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Preface

The large variety of heuristic algorithms for hard optimization problems raises numerous
interesting and challenging issues. Practitioners are confronted with the burden of
selecting the most appropriate method, in many cases through an expensive algorithm
configuration and parameter tuning process, and subject to a steep learning curve.
Scientists seek theoretical insights and demand a sound experimental methodology for
evaluating algorithms and assessing strengths and weaknesses. A necessary prerequisite
for this effort is a clear separation between the algorithm and the experimenter, who, in
too many cases, is “in the loop” as a crucial intelligent learning component. Both issues
are related to designing and engineering ways of “learning” about the performance of
different techniques, and ways of using past experience about the algorithm behavior to
improve performance in the future. This is the scope of the Learning and Intelligent
Optimization (LION) conference series.

This volume contains the papers presented at LION 10: Learning and Intelligent
Optimization, held during May 29 – June 1, 2016 in Ischia, Italy. This meeting, which
continues the successful series of LION events (see LION 5 in Rome, Italy; LION 6 in
Paris, France; LION 7 in Catania, Italy; LION 8 in Gainesville, USA; and LION 9 in
Lille, France), explores the intersections and uncharted territories between machine
learning, artificial intelligence, mathematical programming, and algorithms for hard
optimization problems. The main purpose of the event is to bring together experts from
these areas to discuss new ideas and methods, challenges, and opportunities in various
application areas, general trends, and specific developments. The International Con-
ference on Learning and Optimization is proud to be the premier conference in the area.

A total of 47 papers were submitted to LION 10: 28 submissions of long papers, 13
submissions of short papers, and six abstracts for oral presentation only. Each manuscript
was independently reviewed by at least three (usually four) members of the Program
Committee. The final decision was made based on a meta-reviewing phase where each
manuscript’s reviews were shown to five other members of the Program Committee, who
then voted to either accept or reject the manuscript. Only long papers that received four or
five votes in favor were accepted as long papers. Papers that received at least three votes
in favor were accepted as short papers (papers submitted as long papers had to be
shortened).

In total, 14 long papers and nine short papers were accepted. The selection rate for
long papers was 34%.

These proceedings also contain two papers submitted to the generalization-based
contest in global optimization (GENOPT). These were reviewed independently by the
GENOPT Organizing Committee.

During the conference, the keynote talk was delivered by Bistra Dilkina, on “Learning
to Branch in Mixed Integer Programming.”



In addition, we were pleased to have two tutorial talks:

• “Learning Algorithms and Bioinformatics,” by Giovanni Felici and Emanuel
Weitschek

• “Automatic Algorithm Configuration,” by Meinolf Sellmann

Finally, we gratefully acknowledge the support of our sponsors and partners in
organizing this conference:

• IBM Research
• University of Naples Federico II, Italy
• Department of Mathematics and Applications “R. Caccioppoli”, University of

Naples Federico II, Italy

We hope that these proceedings may serve you well in your endeavors in learning
and intelligent optimization.

May 2016 Paola Festa
Meinolf Sellmann

Joaquin Vanschoren
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Learning a Stopping Criterion for Local Search

Alejandro Arbelaez(B) and Barry O’Sullivan

Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland

{alejandro.arbelaez,barry.osullivan}@insight-centre.org

Abstract. Local search is a very effective technique to tackle combi-
natorial problems in multiple areas ranging from telecommunications to
transportations, and VLSI circuit design. A local search algorithm typ-
ically explores the space of solutions until a given stopping criterion is
met. Ideally, the algorithm is executed until a target solution is reached
(e.g., optimal or near-optimal). However, in many real-world problems
such a target is unknown. In this work, our objective is to study the appli-
cation of machine learning techniques to carefully craft a stopping crite-
rion. More precisely, we exploit instance features to predict the expected
quality of the solution for a given algorithm to solve a given problem
instance, we then run the local search algorithm until the expected qual-
ity is reached. Our experiments indicate that the suggested method is
able to reduce the average runtime up to 80% for real-world instances
and up to 97% for randomly generated instances with a minor impact in
the quality of the solutions.

1 Introduction

Local search is a popular technique to solve many combinatorial problems. These
problems can be classified as either decision or optimisation problems. A combi-
natorial decision problem involves finding a solution that satisfies the constraints
of the problem. The satisfiability (SAT) problem is perhaps one of the most
important decision problems and involves determining whether a given Boolean
formula in conjunctive normal form (i.e., conjunction of clauses) is satisfiable or
not. In combinatorial optimisation the goal is to find a solution that satisfies the
constraints and proving that the solution is optimal. For example, the Travelling
Salesman Problem (TSP) is a well-known combinatorial optimisation problem
that involves finding the shortest Hamiltonian circle in a complete graph.

A local search algorithm starts with a given initial solution and iteratively
improves it, little by little, by performing small changes while a given stopping
criterion is not met. In the context of SAT the algorithm typically starts with
a random assignment for the variables and the algorithm flips one variable at a
time until either a solution is obtained or a time limit is reached. Alternatively,
to solve a TSP the algorithm heuristically builds a starting solution and then
applies the k-opt move, i.e., k-links of the current solution are replaced with k
new links by improving the current solution until the optimal solution is reached,

c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 3–16, 2016.
DOI: 10.1007/978-3-319-50349-3 1



4 A. Arbelaez and B. O’Sullivan

no improvement is observed after applying the k-opt move, or a given time limit
is reached.

In this paper, we focus our attention in local search to tackle combinatorial
optimisation problems. Ideally the algorithm is executed until a given target
solution is reached, (i.e., optimal or near-optimal). In this paper we exploit the
use of instance features to predict the expected quality of the solution for a given
problem instance. We then execute the local search algorithm until the desired
quality is reached. A proper stopping criterion might considerably reduce the
runtime of the algorithm. Therefore accurate predictions are very important, in
particular with the increasing availability of computational power in cloud sys-
tems, e.g., Amazon Cloud EC2, Google Cloud, and Microsoft Azure. Typically,
these systems charge for usage by processor-hour. Therefore reducing the com-
putational time and still providing high quality solutions is expected to be very
valuable in the near future.

This paper is structured as follows. Sections 2 and 3 provide background
material of the two target problems, i.e., CRP and TSP. Section 4 details the
machine learning methodology to design the stopping criterion. Section 5 reports
on the experimental validation. Related work is discussed in Sect. 6 before final
conclusions are presented in Sect. 7.

2 The Cable Routing Problem

The Cable Routing Problem (CRP) that we are tackling in this paper relates to
the bounded spanning tree problem with side constraints. In particular we focus
on a network design problem arising in optical networks where a bound is given
on the number of carriers. Each selected carrier is connected to a set of clients
using a network that follows a tree topology that respects distance, degree, and
capacity constraints.

A long-reach passive optical network (LR-PON) architecture consists of three
subnetworks: (1) an Optical Distribution Network (ODN) for connecting cus-
tomers to facilities; (2) a backhaul network for connecting facilities to metro-
nodes; and (3) a core network connecting pairs of metro-nodes. We focus our
attention on the ODN part, where the fibre cable is routed from a facility to a
set of customer forming a tree distribution network. A PON is a tree network
associated with each cable and the signal attenuation in a PON is due the num-
ber of customers in the PON and the maximum length of the fibre between the
facility and the customer. Additionally, non-root nodes are limited to maximum
branching of p nodes. In [1] the authors show the relationship between the size
and the maximum length of the PON.

Informally speaking, in the CRP we want to determine a set of spanning
trees with side constraints, i.e., distance, degree, and capacity, such that each
tree is rooted at the facility, each customer is present in exactly one tree and the
total cost of the solution is minimised. The number of trees denotes the number
of optical fibres that run from the exchange-site to the customers. Typically, the
distance is limited to up 10 km, 20 km, and 30 Km for respectively at most 512,
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256, and 128 customers, and due to hardware constraints the branching factor
is restricted to 32.

Local Search for CRP

In [2] the authors propose a general constraint-based local search algorithm to
tackle bounded minimum spanning tree with side constraints. Broadly speaking,
the algorithm comprises two phases. First, in an intensification phase, the algo-
rithm improves the current solution, little by little, by performing small changes.
It employs a move operator in order to move from one solution to another in the
hope of improving the value of the objective function. Second, in the diversifi-
cation phase, the algorithm perturbs the incumbent solution in order to escape
from difficult regions of the search. The algorithm switches from intensification
to diversification when a local minimum is reached.

The subtree operator (Fig. 1) moves a given node ei and the subtree ema-
nating from ei from the current location to another in the tree. As a result of
this, the predecessor of ei is not connected to ei, and all successors of ei are still
directly connected to the node. ei can be placed as a successor for another node
or in the middle of an existing edge. In order to complete the intensification and
diversification phases, the subtree operator requires four main functions: remov-
ing a subtree; checking whether a given solution is feasible or not; inserting a
subtree; finding the best location of a subtree in the current subtree; and finding
the best location of a subtree in the current network. The general idea of the LS
algorithm in the intensification phase is described as follows:

1. Randomly select a node (ei);
2. Delete the emanating subtree of ei in the current solution;
3. Identify the best location, i.e., a new predecessor ep and a potential successor

es for ei satisfying all constraints;
4. Insert ei as a new successor of ep, and if needed, add es as a new predecessor

of ep.

11

4

108 9

5

2

6 7

3

1

1110

5

Fig. 1. Example of the subtree move-operator
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During the diversification phase the third step performs a random selection
of the new candidate location of ei in the tree. It is worth noticing that the
local search operator has been used in several network design applications such
as [3,4].

A solution is represented by a tree whose root-node is the facility and the
number of immediate successors of the root-node is the number of cables starting
at the facility. Notice that the facility acts as the root-node of each cable tree net-
work. Without loss of generality we add a set of dummy clients (or copies of the
facility) to the original set of clients for the purpose of ease of representation to
distinguish the cable tree-networks. More precisely the set of clients, {v0, . . . , vn},
is modified to {v0, v1, . . . , vm, v1+m . . . , vn+m}. Recall that n is the number of
clients and m is the upper bound on the number of cables that can start at the
facility. In the latter set v0 is the original facility, each vi ∈ {v1 . . . vm} denote
the starting point of a cable tree network, and {v1+m, . . . , vn+m} denote the
original set of clients. We further enforce that each dummy client is connected
to v0 and the distance between the dummy client and the facility is zero, i.e.,
∀1 ≤ i ≤ m, d0i = 0.

Default Stopping Criterion. We use search stagnation as the default stopping
criterion and compute a bound on the solution. In particular, we stop the algo-
rithm whenever no improvement greater than 0.01% in the incumbent solution
has been observed for 30 consecutive seconds.

3 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimisa-
tion problem with applications in multiple areas ranging from transportation to
VLSI circuit design, and bioinformatics. The TSP involves finding the shortest
tour among a predefined list of n cities such that all cities are visited only once.
We focus our attention on the 2D Euclidean TSP in which we are given a set of
points in a plane, and the distance between two points is the Euclidean distance
between their corresponding coordinates.

Local Search for TSP

The Lin-Kernighan heuristic (LKH) [5] is an efficient local search algorithm to
solve TSPs with tens of thousands of cities. Although this is an incomplete
algorithm it is known to provide near-optimal solutions within very short com-
putational time.

The 2-opt operator [6] is one of the first local search move operators to solve
TSP instances. Figure 2 shows an example of the operator by removing (black
dotted lines) edges (a, b) and (c, d) from the current tour and reconstructing
the tour, in the new solution, by connecting a with d and b with c (grey lines).
Notice that after removing the edges in the 2-opt there is only one feasible way
of reconnecting the tour. For instance, in our example adding edges (a, c) and
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p

a

c

b

d

q

Fig. 2. Example of the 2-opt operator.

(b, d) will not result in a valid solution. In general, the k-opt move removes k
edges from the current tour; k ranges from two to the number of cities. For k > 2
there are multiple ways of reconstructing the solution, in this case the algorithm
typically uses the one with the shortest tour.

Currently, there are a large variety of heuristics to create the initial tour or
solution such as Nearest Neighbour and Quick-Boruvka; see [7] for a complete
description of the algorithms. However, LKH suggests the use of randomly gen-
erated tours as an initial solution. Other features of the LKH algorithm include
the ability to restrict the use of certain edges within a given distance of a given
city, and efficient data structures to check whether a solution is a valid tour
or not.

Default Stopping Criterion. The algorithm stops when no improvement can be
observed for a given solution, that is, when no neighbouring solution can improve
the current tour. Additionally, we also use a certain time limit to stop the exe-
cution of the algorithm.

4 Machine Learning Methodology

Supervised Machine Learning exploits data labelled by the expert to automat-
ically build hypotheses emulating the expert’s decisions. Formally, a learning
algorithm processes a training set E = {(xi, yi), xi ∈ Ω, yi ∈ {1,−1}, i = 1 . . . n}
comprising n examples (xi, yi), where xi is the example description (e.g. a vector
of values, Ω = Rd) and yi is the associated output. The output can be numeri-
cal (i.e., regression) or a class label (i.e., classification). The learning algorithm
outputs a hypothesis f : Ω �→ Y associating with each example description x
the output y = f(x). Among ML applications are pattern recognition, ranging
from computer vision to fraud detection [8], predicting protein function [9], game
playing [10], autonomic computing [11], etc.

In Fig. 3 we depict the general methodology to learn a stopping criterion
for a given problem instance. Similar to other machine learning applications,
the learning process takes place offline and involves computing features and the
quality of the solution for each instance in the training set. Later on in the
online testing phase, for each unseen instance, we compute the feature set and
use the ML model to compute the expected outcome (i.e., solution quality) of
the algorithm for the instance.
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Fig. 3. ML methodology to learn a stopping criterion

In recent years, machine learning has been used extensively to design port-
folios of algorithms. Informally, a portfolio of algorithms uses machine learning
techniques to identify the most suitable algorithm to solve a given problem
instance; see [12] for a recent survey. SATzilla [13] is probably the most popu-
lar portfolio of algorithms for SAT solving. Informally speaking, SATzilla uses
a set of features to describe a given problem instance, the feature set encodes
general information about the target instance, e.g., number of variables, clauses,
fraction of Horn clauses, number of unit propagations, etc. Similar to our app-
roach, SATzilla employs a training and testing phases. During the training phase
the portfolio requires a set of target instances and a set of SAT solvers. Dur-
ing the testing phase, a set of pre-solvers are executed in a pre-defined manner
for a short period and if no solution is obtained during the pre-solving time,
the algorithm with minimal expected runtime is executed. SATzilla has shown
impressive results during the past SAT competition winning several tracks in
the annual SAT competitions.

Reinforcement learning, another branch of machine learning, has also been
an effective alternative in the development of self-tuning algorithms. In contrast
with the previous portfolio of algorithms approach, here the algorithms have the
ability to adjust the parameters while solving a problem instance. An interesting
application of these algorithms is the reactive search framework described and
analysed in [14] where the authors proposed a mechanism for adjusting the size
of the tabu list by increasing (resp. decreasing) its size according to the progress
of the search.

CRP Instance Features

For each instance we compute two main type of features: basic and initial solution
features. While a few of these features had already been used in the context of
portfolio of algorithms for the TSP problem, many descriptors had to be added to
consider properties of the CRP with distance, degree, and capacity constraints.
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Basic Features. These encode general information of a given problem instance:

1. Number of nodes (1 feature);
2. Distance matrix (3 features): mean, median, standard deviation;
3. Distance to root-node (3 features): mean, median, standard deviation;
4. Pairwise distance (3 features): mean, median, standard deviation.

Initial Solution Features. For each instance we compute multiple initial solutions
to extract the following features, and for each of the following five categories we
compute the mean of 5 independent initial solutions:

1. Node out-degree (3 features): mean, median, standard deviation;
2. Root-node out-degree (3 features): mean, median, standard deviation;
3. Max. distance to root (3 features): mean, median, standard deviation;
4. Size of the cable tree networks (3 features): mean, median, standard deviation;
5. Number. of leaf nodes (3 features): mean, median, standard deviation.

TSP Instance Features

In [15] the authors describe 50 descriptors to characterise TSP instances. Com-
puting the full set of features is computationally very expensive. Therefore we
limit our attention to the following twelve features divided in three categories:

1. Problem size features (1 feature): number of cities;
2. Distance matrix features (3 features): mean, variation coefficient, skew;
3. Minimum spanning tree (8 features): after constructing the minimum span-

ning tree there are four features describing the distance (mean, variation
coefficient, skew) and four features describing node degree statistics: mean,
variation coefficient, and skew).

Stopping Criterion

The pseudo-code for a generic local search algorithm with the proposed stopping
criterion is presented in Algorithm 1. The algorithm requires the target instance
I, a regression model m, and a discrepancy d ∈ (0, 1] indicating how far from

Algorithm 1. LocalSearchWithStoppingCriterion(Problem-Instance I, ML-
Model m, Discrepancy d)
1: v ← Compute-features(I)
2: c ← Compute-expected-quality(m, v)
3: target quality ← c + c · d
4: s ← Initial-solution(I)
5: while default stopping criterion is not met and quality(s) > target quality do
6: s ← step(I, s)
7: end while
8: return s



10 A. Arbelaez and B. O’Sullivan

the target solution should be from the expected solution. Certainly, the choice
of a value close to zero for d leads to better solutions at a cost of using more
time to reach the target solution.

The algorithm starts by computing the vector of features v for a given
instance I (line 1), then we use the regression model m to compute the expected
quality of the solution (line 2). Without loss of generality we assume a minimi-
sation problem. Thus, we compute the target quality as the tolerance between
the computed solution and the outcome of the regression model (line 3). Lines
4-7 sketch a general description of local search solvers, computing an initial solu-
tion (line 4), and iteratively moving from one solution to another using a given
move operator, e.g., subtree or k-opt operators. We recall that we use the target
solution in addition to the default stopping criterion of the algorithm. Thus, for
instance, if the algorithm reaches a time limit we also stop the execution.

5 Empirical Evaluation

We consider a collection of 500 real-world CRP instances from a major broad-
band provider in Ireland. For TSP instances we randomly generated a set of 300
instances with the portcgen problem generator varying the number of cites from
500 to 5000.1 We ran each local search algorithm 20 times on each instance (each
time with a different random seed) with a 5-minute time cutoff and report the
average time and solution quality for the instances. All experiments were per-
formed on a 39-node cluster, each node features a Intel Xeon E5430 processors
at 2.66 Ghz and 12 GB of RAM memory.

In order to validate our algorithms we used the traditional 10-fold cross-
validation technique [16], that is, the entire dataset D is divided into 10 disjoint
sets {D1,D2, . . . , D10}. For each dataset Di∈10, the regression model is learned
with D \ Di and tested with Di. In the following experiments we use the linear
regression implementation available in the Weka toolbox (version 3.6.2) [17].
We use to state-of-the-art local search solvers [2,5] to tackle CRPs and TSPs,
respectively.

We computed the baseline solutions using the default stopping criterion of
each respective local search solver with a time limit of 300 seconds. We use this
criterion as reference to compute the gap of the solutions as follows:

GAP (I) =
ls-quality(I) − baseline-quality(I)

baseline-quality(I)

where baseline-quality and ls-quality indicate respectively the quality of the base-
line solutions and the quality of the local search with the suggested stopping
criterion for a given instance I.

We start our analysis with Table 1 in which we analyse the quality of the
regression model to predict the quality of the baseline solutions. We report the
correlation coefficient (CC) and the root mean-squared error (RMSE) between

1 portcgen is available at http://dimacs.rutgers.edu/Challenges/TSP/codes.tar.

http://dimacs.rutgers.edu/Challenges/TSP/codes.tar
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Table 1. Correlation coefficient and Root mean square error of estimations and runtime
for the baseline computation

Problem CC RMSE Runtime (s) Feature time (s)

CRP 0.95 7.2 89.0 2.05

TSP 0.99 6.2 258.2 0.40
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Fig. 4. Actual vs. Estimated quality for each CRP and TSP instance

the baseline solutions and our predictions, the average runtime and the average
time for feature computation. As it can be observed the regression model greatly
predicts the quality of the actual baseline solutions with a CC of 0.95 (CRP) and
0.95 (TSP), and RMSE of 7.2 (CRP) and 6.2 (TSP). We also remark that the
average feature computation time is considerably lower than the actual average
runtime of the algorithms. In Fig. 4 we provide a visual comparison of the actual
baseline solution quality and the outcome of the regression model for the entire
dataset. The diagonal line represents a perfect prediction, as it can be observed
the predictions are highly correlated with the baseline results.

Fig. 5 shows the cumulative distribution of the feature computation time for
all instances for both solvers. The feature computation time ranges from 0.6 to

Fig. 5. Feature computation time
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Table 2. CRP: statistics varying the discrepancy target to the expected solution

Discrepancy (%) Time (s) GAP(%) KS(%) WRS(%)

avg avg std

0 53.9 3.55 5.79 55.9 20.4

1 49.3 4.30 6.44 36.9 9.63

2 45.3 4.39 6.40 32.9 8.46

3 41.1 4.51 6.36 25.7 7.45

4 37.9 4.63 6.30 22.6 6.44

5 35.1 4.76 6.25 22.6 5.56

10 24.3 5.27 6.01 9.5 2.95

15 17.4 5.62 5.84 6.9 1.91

Table 3. TSP: statistics varying the discrepancy target to the expected solution, the
last entry for the statistical tests are 5.4·10−5 (KS) and 1.8·10−5 (WRS)

Discrepancy (%) Time (s) GAP(%) KS(%) WRS(%)

avg avg std

0 153.4 0.76 1.72 99.9 73.1

1 121.9 1.09 1.91 99.6 59.6

2 84.61 1.54 2.11 84.7 43.9

3 58.7 2.10 2.32 51.7 28.6

4 39.0 2.73 2.48 29.2 16.8

5 22.8 3.43 2.62 14.6 8.52

10 5.5 7.50 3.11 0.01 0.02

15 3.7 11.51 3.62 0.00 0.00

5.7 seconds for CRP instances and from 0.01 to 1.1 seconds for TSP instances. We
would like to recall that we use a subset of the complete feature set described
in [15] for the TSP problem, the complete feature set required up to several
minutes to compute the descriptors.

We now focus our attention on the evaluation of the local search algorithms
with the suggested stopping criterion. To this end, we evaluate eight values for
the minimum desired discrepancy of the target solution (i.e., 0–5%, 10% and
15%). Tables 2 and 3 depict the results showing: the average runtime, the gap
with respect to the baseline solution, and the output of the Kolmogorov-Smirnov
(KS) and Wilcoxon Signed-Rank (WSR) tests to check whether the solution with
the new stopping criterion and the baseline solutions are statistically different
or not. Bold entries indicate that the solution with the new stopping criterion
is not statistically different than the baseline solution. Interestingly, in nearly
all scenarios we observed that the results with the suggested stopping criterion
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are statistically the same as the baseline results, only 2 scenarios with KS and
4 scenarios with WSR failed the test with a 5% confidence level.

