
× k × (n − k) × 2 + 1

2
× n2

2 × n2
= 34.0% .

In reality the codes we have chosen have similar density, namely
13160
2×n2

= 33.6%.

After calling Algorithm 1, the density is reduced to:
11283
2×n2

= 28.8%. After optimiza-

tion, one could expect that the density of all matrices tend to the same value. Now,

we observe that the Algorithm 1 stalls when J remains significantly of larger weight

than other matrices. Recall that, in practice, we start Algorithm 1 with low-weight

G and H matrices (they are in systematic form).

Therefore, we also tested two variants of Algorithm 1. First, we simply exchanged

in Algorithm 1 the role of (G,H) and (J,K). More precisely, (G,H) are traded by

(J𝖳,K𝖳). The initial convergence speed is larger, but the algorithm does not seem

allow gaining more in terms of Hamming weight.

Second, we decide not to update J by a random addition of one row to another one,

but by adding together the two rows which are of lowest Hamming distance. That is,

lines 7 and 8 in Algorithm 1 are replaced by a exhaustive search of the nearest rows

in J𝖳 amongst the
(k
2

)
pairs of different rows. This strategy is working, as shown in

Fig. 8.9. After 10 h of computations (on an Intel XEON running at 2.67 GHz), the

Hamming weight is reduced from 13160 to 11223, i.e., by 14.7%. The quantitative

comparison of the original Algorithm 1 and this improved version, in terms of Ham-

ming weight and densities of matrices (G,H, J,K), is given in Table 8.5. Certainly

some further improvements can be obtained, as the density of matrices is strongly

unbalanced. This can be seen in Fig. 8.10, where the initial matrices are plotted on

the left, and the new ones on the right. Clearly, there remains a strong dependency

with the initial structure of the matrices.

Therefore, we test still another optimization. Basically, the three first strategies

(whose performance is depicted in Fig. 8.9) stall after a given number of iterations.

This means that a local minimum has been reached. Indeed, it is possible that what-

ever the pairwise addition of basis vectors, the grand sum does not decrease. For this

168 X.T. Ngo et al.

 11200

 11400

 11600

 11800

 12000

 12200

 12400

 12600

 12800

 13000

 13200

 1 10 100 1000 10000 100000 1e+06

H
am

m
in

g
w

ei
gh

t

Iteration number

Starting with (G,H)

Starting with (JT,KT)

Idem, w/ nearest rows in JT

Fig. 8.9 Comparison between the Hamming weights of the quadruple of matrices G, H, J, and K,

as a function of the iteration number at lines 2–23 of Algorithm 1, when starting with (G,H) and

(J𝖳,K𝖳)

Table 8.5 Hamming weight and densities per matrix for Algorithm 1 and its improvement

Matrix Algorithm 1 Algorithm 1 improved

wH Density (%) wH Density (%)

G (109 × 140) 2003 13.13 1930 12.65

H (31 × 140) 1493 34.40 1497 34.49

J (140 × 109) 5960 39.06 5944 38.95

K (140 × 31) 1827 42.10 1852 42.67

After optimizationBefore optimization

G

H

J K
G

H

J K

Fig. 8.10 Graphical representation of the (G,H) and (J,K) matrices, before and after optimization

(also refer to Table 8.5)

reason, we allow to make more transformations to the basis. An arbitrary thresh-

old of 𝗌𝗍𝖺𝗅𝗅 = 100 iterations is chosen. If after 100 iterations, there is no improve-

ment, then we allow the matrices S or T to combine more than two vectors at once.

8 Linear Complementary Codes: Novel Hardware Trojan . . . 169

 11200

 11400

 11600

 11800

 12000

 12200

 12400

 12600

 12800

 13000

 13200

 1 10 100 1000 10000 100000 1e+06

H
am

m
in

g
w

ei
gh

t

Iteration number

a) w/ nearest rows in JT

b) 2+ additions from scratch

c) 2+ additions from a)

Fig. 8.11 Comparison between the Hamming weight of the quadruple of matrices G, H, J, and K,

as a function of the iteration number, when one allows to combine more than two basis vectors

More precisely, S and T are still chosen initially to be identity matrices, but the num-

ber of nonzero extra-diagonal entries is allowed to be equal to 1, 2, 3, etc. The formula

we choose is 1 + ⌊𝗌𝗍𝖺𝗅𝗅∕100⌋. Of course, we check that S and T remain invertible,

otherwise another random transform is selected.

The result is an improvement in efficiency, at the expense of a worse efficacity.

Indeed, in Fig. 8.11, we compare

(a) the third strategy from Fig. 8.9,

(b) the new strategy where we allow more additions when the iterations stall,

(c) the same as (b), except that the threshold is set at 𝗌𝗍𝖺𝗅𝗅 = 1000, and that it is only

activated from the optimal solution (a) when it stalls.

The pure new strategy (in (b)) is very slow (loss of efficacity), actually slower than

strategy (a). But the new strategy all the same allows to improve (a), as we can see in

(c) (hence a gain of efficiency). Still, we notice that the gain in strategy (c) is small:

with ≈12 h of computation, the grand sum is reduced from 11223 to 11220, which

is very marginal.

8.7 Security Evaluation

In this section, we evaluate the encoded circuit method performance against other

physical attacks as probing attack, side-channel attack, and fault injection attack.

170 X.T. Ngo et al.

8.7.1 Encoded Circuit Against Probing Attack

As encoded circuits are based on private circuits, they directly address the threat

of probing attack. Probing attacks (front side or back side [14]) use tiny probes

to monitor the inputs/outputs of internal blocks to directly recover sensitive data.

By encoding all internal sequential logic parts and by masking encoded data with

random numbers, this prevention method can also protect IC against probing attack

with less than d
Trigger

− 1 probes.

8.7.2 Encoded Circuit Against Side-Channel Attack (SCA)

SCA extracts sensitive information from a circuit using the power consumption, elec-

tromagnetic leakage, or delay analysis. We applied SCA on the encoded SIMON

circuit (as in Table 8.2). The platform setup is a Sasebo GII FPGA Board (which

contains a Virtex-5 FPGA) running at 24 MHz, Langer RFU 5 − 2 EM probe. For

each design we acquired 200.000 traces with random plaintexts.

Next we use leakage detection techniques to check traces for any first-order leak-

age. We precisely compute the normalized inter-class variance (NICV) with respect

to the plaintext in the traces. NICV is computed as NICV = 𝖵𝖺𝗋[𝔼[T|X]]
𝖵𝖺𝗋[T]

, where T
denotes side-channel traces and X represents a chosen nibble of plaintext. Figure

8.12 shows four NICV computations for one-key byte of four different designs:

uncoded SIMON, encoded SIMON [123,109,5,3] with RNG deactivated, encoded

SIMON [123,109,5,3] with RNG activated and encoded SIMON [140,109,10,6]

with RNG activated. By observing the results, we notice the following conclu-

sions. First of all, encoded circuit without RNG should not be used, as the side-

channel leakage is amplified. This is because during encoding we transform the code

Fig. 8.12 NICV for

encoded SIMON circuit

0 10 20 30 40 45 50

0.01

0.02

0.03

0.04

0.05

0.06

Sample

N
IC

V

Original SIMON

Encoded SIMON [123,109,5,3] without RNG

Encoded SIMON [123,109,5,3] with RNG

Encoded SIMON [140,109,10,6] with RNG

8 Linear Complementary Codes: Novel Hardware Trojan . . . 171

linearly without confusion, thus any linear distinguisher can detect the leakage. Sec-

ond, encoded circuit with RNG do reduce side-channel leakage to an extent. The

gain in SCA resistance is bounded due to limited entropy. Finally, as we increase

d
Trigger

from 5 to 10, we increase the entropy and therefore reduce the side-channel

leakage.

We also compute the inverse security gain, i.e., the ratio between the NICV

maximum values of encoded SIMON circuits with the one of original SIMON cir-

cuits. The inverse security gain w.r.t to original SIMON is 3.7 for encoded SIMON

[123,109,5,3] without RNG, 0.0996 for encoded SIMON [123,109,5,3] with RNG,

and 0.085 for SIMON [123,109,10,6] with RNG. The result shows that the signal-

to-noise ratio (SNR) reduces significantly with the encoded circuit and d
Trigger

can

be used as the security parameter of side-channel attacks.

8.7.3 Encoded Circuit Against Fault Injection Attack

As stated earlier, encoded circuits can also be used to detect Fault Injection Attacks
(FIA). This can be done by decoding and verifying the random numbers injected to

mask the encoded circuit. Precisely, decoding can be done using the matrix K and

the compared as shown in Fig. 8.5. If the input and output random differ, an “alarm”

signal is raised and recovery mechanism like global reset is launched.

To evaluate this aspect of encoded circuit, we implemented the encoded SIMON

[123,109,5,3] on the Sasebo-W FPGA board and UART for external communica-

tions. Then we perform global and local FIA on this board. The global FIA is done

by varying the circuit frequency to inject the faults. 1000 tests were performed and

“alarm” signal of encoded SIMON is activated 1000 times, i.e., a detection rate of

100% Moreover, faults in individual rounds are detected separately.

For local FIA, we used electromagnetic injection (EMI). For the best evaluation

of the encoded circuit against local FIA, we separate the location of each block on

FPGA. The encoded SIMON is isolated from UART block and RNG block. Then

we inject a single electromagnetic signal on the encoded SIMON. It insures that we

will fault only encoded SIMON. We inject faults using an electromagnetic pulse of

width of 1.5 ns. The EM pulse is injected from the beginning to the end of SIMON

computation with a step of 1 ns. So in total, we perform 2560 steps. For each step,

we perform 10 EMI. In each experiment, SIMON computes with the same plaintext

and key. For 2560 delay steps EMI, there are statistically 2557 cases where the num-

ber of detection is equal to the number of faults. It means that we have a detection

probability of 99.8%.

So these first experiments demonstrate that encoded circuit method can detect

FIA even with a high-cost FIA technique (EMI FIA).

172 X.T. Ngo et al.

8.8 Comparison with the State of the Art

8.8.1 Difference from Private Circuits

The proposed encoded circuit method prevents HT insertion at two different levels.

First, like private circuits [17], it prevents the HT from retrieving any sensitive data

by eavesdropping < d flip-flops. This protection impedes the insertion of HT trigger
part. Moreover, for the HT payload part, the proposed countermeasure also brings

another aspect of active HT detection. If somehow the HT is able to write a malicious

value into the state, the encoded state can be checked for errors introduced by the

HT. For a HT to be functional, its payload must also be encoded with the same code

as the original circuit (i.e., C and D matrixes). The case study on SIMON coproces-

sor shows that the hardware cost for encoded circuit with d
Trigger

= 2 and d
Payload

is

1.9× comparing to 39.7× of Private Circuit for the same security level [25]. So LCP

method presents a big advantage comparing to Private Circuits in term of hardware

implementation overhead.

8.8.2 Comparison with Previous Works

Preventing HT insertion by encoding internal variables of a circuit has been partially

dealt in few previous works. Chakraborty et al. [9] initially presented a prevention

method which obfuscates only the state machine of the IC. It is inspired by obfusca-

tion methods [4, 10] initially intended to protect against IC counterfeiting. It parti-

tions the states into an original state space and an isolation state space. The original

state space can only be reached using a specific input pattern (e.g., secret key). If a

wrong input pattern is presented at the input, the IC locks itself in a nonreversible

isolation state space. Presented technique protects only the control part, while the

data-sensitive part remains attackable. Instead, encoded circuits protect both parts

(control and data). Moreover in [9] or even in [12], when the IC is well configured to

reach the original state, it operates normally and cannot resist other physical attacks.

Using encoded circuits, we can not only protect against HT insertion attack but also

against others physical attacks because of the use of random numbers. The tests in

SIMON cryptographic coprocessor confirmed this affirmation.

Another prevention method, ODETTE [5], is more intended to raise the HT activ-

ity for a better detectability than a proactive prevention. Furthermore, each bit of the

state is masked with one bit of secret. With our method, we provide a more flexible

solution, where the number of “mask” bits can be chosen, thus allowing the designer

to adjust the security level. In [26], authors propose the method named “EPIC” which

encodes the combinational logic part whereas in our encoded circuit method, the

sequential logic part is encoded. EPIC is based on “security by obscurity” hence

probing can be done after configuration to recover the key. This EPIC method is sta-

tic; therefore, an attacker can create a HT which learns the key and subsequently gets

8 Linear Complementary Codes: Novel Hardware Trojan . . . 173

activated, hence bypassing the EPIC method, whereas our “encoded circuit method”

is dynamic because the circuit is encoded with a random mask, hence avoiding key

learning attacks. Moreover, our method allows not only to prevent HT insertions but

also to detect proactively HT insertions at runtime.

8.9 Conclusion

In this chapter, we proposed a provable randomization method, which encodes the IC

using the linear complementary pair (LCP) codes C & D, allowing both HT detection

and prevention.

It is based on quantifiable security parameters d
Trigger

and d
Payload

for HT insertion

prevention and detection. Here d
Trigger

, which is the dual distance of D, defines the

minimum number of connections required to insert an effective HT. And d
Payload

,

which is the minimal distance of C, defines the minimum number of state that HT

needs to modify, to be (hopefully) undetected. We studied the theory of codes and its

rationale in “encoded circuits.” Then we proposed the full automation CAD design

for LCP method integration.

Many cases of studies are presented on SIMON cryptography coprocessor,

nanoprocessor, as well as AVR processor. They demonstrated that LCP was success-

fully and automatically applied using Python and TCL scripts. These case studies

also show that the hardware implementation cost will depend directly to the security

parameters d
Trigger

and d
Payload

. By choosing small parameters, we can reduce sig-

nificantly the overhead of LCP method but the security level will be decreased. So

there is a trade-off between the implementation cost and security level.

Then, we talked about how to optimize the LCP methods while keeping the same

security parameters d
Trigger

and d
Payload

. The algorithms in Chap. 6 shown that the

hardware implementation cost can be significantly reduced. In this work, we used

the LCP to encode all internal registers of circuit. But in real case, there could be

only some parts which are needed to be protected against HT insertion. Therefore,

we can apply the LCP only for these parts and not for the whole of circuit, hence

reducing the hardware cost of our method.

Several tests on SIMON cryptographic coprocessor shown that LCP method is

not only efficient against HT insertion but also robust against SCA and FIA. Using

LCP method, we reduce significantly the SCA leakage by reducing the SNR. It also

demonstrated that HT modifying less than d
Payload

will be detected.

References

1. M. Abramovici, P. Bradley, Integrated circuit security: new threats and solutions, in CSIIRW
(2009), p. 55

2. S. Adee, The hunt for the kill switch. IEEE Spectr. 45(5), 34–39 (2008)

http://dx.doi.org/10.1007/978-3-319-50380-6_6

174 X.T. Ngo et al.

3. D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B. Sunar, Trojan detection using IC fin-

gerprinting, in Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP ’07,

Washington, DC, USA. IEEE Computer Society (2007), pp. 296–310

4. Y.M. Alkabani, F. Koushanfar, Active hardware metering for intellectual property protection

and security, in Proceedings of 16th USENIX Security Symposium on USENIX Security Sym-
posium, SS’07, Berkeley, CA, USA. USENIX Association (2007), pp. 20:1–20:16

5. M. Banga, M.S. Hsiao, ODETTE: a non-scan design-for-test methodology for Trojan detection

in ICs, in International Workshop on Hardware-Oriented Security and Trust (HOST), IEEE
(2011), pp. 18–23

6. M. Banga, M.S. Hsiao, A novel sustained vector technique for the detection of hardware Tro-

jans, in Proceedings of the 2009 22nd International Conference on VLSI Design, VLSID ’09,

Washington, DC, USA. IEEE Computer Society (2009), pp. 327–332

7. G. Bloom, B. Narahari, R. Simha, OS support for detecting Trojan circuit attacks, in HOST
(2009), pp. 100–103

8. C. Carlet, S. Guilley, Complementary dual codes for counter-measures to side-channel attacks,

in Springer, editor, ICMCTA, 4th International Castle Meeting on Coding Theory and Appli-
cations, CIM-MS, 15–18 Sept 2014. Palmela, Portugal, http://icmcta.web.ua.pt. (article #9).

ISBN 978-3-319-17295-8. http://www.springer.com/978-3-319-17295-8

9. R.S. Chakraborty, S. Bhunia, Security against hardware Trojan through a novel application of

design obfuscation, in International Conference on Computer-Aided Design Digest of Techni-
cal Papers (ICCAD), IEEE (2009), pp. 113–116

10. R.S. Chakraborty, S. Bhunia, Hardware protection and authentication through netlist level

obfuscation, in Proceedings of the 2008 IEEE/ACM International Conference on Computer-
Aided Design, ICCAD ’08, Piscataway, NJ, USA. IEEE Press (2008), pp. 674–677

11. R.S. Chakraborty, F.G. Wolff, S. Paul, C.A. Papachristou, S. Bhunia, MERO: a statistical

approach for hardware Trojan detection, in CHES (2009), pp. 396–410

12. S. Dupuis, P.-S. Ba, G. Di Natale, M.-L. Flottes, B. Rouzeyre, A novel hardware logic encryp-

tion technique for thwarting illegal overproduction and hardware Trojans, in On-Line Testing
Symposium (IOLTS), 2014 IEEE 20th International, July 2014, pp. 49–54

13. L.-A. Gottlieb, T. Neylon, Matrix sparsification and the sparse null space problem. Algorith-

mica. 76(2), 426–444. (2016) doi:10.1007/s00453-015-0042-6

14. C. Helfmeier, D. Nedospasov, C. Tarnovsky, J.S. Krissler, C. Boit, J.-P. Seifert, Breaking and

entering through the silicon, in ACM Conference on Computer and Communications Security,

ed. by A.-R. Sadeghi, V.D. Gligor, M. Yung (ACM, 2013), pp. 733–744

15. B. Hopkins, M. Beaumont, T. Newby, Hardware Trojans—prevention, detection, countermea-

sures, http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA547668

16. Y. Ishai, M. Prabhakaran, A. Sahai, D. Wagner, Private circuits II: keeping secrets in tamper-

able circuits, in EUROCRYPT. Lecture Notes in Computer Science, vol. 4004. Springer, 28

May–1 June 2006. St. Petersburg, Russia, pp. 308–327

17. Y. Ishai, A. Sahai, D. Wagner, Private circuits: securing hardware against probing attacks, in

CRYPTO. Lecture Notes in Computer Science, vol. 2729. Springer, 17–21 Aug 2003. Santa

Barbara, California, USA, pp. 463–481

18. S. Jha, S.K. Jha, Randomization based probabilistic approach to detect trojan circuits, in Pro-
ceedings of the 2008 11th IEEE High Assurance Systems Engineering Symposium, HASE ’08,

Washington, DC, USA. IEEE Computer Society (2008), pp. 117–124

19. Y. Jin, Y. Makris, Hardware Trojan detection using path delay fingerprint, in IEEE Interna-
tional Workshop on Hardware-Oriented Security and Trust, 2008. HOST 2008 (2008), pp.

51–57

20. J.L. Massey, Linear codes with complementary duals. Discrete Math. 106–107, 337–342

(1992)

21. D.R. McIntyre, F.G. Wolff, C.A. Papachristou, S. Bhunia, Dynamic evaluation of hardware

trust, in Proceedings of the 2009 IEEE International Workshop on Hardware-Oriented Security
and Trust, HST ’09, Washington, DC, USA. IEEE Computer Society (2009), pp. 108–111

http://icmcta.web.ua.pt
http://www.springer.com/978-3-319-17295-8
http://dx.doi.org/10.1007/s00453-015-0042-6
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA547668

8 Linear Complementary Codes: Novel Hardware Trojan . . . 175

22. X.T. Ngo, S. Bhasin, J.L. Danger, S. Guilley, Z. Najm, Linear complementary dual code

improvement to strengthen encoded circuit against hardware Trojan horses, in IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST) (2015), pp. 82–87. doi:10.

