
Constraint Programming and Machine Learning
for Interactive Soccer Analysis

Robinson Duque1(B), Juan Francisco Dı́az1, and Alejandro Arbelaez2

1 Universidad del Valle, Cali, Colombia
{robinson.duque,juanfco.diaz}@correounivalle.edu.co

2 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
alejandro.arbelaez@insight-centre.org

Abstract. A soccer competition consists of n teams playing against each
other in a league or tournament system, according to a single or double
round-robin schedule. These competitions offer an excellent opportunity
to model interesting problems related to questions that soccer fans fre-
quently ask about their favourite teams. For instance, at some stage of
the competition, fans might be interested in determining whether a given
team still has chances of winning the competition (i.e., finishing first in
a league or being within the first k teams in a tournament to qualify
to the playoff). This problem relates to the elimination problem, which
is NP-complete for the actual FIFA pointing rule system (0, 1, 3), zero
point to a loss, one point to a tie, and three points to a win. In this paper,
we combine constraint programming with machine learning to model a
general soccer scenario in a real-time application.

1 Introduction

Soccer fans usually have questions related to their favourite teams and most
of the time they are subject to media speculations that are sometimes proved
wrong. Many domestic leagues use a two-stage tournament structure with a sin-
gle or double round-robin tournament for the regular season and a final knockout
stage (aka playoffs). The first stage of the league typically features between 16
and 30 teams, each team faces each other team once or twice with home and away
matches distributed evenly in the regular season. Depending on the results of
the matches, every team is awarded some points under the FIFA three-point-rule
(three points for a victory, one point for a draw, and zero points for a defeat),
and the top k teams (typically eight) qualify for the playoffs.

The elimination problem is well-known in sports competitions, particularly
from baseball [1,2] and consists in determining whether at some stage of the
competition a given team still has the opportunity to be within the top teams to
qualify for playoffs. The complexity of the problem depends on the score system
for the results of the matches. In [3,4] the authors showed that the elimination
problem is NP-complete for the current FiFA score system (0, 1, 3). However,
interestingly [4] pointed out that with the old FIFA score system (0, 1, 2) from
the 90’s, the elimination problem could be solved in polynomial time using a
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 240–246, 2016.
DOI: 10.1007/978-3-319-50349-3 18

Constraint Programming and Machine Learning 241

network flow algorithms as first proposed by [5]. In this paper we attempt to
present a general model to simulate scenarios and problems where fans can
formulate queries about the positions of the teams at the end of a tournament,
e.g., Will R. Madrid be in a better position than 3. To this end, we propose
a combination of constraint programming (CP) with machine learning (ML) to
answer soccer related queries.

2 CP Model for Soccer Queries

CP is a powerful technique to solve combinatorial problems which combines
backtracking with constraint propagation. At each step a value is assigned to
some variable. Each assignment is combined with a look-ahead process called
constraint propagation which can reduce the domains of the remaining variables.
In the following, we describe a CP formulation for soccer competitions, we start
by offering a list of variables and notations for a basic soccer model.

– n: number of teams in the competition;
– T : set of team indexes in the competition;
– i, j: team indexes, such that (i, j ∈ T);
– pi: initial points of team i. If i has not played any games, then pi = 0;
– F : number of fixtures left to be played in the competition. A fixture consists

of one or more games between competitors;
– k: represents a fixture number, (1 ≤ k ≤ F);
– G: set that represents the schedule of the remaining games to be played. Every

game is represented as a triple nge = (i, j, k) ∧ 0 ≤ e ≤ |G|, where k is the
fixture when both teams (i and j) meet in a game;

– ptik: represents the points that team i gets in fixture k, (1 ≤ k ≤ F and ptik ∈
{0, 1, 3}). If team i is not scheduled to play fixture k, then pti,k = 0.

– tpi: total points of team i at end of the competition;
– geqij : boolean variable indicating if team j has greater or equal total points

as i: if tpj ≥ tpi then geqij = 1; otherwise geqij = 0, (∀i, j ∈ T);
– eqij : boolean variable indicating if two different teams i and j tie in points at

the end of the competition: if tpj = tpi and i �= j then eqij = 1; otherwise
eqij = 0, (∀i, j ∈ T).