As expected, there is a trade-off between quality and speed. In our experi-
ments we observed for CRP instances a reduction of up to 80% in the runtime
to reach a solution 5.6% far from the baseline solution. Certainly, the runtime
increases when enforcing better quality solutions, in particular we observed that
for a discrepancy of 0% (i.e., setting as a target solution the predicted quality)
the gap with respect to baseline solution is 3.5% and the runtime reduction
is about 39%. A similar scenario can be observed for TSP instances where we
observe a reduction of 97% (with discrepancy=5%) in the runtime to reach a
solution with a gap of 3.4%, and enforcing the best possible quality we observe a
solution with a gap of 0.7% with a reduction of 40% in the runtime with respect
to the baseline solution.

We conclude our analysis with the cumulative distribution function (CDF)
of the algorithms. Figure 6 describes the probability of a given algorithm to find
a solution for a given instance with time (resp. quality) less than or equal to x.
The x-axis denotes the time (resp. quality) and y-axis denotes the probability
to reach a certain time (resp. quality). Figures 6(b) and (d) visually confirm the
output of the KS and WRS tests, that is, the cost of the solutions are very
close to the baseline for two discrepancy values of the CRP. For the TSP we

Fig. 6. CDF analysis for the baseline solutions vs. discrepancies 0% and 15%
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observe that the baseline is very close to the baseline solutions for d=0% and
slightly different for d=15%. Figures 6(a) and (c) show that the baseline stopping
criterion requires more time than the modified version of the algorithm with the
suggested stopping criterion.

6 Related Work

Random restarts are often used to avoid getting trapped in local minima and
search stagnation. Typically, the algorithm is stopped after completing a cer-
tain number of restarts or when a target solution (optimal or near-optimal) is
obtained. However, in many real-world problems such a solution is not known.
In [18] the authors propose a methodology to on-the-fly construct a probabilistic
rule to estimate the probability of finding a solution at least as good as the cur-
rent best solution in future restarts. The methodology starts by approximating
the quality of the solution of the first k restarts with a Normal distribution. This
distribution is then used to estimate the number of high quality solutions that
will be observed in future restarts. The authors present empirical results with
reliable predictions when k is large enough.

Alternatively, [19] uses the empirical distribution to identify the optimal num-
ber of diversification (or exploration) steps required to escape from a local mini-
mum. The idea behind this approach is too avoid using too much computational
time with unnecessary diversification steps, while still providing statistical evi-
dence that future intensification steps will not end up in the same plateau area.
In this paper we propose a stopping criterion to balance the trade-off between
the quality of the solution and its runtime regardless of the methodology to
escape plateaus and local minima, and without particular assumptions on the
objective function.

In the field of continuous optimization several authors have proposed sev-
eral stopping rules for the multistart framework. Here we briefly describe the
basic ideas of a few stopping rules. We refer the reader to [20] for a complete
description.

In [21] stopping rules are proposed based on Bayesian methods to stop as
soon as there is enough evidence that the best value will not change in future
restarts. A Bayesian stopping rule for GRASP is proposed in [22]. The authors
assume that the distribution function is known beforehand and derive explicit
rules for two particular cases.

In [23] the authors estimate the probability p that the best value observed in
last restart is within certain threshold ε of the global optimum. p is approximated
with the best solutions observed in previous restarts that at within ε of the
incumbent solution. This approach was extended in [24] by counting the number
of solutions that are within ε since the last update of the incumbent solution.

We remark that the above stopping rules for continuous optimization assume
that the objective function satisfy certain properties, e.g., continuity, differen-
tiable, Lipshitz condition, or that one should be able to find explicit formulas
for the distribution function.
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7 Conclusions

In this work, our objective was to study the application of machine learning tech-
niques to carefully craft a stopping criterion for local search algorithms where the
optimal solution is typically unknown beforehand. In particular, we use instance
features to predict the cost of the solution for a given algorithm to solve a
given problem instance. Interestingly, we have observed that machine learning
can indeed provide very accurate estimations of the expected quality of two effi-
cient local search solvers. We have observed that by using the estimation of the
regression model we can reduce the average runtime by up to 80% for real-world
CRP instances and by up to 97% for randomly generated instances with a minor
impact in the quality of the solutions.

Further research will involve the use of the estimated target solution in the
context of tree-base algorithms to tackle optimisation problems in two main
directions: first reducing the computation time to reach the target solution, and
second, pruning the search space by eliminating candidate solutions as soon as
we are able to detect that no improvement is expected in the target solution.
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Abstract. A possible approach to Algorithm Selection and Configura-
tion for continuous black box optimization problems relies on problem
features, computed from a set of evaluated sample points. However, the
computation of these features requires a rather large number of such
samples, unlikely to be practical for expensive real-world problems. On
the other hand, surrogate models have been proposed to tackle the opti-
mization of expensive objective functions. This paper proposes to use
surrogate models to approximate the values of the features at reasonable
computational cost. Two experimental studies are conducted, using a
continuous domain test bench. First, the effect of sub-sampling is ana-
lyzed. Then, a methodology to compute approximate values for the fea-
tures using a surrogate model is proposed, and validated from the point
of view of the classification of the test functions. It is shown that when
only small computational budgets are available, using surrogate models
as proxies to compute the features can be beneficial.

Keywords: Empirical study · Black-box continuous optimization ·
Surrogate modelling · Problem features

1 Introduction

Different optimization algorithms, or, equivalently, different parameterizations
of the same algorithm, will in general perform non-uniformly on different classes
of optimization problems. Today, it is widely acknowledged in the domain of
optimization at large that the quest for a general optimization algorithm, that
would solve all problems at best, is vain, as proved by different works around
the No Free Lunch theorem [1,12]. Hence, tackling an unknown optimization
problem amounts to choose the best algorithm among a given set of possible
algorithms (algorithm selection), and/or the best parameter set for a given algo-
rithm (algorithm configuration).

Such a choice can be considered as an optimization problem by itself, thus
pertaining to the Programming by Optimization (PbO) paradigm proposed by
[4]: given a new optimization problem instance (an objective function to mini-
mize or maximize), a set of algorithms with domains for their parameters, and
c© Springer International Publishing AG 2016
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a performance measure, find the best1 algorithm or parameter setting to solve
this problem. However, such a meta-optimization problem is in general diffi-
cult to solve (hierarchical search space, multi-modal landscape, . . . ) and thus
requires running different algorithms with different parameterizations, where
each of these runs will in turn call the objective function a large number of
times: in total, the number of calls to the objective function will be huge, mak-
ing such an approach intractable in most real-world situations with expensive
objective functions.

The PbO approach can however be applied to classes of objective functions:
the best algorithm/parameter setting can be learned off-line, once and for all
for a given class of functions, and the optimal setting (algorithm + parameters)
applied to all members of that class. This is the case for instance in operational
contexts, where the same type of problem, but with slightly different settings,
has to be solved again and again. However, in the general case of black-box
optimization problems, very little domain knowledge is known (the type of search
space for sure, maybe some relevant parameters) and such characteristics are not
sufficient to reliably choose an algorithm and its parameters.

Another approach is then to compute some characteristics of objective func-
tions, aka features, without much domain knowledge, and, thanks to a large
example base of algorithms performances on known objective functions, to learn
a performance model of several algorithms and their parameters. A well-known
success in that direction has been obtained in the SAT domain [13], but dozens
of features had been proposed in the literature to describe SAT problems and
try to understand what makes a SAT problem hard for this or that algorithm.
This situation is quite unique, and is an appeal for research regarding the design
and study of features in other domains.

In particular, in the domain of continuous optimization (the search space is
a subspace of IRd, for some d), several recent works [8,9,11] have proposed many
different features to try to understand the landscape of continuous optimization
and, ultimately, solve the Algorithm Selection and/or Configuration problem.
Note that a large body of mathematical programming algorithms exist, and are
proved to be optimal for specific classes of objective functions: Linear Program-
ming should be applied if the function (and the constraints) are linear; gradient-
based algorithms should be applied if the function is convex, twice differentiable
and well-conditioned, etc. But these are rare exceptions in the real world, where
the general problem remains open, and the feature-based approach seems worth
investigating, in particular considering the promising initial results obtained by
[9] (more in Sect. 2).

Unfortunately, the computation of all proposed features is based on many
sample points, i.e., values of the objective function at given (generally ran-
dom) points of the search space. In real-world situations, where the objective

1 The performance measure generally involves time-to-solution (CPU time, or num-
ber of function evaluations) and precision/accuracy of the solution returned by the
algorithm (precision of the solution for continuous optimization problems, number
of constraints violated for Constraint Programming problems, etc.).



Surrogate Assisted Feature Computation for Continuous Problems 19

function is expensive and the computational budget limited, the computation
of the features as proposed in [9] might simply be impossible. A first research
question is hence to study how badly the features behave when the size of the
sample,used to compute those features, decreases.

Yet, a prominent approach has already been proposed to handle expensive
objective functions in optimization. It relies on surrogate models, i.e., models of
regression or interpolation of the objective function built upon sample points
gathered during the run of the algorithm, and used from time to time in the
optimization algorithm in lieu of the actual objective function.

Building on this idea, the present work investigates the use of surrogate mod-
els to compute problem features: based on a small sample set, a surrogate model
is developed. The features of the surrogate model can then be easily computed,
since the cost of evaluating a surrogate model is negligible compared to the orig-
inal objective function. The second issue investigated in this paper relates to the
accuracy of the features of the surrogate model as approximations of the features
of the original objective function, and will be studied here experimentally, using
the well-known BBOB test set of functions [3]. Note that this paper will not
directly tackle the algorithm selection or algorithm configuration problem, left
for further work. The accuracy of feature sets will be assessed first by a direct
comparison with the features computed using a very large sample set, as well as
by their abilities to correctly recover the BBOB (hand-designed) classes, as in
[9] (see Sect. 4 for more details on the BBOB testbench).

The paper is organized as follow, Sect. 2 surveys the features proposed in
the literature. Section 3 will introduce the methodology proposed in this paper.
Section 4 describes the experimental context, while Sect. 5 describes the experi-
mental protocol in detail, including the performance measures used to validate
the results presented in Sect. 6. Finally these results are summarized and hints
for further works are given in Sect. 7.

2 Problem Features for Continuous Optimization

Let F be the objective function at hand, defined on a domain D ⊂ IRd for some
given dimensions d: d is the only high-level feature given a priori as domain
knowledge. All (other) features considered here will be computed from a sample
set X = (x1, . . . xp) of points of D, and the corresponding values of the objective
function Y = (y1, . . . , yp) (with yi = F(xi) for all i).

A first series of features used here is taken from [9], where low-level fea-
tures are computed directly from (X ,Y). High-level features,or fitness landscape
properties(e.g. multi-modality,separability, convexity,etc), are then built from
different statistics on these low-level features. A total of 62 low-level features is
computed, giving in turn 8 high-level features. The low-level features are grouped
in the following classes:

– Distribution: these features consider the distribution of objective values in Y,
computing the skewness and the kurtosis of the distribution, but also estimat-
ing the number of peaks of the distribution.
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– Level Set : from a given threshold in the objective function values (e.g., some
quantiles), a classification technique such as LDA, QDA or MDA is trained to
predict the position w.r.t. the threshold. The distributions of the misclassifica-
tion errors for the different classifiers are used as proxies to the multi-modality
of the objective function.

– Meta-Model : First, linear and quadratic regression models for (X ,Y) are com-
puted. The resulting R2 coefficients for the accuracy of the models, as well as
some statistics on the relative sizes of the coefficients of the models give some
indication on the shape of the landscape.

– Convexity : estimate the probability of convexity and linearity of the objective
function by selecting two random points from the sample X and generating a
new sample point in the segment and comparing the objective value of the new
sampled point and the same convex combination of the two initial objective
values. The probability of convexity is computed by averaging the number
of trials where the computed difference is lower than a predefined negative
threshold, while the probability of linearity is computed by considering all
absolute differences that are smaller than the absolute value of the predefined
threshold.

– Curvature: considers the numerical approximation of the gradient in each point
of a sub-sample of X by the Richardson’s extrapolation method, and the
resulting features consider the basic statistics of the respective derivatives,
the condition number of the similar numerical approximation of the Hessian.

– Local Search: a local search algorithm, e.g., Nelder-Mead, is run from starting
points in a sub-sample of X ; the final solutions of all runs are clustered in
order to identify the local optima of the objective function, the basin sizes
are approximated by the number of local searches which terminate there, and
other statistics gathered during the different runs give other indicators of the
landscape properties.

Furthermore, a series of features termed Dispersion was originally proposed
in [8]. Their computation analyzes the distance between candidate solutions for
a percentile of the best solutions of the optimization problem by comparing them
to the mean or median distance between solutions in the whole initial sample.
Different percentiles are considered, giving in total 16 features.

Finally, features related to Information Content have been proposed in [11].
They are related to the number of the binary decisions needed to find the infor-
mation, such that each candidate solution is binarized w.r.t. the fitness value
of their nearest neighbors’ fitness. These metrics give information about the
smoothness, or the existence of a global structure of the objective function.
A total of 5 dispersion features are considered in [11].

The recent works that defined those features [9,11] successfully demonstrated
that these features could be used in order to classify the optimization problems
w.r.t. their BBOB classes (see definition in Sect. 4). However, some of these
features (local search, curvature, convexity) require additional samples. On the
other hand, in [2,11], only features that can be computed with a fixed initial
sample are considered; and the results demonstrate that such limited number of
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features (33 features) can nevertheless be used to correctly identify the BBOB
classes. It should be emphasized, however, that all the above-mentioned works
consider large samples of candidate solution (between 500 × d and 5000 × d),
which is not practical if the objective function is expensive.

3 Surrogate Assisted Feature Computation

3.1 Sub-sampling

Real world applications where numerical simulations are involved, usually result
in very expensive objective functions, for which the computation of a single
value might take a few hours. In such case, the features described in previous
Sect. 2 might help choosing the right algorithm, and/or the right parameters of
a given algorithm, thus saving computation time for its optimization process.
The computation of these features should not cost more than the optimization –
which might be the case if around 103 × d evaluations are needed, as in [2,9,11].
Hence making the use of features no applicable in real world applications.

A first solution is of course to simply use a smaller sample set. But the
price to pay will be a poor approximation of the actual features, which in turn
might result in a wrong choice for the optimization algorithm or its parameters.
As it can be expected (see Sect. 6.1), a too small sample set results in a poor
approximation with a high variance w.r.t. the choice of the sample set.

3.2 Surrogate Modeling

Coming from another field, numerical engineers have tackled this problem using
Response Surface Methods for many decades now: after few iterations of any
optimization algorithm, many points of the search space have already been eval-
uated, and this sample set can be used to build a surrogate model of the objective
function, that can in turn be used in the optimization algorithm as a proxy for
the actual objective, being costless to compute (see e.g., [6,7] for surveys in
the engineering domain and in in Evolutionary Computation domain, respec-
tively). The most critical issue to be addressed when using surrogate modelling
techniques is the choice of the function space where to look for a model. Sev-
eral approaches have been proposed in the literature to solve such regression
problem, from Neural Networks to Gaussian Processes (aka Kriging) to Support
Vector Machines and Regression Random Forests, and it is beyond the scope of
this paper to describe them in detail.

Although a surrogate model to be used within an optimization process should
be accurate, taking into account the local characteristic of the problem. A surro-
gate model whose purpose is to compute features of the function at hand should
globally approximate the objective function. Both goals are different, and this
should be taken into account.
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3.3 Accuracy vs Efficiency

The baseline of the approach proposed in this paper is to use small sample sets
to build a surrogate model of the objective function at hand, to compute the fea-
tures of that surrogate model using as many samples as needed, and to use these
features in lieu of the unreachable actual features of the true objective function.

However, this approach must be validated – empirically – against the sim-
ple (without surrogate) sub-sampling approach (compute the features on small
sample sets). Furthermore, some parameters of the approach (the model for the
surrogate and its hyper-parameters, the number of samples to be used for eval-
uating the features of the surrogate model) must also be tuned. This raises the
question of what measure should be used to assess the quality of the approxi-
mated features.

An obvious measure is simply the error made on the feature values: for each
feature, the “exact” value can be computed using as large sample sets as needed
(say, same sizes than in [2,9,11]). Then the L2 norm of the error vector, difference
between the approximated and “exact” values for all features gives a first idea
of how good the approximation is.

However, the ultimate reason for computing the features is to solve the algo-
rithm selection and/or configuration problem. And it might be the case that the
error in solving the latter problem varies differently from the L2 error on the
feature values (e.g., some features that are poorly approximated are also not
important for the algorithm selection and/or configuration).

Because there is not yet any standard algorithm selection or classification
problem that would allow us to do such a validation, some obvious proxy classi-
fication problems that are used in [2,9,11], retrieving the known classes of prob-
lems manually defined on BBOB testbench (described in next Section). Next
Section will give the technical details of these experiments, and their results will
be presented in the following Section.

4 Experimental Settings

BBOB testbench
All the experiments presented here use test functions from the Black Box Opti-
mization Benchmark (BBOB)2 [3]. The BBOB benchmark contains 24 ana-
lytically defined continuous objective functions with known global optimum.
All these functions are defined on the d-dimensional domain [−5, 5]d, with
d ∈ {2, 3, 5, 10, 20, 40}. In order to avoid possible biases, 15 variants of each
function are considered, obtained from the original function by a translation of
the position of the optimum, plus a rotation of the coordinate system for the
non-separable functions.

These 24 functions have been manually classified in five classes of prob-
lem, with 5 separable functions, 4 uni-modal functions with low or moder-
ate conditioning, 5 uni-modal functions with high conditioning, 5 multi-modal

2 http://coco.gforge.inria.fr.

http://coco.gforge.inria.fr
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functions with regular global structure, 5 multi-modal functions with weak global
structure.

Sample Sets
All sample sets are drawn uniformly on [−5, 5]d for a BBOB function in dimen-
sion d (see above). In the remaining of the paper, all sample set sizes are nor-
malized w.r.t. the dimension d of the definition domain of the objective function.
For the sake of brevity, we will only mention the ratio between the sample set
size and the dimension: “a sample of size k” will actually mean “a sample of size
k × d”. In all experiments, k ∈ {30, 50, 100, 500, 1000, 2000} (the largest value
2000 was decided after the first experiments, see Sect. 6.1).

Features
As discussed in Sect. 2, only part of the features described in [8,9,11] will be
used here, namely: 3 Distribution features, 9 Meta-Model features, 16 Disper-
sion features, and 5 Information Contents features. All considered features are
implemented as an R package publicly available at http://github.com/flacco,
thanks to Pascal Kerschke.

Surrogate Models
As discussed in Sect. 3.2, several approaches to surrogate modelling will be used
and compared: Gaussian Processes, Random Forests, Support Vector Machines
with polynomial or RBF kernel, denoted respectively GP, RF, SVMP and
SVMRBF . But learning a surrogate model requires some hyper-parameters to
be tuned: a grid search is performed in the hyper-parameter space (4 parame-
ters for GP, 5 for the other models), using a 5-folds cross-validation procedure
— randomly re-sample (Bootstrap) the sample set, using 80% for training the
surrogate and the remaining 20% for testing— for 300 iterations, optimizing the
approximation accuracy on the test set. All surrogate modelling procedures are
implemented w.r.t the python scikit-learn library3.

5 Experimental Protocol and Validation

Experimental Protocol and Notations
For a given objective function F (one trial of one instance of one d−dimensional
function from BBOB), the basic experiment goes as follows: one sample sets of
given size is drawn from the definition domain of F ; the features are computed
on this sample set, and a surrogate model using one of the chosen modelling
techniques. The sample set is then completed with more samples, using the
surrogate model in lieu of the original function. Approximate features are then
computed using this extended sample set.

An immediate validation of such approximated feature values can be made
by comparing them to the “exact” values: a proxy for these values will be
the features computed with the largest initial sample set, of size 2000 (see
Sect. 6.1). However, the global validation (see below) requires to compute such

3 http://scikit-learn.org/.

http://github.com/flacco
http://scikit-learn.org/
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approximated features for all BBOB functions, and for several different sample
set sizes.

Let X s, s = 1, . . . , S be some sample sets from the domain of F4. Features
Φ(Fs) (vector of IRF if F is the number of features) are computed for F from
sample set (X s,Ys) (with yi = F(xi) for all (xi, yi) ∈ (X s,Ys), see Sect. 2).
Let us denote by Φ(F∗) the features computed from the largest sample set (of
size 2000).

Each sample set X s is also used to learn some surrogate models ̂Fs
t using

different surrogate modelling techniques t = T1, . . . , TT . For each (s, t), the set

of features Φ(̂Fs,s′
t ) is computed for ̂Fs

t , after completing the sample set X s

with s′ new points using ̂Fs
t , resulting in sample set (̂X s,s′

t , ̂Ys,s′
t ) of size s + s′

(i.e., X s ⊂ ̂X s,s′
t and, for all (xi, yi) ∈ (̂X s,s′

t , ̂Ys,s′
t ), yi = F(xi) if xi ∈ X s and

yi = ̂Fs
t (xi) otherwise). All approximate features Φ(Fs) and Φ(̂Fs,s′

t ) can then
be compared to the “exact” features Φ(F∗), and their accuracy assessed using the
L2 norm in IRF of the errors on the feature values (Err(Fs) = ||Φ(Fs)−Φ(F∗)||2,
Err(̂Fs

t ) = ||Φ(̂Fs,s′
t ) − Φ(F∗)||2).

However, as discussed in Sect. 3.3, another comparison is needed between
the approximate features and the “exact” values, that relates to the ability of
the approximate features to be sufficient to correctly classify the BBOB classes.
Such validation requires the computation of all approximate features with same
sizes of sample sets for all instances of functions of BBOB testbench.

Classification Efficiency
However, measuring the efficiency of a set of approximated features as a whole
goes through using them as input for learning a classifier in order to discriminate
the five BBOB classes. This is done using a 5-folds cross-validation, repeated
100 times, procedure as follows. Let us denote Cl(F) the class (in 1..5) a given
function F belongs to. For a given sample set size s, the example set for the
classification task consists of (Φ(Fs), Cl(F)) pairs when dealing with features

computed on F and (Φ(̂Fs,s′
t ), Cl(F)) when dealing with surrogate model t built

on F (t ∈ {GP,RF, SV MP , SV MRBF }). Such example set is made of 5 trials
× 5 instances × 24 functions × 5 dimensions. Out of these 3000 examples, 80%
are randomly chosen without replacement and avoid any overlapping the training
and test set, equally distributed in the 5 classes, to build the training set, on
which a Random Forest classifier is trained (with default hyper-parameters from
scikit-learn).