1109/HST.2015.7140242

23. K. Nohl, E. Tews, R.-P. Weinmann, Cryptanalysis of the DECT standard cipher, in FSE. Lec-
ture Notes in Computer Science, vol. 6147. Springer. Seoul, South Korea, 7–10 Feb 2010,

pp. 1–18

24. R. Rad, J. Plusquellic, M. Tehranipoor, Sensitivity analysis to hardware Trojans using

power supply transient signals, in Proceedings of the 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, HST ’08, Washington, DC, USA. IEEE Computer

Society (2008), pp. 3–7

25. D.B. Roy, S. Bhasin, S. Guilley, J.-L. Danger, D. Mukhopadhyay, From theory to practice of

private circuit: a cautionary note, in The 33rd IEEE International Conference on Computer
Design (ICCD ’15), 18–21 Oct 2015, pp. 296–303. New York City, USA. doi:10.1109/ICCD.

2015.7357117

26. J.A. Roy, F. Koushanfar, I.L. Markov, EPIC: ending piracy of integrated circuits, in DATE
(2008), pp. 1069–1074

27. S. Skorobogatov, C. Woods, Breakthrough silicon scanning discovers backdoor in military

chip, in Proceedings of the 14th International Conference on Cryptographic Hardware and
Embedded Systems, CHES’12 (Springer, Berlin, 2012), pp. 23–40

28. M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and detection. IEEE

Des. Test 27(1), 10–25 (2010)

29. M. Tehranipoor, C. Wang (eds.), Introduction to Hardware Security and Trust (Springer, 2012).

ISBN 978-1-4419-8079-3

30. U.S. Department Of Defense: Defense science board task force on high performance microchip

supply. http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf

31. X. Wang, M. Tehranipoor, J. Plusquellic, Detecting malicious inclusions in secure hard-

ware: challenges and solutions, in Proceedings of the 2008 IEEE International Workshop
on Hardware-Oriented Security and Trust, HST ’08, Washington, DC, USA. IEEE Computer

Society (2008), pp. 15–19

32. M.J. Wirthlin, B.L. Hutchings, K.L. Gilson, The Nano processor: a low resource reconfigurable

processor, in IEEE Workshop on FPGAs for Custom Computing Machines, 1994. Proceedings,

Apr 1994, pp. 23–30

http://dx.doi.org/10.1109/HST.2015.7140242
http://dx.doi.org/10.1109/HST.2015.7140242
http://dx.doi.org/10.1109/ICCD.2015.7357117
http://dx.doi.org/10.1109/ICCD.2015.7357117
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf

Chapter 9
Ultra-Lightweight Implementation in Area
of Block Ciphers

Cédric Marchand, Lilian Bossuet and Kris Gaj

9.1 Introduction

The research field of lightweight implementation of cryptographic algorithms is rel-

atively new. It appears with the emergence of highly constrained applications such as

radio-frequency identification (known as RFID) and wireless sensor networks. All

these new applications require security and implement cryptographic algorithms in

such constrained devices, which is challenging. The constraints that are involved in

the implementation strategy strongly depend on the target application. In the past,

lightweight implementations of cryptographic algorithms aim to be energy efficient

because devices used for the target application do not contain any power source or

limited one. In addition, these devices (RFID tag) are extremely small and the area of

implementations is one of the main constraints. Today, numerous applications requir-

ing lightweight hardware implementation of cryptographic functions have appeared.

Among all primitives adapted for lightweight applications, the most common con-

struction used is called block ciphers. This category of primitives is used to encrypt

or decrypt only a block of data at a time. They are built with small functions orga-

nized in a round, which is applied multiple times. The most known block cipher

adapted for lightweight applications is PRESENT [6] but many others have been

published recently. Some of them are briefly described on the CryptoLux website [1].

In this jungle of lightweight implementation of block ciphers, comparing the

results between different works is an absolute necessity but this task is extremely

challenging due to the differences in the target applications. Indeed, comparing two

works about lightweight implementations is possible but usually unfair because one

application might not have the same constraints than the other. In addition, the com-

C. Marchand (✉) ⋅ L. Bossuet

Laboratoire Hubert Curien, University of Lyon, Saint-etienne, France

e-mail: cedric.marchand@univ-st-etienne.fr

L. Bossuet

e-mail: lilian.bossuet@univ-st-etienne.fr

K. Gaj

Department of ECE, Volgenau Schoole of IT&E, George Mason University,

Fairfax, VA, USA

e-mail: kgaj@gmu.edu

© Springer International Publishing AG 2017

L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,

DOI 10.1007/978-3-319-50380-6_9

177

178 C. Marchand et al.

parison may be also unfair if the interfaces used in two different works are not iden-

tical. The best way to compare hardware implementations fairly is thus to design

a generic framework and use it to implement all the algorithms. If the comparison

with other studies has to be done, it is mandatory to implement the algorithms using

the exact same devices and carefully explain the differences in the target application

constraints.

In this chapter, four different block ciphers (KLEIN, LED, Lilliput, and Ktan-

tan) are presented and implemented using Xilinx Spartan 6 FPGA (45 nm CMOS

technology) and Xilinx Spartan 3 (90 nm CMOS technology). Hardware implemen-

tations presented in this chapter are meant to be used in the SALWARE project [7].

In this project, the implemented algorithm will be used only once or very few times

in the life time of the device and no one wants to pay for a large implementation of

a block cipher that is used only one time. That is why the main constraint in this

work is the area of the implemented algorithms. The block cipher that uses the min-

imum area will be chosen as the candidate for the SALWARE project. Additionally,

this project does not target a specific technology and the use of FPGA aims to pro-

totype ultra-small cryptographic algorithms to implement them using other FPGA

technologies and ASIC. So, no specific feature of the used FPGA will be used. For

example, Xilinx Spartan 6 FPGAs contains distributive RAM and specific shift reg-

isters that can be very interesting to reduce the area of an implementation but it is

mandatory to not use them because of the portability requirement.

The comparison between the four implemented cryptographic algorithms is made

using a generic framework that can be reuse in other studies due its strong adapt-

ability to any other algorithms. Finally, to be able to understand the mechanisms of

lightweight implementation of block ciphers, each algorithm is implemented using

two different strategies. The first one is a fullwidth implementation which uses the

block length for the width of the datapath. The second is a full serial implementation

which uses the smallest possible word size for the width of the datapath. All results

presented in this chapter contain both encryption and decryption.

The rest of this chapter is organized as follows: Sect. 9.2 gives general background

about block ciphers algorithms for lightweight applications. The two implementation

strategies used in this work are presented in Sect. 9.3. Section 9.4 describes how the

four implemented algorithms have been chosen, gives an overview, and presents the

two implementations of each block cipher. The results of these implementations are

compared and discussed in Sect. 9.5. Finally, the last section concludes and gives

some future interesting and possible development for this study.

9.2 Lightweight Block Ciphers

9.2.1 General Description

A block cipher is a symmetric-key algorithm used to encrypt or decrypt a block of

data with a fixed length. To encrypt a block of data, a message (or plaintext) is trans-

9 Ultra-Lightweight Implementation in Area of Block Ciphers 179

formed using a key in a ciphertext of the same length. An inverse function is used to

decrypt the ciphertext using the same key. A block cipher is often composed of small

functions organized to form a round that is performed several times. Additionally,

the key is expanded, using a function called keyschedule, in round keys that are used

during the rounds of the algorithm. Figure 9.1 shows how a block cipher can be seen

with a general schematic.

The most known block ciphers are the advanced encryption standard (AES) [9]

and the data encryption standard (DES) [22]. These two block ciphers are con-

structed with two different structures that are almost all the times reused for all other

block ciphers: Substitution and permutation network for AES and Feistel network for

DES. Recently, a lot of new block ciphers have been developed especially for light-

weight applications and are commonly referenced under lightweight cryptography.

PRESENT [6] is one of the first block ciphers designed for lightweight applications

and commonly serves as reference to compare all others algorithms implemented for

lightweight. The number of cryptographic primitives developed for this relatively

new application has risen and some surveys ([11, 17]) try to compare many of them.

In the most recent one [17], 50 block ciphers are compared using hardware, software,

or both. Additionally, when a new family of block ciphers designed for lightweight

applications is presented, comparison with previous work is almost always done in

order to show the added value of the new family like in [4] where the two described

families (SIMON and SPECK) are compared to five other cryptographic algorithms:

Twine [23], Present [6], Piccolo [19], Katan [10], and KLEIN [12].

However, even if all these new algorithms are categorized under lightweight cryp-

tography, this category does not really exist and it is more accurate to talk about

lightweight implementation of block ciphers instead. Indeed, some regular algo-

rithms such as the AES are also implemented for lightweight applications like in

[8] or in [13]. Nevertheless, there are cryptographic algorithms that are adapted for

lightweight applications. They usually use a smaller block size of data such as 32,

48, or 64 bits; the key size is also commonly reduced to 64, 80, or 96 bits even if

some algorithms are able to use 128-bit key as well. The most common sizes used in

Fig. 9.1 General schematic of a block cipher

180 C. Marchand et al.

block ciphers for lightweight applications are 64-bit block and 80-bit key. Addition-

ally, block ciphers that aim to be used for lightweight applications often operate on

smaller word than regular block ciphers and use bit, or nibble (4-bit word) as word

instead of bytes. Accordingly, all functions are smaller in size and build in order to

be able to implement them using very few resources in FPGAs or ASICs. Finally,

the keyschedule is also smaller and in some algorithms, this function only selects

bits of the secret key without any logical transformations.

The two most known structures used for block ciphers are the substitution and

permutation network (AES like) and the Feistel network (DES like). The two next

subsections present the particularities of each one of these two constructions.

9.2.2 Substitution and Permutation Network

The most common construction of block ciphers is a substitution and permutation

network (SPN) which is the construction used by the AES. This kind of block ciphers

is usually built around three different layers that operate on the full block of data:

∙ The add round key layer is usually used to mixed the round key with the current

state of data. It is commonly a bitwise XOR applied between the state of data and

the corresponding round key.

∙ The substitution layer is often nonlinear and comprise substitution boxes called

sboxes, which take a n-bit word in input and return a m-bit word at the output.

Most of the block ciphers use 8-bit sbox that map a 8-bit word to another 8-bit

word. However, in bloc ciphers designed for lightweight applications, sboxes are

commonly nibble wise.

∙ The diffusion layer is most of the time a permutation function that can takes dif-

ferent sizes in input such as bit, nibble, or byte for example. This layer is often the

bottleneck of any optimization because of the difficulty to reduce its area.

Due to the structure of this construction, the number of round used to encrypt or

decrypt a block of data is smaller than for others construction such as Feistel network.

They are easy to design in hardware and offer a good compromise between the area

and the throughput of the implementation.

9.2.3 Feistel Network

Another very common construction of block ciphers is based on Feistel network like

the DES. This construction also contains a round function based on the same three

layers as the SPN structure but instead of applying it to the full state of data, this

function changes only half of the data. Then, the permutation ensures to switch the

two halves of the state in order to apply the round to the second part of the state

during the next round. This structure is very famous for lightweight applications due

9 Ultra-Lightweight Implementation in Area of Block Ciphers 181

Fig. 9.2 General schematic

of Feistel network

F

Additional permutation

Round 1

Left part Right part

Round 2

Round N

Plaintext

Ciphertext

Keyschedule

Key

Left part Right part

the keyschedule that is usually very simple. Furthermore, classical Feistel networks

use exactly the same process for encryption and decryption which is very interesting

for lightweight applications because only one encryption core can be implemented.

Among block ciphers designed for lightweight that use this structure, it is possible

to cite LBlock [24], ITUbee [16], or SEA [21] for example.

However, the permutation can also be more complicated than just switch the two

halves and also performs a permutation inside the halves themselves. In this case,

the structure of the block cipher is called generalized Feistel network (GFN) like

Lilliput [5], Hight [15], or Clefia [20]. In this case, the inverse permutation has to be

implemented to make the decryption possible. Figure 9.2 shows a general schematic

that describes regular Feistel network and GFN both.

182 C. Marchand et al.

To describe classical Feistel network using Fig. 9.2, the additional permutation

block is simply removed.

9.2.4 Other Types of Block Ciphers

One family of algorithms uses a construction which is completely different than the

two previous. It is the Katan and Ktantan family of block ciphers [10]. This family

is based on feedback shift registers updating only one to three bits at a time. Due to

this, the construction is very similar to stream ciphers but these algorithms can be

used only to encrypt or decrypt block of data and cannot be categorized as stream

cipher. The number of round that is needed to achieve sufficient security is 254which

is largely bigger than for the two other construction of block ciphers.

9.3 Hardware Implementation Strategies

In this chapter, hardware implementations for both ASICs and FPGAs are discussed.

At the end of the chapter, all the results are generated using Xilinx Spartan 6 FPGA

and Xilinx Spartan 3 FPGA (which does not have the same logical elements) for

prototyping.

Two main strategies are commonly used to implement block ciphers: fullwidth

and serial implementations. These two different implementation strategies are pre-

sented in this section. Other strategies may be used depending on the goal of the

implementation, but all are somewhere between the two and are commonly refer-

enced as partial serial implementations [4].

9.3.1 Fullwidth Hardware Implementation

Fullwidth hardware implementation is probably the most simple strategy that can

be used in order to implement a block cipher. This kind of implementations usually

implements the basic round function of the algorithm once and applies it to the block

of data several times. Each time, the full block is updated and the number of clock

cycles required to encrypt one block is exactly the number of rounds needed to com-

plete the cryptographic algorithm. If one layer of the round operates on a small word

instead of the full state, this function is implemented multiple times in parallel in

order to apply it to the full block of data in one clock cycle. In the exact same way

as for the block of data, the key is transformed by the keyschedule is implemented

only once in the device. If necessary, a subkey is generated before being sent to the

round function and mixed with the state of data.

9 Ultra-Lightweight Implementation in Area of Block Ciphers 183

State register Key register

Encryption
round

Decryption
round

Encryption
keyschedule

Decryption
keyschedule

data_output

data_input Key
p k

p

p

p

k

k

k

sk

sk

Fig. 9.3 General diagram of a fullwidth hardware implementation of a block cipher

This implementation strategy should be the starting point of every work that aims

to reduce the area of the implementation since it is the most naive and simple way to

implement one primitive. In addition, this strategy helps the designer clearly under-

stand the functions involved in the round. Figure 9.3 presents a general diagram of

both encryption and decryption that can be used for every fullwidth implementations

with very small changes depending on the implemented algorithm. In some algo-

rithms, there is almost no keyschedule and in others, part of the round can be shared

between encryption and decryption. In these cases, Fig. 9.3 would simply needs some

modifications to highlight these parts like in Sect. 9.4.2.1 or Sect. 9.4.3.1.

In Fig. 9.3, the plaintext has a length of p which is the size of the block to process,

k is the size of the key, and sk is the size of the round keys. At the end of the com-

putation of the ciphertext, the result is extracted directly from the state register.

9.3.2 Serial Hardware Implementation

This strategy is commonly used to implement block ciphers for lightweight applica-

tions. To successfully implement a block cipher using the serial strategy, each func-

tion needs to be analyzed to find the smallest possible word size that can be used.

184 C. Marchand et al.

A serial hardware implementation tries to use the minimum amount of resources

in the devices using the smallest possible datapath. For this strategy, the execution

time of the block cipher is sacrificed to the advantage of the area. For example, let

us assume an algorithm is designed for block of data comprising 64 bits and that the

used substitution box maps a nibble to another nibble. Instead of implementing 16

sboxes in parallel and processing the full block of data at one go, only one sbox is

implemented for the serial implementation. Thus, to process the full block of data,

the implemented sbox is used 16 times.

This is how serial implementation works; only the minimum number of functions

is implemented and used several times to ensure the correct functionality. To do so,

the state and the key registers are usually transformed into shift registers and only a

small part of them is updated using the reduced round. However, in most cases, the

keyschedule is very difficult to optimize and impossible for some block ciphers. In

this case, the block of data is processed serially and the key is kept during multiple

clock cycles to ensure that all the state of data has been updated using the correct

round key.

However, the full serial hardware implementation strategy is not always the small-

est implementation due to choice and storage penalties that may appear if one func-

tion requires more or fewer bits that the previous one. These penalties include addi-

tional multiplexers or registers and can increase the size of the finite state machine of

the cryptographic core. Nevertheless, this strategy is commonly used as a reference

to prove that a new algorithm is well suited for lightweight applications and requires

only a small area.

The two strategies presented in this section are used in the rest of this chapter. All

block ciphers presented in Sect. 9.4 have been implemented following the fullwidth

and the full serial strategies. The results of hardware implementations are compared

in Sect. 9.5.

9.4 Description of the Implemented Algorithms

9.4.1 Choice of the Algorithms to Implement

Before presenting the four block ciphers implemented in this study, let us explain

how the algorithms have been chosen. At the beginning of the project, eight algo-

rithms were preselected among those presented in the CryptoLux website based

on their specifications, their publication dates, and the availability of test vectors:

Hight, Lblock, Itubee, Lilliput, Present, LED, KLEIN, and Ktantan. Then, all these

algorithms have been implemented using Matlab/Octave to understand them and to

be able to easily generate new test vectors if needed. Additionally, using Octave to

implement these block ciphers also facilitate debugging hardware implementations

because it makes it very simple to show intermediate values which is not the case

9 Ultra-Lightweight Implementation in Area of Block Ciphers 185

with C implementations. All these Matlab/Octave implementations are available on

the SALWARE website [2].

The four algorithms have been chosen by looking at the size of the block to be

processed as well as at the size of the key to use. According to the literature on the

lightweight implementation of block ciphers, the use of a 64-bit block and 80-bit key

is appropriate. Nevertheless, LED has been kept even if the key is 128 bits because

of its very interesting diffusion layer. Table 9.1 gives basic information on the four

selected algorithms: date of publication, references for specifications, the type of

cipher, the size of the block, and the size of the key used in this chapter.

At the end, this chapter compares one Feistel network, one SPN, and one other

construction using the exact same key and block length and one SPN that use a 128-

bit key is also implemented and compared to the other block ciphers.

9.4.2 KLEIN

KLEIN is a block cipher taking a 64-bit block of data in input and can be used with

three key sizes: 64, 80, or 96 bit. It has a SPN construction and the keyschedule is a

variant of a Feistel network. The specifications of this algorithm have been published

in 2012 [12].

To encrypt or decrypt a message of data, the number of round that needs to be

performed depends on the key size and is respectively 12, 16, or 20 rounds for 64-,

80-, and 96-bit key. Each round is composed of the four classical functions used in

others SPN-based cryptographic algorithms:

∙ AddroundKey is the first function and mixes the round key with the state of data

using a bitwise xor.

∙ SubNibbles is the substitution step. It uses an involutive 4-bit sbox. Let us note

S the sbox and x the nibble to process, and the involution property is defined as

follows:

S(S(x)) = x

Thus, the same sbox is used for both encryption and decryption which is very

interesting to reduce the area of the implementation of this cipher.

Table 9.1 Bloc ciphers implemented in this chapter

Algorithm Year Reference Structure Key size(s) Block size(s)

Ktantan 2009 [10] Bloc/Stream 80 64

LED 2011 [14] SPN 128 64

KLEIN 2012 [12] SPN 80 64

Lilliput 2015 [5] GFN 80 64

186 C. Marchand et al.

∙ RotateNibbles is the first function of the diffusion layer and performs a rotation of

two nibbles per round

∙ MixNibbles is exactly the same function as the mix column of the AES algorithm

and completes the diffusion layer.

