An Empirical Study
of Per-instance Algorithm Scheduling

Marius Lindauer®) | Rolf-David Bergdoll, and Frank Hutter

University of Freiburg, Freiburg im Breisgau, Germany
lindauer@cs.uni-freiburg.de

Abstract. Algorithm selection is a prominent approach to improve a
system’s performance by selecting a well-performing algorithm from a
portfolio for an instance at hand. One extension of the traditional algo-
rithm selection problem is to not only select one single algorithm but
a schedule of algorithms to increase robustness. Some approaches exist
for solving this problem of selecting schedules on a per-instance basis
(e.g., the Sunny and 3S systems), but to date, a fair and thorough com-
parison of these is missing. In this work, we implement Sunny’s app-
roach and dynamic schedules inspired by 3S in the flexible algorithm
selection framework flezfolio to use the same code base for a fair com-
parison. Based on the algorithm selection library (ASlib), we perform
the first thorough empirical study on the strengths and weaknesses of
per-instance algorithm schedules. We observe that on some domains it
is crucial to use a training phase to limit the maximal size of schedules
and to select the optimal neighborhood size of k-nearest-neighbor. By
modifying our implemented variants of the Sunny and 3S approaches in
this way, we achieve strong performance on many ASlib benchmarks and
establish new state-of-the-art performance on 3 scenarios.

Keywords: Algorithm selection + Algorithm schedules - Constraint
solving

1 Introduction

A common observation in many areas of Al (e.g., SAT or CSP solving) and
machine learning is that no single algorithm dominates the performance of all
others. To exploit this complementarity of algorithms, algorithm selection sys-
tems [6,8,11] are used to select a well-performing algorithm for a new given
instance. Algorithm selectors, such as SATzilla [12] and 35 [7], demonstrated in
several SAT competitions that they can outperform pure SAT solvers by a large
margin (see, e.g., the results of the SAT Challenge 2012%).

An open problem in algorithm selection is that the machine learning model
sometimes fails to select a well-performing algorithm, e.g., because of uninforma-
tive instance features. An extension of algorithm selection is to select a schedule
of multiple algorithms at least one of which performs well.

! http://baldur.iti.kit.edu/SAT-Challenge-2012/.

© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 253-259, 2016.
DOI: 10.1007/978-3-319-50349-3_20

http://baldur.iti.kit.edu/SAT-Challenge-2012/

254 M. Lindauer et al.

To date, a fair comparison of such algorithm schedule selectors is missing,
since every publication used another benchmark set and some implementations
(e.g., 35) are not publicly available (because of license reasons). To study the
strengths and weaknesses of such schedulers in a fair manner, we implemented
well known algorithm schedule approaches (i.e., Sunny [1] and dynamic sched-
ules inspired by 35 [7]) in the flexible framework of flezfolio (the successor of
claspfolio 2 [5]) and studied them on the algorithm selection library (ASlib [3]).

2 Per-instance Algorithm Scheduling

Similar to the per-instance algorithm selection problem [11], the per-instance
algorithm scheduling problem is defined as follows:

Definition 1 (Per-instance Algorithm Scheduling Problem). Given a set
of algorithms P, a set of instances I, a runtime cutoff k, and a performance
metric m : X X T — R, the per-instance algorithm scheduling problem is to
find a mapping s : T — X from an instance m € T to a (potentially unordered)
algorithm schedule o, € X where each algorithm A € P gets a runtime budget
or(A) between 0 and r such that) 4opor(A) < & and Y o m(s(m),m) will
be minimized.

The algorithm scheduler aspeed [4] addresses this problem by using a static
algorithm schedule; i.e., aspeed applies the same schedule to all instances. The
schedule is optimized with an answer set programming [2] solver to obtain a
timeout-minimal schedule on the training instances. The scheduler aspeed either
uses a second optimization step to determine a well-performing ordering of the
algorithms or sorts the algorithms by their assigned times, in ascending order
(such that a wrongly selected solver does not waste too much time).

Systems such as 3S [7], SATzilla [12] and claspfolio 2 [5] combine static
algorithm schedules (also called pre-solving schedules) and classical algorithm
selection. All these systems run the schedule for a small fraction of the runtime
budget & (e.g., 35 uses 10% of k), and if this pre-solving schedule fails to solve the
given instance, they apply per-instance algorithm selection to run an algorithm
predicted to perform well. 3S and claspfolio 2 use mixed integer programming
and answer set programming solvers, respectively, to obtain a timeout-minimal
pre-solving schedule. SAT%zilla uses a grid search to obtain a pre-solving schedule
that optimizes the performance of the entire system.