The accuracy of the resulting classifier should then be assessed on the remain-
ing 20% of the global example set. However, different scenarii are possible
in real-world situations. A first scenario is when the training phase is done
on easy functions, for which it is possible to compute the features with large
enough sample sets, and the unknown functions on which to perform algorithm
selection/configuration (the test phase) are all expensive. An “orthogonal”

4 By abuse of notation, s will denote both the sample set and the (normalized) size of
the sample set.
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scenario is when the functions available for training are also expensive. In the
latter case, only approximate features will be available for training, either com-
puted on small samples, or computed using a surrogate of the functions used for
training.

Two situations similar to the ones described above will be experimented with
here, involving different sample sizes for the training of the classifier and its test.

When no surrogate model is involved (Sect. 6.1), an experiment studying the
efficiency of the approximate features as a basis for classification (Sect. 6.1) is
defined with only two parameters: the size strain of the sample set used to learn
the features for the training set, and the size stest of the sample set used to learn
the features for the test set. The classification accuracy of the resulting classifier
will be denoted Eff(strain, stest).

But when analyzing the efficiency of surrogate assisted feature computation
(Sect. 6.2), an experiment is defined with 5 parameters: the type T of surro-
gate model (in {GP,RF, SV MP , SV MRBF }), and, for both the training fea-
tures and the test features, the sizes of the original sample sets used to learn the
surrogate models (respectively sorgtrain and sorgtest), and the additional number of
points added to these original sample sets using the surrogate models (respec-
tively ssurrtrain and ssurrtest ). The classification accuracy of the resulting classifier
will be denoted ̂Eff(T, sorgtrain, ssurrtrain; sorgtest, s

surr
test ). Note that if one of the ssurrtrain

or ssurrtest is 0, only the true values of F are used in the corresponding step. In
particular ̂Eff(T, sorgtrain, 0; sorgtest, 0) = Eff(sorgtrain, sorgtest) (the surrogate model is
never used).

6 Results

Two series of experiments will be presented here. The first one (Sect. 6.1) doesn’t
involve any surrogate model, and aims at studying how the features diverge from
their “exact” baseline values when the size of the sample decreases. The goal of
the second series (Sect. 6.2) is to check whether using a surrogate model built
on the same available small sample set to complement it can help to cope with
such divergence. In both series, the divergence with the baseline values will be
assessed by the accuracy of the approximated values (individual comparison for
a given feature and a given function, and their aggregation in the L2 error –
Sects. 6.1 and 6.2 respectively), and by the efficiency of the whole set of approx-
imate features, using them to discriminate the 5 BBOB classes, as explained in
previous Section – Sects. 6.1 and 6.2 respectively).Due to space constraints, only
few typical figures are displayed5.

6.1 Effects of Sub-sampling

Accuracy of Sub-Sampled Features. Five test functions (F1, F8, F13, F17,
F23, one per BBOB class) are used here to assess the effect of sub-sampling

5 Additional plots are available at https://drive.google.com/open?id=0B9GuQcCjvwt
FM2VLeVEyMGtFQnM.

https://drive.google.com/open?id=0B9GuQcCjvwtFM2VLeVEyMGtFQnM
https://drive.google.com/open?id=0B9GuQcCjvwtFM2VLeVEyMGtFQnM
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Fig. 1. Examples of effect of sub-sampling (x-axis) on feature values for the different
test functions in dimension d = 5.

on the feature values. Figure 1 shows some typical feature behaviors on those
5 functions: whereas plot (a) display a smooth behavior, where feature values
stabilize for s ≥ 100, both other plots show that even s = 2000 might still be
somehow too small for the multi-modal functions F17 and F23. However, most
features on most functions exhibited a smooth behavior, and were stable for
s ≥ 500, justifying the decision to take Φ(F2000) as Φ(F∗). It is also clear from
Fig. 1 that small sample sizes (e.g., 30) will provide a poor approximation of the
feature values, and might not allow to discriminate among different functions.

Fig. 2. Eff(strain, stest) vs stest for
different values of ktrain.

Fig. 3. Eff(s, s) (black circles) and
̂Eff(T, s, ∗; s, ∗) for different T .

Efficiency of Sub-Sampled Features. Figure 2 displays the efficiency of the
approximated features to discriminate among BBOB classes (see Sect. 5). Each
line corresponds to a sample size strain used to train the classifier, and each
point corresponds to a different sample size stest used to compute the features
of the test instance to be classified.

Two conclusions can be drawn from this figure. First, there is no reason to
use a larger test sample size stest than the size strain that was used to train the
classifier, as the efficiency does not increase after stest has reached strain. Second,
if you know that only a limited budget will be available at test time (i.e., all
new instances will be very expensive), then you should train the classifier with a
small budget too: for a given stest, the best efficiency is obtained by the classifier
trained with strain = stest.
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A possible explanation, to be investigated deeper in further work, is that
sub-sampling does not only increase the variance of the feature values, but it
also induces some bias that might be also tracked by using the same sample size
for training than for testing.

6.2 Surrogate Assisted Feature Approximation

In this Section, we try to improve the accuracy and efficiency of the approximate
features by adding samples computed using some surrogate model, as described
in Sect. 3.

Accuracy of Surrogate-Assisted Features. Figure 4 displays feature values
for 3 different features (columns) and 2 different surrogate models (top: Gaussian
Processes, bottom: Random Forests), for the 5 test functions F1, F8, F13, F17,
F23. The effects of small sample sizes are here rather similar to those on the func-
tion alone as displayed in Fig. 1. However, it should be noted that the different
surrogate models can give different behaviors on the same feature.

An alternative point of view and a comparison with the approximated fea-
tures directly computed using the initial small sample with exact objective values
is given in Fig. 5. Here, the Random Forest surrogate model is used to add 2000
points to the initial sample set. It is clear (and results on other feature confirm
this trend) that Random Forests give a much smaller error than Support Vec-
tor Machines (with both polynomial and RBF kernel), and even more so with
Gaussian Processes (not shown here for space reason). More interestingly, using
the Random Forest surrogate model often results in more accurate approximate
features than computing their values only on the few available exact values (see
the s = 30 histograms on Fig. 5).

Fig. 4. Values of 3 features vs initial sample size s, for the 5 test functions (d = 20),
using a surrogate model (GP for (a, b, c), RF for (d, e, f) ) to add s′ = 2000 points to
the sample set.
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Fig. 5. Accuracy error for 3 features on F13 (d = 5), for different values of s (x-axis).

For each s, Err(s, s), Err( ̂Fs,2000
SV MP

) and Err( ̂Fs,2000
RF ) are plotted.

Fig. 6. Accuracy error of 4 features on F1, d=2 (left), and on F17, d=20 (right). For

each (s, s′), the error Err(
̂Fs,s′
RF ) is plotted (the darker the higher).

But whereas adding as many points as possible (2000 here) using the surro-
gate model seems a natural way to go, one can wonder if this is always the best
thing to do. And the answer is no: Fig. 6 plots the error on the feature values
obtained when adding s′ (y-axis) sample points using a surrogate model (here,
a Random Forest), to a sample set of size s (x-axis). In many cases, the error
increases with s′, or displays an unstructured behavior, in particular for small
values of s. Only for large-enough values of s (500 and more, not shown here)
does the error decrease.

Efficiency of Surrogate-Assisted Features. Let us now look at the effi-
ciency of the approximated features to discriminate among BBOB classes
(as explained in Sect. 5). Figure 3 displays Eff(s, s) (the upper hull of the
plots on adjacent Fig. 2) as well as the different ̂Eff(T, s, ∗; s, ∗), for T ∈
[GP,SV MPandSV MRBF , RF ]. It is again obvious here that the Random Forest
model outperforms all others, which is consistent with previous results (as well
as with all other not presented results). From now on, only RF surrogate model
will be considered. But another observation that can be made here is that there
is no gain to be expected by using the surrogate model during the learning phase
too, as both plots for Eff(s, s) and ̂Eff(RF, s, ∗; s, ∗) are almost identical.

A final experiment will try to answer the main question that motivated this
work: can the use of a surrogate model improve the efficiency of the approximated
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Fig. 7. Comparison, for different values of strain, of the efficiency of sub-sampled fea-
tures Err(strain, stest (continuous black line) with that of surrogate assisted features
̂Eff(RF, strain, 0; stest, ∗) (grey dotted line).

Table 1. Mean and standard deviation of the efficiency of sub-sampled
features Eff(strain, stest (columns Obj. Fn.) and surrogate assisted features
̂Eff(RF, strain, 0; stest, ∗) (columns RF). Statistically significantly better results
(Wilcoxon signed test with 95% confidence) are in bold.

strain = 30

stest Obj. fn. RF

30 85.1±1.6 87.4±1.5
50 87.3±1.4 90.0±1.3
100 86.5±1.5 90.2±1.2
500 87.0±1.6 85.6±2.0

strain = 100

stest Obj. fn. RF

30 66.9±3.7 82.2±1.5
50 82.6±3.0 89.3±1.2
100 94.6±0.9 95.1±1.0
500 95.2±1.1 94.3±1.0

strain = 500

stest Obj. fn. RF

30 59.5±3.7 65.2±3.1
50 73.8±2.1 69.8±3.1
100 88.3±2.0 76.3±2.8
500 98.6±0.5 87.6±1.8

strain = 2000

stest Obj. fn. RF

30 54.8±3.5 60.9±3.1
50 66.6±3.0 67.1±3.3
100 78.6±3.6 73.1±3.0
500 95.3±1.1 84.0±2.4

features in the context of expensive objective functions? Fig. 7 displays 4 plots,
corresponding to different values of strain. On each plot, the black continuous line
is Eff(strain, stest), i.e., the corresponding line of Fig. 2, and the dotted grey line
shows ̂Eff(RF, strain, 0; stest, ∗), i.e., the efficiency obtained when using the RF
surrogate model to augment the sample set with 2000 new samples. And indeed,
there is some advantage in using the surrogate model during the test phase, the
more so for small training budgets. Furthermore, this advantage of using the
surrogate is statistically significant, as witnessed in Table 1 where the same data
are given together with the standard deviations. Figures in bold are statistically
better than the corresponding non-bold figures according to a Wilcoxon signed
rank test with 95% confidence.



30 N. Belkhir et al.

7 Discussion and Conclusion

In the context of continuous black-box optimization, this paper has proposed a
methodology to compute features describing the characteristics of the problem
at hand, as proposed in [2,9,11], using surrogate models to cope with expensive
objective functions: to-date methods to compute such features rely on large
sample sets of evaluated points, that are not practically available when dealing
with expensive real-world problems. The performance of approximated features
have been measured both with their accuracy, related to the error on their values
when compared to values computed on very large sample sets, and with their
efficiency, ability to train a classifier that can correctly discriminate the five
classes of the test functions in the BBOB testbench [3].

The paper has first experimentally studied the loss of accuracy of the features
due to sub-sampling, identifying a reasonable sample size beyond which the
computed features exhibit stable values with small variance – 2000× the problem
dimension. The study of the efficiency of the sub-sampled features led to a first
conclusion: if the budget at test time is going to be small (expensive objective
function), then the budget allocated to training should be small too.

Experiment involving surrogate models first surprisingly demonstrated that,
in the context of the present work, only Random Forest surrogate models gave
satisfactory results when used to augment the sample set used to compute the
features, whereas for instance Gaussian Processes, very popular today when it
comes to expensive optimization per se, gave the worst results of all.

But the most interesting observation is that when only few samples are
available, using a surrogate model built on these small sample sets to augment
the sample set can lead to better classification results (on BBOB classes) than
the sub-sampled features directly computed on the small available sample sets.
However, if some large training budgets are available, i.e., if there exists cheap
functions that are representative enough of the expensive real-world objective
functions that will be encountered later, then using a surrogate model on these
expensive unknown function does not seem to be beneficial.

There are several directions for further work. First, several features that
have been proposed in the literature have been discarded because they require
additional function evaluations (e.g., the local search, curvature, and convexity
features [9]). Surrogate models might also be useful in order to compute those
features at low cost. Such progress would then make even more important to use
some feature selection method rather than using all features for the classification
task at hand.

Different paths can also be explored regarding the way the surrogate models
are computed. First, as of today, only global surrogate models are considered.
But it might be interesting to restrict the scope of the surrogate learning to
better compute local search features for instance. Similarly, the performance
measure used to construct the surrogate models is the standard approximation
error on the known samples. But in the context of feature computation, some
other measures could be considered – ultimately, surrogate models should be
optimized for the quality of the approximate features they allow to compute.
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Only global results on all features have been presented here. In particular, it
could be the case that different surrogate models are the best choice to compute
different features (e.g., SVM for convexity features, random forests for multi-
modality features, etc.). A deeper insight on feature accuracy is needed here.
Along the same line, some results presented here suggest that there might be
a systematic bias induced by sub-sampling – something that requires deeper
analysis too.

Last but not least, the link between those features and Algorithm selection
and configuration remains to be established. Indeed, retrieving BBOB classes is
a much easier problem than learning an empirical performance model, as in [5]
for instance. Or those features might be used together with some latent features
identification method, as in [10].
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Abstract. Automated algorithm configuration procedures play an
increasingly important role in the development and application of algo-
rithms for a wide range of computationally challenging problems. Until
very recently, these configuration procedures were limited to optimis-
ing a single performance objective, such as the running time or solution
quality achieved by the algorithm being configured. However, in many
applications there is more than one performance objective of interest.
This gives rise to the multi-objective automatic algorithm configuration
problem, which involves finding a Pareto set of configurations of a given
target algorithm that characterises trade-offs between multiple perfor-
mance objectives. In this work, we introduce MO-ParamILS, a multi-
objective extension of the state-of-the-art single-objective algorithm con-
figuration framework ParamILS, and demonstrate that it produces good
results on several challenging bi-objective algorithm configuration sce-
narios compared to a base-line obtained from using a state-of-the-art
single-objective algorithm configurator.

Keywords: Algorithm configuration · Parameter tuning · Multi-
objective optimisation · Local search algorithms

1 Introduction

The performance of many algorithms strongly depends on the setting of their
parameters. In particular, state-of-the-art solvers for prominent NP-hard com-
binatorial decision and optimisation problems, such as propositional satisfiabil-
ity, scheduling, vehicle routing and mixed integer programming critically rely
on configurable heuristics whose parameters have a strong impact on the over-
all performance achieved on a given class of problem instances. In many cases,
these parameters interact with each other in complex and non-intuitive ways,
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and manually configuring them to optimise performance on a particular class of
instances is a difficult and tedious task.

State-of-the-art automatic algorithm configuration procedures from the lit-
erature, such as ParamILS [6], SMAC [5] and irace [2], only consider a single
performance objective when optimising the configuration of an algorithm; they
are particularly frequently used for minimisation of running time or maximisa-
tion of solution quality. However, there are many situations in which multiple
competing performance objectives matter when configuring a given algorithm,
such as running time and memory consumption, and running time and solution
quality, and there are well-known benefits in exploring the tradeoffs between
such competing objectives.

To the best of our knowledge, automatic configuration for multiple perfor-
mance objectives has been studied only recently, and only in the context of
racing algorithms [13,14]. In this work, we introduce MO-ParamILS, an exten-
sion of the prominent ParamILS algorithm configuration framework [6,7] that
allows us to deal with multiple performance objectives. Like the single-objective
ParamILS framework that inspired it, MO-ParamILS implements two configu-
ration procedures: MO-BasicILS and MO-FocusedILS. As we will demonstrate,
both are effective in dealing with five bi-objective configuration scenarios, with
MO-FocusedILS producing better results than MO-BasicILS.

The remainder of this paper is organised as follows. Section 2 describes the
single- and multi-objective algorithm configuration problems and introduces def-
initions and notation required later. Section 3 presents the MO-ParamILS frame-
work along with the MO-BasicILS and MO-FocusedILS multi-objective configu-
ration procedures implemented within it. Section 4 presents an empirical evalua-
tion of these configurators on five bi-objective configuration scenarios involving
prominent solvers for MIP and SAT. Finally, Sect. 5 provides conclusions and an
outlook on future work.

2 Automatic Algorithm Configuration

Automatic algorithm configuration deals with the optimisation of the perfor-
mance of an algorithm through the automatic configuration of its parameters.
In the following, we first describe the general context of algorithm configuration,
before giving a formal definition of the algorithm configuration problem and its
extension to a multi-objective setting.

2.1 General Context

Complex algorithms, especially ones for solving hard computational problems,
often expose numerous parameters that can be optimised to achieve good perfor-
mance in different application scenarios. General-purpose solvers for problems
such as mixed integer programming (MIP) or propositional satisfiability (SAT)
are usually designed to perform well across a broad range of instance types, but
can be tuned manually for performance on particular sets of problem instances.
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The algorithm configuration problem is an optimisation problem that aims at
finding the best possible parameter configuration of a given algorithm w.r.t.
its performance on a given set or distribution of problem instances. Note that
when talking about methods for solving this algorithm configuration problem,
there are two levels of algorithms involved: the target algorithm – a lower-level
algorithm for some problem, such as MIP or SAT, whose performance is to be
optimised, and the configurator – a higher-level algorithm used for optimising
the performance of the target algorithm.

There is a sizeable literature on automatic algorithm configurators, including
procedures based on sequential model-based optimisation, such as SMAC [5]; rac-
ing algorithms, such as irace [10,12]; and model-free search algorithms, such as
CALIBRA [1] and ParamILS [6,7]. These all address the single-objective auto-
matic algorithm configuration problem, where the performance of the target
algorithm is assessed by a single scalar value, such as the running time or solu-
tion quality, or a fixed aggregation of multiple scalar values. Recently the idea of
a more general multi-objective automatic algorithm configuration problem has
begun to emerge, e.g., in the work of Zhang et al. on multi-objective configura-
tors based on racing [13,14].

On the other hand, good examples of target algorithms are metaheuristics
for NP-hard problems, or commercial solvers such as CPLEX with a broad
range of parameters. During the development of such algorithms, automated
configurators can be used to assess and optimise the performance of different
design choices, as well as to find good default parameter settings.

Target algorithm parameters can be numerous and varied in their type and
function. They can control low-level aspects of target algorithm behaviour,
such as probabilities for certain types of operations, up to high-level aspects,
such as computation strategies or problem representations. We distinguish three
main types of parameters: categorical parameters, which have a finite number of
unordered discrete values, often used to select between alternative mechanisms,
integer parameters, which have discrete and ordered domains, and finally, contin-
uous parameters that take numerical values on a continuous scale. In addition,
conditional parameters exist that depend on the setting of other parameters, as
well as forbidden parameters, which describe forbidden parameter combinations,
to avoid known incorrect or undesirable behaviour of the target algorithm.

2.2 Problem Statement and Notations

The single-objective algorithm configuration problem is defined as a tuple
< A, Θ,D, o,m >, where

– A is the parameterised target algorithm,
– Θ is the search space of possible configurations of A,
– D is a distribution of problem instances,
– o is a cost function, and
– m is a statistical population parameter.
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A configuration θ ∈ Θ is one possible setting of the parameters of A. The cost
function o is the performance objective for a single execution of algorithm A
on an instance π ∈ D, such as the final accuracy or the total running time.
The statistical parameter m is used to aggregate the values of the cost function o
over a set of instances, e.g., the arithmetic mean or the median. The aggregated
cost of one configuration θ ∈ Θ of an algorithm A over all instances π from D is
then defined as c(θ) := m(O(θ)), where O(θ) is the distribution of costs induced
by the function o on D.

The single-objective automatic algorithm configuration problem then consists
of finding a configuration θ∗ ∈ Θ such that c(θ∗) is optimised. While in general,
performance measures may be minimised or maximised, in the following, we
assume (without loss of generality) that c(θ) is to be minimised.

Unfortunately, the cost c(θ) of a configuration θ often cannot be computed
directly, as D is usually not finite or much too large to explore exhaustively.
Usually, the cost is estimated based on a finite set of instances from D. In this
context, we use R to denote a list of runs of a given configurator and represent
each run by a triple < θ, π, o >, where

– θ ∈ Θ is the configuration considered,
– π from D is the instance on which the target algorithm is evaluated,
– o is the observed cost of the run.

The estimated cost ĉ(θ) of a configuration θ given a sequence of runs R is then
determined as the aggregate m over the cost o of all runs < θ, π, o > for some π
from D. If the target algorithm is stochastic, a configuration is combined with a
specific random seed in order to ensure fair comparisons.

As a simple example, let us consider the configuration of a general SAT solver
in an application scenario where we want to minimise the average running time
for a certain type of SAT instances. By using a SAT solver that is specifically
configured to achieve this, we can save time on instances to be solved in the
future compared to using the solver in its default configuration, and eventually
these time savings will exceed the effort required for configuring the solver. Here,
the target algorithm A is the SAT solver, with configuration space Θ, and D
is the distribution of SAT instances of interest. The cost function o reflects the
solving time for a given SAT instance, and m is defined as the arithmetic mean.

However, in many cases, when optimising the performance of a given algo-
rithm, there is more than one performance metric of interest, which gives rise to a
multi-objective optimisation problem. To capture this, we consider an extension
of the single-objective algorithm configuration problem that involves a vector of
cost functions o := (o1, . . . , on) where each oi is a single-objective cost function,
and a vector of statistical parameters m := (m1, . . . ,mn). Theoretical cost vec-
tors c(θ) and estimated cost vectors ĉ(θ) are defined based the component-wise
scalar cost and estimated cost introduced earlier.

The multi-objective automatic algorithm configuration problem, given a
dominance relation ≺ over configurations, then consists of finding a set of con-
figurations Θ∗ ⊆ Θ such that no θ ∈ Θ∗ is dominated w.r.t. ≺ by any other
θ′ ∈ Θ.
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In the following, the dominance relation ≺ we consider is Pareto dominance,
i.e., for u := (u1, . . . , un) and v := (v1, . . . , vn), u is said to dominate v (denoted
by u ≺ v) if, and only if

∀i ∈ {1, . . . , n} : ui ≤ vi ∧ ∃ i ∈ {1, . . . , n} : ui < vi

This relation is transferred to configurations by their costs: a configuration
θ1 dominates a configuration θ2 iff c(θ1) dominates c(θ2). We will refer to a
set of mutually non-dominated configurations as an archive. Adding the domi-
nance relation to the multi-objective automatic algorithm configuration problem
reflects the overall aim of generating configurations with performance character-
istics (according to the given objectives) that are not dominated by any other
configuration available. Thus, we are interested in (ideally all) existing tradeoff
solutions. We note that, just as in the single-objective case, practical configura-
tors may only find suboptimal solutions to a given configuration problem.