In this chapter, only the 80-bit key version of the cipher is implemented. One

advantage of this block cipher is the substitution box that is involutive and nibble

wise. This is a real strength since the same sbox is used for encryption and decryption

processes. KLEIN uses the AES mix column operation; the minimum input size for

this layer is 32-bit and the minimum number of output is 8-bit. This choice of mix

operation makes very difficult to implement KLEIN using a datapath smaller than

8-bit. Additionally, the rotation function is 8-bit wise and operates on the full state

which also implies that the minimum datapath is 8-bit.

9.4.2.1 Fullwidth Implementation

For the fullwidth implementation, the sboxes used during the round are shared

between encryption and decryption because of the involution property. Thus, the

round is split into two parts in order to be able to share the SubNibbles function.

Depending on the operation processed (encryption or decryption), the correct input

is selected and the output of this layer is sent to the second part of the round for

both encryption and decryption. Finally, the state is updated using the correct round

output depending on the operation again. For the encryption process, the first part

of the round only contains the AddroundKey and the second part is composed of the

rotation and of the mix operation. On the other side, the first part of the decryption

round contains the mix operation followed by the rotation and the second part only

computes the AddroundKey function.

The keyschedule which is a variant of a Feistel network ensures that the right

round key is correctly mixed with the state at the right time. However, due to its

structure, the last round key has to be computed before starting any decryption oper-

ation that includes an additional latency of 16 clock cycles per decryption.

Figure 9.4 shows the datapath of this fullwidth implementation of the KLEIN

core. Both encryption and decryption are represented.

9.4.2.2 Serial Implementation

To achieve a serial hardware implementation of KLEIN encryption, the state register

is replaced by a shift register with multiple choices at the top of it. Only one byte

is process per clock cycle for the two first functions. The rotation is included in the

choice of the byte to be processed and in the multiplexers on top of the state register.

For the mix operation, 32 bits are required to produce one byte at the output. Thus, an

additional shift register is implemented to wait during the first four clock cycles to be

able to update four bytes during the four following clock cycles. The mix operation

9 Ultra-Lightweight Implementation in Area of Block Ciphers 187

State register Key register

Encryption
round
part_1

Decryption
round
part_2

Encryption
keyschedule

Decryption
keyschedule

data_output

data_input Key

Encryption
round
part_2

Substitution
layer

Decryption
round
part_1

64

64

64

64

64

64

64

64 64

64

80

80

80

80

Fig. 9.4 Fullwidth datapath of KLEIN

itself is optimized to produce only one byte at a time instead of four. This process is

applied twice in order to update the full state.

For the decryption process, a similar structure is used which includes different

choices of the byte to update each clock cycle. In this case, the first operation to

compute is the inverse mix function so the four first clock cycles are dedicated to the

mix operation and the four following to the second part of the round. The process is

also applied twice.

It is not possible to optimize the keyschedule because of its structure, so this

operation is exactly the same as in the fullwidth implementation. Nevertheless, the

correct key is kept and shifted by one byte each clock cycle to provide the correct

byte of the round key at each clock cycle.

To make Fig. 9.5 more readable, only the encryption datapath of the serial imple-

mentation of KLEIN is shown. All the connections are 8 bits except if another size

is noted.

188 C. Marchand et al.

S

Mix nibble

32

16 24

rk

Plaintext

Ciphertext

Fig. 9.5 8-bit optimized datapath of KLEIN encryption

9.4.3 LED

LED is the second algorithm implemented in this study. It is also a SPN but the key

is mixed with the state of data each four rounds. The block size is 64-bit and the key

can be of two different sizes: 64 or 128 bit. This block cipher is organized by step

that contains four rounds. To process data for encryption or decryption, the number

of steps is 8- for 64-bit key and 12- for 128-bit key. This block cipher has been

published in 2011 [14]. In this work, only the 128-bit key version is implemented,

so the number of step to be performed is 12 and the total number of round is 48. A

general schematic for encryption is presented in Fig. 9.6.

As can be seen in Fig. 9.6, the LED block cipher does not contain a keyschedule.

For the 128-bit key version, the round key used is alternatively the 64 less significant

bits of the key and the 64 most significant bits. Additionally, due to number of step,

the order of the part of the key that has to be applied is the same for encryption and

decryption process and no latency is added for the decryption process.

Fig. 9.6 General construction for the 128-bit version of LED

9 Ultra-Lightweight Implementation in Area of Block Ciphers 189

LED’s round is composed of four different functions, namely AddConstants, Sub-

Cells, ShiftRows, and MixColumnSerial.

∙ The AddConstants operation is a bitwise xor which add a value to the half of the

state of data.

∙ The SubCells is the substitution step that uses a 4-bit to 4-bit sbox. This sbox is

not involutive as for KLEIN and the inverse sbox needs to be implemented for

decryption.

∙ Shiftrows is the same operation as in the AES block cipher but operates on nibble

instead of bytes.

∙ The MixColumnSerial is the real strength of this block cipher from implementation

point of view. Indeed, it corresponds to a multiplication of the state by a matrix

but the final operation can be reduced by using a very simple matrix that updates

only one nibble at a time. The inverse operation also has a reduced matrix.

9.4.3.1 Fullwidth Implementation

For the fullwidth implementation of LED, keyschedule and the addition of the key

with the state are shared between encryption and decryption. All the other functions

have to be implemented for the two different operations.

In the encryption round, all four functions are implemented. For the Substitution

layer, the 4-bit sbox is implemented 16 times to apply the function to the full state.

The Shiftrows operation is exactly the same as in the AES algorithms except that it

is apply to nibble instead of byte. The particularity of LED is the mix operation that

uses a reduced matrix to update 16 bits. However, this reduced matrix is implemented

four times in parallel to be able to process the full block of data in this fullwidth

implementation of the cipher.

For decryption, the inverse mix column is also implemented four times using the

reduced inverse matrix. The substitution layer contains 16 times the inverse sbox like

in the encryption process. Figure 9.7 shows the datapath of the fullwidth implemen-

tation of this bloc cipher for both encryption and decryption.

9.4.3.2 Serial Implementation

The strength of the LED block cipher is that the mix operation can be applied serially

to update only one nibble per clock cycle. The only function that requires the full state

to be processed is the shift operation but it can be included in the multiplexers on

top of the state register. Thus, for the serial implementation of LED, a 4-bit datapath

is chosen. The round function takes 32 clock cycles, the first 16 are dedicated to the

first three functions of the round and the 16 next to the mix column operation. For

the decryption process, the first 16 are used to compute the inverse mix column and

the last 16 are dedicated to the other functions of the round. Figure 9.8 presents only

the encryption datapath for the serial implementation.

190 C. Marchand et al.

State register Key register

Encryption
round

Decryption
round

data_output

data_input Key
64

64-bit
rotation

64

64

64

64 64

128

128

128

64
0

Fig. 9.7 Fullwidth datapath of LED

In Fig. 9.8, all the connections are 4-bit wide except for those whose width is

indicated. The state register is replaced by a shift register with additional destinations

for 12 nibble because of the shift operation. The latter function is performed during

the 16th clock cycle of each round. The entire implementation is arranged to operate

using a 4-bit datapath. Only the Mix operation represented by the matrix A takes

16 bits in input. However, even this function computes only a nibble and does not

include a penalty to fall the datapath to 4 bits. Thus, to complete one round of the

LED cipher using this serial implementation, 32 clock cycles are needed.

Finally, all parts of LED are reduced for the serial implementation except the

multiplexers on top of the state register. This is the bottleneck of the implementation

because it might lead to an increase in area. However, all the other functions are

reduced and the total area of this 4-bit optimized datapath is expected to be small.

9.4.4 Lilliput

Lilliput is a block cipher that uses a generalized Feistel network structure. The block

size is 64 bits and the key size is 80 bits. It has been published in 2015 [5].

The strength of the Feistel construction is that the same flow is used for encryption

and decryption. Nevertheless, because there is an additional permutation at the end

9 Ultra-Lightweight Implementation in Area of Block Ciphers 191

S

A

P
la

in
te

xt

4
4

4

4
8

8

16

C
ip

he
rte

xt
K

ey

C
on

st
an

t

Fi
g.
9.
8

4
-
b
it

o
p
ti

m
iz

e
d

d
a
ta

p
a
th

fo
r

L
E

D
e
n
c
r
y
p
ti

o
n

192 C. Marchand et al.

of each round, the inverse permutation needs to be implemented. To process a block

of data, 30 rounds have to be performed.

Each round is composed of three layers. Only the first layer is nonlinear. It is

constructed by a add key step and a substitution step that operates of the first half

of the state. The result of this is XORed to the second half and replaces this last

half of the state. The sbox is a 4-bit to 4-bit substitution. The second layer, named

linear layer, adds some diffusion inside the second half of the state, and finally, the

permutation exchanges the two halves of the state and permutes nibbles inside the

two halves. This permutation step is not performed during the last round.

The keyschedule is constructed using four linear feedback shift registers (LFSR)

that operate 5 nibbles of the key. When all the 80 bits of the key are updated, a subkey

is extracted using the current number of round and the same sbox is used for data.

9.4.4.1 Fullwidth Implementation

For the fullwidth implementation of Lilliput, two layers are shared between encryp-

tion and decryption because of the Feistel structure. The nonlinear and the linear

layers are exactly the same in both modes. It is the case for the permutation because

in addition to exchange the halves of the state, an additional permutation operates on

the nibble of each half. Figure 9.9 shows the fullwidth datapath.

State register Key register

Encryption
keyschedule

Decryption
keyschedule

data_output

data_input Key
64

Non-linear
+

Linear
layers

Encryption
perm

Decryption
perm

Extract
key

64

64

6464

32 80

80

80

80

80

80

80

Fig. 9.9 Fullwidth datapath of lilliput

9 Ultra-Lightweight Implementation in Area of Block Ciphers 193

The schedule is non-optimizable and the key part of the datapath follows the gen-

eral scheme of Fig. 9.3.

9.4.4.2 Serial Implementation

For the serial implementation of Lilliput, the state register is transformed into two

shift registers. Additionally, the nonlinear layer and the linear layer are merged to

form a single function. The permutation is exactly the same because it requires the

full state of data. Figure 9.10 shows the datapath of the serial version of Lilliput.

In Fig. 9.10, all the connections are 4-bit wide except for those whose widths are

indicated. As can be seen in Fig. 9.10, the multiplexers on top of the state registers

increase in size. Instead of choosing between three elements like in the fullwidth

implementation (Fig. 9.9), the serial implementation imposes a first choice between

the two permutations and another choice due to the shift. This structure may result in

a serial implementation that is not really smaller than the fullwidth implementation

of the cipher.

Nevertheless, the nonlinear and the linear layers are really reduced and use only

one sbox and 4 4-bit XORs as are 2 multiplexers and 2 additional 4-bit register.

The fullwidth implementations use height sboxes and 29 4-bit XORs that operate

to a nibble to achieve the same functionality. This may reduce the area of the serial

implementation.

The serial hardware implementation uses multiple clock cycles to perform one

round of Lilliput. Indeed, based on the construction presented in Fig. 9.10, the serial

implementation needs 8 clock cycles instead of 1 to compute one round of Lilliput.

9.4.5 Ktantan

Ktantan is a block cipher with a particular construction that is similar to a stream

ciphers. The size of the key is 80 bits and three sizes are available for the size of the

block: 32, 48, or 64 bits. This block cipher has been published in 2009 [10].

Because of its particular construction, processing a block of data is time consum-

ing and requires 254 rounds. The state is divided into two shift registers. Two simple

combinatorial functions take 6 bits from one of these registers and update the least

significant bit of the other register. Additionally, an LFSR with a cycle of 254 is used

as round counter and also in one of the two functions. The key is burnt during the

operation and 2 bits are generated using the key and the LFSR to serve as round keys.

For the 32-bit version, only one bit per register is updated at each clock cycle.

Two bits are updated for the 48-bit version and 3 bits for the 64-bit version. In order

to update multiple bits at a time, the basic functions are simply implemented 2 or 3

times.

194 C. Marchand et al.

da
ta

_i
np

ut

S

0
K

ey
 re

gi
st

er
+

K
ey

-s
ch

ed
ul

e
+

S
ub

ke
y

ex
tra

ct
io

n

π
-1

π

da
ta

_o
ut

pu
t

ke
y

64
6432

32
42

82
20

8
21

61

64
64

8

8
8

8
12

16
20

24

S
er

ia
l r

ou
nd

8

Fi
g.
9.
10

S
e
r
ia

l
d

a
ta

p
a
th

o
f

L
il

li
p

u
t

9 Ultra-Lightweight Implementation in Area of Block Ciphers 195

9.4.5.1 Fullwidth Implementation

Ktantan has a special construction that does not exactly follow the same scheme as

the others algorithm. The state of data is split into two parts of different sizes. For the

64-bit version, the two basic functions are applied three times per clock cycle and

update three bits at a time. Figure 9.11 shows the encryption datapath of the fullwidth

version of Ktantan with the 64-bit state. The keyschedule is only a selection of some

bits of the key which is burnt during encryption. This selection uses the round counter

as parameter.

Because the two functions (fa and fb) are very simple, they are non-optimizable

and the inverse functions need to be implemented for decryption. The round counter

also needs to be reversed in order to provide the correct selection bit for the key.

9.4.5.2 Serial Implementation

Because of the extremely simple structure of this block cipher, the serial implemen-

tation is achieved by implementing the function f (a) and f (b) once instead of 3 times.

This means the value of the round counter and the value of the key have to be kept

Fig. 9.11 Fullwidth datapath of ktantan

196 C. Marchand et al.

for three clock cycles before to be updated. The state registers are shifted by one bit

each clock cycle instead of three.

As a result, a 2-bit binary counter is added, as are some multiplexers. Neverthe-

less, the area of the serial implementation is expected to be smaller than the fullwidth

implementation.

9.5 Comparison of the Implementation Results

To compare all implementations presented in this chapter fairly, a common frame-

work has been developed. This framework uses a simple controller and a 8-bit inter-

face to send and receive data from the cryptographic core. The datapath and the

controller are completely separated even if execution of the cryptographic algorithm

wrapped in this framework is controlled by the controller. To do so, the only exchange

between the controller and the datapath is control signals that ensure the correct func-

tionality of the core that is used.

On the datapath side, the data and the key are separated from the beginning and

the output of the block cipher is sent to another 8-bit bus. There is no reset that

arrives in the datapath because the entire execution is controlled by the controller

and a reset of this last block is sufficient. Additionally, not including a reset in the

datapath leads to a smaller design since it is not necessary to add a reset value in the

multiplexers on top of the state register.

On the controller side, there is an input of 2 bits that is used to choose the operation

to process; this input is named control (Fig. 9.12). Three outputs provide informa-

tion on the current state of the full system. Because of the simple structure of this

framework, the data sent at the output of the system correspond to the result of the

operation only when the done output of the controller is set to 1.

The choice of 8-bit datapath has been driven by the bigger datapath in all the

serial implementation in this work. Reduce this interface to use only 4 bits which

may result in better results for bloc ciphers using a 4-bit datapath but this will also

lead to unfair comparison.

Figure 9.12 shows the basic schematic of the common framework used to compare

the different implementations presented in the previous section.

The areas of the block cipher implementations on FPGAs are usually compared

using slices which is the basic block of Xilinx FPGAs. Nevertheless, this metric

strongly depends on the family of FPGA used for the implementation. Indeed, two

Xilinx FPGAs from different families do not have the same structure and the slices

are internally different.

For example, between the Xilinx Spartan 3 and the Xilinx Spartan 6 FPGAs fam-

ilies, look up tables (LUT) that are one of the basic elements of FPGA are totally

different as are the entire slices. Xilinx Spartan 3 FPGAs contain two LUTs with four

inputs and one output per slice, while Spartan 6 GPGAs contain four LUTs with six

inputs and two outputs per slice. Knowing this, it is impossible to compare imple-

mentations of block ciphers that have been made on different families of FPGAs

9 Ultra-Lightweight Implementation in Area of Block Ciphers 197

Fig. 9.12 Common framework schematic

using slices as metric. Additionally, a slice is a specific structure of Xilinx FPGAs,

which is not applicable with Altera FPGAs.

Nevertheless, almost all SRAM-based FPGAs are constructed using LUTs and

flip-flops (FFs). Thus, the best metric to compare two implementations that use the

same type of LUTs is to use the amount of FFs and LUTs designs required.

9.5.1 Fullwidth Result

The FPGA that is used in this study is a Xilinx Spartan 6 FPGA (xc6slx16csg324-

3). All implementations have been fully tested using post-place and route simulation

to ensure that the functionality of all block ciphers implemented is correct for both

encryption and decryption modes.

Table 9.2 lists the results of the fullwidth implementations. For each block cipher,

the size of the core itself, the size of the controller of the framework, and the entire

size of the system are presented.

As shown in Table 9.2, Ktantan is the smallest bloc cipher implemented with

only 301 LUTs plus FFs. This is clearly due to its very simple function-based struc-

ture. Lilliput is the second smaller bloc cipher with 444 Luts plus FFs. This can be

explained by the fact that the encryption and the decryption process share 2 layer

over the 3 of this algorithm.

Using the same analysis, of how many parts are shared between encryption and

decryption, it is possible to understand why LED is smaller than KLEIN even if it has

a key length of 128 bits. Additionally, there is no keyschedule in LED. Nevertheless,

those two last ciphers are bigger than Ktantan and Lilliput.

Finally, the number of flip-flops used by each algorithm is very close. Only LED

uses a larger amount of flip flop that is explained by the size of the key. Thus, the real

comparison here is the comparison of the size of the functions that are employed to

198 C. Marchand et al.

Table 9.2 Results of fullwidth implementations

LUT FF LUT + FF

KLEIN Controller 24 13 37

Datapath 604 144 748

Full

implementation

632 157 789

LED Controller 19 13 32

Datapath 515 198 713

Full

implementation

549 211 760

Lilliput Controller 24 13 37

Datapath 229 144 373

Full

implementation

287 157 444

Ktantan Controller 17 7 24

Datapath 143 144 287

Full

implementation

150 151 301

create the cryptographic functionality. This is precious information because it reveals

that the round used in LED is more compact than in KLEIN.

9.5.1.1 Serial Implementation Results

For the serial results, the same order is found between the four different block ciphers,

the smallest is Ktantan, followed by Lilliput; the two others (LED and KLEIN) are

very similar even though KLEIN is slightly smaller. This time, the number of FFs

used by each algorithm is completely different. This can be explained by the choices

presented for the serial hardware implementations of each block cipher. Each one of

them has been carefully designed using specific datapaths.

Table 9.3 presents the results of the implementation of the serial versions of each

cipher.

The size of the controller has increased for all ciphers according to the fullwidth

implementation results. It is the same for the number of FFs implemented. Concern-

ing the number of LUTs used by these implementations, three of them have seen

a reduction: Ktantan, LED, and KLEIN. Only Lilliput increases in the number of

LUTs used for the serial implementation. This can be explained by the size of the

multiplexers on top of the state register. Indeed, their size has increased because of

the permutation function which, in Lilliput, is not optimizable. This function, which

uses the full state of data, is thus clearly one of the main drawbacks for any opti-

mization of this algorithm.

