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Abstract. Evolutionary Algorithm is a well-known meta-heuristics
para-digm capable of providing high-quality solutions to computation-
ally hard problems. As with the other meta-heuristics, its performance
is often attributed to appropriate design choices such as the choice of
crossover operators and some other parameters. In this chapter, we
propose a continuous state Markov Decision Process model to select
crossover operators based on the states during evolutionary search.
We propose to find the operator selection policy efficiently using a
self-organizing neural network, which is trained offline using randomly
selected training samples. The trained neural network is then verified on
test instances not used for generating the training samples. We evaluate
the efficacy and robustness of our proposed approach with benchmark
instances of Quadratic Assignment Problem.

1 Introduction

Evolutionary algorithms (EAs) such as genetic algorithm (GA) and memetic
algorithm (MA) have been widely used for solving NP-hard problems [8,10,21].
Using EA, a population of chromosomes representing the candidate solutions to
an NP-hard problem are evolved over a number of generations. The aim of the
search process is to optimize some objective value. These evolutionary operators
constitute the algorithmic core of the evolutionary search (ES). Therefore, the
quality of the evolutionary operators is critical for the performance of EAs [5].

Many genetic operators are known, and the applicability of these operators
vary across problems. And this is also true even among different instances in
the same problem [4]. The success of an evolutionary operator depends (among
other things) on the characteristics of the fitness landscape of the problem. This
information, however, is usually not readily available. Although the literature
might provide comparisons between operators on certain problem instances, an
evolutionary search algorithm designer is left with a difficult choice of operator
selection when designing an evolutionary search algorithm for a new problem.
These technical choices quite often lead to the design of ad-hoc methods to solve
specific problem instances.
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Automated tuning algorithms [3,15] can be used to adjust parameters of
evolutionary search prior to testing it on new problems. This does not, however,
exploit the fact that the usefulness of the operators often changes during the
evolutionary search. Besides, dependencies between operators can exist and the
interaction of multiple operators might lead to better results than when used
alone. During the search for a solution to the problem, the application rates of
the variation operators can be controlled using recent performance of the opera-
tors. Such methods are categorically referred to as Adaptive Operator Selection
(AOS) [7]. At each iteration, AOS provides an adaptive mechanism for selecting
suitable variation operators during the evolutionary search. Recent works [12,19]
have proposed such adaptive mechanisms for general evolutionary search with
possibly many variation operators whose behavior may be unknown, giving rise
to uncertainty.

Against this backdrop, we propose a formulation of a Markov Decision
Process (MDP) [23] for selecting crossover operators adaptively. Uncertainty over
the outcomes of applying a certain crossover operator suggests that MDP can be
an alternative approach for performing AOS. Furthermore, MDP uses concepts
of states and transitions, which is in line with the fact that the best choice of
the operator is very much dependent on, among others, the multi-modality of
the fitness landscape and the diversity levels of the population.

We claim the following contributions for this chapter.

1. We formulate a MDP with continuous states and discrete actions for AOS
with discrete action space. Decisions are made in discrete time. The state
features are generic in that they are problem-independent, i.e., they repre-
sent common features found in most ES methods for solving optimization
problems.

2. We proposed the use of a self-organizing neural network within such a MDP.
In this work, our self-organizing neural network is trained offline using training
samples of problem instances to discover action policies.

3. We compare and contrast the proposed neural network approach to several
benchmark AOS methods on QAP instances. Results of our experiments show
our approach have the best performance outcome for the optimization of QAP
instances using evolutionary search.

This chapter continues with Sect. 2 where the related works are surveyed.
Section 3 formulates AOS as MDP with continuous states and discrete actions.
Components of the MDP and our proposed neural network approach are also
described. The experiments and the results are presented in Sect. 5. Section 6
concludes and suggests some extensions to this work.

2 Related Works

Reactive Tabu Search (RTS) [2] is a state-based adaptive search method. The
tabu list length is adjusted based on whether or not repeated solutions appear
or a new best-so-far solution is found. Enhancement to the original RTS [1]
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features a Markov Decision Process (MDP) model with continuous states. The
states include among others the current objective function value.