3 From ParamILS to MO-ParamILS

In this section, we first outline the existing single-objective ParamILS framework
and then describe our new multi-objective framework, along with the two MO-
ParamILS variants we study in the following, MO-BasicILS and MO-FocusedILS.

3.1 Single-Objective ParamILS

ParamILS [6] is an automatic algorithm configuration framework that optimises
a single performance metric using iterated local search, a well-known stochastic
local search method [11]. The configuration process starts by evaluating a given
default configuration along with r configurations chosen uniformly at random
from the given configuration space Θ. The best of these r + 1 configurations is
used as the starting point for the iterated local search process, which can be
seen as a sequence of three phases that is repeated until a given time budget
is exhausted. Throughout the search process, we keep track of the incumbent
configuration θ∗, i.e., the best configuration seen so far. In the first phase, the
current configuration θ is perturbed, by performing s random steps in the one-
exchange neighbourhood (where two configurations are neighbours if, and only if,
they differ by the value of a single parameter). In the second phase, randomised
iterative first improvement local search is performed within the same neighbour-
hood, excluding all configurations that have been visited previously during the
same local search phase. The local search process ends when all neighbours of a
given configuration have been checked without achieving an improvement. If the
configuration θ′ thus obtained is better than the configuration θ from which the
last perturbation phase was started, we set θ to θ′ (and update the incumbent).
To provide additional diversification to the search process and guarantee proba-
bilistic approximate completeness, with a fixed probability prestart, θ is reset to
a configuration chosen uniformly at random from the entire space Θ.
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We note that, in light of the usually high cost of evaluating configurations of
the given target algorithm, ParamILS maintains a cache of the results from all
target algorithm runs performed during the search process and only performs
target algorithm runs after checking that the respective results are not available
from that cache.

3.2 Multi-objective ParamILS

We now describe our multi-objective extension of the ParamILS framework. The
main difference between ParamILS and MO-ParamILS (outlined in Algorithm 1)
lies in the use of a multi-objective iterated local search process, in which an
archive (i.e., set of non-dominated configurations) is iteratively modified rather
than a single configuration of the given target algorithm. Likewise, the incumbent
is now an archive. Like ParamILS, MO-ParamILS exposes three parameters: the
number r of initial random configurations, the number s of random search steps
performed in each perturbation phase and the restart probability prestart.

Algorithm 1. Multi-objective ParamILS
Data: Initial archive, algorithm parameters r, prestart and s
Result: Archive of incumbents, i.e., overall best configurations found

current arch ← initial archive;
for i ← 1 . . . r do

conf ← random configuration;
update(conf, current arch);
archive(conf, current arch);

until termination criterion is met do
if first iteration then

arch ← current arch;
else

if with probability prestart then // Restart

conf ← random configuration;
current arch ← {conf};
arch ← current arch;

else // Random sampling and random walk

/* Incumbents are not forgotten between restarts */

conf ← random configuration of current arch;
for i ← 1 . . . s do

conf ← random neighbour of conf;

arch ← {conf};

arch ← local search(arch);
foreach conf in arch do

update(conf, current arch);
archive(conf, current arch);

return the archive of incumbents;
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Function 2. archive(new conf, arch)
Data: Single configuration new conf, archive arch

Result: Updated archive arch

foreach conf in arch do
if dominates(new conf, conf) then

arch ← arch \ {conf};
else if dominates(conf, new conf) then

return arch;

arch ← arch ∪ {new conf};
return arch;

The initialisation of the search process does not change conceptually, except
that an initial set of default configurations can be provided and is combined, with
the r randomly chosen configurations, into an archive. We ensure that whenever
we add a new configuration to an archive a, all Pareto-dominated configurations
in a are discarded (see Function 2), so that an archive always contains only non-
dominated configurations.

MO-ParamILS prominently uses the two following functions: dominates()
and update(). The function dominates() compares two configurations using
strict Pareto dominance on the respective cost (estimate) vectors. The function
update() is, unless explicitly specified otherwise, the only function that runs the
target algorithm and updates the cost vector of a configuration; it ensures that a
given configuration can subsequently be compared to another configuration using
dominates(). It also maintains a cache of all target algorithm runs performed
throughout the multi-objective search process and ensures that the overall best
configurations, the archive of incumbents, is kept up-to-date. We will discuss
the instantiations of update() and dominates() for MO-BasicILS and MO-
FocusedILS, the two MO-ParamILS variants we used in our experiments, later
in this section.

We use a simple variant of the perturbation mechanism from ParamILS, in
which a single configuration is selected uniformly at random from the current
archive and modified by a sequence of s random search steps in the 1-exchange
neighbourhood; the resulting configuration is then stored as a new archive, which
forms the starting point of the subsequent local search phase [4]. The restart
mechanism remains unchanged, except that it now replaces the current archive
with one containing a single configuration chosen uniformly at random from the
entire configuration space Θ. As in ParamILS, we use default values of r := 10,
prestart := 0.01, and s := 3 in our experiments.

The subsidiary local search process used in MO-ParamILS is outlined in
Function 3. From a wide range of existing multi-objective local search proce-
dures [9], we chose this one, because it is conceptually simple and resembles the
subsidiary local search procedure used in ParamILS; it has also been shown to be
very efficient [3]. At each step of the local search process, all configurations in the
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Function 3. localSearch(init arch)
Data: Initial archive of configurations init arch

Result: Best archive of configurations found
Side effect: Change or update the incumbent if necessary

current arch ← init arch;
tabu set ← current arch;
repeat

/* Selection */

current set ← current arch;
candidate set ← ∅;
foreach current in current set do

foreach neighbour in randomised neighbourhood of current do
/* Exploration */

if neighbour ∈ tabu set then
next ;

tabu set ← tabu set ∪ {neighbour};
update(neighbour, current);
if dominates(neighbour, current) then

candidate set ← candidate set ∪ {neighbour};
break ;

if not dominates(current, neighbour) then
candidate set ← candidate set ∪ {neighbour};

/* Archive */

foreach conf in candidate set do
archive(conf, current arch);

until candidate set = ∅;
return current arch;

current archive are explored individually. When exploring a configuration θ, its
neighbours are evaluated in random order (excluding any configurations already
visited earlier in the same local search phase), until one is found that strictly
dominates θ or all neighbours have been visited. All non-dominated neighbours
encountered during this process are added to the current archive, making sure
that dominated solutions are removed. (Notice how this can be seen as a gener-
alised version of the acceptance criterion used in the single-objective ParamILS
framework.) The local search then stops when there is no more unvisited neigh-
bour that can be added to the archive.

3.3 MO-BasicILS

The key idea behind BasicILS(n) is to evaluate configurations on a fixed set of
n training instances, selected uniformly at random (without replacement) from
the given training set D [7]. This can be easily carried over to the MO-ParamILS
framework of Algorithm 1, by defining update() and dominates() the way that
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the latter always compares configurations based on their quality vectors on the
same instances set, and the former ensures that all target algorithm runs required
in this context are performed.

The disadvantage of the resulting MO-BasicILS procedure, as in the case of
BasicILS, lies in the difficulty of choosing n: if n is too small, solution quality
estimates can be inaccurate, leading to poor generalisation of the performance of
the configurations obtained from MO-BasicILS to unseen test instances; if n is
too large, much effort is wasted on evaluating poorly performing configuration,
compromising the efficiency of the search process. In our experiments, we used
a default setting of n := 100.

3.4 MO-FocusedILS

The key idea behind FocusedILS is to avoid the potential problems arising from
the use of a fixed number of instances for evaluating configurations by start-
ing comparisons between configurations on a small initial set of instances and
then increasing the number of instances as better and better configurations are
found [7]. Based on the same idea, MO-FocusedILS allows poor configurations to
be dominated very soon, while promising configurations are evaluated increas-
ingly more accurately as the search process progresses.

Towards this end, MO-FocusedILS uses a slightly weaker dominance relation
in the function dominates(), which adds the condition that a configuration θ
dominates a configuration θ′ if, and only if, θ has been run on every instance θ′

has been run and θ dominates θ′ on those instances. Note that when θ and θ′ have
been run on the same instances, this corresponds to standard Pareto domination,
and as the number of instances grows, it approximates Pareto domination on the
true (theoretical) cost vectors arbitrarily accurately.

In practice, new runs are performed for the configuration that has been eval-
uated on fewer instances so far, until either of the two configurations being com-
pared dominates another; the instances for these new runs are chosen according
to a random permutation of the training instance set that has been determined
when initialising MO-FocusedILS and then remains fixed. This ensures that for
two configurations θ and θ′ and their respective sequences of runs Rθ and Rθ′ ,
either Rθ ⊆ Rθ′ or Rθ ⊇ Rθ′ , and that Rθ ∩ Rθ′ is either equal to Rθ or to Rθ′ .

The update() function of MO-FocusedILS handles the comparison of a single
configuration θ and an archive a by adding new runs of θ until there is at least
one configuration θ′ ∈ a for which Rθ ⊇ Rθ′ or θ′ dominates θ.

Like Focused-ILS, MO-FocusedILS additionally requires an intensification
mechanism that ensures that over the course of the search process, good config-
urations are evaluated on an increasing number of instances. This mechanism is
outlined in Procedure 4: it simply performs new runs for a given configuration
until its new cost vector Pareto dominates its cost vector before intensification.
Procedure 4 is called at the beginning of every local search phase, to help start
the local search process with a better cost estimate, after every local search
phase, to further increase the accuracy of cost estimates, and each time the
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Procedure 4. intensify(conf)
Data: Single configuration conf

Side effect: Updates the level of detail of conf

repeat
old cost ← cost(conf);
perform a new run of conf;
new cost ← cost(conf);

until pareto dominates(old cost, new cost) ;

update() function compares two configurations with the same number of runs.
(Alternative, but less efficient intensification mechanisms might perform a fixed
number of new runs, or a number of runs given by a function of the time spent
since intensification was last performed.)

4 Experiments

In this section, we present results for MO-ParamILS for two different multi-
objective automatic algorithm configuration problems. First, we study the trade-
off between running time and solution quality for an anytime optimisation algo-
rithm. Our second example involves the simultaneous optimisation running time
and memory usage. In both cases, we consider two optimisation objectives; how-
ever, MO-ParamILS is not restricted to such bi-objective algorithm configuration
problems.

4.1 Experimental Protocol

To assess the performance of MO-ParamILS we consider five configuration sce-
narios, described by Table 1. These scenarios use three datasets and two target
algorithms, which belongs to ACLib1, a comprehensive algorithm configuration
library, and are already known and have been studied in single-objective algo-
rithm configuration.

Details of the two algorithms are precised by Table 2. Note that the neigh-
bourhood relation of ParamILS considers all parameters as categorical; hence-
forth for integer or continuous parameters the set of values have been discretised
before all experiments.

Our experimental protocol involves three consecutive steps, namely training,
validation and test. In the training step, the configurator is run 25 times on 25
different permutations of the training set, resulting in 25 archives. Because the
configurations produced at the end of the training phase have not necessarily
been evaluated on precisely the same training instances, in the validation step,
each final configuration of the 25 training runs is reassessed on the same subset
of the training instances. At the end of this validation phase, all configurations
1 http://aclib.net

http://aclib.net
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Table 1. Configuration scenarios.

Dataset Algorithm Walltime Performance objectives Abbrv

Regions200 CPLEX 1 day Quality, Cutoff RCut

Regions200 CPLEX 1 day Quality, Running Time RRun

CORLAT CPLEX 1 day Quality, Cutoff CCut

CORLAT CPLEX 1 day Quality, Running Time CRun

QUEENS CLASP 1 day Memory usage, Running Time QUEENS

Table 2. Target algorithm parameters (with number of possible values).

Algorithm Categorical Integer Continuous Total configurations

CPLEX 5 (2) 65 (2–7) 2 (5–6) 2.26 · 1046

CLASP 15 (2–5) 43 (2–16) 8 (6–14) 9.96 · 1048

have been assessed on the same set of problem instances and can therefore be
meaningfully compared in order to identify the ones that are Pareto-optimal
w.r.t. performance objectives on solved problem instances and percentage of
unsolved problem instances. Then, in the test step, the configurations of the
archive obtained from the validation step are reassessed on a disjoint set of
testing instances. We use this protocol to compare the configurations obtained
from MO-BasicILS, from MO-FocusedILS, from an approach only using SO-
FocusedILS, as well as the default configuration. In each of these cases, we use
the same 25 permutations of the 1000 training instances, the same subset of 100
training instances for the validation, and the same 1000 testing instances.

Regarding MO-BasicILS, its parameter n is set to 100, meaning that esti-
mations of configuration performance use 100 training instances. Regarding the
SO approach, we used SO-FocusedILS with every available improvement (e.g.,
aggressive capping). For the four CPLEX scenarios, we ran SO-FocusedILS sep-
arately on the 5 different cutoff values chosen to obtain a total wall-clock time
of one day (that is, for 1, 2, 3, 5 and 10 CPU seconds cutoffs, the walltime for
the 1 CPU second cutoff is 1/(1+2+3+5+10) × 24 h). For the CLASP scenario, we
ran SO-FocusedILS separately on each of the two objectives for 12 hours.

In the CLASP scenario, failure by CLASP to find a solution within 300
seconds in a particular instance is penalised by counting any such run as 10
times the cutoff time (i.e., using the well-known PAR10 performance metric [6]).
In the CPLEX scenarios, we penalised failure by CPLEX to return a MIP gap
value by setting the MIP gap value to 1010 for such runs, thus making sure that
such configurations tend to be avoided by our configuration approaches.

Performance assessment has been carried out using the PISA framework [8].
For the CPLEX scenarios, we used the data without timeout. For validation and
test steps, the final fronts are compared using the hypervolume and ε indicators.
First, all fronts for a given step and scenario are normalised so the values of every
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objective vector lie in the interval [1, 2]. Then, a reference front is computed by
merging every front and applying Pareto dominance. The indicator values are
then computed between each front and the reference front.

SPRINT-Race [14] is a recent multi-objective racing algorithm, and we orig-
inally considered including it in our performance comparison. However, both
CPLEX and CLASP algorithms have very large configuration spaces (1046 and
1048 configurations, respectively), which implies that the only way to apply
SPRINT-Race would be in combination with a sampling technique. Further-
more, the implementation of SPRINT available from its authors requires as
input the exhaustive evaluation of all configurations on all instances, making it
impractical to use for our configuration scenarios.

4.2 Results

Empirical results from the test phases are shown in Fig. 1, considering only
instances solved before the given timeout. The corresponding number of unsuc-
cessful runs are given in Table 3. Table 4 shows the performance assessment for
test results for both indicators. For each scenario, the best value is highlighted.

As can be seen from Table 4, MO-FocusedILS finds considerably better Pareto
fronts for the test sets of all our multi-objective configuration scenarios than our
baseline single-objective approach in terms of hypervolume and ε indicator. In all
but one case, MO-FocusedILS also produces better results than MO-BasicILS,

Table 3. Average percentages of timeouts for final CPLEX configurations.

Validation Test

Approach RCut RRun CCut CRun RCut RRun CCut CRun

MO-FocusedILS 1.3 0.7 4.2 3.6 0 0 1.06 2.89

MO-BasicILS 0.1 0.6 3.6 2.9 0.04 0 0.47 3.78

SO approach 0.3 0.4 4.8 5.1 0.12 0 1.87 1.87

Default 0 0 2.2 2.2 0 0 0.14 0.14

Table 4. Hypervolume (top) and ε indicator values (bottom) for final test fronts.

Approach RCut RRun CCut CRun Queens

MO-FocusedILS 9.02e−03 2.07e−03 2.37e−02 7.63e−04 1.57e−02

MO-BasicILS 2.46e−03 5.41e−02 5.53e−02 1.02e−01 5.49e−02

SO approach 3.82e−02 5.82e−02 3.35e−01 1.72e−01 3.04e−02

Default 2.43e−01 3.57e−01 2.70e−01 5.30e−01 1.08e+00

MO-FocusedILS 1.44e−02 9.05e−03 9.00e−02 8.06e−04 2.64e−02

MO-BasicILS 1.80e−02 1.71e−01 1.11e−01 1.48e−01 8.35e−02

SO approach 5.77e−02 1.38e−02 3.33e−01 1.42e−01 6.52e−02

Default 2.22e−01 2.69e−01 2.33e−01 3.90e−01 1.00e+00
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Fig. 1. Final test fronts for all five scenarios
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which, in most cases, still produces better results than the single-objective
approach, but with less of a margin. Figure 1 provides additional details by
showing the Pareto fronts for all three multi-objective configuration approaches
as well as the performance (trade-off) achieved by the default configuration;
we note that the latter still produces a trade-off curve, because of the anytime
nature of CPLEX.

When analysing these results, we noticed that MO-FocusedILS evaluates
many more unique configurations than MO-BasicILS (4752 vs 166 on average,
over all five scenarios). This clearly indicates the efficacy of the way in which
MO-FocusedILS controls the number of runs per configuration performed and
mirrors analogous findings for BasicILS vs FocusedILS in the single-objective
case [6].

On all five scenarios, the default configuration of CPLEX or CLASP produce
few unsuccessful runs on training or test instances. Our three approaches lead to
configurations generating about as many timeouts as the default configuration.
However, by also taking in account the configurations returned that have both
more timeouts and better performances on successful instances, we were able
to achieve even better results at the cost of a small loss of generality, as shown
in Table 3. While our CLASP scenario uses PAR10 scores to take into account
instances that could not be solved within the given cutoff time, as previously
mentioned, the final Pareto fronts we produce for the CPLEX scenarios do not
reflect a small number of instances for which no MIP gap was obtained within the
allotted running time. The fraction of the validation and test sets on which this
happened is shown in Table 3; as seen there, timeouts generally occur for a small
fraction of instances, and while that fraction tends to increase as we configure
CPLEX, it remains low enough in all cases to not raise serious concerns.

5 Conclusion

We have introduced MO-ParamILS, an extension of the prominent ParamILS
automatic algorithm configuration framework for solving the multi-objective
algorithm configuration problem. To the best of our knowledge, while MO-
ParamILS is not the first multi-objective algorithm configurator, it is the first to
be able to effectively deal with the highly-parameterised target algorithms usu-
ally considered in standard, single-objective algorithm configuration scenarios,
as demonstrated in our experiments on five bi-objective configuration scenarios
involving CPLEX and clasp, two prominent solvers for mixed integer program-
ming (MIP) and propositional satisfiability (SAT) problems, respectively.

As is the case for their single-objective analogues, MO-FocusedILS typically
performs better tha MO-BasicILS, but both approaches are able to produce sets
of non-dominated configurations that cover an interesting range of trade-offs in
all five scenarios we studied, and were considerably more effective in doing so
than a base-line approach using a state-of-the-art single-objective configurator.

We believe that automatic multi-objective configurators, such as MO-
FocusedILS, will be very useful in many application situations where there is
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no clear and obvious way to trade off multiple performance criteria for a given
target algorithm. In future work, it might be interesting to apply multi-objective
configuration to multi-objective optimisation procedures as target algorithms;
these are notoriously difficult to configure, and we believe that doing so auto-
matically, based on multiple performance objectives, could be quite attractive.
It would also be interesting to exploit the potential for parallelisation inherent
in the MO-ParamILS framework; while using standard configuration protocols,
the current version of MO-ParamILS can exploit parallel computing resources
(just like single-objective ParamILS), there is considerably more room for easy
parallelisation in the multi-objective extension presented here. Furthermore, we
believe that it might be interesting to explore advanced methods for ensur-
ing effective coverage of the true tradeoff curves (or surfaces) of a given multi-
objective configuration scenario within the MO-ParamILS framework.

Finally, we are interested in exploring multi-objective extensions of sequen-
tial model-based algorithm configuration methods, in particular SMAC [5]. We
also see potential value in effective multi-objective extensions of configuration
procedures such as irace [2].
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Abstract. Despite the intrinsic hardness of the Traveling Salesperson
Problem (TSP) heuristic solvers, e.g., LKH+restart and EAX+restart,
are remarkably successful in generating satisfactory or even optimal solu-
tions. However, the reasons for their success are not yet fully under-
stood. Recent approaches take an analytical viewpoint and try to iden-
tify instance features, which make an instance hard or easy to solve. We
contribute to this area by generating instance sets for couples of TSP
algorithms A and B by maximizing/minimizing their performance dif-
ference in order to generate instances which are easier to solve for one
solver and much harder to solve for the other. This instance set offers
the potential to identify key features which allow to distinguish between
the problem hardness classes of both algorithms.

Keywords: TSP · Instance hardness · Algorithm selection · Feature
selection

1 Introduction

The traveling salesperson problem (TSP) is one of the most famous NP-hard
combinatorial optimization problems of highly practical relevance (logistics, cir-
cuit boards assembly, etc.). Given a set of N cities and positive distances dij
from city i to city j, 1 ≤ i, j ≤ N with i �= j, the task is to construct a roundtrip
tour of minimal total distance that visits each city exactly once and returns to
the origin.

We focus on the 2D Euclidean TSP which refers to points in the Euclidean
plane und thus results in a Euclidean distance matrix. Respective solvers can be
distinguished into two classes. For exact algorithms like Concorde [1] optimality
of the found solution after algorithm completion can be guaranteed. However,
the required runtime might be quite high, especially for large instances. State
of the art solvers in inexact TSP solving proved to be able to find solutions of
very high quality and simultaneously much faster. Those are therefore of crucial
interest, especially for efficient algorithm selection approaches [9].

In [8] we were able to show that per-instance algorithm selection between
LKH [6] and the recently introduced evolutionary algorithm EAX [13] together
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 48–59, 2016.
DOI: 10.1007/978-3-319-50349-3 4
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with specific restart variants as presented in [8] is very promising w.r.t. to
improving the state of the art in TSP solving.