9 Ultra-Lightweight Implementation in Area of Block Ciphers 199

Table 9.3 Results of serial implementations

LUT FF LUT + FF

KLEIN Controller 35 18 53

Datapath 304 176 480

Full

implementation

330 194 524

LED Controller 32 19 51

Datapath 319 198 517

Full

implementation

373 217 590

Lilliput Controller 35 16 51

Datapath 235 180 415

Full

implementation

301 196 497

Ktantan Controller 17 9 26

Datapath 137 144 281

Full

implementation

137 153 290

9.5.2 Comparison of the Results

Table 9.4 compares the results obtained for the complete system for both fullwidth

and serial implementation obtained for Xilinx Spartan 6 (xc6slx16).

The algorithm with the larger reduction is KLEIN even if it is still a little bigger

than the others. As mentioned just before, the serial implementation of Lilliput leads

to a bigger design in Xilinx Spartan 6 FPGAs. The small reduction achieved for

Ktantan is explained by the simplicity of the function to be implemented and the

small margin left for optimization.

Table 9.4 Results of serial implementations on Xilinx Spartan 6 FPGA

LUT FF LUT + FF

KLEIN Fullwidth 632 157 789

Serial 330 194 524
LED Fullwidth 549 211 760

Serial 373 217 590
Lilliput Fullwidth 287 157 444

Serial 301 196 497

Ktantan Fullwidth 150 151 301

Serial 137 153 290

200 C. Marchand et al.

Table 9.5 Results of serial implementations using Xilinx Spartan 3 FPGA

LUT FF LUT + FF

KLEIN Fullwidth 1097 162 1259

Serial 633 194 827
LED Fullwidth 970 211 1181

Serial 555 218 773
Lilliput Fullwidth 604 162 766

Serial 638 205 843

Ktantan Fullwidth 256 151 407

Serial 222 153 375

Results are also generated using Xilinx Spartan 3 (xc3s50) and Table 9.5 shows

the area of the two implementations for each algorithm.

In Table 9.5, our results are compared with others studies targeting implementa-

tion of block cipher for lightweight application using FPGA. Unfortunately, very few

works present results generated using FPGAs for the four algorithms described in

this chapter, and only LED has and the comparison is not easy to do. In [3], authors

implement the LED block cipher for encryption and decryption but using specific

features of the target FPGA. Concerning the results presented in [18], only the

encryption is implemented. In these two studies, the LED block ciphers are opti-

mized for area and speed simultaneously. It is nevertheless possible to remark that

even if these two other works claims to have very compact implementations, Ktantan

is still smaller. Additionally, all the works presented here use only generic compo-

nents such as LUT and flip-flops for encryption and decryption. That is why the given

area for LED is slightly bigger than in [3]. However, the use of BRAM implies that

the given area is not the real result and these memory elements need to be taken into

account.

9.6 Conclusion and Future Works

This chapter presents the implementation and comparison of four different block

ciphers after a quick description of the relatively new field of cryptographic algo-

rithm adapted for lightweight applications. The only constraint explored is the area

of the implemented ciphers and a full serial hardware implementation of each of the

four algorithms has been presented. The fullwidth hardware implementation, which

is the starting point of any hardware implementation work, is also presented. All

implementation results are compared fairly, thanks to a common framework. Unlike

9 Ultra-Lightweight Implementation in Area of Block Ciphers 201

most of other works in this field, this chapter has presented implementation for both

encryption and decryption for all algorithms. If the best candidate for lightweight

applications that only needs small area has to be selected from this chapter, Ktantan

seems to have the best potential since it is extremely small (290 LUTs plus FFs).

To complete this study, it will be interesting to explore the influence of the inter-

action between the controller and the datapath on the area of the implementations.

Indeed, recent development on this four block ciphers shows that the state encod-

ing may have a strong influence on the implementation results and future researches

need to be perform at this point. Additionally, find a way to estimate how much an

algorithm can be reduce from the fullwidth implementation which will also be a big

improvement in the area-efficient implementation research field. Finally, understand

how to deal with the sizes of the different functions such as permutations, keysched-

ule, and multiplexers is one of the key points to really reduce the area used by any

hardware implementation of any algorithm because they usually are the bottleneck

for optimized designs as shown in this chapter.

Acknowledgements The authors would like to thank all the CERG team of George Mason univer-

sity for all the very fruitful discussion and debate during the implementation work.

The work presented in this paper was carried out in the framework of the SALWARE project number

ANR-13- JS03-0003 supported by the French Agence Nationale de la Recherche and by the French

Fondation de Recherche pour lAronautique et lEspace.

References

1. https://www.cryptolux.org/index.php/lightweight_block_ciphers

2. http://www.univ-st-etienne.fr/salware/block_ciphers_implementation.htm

3. S. Bangari, E. Elavarasi, Fpga implementation of data encryption and decryption using opti-

mized led algorithm

4. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers, The simon and

speck families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404,

2013, http://eprint.iacr.org/

5. T. Berger, J. Francq, M. Minier, G. Thomas, Extended generalized feistel networks using

matrix representation to propose a new lightweight block cipher: Lilliput. IEEE Trans. Comput.

PP(99), 1–1 (2015). doi:10.1109/TC.2015.2468218

6. A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y. Seurin, C.

Vikkelsoe, Present: an ultra-lightweight block cipher, in Cryptographic Hardware and Embed-
ded Systems - CHES 2007, ed. by P. Paillier, I. Verbauwhede. Lecture Notes in Computer Sci-

ence, vol. 4727. (Springer, Berlin, 2007), pp. 450–466. doi:10.1007/978-3-540-74735-2_31

7. L. Bossuet, D. Hely, Salware: salutary hardware to design trusted ic, in Workshop on Trust-
worthy Manufacturing and Utilization of Secure Devices, TRUDEVICE 2013 (2013)

https://www.cryptolux.org/index.php/lightweight_block_ciphers
http://www.univ-st-etienne.fr/salware/block_ciphers_implementation.htm
http://eprint.iacr.org/
http://dx.doi.org/10.1109/TC.2015.2468218
http://dx.doi.org/10.1007/978-3-540-74735-2_31

202 C. Marchand et al.

8. P. Chodowiec, K. Gaj, Very compact fpga implementation of the aes algorithm, in Crypto-
graphic Hardware and Embedded Systems - CHES 2003, ed. by C. Walter, E. Ko, C. Paar.

Lecture Notes in Computer Science, vol. 2779. (Springer, Berlin, 2003). doi:10.1007/978-3-

540-45238-6_26

9. J. Daemen, V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard.

Information Security and Cryptography (Springer, 2002). doi:10.1007/978-3-662-04722-4

10. C. De Cannire, O. Dunkelman, M. Kneevi, Katan and ktantan a family of small and efficient

hardware-oriented block ciphers, in Cryptographic Hardware and Embedded Systems - CHES
2009, ed. by C. Clavier, K. Gaj. Lecture Notes in Computer Science, vol. 5747. (Springer,

Berlin, 2009), pp. 272–288. doi:10.1007/978-3-642-04138-9_20

11. T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, L. Uhsadel, A survey of lightweight-

cryptography implementations. IEEE Des. Test Comput. 24(6), 522–533 (2007). http://doi.

ieeecomputersociety.org/10.1109/MDT.2007.178

12. Z. Gong, S. Nikova, Y. Law, Klein: A new family of lightweight block ciphers, in RFID.
Security and Privacy, ed. by A. Juels, C. Paar, Lecture Notes in Computer Science, vol. 7055

(Springer, Berlin, 2012), pp. 1–18. doi:10.1007/978-3-642-25286-0_1

13. T. Good, M. Benaissa, Aes on fpga from the fastest to the smallest, in Cryptographic Hard-
ware and Embedded Systems CHES 2005, ed. by J. Rao, B. Sunar, Lecture Notes in Computer

Science, vol. 3659. (Springer, Berlin, 2005), pp. 427–440. doi:10.1007/11545262_31

14. J. Guo, T. Peyrin, A. Poschmann, M. Robshaw, The led block cipher, in Cryptographic Hard-
ware and Embedded Systems CHES 2011, ed. by B. Preneel, T. Takagi, Lecture Notes in

Computer Science, vol. 6917. (Springer, Berlin, 2011), pp. 326–341. doi:10.1007/978-3-642-

23951-9_22

15. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.S. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H.

Kim, J. Kim, S. Chee, Hight: a new block cipher suitable for low-resource device, in Crypto-
graphic Hardware and Embedded Systems - CHES 2006, ed. by L. Goubin, M. Matsui, Lec-

ture Notes in Computer Science, vol. 4249. (Springer, Berlin, 2006), pp. 46–59. doi:10.1007/

11894063_4

16. F. Karako, H. Demirci, A. Harmanc, Itubee: a software oriented lightweight block cipher, in

Lightweight Cryptography for Security and Privacy, ed. by G. Avoine, O. Kara, Lecture Notes

in Computer Science, vol. 8162. (Springer, Berlin, 2013), pp. 16–27. doi:10.1007/978-3-642-

40392-7_2

17. B.J. Mohd, T. Hayajneh, A.V. Vasilakos, A survey on lightweight block ciphers for low-

resource devices: comparative study and open issues. J. Netw. Comput. Appl. 58, 73–93 (2015).

doi:10.1016/j.jnca.2015.09.001

18. N. Nalla Anandakumar, T. Peyrin, A. Poschmann, A very compact fpga implementation of Led

and photon, in Progress in Cryptology INDOCRYPT 2014, Lecture Notes in Computer Science

(Springer International Publishing, 2014), pp. 304–321. doi:10.1007/978-3-319-13039-2_18

19. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai, Piccolo: an ultra-

lightweight blockcipher, in Cryptographic Hardware and Embedded Systems CHES 2011, ed.

by B. Preneel, T. Takagi, Lecture Notes in Computer Science, vol. 6917. (Springer, Berlin,

2011), pp. 342–357. doi:10.1007/978-3-642-23951-9_23

20. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata, The 128-bit blockcipher clefia

(extended abstract), in Fast Software Encryption, ed. by A. Biryukov, Lecture Notes in Com-

puter Science, vol. 4593. (Springer, Berlin, 2007), pp. 181–195. doi:10.1007/978-3-540-

74619-5_12

21. F.X. Standaert, G. Piret, N. Gershenfeld, J.J. Quisquater, Sea: a scalable encryption algorithm

for small embedded applications, in Smart Card Research and Advanced Applications, ed. by

J. Domingo-Ferrer, J. Posegga, D. Schreckling. Lecture Notes in Computer Science, vol. 3928.

(Springer, Berlin, 2006), pp. 222–236. doi:10.1007/11733447_16

22. N.I. Technology of Standards, Data encryption standard. Federal Information Processing Stan-

dards (FIPS), Publication 46 (1977)

http://dx.doi.org/10.1007/978-3-540-45238-6_26
http://dx.doi.org/10.1007/978-3-540-45238-6_26
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://doi.ieeecomputersociety.org/10.1109/MDT.2007.178
http://doi.ieeecomputersociety.org/10.1109/MDT.2007.178
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://dx.doi.org/10.1007/11545262_31
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/978-3-642-40392-7_2
http://dx.doi.org/10.1007/978-3-642-40392-7_2
http://dx.doi.org/10.1016/j.jnca.2015.09.001
http://dx.doi.org/10.1007/978-3-319-13039-2_18
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/11733447_16

9 Ultra-Lightweight Implementation in Area of Block Ciphers 203

23. T. Suzaki, K. Minematsu, S. Morioka, E. Kobayashi, TWINE: a lightweight block cipher for

multiple platforms, in Selected Areas in Cryptography, 19th International Conference, SAC
2012, Windsor, ON, Canada, 15–16 Aug 2012, Revised Selected Papers, pp. 339–354 (2012).

doi:10.1007/978-3-642-35999-6_22

24. W. Wu, L. Zhang, Lblock: a lightweight block cipher, in Applied Cryptography and Network
Security, ed. by J. Lopez, G. Tsudik. Lecture Notes in Computer Science, vol. 6715. (Springer,

Berlin, 2011), pp. 327–344. doi:10.1007/978-3-642-21554-4_19

http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-21554-4_19

Chapter 10
Enhancing Secure Elements—Technology
and Architecture

Bertrand Cambou

10.1 Introduction

In the past 20 years secure microcontrollers were successfully implemented to
create a new class of devices, the smartcards, which have been widely popular to
secure handheld terminals in the form factor of SIM cards (Subscriber Identification
Module), banking cards, and access cards (ID and transport). About 8 billion of
these components are manufactured annually to fulfill the demand. Initially these
microcontrollers were manufactured with embedded EEPROM which is now often
replaced by Flash to reduce costs. Secure microprocessors, also called “Secure
Elements,” are in the process of being widely deployed to enhance hardware
security of cyber-physical systems (CPS), Internet of Things (IoT), Automotive,
smart grid, and many other sensitive systems. Public Key Infrastructure (PKI), an
architecture which relies on private cryptographic keys that are kept secret, has been
accepted as a way to authenticate users. The success in the adoption of Secure
Elements was based on their capability to precisely store these private crypto-
graphic keys for PKI; as well as their ability to perform powerful cryptographic
computations such as encryption, decryption, and authentication. The efforts to
further enhance secure elements through new Nano-technologies and novel archi-
tectures are of strategic importance to reduce cyber-crimes, and to develop a new
economy based on trustworthy secure e-commerce.

B. Cambou (✉)
Northern Arizona University, 3452 S. Pimlico Court, Flagstaff, AZ 86005, USA
e-mail: Bertrand.Cambou@nau.edu

© Springer International Publishing AG 2017
L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,
DOI 10.1007/978-3-319-50380-6_10

205

10.2 General Description

Secure elements [1–5] contain integrated microcontrollers with 32–64 bit RISC
engine, a crypto-processor with capability to perform encryption/decryption algo-
rithms such as RSA, ECC, AES, and DES. About 10–30 KB of SRAM are usually
embedded within the CPU and the crypto-processor. The embedded nonvolatile
memories have a capacity of 100 KB to 1 MB and are driven by a secure memory
management unit (MMU). The architecture also includes peripheral interfaces,
analog and glue logic, power management, and internal clock generators. A sim-
plified block diagram is described in Fig. 10.1. International standards such as
ISO/IEC 7816 specify contact-based smart cards, while ISO/IEC 14443 or 18092
specify contactless identification cards. The Global Platform alliance has success-
fully driven a standardization of the operating systems (OS) along Java-card and
Multos. This has allowed the development of third-party value added applications,
or Applets, cryptographic methods, deployment of the public key infrastructure
(PKI), and client management systems (CMS). Embedded secure elements
(eSE) are directly integrated within the final devices, such as a mobile phone. “eSE”
does not require the same level of standardization as smart cards, and costs can be
reduced by eliminating the micro-module and separate connectors. In wireless
applications the business model of eSEs is different than SIM cards, e.g., they are
not removable from the phone, so a user cannot change carrier or phone while
keeping its SIM card.

10.2.1 Encryption and PKI Deployment

Cryptography is an important technology for SEs, we are summarizing some ele-
ments as background information for this chapter, [6, 7]. If P is the plain text that

Fig. 10.1 Block diagram of a secure element

206 B. Cambou

need to be encrypted, KS is the symmetrical key, and E is the encryption algorithm,
the cypher C is given by the Eq. (10.1), and can be decrypted with algorithm D and
the same key:

C=E ðP, KSÞ ð10:1Þ

P=D ðC, KSÞ ð10:2Þ

The Data Encryption Standard (DES) algorithm based on 56 bit keys, developed
by IBM and the US government in the 70’s, is inadequate for high security
applications. It has been replaced frequently after 2000 by the Advanced Encryp-
tion Standard (AES) algorithm that is based on 128 bit keys or larger, as developed
by Joan Daemen and Vincent Rijmen; AES is also called the Rijndael code.
Both DES and AES algorithms are usually ported into secure elements to perform
basic encryption/decryption function. Symmetrical encryption methods are very
effective and play an important role in hardware authentication. However, these
methods are not appropriate to handle large groups of users. The invention of
asymmetrical cryptography in the 70’s has been widely adopted for this purpose to
secure CPS, mobile and fixed users, access control, and IoT. Each user (i) has two
unique cryptographic keys, a public key KPU-i that is shared with other users, and a
private key KPR-i that is kept secret (Note: in the case of IoT, and secure elements,
both private and public keys are kept secret). These two keys have a level of
symmetry with each other: It is possible to encrypt with one key, public or private,
and to decrypt the result with the other key. Two cyphers C1 and C2 can be created
from these two keys following the equations:

C1=E ðP, KPU− iÞ; P=D ðC1, KPR− iÞ ð10:3Þ

C2=E ðP, KPR− iÞ; P=D ðC2, KPU− iÞ ð10:4Þ

The method allows two users (i) and (j) to communicate with each other after
exchanging their public keys; the user (i) can send the cypher Ci to user (j) who can
decrypt it to retrieve P:

Ci=E ½E ðP, KPR− iÞ, KPU− j� ð10:5Þ

P=D ½D ðCi, KPR− jÞ, KPU− i� ð10:6Þ

In this double encryption method, users (i) and (j) keep their private key secret
from each other. This can offer multiple benefits to the communication:

• Electronic (digital) signature of user (i). User (j) knows that the message
originates from (i) because it is assumed that only (i) possess the private key
KPR-i. So, E (P, KPR-i) can be considered as an electronic signature.

• Protection of the user (j). The only way to decrypt Ci is to possess the private
key KPR-j that is kept secret by user (j).

10 Enhancing Secure Elements—Technology and Architecture 207

• Non-repudiation. To seal the transaction user (j) has to send back to user (i) an
encrypted digital signature.

The commercial deployment of asymmetrical cryptography is called public key
infrastructure, (PKI). Secure elements were instrumental in the deployment of PKI
to enhance access control. In the late 70’s Ronald Rivest, Adi Shamir and Leonard
Adleman developed a beautiful algorithm carrying their name, RSA [7], that pro-
vides an effective asymmetrical encryption and decryption method. The method
exploits the number theory, and in particular the Euler–Fermat theorem; the private
and public keys are inverse modulo numbers. To this date the algorithm has been
proven as unbreakable; powerful quantum computers might challenge this state-
ment in the future. RSA tends to be highly computing intensive, and several orders
of magnitude slower than AES. This is no longer a limitation as the compute power
of secure elements is now appropriate. Alternate asymmetrical algorithm such as
those based on elliptic curves (ECC) are much lighter than RSA, and are widely
deployed on the cost-sensitive versions of secure elements. In order to strengthen
both symmetrical and asymmetrical cryptography, it is important to add functions
H based on random numbers generators (RNG) to the plain texts P. For example
Eq. (10.1) and (10.2) can be written the following way:

C=E ðP+H, KSÞ ð10:7Þ

P+H=D ðC, KSÞ ð10:8Þ

In this example both P and H are described by a binary stream of data, and
P length is known by the receiving party. P + H is much longer and complicated to
decrypt than P to prevent third-party attack. Secure elements need to have a high
quality RNG integrated into the component to encrypt important information.

What to remember: Secure elements are an essential part of the effective
deployment of PKI. They act like vaults hiding cryptographic keys, the private keys
for RSA or ECC, and the symmetrical AES keys. Secure embedded non-volatile
memories (NVMs) that store these keys are therefore critical. The crypto-proces-
sors that decrypt and encrypt messages need access to strong RNGs.