In evolutionary computing context, reinforcement learning (RL) has been
used to adapt the step size in (1 + 1) evolutionary strategy [22] while solving
continuous optimization problem. Furthermore, reinforcement learning has also
been used to adapt crossover probability, mutation probability, and population
size based on some continuous states including best fitness, mean fitness, stan-
dard deviation, breeding success number, average distance from the best, number
of evaluations, and fitness growth [9].

While these works deal with the adaptation of numerical parameters, more
recently, a discrete-state RL has been proposed to deal with the adaptation of
categorical parameters [14] in the context of memetic algorithm. Specifically, the
crossover operator is the parameter being adapted.

This work differs from the above works in two ways. Firstly, we propose the
use of continuous state features for learning action policies used for AOS. Sec-
ondly, we learn the action policies offline using a self-organizing neural network.
This is in line with the spirit of [13] which found the advantage of offline-tuning
the parameters of an algorithm for online adaption.

3 Adaptive Operator Selection as Markov Decision
Process

Adaptive Operator Selection (AOS) is used in several context. In [18], AOS is
employed in the context of multi-objective evolutionary algorithms. In [17] and
[29], AOS is used to select local search operators and meta-heuristics algorithms,
respectively. In this chapter, AOS seeks out crossover operators best suited to
the current stage of evolutionary search.

At times, a crossover operator can degrade the overall quality of a population
in the immediate steps but may lead to a global optimum eventually. Therefore,
it is essential to choose the crossover operators strategically to optimize the
cumulative reward over a sequence of heuristic search. To employ the exploratory
operators at the right stage of the search, we propose to model AOS as a markov
decision process (MDP) with continuous states and discrete actions.

We define such a MDP as a 5-tuple < S,A, T,R, γ > [30] where

– S is the set of states, also known as the state space
– A is a finite set of action choices, also known as the action space
– T : S × A × S is the transition function specifying the probability of going

from state s1 to state s2.
– R : S × A × S is the reward function giving a numerical reward value r ∈

[0.0, 1.0] received at time t after transiting from state s1 to state s2 as a result
of applying action choice a at time t − 1

– γ is the discount factor of the feedback signals recieved over time

The state space, action space and reward function of this AOS and the func-
tion approximator are described below.
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3.1 The State Space

A total of 15 features is defined as the state features. The state features are
dichotomized into fitness landscape features and parent-oriented features. The
eight continuous and a binary fitness landscape features are described below.

1. Restart rs ∈ {0, 1}: At each generation, if div(p) < divt(p) where divt(p) is
a threshold of population diversity or when the average fitness has remained
unchanged for ges generations, the population will be restarted. All the chro-
mosomes except the best chromosomes are mutated to give dist(co, pc1) >
δdist and dist(co, pc2) > δdist where δdist is the percentage of differences among
the parent chromosomes.

2. Population Diversity div(P ) ∈ [0.0, 1.0]: Different crossover operators may
be preferred at different population diversity. The population diversity tracks
the number of differences among the corresponding elements of a pair of
chromosomes. It is normalized by the size of a problem instance n and the
number of pairs of chromosomes npair.

3. Population Fitness Diversity fdiv(P ) ∈ [0.0, 1.0]: The population fitness
diversity tracks the fitness differences between a pair of chromosomes. It is
normalized by the number of pairs of chromosomes.

4. Proportion of new best offspring Nbest ∈ [0.0, 1.0]: Offsprings are created
by crossover and mutation processes. An offspring is a new best offspring
when its fitness level fo is better than the best fitness level from the previous
generation fbest. In this work, an offspring is considered to be better than
the best offspring from the previous generations when fo < fbest. Nbest is
normalized using the number of crossover operations Nco and the number of
mutation operation Nmu.

5. Proportion of improving offspring Nimp ∈ [0.0, 1.0]: An offspring is improv-
ing when fo < fbetter where fbetter is the fitness level of the better parent
chromosome cbetter. Nimp tracks the number of improving offspring and is
normalized using the number of crossover operations Nco.