Per-instance algorithm selection makes use of a comprehensive set of instance
features from the literature1 [7,12,15,16]. A crucial aspect is the identification
of features which are useful for determining the instance hardness for different
solvers. While much progress has been made in this respect, e.g. in [5] where
LKH behavior is related to the transition from highly structured, polynomially
solvable TSP instances to instances with increasingly random distributions of
nodes, this issue is not yet fully understood. This paper specifically aims at
improving the analysis of performance differences of the current state of the art
inexact TSP solvers LKH+restart and EAX+restart as well as their orignial
versions without restart mechanism. More specifically, we use an evolutionary
approach to evolve instances on which the solvers exhibit maximum performance
difference, i.e. which are easier to solve for one solver and harder for the other.
The used evolutionary algorithm, inspired by [16], was introduced in the context
of analysing problem hardness of the 2-opt heuristic in [11] and further adapted
in [12,14]. However, we now refrain from focussing on a single solver but directly
use the performance ratio of two solvers as the fitness function inside the EA.

Section 2 provides details of the TSP solvers and feature sets, while the evo-
lutionary algorithm is presented in Sect. 3. The conducted experimental results
are illustrated and discussed in Sect. 4 followed by summarizing remarks and an
outlook on future research perspectives in Sect. 5.

2 Solvers and Features

TSP Solvers. Both LKH, a stochastic local search algorithm based on the
Lin-Kernighan procedure [6], and EAX [13], a recently introduced evolutionary
algorithm utilizing a specialized new edge assembly crossover procedure, are
focussed. LKH is the state of the art in inexact TSP solving since its introduction
in 2000. We used the reference implementation LKH 2.0.7 based on the former
implementation 1.3 [10]. In [8], we introduced a dynamic restart mechanism
as the underlying stochastic search process tends to stagnate too early quite
frequently. This version is termed LKH+restart. The first indication that EAX
could be competitive to LKH was given in [13], which was confirmed in [8]. In
the latter paper, a restart strategy for EAX, EAX+restart, was implemented
based on the original internal termination criterion. Once this is met, a restart
is conducted and this procedure is repeated until a given accuracy or running
time limit is reached.

It could be shown [8] that the respective restart variants outperform the orig-
inal solver versions. Moreover, EAX+restart emerged as the single best solver
over the set of considered representative instances. However, an algorithm selec-
tion model based on features that are quite cheaply computable could be learnt
that managed to perform even better.

1 All these feature sets have been recently made availabe in a single R-Package [4].
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Features. Established feature sets for characterizing Euclidean TSP instances,
i.e. the feature set described in [12] as well as in [7], are used for characteriz-
ing both the evolved as well as the baseline (random, TSPLIB) instances. We
denote the former as TSPMeta and the latter as UBC features. The recently
introduced additional set of features based on k-nearest neighbours [15] will be
focussed in future studies. Both considered sets contain a comprehensive col-
lection of features including e.g. features characterizing the distance structure,
identifying possible clusters of nodes, statistics based on angles between cities
and its two nearest neighbours as well as minimum spanning tree information.
The R-package salesperson [4] containing all relevant feature sets is used for the
feature computation task. Having already the algorithm selection task in mind
for further studies, we restricted our feature set to cheaply computable features,
i.e. we excluded the local search, branch and cut, and clustering distance features
from the UBC feature set (UBC (cheap)) as motivated in [8].

3 On Evolving Instances

A simplified pseudocode is given in Algorithm 1: the initial population is gen-
erated by placing the desired number of nodes uniformly at random in the
unit square [0, 1]2. Subsequently, the next generation is obtained by selecting
two parents from the mating pool, applying crossover as well as two mutation
strategies in a row, namely uniform and gaussian mutation. Uniform mutation
is applied with a very low probability. This operator replaces the node coordi-
nates of selected nodes with new randomly chosen coordinates and thus may be

Algorithm 1. Evolving EA
1: function EA(fitnessFun, popSize, instSize, generations, timeLimit)
2: poolSize = � popSize / 2 �
3: for i = 1 → popSize do
4: population[i] = generateRandomInstance(instSize) � in [0, 1]2

5: end for
6: while stopping condition not met do
7: for i = 1 → popSize do
8: fitness[i] = fitnessFun(population[i])
9: end for

10: matingPool = createMatingPool � 2-tournament-selection
11: offspring[1] = getBestFromCurrentPopulation � 1-elitism
12: for i = 2 → popSize do
13: Choose p1 and p2 randomly from the mating pool
14: offspring[i] = applyVariations(p1, p2)
15: Rescale offsspring to [0, 1]2 � Algorithm 2
16: Round to cell grid � Algorithm 3
17: end for
18: population = offspring
19: end while
20: end function
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termed a global mutator. In contrast, gaussian mutation works locally by adding
normally distributed noise to the point coordinates. The two sequential muta-
tion strategies together enable small local as well as global structural changes
of the offspring resulting from the crossover operation. Furthermore, a 1-elitist
strategy is adopted to ensure survival of the current fittest individual.

A final rescaling of the evolved instances ensures the complete coverage of
[0, 1]2 in that the minimum and maximum coordinates are placed on the bound-
ary of the instance space (see Algorithm 2). Therefore the area will be covered
quite homogenously and instances become comparable in this regard. Afterwards
the instance nodes are rounded to the nearest grid cell center after discretizing
the plane using a grid with cells sections (see Algorithm 3). This relates to
the aim of evolving practically relevant structures (e.g. in the design of circuit
boards) and will furthermore affect some features which incorporate the pro-
portion of distinct distances. Note that this strategy conceptually differs from
rounding to a predefined number of digits. Figure 1 (taken from [12]) visualizes
both rescaling and rounding.

Algorithm 2. Rescale Instance
1: function rescale(instance)
2: mins ← column mins(instance)
3: maxs ← column maxs(instance)
4: δ ← maxs − mins
5: scaled ← ∅
6: for city ∈ instance do
7: scaled ← scaled ∪ {(city − mins)/δ}
8: end for
9: return scaled

10: end function

Algorithm 3. Round instance
1: function round(instance, cells)
2: gridRnd ← createGrid(resolution = cells)
3: instRnd ← floor(instance ∗ cells)/cells
4: for i = 1 to instSize do
5: instRnd[i, ] ← SetToCellCenter(instRnd, gridRnd)
6: end for
7: return instRnd
8: end function

Mersmann et al. [11] had chosen the approximation ratio, i.e., the arithmetic
mean of the tour length computed by the considered stochastic algorithm divided
by the length of the optimal tour computed by Concorde as the fitness function
to be optimized. The first idea was to adopt this approach with slight modifica-
tions, since we aim to generate instances for pairs of algorithms A and B, i.e.,
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Fig. 1. Rescaling of an instance of size 25 (left). The original instance is reflected by
black dots. Rounding of an instance of size 25 to grid cell centers (right). The rounded
instance is visualized by white dots.

to focus on the ratio of the arithmetic means of the respective tour lengths [3].
However, we observed LKH and EAX and the restart variants respectively to
perform extraordinary well even on large instance sizes up to 1000 in preliminary
experiments. Hence, we experienced the approximation ratio to be unrewarding
for our aims since we observed the “best” generated instance to have an approx-
imation ratio of approximately 1 in our first series of experiments. In fact, the
chosen state of the art solvers turned out to be too powerful for this scenario.
Instead, our approach is slighty different. We use the penalized average runtime
consumed by an algorithm to find the optimal tour (computed by Concorde in
advance) as the performance of the algorithm. However, an algorithm reaching
the cutoff time is not penalized with 10 times the latter within the EA as it is
the standard procedure in par10. The cutoff time itself is used as otherwise the
probability that such solutions would be removed at later stages of the EA run
would be extremely low. However, for the final instance evaluation, the classsical
par10 score is used. For ensuring integer values of the distance matrix inside the
EA, the euclidean distance matrix is computed on the original coordinates, mul-
tiplied by a scaling factor of 100 and afterwards rounded to the nearest integer.

Let RA(I) denote the slightly modified penalized average runtime of
algorithm A on instance I as explained above. Then the runtime proportion
R(A,B)(I) for a pair of algorithms (A,B) is defined as

R(A,B)(I) =
RA(I)
RB(I)

.

This runtime ratio serves as the fitness function in our investigations. We thus
moved the focus to the time aspect instead of the solution quality. We minimize
R(A,B) in order to generate instances which are easier to solve for algorithm A
and harder to solve for algorithm B respectively.
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4 Experiments

4.1 Experimental Setup

We generated each 25 instances of size 300 for each solver pairing (EAX, LKH),
(LKH, EAX), (EAX RESTART, LKH RESTART) and (LKH RESTART,
EAX RESTART) resulting in an evolved instance set of 100 TSP instances.
Inside the evolutionary algorithm, each solver is replicated three times on
each instance due to limited computational budget. The final evaluation of the
instances, however, is based on 10 replications and the classical par10 score. All
internal termination criteria besides cutoff time of two minutes were deactivated
in all runs to get reasonable estimates of the performance measure.

Based on preliminary experiments and the experience of [11,12] the EA para-
meters were set to popSize = 30, generations = 5000, uniformMutationRate
= 0.001, normalMutationRate = 0.1, cells = 100, and the standard deviation
of the gaussian mutation operator normalMutationSD = 0.025.

As a baseline, 100 random instances were generated by placing the desired
number of nodes uniformly at random in the unit square [0, 1]2. The Euclidean
distance matrix was computed, multiplied by a scaling factor of 100 and subse-
quently rounded to the nearest integer. Moreover, Euclidean TSPLIB instances
with node sizes between 200 and 4002 were chosen in order to allow comparisons
to practically relevant instances. For all considered algorithms the respective
par10 scores were applied for comparison.

All experiments were run on the parallel linux computer cluster PALMA at
University of Münster, consisting of 3528 processor cores in total. The utilized
compute nodes are 2,6 GHz machines with 2 hexacore Intel Westmere processors,
totally 12 cores per node and 2 GB main memory per core.

4.2 Results

Figure 2 visualizes the par10 scores of all instances for both solver pairs (EAX vs.
LKH, EAX+restart vs. LKH+restart) in a scatterplot. The instances are marked
w.r.t. instance type, i.e. either “random”, “evolved” or “tsplib”. It becomes
obvious that the introduced evolutionary approach very successfully generates
instances with high performance differences of the solvers. Even in the restart
scenario where solver runtimes are quite homogenously clustered in the center
of the plot, the evolved instances can clearly be distinguished and are located
far away from the bisecting line. Both optimization directions work well (two
clusters of instances) while evolving instances which are easier for EAX+restart
is even more successful (upper cluster). Moreover, the TSPLIB instances are
much easier to solve compared to the remaining ones in both scenarios. There is
only one exception (rd400) which is extremely hard for both solvers.

Figure 3 presents boxplots of the par10 scores distribution for each solver cat-
egorized by instance type and confirms the discussed findings. In all cases but the
2 TSPLIB-Instances: a280, gil262, kroA200, kroB200, lin318, pr226, pr264, pr299,

rd400, ts225, tsp225.
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Fig. 2. Par10 scores (log-scale) of EAX vs. LKH (left) resp. EAX+restart vs.
LKH+restart (right). Colors help to distinguish between the instance types. (Color
figure online)

Fig. 3. Boxplots of the par10 scores (log-scale) for each solver categorized by instance
type. (Color figure online)

original EAX the runtimes of the evolved instances are substantially higher com-
pared to the random ones. Specifically, the variability of the runtimes increases
reflected by the upper quartile, i.e. the upper border of the boxes. Frequently,
even the runtime of Concorde was exceeded so that using an inexact solver was
of no merit in retrospect. In general, as problem hardness tends to increase for
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Fig. 4. Ratios of par10 scores for each solver pair, i.e. R(A,B). A value smaller than
one means that the runtime of the first solver is smaller than the respective one of
the second. This ratio is the fitness function to be minimized inside the evolutionary
algorithm for evolving the respective instances. (Color figure online)

both solvers, local search in general becomes harder for the evolved instances.
However, the extent varies by solver which results in low par10 score ratios.
Par10 scores on the TSPLIB instances differ significantly from the remaining
ones, the whole distribution is located far more to the left. Here, you can see the
single hard outlier instance as well.

The actual par10 score ratios are presented by boxplots in Fig. 4. Values
smaller than one reflect the superiority of the first solver from the pair (SolverA,
SolverB), i.e. Solver A has a smaller par10 score than Solver B. As this ratio
forms the objective function of the evolutionary algorithm, which has to be
minimized, we expect these values to be substantially lower than one. Apart
from very few outliers this is confirmed by the respective boxplots. Furthermore,
significant differences are obvious compared to the random instances, even for
the (LKH, EAX) pair where LKH already exhibits much lower runtimes than
EAX on the random instances.

Representative instances are plotted in the Euclidean plane in Fig. 5. For
each solver pair the four smallest instances regarding the par10 score ratio are
displayed. Unfortunately, structural difference are very particular and cannot be
clearly detected visually. Therefore, we additionally made use of machine learn-
ing techniques. A classification approach was conducted for each solver pairing
with the aim of predicting the instance type (random, evolved) based on the TSP
feature set comprising TSPMeta and UBC (cheap). To derive the most important
features a nested feature selection with 10-fold crossvalidation was performed
based on a simple classification tree. Deterministic forward and backward search
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Fig. 5. Four lowest ranked instances regarding the par10 score ratio for all scenarios.
Evolved instances are visualized on top, the random instances below.
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Fig. 6. Scatterplots of the two most important features selected during the feature
selection step for predicting the instance type (random, evolved) based on instance
features for the original versions (left) and the restart versions (right). (Color figure
online)

served as the search strategy guiding the feature selection. Additionally an outer
10-fold crossvalidation was used in order to preserve that the selected features
depend on the underlying fold. All computations were conducted with the R
package mlr [2].

It turns out that the fraction of distinct distances is sufficient to separate
random and evolved instances (see the scatterplots in Fig. 6) for both solver
pairings {EAX,LKH} and {EAX RESTART,LKH RESTART}. Misclassi-
fication errors vanish for both pairings. Thus, local search gets harder for higher
fractions of distinct distances which was already hinted at in other studies. The
observed characteristic of the evolved instances might be linked to the round-
ing strategy to grid cell centers applied to each individual in the evolutionary
algorithm after mutation. However, the considered solvers face different levels
of difficulties not solely depending on this fraction. The kind of classification
probably will differ for instances evolved based on deactivated rounding to grid
cell centers. We are going to investigate this in future work.

5 Conclusion

In this paper, we used an evolutionary approach to evolve TSP instances with
maximal perfomance difference of LKH+restart vs. EAX+restart and of the pair
of the respective original variants (without restart). For instances of size 300 a
substantial decrease of solver performance ratios compared to the behaviour on
random and TSPLIB instances could be obtained. This especially holds for the
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restart variants which are the state of the art inexact TSP solvers while it turned
out that it was more effective to generate easier instances for EAX+restart
together with much harder instances for LKH+restart than the opposite case.
However, one has to be aware that a small performance ratio RA(I)/RB(I) does
not necessarily mean, that I is easy to solve for A. It may be hard for both, but
easier for A.

Comparing random and evolved instances, it turned out that the number
resp. the fraction of distinct distances is a central factor for separating both
instance sets, i.e. local search in general gets harder given this situation. How-
ever, this feature is not suited for distinguishing between the performance of the
solvers within the evolved instance sets. The next step will therefore consist of
predicting the optimization direction for each solver pairing {A,B} (easy for A
or easy for B), i.e. a detailed analysis which features resp. feature combinations
allow for identifying the kind of solver which performs worse than its competitor
within the evolved set will be conducted. Of course, the fraction of distinct dis-
tances alone does not provide sufficient information to separate here as in this
respect the set is quite homogenous. Preliminary studies indicate that features
based on relating the node locations to the centroid of all nodes might play a
role here.

In future work we will moreover work on adapting the EA to specifically
focus on diversity of evolved instances to generate distinct structures as well as
on assessing the influence of the internal rescaling and rounding steps. Moreover,
larger instances will be addressed in a systematic way.
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Abstract. Given the current glut of heuristic algorithms for the opti-
mization of continuous functions, in some case characterized by complex
schemes with parameters to be hand-tuned, it is an interesting research
issue to assess whether competitive performance can be obtained by rely-
ing less on expert developers (whose intelligence can be a critical com-
ponent of the success) and more on automated self-tuning schemes.

After a preliminary investigation about the applicability of record
statistics, this paper proposes a fast reactive algorithm portfolio based
on simple performance indicators: record value and iterations elapsed
from the last record. The two indicators are used for a combined ranking
and a stochastic replacement of the worst-performing members with a
new searcher with random parameters or a perturbed version of a well-
performing member.

The results on benchmark functions demonstrate a performance
equivalent or better than that obtained by offline tuning schemes, which
require a greater amount of CPU time and cannot take care of individual
structural variations between different problem instances.

1 Introduction: Portfolios and Racing for Online Tuning

The design of methods with complicated relationships between the algorithmic
building blocks suffers from a serious illness: it hides the relevance of the various
blocks, and the abundance of hand-tuned parameters impedes an objective and
scientific judgment. In many cases the role of a motivated researcher, with his
brain in the loop, is critical to obtain positive results [5]. A kind of dangerous
data-mining exists when using a fixed set of benchmark instances and exper-
imenting (“interrogating the data”) until the tuned algorithm “screams out”
acceptable results [2]. Algorithmic self-tuning has been proposed as a method
for mitigating this problem. A well-known case in which a form of “online”
learning mechanism is active during the search assumes that the functions to
minimize satisfies some statistical model. In this manner one can develop theo-
retically justified methods to generate new sample points based on information
derived from previous samples [21]. Another notable example in the context of
Lipschitz optimization algorithms is [17].
c© Springer International Publishing AG 2016
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The algorithm portfolio method [15] runs more algorithms concurrently, in
a time-sharing manner, by allocating a fraction of the total resources to each
of them. Dynamic strategies for controlling portfolios are considered in [9,10].
Statistical models of the quality of solutions generated by each algorithm are
computed online and used as a control strategy, to determine how many cycles
to allocate to each of the interleaved search strategies. A “life-long learning”
approach for dynamic algorithm portfolios is considered in [13]. In [14,16] it is
shown how to use features capturing the state of a solver during the initial phase
of the run to predict the length of a run, to be used by dynamic restart policies.

A related strategy to optimize the allocation of time among a set of alterna-
tive algorithms for solving a specific instance is racing. Running algorithms are
like horses: after the competition is started one gets more and more information
about the relative performance and periodically updates the bets on the winning
horses, which are assigned a growing fraction of the available future computing
cycles. A racing strategy is characterized by two components: (i) the estimate
of the future potential given the current state of the search, (ii) the subsequent
allocation of hardware resources to speedup the overall minimization.

Racing is related to the k-armed bandit problem. One is faced with a slot
machine with k arms which, when pulled, yield a payoff from a fixed but unknown
distribution. One wants to maximize the expected total payoff over a sequence
of n trials. If the distribution is known one would immediately pull only the best
performing arm. What makes the problems intriguing is that one has to split the
effort between exploration to learn the different distributions and exploitation to
pull the best arm, once the winner becomes clear. One is reminded of the critical
exploration-versus-exploitation dilemma observed in optimization heuristics, but
there is an important difference: in optimization one is not interested in max-
imizing the total payoff but in maximizing the best pull (the maximum value
obtained by a pull in the sequence). The paper [12] is dedicated to determin-
ing a sufficient number of pulls to select with a high probability a hypothesis
whose average payoff is near-optimal. The max version of the bandit problem is
considered in [10,11]. An asymptotically optimal algorithm is presented in [19],
in the assumption of a generalized extreme value (GEV) payoff distribution for
each arm.

When applied offline, racing algorithms search the parameter space by
repeated executions of the underlying algorithm by mixing intensification and
diversification phases [7]. Online racing algorithms, on the other hand, aim at
performing parameter tuning during the optimization of a single instance; the
goal is not to find the parametric configuration with the average best perfor-
mance, but to single out good and bad runs, deciding on the spot when to
replace any of them.

A way to estimate the potential of different algorithms is to put a thresh-
old, and to estimate the probability that each algorithm produces a value above
threshold by the corresponding empirical frequency. Unfortunately, the appro-
priate threshold is not known at the beginning, and one may end up with a
trivial threshold - so that all algorithms become indistinguishable - or with an
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impossible threshold, so that no algorithm will reach it. The heuristic solution
presented in [20] reactively learns the appropriate threshold. In spite of heuris-
tics, the specific setting of the threshold is not clear and it looks like more work
is needed.

The online racing and portfolios paradigms allow to implement a global opti-
mization metaheuristic scheme by completely decoupling the underlying, fixed-
meta-parameter searchers from the overall parameter-tuning heuristic. In the fol-
lowing, we assume that a limited amount of information is periodically provided
by each portfolio member, and the portfolio can be dynamically tuned while
running multiple members in time-sharing, or taking advantage of multi-core or
multi-machine parallelism. Dynamic tuning consists of killing underperforming
members and spawning new ones with given parameter values. For simplicity
of implementation we do not consider here periodic dynamic re-allocation of
hardware resources.

2 The XRP Reactive Portfolio

Consider a pool of searchers, with different parameters. Each searcher is period-
ically evaluated on the basis of its past performance. Since the runtime of each
searcher may vary due to machine resource contention, decisions are based on
performance with respect to the number of function evaluations (optimization
steps). Given the online nature of the algorithm, a member which obtained good
results might be preferred to (or run alongside) a more promising member whose
results are still bad due to its later start. This form of exploration vs. exploita-
tion balance must be carefully considered when planning a portfolio strategy
aimed at making sound decisions about the future of each searcher.

Depending on the goal of the optimization strategy, both short- and long-
term estimates may be necessary. If running on a bounded time budget, repeated
checks of short-term predictions can be necessary in order to waste as few
resources as possible on underperforming searchers. On the other hand, if
resources are unlimited (i.e., an anytime scenario in which we want to achieve
better and better optima while the search advances) then longer-term predic-
tions can be more effective by giving to every searcher enough time to smooth
out their short-term behavior.

In this paper we will focus on short-term strategies where the portfolio algo-
rithm will decide about which member algorithm to continue according to the
member’s performance after a given time interval.

2.1 Prediction of “Time Before Next Record”

A fundamental building block of a portfolio selection procedure is the estimation
of the time before the next improvement of a local searcher, so that runs for which
improvements are not expected for a long time can be stopped in favor of more
promising ones.
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To evaluate whether such estimate can be applied, it is possible to resort to
the extreme value statistic theory. Let y1 = f(x1), y2 = f(x2), . . . be the values
of the target function along the search trajectory of an optimization algorithm.
Let L(n) be the iteration at which the nth record value is achieved. Clearly,
L(1) = 1 (the first record is achieved at the first evaluation), while L(n) =
min{i|yi < yL(n−1)} (the first evaluation at which the target value falls below
the previous record).