10.2.2 Multi-function Authentication

In asset, and people protection there is a major difference between “identification”
and “authentication. “Identification” does not have to be secret as long as they are
clear, unique, and unambiguous. “Authentication” is a way to prove that the person
or the object is the right one. Authentication factors have to be absolutely secret,
however, they do not have to be unique as long as they can offer a high level of
certainty of a match between the person or object involved in the transaction and the
ones expected. For example a nice picture with a first and last name are good

208 B. Cambou

identification factors, but are not secret and cannot be authentication factors; pin
codes are not unique, and cannot be an identification factor, however can be an
acceptable authentication factor when kept confidential. In most e-transactions the
subject has to provide its ID number as well as the secret password for authenti-
cation. The authentication factors are the first line of defense to prevent hackers
from breaking a system. Both identification and authentication factors are stored
permanently in secure elements, the users have to provide fresh authentication
factors when they wish to access a service. The full authentication cycles are done
within the secure elements to enhance secrecy [8, 9].

Authentication factors include pin codes, passwords, biometric prints such as
finger print, iris, blood vessels in the fingers, facial features, and voice, as well as
hardware prints such as PUFs that exploit micro variations occurring during inte-
grated circuit fabrication. The use of multiple factors, also referred to as
multi-function (or multi-factor) authentication is expected to be stronger than a
single authentication that is based on only one factor. Trustworthy authentications
incorporate cryptography to increase the secrecy of system.

Authentication methods have to reduce both the false rejection rates (FRR) re-
sulting in false negative authentication, and the false acceptance rates (FAR) re-
sulting in false positive authentications, see Table 10.1. False negatives are frequent
with biometry considering that human-based prints are not constant. Fingerprint
authentication frequently faces high FRR. Error correction is shown to reduce FRR
[10, 11]. However, may also correct hostile messages thereby increasing FAR.

What to remember: SEs are utilized to provide reliable multi-function authenti-
cation for access control. The metrics to quantify the quality of the authentications
are FRR for false negatives, and FAR for false positives.

10.2.3 Embedded Secure Memories—Utilization of Flash

Embedded memories of secure elements (SE) have to store client-related databases,
all cryptographic and authentication keys, the operating systems, and act as cache
memory for the processor. The size of the embedded memories varies from a few
k-bits for ID and RFID applications to the M-byte level for high-end applications.
At low densities EEPROM is the preferred technology due to its excellent array
efficiency. For low power and low density applications ferroelectric memories,
FeRAMs, secured a niche market, and have the potential to expand. The dominant
technology for SEs remains embedded flash [12, 13], this is due to its low cost at

Table 10.1 False rejection
rates (FRR); False acceptance
rates (FAR)

Response to test Correct ID False ID

Positive
authentication

Correct False (high
FAR)

Negative
authentication

False (high
FRR)

Correct

10 Enhancing Secure Elements—Technology and Architecture 209

high density, and ability to shrink to the 32 nm lithographic node. NOR has been
the architecture of choice for embedded flash, however embedded NAND was also
successfully introduced to reduce the size of the arrays. A cross-section of a flash
cell is presented Fig. 10.2.

The basic principle of flash is the modulation of the threshold voltage of the
metal–oxide–semiconductor (MOS) transistor by selectively trapping electrons in a
floating/trapping gate (TG). “1s” are programmed by injecting electrons in the TG,
thereby increasing the threshold voltage of the transistor. In NOR flash the electrons
are injected through the thin dielectric, also called tunnel, using channel hot elec-
trons (CHE). The energy to “heat” the electrons is added by applying at least 3.5 V
between source and drain, the injection occurs near the drain. In NAND flash the
electrons are directly injected by Fowler Nordheim (FN) effect through the tunnel
oxide. If ΔV is the voltage differential across the tunnel dielectric, Tox its thick-
ness, A and B are physical parameters, the current J circulating through the
dielectric is

J=A(
ΔV
Tox

)2e−B ð̸ΔVToxÞ ð10:9Þ

The tunnel dielectric has to be thick enough, above 5 nm, to retain information
and prevent charge losses, so the voltage VBG necessary to program a NAND flash
cell has to be large enough, usually greater than 15 V. Both CHE and FN require
high voltage transistors that are expensive to integrate with high density logic. The
programming cycles are done step by step to avoid over-programming conditions.
Multi-bits per cell are commonly obtained by modulating the electrostatic charges
in the TG, thereby creating multiple levels of threshold voltage. For 2-bits per cell,
4 levels are needed, for 4-bits per cell, 16 levels are needed. Traditional Flash cells
use floating polysilicon gate to trap these electrons. There is a growing interest to
replace the polysilicon with silicon rich silicon nitride TG to reduce the thickness of
the structure, and cell to cell electrostatic interactions for high density flash
memories. Mirror bit technology can get 2-bits per cell by trapping charges in a
non-conductive nitride TG, one bit near the source, the other one near the drain.

Fig. 10.2 Flash cell

210 B. Cambou

The read cycles are based on sensing the source drain currents that are different
for “0”s and “1”s. During erase cycles the negative charges are removed from the
trapping gate by FN effect to return to the original threshold voltage. Typically
embedded flash memories have an endurance of 100,000 program-erase cycles.

Vulnerability and limitations of flash memories: Crypto-analysts and hackers
developed very effective methods and side channel analysis’ to extract the content
of flash memories. In most cases they are exploiting the fundamental physical
properties of the cells and the way they operate. The protection of the information
stored in secure elements is critical for the integrity of cryptographic operations.
A summary of the vulnerability of flash is shown on Table 10.2.

• Differential Power Analysis (DPA): DPA or single power analysis (SPA) is
based on the measurement of the current on ground PIN during operation with a
fast signal analyzer [14]. During the read cycles the “0”s and “1”s drive different
currents that are visible with DPA, thereby exposing confidential information,
and keys.

• Electromagnetic interferences analysis (EMI): The current circulating through
the data bus which connects the memory and the processor is measured by a
magnetic sensor placed above the chip, and a signal analyzer. Like DPA, the
method differentiates the “0”s from the “1”s.

• Physical attacks: The passivation and the metal layers are removed to allow
Secondary Electron Microscopy (SEM) to detect the charges trapped in the flash
cells differentiating the “0”s and the “1”s. The method also allows the detection
of the number of program-erase cycles which leave behind charges trapped
within the tunnel dielectric.

• Thermal decoration: Liquid nitrogen allows the deposition of ice on the
chip. The hot spots where electric current circulate melt and decorate the ice.
The high power flash technology is vulnerable to these attacks.

Table 10.2 Vulnerability analysis

Analysis Description Flash vulnerability

DPA/SPA Differential Power Analysis “0”
and “1” drive different currents

• Highly vulnerable during read
cycles

• Also vulnerable during
programming

EMI Measure the currents on the bus
connecting the memory blocks

• Very effective on Flash. Magnetic
shielding is rarely used

Physical attacks
Delayering, SEM

Electron microscopy can extract
the charges trapped in the cells

• Charges in the TG deflect
e-beams

• Electrons trapped in the thin
oxides

Thermal
decoration

Cold spray (liquid nitrogen)
decorate hot spots in the memory

• Differentiate “0” and “1” after
Read cycle due to the high
currents

10 Enhancing Secure Elements—Technology and Architecture 211

Flash memory has also the following limitations for secure elements:

• High voltage, high power: The programming-erase cycles of flash devices need
high operating voltages (10–18 V). This is challenging for applications, such as
RFID, that are power sensitive.

• Slow operation: Flash is about 5X slower to read than other memories, and
orders of magnitude slower to program. This could open opportunities for the
crypto-analyst due to the slowness the crypto-processor.

• Complex manufacturing: About 10 additional masking levels are needed to
manufacture embedded flash products above and beyond of the basic CMOS
flow. It is doubtful that embedded flash will be the preferred solution for secure
processors below the 28 nm node. Candidate technologies to replace flash in the
embedded space include ReRAM, and MRAM. The usage these technologies
for SEs is covered in the following sections.

What to remember: Embedded flash is currently the mainstream technology for
mid- to high-end secure elements. However, crypto-analysts are now armed with
effective methods to extract the confidential information stored in flash memories.

10.3 Usage of Advanced Memory Technologies

10.3.1 Comparison with Resistive RAM, and Magnetic RAM

ReRAM cells [15–17] are based on Nano-materials inserted between two elec-
trodes switching back and forward between Low Resistivity States (LRS) for “0s,”
and High Resistivity States (HRS) for “1s.” Nano-materials such as metal oxides
behave as solid electrolytes. As it is shown in Fig. 10.3 the basic principle behind
ReRAM, and the switch between LRS and HRS, is the reversible formation of
highly conductive filaments between the electrodes. These conductive filaments
consist of positively charged oxygen vacancies, or metal ions, migrating toward the
cathode. The power necessary to operate ReRAM cells is small compared with
flash, and the switching times are lower. Current industrial R&D investments in
ReRAM are massive, and this technology is expected to play a major role for future
SEs. Unlike flash, ReRAM can be embedded at advanced CMOS nodes without
adding too much complexity, due to its compatibility with low power and main-
stream manufacturing processes.

Magnetic RAM: Like ReRAM cells, [18], MRAM cells can switch back and
forward between the two states HRS and LRS, see Fig. 10.4. The cells consist of
two magnetic domains, a fixed reference, and a second domain that can be pro-
grammed in two different directions. A tunnel layer usually made of thin Magne-
sium or Aluminum Oxides separates the two domains. When the magnetization of
the two domains is aligned, the resistivity of the tunnel oxide is low (LRS) due to
the giant magnetoresistance effect; when anti-aligned the resistivity is high (HRS).

212 B. Cambou

In the example shown in Fig. 10.4, the domains have vertical magnetization, and
the programming method called STT or spin torque transfer is based on the cir-
culation of a current through the structure. Other MRAMs are based on horizontal
magnetization and the circulation of a separate current to program the cells through
magnetic field. The small ratio HRS/LRS for MRAMs (about 2 for MRAM com-
pared with 100 or more for ReRAM) is hard to master in volume manufacturing.

Back-to-back comparison: The typical parameters for embedded flash, ReRAM,
and MRAM are compared in Table 10.3. For each technology there are large
variations, depending on the lithography nodes, the suppliers, and the type of
structures. Flash data is the most reliable because ReRAM and MRAM are not yet
running in volume production. However, it is clear that embedded flash memories
are slower and operate at higher power.

Fig. 10.3 ReRAM cell

Fig. 10.4 Vertical STT MRAM cell

10 Enhancing Secure Elements—Technology and Architecture 213

• Programming: The ReRAM cells can switch back and forward between the
HRS and the LRS with a few volts, μA currents, and below 10 ns. In MRAMs
both STT, and TAS need relatively high currents during programming cycles.
Flash can run into an over-programming cycle, and needs to be erased before
reprogramming. ReRAM and MRAM do not need erase cycles before pro-
gramming. For all three technologies the number of guaranteed program-erase
cycles is greater than 100 thousand cycles, with retentions in excess of 10 years.

• Read: Unlike flash, both ReRAMs, and MRAMs can be read quickly at constant
current, thereby minimizing exposure to side channel attacks. The high
HRS/LRS ratio of ReRAM is particularly attractive to minimize read errors.
With flash, charges get trapped in the tunnel oxide during program-erase cycles,
so the threshold voltages are drifting faster with the cells that are frequently
switched from the two states; the cells storing cryptographic keys tend to be
re-programmed less often, and could stick out during crypto-analysis. At its
forefront, it has been claimed that both ReRAM and MRAM can reach read
access times of 1 ns versus 50 ns for flash.

• Erase: It is possible to quickly erase ReRAM at low voltage, low current, and in
a few ns. This feature is important when a real-time attack of the SE is detected.
With flash, crypto-analysts can clamp down Vcc below 1.5 V during side
channel attacks preventing a defensive erase cycle and freely analyze the device.
During the life cycle of SEs it is also required to reprogram some of the
cryptographic keys, this is faster with ReRAMS.

Table 10.3 Typical parameters flash—ReRAM—MRAM

Operation Flash ReRAM MRAM

Program Physics Inject charges Form filament Domain
orientation

Parameter NOR VDS = 5 V; NAND
VGB = 15 V

Vset = +2 V Current: 500 μA

Power 1 mj/bit 10 pj/bit 100 pj/bit
Speed (ns) 5,000 ns/block 2–20 ns 2–20 ns

Read Physics S-D current Resistance Resistance
Parameter Voltage: 10 mV Current: 1–20 μA Current: l–20 μA
Power (pj) 10 pJ 1 pJ 1 pJ
Speed (ns) 50 ns 2–20 ns 2–20 ns

Erase Physics Remove charges Program LRS Program LRS
Parameter VGB = 15 V Vreset = −2 V Current: 500 μA
Power (pj) 10 μJ/bit 10 pJ/bit 100 pJ/bit
Speed (ns) 1,000 ns/block 2–20 ns 2–20 ns

214 B. Cambou

What to remember: The back to back comparison of flash, ReRAM, and MRAM
for SEs is favorable to ReRAM due to its low power and fast access time. Flash
benefit from its legacy position for now, and MRAM lacks manufacturability.

10.3.2 Usage of Content Addressable Memories (CAM)

Internet Protocol (IP) routers and high-performance microprocessors are currently
using CAM to accelerate the rate of pattern matching per second. Large CAMs
contain data bases of IP addresses that are compared at once with one particular IP
address, the input pattern. CAM has a parallel architecture that extracts the location
in the memory of these matching IP addresses. The comparison of the input pattern
with thousands of IP addresses are done “in situ” without ever reading the input
pattern. At the level of each cell, the stored bits are XORed (XOR is the Boolean
instruction ⊕ defined by: 0 ⊕ 0 = 0; 1 ⊕ 1 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1) with
the bits from the input pattern. Each CAM cell typically contains two 6T SRAM
cells, one for the stored bits, one for the input bit, and an XOR logic element.

Beside SRAM, there are methods to design a CAM architecture with flash,
ReRAM or MRAM [19–21]. Figure 10.5 shows an example of CAM cell design
with ReRAM. In this example two pin codes are stored in the ReRAM. During
cycle-1 of the authentication, the four XOR engines (C1, C2, C3, C4) compare
pin-1 (the stored pattern is U1110U) with the input data U0010U; then pin-2
U0010U is compared during cycle 2 of the authentication with the same input data,
this is the matching pin. In case of a mismatch the parallel architecture will not
disclose which bit is a miss. This design, of Fig. 10.5, can be generalized by
increasing the width of the compare elements to words as large as thousand bits

Fig. 10.5 CAM architecture with ReRAM

10 Enhancing Secure Elements—Technology and Architecture 215

rather than 4, and by adding parallel elements to perform multiple compare cycles at
once. When embedded within secure elements, the CAM architecture can be very
effective in performing some important authentication functions such as password
check, pin code verification, or PUF challenge-response pairs (CRP) matching. This
method can resolve a weakness inherent with traditional RAM architecture where
password or pin codes are extracted from the memory array for authentication,
exposing the information to crypto-analysts. One of the side channel analyses to
extract secret keys is to bring bad keys to the secure element, and to observe the
transfer of data between the memory block and the processing element. The ability
to directly compare an input key with stored patterns in a CAM eliminates this
potential attack. This solution is not applicable for all cryptographic primitives. For
example private key needs to be extracted from the secure memory to decrypt
messages encrypted with the public key. It is then desirable to have both a RAM,
and a CAM architecture available in the SE to manage the multiple keys and
cryptographic primitives:

• Storage in the embedded RAM: asymmetric keys (RSA, ECC public and private
keys), symmetric keys (DES, AES…), biometric minutia.

• Storage in the CAM: pin codes, passwords, PUF responses, biometric print.

What to remember: Authentications such as in situ password verification can
benefit from CAM architectures and reduce the exposure to crypto-analysis. RAM
architecture is still needed for cryptographic key storage.

10.4 Usage of Physically Unclonable Functions

10.4.1 PUFs Within Secure Elements

PUFs act as virtual fingerprints for the hardware, and can provide unique signatures
during the authentication processes [22, 33]. The inherent randomness, and
uniqueness of the PUF can be derived from the natural variation obtained during the
manufacturing of memory blocks. The underlying mechanism of a PUF is to exploit
the variation of the physical parameters of the memory cells to generate an initial
digital “fingerprint” called a challenge (i.e., input) of typically 128 bits. This
challenge is sent to a secure server for reference. The PUF can generate fresh
responses (i.e., output), and produce a set of Challenge-Response-Pairs (CRPs) that
are matching during positive authentications.

The CRPs have to be reproducible, and easy to recognize during the authenti-
cation process with minimization of both FAR and FRR, see Table 10.1. As shown
on Fig. 10.6, 6T SRAM memory arrays are good PUF candidates. Each SRAM
cell, when tuned on, has the opportunity to switch as a “0” or a “1,” however due to
small manufacturing asymmetries some cells will always prefer one side. As a result
a PUF array consisting of multiple SRAM cells can generate reproducible

216 B. Cambou

challenges and responses. This method has been exploited for commercial
authentications. Such PUFs have a number of limitations and lack trustworthiness
that could create a false sense of security. One major concern is the exposure to
hacker, and their ability to extract un-encrypted PUF responses, which largely
defeats the value of the method. There is value to embed the PUF within a secure
encrypted elements that can decrypt the challenges coming from the secure server,
see Sect. 10.2.1, and thereby perform “in situ” authentication. Below is an example
of authentication with secure element:

• Assumption 1: the SE A generates a PUF challenge CA that was downloaded to
the server B, it has RSA keys KprA and KpuA, an identification IDA, and an
AES key Ks. The PUF generates responses to RAi for each authentication “i,”
and hash functions HAi1 and HAi2 based on its own RNG.

• Assumption 2: the secure server B has the keys KprB, KpuB, and Ks, as well as
a data base with the information related to A that includes CA, KpuA, and IDA,
and can generate the hash function HBi.

In this example the authentication is done in three steps: Step 1 the SE A sends
its encrypted identity IDA to the server B; Step 2 B sends an encrypted challenge CA

to A; Step 3 A performs the CRP matching to authenticate B, if positive A send
back to B the certificate IDA + CA:

C1=E E IDA, Ksf gð Þ+HAi1, KpuBð Þ ð10:10Þ

C2=E ½E ðE CA, Ksf g+HBiÞ, KprB�, KpuA� ð10:11Þ

C3=E ½E ðEf IDA +CA, Ksf g+HAi2, KprAÞ, KpuB� ð10:12Þ

Such an authentication protects for both parties, A identifies B with the PUF, and
B identifies A with its ID and asymmetrical key. The concept of non-repudiation
was incorporated in this communication, because both the SE and the server did use
their secret private key in the process.

Fig. 10.6 PUF with SRAM

10 Enhancing Secure Elements—Technology and Architecture 217

What to remember: Embedding PUFs, which are acting as hardware “finger-
prints,” within secure elements strengthens the authentication processes, and
allows all communication between the SE and the server to be encrypted.

10.4.2 PUFs with Embedded Memories

In addition to SRAM, PUFs can be generated from DRAM, ReRAM, MRAM, and
flash memories, see Table 10.4. Each memory technology has physical parameters
that can be exploited for the design of PUFs. Variations of properties such as
lithographic critical dimensions, doping levels of semiconducting layers, resistivity
of connecting materials, threshold voltages of MOS transistors, and others [23–33]
can make each PUF device unique and identifiable from all others when produced
by the same manufacturing process.

• DRAM: In a DRAM, each cell contains a capacitor that is selectively charged to
store a “1” (yes) or a “0” (not charged). Subject to natural leakages, these cells
need to be recharged during the refresh cycles, typically every 1 ms. One way to
create a PUF is to program an array, then measure the voltage left after a fixed
amount of time, for example 2 ms. For challenge and response generation, the
bottom 50 % of the distribution of the cells that leaks the most can arbitrarily be
“0”s, while the other half “1”s. This method can be used for standalone DRAM,
not with existing SEs.