The algorithm scheduler Sunny [1] determines the schedule for a new instance
7 by first determining the set of k& training instances Z; closest to 7 in instance
feature space, and then assigns each algorithm a runtime proportional to the
number of instances in Zj it solved. The algorithms are sorted by their aver-
age PARI10 scores on Zy, in ascending order (which corresponds to running the
algorithm with the best expected performance first).

An Empirical Study of Per-instance Algorithm Scheduling 255

3 Instance-Specific Aspeed (ISA)

Kadioglu et al. [7] proposed a variant of 35 that uses per-instance algorithm
schedules instead of a fixed split between static pre-solving schedule and algo-
rithm selection. In order to evaluate the potential of per-instance timeout-
optimized scheduling, we developed the scheduler ISA, short for instance-specific
aspeed. Inspired by Kadioglu et al. [7], our implementation uses k-nearest neigh-
bor (k-NN) to identify the set Z of training instances closest to a given instance
7 and then applies aspeed to obtain a timeout-minimal schedule for them.

During offline training, we have to determine a promising value for the neigh-
borhood size k. In our experiments, we evaluated different & values between 1
and 40 by running cross-validation on the training data and stored the best per-
forming value to use online. We chose this small upper bound for k to ensure a
feasible runtime of the scheduler? (in our experiments less than 1 second). Fur-
thermore, to optimize the runtime of the scheduler, we reduced the set of training
instances, omitting all instances that were either solved by every algorithm or
solved by none within the cutoff time.

For each new instance, ISA first computes the k nearest neighbor instances
from the reduced training set. This instance set is passed to aspeed [4], which
returns a timeout-minimal unordered schedule for the neighbor set. The schedule
is finally aligned by sorting the time slots in ascending order.

4 Trained Sunny (TSunny)

To offer a form of scheduling with less overhead in the online stage than ISA,
we implemented a modified version of Sunny [1] by adding a training phase.
For a new problem instance Sunny first selects a subset of k training instances
Ty, using k-NN. Then time slots are assigned to each candidate algorithm: Each
solver gets one slot for each instance of Zj it can solve within the given time.
Additionally, a designated backup solver gets one slot for each instance of Z
that cannot be solved by any of the algorithms. Having this slot assignment, the
actual size of a single time slot is computed by dividing the available time by the
total number of slots. Finally, the schedule is aligned by sorting the algorithms
by their average PAR10 score on Zj, thereby running the most promising solver
first.

Preliminary experiments for our implementation of this algorithm produced
relatively poor results. Examining the schedules, we found that Sunny tends to
employ many algorithms per schedule, which we suspected to be a weakness.
Thus, we enhanced the algorithm by limiting the number of algorithms used in
a single schedule to a specified number A.

Originally, Sunny is defined as lazy, i.e. not applying any training procedures
after the benchmark data is gathered. However, to obtain better values for our
new parameter A, and also to improve the choice of the neighborhood size k, we

2 Optimizing a schedule is NP-hard; thus the size of the input set, defined by k, must
be kept small to make the process applicable during runtime.

256 M. Lindauer et al.

implemented a training process for Sunny. Similar to ISA, different configura-
tions for A (range 1 to the total number of solvers) and k (range 1 to 100) are
evaluated by cross-validation on the training data. To distinguish this enhanced
algorithm from the original Sunny, we dubbed this trained version T'Sunny.

5 Empirical Study

To compare the different algorithm scheduling approaches of ISA and Sunny, we
implemented them in the flexible algorithm selection framework flezfolio® and
compared them to various other systems: The static algorithm scheduling system
aspeed [4], the default configuration of flexfolio (which is similar to SATzilla [12]
and claspfolio 2 [5] and includes a static-presolving schedule), as well as the per-
instance algorithm selector AutoFolio [9] (an automatically-configured version of
flezfolio without consideration of per-instance algorithm schedules). If not men-
tioned otherwise, we used the default parameter values of flexfolio. The compar-
ison is based on the algorithm selection library (ASlib [3]), which is specifically

Table 1. Gap metric on PAR10: 1.0 corresponds to a perfect oracle score and 0.0
corresponds to the single best score. The best score for each scenario is highlighted with
bold face and all system performances have a star that are not significantly worse than
the best system (permutation test with 100 000 random permutations and a = 0.05;
“Equal to Best”). All systems are implemented in flexfolio, except Sunny which is the
original version.