6. Proportion of worsening chromosomes Nwrs ∈ [0.0, 1.0]: An offspring is wors-
ening when fo > fworse where fworse is the fitness level of the worse parent
chromosome cworse. Nwrs tracks the number of worsening offsprings and is
normalized using the number of crossover operations Nco.

7. Proportion of equal quality offspring Neql ∈ [0.0, 1.0]: It may also be possible
that fbetter < fo < fworse. Such offspring is considered to be of equal quality
to the parent chromosomes. Neql tracks the number of equal quality offsprings
and is normalized using the number of crossover operations Nco.

8. Amount of improvements Δimp ∈ [0.0, 1.0]: The amount of improvement Δimp

is recorded as fbetter−fo

fbetter
. It is aggregated over Nco crossover operations in a

generation. Δimp is normalized using Nco.
9. Amount of worsening Δwrs ∈ [0.0, 1.0]: The amount of worsening to the

fitness level Δwrs is recorded as fo−fworse

fworse
. It is aggregated over Nco crossover

operations in a generation and then normalized using Nco.
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An offspring is a product of the parent chromosomes after crossover opera-
tion. Therefore, the following parent-oriented features are included as the observ-
able features.

1. Normalized distance between parent chromosomes dist(cp1, cp2) ∈ [0.0, 1.0]:
This is a measure of the number of differences between the corresponding
elements of cbetter and cworse. dist(cworse, cbetter) is normalized using the size
of the given QAP instance n.

2. Normalized fitness gap between parent chromosomes fgap(cp1, cp2) ∈ [0.0,
1.0]: This is a measure of the amount of difference between the fitness levels
of cworse and cbetter, i.e., fworse−fbetter

fworse
.

3. Mean distance of cbetter with population dist(cbetter, P ) ∈ [0.0, 1.0]: The num-
ber of differences between the corresponding elements of cbetter and chromo-
some ci where ci �= cbetter and ci �= cworse is tracked as part of the observable
feature. dist(cbetter, P ) is derived using 1

p−2

∑p
i=0 dist(cbetter, ci).

4. Mean distance of cworse with population dist(cworse, P ) ∈ [0.0, 1.0]: The num-
ber of differences between the corresponding elements of cworse and ci where
ci �= cbetter and ci �= cworse is tracked as part of the observable feature.
dist(cworse, P ) is derived using 1

p−2

∑p
i=0 dist(cbetter, ci).

5. Mean fitness gap of cbetter with population fgap(cbetter, P ) ∈ [0.0, 1.0]: The
amount of differences between the fitness levels of cbetter with ci where
ci �= cbetter and ci �= cworse is also tracked as part of the observable fea-
ture. fgap(cbetter, P ) is derived using 1

p−2

∑p
i=0 fgap(cbetter, ci).

6. Mean fitness gap of cworse with population fgap(cworse, P ) ∈ [0.0, 1.0]: Sim-
ilarly, the amount of differences between the fitness levels of cworse and ci

where ci �= cbetter and ci �= cworse is also tracked as part of the observable
feature. fgap(cworse, P ) is derived using 1

p−2

∑p
i=0 fgap(cworse, ci).

3.2 The Action Space

The action choices are the crossover operators c ∈ Γ where Γ is the set of
all crossover operators. This implies Γ is equivalent to action space A. Four
crossover operators from [13] are used here.

1. Cycle crossover (CX): This crossover operator first include the elements of
the chromosome common to parent chromosomes cp1 and cp2 for creating
offspring co. An unassigned element of co indexed at j is then chosen. co(j)
is then given the value at cp1(j), i.e., co(j) = cp1(j). A second element of
co indexed at k is again picked. co(k) is then given the value at cp2(j), i.e.,
co(k) = cp2(j).

2. Distance-preserving crossover (DPX): This crossover operator produces co

equi-distance apart from cp1 and cp2. Like CX, this crossover operator first
include the elements of the chromosome common to cp1 and cp2 for creating
co. The remaining unassigned elements of co are given values that is the
permutation of cp1 and cp2. In this way, co will have the same distance to cp1

and cp2.
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3. Partially-mapped crossover (PMX): This crossover operator chooses ran-
domly indices j and j′ where j < j′. co(k) is then assigned the value at
cp1(k)∀k /∈ [j, j′] and co(k)) is assigned the value at cp2(k)∀k ∈ [j, j′]. If co

is an invalid permutation, then for each co(k) and co(z) where j < z < j′,
co(k) = cp1(z).