• ReRAM: the creation of PUFs out of ReRAM memories is still in a research
mode. A possible way is to use built-in-self-test (BIST), ref [34] to test a
particular parameter in the ReRAM cells of the array, and determine the “0”
from the “1”. Three parameters are candidates for PUF, Rmax corresponding to
HRS, Rmin corresponding to LRS, and Vset (see Fig. 10.3). Rmax exhibits the
largest cell to cell variation, while Vset has a tighter distribution. Rmax-based
PUFs are expected to have the lowest CRP error rates, FAR, and FRR. Vset-
based PUFs might have higher error rates, however, they are more difficult to

Table 10.4 PUF generation with embedded RAM

Memory Example of PUF generation Quality

SRAM Random Flip of the 6T cell: start as a “0” or a “1”
after power up

Mainstream but not
really secure

DRAM Discharge the capacitors, then measure: Get a “0”
or a “1”

Need constant refresh

ReRAM Variations of the value of the Vset: Define a “0” or a
“1”

Quite novel

MRAM Variations of the Rmax’s after proqramminq: Define
a “0” or a “1”

Quite novel

Flash Partial proprammina, then measure: Get a “0” or a
“1”

Slow programming

218 B. Cambou

extract through side channel analysis because the “0”s and the “1”s can be close
to each other.

• MRAM: The method to create PUFs with MRAM is similar to that of ReRAMs.
The resistivity of the HRS can be exploited, with a transition between the “0”s
and the “1”s, located at the median of the distribution.

• Flash: a method to create PUF from flash memories is to exploit the pro-
gramming mechanism. As shown in Fig. 10.2, during flash cell programming
electrons are injected to the trapping gate to change the threshold voltage of the
MOS transistor. In order to generate PUF challenges and responses, the injection
time is fixed, giving each cell the opportunity to have different threshold volt-
age; 50 % of the cells with the lowest threshold are set as a “0,” the remaining
are “1s.”

Regardless of the type of memory technology, the unique signatures of the PUFs
are derived from their intrinsic manufacturing variations, which occur during the
fabrication process. There is an expected level of mismatches between the distri-
bution of parameter P when the challenges were generated (i.e., the initial “print”
that was stored in the secure server), and when the responses are freshly generated
(the “print” generated before authentication), see Fig. 10.7, where parameter P is
the Vset measured on ReRAM samples manufactured at Virginia Tech. The solid
electrolytes of these samples are made of CuOx. The median of the distribution is
μ = 2.1 V with a standard variation σ = +0.54 V. When a cell has a Vset below
μ, a”0” is generated as a challenge, “1”s are generated when Vset is above μ. The
second graph called “next PUF” in Fig. 10.7 is an example of distribution that has
drifted between challenge and response.

The drifts occurs when the PUFs are subject to changes related to temperature,
voltage, EMI, aging, and other environmental factors; the resulting responses are
then different than the original challenges. The potentially undesirable conse-
quences are weak PUFs with high CRP error rates, and high false rejection rates

Fig. 10.7 Challenge response pair errors

10 Enhancing Secure Elements—Technology and Architecture 219

(FRR). Error correction could reduce CRP errors, however, they could also blindly
correct hostile challenges, and increase false acceptances (FAR).

What to remember: PUFs can be generated by most commercial memories,
namely SRAM, DRAM, ReRAM, MRAM, Flash, FeRAM, and EEPROM. During
authentications, the PUF responses can drift away from the initial challenges of
reference, creating CRP errors as well as generating FRRs and FARs.

10.4.3 Strengthening Secure Memory-Based PUFs
with Ternary States

PUFs, in addition to having low FRR and low FAR, should be nonobvious and
unclonable, to prevent a third party from easily extracting the responses. These
objectives are somewhat opposite, easy to extract parameters P that could fulfill the
low CRP error rate but fail the obligation of nonobviousness, and this if they are
easy to extract by hackers. Conversely, PUF could be extremely hard to uncover by
crypto-analysis at the cost of being hard to read for challenge/response generation,
thereby having high CRP error rates and unacceptable FRRs. In the following two
sections, we present several methods that are aimed to achieve concurrently these
objectives, and analyze their potential based on experimental results.

One suggested method that uses ternary states, “0,” “1,” and “X” is shown
above, Fig. 10.8. In this method the cells with parameter P close to the transition are
blanked “X,” [35]. During challenge generation, only the streams of “0,” and “1”s
that are solid are sent to the secure server as PUF challenges. The positions of the
cells that are “X” are kept as reference in the memory. During response generation,
only the cells that are not blanked as “X” are tested to generate the binary stream

Fig. 10.8 Challenge-response generation with ternary states

220 B. Cambou

used for authentication. The likelihood that a cell previously tested as “0” or “1”
during the challenge generation can flip is low.

To study the robustness of the method, we conducted a statistical experiment
using the same ReRAM samples presented in Figs. 10.7 and 10.8. We characterized
the Vset distribution for several individual ReRAM cells. These particular cells
were subjected to repeated reset and set operations under the same conditions, then
measured multiple times to extract their distribution. Vset distribution for the cells
centered on μ = 1 V have standard variation σstd = 0.084; for the cells centered
on μ = 2.5 V, the standard variation is σstd = 0.158 V. To simplify the analysis
we are assuming that the standard variation σstd of each cell varies linearly with
Vset, fitting the two above experimental data points. σstd which is representing the
stability of the Vset of a particular cell is 3–6 times smaller than the standard
deviation σ of the entire population. As shown in Fig. 10.9, the wider we blank
with “X” the population near the median, the lower the expected CRP error rate is.
In this figure the challenges are derived from the experimental measurements on
Vset, the responses are just examples.

In this statistical analysis we studied three cases for challenge generation:
(1) blanking ±0.27 V around the median value of μ = 2.1 V; (2) blanking
±0.54 V, and (3) blanking ±0.81 V. For response generation we are reducing the
threshold value to 1.8 V to sort out the “0”s from the “1”s. Such a reduction of the
threshold reduces the CRP error rates due to the physical asymmetry of the Vset
which has lower σstd at lower value. The ±0.27 V blanking is not large enough,
CRP error rates are too high, in the 80,000 ppm range. When the blanking is large
enough, the likelihood that a bit from a response population can flip from its state as

Fig. 10.9 Simulation CRP error (ReRam samples)

10 Enhancing Secure Elements—Technology and Architecture 221

a challenge (“0” to “1” or the opposite) creating a CRP error is negligible: both
±0.54 V and ±0.81 V blanking can yield CRP error rates below 8 ppm.

The impact of this error rate on the authentication cycle of a PUF stream of
N bits can be calculated with the Poisson equation. If P(n) is the probability to have
n failures over N bits, p is the probability to have one CRP mismatch due to errors,
assuming N = 128 and p = 8 ppm (case ±0.54 V). P(n) is given by:

PðnÞ= λn ̸n! e−λ ð10:13Þ

λ= pN ð10:14Þ

Pð0Þ= 99.2%; Pð1Þ= 0.794%; Pð2Þ= 0.003%; Pð3Þ≈ 0. ð10:15Þ

With these results, the probability that at least 126 bits over 128 CRP candidates
are matching during an authentication cycle is almost certain. Such CRP stream
error rates are lower than 98 % which are much below the generally accepted rate of
90 % for PUF authentications. The ±0.54 V blanking correspond to ±1σ of the
Vset distribution, about 68 % of the cells are then blanked “X,” 32 % are used for
CRP generation. In this example, in order to generate a PUF of 128 bits, the size of
the memory array needs to be in the 400 bit range.

Non-obviousness: The method based on ternary states has potential to enhance the
non-obviousness, and unclonability of the PUF for the following reasons:

• The mapping of the “X”s can be encrypted and stored in the secure memory. An
hacker trying to extract a response would have the difficult task to uncover the
location within the memory array used for challenge generation.

• The secure element may communicate with the server through binary streams of
data, keeping the ternary logic internaly. A hacker would then needs ternary
logic to communicate with the PUF within the secure element.

• One way to manage ternary states in a secure element is to duplicate the
information: manage a (0, 1) pair for a “0,” a (1, 0) pair for a “1,” and a (1, 1) or
a (0, 0) for a “X.”. Such an internal ternary bit structure can confuse DPA side
channel analysis trying to differentiate the “0”s from the “1”s.

• There is little need to apply error correction methods in addition of the ternary
state method. This can accelerate the authentication process leaving less time for
side channel analysis.

Random Number Generators (RNG): As presented in Sect. 10.2.1 RNG are
important to create hashing functions, and enhance the encryption. RNG that are
generated purely by mathematical methods are by definition not really random
when a hacker learns to apply the same mathematical method.

As shown in Fig. 10.10, it is possible to exploit the ternary method presented
above to strengthen the RNG. In this case we want to select only the cells that are
close to the threshold between “0”s and “1”s, the “X” states. When subject to one
particular reading the stream of binary bits generated by testing the cells with “X”

222 B. Cambou

states will have a high level of randomness. For example if the cells with Vset that
are ±0.1 V from the median μ = 2.1 V are used for RNG, the likelihood that they
will flip on the opposite bit after multiple reading is 43 %. Let us assume that a
random number of 128 bits was generated with half of its bit having a probability
p = 0.43 to be a “0,” and the other half with p = 0.57. Assuming binomial dis-
tribution, the likelihood that half of this population is at “0” is not statistically
different than a population with p = 1 for the first half and p = 0 for the second
half. Mathematical methods to randomly re-order these 128 bits will yield a higher
level of randomness when each bit has a probability to flip back and forward close
to p = 0.5. The usage of a population with p = 0.43 is indeed much better than
re-ordering a memory array filled with “0”s and “1”s. There are ways to further
improve this randomness: add noise during the testing of the “0”s and the “1”s, or
measuring the Vset at higher sweeping rates.

Implementing ternary states with SE: A first way to implement ternary-based
PUFs on secure elements is to store the position of the blanked cells “X” some-
where in the secure memory. Then, during response generation, the state machine
of the memory or memory management unit (MMU) can only exploit non-blanked
cells. To enhance security the location of the blanked cells can be encrypted.

A second implementation is also based on the use of the memory array as is,
while creating ternary states within the array itself. The memory array shall be
segmented by pairs of cells to create the ternary states. The first of the two cells,
called “active cell” shall be used to generate a PUF challenge, either a “0” or a “1”
based on its parameter P. The second cell, called “companion cell,” is to be used to
differentiate the state of the active cell: for a state “0,” a “0” is stored in this active
cell, and a “1” is stored on the companion cell. Conversely for a state “1,” a “1” is
stored in the active cell, and a “0” in the companion cell. To store a blanked “X”
state, the same bit shall be stored both in the active cell, and its companion cell.
The MMU will then drive for the SE pairs of bits, (0, 1), (1, 0), and (1, 1) or (0, 0),
while the external communication with the server is binary. During authentication,
the responses are generated by testing only the active cells that were not blanked
during the challenge generation, then challenge-response pairs are matched bit by

Fig. 10.10 Random number generation with ternary states

10 Enhancing Secure Elements—Technology and Architecture 223

bit. In both implementations there is no need to change the memory array within the
SE, only internal logic changes are required.

What to remember: the method to blank the cells susceptible to flip between 0”s
and “1”s can reduce CRP error rates in a PUF, and enhance the unclonability.
A “by product” of the method is to strengthen the randomness of RNGs.

10.5 Usage of Machine Learning

Machine learning is an architecture that is used in cybersecurity to improve
authentication, and detect abnormal behavior of the user, or the server, [36, 39]. On
the terminal side, machine learning has been used for biometric authentication to
track drifts of the user entries over time. Tara Seal from Info-security Magazine
reported in September 2014, that the security company CA Technologies is using
machine learning to combat credit card fraud. On the infrastructure side, machine
learning has been widely used for computer security, and to protect web authen-
tication. As shown in Fig. 10.11, Machine Learning Engines (MLEs) can be
inserted into secure elements between the server, and the secure memory, to operate
in a closed loop, without external intervention to avoid disclosing additional
information during attacks. The MLEs can be then dedicated to the authentication
process. The MLE can be the engine to track behavior of both the user, and the
server to flag abnormal situations such as repetitive negative attempts to authenti-
cate, or malicious changes in the power supply. The MLE can also enhance the
effectiveness of the PUF, this is the subject of the study presented below.

Fig. 10.11 PUF authentication with machine learning

224 B. Cambou

Track the physical variations of the PUFs with MLE: The PUF responses and
challenges are generated the same way with a PUF memory, and this as often as
there is need for a fresh authentication, however the responses can vary overtime
due to the natural variations of parameter P which underlie the PUF. This can create
large CRP errors, and weaken the usefulness of PUFs.

A method to correct such a problem is described below step by step (see
Fig. 10.12). In this method an MLE architecture is combined with a multi-state
CRP generation process to track the drift of the responses, and determine if the drift
is natural, or has changed due to a malicious entry.

• Challenges. As presented Sect. 10.3.2, the PUF Challenges shall be generated
with the memory, “0s” are programmed in the cells where parameter P is below
threshold, and a “1” is programmed above the threshold.

• Responses. The responses shall be generated with the same method than the
challenges. Concurrently the cells shall be organized in n = 8 multiple states
i by sorting out the value of parameter P for these cells. For example, when the
response has N = 128 bits, the 16 cells with the lowest value are given the state
0, the following 16 cells with the state 1, all the way to the 16 cells with the
highest value that are given the state 7. That way the 128 bits of the PUF
responses are sorted in 8 different states.

• Vector of error—authentication j. Each state i has ni cells such that
∑i= n− 1

i=0 ni− 1 =N. For a given cell k that is part of the PUF, the CRP error
between the Challenge Ck and the Response Rk is given by the Hamming
distance ΔCRPk = Rk −Ckj j. For the state i and its ni cells, the average CRP
error rate Ei is given by Eq. 10.16. The average error rate E0 to En-1 for the
n states and the authentication j is giving a Vector of Error VEj, Eq. 10.17:

Ei =
1
ni
∑k = ni

k = 1 Rk −Ckj j∞ ð10:16Þ

VEj = ðE0, E1, Ei, .,En− 1Þj ð10:17Þ

Fig. 10.12 CRP correction with machine learning

10 Enhancing Secure Elements—Technology and Architecture 225

• Vector of input—authentication j. The Vectors of Input are resulting from the
measurements of environmental parameters surrounding the PUF such as Io
temperature, I1 voltage bias conditions, Ii Rcurrent, and others:

Ij = ðI0, I1, . . . , Ii, . . . , In− 1Þj ð10:18Þ

• Learning data base. Considering that parameter P is a physical parameter, it is
possible to develop a predictive model on how the responses are anticipated to
vary when subject to drifts in the environmental parameters I. This can be used
to develop a learning data base which keeps track of VE when parameter P is
subject to drifts. The learning database can also contain the history of previous
authentications, VEh and Ih with h < j.

• Final authentication j. To produce a “yes” or “no” for authentication j the MLE
analyzes the vector of error VEj which contain the average CRP error rates by
state together with Ij, and the learning data base. This exploits the predictability
of parameters P when subject to environmental variations. On the contrary, a
challenge brought by a malicious third party when matched with a fresh
response would create a VE that is not consistent with the learning data base,
thereby resulting in a negative authentication.

• Experimental validation. In this section we are giving a real example, based on
ReRAM samples produced at Virginia Tech. This should help the reader to
better understand the method presented above on how the MLE can analyze
CRP errors, and make a determination on authentication j. A summary of the
analysis is shown Fig. 10.13: At room temperature (20 °C) the ReRAM samples
produced at Virginia Tech have a Vset median distribution μ = 2.1 V and
standard variation σ = 0.54 V. If we assume that both the challenges, and the
responses are generated at 20 °C, and the CRP errors are only created by the
natural variations of the measurement of each cells. Assuming a binomial dis-
tribution as described Sect. 10.3.2 the expected vector of error VE20-20 is

Fig. 10.13 Simulated CRP error rate (ReRAM, Vset)

226 B. Cambou

VE20− 20 = 0, 0.1, 2, 26, 26, 4, 0.4, 0ð Þ ð10:19Þ

When the ambient temperature is reduced to 10°C, the distribution is shifting
upward with a mean μ = 2.25 V. If we assume that the challenge was extracted
at 20 °C, and the response at 10 °C, the vector of error VE20-10 is

VE20− 10 = 0, 0, 0.1, 4, 68, 23, 2, 0ð Þ ð10:20Þ

Conversely if the ambient temperature is increased to 30°C, the distribution is
shifting downward with a mean μ = 1.95 V. If the challenge was extracted at
20 °C, and the response at 30 °C, the vector of error VE20-30 is

VE20− 30 = 0, 0.1, 19, 69, 4, 0.3, 0, 0ð Þ ð10:21Þ

The algorithm of the MLE can be set in two different ways: (i) the vector of error
at various temperatures can be stored in the database of learning, so such error
rate variation with temperature will be considered normal, or (ii) assuming that
the temperature is measured concurrently with the response, the MLE can
correct the anticipated drift resulting in lower CRP error rates. Both cases are not
computing power intensive, and does not require large learning databases. For
example, the storage of 1,000 different vectors in the learning database will
occupy less than 1Kbyte of the embedded memory.

What to remember: Machine learning can enhance the authentication process
of the SE, and track hostile behavior. When combined with multi-state sorting, MLE
can track the natural drift of the PUFs, reduce FRR, and FAR.

10.6 Additional Enhancements

We are suggesting the following methods to further enhance SE:

Programmable and random active shielding: The aim of active shielding is to
recognize physical attacks, and trigger an alteration of the SE with partial erasing of
the stored information. Protective structures are inserted within existing and addi-
tional top-metal interconnection layers to shield the IC in case of physical attacks
[40]. Signal layers are set to electrically detect attempts to probe or force internal
modules in the IC. The randomness in the shape of the metal shielding is intended
to make it hard to recognize. Signal detection methods that are programed to
constantly vary can prevent some systematic techniques of attack.

Giant key authentication: Multi-factor authentications are often done sequentially,
each factor separately. Hackers can then concentrate on the first factor to extract the
first key, then move to the next factor. A way to enhance security is to create a giant
authentication key combining multiple cryptographic keys such as passwords, pin
codes, and reference keys. The authentication can be done thereby at once with all

10 Enhancing Secure Elements—Technology and Architecture 227

keys brought together to re-create the giant key. Facing a negative authentication
the hacker will not be able to extract the content of one particular key. A simple
method to create a combined key is to XOR the first key with the second key [41].
A second method called “edit distance” [9] is to form a giant key GK by inserting
on the first key additional bits based on the distance defined by the second key. For
example if the first key is a stream of binary bits, and the second key is a digital pin
code, additional “0” are inserted as explained below:

Key 1= ð1, 1, 0, 0, 1, 1, 0, 1, 0Þ; Key 2 is pin 23 ð10:22Þ

The resulting giant key is

GK= ð1, 1, 0, 0, 0, 1, 0, , 1, 0, 1, 0Þ ð10:23Þ

The first digit “2” of the pin code is adding an extra “0” after the distance 2, and
the second digit “3” is adding an extra “0” after the distance 3. Such giant key
management can be done internally within the SE.

Chip design for security: Precautions need to be taken during the design of the SE,
[42], however logic design engineers are not necessarily familiar with specific
security requirements and could make mistakes. Design tool makers such as Tor-
tuga Logic [43] developed back end tools that insert these predefined requirement in
the database that generate the masks of the SE. Examples are

• Verify that the encryption/decryption protocols are enforced. The data trans-
mitted along the buses should be encrypted/decrypted. All data and addresses
transmitted to and from the chip, and within the chip that are relevant to security
should be guaranteed to be encrypted.