flexfolio | AutoFolio | aspeed | Sunny | TSunny | ISA
ASP-POTASSCO |0.78" 0.80* 0.34 [0.69 |0.81" 0.72
CSP-2010 0.80" |0.75" 0.05 0.68 |0.77" 0.74*
MAXSAT12-PMS | 0.67 0.90* 0.65 |0.87 |0.93" 0.94"
PREMAR-2013 0.70 0.74* 0.74* 10.71 0.62 0.78
PROTEUS-2014 |0.82 0.87 0.87 [0.88 |0.94" 0.91
QBF-2011 0.90 0.91 0.80 0.90 0.94" 0.92
SAT11-HAND 0.73* 0.71% 0.74* 0.54 0.52 0.69"
SAT11-INDU 0.29” 0.36 0.06 0.19 0.37" 0.43™
SAT11-RAND 0.93" 0.95" 0.80 [0.59 |0.87 0.95*
SAT12-ALL 0.69* 0.69* 0.10 |0.58 |0.69" 0.71"
SAT12-HAND 0.68 0.71 0.46 |0.57 |0.72 0.78"
SAT12-INDU 0.39 0.46™ —0.22 10.01 0.53" 0.54"
SAT12-RAND 0.17 0.24* —0.28 | —0.14 | 0.327 0.12
Average 0.66 0.70 0.39 |0.54 |0.69 0.71
Equal to Best 6 10 2 0 9 9

3 The source code and all benchmark data are available at http://www.mldaad.org/
algorithm-selection/flexfolio/.

http://www.ml4aad.org/algorithm-selection/flexfolio/
http://www.ml4aad.org/algorithm-selection/flexfolio/

An Empirical Study of Per-instance Algorithm Scheduling 257

designed to fairly measure the performance of algorithm selection systems. Ver-
sion 1.0 of ASlib consists of 13 scenarios from a wide range of different domains
(SAT, MAXSAT, CSP, QBF, ASP and operations research).

Table1 shows the performance of the systems as the fraction of the gap
closed between the static single best algorithm and the oracle (i.e., the per-
formance of an optimal algorithm selector), using performance metric PAR10%.
As expected, the per-instance schedules (i.e., Sunny and ISA) performed bet-
ter on average than aspeed’s static schedules. However, aspeed still establishes
the best performance on SAT11-HAND. By comparing Sunny and TSunny,
we see that parameter tuning substantially improved performance. Compar-
ing TSunny and ISA, we note that their overall performance is similar but
that either has advantages on different scenarios; thus, there is still room for
improvement by selecting the better of the two on a per-scenario basis. Surpris-
ingly, the per-instance schedules had a similar performance (ISA with 0.71) to
the state-of-the-art procedure AutoFolio (0.70); however, AutoFolio performed
slightly more robustly, being amongst the best systems on 10/13 scenarios. Nev-
ertheless, ISA establishes new state-of-the-art performance on PREMAR-2013

Table 2. Statistics of schedules: neighborhood size k, average size @|o| of schedules,
average position @suc of successful solver in schedule for our systems aspeed, ISA,
Sunny’ (a reimplementation of the lazy version of Sunny), and TSunny (the non-lazy
trained version of Sunny’)

aspeed ISA Sunny’ TSunny
Olo||suclk |S|o||Dsuclk |D|o||Dsuclk |D|o||Dsuc
ASP-POTASSCO 5.9 [1.96 [14.4/1.6 |1.07 |34.0/10.7|1.15 |19.6/1.0 |1.01
CSP-2010 20 1.2 |58 |1.1 |1.0 |43.0/1.9 |1.01 |12.8/1.9 |1.0
MAXSAT12-PMS|3.0 [1.98 |7.3 |1.2 |1.02 |28.0/5.4 |1.04 |64 |3.0 |1.01
PREMAR-2013 |4.0 [1.75 [32.6/2.3 |1.3 |22.0/4.0 |1.22 9.0 |3.6 |1.21
PROTEUS-2014 |18.3 |7.27 |30.6/ 3.2 |1.41 60.0/13.9 |1.77 126.6/12.5|1.5
QBF-2011 49 |22 |27.8/19 [1.26 |35.0/45 1.1 |14.1|3.3 |1.06
SAT11-HAND 5.9]296 [27.8/3.1 |1.92 |16.0/13.5|1.6 |10.2/1.7 |1.02
SAT11-INDU 4.6 |2.82 |3.8 |1.3 [1.03 [16.0/16.5 |1.55 4.2 |1.4 |1.02
SAT11-RAND 3.8 [1.94 |{14.4/1.8 [1.13 [23.0/7.8 |1.04 |18.3|1.5 |1.02
SAT12-ALL 12.6 |5.24 |8.8 1.6 |1.12 |38.0/24.4 |1.72 |4.2 |1.0 |1.0
SAT12-HAND 10.9 1545 (4.8 |1.5 |1.09 |26.0/26.2 |1.68 |4.6 1.0 |1.01
SAT12-INDU 6.2 |3.64 |6.1 [1.2 |1.04 |32.0/22.5|1.75 4.3 |1.0 1.0
SAT12-RAND 5.2 1227 |18.3/1.8 |1.07 |35.0/15.7 |1.12 |67.2/1.0 |1.0