4. Order crossover (OX): Like PMX, this crossover operator also chooses ran-
domly indices j and j′ where j < j′. co(k) is assigned the value at cp1(k)∀k ∈
[j, j′]. The kth unassigned elements of co is assigned the value of the kth

element of cp2 such that cp2(k) �= co(z) for j ≤ z ≤ j′.

3.3 The Reward Function

The feedback signal rc is derived using a reward function R. Known reward
functions differ mainly in the calculation of the credit and the measurement
method [7,12,16,28]. Our reward function makes reference to the current best,
and the reward is assigned only when the offspring improves over both its parents.
The feedback signal rc is derived using

rc = min
{ Cbest

Coffspring
sign(Cparent − Coffspring), ζ

}

where ζ ∈ [0.5, 1.0]. The sign(·) function returns 1 if the offspring is better than
the fitter parent. Otherwise, 0 is returned. The feedback signal rc is used in (1)
to estimate the long-term value Q(s, a) of choosing the crossover operators.

3.4 Function Approximator

The state space described in Sect. 3.1 is continuous. Other than discretizing the
continuous state space, a function approximator can be used to generalize the
states. The function approximator used here is a self-organizing neural known as
FL-FALCON [26]. Based on the adaptive resonance theory (ART) [6], it can learn
incrementally in real time while generalizing on the states without compromising
on its prediction accuracy.

Structure and Operating Modes. Seen in Fig. 1, FL-FALCON has a two-
layer architecture, comprising an input/output (IO) layer and a knowledge layer.
The IO layer has a sensory field F c1

1 for accepting state vector S, a motor field
F c2

1 for accepting action vector A, and a feedback field F c3
1 for accepting reward

vector R. The category field F c
2 at the knowledge layer stores the committed

and uncommitted cognitive nodes. Each cognitive node j has template weights
wck for k = {1, 2, 3}.

FL-FALCON operates in one of the following modes. In PERFORM mode,
the Fusion-ART algorithm is used to select cognitive node J for deriving action
choice a for state s. In LEARN mode, FL-FALCON learns the effect of action
choice a on state s.
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Fig. 1. The FL-FALCON architecture.

The Fusion-ART Algorithm. The Fusion-ART algorithm [25] is used for
selecting winning cognitive node J from a collection of committed cognitive
nodes. In PERFORM mode, cognitive node J is used to derive action choice a.
In LEARN mode, the weights wck

J for k = {1, 2, 3} of cognitive node J will be
updated using template learning. The performance of FL-FALCON is dependent
on the use of suitable vigilance parameters ρck for the operating modes.

Using activity vector xck for k = {1, 2, 3} as the inputs, the process of select-
ing winning cognitive node J begins with the code activation procedure. This
procedure derives the choice function T c

j using

T c
j =

3∑

k=1

γck
|xck ∧ wck

j |
αck + |wck

j | ,

where the fuzzy AND operation (p∧q)i ≡ min(pi, qi), the norm ‖.‖ is defined by
|p| ≡ ∑

i pi for vectors p and q, αck ∈ [0, 1] is the choice parameters, γck ∈ [0, 1]
is the contribution parameters and k = {1, 2, 3}.

The choice function T c
j is then used for selecting a winning cognitive node J

during the code competition procedure. This procedure selects cognitive node J
using

J = arg max
j

{T c
j : for allF c

2 node j}.

The match function mck
J of cognitive node J is then derived in the template

matching procedure using

mck
J =

‖xck ∧ wck
J ‖

|xck| ≥ ρck,

where ρck ∈ [0, 1] for k = {1, 2, 3} are the vigilance parameters.
A resonance state is attained when the vigilance criterion, mck ≥ ρck for

k = {1, 2, 3}, is satisfied. Otherwise, a reset is performed by T c
J = 0.0 and the

state vigilance ρc1 is modified in a match tracking procedure using

ρc1 = min{mc1
J + ψ, 1.0},

where ψ is a very small step increment to match function mc1
J .
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After that, another winning cognitive node J is determined using the code
competition procedure. The process repeats until the vigilance criterion is
satisifed.