– posi: position of team i at the end of the competition;
– worstPosi: upper bound for posi;
– bestPosi: lower bound for posi;

Position in Ranking Queries: we use this set of variables to represent queries
about positions of the teams at the end of the competition (e.g., R. Madrid will
be in position 3).

– P : set of possible position in ranking queries, defined as a set of triples npb =
(i, opri, ptni) and 0 ≤ b ≤ |P |;

– opri: logical operator (opri ∈ {<,≤, >,≥,=}) to constrain team i;
– ptni: denoting the expected position for team i; 1 ≤ ptni ≤ n;

242 R. Duque et al.

2.1 CP Model Formulation

Basic Soccer Model: Constraints (1), (2), and (3) represent a valid game point
assignment (0,3), (3,0) or (1,1) for each game nge ∈ G between two teams i and
j in a fixture k:

(0 ≤ ptik ≤ 3) ∧ (0 ≤ ptjk ≤ 3) ∀nge ∈ G ∧ nge = (i, j, k) (1)

(ptik �= 2) ∧ (ptjk �= 2) ∀nge ∈ G ∧ nge = (i, j, k) (2)

2 ≤ ptik + ptjk ≤ 3 ∀nge ∈ G ∧ nge = (i, j, k) (3)

Constraint (4) corresponds to the final points tpi of a team i. It is the addition
of the initial points pi and the points ptik obtained in every fixture k:

tpi = pi +
F∑

k=1

ptik ∀i ∈ T (4)

Constraints (5) to (8) are used to calculate final positions. All the final positions
must be different and every position is bounded by bestPosi and worstPosi:

geqij =

{
1, if tpj ≥ tpi

0, otherwise
∀i, j ∈ T

worstPosi =
n∑

j=1

geqij ∀i, j ∈ T

(5)

eqij =

{
1, if tpj = tpi and i �= j

0, otherwise
∀i, j ∈ T

bestPosi = worstPosi −
n∑

j=1,j �=i

eqij ∀i, j ∈ T ∧ i �= j

(6)

bestPosi ≤ posi ≤ worstPosi ∀i ∈ T (7)

alldifferent(pos1, . . . , posn) (8)

Position in Ranking Queries: involves a set of constrained teams and indicates
whether a given team can be above, below, or at a given position ptni, constraint
(9) depicts the five possibilities:

∀npb ∈ P ∧ npb = (i, opri, ptni)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

posi = ptni, if opri is =
posi < ptni, if opri is <

posi ≤ ptni, if opri is ≤
posi > ptni, if opri is >

posi ≥ ptni, if opri is ≥

(9)

Constraint Programming and Machine Learning 243

2.2 Variable/Value Selection

Generic heuristics (e.g., [6,7]) typically do not perform well for real-life problems
as these heuristics do not exploit the structure of the problem. Therefore, in this
paper we propose some query based heuristics for variable/value selection. First
we introduce a set of required variables in order to describe a priority mechanism
to select the team variables constrained in queries P :

– sposi: starting position of team i before any branching strategy is applied;
– prii: denoting the priority of team i to be selected during branching, If team

i does not appear in any query, then prii = 0;
– stri: denoting the global branching strategy for the variables ptik of a partic-

ular team i in every fixture k. stri starts with “tie” as a default value.

Heuristics for Position in Ranking Queries (P). Recall from (9) that we
use the position posi to constrain a team to a wanted position ptni. Suppose we
have the query (posi < 8). It’s natural to try stri = win and assign a priority
using the position ptni from the query. We depict in (10) some general rules for
variable value selection:

∀npb ∈ P∧
npb = (i, opri, ptni)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if opri is < or ≤, prii = n − ptni ∧ stri = win

if opri is > or ≥, prii = ptn ∧ stri = lose

if opri is =, prii = ptn ∧
{
stri = lose, if ptni > n/2
stri = win, otherwise

(10)

Interestingly the defined heuristics in (10) for queries with the “=” operator
seem to fail quite often (see Sect. 3). Suppose a scenario with a query (posi = 7)
where sposi = 9 with F = 8 fixtures to play. Given that the starting position
is 9 and we have to reach position 7, the global branching strategy stri = win
causes that posi overshoots position 7 and would require many backtracks of the
search algorithm in order to reach such position, therefore, it might be useful
to perform a bias search and in the following section we tackle this problem by
using machine learning.