• Verify that anti DPA measures are enforced. Implement current masking
methods to scramble current consumption including performing dummy access
operations to all memory modules, cache, ROM, NVRAM, and CAM. The
current consumption of the actual program flow should be hidden. Lever-
age RNG and random wait states to further confuse DPA.

• Anti-tampering measures through the memory management unit. To spread and
scatter the storage of the important data, and the cryptographic keys, all over the
memory space. Use of error correction, and check sum methods to hide stored
data. True hardware firewalls within the memory space of the critical elements
such as embedded operating system, and critical applets. The use of cyclical
redundancy checks (CRC) to verify data integrity, check errors, and follow
ISO/IEC 7816 & 14443 standards.

Use of sensors: As discussed Sect. 10.4 relates to MLEs, we suggest the use of
environmental sensors to capture ambient temperature and biasing conditions.
Enhancing security of the SE can include light sensors on the IC to detect unwelcomed
opening of the package, frequency sensors to check the internal clock, sensors and
filters to monitor the external clock, external voltage sensors to check Vcc, and
internal glitch and voltage/current sensors to detect an attack.

228 B. Cambou

10.7 Summary

Figure 10.14 follows on Fig. 10.1 that incorporate the suggested methods to
strengthen SE compatible with current ISO standard:

Replacement of Flash by ReRAM: The advantages include low power of oper-
ation for read/program/erase, and high performance.

Addition of Content Addressable Memory: CAMs allow the direct matching of
stored passwords, pin codes, and other keys without exposing the keys.

Use of the embedded memory to generate PUFs: Embedded memories can be
exploited to generate PUFs that are protected by the crypto-processor of the SEs.
The communication to and from the server can then be encrypted.

Use of ternary logic: to blank the marginal cells and BIST integrated in the SE and
reduce CRP errors, lower both FRR, and FAR. The natural randomness of these
PUFs can also be exploited for RNG.

Use of MLE: MLE can strengthen the authentication processes, and generate
stronger PUFs, differentiating the natural drifts from hostile random behaviors.

Various: Active shielding to prevent physical attacks, multi-function authentication
with giant encrypted keys, build security upfront through chip design, sensors to
detect side channel analysis.

Fig. 10.14 Enhanced secure element with ReRAM

10 Enhancing Secure Elements—Technology and Architecture 229

References

1. Smartcard & security basics, www.smartcardbasics.com, www.cardlogix.com, sales@card-
logix.com, 2009 CardLogix Corporation

2. C. Medich, S. Swaminathan, K. Urban, S. Narendra, Maturity of smart card chip technology
and its application to web security, in Smartcard Alliance, Webcrypto 2014

3. Global Platform, device technology, secure element access control, Version 0.10.0; March
2012, Document Reference: GPD_SPE_013

4. Card Payments Roadmap in the United States, A Smart Card Alliance, Feb 2011, Number
PC-1100

5. Using Smart Cards for Secure Physical Access, a Smart Card Alliance Report, Publication
Number: ID-03003, Jul 2013

6. H.X. Mel, D. Baker, Cryptography Decrypted (Addison-Wesley, 2000)
7. C.P. Pfleeger, S.L. Pfleeger, J. Margulies, Security in Computing, 5th edn. (Library of

Congress, Person Education, 2015)
8. T. Cooijmans, J. de Ruiter, E. Poll, Analysis of secure key storage solutions on Android

(ACM, 2011). ISSN 978-1-4503-3155
9. B. Cambou, Multi-factor authentication using a combined secure pattern, US Patent

Application No 22938751, 16 Jul 2015
10. C. Krutzik, Solid state drive physical unclonable function erase verification device and

method, US Patent Publication US 2015/0007337 A1
11. D. Merli, F. Stumpf, G. Sigl, Protecting PUF Error Correction by Codeword Masking; IACR

Cryptography, e-print archive 2013, p. 334
12. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Introduction to flash memory, in

Proceedings of the IEEE, vol. 91, no. 4 (2003)
13. L. Crippa, R. Micheloni, I. Motta, M. Sangalli, Nonvolatile memories: NOR vs. NAND, in

ed. by R. Micheloni et al. Memories in Wireless Systems (Springer, Berlin, 2008)
14. P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in Crypto 99, LNCS 16666 (Springer,

Heidelberg, 1999), pp. 388–397
15. G. Ghosh, M. Orlowski, Write and erase threshold voltage interdependence in resistive

switching memory cells. IEEE Trans. Electron Dev. 62(9), 2850–2857 (2015)
16. A. Makarov, V. Sverdlov, S. Selberherr, Modeling of the SET and RESET bipolar resistive

oxide-based memory using Monte Carlo simulations, in NMA 2010. LNCS 6046 (Springer,
Berlin, 2011), pp. 87–94

17. J.S. Meena, S.M. Sze, U. Chand, T.-Y. Tseng, Overview of emerging NVM technologies.
Nanoscale Res. Lett. 9, 526 (2014)

18. T.M. Maffit et al., Design considerations for MRAM. IBM J. Res. Dev. 50(1) (2006)
19. B. Cambou, N. Burger, M. El Baraji, Apparatus system, and method for matching patterns

with an ultra-fast check engine, US Patent No 8,717,794B2 (2014)
20. B. Cambou, Memory circuits using a blocking state, US 0atent Application No: 22728483, 24

Jun 2015
21. B. Cambou, ReRAM architectures for secure systems, US Application No 62/169957, 2 Jun

2015
22. Y. Jin, Introduction to hardware security, Electronics 4, 763–784 (2015). doi:10.3390/

electronics4040763
23. Z. Gong, M.X. Makkes, Hardware trojan side-channels based on PUF, in Information

Security, vol. 6633. Notes in Computer Science (2011), pp 294–303
24. D. Naccache, Patrice. Frémanteau, Aug. 1992, Unforgeable identification device, identifica-

tion device reader and method of identification, Patent US 5434917
25. R. Pappu, B. Recht, J. Taylor, N. Gershenfield, Physical one-way functions. Science 297

(5589), 2026–2030, 20 Sept 2002
26. R. Maes, P. Tuyls, I. Verbauwhede, A soft decision helper data algorithm for SRAM PUFs, in

IEEE International Symposium on Information Theory (2009)

230 B. Cambou

http://www.smartcardbasics.com
http://www.cardlogix.com
http://dx.doi.org/10.3390/electronics4040763
http://dx.doi.org/10.3390/electronics4040763

27. M. Hiller et al., Breaking through fixed PUF block limitations with DSC and convolutional
codes, in TrustED’13 (2013)

28. P. Prabhu, A. Akel, L.M. Grupp, W.K.S. Yu, G.E. Suh, E. Kan, S. Swanson, Extracting
device fingerprints from flash memory by exploiting physical variations, in 4th International
Conference on Trust and Trustworthy Computing (2011)

29. D.E. Holcomb, W.P. Burleson, K. Fu, Power-up SRAM state as an identifying fingerprint and
source of TRN, IEEE Trans. Comput. 57(11) (2008)

30. T.A. Christensen, J.E. Sheets II, Implementing PUF utilizing EDRAM memory cell
capacitance variation, Patent No.: US 8,300,450 B2 (2012)

31. X. Zhu et al., Daha Fazla, PUFs based on resistivity of MRAM magnetic tunnel junctions,
Patents. US 2015/0071432 A1

32. E.I. Vatajelu, G.D. Natale, M. Barbareschi, L. Torres, M. Indaco, P. Prinetto, STT-MRAM-
based PUF architecture exploiting magnetic tunnel junction fabrication-induced variability,
ACM Trans. (2015)

33. A. Chen, Comprehensive assessment of RRAM-based PUF for hardware security applications
(2015). ISBN 978-1-4673-9894-7/15/IEDM IEEE

34. A. Gupta, Implementing generic BIST for testing kilo-bit memories, Master Thesis No-
6030402 Deemed University Patiala India (2005)

35. D. Yamamoto, K. Sakiyama, K. Ohto, M. Itoh, Uniqueness enhancement of PUF responses
based on the locations of random outputting RS latches, in CHES 2011, vol. 6917. Computer
Science, pp 390–406

36. A. Joseph, P. Laskov, F. Roli, D. Tygar, B. Nelson, Machine learning methods for computer
security, in Manifesto from Dagstuhl Perspective Workshop 12371 (2012)

37. A. Casini, Understanding Machine Learning Effectiveness to Protect WEB Authentication
(Universita Ca Foscari, Venezia, 2014)

38. S.Y. Kung, M.W. Mak, S. Lin, Biometric Authentication: A Machine Learning Approach.
Information, System Science Series (Prentice Hall, 2004)

39. Y.V. Kaganov, Machine learning methods in authentication problems using password
keystroke dynamics. Comput. Math. Model. 26(3), 398–407 (2015)

40. S. Briais, J.M. Cioranesco, J.L. Danger, S. Guilley, D. Naccache, T. Porteboeuf, Random
active shield, hal-0072569v2 (2012)

41. M. Robinton, S.B. Guthery, Efficient two-factor authentication, US Patent Application US
2010/0235900 A1 (2010)

42. What Makes a Smart Card Secure? A Smart Card Alliance, White Paper, Publication Date:
October 2008, Publication Number: CPMC-08002

43. Tortuga logic web site, www.tortugalogic.com

10 Enhancing Secure Elements—Technology and Architecture 231

http://www.tortugalogic.com

Index

A
Accessing information by microscopy

backside non-destructive imaging, 129,
129f

choosing electron microscopy, 130, 130f
layer of interest to be accessed, 129

Active design data protection scheme, 37
Advanced encryption standard (AES), 179
Advanced memory technologies

back-to-back comparison, 213–214
MRAM, 212–214, 213f, 214t
ReRAM, 212, 213f, 214t

AES SBox, 90f, 111
Algorithm implementation, block ciphers, 184

KLEIN, 184–188 See also KLEIN
algorithm

Ktantan, 193, 195–196 See also Ktantan
algorithm

LED, 188–192 See also LED algorithm
Lilliput, 190–193 See also Lilliput

algorithm
Algotronix (company), 6, 7
Altera (manufacturer), 6
Altera Arria V family, 22
Altera Cyclone III, 31t

FPGAs, 90
resources to implement design, 32t

Altera devices, 23
Altera SRAM FPGA, 96
Analysis, FSM IP watermarking

analysis of qualitative approach, 80–81
attack analysis, 81
existence of watermarked FSM, 79
limitations and solutions, 81–82

AND gate, 149
Anti-fuses, 24
Application-specific integrated circuits

(ASICs), 2, 5, 8, 65, 96, 101, 106
and equipment used, 139

Area of implementation, 178, 183, 185, 201
Attack analysis, 81

embedding attacks, 81
false positive, 81
removal attacks, 81

Authentication, 208
Automatic image alignment and registration,

131
all chip registration, 132
multiple image acquisition, 132
setting up SEM properties, 132

Automatic test pattern generation (ATPG)
methods, 150

AVR processors, 162–163
encoder and decoder matrices, 163f

B
Backup procedure, 25
Binary code, 151
Binary frequency shift keying (BFSK)

transmission, 92
ultra-lightweight digital, 94–96

Bitstream, 6
Block cipher, 179, 182

algorithm implementation (see Algorithm
implementation, block ciphers)

fullwidth hardware implementation,
182–183, 183f

fullwidth result, 197–198, 198t
general schematic of, 179f
Katan and Ktantan family of, 182
PRESENT, 111, 111f
serial hardware implementation, 183
serial implementation results, 198, 199t

Built-in-self-test (BIST), 218, 229
Buses, 18, 26

deterministic scrambling, 26–28
8-bit circular shifter, 27f
n-bit bus, 27f

Note: Page numbers followed by f and t indicate figures and tables respectively

© Springer International Publishing AG 2017
L. Bossuet and L. Torres (eds.), Foundations of Hardware IP Protection,
DOI 10.1007/978-3-319-50380-6

233

pseudo-random masking, 28

C
Camouflage gates, 106–107

DPD-LUT, 108–110
obfusgate, 107–108
reverse-engineering (see

Reverse-engineering camouflage gates)
SMI’s approach, 110

Challenge–response authentication, 11
Challenge-response pairs (CRPs), 5, 216, 217,

218
correction with machine learning, 225f
error rates, 221
errors, 220, 222, 225
generation, 222, 225
simulated error rates, 226f
simulation error, 221f

Chip design for security, 228
Circuit encoding concept, 154, 155f
Classical IP flow integration, 3, 3f
Clock circuitry, 18, 20

advantages, 21–22, 22f
clock gating, 20–21, 21f

CMOS technology, 140
process variation, 102

Code obfuscation, 41
Combinational path control, 3
Combinatorial memory, 112
Combined hardware and software HT, 150
Common subexpression elimination (CSE),

164
Content addressable memories (CAM),

215–216
with ReRAM, 215f

Control flow obfuscation, 117–118
combined data and, 119
limitations, 118, 119

Controllers, 66
DRM controllers, 11
Ethernet controllers, 32–33
microcontrollers, 205

Cryptography, 206
CryptoLux website, 177
Cyclone V family, 22

D
D flip-flops, 23, 29, 31, 31t, 32, 32t, 33, 33t,

34t, 95
ASIC with, 153, 154f
IC with, 153, 153f
PUFs, 6

DARPA projects, 2
Dash etching, 115, 115f

Data encryption standard (DES) algorithm,
179, 207

Decoding logic, 155
Delay-based detection, 128
Delay-based PUFs, 5

arbiter PUF, 6
ring oscillator (RO) PUF, 6

Denial of Service (DoS)
attacks, 16
HT, 150

Design data protection scheme, architecture of,
62, 62f
area/locking strength trade-off, 60–61, 61f
cryptographic primitive, need of, 61

Design data protection schemes, 37
architecture of (see Design data protection

scheme, architecture of)
DEsign-For-ENabling-SEcurity (DEFENSE)

logic, 150
Device under test (DUT), 88

correlation calculation flow, 89f
correlation coefficients, 91t

Differential power analysis (DPA), 87, 211
Diffusion Programmable Device Look-up

Table (DPD-LUT), 109
structure of, 110f

Diffusion Programmable ROM (DP-ROM),
108

Digital right management (DRM), 1–2
components, 11
controller, 11
flow, 7–8
integration in SoC, 8–10, 9f
smart lock, IP principle, 3–4
state of the art, 4–7

Dummy input, 108, 111
Dummy wires, 108, 111, 112
Dynamic RAM (DRAM), 218, 218t, 220

E
Edit distance, 228
Electromagnetic communication of IP data, 92

experimental results, 97–98
principle, 93–94
transmission data, 93f
ultra-lightweight digital BFSK

transmission, 94–96
Electromagnetic emanation analysis, 97, 97f

amplitude versus time evolution, 99f
of IC, 98
spectral cartographies, 100f

Electromagnetic interferences analysis (EMI),
211

Electronic (digital) signature, 207

234 Index

Embedded secure elements (eSE), 206
Embedded secure memories, 209–212

flash cell, 210f
Embedding method

FSM-M, 73f, 74
hierarchical state encoding, 75–76

Enable tree, 116
Encoded circuit, 151, 152–153

architecture of, 156f
automated design flow for, 159–160
D flip-flops, 153f, 154f
against fault injection attack, 171
payload, 153
private circuit and, 172
against probing attack, 170
properties (see Encoded circuit method

properties)
against side-channel attack, 170–171
synthesis results of, 162t
trigger, 153

Encoded circuit method properties
LCP code properties, 158–159
security objective, 156–158

Encryption, 65, 183, 192, 195, 197, 200, 228.
See also Logic encryption
of Boolean function, 39, 40, 41
KLEIN encryption, 186, 188f
LED encryption, 188, 190f, 191f
and PKI deployment, 206–208
public key encryption, 7

EPIC method, 172, 173
Ethernet controller, 32–33

implementation of on-chip locks on, 33t

F
False acceptance rates (FAR), 209, 209t, 216,

218, 220, 229
False rejection rates (FRR), 209, 209t, 216,

218, 219–220, 227, 229
Fast and low-cost detection, 125
Fault injection attacks (FIA), 171, 173
Feistel network, 179, 180, 181, 181f, 186, 190
Field-programmable gate arrays (FPGAs), 5, 7

implementation (see FPGA,
implementation on)

Filler cells, 112
Fingerprinting, 6

and IP protection, 6–7
Finite state machines (FSMs), 22, 28, 66

-based obfuscation technique, 120
duplicated states, 30, 30f
example FSM, 73f
experimental results, 89–92
four tested FSMs, 90t

IP watermarking, 68f See also FSM IP
watermarking

pre-reset states, 29–30, 29f
principle, 88–89
state of the art, 67–69
watermarking verification scheme, 87–88

Flash, 219
Flash cell, 209, 210, 210f
Flash vulnerability, 211

analysis, 211t
memory limitations, 212

Flexlm (solution), 1
Flip Flops (FFs), 117, 197, 198, 199. See also

D flip-flops
IP level, 3

Focused ion beam (FIB), 113, 114
Fowler Nordheim (FN) effect, 210, 211
FPGA, implementation on, 31

hardware resources, 31–32
reference designs (see Reference designs)

FSM IP watermarking, 66
analysis (see Analysis, FSM IP

watermarking)
basic concepts of, 66
design philosophy, 69
generic, 66f
nonredundancy-based approach, 70
scheme, 70f
types of, 67

Functional locking, 15, 35
Fuses, 24
FUSION FPGA, 96

G
Genetic algorithm, 164, 166
Giant key authentication, 227–228
Golden circuit, 150
Grand sum, 165

evolution of, 165
Graph analysis-based logic locking scheme,

46–47
graph analysis, 50–52
graph building, 48–50 See also Graph

building, logic locking scheme
implementation of, 47–48 See also Logic

locking scheme, implementation of
netlist modification, 52

Graph analysis for selection of optimal locking
nodes, 50–52
connected components, 50, 51f

Graph building, logic locking scheme, 48–50
conversion from netlist to graph, 49f
final graph and original netlist, 50f
nodes of netlist, 49t

Index 235

H
Hamming weights, 39, 59, 167, 168f, 168t

efficiency and, 169, 169f
Hardware description language (HDL), 119
Hardware design intellectual property

(hardware design IP), 65
Hardware Development Kit, 11
Hardware metering, 37, 117
Hardware obfuscation, 105
Hardware Trojan (HT), 16, 105, 149

circuitry, 149, 150f
detection technique, 125
detection technology, 130–131, 131f

See also HT detection technology
infected chip, 126
taxonomy, 128, 128t
threats, 128

Hidden data transmission, 86
Hidden FSM states, 20
Hierarchical state encoding, 75, 76

state encoding, 75–76
two-tier encoding, 78–79
watermarked FSM, 76–78

Hill-climbing attack, 58–59
partial countermeasure against, 59–60, 60f

Hot encoding, 76
HT detection, real scenario, 139, 140, 141t

ASICs and equipment used, 139
choice, 139f
detecting HT invariant of their location,

145, 146t
detecting HT knowing its location,

143–145
getting entire IC transistors’ active region

image, 140–143
perspectives, 146–147

HT detection scenarios, 135
DEF file, 138–139, 138f, 139t
GDSII file, 136, 137f, 137t
golden circuits, 136, 136f, 137f

HT detection technology, 130–131
automatic image alignment and registration,

131–132
detection scenarios (see HT detection

scenarios)
Hardware Trojan detection, 133, 134f
IC flow compliancy, 134–135
industrial advantages, 135, 135t
real detection scenario (see HT detection,

real scenario)
sample preparation, 131

HT prevention, 151, 152, 157, 170, 173
obfuscation methods, 172
ODETTE, 172

HT runtime detection, 150, 152

I
Identification, 208
“Identity” partition, 71
Image processing, 125, 126, 127, 133, 136,