The attainment of the resonance state in LEARN mode leads to the template
learning procedure. This procedure updates wck

J of cognitive node J using

wck(new)
J = (1 − βck)wck(old)

J + βck(xck ∧ wck(old)
J ),

where βck ∈ [0, 1] is the learning rate.
The attainment of the resonance state in PERFORM mode leads to the

activity readout procedure. The action choice a is obtained by decoding action
vector xc2(new) using

xc2(new) = xc2(old) ∧ wc2
J .

In this work, FL-FALCON operates in LEARN mode when it is trained
offline. After that, the trained FL-FALCON operates in PERFORM mode to
select the crossover operators during evolutionary search.

Offline Training. The action policies π for selecting crossover operators are
discovered by presenting training samples to FL-FALCON operating in LEARN
mode. The training samples are gathered from the experiments conducted based
on the problem instances.

To train FL-FALCON, training samples comprising the state features,
the selected crossover operator and the estimated value function Q(s, a) are
presented to the sensory, motor and feedback fields respectively as xck =
{S,A,Q(s, a)}. Depending on the degree of match xck has with the existing
cognitive nodes, the presented training sample is either learned as a new cog-
nitive node or used to update a matching cognitive node J . One-shot training
of FL-FALCON is performed by presenting randomly selected training samples
to it.

The trained FL-FALCON is used in PERFORM mode for AOS. The choice
of crossover operators is made by selecting a winning cognitive node J using the
Fusion-ART algorithm. FL-FALCON is used in this way because the scope of
this work is limited to testing its generalization capability for AOS.

4 The Operator Selection Policies

This section briefly reviews various strategies for AOS. Based on a recent
study [13], there are two probabilistic and one deterministic allocation strategies,
namely probability matching (PM), adaptive pursuit (AP) and Multi-Armed
Bandit (MAB). In addition, for the sake of comparing with an MDP-based app-
roach, we will review a reinforcement learning (RL) approach [14] for finding the
action policy.
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4.1 Probabilistic Matching

As the feedback signal Rc is received only after applying crossover operator c,
it is difficult to estimate the quality of c using a fixed strategy. A probabilis-
tic strategy (PS) that biases towards the good-performing operators while still
allowing unused operators to be chosen would be desirable. Such a PS tuner
assigns a probability value proportional to the credits of crossover operators.

At each generation, c is then randomly chosen following this probability
distribution. For this purpose, each crossover operator c is assigned a quality
Qc ∈ [0.0, 1.0] which is updated using Qold

c + α(Rc − Qold
c ). Using a probability

matching (PM) mechanism, the probability Pc of choosing a crossover operator
c is then derived using Pmin + (1 − |Γ |Pmin) Qc∑

c′ Qc′ where Γ is the set of all
crossover operators considered. The lower threshold Pmin is included to guaran-
tee that every operator has a chance to be chosen. A drawback of PM is that
convergence of Pc can be slow in some cases.

4.2 Adaptive Pursuit

The adaptive pursuit mechanism [27] may be used to speed up convergence of
Pc using

Pc =

{
Pc + β(Pmax − Pc), if Qc = maxc′ Qc′

Pc + β(Pmin − Pc), otherwise,

where Pmax = 1−(|Γ |−1)Pmin. Eventually, Pc of a promising operator converge
to Pmax while Pc of the less promising crossover operators is reduced to Pmin.

4.3 Multi-armed Bandit

The problem of Multi-armed Bandit (MAB) [24] chooses a slot machine to mini-
mize the regret level over a fixed time horizon. The players are initially unaware
of the amount of payoff from the slot machines. The players would begin dis-
covering the payoff of the slot machines. As the players gain more knowledge
of the payoff of the slot machines, decisions have to be made on whether to
explore further or to exploit the existing knowledge. Well-studied methods to
solve MAB problem are widely applied in real world domains such as network
routing, financial investment, machine controller and clinical trials.