Machine Learning for Value Selection. For teams constrained with the
“=” operator, we decided to assign a high priority (prii = |sposi − ptni| ·
n) for variable selection and to avoid position overshooting, we trained a
classifier that selects among 9 branching strategies: S1 = [1,0,0], S2 = [0,1,0],
S3 = [0,0,1], S4 = [0.5,0.5,0], S5 = [0.5,0,0.5], S6 = [0,0.5,0.5], S7 = [0.5,0.25,0.25],
S8 = [0.25,0.5,0.25], S9 = [0.25,0.25,0.5]. Each strategy defines probabilities to
select among [win, tie, lose] respectively, e.g., S7 means that for a team i, every
variable ptik will be assigned win with a probability of 0.5, tie and lose with
a probability of 0.25 each. We use the selected strategy with a restart-based
search; therefore we restart the algorithm when some cutoff in the execution
time is met. (3 s in this paper). Notice that we excluded a strategy [1/3, 1/3/,
1/3] as preliminarily tests showed a poor performance for this alternative.

Training the Classifier: In order to train this classifier, we created a total of
500 P queries with the equality operator at different stages of a tournament

244 R. Duque et al.

(fixture 7, 9, 11, 14 and 16) with 18 teams, scheduled in a single round robin.
We ran every query with each of the 9 branching strategies in order to get the
strategy that solved the instance in the shortest time and created a data set with
the following features: starting position (sposi), wanted position (ptni), direction
and distance (sposi − ptni), fixtures to play (F), range rate (|sposi − ptni|/n),
best executing strategy ∈ {S1, S2, S3, S4, S5, S6, S7, S8, S9}.

In this paper we use J48 (the Weka v3.6.12 implementation of C4.5) to eval-
uate the performance of the algorithms. The objective is that for each query P
with the equality operator “=”, J48 assigns one of the nine branching strategies
to the constrained team.

3 Empirical Evaluation

Tests Configuration. We evaluated our models using Mozart-Oz (V 1.4.0)
as our CP reference solver. All the experiments were performed in a 4-core
machine, featuring an Intel Core i5 processor at 2.3 Ghz and 4 GB of RAM.
We focus our attention in the Colombian league (liga Postobón 2014-I) with 18
teams and 18 fixtures to play in a single round-robin schedule (17 fixtures +
1 extra fixture for the derbies). We provided five experimental scenarios (i.e.,
fixtures 7, 9, 11, 14, and 16). We also created a series of instances for each
fixture (100 with 2 suppositions, 100 with 3 suppositions, and the same for 4,
5, 7, and 9 suppositions). Each instance (3000 in total) was executed with a
time limit of 30 s. We recall that our models are implemented in SABIO, a Web
based application where long answer times are not desirable. We experimented
two scenarios: the basic CP implementation using the heuristics for position in
ranking queries and the CP-ML implementation configured with 10 restarts (i.e.,
3 s per restart), featuring the basic heuristics and the machine learning classifier
for equality constraints.

Tests Results. Table 1 shows the number of unsolved instances and the aver-
age runtimes of the solved ones in our experiments. We observe 1069 unsolved
instances with the CP model and we attribute this to 2 main reasons: first, the
position bounds (i.e., bestPosi and worstPosi) can only be computed after find-
ing the total points (tpi) for all the teams in the competition. As a result, position
in ranking constraints standing are validated only when the search algorithm
performs a complete game points assignment for all teams. Second, we observed
that our variable/value selection heuristics struggle with queries related to the
“=” operator and the lack of a biased search causes position overshooting. We
also observed that our CP-ML implementation seems to perform better and the
classifier improves the effectiveness of the algorithm by reducing the number of
unsolved instances from 1069 to 627 while displaying a small trade-off in run-
ning time.