A classical result [21] is that, if the yi’s are i.i.d. random variables (i.e., a
searcher that evaluates a new random point at each iteration), and if N evalu-
ations have already been performed, then the probability that the next record
is achieved at iteration N ′ > N does not depend on the past history or on the
particular distribution the yis are drawn from:

Pr(L(n + 1) = N ′|L(n) ≤ N) =
N

N ′(N ′ − 1)
. (1)

Therefore, the probability that a new record is achieved within iteration N ′ (the
corresponding c.d.f.) is also independent on the distribution and is given by

Pr(L(n + 1) ≤ N ′|L(n) ≤ N) =
N ′
∑

j=N+1

N

N ′(N ′ − 1)
= 1 − N

N ′ (2)

The probability distribution is heavy-tailed, and the expected number of itera-
tions before a new record is infinite. To define a viable criterion to model the time
of the next record, it is possible to set a fixed probability value p and define the
upper bound N ′

p within which a new record will be achieved with probability p:

N ′
p =

N

1 − p
. (3)

A simple experimental procedure can verify to what extent an actual search
algorithm, whose yis are not i.i.d., can be modeled by Eq. (2). Figure 1 (left)
shows the comparison between the estimated and the actual probability of a
record value being achieved in a specific interval by an optimization run. After
fixing a target number of function evaluations N = 100, 1000, 10000, 100000 (see
the legend) and a target probability value 0 ≤ p < 1 (horizontal axis), the upper
bound N ′

p is computed and the probability tested by running 1000 optimization
runs and counting how many of them achieve a new record value between itera-
tions N and N ′

p. The estimated probability (vertical axis) is plotted against the
target probability with a 95% confidence interval. We can observe that the i.i.d.
hypothesis systematically underestimates the probability of achieving a record
during a given interval with respect to the local searcher’s behavior. This is
expected, because subsequent values of the search are strongly dependent, and
new records tend therefore to appear in bursts which are not considered in the
i.i.d. hypothesis.

To mitigate the effect of record bursts caused by the dependence of subse-
quent evaluations, we may want to consider a whole record burst as a single
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Fig. 1. Left: comparison between the expected probability of a new record event under
the i.i.d. hypothesis and the actual probability computed on a sample of 1000 Iner-
tial Shaker runs (see Sect. 3) on the 10-dimensional Rosenbrock function. Right: same
comparison after collapsing record bursts.

record. To identify a burst, let us fix a small probability value q = .01; when a
new record value yN is achieved at iteration N , let us compute the target itera-
tion N ′

q; if a new record value is achieved within iteration N ′
q, then we can say

(with 1 − q = 99% confidence) that it is not independent from yN . By iterating
this procedure, we identify a sequence of records, each being dependent on the
previous one with high confidence. Let us define this sequence a burst, and only
keep the initial (or final) iteration of a burst as the actual record. With this nor-
malization, the correspondence between the target probability and its estimate,
shown in Fig. 1 (right), is well within the 95% confidence interval for N ≥ 10000.

This observation suggests that, while the i.i.d. hypothesis is too strong at the
single function evaluation level, it holds with reasonable confidence at the burst
level. In other words, the probability of a new record within a fixed number of
iterations only depends on the number of iterations performed, and not on the
past history of the search algorithm, unless a record burst is currently taking
place, in which case a new record is more likely.

Based on the observations above, the evaluation of an algorithm’s likelihood
to produce a record in the near future will only be based on the number of
iterations elapsed since the last record (as an indication of the run’s likelihood
to be in a dependence-fueled burst of records), without further consideration of
the past history.

2.2 The Extreme Reactive Portfolio Algorithm

The Extreme Reactive Portfolio (XRP) procedure is outlined in Fig. 2. XRP
works by maintaining and concurrently running a population P of searchers by
removing underperforming ones and replacing them with new ones.
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Fig. 2. The Extreme Reactive Portfolio (XRP) algorithm.

The procedure receives a set of nalg parametric search algorithms A =
{a1, . . . , analg}. A generic search instance is given by ai(αi,1, . . . , αi,ni

), where
algorithm ai depends on ni parameters. We will assume that the generic para-
meter αij (the j-th parameter of algorithm i) has a continuous distribution in a
specified range of variability; however, given the nature of many search parame-
ters, the distribution is not necessarily uniform. Therefore, each parameter will
be defined by a generator function applied to a uniformly distributed parameter:

αij = gij(u) for u ∈ [minij ,maxij ]. (4)

For instance, a parameter that needs to vary in [10−5, 10−1] in logarithmic scale
may be described by setting minij = −5, maxij = −1 and gij(u) = 10u.

XRP maintains a population P of running instances initialized at line 2, with
each running instances being the instantiation of an algorithm randomly chosen
from A with random parameters. The number of running instances is provided
as a metaparameter; a possible choice can be given by the level of parallelism of
the problem (e.g., the number of CPU cores in the machine if the evaluations
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do not depend on resources shared between cores), but in principle any number
of instances is admissible.

In the main loop (lines 3–14) XRP maintains a history of each instance
based on the instance reports, stored as a list of triplets (current record, num-
ber of evaluations performed, elapsed CPU time). Periodically, every Δt sec-
onds, a change is performed in the running population by selecting a bad search
instance for termination (lines 6–7) and replacing it with either a new random
search instance (line 9) or the perturbed version of a well-performing instance
(lines 11–13). The choice of the instance to be removed is driven by a combi-
nation of two factors: the record value, and the number of function evaluations
since the last improvement. In particular:

– in line 6, the running instances are ordered from worst to best performing
according to a performance index that depends on the record value and
the number of evaluations elapsed since the last improvement. The perfor-
mance index must be independent from the relative magnitudes of the two
stated factors, therefore everything is computed on the basis of ranking. Let
rrecordi be the ranking of instance i within P with respect to its record value
(smallest first); let rfasti be the ranking of instance i with respect to the
evaluations elapsed since the last improvement (smallest first). Then, func-
tion worst to best(P) sorts instances according to their combined rankings
rrecordi + rfasti in decreasing order, so that instances with a bad performance
with respect to at least one criterion move up the final ranking.

– in line 7, the bad instance to be removed is selected. To improve differentiation,
the worst instance (first in ranking) isn’t always chosen; rather, the choice
procedure is randomized by selecting the first instance in the given ranking
with probability 1/2, and every subsequent instance with half the residual
probability, with the exception of the best instance (the last in the ranking)
which is never selected, hence implementing a form of elitism.

After the selection, bad instance will be replaced with a new instance, starting
from a new random point, with two possible choices: the replication and pertur-
bation of a well-performing instance, so as to increase the population density in
proximity of good performers (intensification), or the creation of new random
instance (diversification):

– With probability prnd a random instance is created (line 9).
– With probability 1 − prnd, a running instance (different from the bad one) is

selected with a probability that depends on its ranking with respect to the
record value. In detail, function best to worst sorts all instances by increasing
record value giving rank Rrecord which maps instance i to ranking rrecordi

(line 11); an instance, called good selection, is selected with the same random
mechanism described above (function select, line 12) and a new instance is
created by perturbing its parameters by a small amount (line 13).
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Given a generic parameter αij = gij(u), in the notation of Eq. (4), the
perturbed parameter is α′

ij = gij(u′), where u′ is a perturbed version of u
obtained by using φperturb on u as a relative perturbation and clamping the result
within the admissible range: u′ = clamp

(

u · rnd(1 ± φperturb), [minij ,maxij ]
)

.

3 The Competing Algorithms

The portfolio of competing algorithms is composed of two stochastic local search
methods (RAS and IS), with a different adaptation of the dynamic local search
area, and of a more complex global optimization scheme (CRTS) combining local
search with prohibition-based diversification. No explicit restart is needed for the
local search streams because of the online substitution of under-performing or
stuck runs considered in our specific proposal.

The following sections briefly outline each technique and describe the para-
meters that they expose towards the portfolio algorithm.

Local Search with the Reactive Affine Shaker (RAS). The Reactive
Affine Shaker Heuristic [8] (RAS) is a self-tuning local search algorithm which
does not assume prior knowledge on the function to be minimized. The function
is considered as a “black box” (oracle) which can be interrogated to get output
values corresponding to input values. The RAS heuristic tries to rapidly move
towards better objective values by maintaining and reshaping a bounded search
region S around the current point x.

The search region is reshaped on the basis of success (or lack of success)
during the last step: if a step in a certain direction yields a better objective value,
then S is expanded along that direction; it is contracted otherwise. Therefore,
once a promising direction is found, the probability that subsequent steps will
follow the same direction is increased, and the search shall proceed more and
more aggressively in that direction until bad results reduce its prevalence.

The RAS heuristic depends on two parameters, which are exposed to XRP: an
initial box width coefficient 0 < η ≤ 1, defining the size of the initial, isotropic
search region with respect to the size of the function domain; and a contrac-
tion coefficient 0 < fcon ≤ 1 governing the contraction of the search region
along unsuccessful directions; a corresponding expansion coefficient for success-
ful search directions is obtained automatically as fdil = f−1

con.

Local Search with the Inertial Shaker (IS). RAS requires matrix-vector
multiplications to update the search region, and therefore slows down when
the number of dimensions becomes very large. The simpler Inertial Shaker (IS)
technique [3] can be a more effective choice in this case: the search box is always
identified by vectors parallel to the coordinate axes (therefore the search box is
defined by a single vector β and no matrix multiplications are needed) and a
trend direction is identified by averaging the d previous displacements where d
is the domain’s dimensionality.
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The IS heuristic exposes one parameter to XRP: the amplification coefficient,
defined as fampl > 0, controlling the extent at which the trend direction men-
tioned above modifies the search box.

Continuous Reactive Tabu Search for Global Optimization. While the
two previous heuristics do not contain an explicit diversification mechanism,
and are therefore local search schemes, the Continuous Reactive Tabu Search
heuristic [4] (CRTS) can use any of them as a basic searcher while incorporating
elements to achieve global optimization.

The initial search region, specified by bounds on each independent variable,
is recursively partitioned into a tree of boxes (with axes parallel to the coordinate
axes). The tree is born with 2d equally sized leaves, obtained by dividing in half
the initial range on each variable. Each box is then subdivided into 2d equally-
sized children, as soon as two different local minima are found in it. The leaves
of the tree partition the domain and are the admissible starting regions for the
combinatorial component of CRTS.

While the underlying local search algorithm generates a search trajectory
consisting of points X(t), CRTS maintains a trajectory consisting of leaf-boxes
that are evaluated by sampling.

Moving from a leaf-box to another is done on the basis of their neighborhood,
their sampled value and a prohibition list whose size is automatically adjusted
depending on the search success.

The CRTS heuristic exposes one parameter to XRP: the tabu list size reduc-
tion factor 0 < fred ≤ 1, controlling the extent by which the prohibition list is
reduced in presence of successful results. The corresponding expansion factor is
determined as fexp = f−1

red.
CRTS also exposes to XRP the fcon parameter if used in collaboration with

RAS (CRTS+RAS) (η is automatically set by CRTS), and the fampl parameter
if used in conjunction with IS (CRTS+IS).

4 Experimental Results

We tested XRP on various classical benchmark functions. The Rosenbrock,
Sphere and Zakharov function families are unimodal, while Goldstein-Price,
Hartmann, Rastrigin, and Shekel are multi-modal.

XRP was tested on an 8-core 2.33 GHz Intel Xeon server running a 64-bit
Linux OS with kernel 3.13.0. The basic search algorithms (RAS, Inertial Shaker,
CRTS), were implemented in C++, while the portfolio selection code was written
in Python 2.7. The instances were executed as separate processes, reporting
newly found minima via standard output.
Instances were created by randomly selecting a heuristic from the set A =
{a1, . . . , a4} of the four heuristics described in Sect. 3:

– a1 is the Reactive Affine Shaker (RAS) with n1 = 2 free parameters:
(i) initial box width coefficient η = α11 = 10−u, u uniformly selected in
[min11,max11] = [1, 3];
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(ii) contraction coefficient fcon = α12 = 1 − u3, u uniformly selected in
[min12,max12] = [.01, .7].
This choice of generator functions favors contraction coefficients close to 1, as
small changes in the box size need to be more finely tuned with respect to
large ones, and treats the initial box width as uniform in logarithmic values.
The dilation coefficient is automatically determined as fdil = f−1

con.
– a2 is the Inertial Shaker (IS) with n2 = 1 free parameter, the amplification

coefficient, defined as fampl = α21 = 1 − u3, with u uniformly selected in
[min21,max21] = [.01, .7].
The rationale for the choice of the generator function is the same as in the
RAS case.

– a3 is CRTS with RAS as local searcher, with n3 = 2 free parameters:
(i) the prohibition reduction factor fred = α31 is chosen uniformly in
[min31,max31] = [.5, 1];
(ii) RAS’s contraction coefficient fcon = α32 is defined as in a1.

– a4 is CRTS with IS as local searcher, with n4 = 2 free parameters:
(i) the prohibition reduction factor fred = α41 is defined as in a3;
(ii) the amplification coefficient fampl = α42 is defined as in a2.

Metaparameters Determination. As described in Sect. 2.2, XRP depends on
a number of metaparameters. The number of concurrent instances has been set
to the number of cores in the experimental server, ninstances = 8. The remaining
three metaparameters have been set by experimenting on 60-s optimizations
of the 80-dimensional Rastrigin function. The function was chosen because it is
barely solvable within the allocated time limit, with many search instances being
unable to find the minimum, and it wasn’t used in the following assessment (only
lower-dimensional instances will).

– Time interval Δt between two consecutive instance replacement events. Exper-
iments show that a small time interval (Δt ≤ 2 s) imposes a significant startup
overhead on the operating system, so that some processes failed to start within
the next period. Tests using Δt = 2.5 s, 5 s, 10 s, 20 s appear to place the best
value in the interval [2.5 s, 10 s]; setting Δt = 20 s shows a performance dete-
rioration because of the small instance turnover in the allotted minute. The
selected value for subsequent tests is Δt = 5 s.

– Probability of random replacement prnd governing the choice between a new
random instance and a perturbed version of a running instance. Values of
prnd = 0, .25, .5, .75, 1 have been tested. Tests on the extreme values (prnd = 0
and prnd = 1) show that many runs (20 of 30) do not converge to the minimum
(due to excessive focus on some instances or, conversely, to excessive random-
ness). The central values seem to be approximately equivalent, so prnd = .5
has been selected.

– Relative parameter perturbation factor φperturb. Values of 0, .1 and .2 have
been tested; as expected, for φperturb = 0 a fraction of the runs (17 of 30) do
not converge to the minimum, probably because of too little differentiation
between good instances. We chose φperturb = .1.
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In general, we observe that XRP is quite robust with respect to metapara-
meter changes, provided that they fall within a reasonable range, therefore no
further optimization has been attempted beyond this preliminary investigation.

4.1 Evaluation with a Fixed Budget

For each of the benchmark functions listed in Table 1, 30 runs of XRP were per-
formed with a total budget of 107 evaluations. The median and inter-quartile
range of all record results are reported in the “XRP” column. Results are
reported as the difference from the actual global minimum value (Goldstein-
Price, Hartmann and Shekel families have non-zero global minima). The “XRP”
column also shows the distribution of the winner algorithm over the 30 runs of
XRP for each benchmark function (the search instance that achieved the record
value over the portfolio selection run).

It is possible to observe that the majority of winners involves the sim-
pler IS technique, with the RAS algorithm only appearing on two runs, both
times in conjunction with CRTS. As expected, many low-dimensional instances
(d ≤ 10) benefit from the diversification capabilities of CRTS; the exceptions
are the unimodal Rosenbrock and Zakharov instances, where a single local
search run is sufficient, and the four-dimensional Shekel instances, whose few

Table 1. Median record values for 30 runs of XRP, best algorithm and iRace-
determined algorithm for 107 evaluations of the target function. The gray bars show
the distribution of the winner algorithm over the 30 runs.
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foxhole-shaped local minima trick the CRTS district evaluation mechanism, but
are few (resp. 5, 7, and 10) and narrow enough for a well-tuned local searcher to
jump in and out of them without the need to restart. High-dimensional instances
(d = 30), on the other hand, the CRTS technique doesn’t have the time to start
evaluating all first-level districts (230), while the local searchers don’t suffer from
that disadvantage.

After each run, the search algorithm instance that achieved the record result
was allocated the whole 107 evaluations budget for a separate run with the same
random seed, so that its execution would exactly mimic its run within XRP, but
for a longer time. The 30-test median and IQR are reported in column “Winner”.

Results in column “iRace” will be discussed in Sect. 4.3. Observe that in
most cases the XRP outcome is quite close to the “Winner” result, within the
same order of magnitude. Notable exceptions are the simplest unimodal Sphere
function, quadratic with spherical symmetry, and Zakharov’s very flat global
attractor, whose small final improvements tend to require quite long runs. Even
in these cases, however, the XRP outcome is well within reasonable target limits.

The outcomes for the 10- and 30-dimensional Rosenbrock and Rastrigin
functions are also reported in Fig. 3 for ease of comparison. Observe that, in
some cases, the 30-dimensional problem is solved more efficiently than the 10-
dimensional one, in particular for the Rastrigin function. When evaluating the
10-dimensional function, bad optimization instances can consume a large part of
the budget before XRP can check and eventually stop them. This effect is mit-
igated by the longer time needed to evaluate the 30-dimensional version. Finer
control over the instance performance, overcoming the strict periodicity of the
current algorithm, will possibly remove this kind of artifact.

The “Random” box refers to a series of 30 runs of random heuristics with
randomly determined parameters. Note that, in all cases, the choice of random
instances achieves much worse results; thus motivating the use of online portfolio
selection when no prior information about the optimal algorithm and parameter
settings is given.

Fig. 3. Distribution of record values after 106 function evaluations for XRP, Winner,
iRace-determined and random heuristic for the 10- and 30-dimensional Rosenbrock
(left) and Rastrigin (right) functions.
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4.2 Evolution of Record Values in Time

Figure 4 shows the evolution of the record value over 60 s of XRP, comparing it
with the best instance running for the same time and with the same seed (see
Sect. 4.1) and with a random instance. Curves represent median values of 30
runs, with bars representing the interval between the 1st and 3rd quartiles.

Fig. 4. Median and IQR of record values for 30 60-s runs of XRP, Winner heuristic and
Random heuristic, for 30-dimensional Rosenbrock (left) and 30-dimensional Rastrigin
(right). Note: inter-quartile bars have been slightly offset to tell them apart in spite of
overlaps.

The overlap between the “XRP” and “Winner” IQR bars shows that many
runs fall in the same range; while in the end the Winner instance always wins, for
a short initial time (consider that Fig. 4 is a log-log plot) the overall XRP out-
come can outperform the Winner alone due to the concurrent execution of many
instances, in particular when a more difficult function such as Rastrigin is chosen
(with its many local minima). Again, a random choice is almost always penalized.

4.3 Comparison with Offline Racing

To identify a good algorithm/parameter combination that would work over the
whole set of benchmark functions, we trained the offline racing package iRace [18]
on a budget of 1000 60-s optimization runs over the whole function set, with
the same parameter distribution as the online procedure. The Inertial Shaker
(IS) algorithm with amplification coefficient fampl = .7033 was identified as the
best tradeoff.

The last column of Table 1 shows the distribution of the record value for
30 107-iteration runs of the optimal algorithm on each benchmark function.
We can observe that the resulting parameter set was not equally good for all
functions; in particular, it performs very well on Zakharov, Sphere, and the
30-dimensional Rosenbrock and Rastrigin functions (also see Fig. 3 for a visual
comparison of result distributions), while it seems to work less than optimally for
other instances. This result confirms the heuristic observation that parameter
tuning is needed at the instance level, and supports our rationale for online
tuning (when the anytime nature of the solution method allows for it).
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5 Conclusions

A novel online dynamic portfolio, XRP, for anytime optimization heuristics has
been presented and tested on classical function minimization benchmarks. XRP
can be applied to any collection of optimization heuristics with the only require-
ment to be able to report their record values as soon as they are achieved. While
XRP itself depends on few simple metaparameters, preliminary investigation
indicates that results are robust with respect to variations from their natural
central values.

Further investigation will consider the use of XRP for more challenging very
large-scale optimization problems, both continuous and discrete, and the imple-
mentation of more sophisticated models for the performance of the competing
instances, in order to reliably identify unpromising executions and their most
suitable replacements as optimization proceeds. An evaluation of schemes based
on reinforcement learning [1,6] is also on the stack.
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package, iterated race for automatic algorithm configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)
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Abstract. In this paper we deal with a variant of the Multiple Stock
Size Cutting Stock Problem (MSSCSP) arising from population har-
vesting, in which some sets of large pieces of raw material (of different
shapes) must be cut following certain patterns to meet customer demands
of certain product types. The main extra difficulty of this variant of the
MSSCSP lies in the fact that the available patterns are not known a
priori . Instead, a given complex algorithm maps a vector of continu-
ous variables called a values vector into a vector of total amounts of
products, which we call a global products pattern. Modeling and solving
this MSSCSP is not straightforward since the number of value vectors
is infinite and the mapping algorithm consumes a significant amount of
time, which precludes complete pattern enumeration. For this reason a
representative sample of global products patterns must be selected. We
propose an approach to bounding the search space of the values vec-
tor and an algorithm for performing an exhaustive sampling using such
bounds. Our approach has been evaluated with real data provided by an
industry partner.

1 Introduction

The Cutting Stock Problem (CSP) [6] is a well-known NP-hard optimization
problem in operations research. This problem involves deciding which pattern
should be applied to raw material stock in order to obtain sufficient amount of
products to meet the demands while minimizing cost. The CSP can be modeled
and solved as an Integer Linear Program (ILP). In this paper we deal with a
variant of CSP introduced in [7] that we classify as ∗/V/D/R using Dyckoff’s
typology [3], where ∗ means any dimensionality, V means that the raw material
stock is sufficient to accommodate all the demanded products (hence only some
selected stock pieces have to be cut), D means that all large pieces are different
(in terms of shape) and R indicates many products demanded of few different
types. The feature V (any demand can be fulfilled) entails that the raw material
stock to be cut has to be selected. Each large piece has an associated “value”
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(e.g. typically values are proportional to their sizes) and the objective func-
tion is to minimize the total value of the raw material stock selected to fulfill
the demand.