In the context of AOS [11], each crossover operator can be modelled as a
slot machine. The corresponding problem is then to choose crossover operator c

that maximize reward over time using argmaxc∈Γ

{
Qc + γ

√
2 ln
∑

c′ nc′
nc

}
where

Qc is the average reward computed since the beginning of the search and nc is
the number of times the crossover operator c is chosen. The second term in the
above equation is an exploratory term with similar significance to Pmin seen in
the probabilistic strategies.
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4.4 Reinforcement Learning

Following [14], the evolutionary search is modelled as a Markov Decision Process
(MDP). This approach estimates the expected Q-value Q(s, a) of each state-
action (s, a) pair using

Q(s, a) = R(s, a) +
∑

s′
P (s′, a, s)max

a′
Q(s′, a′), (1)

where P (s′, a, s) is the probability of entering into new state s′ and R(s, a) is
the expected reward from executing action a in state s.

Given that R(s, a) and P (s′, a, s) are well estimated, Q(s, a) can be estimated
using (1). However, in the evolutionary search domain, Q(s, a) is instance-specific
value. Significant number of runs on several instances is needed to estimate
the model. This is infeasible and has also gone out of the scope of this work.
Therefore, a model-free RL approach such as the Q-learning is used to solve the
MDP-based search progressively. Using Q-learning, the Q-value of using different
action choices can be explored and learned as part of the action policies. Within
the MDP framework, Q(s, a) is estimated using Q-learning [24].

Qt+1(st, at) = Qt(st, at) + αt(st, at)TDerr,

where αt(st, at) is the learning rate and TDerr is derived using

TDerr = Rt+1(st, at) + δ max
a

Qt(st+1, a) − Qt(st, at),

where δ is the discount rate. It is used in our search process to reflect the fact
that the chance of improvement is reduced as the search continues.

5 Performance Evaluation

This section presents experiments that evaluate and compare the efficacy of our
proposed approach on QAP instances [20].

5.1 Experiment Setup

The AOS methods used as the benchmark methods are the Reinforcement Learn-
ing approach (RL), Probability Matching (PM), Adaptive Pursuit (AP), Multi-
Armed Bandit (MAB), and a naive (N) allocation strategies. Due to similar
context to [13], the following parameter settings from [13] were used.

PM: αpm = 0.30, Pmin = 0.05; AP: αap = β = 0.30, Pmin = 0.05;
MAB: γmab = 1.00; RL: α = 0.03, δ = 0.90

For the memetic algorithm, a population size p of 40 chromosomes was
adopted. At each generation, as many as 20 offsprings were produced using
a selected crossover operator c. Each offspring was then refined using the
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random-order first-improvement 2-opt local search. When the average distance
over all pairs of chromosomes is below 10 or the average fitness has remained
unchanged for 30 generations, restart was initiated. This was achieved by mutat-
ing all but the best chromosomes in the population until each resulting chromo-
some differed from its parent by as much as δdist = 0.30 of problem size n. Each
run is terminated after 100 generations.

There are two rounds of experiments. The first round of experiments
described in Sect. 5.2 is the offline training of the neural network-based function
approximator. The second round of experiments described in Sect. 5.3 compares
our proposed approach to the benchmark AOS methods.

5.2 Offline Training of Neural Network

The training samples were prepared by experimenting each crossover opera-
tor c ∈ Γ on each QAP instance pi taken from the QAPLib (from bur26a to
scr20). Experiments were performed using four crossover operators mentioned
in Sect. 3.2. Each experiment based on the pairing of c and pi was performed
for 100 generations. A training sample is produced for each generation of the
evolutionary process.

A training sample is assembled as state s comprising 15 state features, action
choice a which a particular crossover operator c ∈ Γ and feedback signal rc.
State s and action choice a are taken at time t while the feedback signal rc is
taken at time t + 1. This means a training sample ts = {s, a, rc} is only fully
assembled at time t + 1. For t = 0, state s comprise the initial value of the state
features, action choice a comprise the crossover operator c used for that round
of experiment based on problem instance pi.