Constraint Programming and Machine Learning 245

Table 1. Unsolved instances and average running times of CP and CP-ML

P Queries Running times

Fixture Test Sup.

2 3 4 5 7 9 2 3 4 5 7 9

Fixture CP 24 28 38 46 50 52 .22 .48 .31 .41 .77 1.10

7 CP-ML 6 9 14 21 27 35 1.19 1.34 1.83 2.40 3.28 3.09

Fixture CP 23 28 35 46 49 44 .08 .41 .23 .65 .31 .72

9 CP-ML 1 4 9 18 27 31 1.68 1.48 2.25 2.81 2.78 1.66

Fixture CP 25 27 31 44 49 47 .56 .10 .75 .69 .86 .45

11 CP-ML 2 7 11 18 31 34 1.53 1.09 2.01 2.67 2.56 2.46

Fixture CP 23 33 38 41 51 45 .42 .13 .49 1.01 1.53 .74

14 CP-ML 8 22 25 34 44 42 1.17 1.29 1.46 1.48 1.08 1.47

Fixture CP 23 31 29 31 25 13 .12 .04 .89 .55 .45 .65

16 CP-ML 19 25 25 33 28 17 .56 .50 .93 .05 .11 .03

CP results Unsolved: 1069 Avg: 0.51 s

CP-ML results Unsolved: 627 Avg: 1.60 s

4 Conclusions

In this paper we have combined the use of constraint programming and machine
learning to solve general soccer fan queries at different stages of a competi-
tion and presented 2 alternative solutions CP and CP-ML. Our computational
experiments showed that our CP-ML model improves CP effectiveness since it
performs a query biased search. We also plan to extend our models to deal with
more queries such as determining the maximum number of games that a team
can afford to lose and still qualify to the playoffs and also explore the implemen-
tation of a MIP model, based on the work of Ribeiro and Urrutia [8].

We would like to thank Luis Felipe Vargas, Maŕıa Andrea Cruz and Carlos
Mart́ınez for developing early versions of the CP model under the supervision of
Juan Francisco Dı́az. Robinson Duque is supported by Colciencias under the PhD
scholarship program. Alejandro Arbelaez is supported by the DISCUS project
(FP7 Grant Agreement 318137), and Science Foundation Ireland (SFI) Grant
No. 10/CE/I1853.

References

1. Schwartz, B.L.: Possible winners in partially completed tournaments. SIAM Rev.
8(3), 302–308 (1966)

2. Hoffman, A., Rivlin, T.: When is a team mathematically eliminated? In: Princeton
Symposium on Mathematical Programming, pp. 391–401. Princeton, NJ (1967)

3. Kern, W., Paulusma, D.: The new fifa rules are hard: complexity aspects of sports
competitions. Discrete Appl. Math. 108(3), 317–323 (2001)

246 R. Duque et al.

4. Bernholt, T., Gülich, A., Hofmeister, T., Schmitt, N.: Football elimination is hard
to decide under the 3-point-rule. In: Kuty�lowski, M., Pacholski, L., Wierzbicki, T.
(eds.) MFCS 1999. LNCS, vol. 1672, pp. 410–418. Springer, Heidelberg (1999).
doi:10.1007/3-540-48340-3 37

5. Wayne, K.D.: A new property and a faster algorithm for baseball elimination. SIAM
J. Discrete Math. 14(2), 223–229 (2001)

6. Arbelaez, A., Hamadi, Y.: Exploiting weak dependencies in tree-based search. In:
SAC 2009, pp. 1385–1391 (2009)

7. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. In: IJCAI 1979, San Francisco, CA, USA, pp. 356–364 (1979)

8. Ribeiro, C.C., Urrutia, S.: An application of integer programming to playoff elimi-
nation in football championships. ITOR 12(4), 375–386 (2005)

http://dx.doi.org/10.1007/3-540-48340-3_37

	Constraint Programming and Machine Learning for Interactive Soccer Analysis
	1 Introduction
	2 CP Model for Soccer Queries
	2.1 CP Model Formulation
	2.2 Variable/Value Selection

	3 Empirical Evaluation
	4 Conclusions
	References