According to a later typology presented in [8] we are dealing with a variant of
the Multiple Stock Size Cutting Stock Problem (MSSCSP). In [8] it is noticed that
research on cutting and packing problems still is rather traditionally oriented. For
instance, few recent papers consider heterogeneous assortments of large pieces.
In addition, the variant analyzed in this paper has certain peculiarities that
make it harder and consequently more challenging. This variant might emerge
in real-life applications in which the number of raw material pieces available
for cutting and their dimensions is uncertain because: (i) only a sample of the
whole set of pieces is known, and/or (ii) the pieces might change dynamically
with time. Population harvesting (e.g. plants, fish and animals [4]) are examples
of both types of uncertainty: the dimensions of their raw elements might change
due to their growth (case ii); and only some samples of the dimensions of the
raw elements are taken by the industry (case i). Note that measuring all of them
(there are possibly several hundred/thousand of elements) would be too costly.

Due to the above mentioned uncertainties associated with the raw material
pieces of this type of MSSCSP, it is impossible to know all the patterns associated
with each piece of stock (many dimensions of the stock are unknown). For this
reason, in the literature and in industry, an algorithm that simulates the cutting
of a whole set of raw material samples according to certain values vector has
been generally used. The objective is to obtain similar results when such vectors
and algorithms are used for cutting the real stock from which the sample data
was acquired. The values vector is composed of continuous variables and each
of them is associated with a product type. Note that we do not have access to
the set of patterns to be cut in a direct manner, only via the application of
this complex algorithm which is denoted throughout the paper as A. The A
algorithm selects the optimal cutting for each raw material sample based on the
values of the products. The optimality criterion of such algorithm is to maximize
the total value, which is the sum of the products of value and units cut of each
product type. Then each combination of total amounts of products that can be
cut from a set of raw material pieces represents a global products pattern for this
set. By providing several different values vectors as input to the A algorithm,
different global product patterns associated with a set of raw material pieces
can be obtained. Once the best values vector has been selected in this cutting
simulation process over the sample data, it is used as input to the A algorithm
that cuts the real raw material (which is installed in the cutting machines). If
the sample is representative of the whole population, the results of the cutting
will be similar to that predicted in the simulation phase.

We would like to highlight that it is not straightforward to model and solve
this variant of MSSCSP because the number of values vectors is infinite (contin-
uous variables) and therefore, for realistic instances we can not enumerate all the
global products patterns in a reasonable amount of time. For this reason a rep-
resentative sample of them must be selected. This is a complicated task because
the algorithm that generates the global products patterns (a) is complex and
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requires a great amount of time for realistic instances and (b) it matches many
different values vectors to similar global products patterns. As an example of
(b) consider a values vector whose associated global products pattern has the
maximum possible amount of each type of product. Then, even if its associated
value in the vector is increased (and the other values of the vector remain the
same), the same global products pattern will be obtained. The latter fact, and
the necessity of finding a representative set of global products patterns in a
reasonable amount of time (case a), has motivated the work presented here.

Our main objective is to reduce the search space for the values vector by
bounding it in such a way that areas that produce the same global products
pattern are excluded (because we want to maximize how scattered the global
products patterns produced are). To illustrate this we show a graph in Fig. 1
that represents the amount of certain products obtained after applying the A
algorithm with different values vectors (other types of products can also be cut
from the raw material). On the horizontal axis is the value associated with each
type of product (normalized to the interval [0,1], and on the vertical axis are the
product amounts. Note that the minimum amount that it is possible to obtain
is zero units and the maximum amount is 211.74 units. The dashed rectangle
includes different amounts of such products, so it is necessary to sample in this
area in order to obtain a wide range of different global products patterns. Note
that values less than or equal to the minimum value in the rectangle (lower
bound), the A algorithm produces the same amount of product: zero. The oppo-
site occurs with values that are at least the maximum value in the rectangle
(upper bound): the amount obtained is the maximum. For this reason, using
values that are outside the interval delimited by the lower and upper bound is
a waste of time as no new global products patterns will be obtained. As men-
tioned, reducing the computational time is vital, especially in on-line problems
such as CSP real-life applications with uncertainties.

In order to reduce the computational time for generating a representative
sample of global products patterns, we present definitions and equations for

Amounts

ValuesUpper BoundLower Bound

Fig. 1. Amounts obtained with A for several values associated with a product.
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calculating the lower and upper values bounds of each product. These bounds
ensure that the minimum/maximum amount of a type of product is obtained. As
far as we know, there is no other reported technique that attempts to compute
the lower and upper bounds, nor to reduce the values search space. The lower and
upper bounds that we introduce can be used with any sampling technique (e.g.
random sampling as the most naive approach) and consequently by bounding
the search space, a representative set of global products patterns tends to be
obtained more quickly. In addition, without loss of generality, in this paper we
also propose a method for exhaustive sampling using such bounds.

The paper is structured as follows. First, the variant of the MSSCSP is for-
malized. An explanation of the A algorithm is also provided. Afterwards, the
calculation of the upper and lower bounds is explained, and we also introduce
an exhaustive sampling algorithm. The effectiveness of our method is shown with
an evaluation with real-life instances. Finally we present our conclusions.

2 Problem Formalization

In this section we explain the new features of the variant of the MSSCSP, with
respect to the traditional CSP formulation [6]. (Parts of the following expla-
nations have been extracted from [7]). MSSCSPs have raw material pieces of
different dimensions which we can cut at will. In the variant that we are dealing
with, we have a fixed number of raw material pieces (possibly hundreds or thou-
sands) each with its own dimensions σr. There are K subsets of raw material
pieces and each subset has R pieces (R might be different for each subset but this
is ignored to simplify the description). Either a subset is fully cut with a unique
values vector or none of its pieces is cut (as previously motivated in Sect. 1,
due to the uncertainty of the environment). Then, each subset of raw mater-
ial pieces has its own associated global products patterns (which are not given
and therefore we must sample them), which are the combinations of amounts of
products that can be cut from it. A global products pattern p ∈ Q+

|M| is noted
as p = 〈a1, . . . , a|M|〉, where M is the set of product types and aj represents the
amount of units of product mj ∈ M cut from certain set of raw material pieces.

Definition 1. We represent a type of product as a tuple mj = 〈sj , zj〉, where:
– sj ∈ R is the size of a piece of mj. Depending on the number of dimensions

analyzed, sj can represent: lengths for 1-dimension (e.g. cm), areas for 2-
dimensions (e.g. cm2) or volumes for 3-dimensions (e.g. cm3).

– zj is the dimensions of mj. For instance, if mj has the shape of a rectangle,
zj would be the required length and width for mj.

As previously mentioned, in the variant of MSSCSP analyzed, the patterns
are not known a priori and it is only possible to have indirect control over
them via a list of continuous variables called a values vector. A values vector
v ∈ Q+

|M| is a vector of |M| continuous variables. Each vj represents the
value associated with the type of product mj ∈ M per unit of sj . For instance
vj could represent monetary units: e, $, etc. per each unit of sj , (e.g. e/m3).
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A set of products types M and a vector of dimensions σ of |R| raw material pieces
can be passed to an algorithm A which uses a values vector for calculating the
corresponding p. Then, A can be represented as the following mapping function:

A(M, 〈σ1, . . . , σ|R|〉, v) → p (1)

To make this variant of the MSSCSP amenable to an ILP approach, in [7]
the infinite set of possible values vector was reduced to a finite set of n values
vectors (which should be sufficiently representative) uik (i = 1 . . . n) for each
subset of raw material pieces k ∈ K (the same n is assumed for each subset
to simplify the notation). Then global products patterns for each subset k are
precomputed by using algorithm A, storing the results in vectors of constants
uik = A : (M, 〈σ1, . . . , σ|R|〉k,vik) (∀i, k). The ILP model is as follows:

min
n

∑

i=1

K
∑

k=1

ckxik ∀xik ∈ {0, 1}

s.t
n

∑

i=1

K
∑

k=1

uikjxik ≥ dj ∀j ∈ M
n

∑

i=1

xik ≤ 1 ∀k ∈ K

where dj is the targeted demand for each type of product, ck is the value asso-
ciated with the stock subset k and xik are the decision variables that indicate
if the subset k is cut with the global product pattern i. The objective function
is to minimize the total value of the sets of raw materials used for satisfying
the demands. Note that if a subset of raw material pieces k is not used for
satisfying the demands (and therefore it is not cut) then all its decision vari-
ables (xik∀i ∈ nk) are zero. Note also that the first constraint ensures that the
demands are fulfilled, and the second constraint prevents the use of more than
one global products pattern in a set of raw material pieces. As mentioned, this
set of representative global products patterns (uik∀i∀k) must be generated in
order to be able to solve this ILP with standard optimisation software; and it
must adequately cover all possible global products patterns for each set of raw
material pieces k. The main contribution of this paper resides in this task. By
bounding the search space of values of the vector, we are reducing the likelihood
of generating global products patterns that are not new (they are equal to a pre-
vious generated global products pattern). Hence, the global products patterns
generated in a fixed amount of time tend to be more scattered and therefore
more significant for the analyzed problem.

3 Algorithm A
In [7], the A algorithm is treated as a black box. Here we analyze and use its
properties, which allows us to reduce the values search space of this variant of
the MSSCSP. For this reason, in this section we briefly explain the A algorithm.
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This algorithm simulates the cutting of a set of raw material pieces R into
certain products types M. Each type of product mi has an associated value
vi, representing how valuable each unit of product is (these values compose
the values vector v, which is provided as an input). This algorithm selects the
optimal cutting for each raw material sample, where the optimality criterion is
to maximize the total value, which is the sum of the products of value and units
cut of each product type.

Definition 2. The total value of a piece of product mj ∈ M is calculated as:

t(mj) = sjvj (2)

Note that the input values vector has a direct impact on the amounts of each
type of product that will be obtained from a certain raw material. The other
factor that has an influence on the amounts is the dimensions of the raw material
pieces and the dimensions of the product types. The greater a value vi where the
other values of v are fixed, the greater the number of products mi its associated
global products pattern p will have after running algorithm A (they will be equal
only in the case of reaching a saturation point, see Fig. 1 as an example). In the
same way, the opposite situation (at most number of pieces) holds when the
values of vi are decreased. In the next section, we use these properties of the A
algorithm for bounding the values search space.

Typically, in the literature, the A algorithm has been implemented with
Dynamic Programing (DP) [1,2]). DP is an approach that allows us to solve
complex problems by dividing them into a collection of simpler subproblems. For
such purpose, the sub-problems must be overlapping. The problem of cutting
a raw material piece satisfies these properties, since it is a recursive one (i.e.
maximize by cutting the first product and then maximizing the remainder).

4 Computing Lower and Upper Bounds

In this section we present definitions and equations of the lower and upper values
vector that is provided as an input of the A algorithm. Each value vi of such a
vector (v) is associated with a type of product mi with particular shape char-
acteristics zi. The main idea behind the lower and upper bounds is that when
we apply the A algorithm (Eq. 1) to a certain raw material, when the value
associated with a type of product is:

(i) at most the lower bound, it is ensured that the amount obtained of such
product is the minimum.

(ii) at least the upper bound, it is ensured that the amount obtained of such
product is the maximum.

A toy example is described for further explanation of the bounds.
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Example 1. We consider a 2-dimensional space with two product types (m1 and
m2) with a rectangle shape. Then z1 and z2 is represented with the height (h)
and the width (w). The size of the product types, is determined by the equation
of the area of a rectangle. Thus, s1 = l1w1 and s2 = l2w2. Figure 2 shows such
products. Note that s1 is greater than s2. Without loss of generality, for this
example, w1 = w2.

m1

l1

w1 m1

m2

l1

l2

w2

w1

Fig. 2. 2- dimensional example of two product types.

4.1 Computing Lower Bounds

Given M = {mi,mj} where sj < si (in Example 1, mi = m1 and mj = m2), we
want to calculate the lower value bound, which is the greatest value that we can
assign to the associated variable of mi in a values vector (v) in order to ensure
that the minimum amount of mi is obtained for any raw material. For such a
purpose we present the following definition.

Definition 3. The maximum number of pieces of mj that can fit in one piece
of mi, according to their shape specifications (zi and zj), is k(zi, zj). To simplify
the notation, we will use k rather than k(zi, zj) when the variables are obvious
from context.

We consider a subpart of the raw material from which we can only cut either one
piece of mi or k pieces of mj . Note that the waste produced when cutting mi is
smaller or equal than when cutting k pieces of mj . Figure 3 shows such situation
for Example 1, where the size of the subpart of the raw material analyzed is ks1.
Note that for this example k(z1, z2) = 1. If the cut off products from this subpart
is k pieces of m2, there is an associated waste which is the size analyzed minus

l1

l2

w2

w1 m1

m2

Fig. 3. Example for explaining the lower bound.
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ks2 (grey area in Fig. 3). Thus, if v1 = v2, cutting the type of product m1 is
the best option because the total value of a piece of m1 is greater than the total
value of k pieces of m2: t(m1) > kt(m2) due to s1 ≥ ks2 (see Eq. 2).

For computing the lower value bound, we would like to know how much
smaller the value vi should be, in order to change the priority order where cutting
k pieces of mj is the most profitable. In order to compute this value, we compute
for which vi the priorities are equal. This situation occurs when the total profit
of cutting a piece of mi is equal to the total profit of cutting k pieces of mj

(t(mi) = kt(mj)). By applying Eq. 2 we obtain for which vi the priorities are
equal. Then, using an arbitrarily small positive number (denoted as ε), we obtain
the lower bound:

vlb
i (mi,mj) =

k(zi, zj)sjvj
si

− ε, for si ≥ sj . (3)

From the above we can state that for any value vi ≤ vlb
i the total benefit of

cutting k pieces of mj is greater than the total benefit of cutting a piece of mi.
Therefore, when applying the A algorithm with vlb

i to a complete raw material,
the obtained number of pieces of mi is the minimum and the obtained number
of pieces of mj is the maximum. Note that if at least one piece of mj fits in a
piece of mi (e.g. Example 1 represented in Fig. 2) then the minimum amount of
mi is zero (e.g. Fig. 1). Otherwise there might exist subparts of the raw material
in which mj does not fit but mi does, in which case the amount of mi could be
greater than zero.

4.2 Computing Upper Bounds

In this section, given the same M = {mi,mj} where sj < si (in Example 1,
mi = m1 and mj = m2) we want to calculate the upper value bound, which is
the lowest value that we can assign to the associated variable of mi in a values
vector (v) in order to ensure that the maximum amount of mi is obtained for
any raw material. For this purpose we define:

Definition 4. The minimum number of pieces of mj that are required to fit one
piece of mi into their global shape, according to their shape specifications (zi and
zj), is h(zi, zj). To simplify the notation, we will use h rather than h(zi, zj) when
the variables are obvious from context.

We consider a subpart of the raw material from which we can only cut either
one piece of mi or h pieces of mj . Note that the waste produced when cutting
mi is at least that when cutting h pieces of mj . Figure 4 shows such situation
for Example 1, where the size of the subpart of the raw material analyzed is hs2.
Note that for this example h(z1, z2) = 2. If the cut off product from this subpart
is m1, there is an associated waste which is the size analyzed minus s1 (grey
area in Fig. 4). Thus if v1 = v2 then cutting the type of product m1 is the worst
option because the sum of the total value of the h pieces of m2 is greater than
the total value of a piece of m1: t(m1) < ht(m2) because s1 ≤ hs2 (see Eq. 2).
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Fig. 4. Example for explaining the upper bound.

For computing the upper value bound we would like to know how much
greater the value vi should be, in order to change such priority order (a piece of
mi the most profitable). In order to compute such a value, as we did previously,
we compute for which vi the priorities are equal. This situation occurs when the
total profit of cutting a piece of mi is equal to the total profit of cutting h pieces
of mj (t(mi) = ht(mj)). By applying Eq. 2 we find for which vi the priorities
are equal. Then adding an arbitrarily small positive number (denoted as ε) we
obtain the upper bound:

vub
i (mi,mj) =

h(zi, zj)sjvj
si

+ ε, for si > sj . (4)

From the above we can state that, for any value vi ≥ vub
i , the total benefit

of cutting h pieces of mj is lower than the total benefit of cutting a piece of
mi. Therefore when applying the A algorithm with vi ≥ vub

i to a complete raw
material, the obtained number of pieces of mi is the maximum and the obtained
number of pieces of mj is the minimum. This is because, when it is possible to
cut from a certain subpart of the material h pieces of mj , a piece of mi will be
cut instead. Note that the minimum amount of mj does not have necessarily
(and probably will not) to be zero. This is due to the fact that sj < si so there
will probably be parts of the raw material in which mi does not fit but mj does.

4.3 Generalizing the Bounds

Previously we introduced the equations of the lower and upper bounds that
ensure that we obtain the minimum and maximum amounts of a type of product
in comparison with a smaller type of product. Here we extend these concepts to
the case in which there are more than two types of product to be cut. First we
denote the smaller subset of a product type mi as:

Definition 5. M<
i ⊂ M : sj < si,∀mj ∈ M.

We present two propositions:

(i) If vi is equal to the minimum value of all the lower bounds associated with
each smaller type of product, we can ensure that the minimum amount of mi
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will be obtained, since the total value of cutting k pieces (see Definition 3)
of any of the smaller products is greater than the total value of cutting a
piece of mi. This is denoted as follows:

vlb
i (mi,M<

i ) = min
mz∈M<

i

vlb
i (mi,mz). (5)

(ii) If vi is equal to the maximum value of all the upper bounds associated with
each smaller type of product, we can ensure that the maximum amount of
mi will be obtained in the homogeneous case (combinations of products of
the same type only), since the total value of cutting h homogeneous pieces
of any other smaller products is lower than the total value of cutting a piece
of mi (see Definition 4). This is denoted as follows:

vub
i (mi,M<

i ) = max
mz∈M<

i

vub
i (mi,mz). (6)

For the case of combinations of h heterogeneous pieces (combinations of
products of different types) of smaller products, unfortunately it is possible that
some heterogeneous combinations have a slightly greater total value than a unit
of product mi. Then, we cannot assume Proposition (ii) for all the heterogeneous
combinations. However, it is very unlikely that such proposition does not hold
for real-life instances. This is because when we compute the bounds, we consider
that the space left in the area analyzed is waste (worst scenario). However, in
reality this space could be used to fit another piece of any product (generally
several pieces fit in every big raw material piece). Then the total value of h
heterogeneous pieces (excluding mi) would be compared against the total value
of n heterogeneous pieces (including at least a piece of mi). (However in our
proposition only a unique piece of mi is considered, which has lower total value
than combining such piece with another product). For this reason, generally
for real instances the minimum/maximum amounts of products are obtained
with greater/lower values (respectively) than the theoretical bounds presented
in this paper.

We now define the interval of values between the lower and upper bounds
of a type of product in relation to smaller types of products. This allows us a
reduction of the values search space while ensuring that global products patterns
with amounts between the minimum and maximum possible amounts (inclusive)
are selected (according to Propositions (i) and (ii)). Such a set of values is defined
as follows:

Vi(mi,M<
i ) = [vlb

i (mi,M<
i ), vub

i (mi,M<
i )] (7)

In [7] the authors generate a set of global products patterns with Monte Carlo
simulation over a fixed interval for all the types of products (e.g. [1, 1000]).
Instead, this simulation can be performed over Vi(mi,M<

i ) by fixing a basis value
for the smallest product and computing the V interval for the bigger products (in
increasing size order) for each sampling. As mentioned, by calculating the specific
interval delimited by the lower and upper bounds for each type of product, we
are reducing the likelihood of generating equal global products patterns, which
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implies a greater likelihood of obtaining scattered global products patterns. In
the following we also introduce an exhaustive global products pattern generation
algorithm that uses such intervals.

5 Exhaustive Global Products Patterns Generation
Based on V

In this section we explain how to generate all possible global products patterns
for a set of product types with respect to some fidelity (denoted as f) over the
values vector. First the V interval is discretized based on f (see Eq. 7), then we
present an algorithm that exhaustively generates global products patterns.

5.1 A Fidelity-Based Discretization of the Interval V
In the following, the interval V (Eq. 7) is discretized according to a fidelity vari-
able f , which represents a value increment:

Vi(mi,M<
i , f) = {vlb

i (mi,M<
i ) + nf,∀n ∈ {0, . . . , q}}

where q = minN : vlb
i (mi,M<

i ) + qf ≥ vub
i (mi,M<

i ) (8)

The above set of values is expressed as a minimum value and a series of incre-
ments of value f over it. The minimum value of the set is the lower bound. The
next values are obtained by incrementing f units in every step. The maximum
number of such increments is denoted as q and it is the minimum natural num-
ber of increments of value f that are necessary in order to reach or exceed the
upper bound. Note that the lower the fidelity is, the greater the set Vi is (with
the exception of rare situations in which the lower and upper bounds are equal).

5.2 Algorithm for an Exhaustive Generation of Global Products
Patterns

We introduce an algorithm that generates all the values vectors for a set of prod-
uct types M by computing the discretized set V (see Eq. 8) for a given fidelity f .
The corresponding global products patterns (denoted as C) of the values vectors
are also computed by using the A algorithm over a given subset of raw material
pieces with characteristics 〈σ1, . . . , σ|R|〉. First, Algorithm 1 initializes an empty
values vector. Then, it assigns a basis number (denoted as b) to the smallest
type of product, where b can be randomly generated or it can be specified by the
user. Note that this value remains fixed during the complete execution of the
algorithm. Algorithm 1 also initializes the subset Mu ⊂ M, which contains the
products whose values have not yet been assigned (at this stage, all the products
except the smallest one).

Finally, Algorithm 1 calls the recursive procedure fixValue which, given
the set of unassigned product types (Mu), selects the smallest one and com-
putes its set of values (V, see Eq. 8). Subsequently, each of the values of such
a set is assigned iteratively to the analyzed type of product. In addition, the
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Algorithm 1: Exhaustive Generation of Global Products Patterns
Data: 〈σ1, . . . , σ|R|〉, M, f, b
Result: C
mi ∈ M : si = minz∈|M| sz ;
v ← ∅; // empty values vector
vi ← b;
Mu ← M\{mi}; // Unassigned set of products
C ← fixValue (v, σ, ∅, M, Mu, f);
return C

already assigned type of product is deleted from Mu. This process is repeated
recursively until all the product types have already an assigned value. Note that
the procedure fixValue is recursively called with the updated set Mu. Once
all the product types have already an assigned value, the A algorithm is used
for obtaining the global products pattern associated with the vector of values v.
If such global products pattern is new, it is added into C. Finally, when all the
values in the set V have been assigned, the procedure adds the type of product
to the unassigned set of products (Mu) and it returns the set of global prod-
ucts patterns computed C. Once all the runs of the procedure fixValue have
finished, the total set of global products patterns generated is returned to the
Algorithm 1. (Note that all the patterns obtained by each call to the procedure
are merged into C).