The raw form of the test results are the aggregated fitness levels of the
offsprings. Comparisons are made among the neural networks by ranking the
aggregated fitness levels in ascending order. Smaller rank value is given to train-
test configuration with lower aggregated fitness level. The ranks of 100 train-test
configurations are illustration in Fig. 2.

From Fig. 2, the neural network has the best test performance across the
different problem instances when trained using Bur-based problem instances.
The worst test performance across the different problem instances is observed
when neural network is trained using the Rou-based problem instances. The
mean rank of the train instances plotted using the dotted line illustrates the
aggregated effect of using different problem instances to train the neural network.

Following the above observation, the performance of neural networks trained
differently are ranked and compared directly. Seen in Fig. 3, the mean rank
of NN-S is based on the mean fitness values of neural networks trained using
the same train and test problem instances. The mean rank of NN-D is based
on the mean fitness values of neural networks trained using training samples
of problem instances not used for testing. Following this train-test criteria, for
each test problem instance pi ∈ P, |P −pi| other QAP instances can be used for
training NN-D. The heterogeneity of training samples are ensured by picking it
randomly from those QAP instances. Then, there is NN whose rank is based on
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Fig. 3. The mean rank of the trained
neural networks for the QAP instances.

the mean fitness values of the best performing neural network trained using a
problem instance selected based on Table 1.

From Fig. 3, NN is observed having the best ranking of 1.0 when compared
to NN-S and NN-D. NN-S has the next best ranking of the three trained neural
network while NN-D is the trained neural network with the lowest rank. The
rank of NN-S imply that the neural network may not necessarily have the best
performance when trained using the problem instances used for testing it. The
rank of NN-D implies that the neural network cannot be trained arbitrarily and
expect it to generalize well. The rank of NN shows that the neural network can
generalize well when trained selectively.

Table 1. Mean rank of train-test configurations

Test-train Bur Chr Els Esc Had Kra Lipa Nug Rou Scr

Bur N.A. 1.00 1.75 2.88 1.00 2.13 1.00 1.00 1.00 1.75

Chr 3.71 N.A. 4.64 2.93 2.86 2.71 3.86 2.79 3.64 3.79

Els 1.00 1.00 N.A. 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Esc 1.30 1.45 1.20 N.A. 1.30 1.40 1.50 1.05 1.20 1.05

Had 1.00 1.00 1.00 1.00 N.A. 1.00 1.00 1.00 1.00 1.00

Kra 1.67 4.00 2.00 6.67 3.67 N.A. 5.67 6.33 9.33 4.33

Lipa 3.69 2.88 3.00 1.00 4.31 2.75 N.A. 3.50 5.44 3.13

Nug 2.21 2.36 1.29 1.00 1.93 3.93 2.79 N.A. 1.79 2.21

Rou 1.33 1.67 2.67 3.00 2.00 4.00 2.33 3.67 N.A 1.00

Scr 1.00 3.33 1.00 1.00 1.00 4.00 1.00 1.00 1.00 N.A
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5.3 Adaptive Operator Selection

Further experiments were conducted to compare the performance of the neural
network-based approach with the several benchmark AOS methods. The bench-
mark AOS methods include Reinforcement Learning (RL), Probability Matching
(PM), Adaptive Pursuit (AP), Multi-Armed Bandit (MAB), näıve (N) alloca-
tion strategy and the proposed neural network (NN) approach. The RL app-
roach regards AOS as a finite MDP while the neural network-based approach
regards AOS as a MDP. The test results using fixed crossover operators such as
Cycle crossover (CX), Distance-preserving crossover (DPX), Partially-mapped
crossover (PMX) and Order crossover (OX) are also compared in Fig. 5.

Test Instances
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Fig. 4. Mean rank of the AOS methods
for the QAP instances
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Fig. 5. Aggregation of the mean rank
of the AOS methods

The test results are the mean ranks on the mean fitness values of the AOS
methods. The mean value is based on 10 runs of each experiment. Test results
for the QAP instances mentioned in Sect. 5.2 are presented here. The neural
network can be trained using any problem instance that has the lowest mean
rank as seen in Table 1.