137, 146, 147, 147f
Inputs/outputs, 18

embedded flip-flops, 23–24
fuses/anti-fuses, 24

Instruction pointer, 25
Integrated circuit (IC), 105, 125, 149

camouflage gates, 112–114
combinatorial memory, 112
flow compliancy, 134, 134f
HT taxonomy and threats, 128
non-volatile memory, 112
reverse engineering, 105, 127–128, 127f
smart card like, 126–127, 126f
transistors’ active region image, 126

Intellectual property (IP), 2, 24, 65, 85, 86
counterfeit products, 105
of IP designers, 38, 83
IP rights, 2
protection (see IP Protection)
watermarking, 66

Invasive HT detection, 150
IP activator, 11
IP identification, 85, 92, 93, 93f

contactless IP identification, 102f
IP protection, 86–87, 102–103, 116. See also

FSM watermarking; Side channel analysis
(SCA)
fingerprint and, 6–7
industrial scenarios using, 101–102
protector block, 8
scenarios of, 87f

K
KayaInstrument (company), 6
KLEIN algorithm, 178, 185–186

fullwidth implementation, 186, 187f
serial implementation, 186–187, 188f

Ktantan algorithm, 178, 193, 195
fullwidth implementation, 195, 195f
serial implementation, 195, 196

L
Langer magnetic probe, 97
Lattice devices, 23
Layout-level obfuscation, 106

camouflage gates, 106–110
obfuscating connectivity, 111–112

LED algorithm, 178, 188–189, 189f

236 Index

fullwidth implementation, 187–189, 190f
serial implementation, 189, 190f, 193

Lightweight block ciphers, 178
Feistel network, 181, 182f
substitution and permutation network,

179–180
Lilliput algorithm, 178, 192

fullwidth implementation, 192, 193f
serial implementation, 190–193, 195f

Linear complementary pair (LCP) codes, 151
optimization of, 164
pair of codes, 167
properties, 158–159

Linear Feedback Shift Register (LFSR), 28, 32,
119, 192

Locking features, 16, 17f
analogue components, 19
buses, 18
clock circuitry, 18
global comparison, 19
inputs/outputs, 18
processors, 18
qualitative comparison of features, 19t
system controller, 18

Locking procedure, 25
Locking ratio, 56
Locking scheme evaluation

correlation, 54–56
logic locking metric, 56–58

Logic encryption, 38, 39–40
example of, 40, 40f

Logic functional locking, 38, 45–46
example of, 46, 46f

Logic locking metric, 56
evaluation of proposed node selection

technique, 57t
or locking gate, 58f

Logic locking scheme, implementation of,
47–48
controlling value and associated output

value, 47t
conversion from logic gates to graph

elements, 48f
propagation of locking value, 48f

Logic masking, 38, 42–45
of Boolean function, 42, 43f, 44t
example, 45f

Logic obfuscation, 37, 38, 40–42
definition of, 41
min-term canonical form, 42

Logic protection schemes, 38
logic encryption, 39–40
logic locking, 45–46

logic masking, 42–45
logic obfuscation, 40–42

Logic resources overhead, 52–53
obtained for logic locking, 53f

Look up tables (LUTs), 31, 120, 196
Look-alike gates, 106

M
Machine learning, 224–225

with CRP, 225f
PUF authentication with, 225f

Magnetic RAM (MRAM), 212–214, 213f,
214t, 219

Malicious hardware modifications
HT taxonomy and threats, 128–129
reverse engineering, 127–128, 127f
smart card like ICs, 126–127, 126f

Malware, 93
Master-slave protocol, 1, 2
Mealy type, 70
Memory-based PUFs, 5

D flip-flop PUF, 6
SRAM PUF, 6

Metal–oxide–semiconductor (MOS) transistor,
210

Microsemi (manufacturer), 6
Microsoft Office suite, 1
Mirror bit technology, 210
Miteq low-noise amplifier, 97
Moore type, 70
Moore’s law, 15
Multi-factor authentications, 227
Multifunction authentication, 208–209
Multiplication operation, 71

N
Nanoprocessor, 160–162

-encoded circuit method, 161t
Netlist, analysis time, 53–54

time to analyze and modify netlist, 54f
Netlist-level obfuscation, 115–116

adversary model, 116
control flow obfuscation, 117–118
limitations, 118, 119
netlist reverse-engineering techniques, 116
reconfiguration obfuscation, 119–120

Netlist modification, 52
lockable netlist, 52f
type of gate to insert, 52f

Noninvasive HT detection, 150
Non-obviousness method, 222
Non-repudiation, 208
Non-volatile memory, 112

Index 237

O
Obfuscell, 107

layout view of, 108f
Obfusgate, 107

camouflage gates, 107–108
schematic of, 108f

ODETTE, 151, 172
On-chip locks

buses, 26–28
clock circuitry, 20–23
common features, 16–20 See also Locking

features
finite state machine (see Finite state

machines (FSMs))
inputs/outputs, 23–24
processor, 24–26
SoC features, 17f

P
Partial locking, 20, 34–35
Partial reverse engineering, 128, 131, 139
Partition, 71, 72

state, uniqueness of, 75f
Passive design data protection scheme, 37
Payload, 149, 153, 172
Pearson coefficient, 88
Pearson’s correlation coefficient, 39, 54, 55t,

56
Phase-locked loops (PLLs), 20

advantage of, 23
dynamic PLL reconfiguration, 22
output clock during reconfiguration, 23f

Physical attacks, 211
Physical(ly) unclonable functions (PUFs), 3, 4,

115, 120, 229
behavior of, 5, 5f
with embedded memories, 218–219
in embedded RAM, 218t
physical variation with MLE, 225–226
principles, 4–6
within secure elements, 216–218

Plasma CPU, 33–34
implementation of on-chip locks on, 34f

Power consumption analysis, 87
FSM watermarking verification scheme,

87–88
Power gating, 19
PRESENT round functions, 111, 111f, 178
Printed circuit board (PCB), 113
Private circuits

concept of, 154
encoded circuit and, 172

Probabilistic algorithm, 165

Probing attack, 170
Problem formulation and solution architecture

basic definition, 70–72
motivational example, 74–75
research problems, 72
solution architecture, 73, 73f

Processor, 18
programme counter, 24–26

Programmable shielding, 227
Pseudo-random masking, 28

of bus using LFSR, 28f
Public key infrastructure (PKI), 205, 206, 208

deployment, 206–208

Q
Qualitative analysis, 80

affecting design functionality, 80
asymmetry, 81
detection and tracking, 80
embedding data to identify ownership, 80
implementation overhead, 80
level of reliability, 80
not relying on secrecy, 80
preventing intruder, 80

R
Radio-frequency identification (RFID), 177
Random active shielding, 227
Random numbers generators (RNG), 160, 208,

222–223, 223f
Reconfiguration obfuscation, 119–120

limitations, 120
Reference designs, 32

Ethernet controller, 32–33, 33t
plasma CPU, 33–34

Region of Interest (ROI), 113
Register Transfer Level (RTL), 8, 118, 149
Resistive RAM (ReRAM), 212, 213f, 214t,

218–219
enhanced secure element with, 229f

Restore procedure, 26
Retro-engineering, base of

HT taxonomy and threats, 128–129
reverse engineering, 127–128, 127f
smart card like ICs, 126–127, 126f

Reverse-engineering camouflage gates,
112–113
chemical etching and staining, 115
delayering and hardware

reverse-engineering, 113–114
scanning microscopy, 115
voltage contrast, 114–115

Rlm (solution), 1

238 Index

S
Safenet (solution), 1
Salware, 66, 93, 178
Sample preparation, 131

reaching top metal layers, 131
removing all metal layers, 131
rendering surface free of artifacts, 132

Scanning electron microscope (SEM), 106, 132
Scanning microscopy, 115
Secure elements (SE), 205, 206f

embedded secure memories, 209–212
encryption and PKI deployment, 206–208
implementing ternary states with, 223–224
memory management unit (MMU), 206
multifunction authentication, 208–209
PUFs within, 216–218

Secure memories. See also Embedded secure
memories
strengthening, 220–221

Secure microcontroller, 205
Security analysis of locking scheme

hill-climbing attackSee also 58–60See also
Hill-climbing attack

threat model, 58
Security evaluation, 169

encoded circuit against probing attack, 170
Security parameters, 156–158

AVR processor encoded circuit method,
163t

nanoprocessor-encoded circuit method,
161t

SIMON coprocessors, 162t
Sensor Authenticator, 11
Sensors, use of, 228–229
Side channel analysis (SCA), 85–86, 128

-based verification, 75f
general presentation of, 86f
IP protection, cases for, 86–87, 87f

Signal-to-noise ratio (SNR), 98, 102, 171, 173
Silicon management system, 11
SIMON coprocessors, 162, 162t
SIMON cryptographic coprocessor, 152, 173
Single points of failure, 16
Smart lock IP

classical IP flow integration, 3, 3f
insertion of, 3, 8
principle, 3–4, 4f

Smart lock IP integration, 8–10
SoC integration, 8, 9f, 10
SoC layout based on, 10f, 11
on video codec architecture, 9f, 10

Software license management (SLM), 1
Software Suite, 11
Solution architecture, 73, 73f

Spin-on dielectric (SOD), 113
Spy circuitry, 92

comparison of, using side channel,
100–101, 100t

State assignment. See State encoding
State encoding, 75–76, 75f. See also

Hierarchical state encoding
two-tier encoding, 78–79

State machine, 71
State transition graph (STG), 117, 117f
Stratix V family, 22
Strongly connected component, 116
Substitution and permutation network (SPN),

179–180
Supplementary code, 151
Sustained vector technique, 151

T
Tektronix real-time signal analyzers, 97, 98
Ternary logic, 222, 229
Thermal decoration, 211
Transistors’ active region, 140–143
Trigger, 149, 153, 172
Trivial partition, 71
Trojan detection methods, 96, 103. See also HT

detection technology
True random number generators (TRNGs), 93,

97

V
Vernam cipher, 151
Vision-Tech circuits, 2
Voltage contrast (VC), 114–115

dash etching, 115f
reversing stealthy dopant-level circuits,

114f

W
Watermarked FSM, 76–78

existence of, 79
pseudocode for, 76f
verification of, 91f

Watermarking, 6
Watermarking verification, 87, 102

experimental results, 89–90
FSM scheme, 87–88
principle, 88–89

Wireless sensor networks, 177

X
Xilinx (manufacturer), 6
Xilinx devices, 23
Xilinx FPGAs, 196
Xilinx Spartan 3, 31t

Index 239

resources to implement design, 32t
Xilinx Spartan 3 FPGA, 178, 196

comparative results, 200, 200t
Xilinx Spartan 6 FPGA, 178, 199

comparative results, 199, 200t
Xilinx SRAM FPGA, 96
XNOR nodes, 117

XOR elements, 118
XOR gates, 3, 118, 149
XOR nodes, 117

Z
“Zero” partition, 71

240 Index

	Preface
	Contents
	1 Digital Right Management for IP Protection
	1.1 Introduction
	1.2 Smart Lock DRM IP Principle
	1.3 State of the Art
	1.3.1 PUF Principles
	1.3.2 Fingerprint and IP Protection

	1.4 DRM Flow
	1.5 DRM Integration in SoC
	1.6 Conclusion
	References

	2 Turning Electronic Circuits Features into On-Chip Locks
	2.1 Introduction and Context
	2.2 Features Usable as Locking Means
	2.2.1 Clock Circuitry
	2.2.2 Inputs/Outputs
	2.2.3 Processor
	2.2.4 Buses
	2.2.5 System Controller
	2.2.6 Analogue Components
	2.2.7 Global Comparison

	2.3 Practical Transformation into On-Chip Locks
	2.3.1 Clock Circuitry
	2.3.2 Inputs/Outputs
	2.3.3 Processor
	2.3.4 Buses
	2.3.5 Finite State Machine

	2.4 Implementation on FPGA and Results
	2.4.1 Hardware Resources
	2.4.2 Reference Designs

	2.5 Discussion: Partial Locking
	2.6 Conclusion
	References

	3 Logic Modification-Based IP Protection Methods: An Overview and a Proposal
	3.1 Introduction and Context
	3.2 A Formal Foundation for Logic Protection Schemes
	3.2.1 Logic Encryption
	3.2.2 Logic Obfuscation
	3.2.3 Logic Masking
	3.2.4 Logic Locking

	3.3 Proposed Graph Analysis-Based Logic Locking Scheme
	3.3.1 Implementation of Logic Locking
	3.3.2 Graph Building
	3.3.3 Graph Analysis for Selection of Optimal Locking Nodes
	3.3.4 Netlist Modification

	3.4 Implementation Results
	3.4.1 Logic Resources Overhead
	3.4.2 Analysis Time

	3.5 Evaluation
	3.5.1 Correlation
	3.5.2 Logic Locking Metric

	3.6 Security Analysis
	3.6.1 Threat Model
	3.6.2 Hill-Climbing Attack
	3.6.3 A Partial Countermeasure Against Hill-Climbing Attack

	3.7 Architecture of a Complete Design Data Protection Scheme
	3.7.1 Area/locking Strength Trade-Off
	3.7.2 On the Need for a Cryptographic Primitive
	3.7.3 Architecture

	3.8 Summary
	References

	4 IP FSM Watermarking
	4.1 Introduction
	4.1.1 Basic Concepts of IP Watermarking
	4.1.2 Types of Watermarking System
	4.1.3 FSM IP Watermarking: State of the Arts
	4.1.4 Design Philosophy
	4.1.5 FSM IP Watermarking: Nonredundancy-Based Approach

	4.2 Problem Formulation and Solution Architecture
	4.2.1 Basic Definitions
	4.2.2 Research Problems
	4.2.3 Solution Architecture
	4.2.4 Motivational Example

	4.3 The Embedding Method
	4.3.1 Hierarchical State Encoding
	4.3.2 Watermarked FSM

	4.4 Analysis
	4.4.1 Existence of Watermarked FSM
	4.4.2 Analysis of Proposed Approach (Qualitative)
	4.4.3 Attack Analysis
	4.4.4 The Limitation and Solutions
	4.4.5 Discussions

	4.5 Conclusions
	Acknowledgement
	References

	5 Side Channel Analysis, an Efficient Ally for IP Protection
	5.1 Introduction
	5.1.1 Side Channel Analysis
	5.1.2 Use Cases for IP Protection

	5.2 FSM Watermarking Verification Scheme Using Power Consumption Analysis
	5.2.1 Principle
	5.2.2 Experimental Results

	5.3 Electromagnetic Communication of IP Data
	5.3.1 Principle
	5.3.2 Ultra-Lightweight Digital BFSK Transmitter
	5.3.3 Experimental Results
	5.3.4 Comparison with State-of-the-Art Spy Circuitries Using a Side Channel
	5.3.5 Industrial Scenarios Using the Proposed P Protection

	5.4 Conclusion
	Acknowledgment
	References

	6 Hardware Obfuscation: Techniques and Open Challenges
	6.1 Introduction
	6.2 Layout-Level Obfuscation
	6.2.1 Camouflage Gates
	6.2.2 Obfuscating the Connectivity:
	6.2.3 Further Obfuscation Techniques
	6.2.4 Reverse-Engineering Camouflage Gates

	6.3 Netlist-Level Obfuscation
	6.3.1 Netlist Reverse-Engineering Techniques
	6.3.2 Control Flow Obfuscation
	6.3.3 Combined Data and Control Flow Obfuscation
	6.3.4 Reconfiguration Obfuscation

	6.4 Conclusion
	References

	7 An Application of Partial Hardware Reverse Engineering for the Detection of Hardware Trojan
	7.1 Introduction
	7.2 Integrated Circuits, Malicious Hardware Modifications and Base of Retro-Engineering
	7.2.1 Smart Card Like Integrated Circuits
	7.2.2 Reverse Engineering
	7.2.3 Hardware Trojan Taxonomy and Threats

	7.3 Accessing Information by Microscopy Means
	7.3.1 Bacskide Non-destructive Imaging
	7.3.2 Layer of Interest to Be Accessed
	7.3.3 Choosing Electron Microscopy

	7.4 Proposal of a Novel HT Detection Methodology
	7.4.1 Step 1: Sample Preparation
	7.4.2 Step 2: Automatic Image Alignment and Registration
	7.4.3 Step 3: Hardware Trojan Detection

	7.5 Methodology Advantages
	7.5.1 IC Flow Compliancy
	7.5.2 Industrial Advantages

	7.6 The Three Different Detection Scenarios
	7.6.1 Golden Circuit
	7.6.2 GDSII File
	7.6.3 DEF File

	7.7 Applying the Methodology to a Real Detection Case
	7.7.1 The ASICs and Equipments Used
	7.7.2 The Hardware Trojan
	7.7.3 Getting the Entire IC Transistors' Active Region Image
	7.7.4 Detecting the HT Knowing Its Location
	7.7.5 Detecting HT Invariant of Their Location

	7.8 Conclusion and Perspectives
	7.8.1 Conclusion
	7.8.2 Perspectives

	References

	8 Linear Complementary Codes: Novel Hardware Trojan Prevention and Detection Approach
	8.1 Introduction
	8.2 Encoded Circuit Concept
	8.3 Encoded Circuit Method Properties
	8.3.1 Security Objective
	8.3.2 LCP Code Properties

	8.4 Automated Design Flow for Encoded Circuit
	8.5 Case Studies
	8.5.1 Case Studies I: Nanoprocessor
	8.5.2 Case Study II: SIMON Cryptography Coprocessor
	8.5.3 Case Study III: AVR Processor

	8.6 Optimization of LCP Code
	8.6.1 Methodology
	8.6.2 Application on a LCP Pair of Codes

	8.7 Security Evaluation
	8.7.1 Encoded Circuit Against Probing Attack
	8.7.2 Encoded Circuit Against Side-Channel Attack (SCA)
	8.7.3 Encoded Circuit Against Fault Injection Attack

	8.8 Comparison with the State of the Art
	8.8.1 Difference from Private Circuits
	8.8.2 Comparison with Previous Works

	8.9 Conclusion
	References

	9 Ultra-Lightweight Implementation in Area of Block Ciphers
	9.1 Introduction
	9.2 Lightweight Block Ciphers
	9.2.1 General Description
	9.2.2 Substitution and Permutation Network
	9.2.3 Feistel Network
	9.2.4 Other Types of Block Ciphers

	9.3 Hardware Implementation Strategies
	9.3.1 Fullwidth Hardware Implementation
	9.3.2 Serial Hardware Implementation

	9.4 Description of the Implemented Algorithms
	9.4.1 Choice of the Algorithms to Implement
	9.4.2 KLEIN
	9.4.3 LED
	9.4.4 Lilliput
	9.4.5 Ktantan

	9.5 Comparison of the Implementation Results
	9.5.1 Fullwidth Result
	9.5.2 Comparison of the Results

	9.6 Conclusion and Future Works
	References

	10 Enhancing Secure Elements—Technology and Architecture
	10.1 Introduction
	10.2 General Description
	10.2.1 Encryption and PKI Deployment
	10.2.2 Multi-function Authentication
	10.2.3 Embedded Secure Memories—Utilization of Flash

	10.3 Usage of Advanced Memory Technologies
	10.3.1 Comparison with Resistive RAM, and Magnetic RAM
	10.3.2 Usage of Content Addressable Memories (CAM)

	10.4 Usage of Physically Unclonable Functions
	10.4.1 PUFs Within Secure Elements
	10.4.2 PUFs with Embedded Memories
	10.4.3 Strengthening Secure Memory-Based PUFs with Ternary States

	10.5 Usage of Machine Learning
	10.6 Additional Enhancements
	10.7 Summary
	References

	Index