4 PARI0 is the penalized average running time where timeouts are counted as 10 times
the running time cutoff.

258 M. Lindauer et al.

(short for PREMARSHALLING-ASTAR-2013) and TSunny on PROTEUS-
2014 and QBF-2011 according to the on-going evaluation on ASkib5.

Table 2 gives more insights into our systems’ behavior. It also includes our
implemented version of Sunny without training, dubbed Sunny’. Sunny (and
also Sunny’) sets the neighborhood size k as the square root of the number of
instances, whereas TSunny optimizes k on the training instances. The reason
for TSunny’s better performance in comparison to Sunny is probably its much
smaller values for k£ on all scenarios except on SAT12-RAND. Also TSunny’s
average schedule size was smaller on nearly all scenarios (except CSP-2010).

Comparing the static aspeed and the instance-specific aspeed (ISA), the aver-
age schedule size of aspeed is rather large since aspeed has to compute a single
static schedule that is robust across all training instances and not only on a small
subset. Surprisingly, the values of k for ISA and TSunny differ a lot, indicating
that the best value of k depends on the scheduling strategy.

6 Conclusion and Discussion

We showed that per-instance algorithm scheduling systems can perform as well
as algorithm selectors and even establish new state-of-the-art performance on 3
scenarios of the algorithm selection library [3]. Additionally, we found that the
performance of the algorithm schedules strongly depends on the adjustment of
their parameters for each scenario, here the neighborhood size of the k-nearest
neighbor and the maximal size of the schedules.

In our experiments we did not tune all possible parameters of Sunny and
ISA in the flexible flexfolio framework; e.g., we fixed the pre-processing strategy
of the instance features. Therefore, a future extension of this line of work would
be to extend the search space of the automatically-configured algorithm selector
AutoFolio [9] to also cover per-instance algorithm schedules. Another extension
could be to allow communication between the algorithms in the schedule [10].

References

1. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a lazy portfolio approach for
constraint solving. TPLP 14(4-5), 509-524 (2014)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechétte, A.,
Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J.: ASlib: a
benchmark library for algorithm selection. AIJ 237, 41-58 (2016)

4. Hoos, H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling via
answer set programming. TPLP 15, 117-142 (2015)

5. Hoos, H., Lindauer, M., Schaub, T.: claspfolio 2: Advances in algorithm selection
for answer set programming. TPLP 14, 569-585 (2014)

5 www.aslib.net.

www.aslib.net

10.

11.
12.

An Empirical Study of Per-instance Algorithm Scheduling 259

Huberman, B., Lukose, R., Hogg, T.: An economic approach to hard computational
problems. Science 275, 51-54 (1997)

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454-469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_35
Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. Al
Mag. 35, 48-60 (2014)

Lindauer, M., Hoos, H., Hutter, F., Schaub, T.: Autofolio: an automatically con-
figured algorithm selector. JAIR 53, 745-778 (2015)

Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Boosting sequen-
tial solver portfolios: knowledge sharing and accuracy prediction. In: Nicosia, G.,
Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 153-167. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-44973-4_17

Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65-118 (1976)

Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. JAIR 32, 565-606 (2008)

http://dx.doi.org/10.1007/978-3-642-23786-7_35
http://dx.doi.org/10.1007/978-3-642-44973-4_17

	An Empirical Study of Per-instance Algorithm Scheduling
	1 Introduction
	2 Per-instance Algorithm Scheduling
	3 Instance-Specific Aspeed (ISA)
	4 Trained Sunny (TSunny)
	5 Empirical Study
	6 Conclusion and Discussion
	References