The illustration of the mean rank of the AOS methods for the QAP instances
in Fig. 4 shows a broad spectrum of performance characteristics. The dotted-line
plot shows the mean value of the mean rank of the AOS methods and it implies
the level of difficulty of the QAP instances. It can be observed that many AOS
methods perform quite well for Bur, Els, Had and Scr type of QAP instances,
The more challenging QAP instances are Chr, Kra, Lipa, Nug and Rou.

Aggregation of the mean rank of the AOS methods over all QAP instances
used here confirms NN to be the best performing approach while DistPres to be
the worst performing approach. It turns out that the AP, Cycle and DistPres
methods are performing worse than the näıve allocation strategy N. The best
performance of NN implies the robustness of the neural network for selecting
crossover operators during the evolutionary search aimed at optimizing a broad
spectrum of QAP instances.
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6 Conclusions

Many methods for AOS such as Probability Matching, Adaptive Pursuit, Multi-
Armed Bandit and Reinforcement Learning (RL) are known to date. In this
chapter, we propose the use of a self-organizing neural network for AOS. In
contrast to the RL approach where AOS is formulated as discrete state MDP,
our neural network approach is better suited for AOS modelled as MDP with
continuous states and discrete actions.

The neural network used is a self-organizing neural network based on the
Adaptive Resonance Theory (ART) known for addressing the generalization-
specialization dilemma [6]. This work evaluates the generalization capability of
such a self-organizing neural network for AOS. To do that, the neural network
was trained offline using training samples from the problem instances. Several
train-test configurations were used to study the performance of the trained neural
network rigorously. To generalize well on the test instances, the results imply that
the neural network has to be trained properly using training samples from the
suitable problem instances.

The performance of the neural network is compared with the benchmark AOS
methods. The test results reveal several characteristics of the AOS methods and
the problem instances. Firstly, there are problem instances that can be optimized
using any AOS methods. There are also problem instances where several AOS
methods are performing worse than the näıve allocation strategy. In such cases,
MDP-based approaches such as RL and our proposed neural network approach
are among the better performing AOS methods. Such observations imply the
feasibility of using MDP-based approaches for AOS in evolutionary search. Last
but not least, aggregation of the mean rank of the AOS methods shows the
proposed neural network to be sufficiently robust to give the best performance
for all the QAP instances.

There are several directions to extend this work. First, we should determine
the performance of the neural network in more challenging QAP instances as well
as other permutation-based instances such as the flow-shop scheduling problem
(FSP). Second, the incremental learning capability of the neural network can be
tested using RL during evolutionary search. Doing so, allow the neural network to
improve on the learned action policies while performing AOS during evolutionary
search. The hypothesis here is that the neural network may able to be converge
faster for simpler problem instances and still converge on the more challenging
problem instances using available resources.
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overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Heidelberg (2010)

4. Boomsma, W.: A comparison of adaptive operator scheduling methods on the trav-
eling salesman problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS,
vol. 3004, pp. 31–40. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24652-7 4

5. Candan, C., Goeffon, A., Lardeux, F., Saubion, F.: A dynamic island model for
adaptive operator selection. In: Proceedings of 14th GECCO, pp. 1253–1260 (2012)

6. Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-
organizing neural pattern recognition machine. Comput. Vis. Graph. Image
Process. 37(1), 54–115 (1987)

7. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings
of 3rd International Conference on Genetic Algorithms, pp. 61–69 (1989)

8. de Jong, K.A.: Evolutionary Computation - A Unified Approach. MIT Press, Cam-
bridge (2006)

9. Eiben, A.E., Horvath, M., Kowalczyk, W., Schut, M.C.: Reinforcement learning for
online control of evolutionary algorithms. In: Brueckner, S.A., Hassas, S., Jelasity,
M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 151–160. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-69868-5 10

10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Hei-
delberg (2003)
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ary algorithms. In: Stützle, T. (ed.) LION 2009. LNCS, vol. 5851, pp. 176–190.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-11169-3 13
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