Procedure . fixValue(v,σ, C,M,Mu, f ) : C
select mi ∈ Mu : si = minz∈|Mu| sz ;
Mu ← Mu \ {mi};
V ← Vi(mi, M<

i , f); // See Eq. 8
for e ∈ V do

vi ← e;
if Mu = ∅ then

〈a1, . . . , a|M|〉 ← A(M, 〈σ1, . . . , σ|R|〉, v);
if 〈a1, . . . , a|M|〉 �∈ C then

C ← C ∪ {〈a1, . . . , a|M|〉};

else
C ← C∪ fixValue (v, σ, C, M, Mu, f);

Mu ← Mu ∪ {mi};
return C

6 Evaluation

In this section we first describe a case study of a real-world population harvest-
ing problem [4]: forestry harvesting. Subsequently we evaluate several instances
of this type with our approach. We do not compare our solution with other
techniques because, as far as we know, there is no other approach that attempts
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to compute such bounds, nor to reduce the values search space. In the forestry
harvesting problem the logs of the trees have to be cut into smaller log-pieces
by harvesting machines in order to satisfy the demands of the customers. The
products have shape specifications (minimum diameter, length, etc.) and their
volumes are measured typically in cubic meters (m3). As mentioned, in this vari-
ant of the MSSCSP there are several subsets of stock. For the forestry problem,
we call each subset of trees a block and each of them has a given specific value.
The objective function is to minimize the total value associated with the blocks
harvested. (Recall that for the MSSCSP only some stock is selected for satisfying
the demands and therefore only this selection is harvested).

In this section we evaluate the approach presented in this paper, which
reduces the values search space by computing upper and lower values bounds
associated with all the products. For such purpose, we used the exhaustive sam-
pling approach introduced in this paper (Algorithm1) for generating a set of
global products patterns for each block. Lastly, by solving the ILP of the MSS-
CSP variant analyzed (see Sect. 2) we obtain the optimal solution for such pat-
terns. A solution of this variant of the MSSCSP consists in a selected vector of
values (and its corresponding global products pattern) for each of the selected
blocks to be cut. Note that there is no guarantee that this solution is the opti-
mal based on all the possible global products patterns. Due to the impossibility
of enumerating all the possible global products patterns for realistic instances,
optimality can not be ensured for the analyzed variant of the MSSCSP. Hence
the importance of obtaining a sparse (and therefore significant) sample of global
products patterns.

We have performed the evaluation with a sample of real data from our indus-
trial partner. The total volume of the sampled logs of the trees is 1191.3m3 and
it is composed by eight blocks and four product types. We computed the global
products patterns of each block by using Algorithm1 with b = 10 and fidelities:
0.9, 0.7 and 0.5. Then, we solved 50 randomly generated and satisfiable demands
instances by solving their corresponding ILPs with CPLEX solver with a time
cut-off of 1 h (but the average of the solving time was 16 min). The experi-
ments were run on a 2.3 GHz Intel Core i7 processor. Our industrial partner also
provided us with the software that carries out the DP-based simulation that
implements A (see Eq. 1). Since DP is a complete algorithm, other DP imple-
mentations, such as the ones mentioned in Sect. 3, could have been used for A,
with equivalent results.

Figures 5 and 6 show the results obtained from the experiments per-
formed. Specifically, Fig. 5 shows the number of global products patterns that
Algorithm 1 computed for the tested fidelities. As mentioned, the lower the
fidelity the higher the number of global products patterns, in general. For
instance in Block 4 and Block 7 there is a difference of almost 400 global products
patterns between fidelity 0.5 and 0.9. This is reflected in the computation times
of the global products patterns (see the times between brackets in Fig. 5). Note
that computing the global products patterns for all the blocks for fidelity 0.9
required one hour and a half, which is less than five times less the time required
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Fig. 5. Number of global products patterns generated for each block.

Fig. 6. Quality of the solutions obtained.

for fidelity 0.5 (eight hours). However, our algorithm allows the selection of the
global products patterns granularity according to the available time.

The differences in the number of global products patterns computed among
the different blocks depend on the characteristics of the blocks (such as number
of pieces of raw material and their sizes). Note that it is more likely to generate
equal global products patterns (which are rejected by Algorithm1) for smaller
block sizes. For our analyzed instance, Block 2 is the smallest block (in terms
of total m3) and it has the lowest number of generated global products patterns
(see Fig. 5).

We compute an optimality bound independently of the global products pat-
terns. Then, we relax the problem by assuming that any combination of amounts
of products can be cut from each block (within its size). (It can be obtained by
making such variations over the ILP of Sect. 2). Note that it is a bound on the
optimality because at least such a total value must be expended for satisfying
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certain demands. However, it might occur that the global products patterns of
the optimality bound do not exist in reality. In such a case, the optimal solution
has a greater total value than the optimality bound.

Figure 6 shows the quality of the solutions obtained after solving the ILPs of
the 50 random demands instances, which is expressed as a gap with the optimal-
ity bound (left axis). Note that for 41 instances we obtained a gap lower than
5%, which can be considered as near-optimal. In addition, for many of them
the gap is 0%, which means that they are optimal. As expected, with better
(lower) fidelities (which very often implies more global products patterns) the
quality of the solutions are equal or better. Needless to mention the economical
impact that the quality of these solutions has in the real-life applications (for
real instances, the value of a single block could possible be several thousand e).
In addition to the sampling performed with our approach, a complementary sub-
sequent clustering algorithm (such as the one presented in [7]) could be applied
in order to reduce the set of input global products patterns provided to the ILP
(with the objective of speed up its solving time).

7 Conclusions

In this paper we have contributed to the literature by introducing an approach
that bounds the search space of a variant of the MSSCSP that arises from
population harvesting. For such a problem it is not possible to enumerate all the
patterns in a reasonable amount of time, and therefore it is necessary to find a
sparse set of global product patterns. In this paper we provide definitions and
equations of the lower and upper values bounds of the products. By sampling in
their interval, the likelihood of generating equal global products patterns is lower
(and therefore patterns tend to be more scattered). Furthermore, we also have
introduced an algorithm that exhaustively generates global products patterns
according to their bounds and a fidelity parameter that fixes their granularity.

The evaluation performed with a harvesting problem from our industrial
partner showed that the better the fidelity, the more global products patterns
are generated, and the better the quality of the solutions tends to be. Most
of the solutions obtained were near-optimal or optimal, specially for the best
fidelity analyzed. We would like to highlight that the number of global products
patterns, and how representative they are, affects the quality of the solutions,
so it has an economic impact for the stock owners.

As future work, we will focus on applying this approach to other types of
real-life MSSCSPs that fit into the population harvesting framework (e.g. we
found similarities with a problem from the clothing industry [5]).

Acknowledgments. This research was supported in part by Science Foundation Ire-
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Abstract. Algorithm portfolios seek to determine an effective set of
algorithms that can be used within an algorithm selection framework
to solve problems. A limited number of these portfolio studies focus on
generating different versions of a target algorithm using different para-
meter configurations. In this paper, we employ a Design of Experiments
(DOE) approach to determine a promising range of values for each para-
meter of an algorithm. These ranges are further processed to determine
a portfolio of parameter configurations, which would be used within two
online Algorithm Selection approaches for solving different instances of
a given combinatorial optimization problem effectively. We apply our
approach on a Simulated Annealing-Tabu Search (SA-TS) hybrid algo-
rithm for solving the Quadratic Assignment Problem (QAP) as well as an
Iterated Local Search (ILS) on the Travelling Salesman Problem (TSP).
We also generate a portfolio of parameter configurations using best-of-
breed parameter tuning approaches directly for the comparison purpose.
Experimental results show that our approach lead to improvements over
best-of-breed parameter tuning approaches.

1 Introduction

Algorithm Selection [1] concentrates on choosing the best algorithm(s) from a
set of algorithms for a given problem instance. The key idea is to build a model
that provides a mapping between instance features and performance of a group of
algorithms on a set of instances. The resulting model is used to make performance
predictions for new problem instances. In relation to algorithm selection, i.e.
Algorithm Portfolios [2] primarily focus on determining a set of algorithms for
an algorithm selection process. The goal is to choose these algorithms in a way
that their strengths complement each other or provide algorithmic diversity that
hedge against heterogeneity in problem instances in pretty much the same spirit
c© Springer International Publishing AG 2016
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as investment portfolios to reduce risks in economics and finance [3]. Meta-
learning [4] has also been proposed as a unified framework for considering the
algorithm selection problem as a machine learning problem.

The idea of algorithm selection has also been investigated in the context
of parameter tuning or configuration [5]. The goal is to determine a configura-
tion for a target algorithm that will (hopefully) work well for given instances.
Hyper-parameter tuning [6] has the same tuning objective but only for machine
learning algorithms. The evolutionary algorithm and meta-heuristic community
categorises such methods as parameter tuning and parameter control [7]. Parame-
ter tuning occurs offline, while parameter control is concerned with the strategies
for adapting parameters in an online manner via some rules or learning algorithms.

SATZilla [8] is a successful example of applying algorithm portfolios to solve
the SAT problem, which has consistently ranked top in the various SAT com-
petitions. Its success lies in its ability to derive an accurate runtime prediction
model makes effective use of the problem-specific features of SAT. Hydra [9] is
another portfolio-based algorithm selection method that combines with auto-
matic configuration to solve combinatorial problems such as SAT effectively.

Several configurators have been proposed for optimisation algorithms.
CALIBRA [10] combines Taguchi fractional experimental design and local
search. ParamILS [5], as explained above, applies iterated local search to find
a single parameter configuration. Racing algorithms like F-Race [11] look for
effective parameter values by performing a race between different configurations.
Instance-Specific Algorithm Configuration (ISAC) [12] incorporates a G-means
clustering algorithm for clustering instances with respect to the features with an
existing parameter tuning method, i.e. GGA. GGA is used to configure an algo-
rithm for each instance cluster and works like other case-based reasoning related
algorithm selection approaches. [13] proposed Randomized Convex Search (RCS)
with the underlying assumption that the parameter configurations (points) lie
inside the convex hull of a certain number of the best points. FocusedILS, derived
from ParamILS, has been used to provide a number of different parameter con-
figurations for a given single algorithm. It has also been applied for designing
multiple parameter configurations for a planner called Fast Downward, in [14].
The results are used for seven portfolio generation methods to build sequential
portfolios. [15] proposed a model-based approach, namely SMAC, that can be
used to handle categorical parameters. AutoFolio [16] was developed for auto-
mated configuration at a higher level by applying SMAC to algorithm selectors.
ADVISER [17] was introduced as a web-based platform for algorithm portfolio
generation.

This paper seeks to extend the literature on automatic algorithm configura-
tion. The experiments were conducted for combinatorial optimization problems.
Rather than providing a single parameter configuration that works well in gen-
eral or a pre-set schedule of algorithms, we work in the space of online algorithm
selection and feeds this process with a portfolio of parameter configurations
derived from Design of Experiments (DOE). Our aim is to develop a generic
approach for designing algorithm portfolio of parameter configurations for use
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within an online algorithm selection process to solve combinatorial optimization
problems. In particular, we consider generating different parameter configura-
tions for a given target algorithm as the algorithm portfolio.

Our contributions are listed as follows:

• We apply DOE to build algorithm portfolios of parameter configurations for a
given target algorithm. Unlike configurators like ParamILS, F-Race or CALI-
BRA that provide single value for each parameter, DOE provides a subregion
of values for each parameter (that are statistically important compared to
other regions).

• We propose a random sampling approach to determine a portfolio of parameter
configurations from the subregions. Even though methods like ISAC [12] and
Hydra [9] already deliver portfolios of configurations, these techniques run a
tuner for multiple times, resulting in huge computational overheads. In our
case, DOE and sampling is done once, which reduces computational overheads
tremendously.

• We employ two online algorithm selection methods, namely Simple Random
and Learning Automata. Again, the aforementioned portfolio-based meth-
ods that make use of parameter configurations are usually performed offline
without any solution sharing, while our approach combines the strengths of
multiple configurations by selecting them online and operating them on the
same solution, which is different from standard algorithm configuration scenar-
ios. Although dynamic portfolio methods [18] perform online selection, they
also ignore solution sharing. The empirical results on two NP-hard problems,
namely the Quadratic Assignment Problem (QAP) and Travelling Salesman
Problem (TSP), show the advantage of using multiple configurations and solu-
tion sharing in algorithm selection.

The remainder of this paper is organized as follows. Section 2 summarizes the
algorithm configuration problem. Section 3 details the DOE process. Section 4
explains how the proposed online algorithm portfolio approach works. Section 5
presents an empirical analysis on two problem domains: QAP and TSP. The
paper is finalized by some concluding perspectives and future research ideas in
Sect. 6.

2 Algorithm Configuration Problem

The algorithm configuration problem (ACP) [19] is about configuring a given
target algorithm TA to perform well on a set of problem instances. The goal
is to configure k parameters to set, P = {pr1, . . . , prk}, where each parameter
has a range of values to be set, pri ∈ Di. The configuration space involves
C = D1×. . .×Dk many possible configurations. The objective is to come up with
a configuration from such a, usually, large set to provide the best performance
on an instance set, I. Thus, the ACP can be considered an optimisation problem
where a solution is a configuration ci of the algorithm TA on I. One issue with
this idea is on solution evaluation. For assessing the quality of a ci, TA with ci
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should run on I. Although the required computational time for this task varies
w.r.t. TA, I and the problem domain of I, it is computationally expensive in
general. Heuristic-based search and optimisation techniques such as GGA [20]
and ParamILS [5] have been employed in order to overcome this issue.

Such tuning methods are eligible to deliver an effective configuration for a
given algorithm. The idea of algorithm portfolios [2] have been used to take
advantage of such techniques for building strong algorithm sets including algo-
rithms with different configurations. Existing tuning based portfolio approaches
like ISAC [12] and Hydra [9] were designed to address the offline algorithm selec-
tion problem. They pursue to the goal of specifying the best single algorithm
configuration for solving a particular problem instance. These systems require a
set of features representing instances to select algorithms after delivering a set
of configurations derived from a computationally expensive training phase. For
instance, Hydra mentions that it took 70 CPU days to construct a portfolio of
configurations. A similar tool used for a SAT solver, i.e. SATenstein [21], spent
240 CPU days.

Unlike these cases, the aim of this study is to build a portfolio of configura-
tions that can be used in an online setting. The online nature of our approach
can allow changing configurations while a selected configuration is fixed for the
offline ones. Our system performs like a parameter tuning tool where any domain
specific features are not needed. Besides that, the tuning process is faster since
the tuning operation is performed once while the tuners used in the aforemen-
tioned portfolio approaches run for multiple times. Although our approach is
not directly comparable with these offline portfolio methods due to its distinct
design, a state-of-the art parameter tuning approach, i.e. ParamILS which is also
used in Hydra, is experimented for comparison.

3 Design of Experiments (DOE)

DOE is a well-studied statistical technique used in scientific/engineering
decision-making to select and determine the key parameters of a particular
process [22]. Some typical applications of DOE include (1) evaluation and com-
parison of basic design configurations, (2) evaluation of different materials, and
(3) selection of design parameters.

Let us consider, in order to solve a particular problem, an algorithm (called
the target algorithm) that requires a set of parameters to be set prior to the
execution of the algorithm, a DOE-based framework was proposed in [23] to
find ranges of parameters values which serve as input to existing configurators
such as ParamILS [5]. The main goal is to find a parameter setting that performs
best over a set of training instances and subsequently verifies the quality of this
setting on a set of testing instances. In this paper, we utilize the first two phases of
the framework, namely screening and exploitation phases, to provide promising
sub-regions for the parameter configurations, as shown in Fig. 1. These phases
are briefly explained in the following subsections.
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Fig. 1. DOE framework

3.1 Screening Phase

Suppose we have k parameters of a target algorithm to be tuned, where each
parameter pi (discrete or continuous) lies within a numeric interval. In the screen-
ing phase, a complete 2k factorial design is applied to identify m parameters
(m ≤ k) which have significant effects to the performance of the target algo-
rithm (the “important” parameters). This requires n× 2k observations where n
represents the number of replicates. Experiments are replicated to help identify
the sources of variability and to better estimate the true effects of treatments.

In a 2k factorial design, we examine the magnitude and direction of the effects
to determine which parameters are likely to be important. The importance of a
particular parameter pi can be defined by conducting the test of significance on the
main effect of the parameter with a significance level, e.g. α = 10%. Furthermore,
the ranking of the critical parameters is determined by the absolute values of the
main effects of those parameters. The direction of the parameter effects are deter-
mined by the sign of the values of the main effects. For instance, if the objective
function of the target algorithm is a minimizing function, the value of a partic-
ular parameter should be set to a low value if its coefficient of the main effect is
positive. The output of this phase consists of a reduced range for each important
parameter and all unimportant parameters will be set to a constant value.

3.2 Exploration Phase

In the exploration phase, we treat the m important parameters determined from
the screening phase, with the aim to find a promising range for them. We start
exploring a larger space where the linear relationship is held and apply the
standard approach for linear model checking and diagnosis [22].
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The target algorithm is run with respect to the parameter configuration space
θ which contains (2m+1) possible parameter configurations with an additional
setting defined by the centre points of the m important parameters. By adding
centre points, protection against curvature is provided.

The form of the relationship between the objective function and the parame-
ters is initially unknown. Thus, the first step is to assume a first-order (planar)
model of the response surface. The planar model is given by the following approx-
imating function:

Y = X β + ε (1)

where:

Y is the vector of (n × 2k) responses/objective function values
X is the ((n × 2k) × m) matrix
β is a vector of size (m × 1)
ε is the ((n × 2k) × 1) error vector

Model adequacy checking involves two statistical tests, namely the interaction
and curvature tests, are required. The planar model can still be applied as long as
either one of them is not statistically significant. Otherwise the region of planar
local optimality has been reached and the promising region has been found. We
then continue the process by applying the steepest descent, in order to bring the
parameter to the vicinity of the optimum values. Once the region of the optimum
has been found (e.g. one of two statistical tests is statistically significant), the pla-
nar model is invalid and we can assume that we are in the promising range for each
important parameter. The details of this framework can be referred to [23].

4 Solution Approach

Algorithm portfolios are often used with offline algorithm selection strategies.
This work was inspired by hyper-heuristic and operator selection studies which
encourage to use online algorithm selection [24]. Our approach is basically in two
parts - portfolio generation and online selection. The portfolio generation part
involves finding varying instantiations, as configurations, of the same algorithm
with diverse problem solving capabilities. A resulting portfolio involving config-
urations of a particular algorithm is then used by online algorithm selection.

Algorithm 1. Online Portfolio-Based Algorithm Selection
TA: target algorithm with k parameters, θ: configuration space defined by the
initial ranges of each parameter pi (∀i = 1, 2, . . . , k), I: instances, z: portfolio
size

Portfolio Design
1 Run DOE to obtain a promising range [li, ui] for each parameter pi
2 Generate a portfolio of z parameter configurations from the promising ranges

Online Algorithm Selection
3 Apply a selection method (Simple Random (SR) or Learning Automata (LA)
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4.1 Portfolio Design

Recall that DOE provides a promising range for each parameter pi based on
steepest descent of a linear response surface. More precisely, we have the promis-
ing interval [li, ui] for each parameter pi. Given these intervals, we propose three
different methods to generate a portfolio of parameter configurations. The first
is to simply use a constant step size, namely, [li, li + δ, li + 2 δ, . . . , ui] where δ is
a constant step size.

The second method is to perform intensification on the promising config-
uration space via random sampling. First, we generate n random samples of
parameter configurations from the promising space. A contour plot is then gen-
erated where all sampled points (parameter configurations) having the same
response are connected to produce the contour lines of the surface. This con-
tour plot provides an approximate fitness landscape from which we can sample
z points randomly, with a probability that decreases from one contour line to
the next. More precisely, if the contour plot is divided into y contour lines, then
we draw zi samples from the region bounded by contour lines i and i+ 1, where
z = z1 + z2 + . . . + zy and zi > zi+1 for all 1 ≤ i ≤ y − 1.

As a more informed strategy compared to using the contour plots, a clustering
approach is utilized as the final approach. The k-means clustering is employed
while k, i.e. the number of clusters, is determined by the Silhouette score [25].
Inspired from OSCAR [26], the idea is to cluster configurations w.r.t. their perfor-
mance, i.e. solution quality, on the training instances. The performance measure
used in our study is the percentage of deviation of the objective function value
obtained by a particular parameter configuration from the best known solution.
Normalized performance values are used as features characterizing configura-
tions, similar to landmarking [27]. Finally, the configuration with the highest
average rank from each cluster is then included in the portfolio.

4.2 Online Algorithm Selection

Even though the No Free Lunch theorem [28] states that there is no one algorithm
performs well on all possible problem instances that are closed under permuta-
tion, it is usually the case that the search spaces of target problem instances
do not have the property of ‘closure under permutation’. Using multiple muta-
tion operators in an evolutionary algorithm setting is theoretically shown to be
effective by [29]. The advantage of using more than one algorithm in a hyper-
heuristic environment is theoretically explained in [30]. As a consequence, both
experimental and theoretical studies suggest that online algorithm selection is
useful for better performance.

In this section, we propose two approaches to perform online algorithm selec-
tion. First, Simple Random (SR) [31] randomly chooses a parameter configura-
tion at each iteration. Although this is very naive approach, it can effectively
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manage a small-sized algorithm set. Second, Learning Automata (LA), a.k.a.
stateless reinforcement learning, has been used to perform heuristic selection
in [32] due to its nice convergence property to a Nash equilibrium. Formally, a
learning automaton is described by a quadruple {Ã, β, p, U}. Ã = {ã1, . . . , ãn}
is the set of actions available. p maintains the probabilities of choosing each of
these actions. β(t) is a random variable between 0 and 1 for the environmental
response. U is a learning scheme used to update p [33].

A learning automaton operates iteratively by evaluating the feedback pro-
vided as the result of a selected action. The feedback from the environment is
stated as the environmental response (β(t)) referring whether a selected action
is favorable (β(t) = 1) or unfavorable (β(t) = 0). This feedback is then used to
update the corresponding action probabilities. The Boolean feedback is only used
in this online algorithm selection. The update operation will depend on the choice
of the update scheme (U), namely linear reward-penalty, linear reward-inaction
and linear reward-ε-penalty are the common update schemes which vary in the
degree of rewarding or penalising a selected action with respect to the environ-
mental response. All these update schemes use Eqs. 2 and 3. In these equations,
the λ1 and λ2 values are the learning rates used to update the selection proba-
bilities. The first one is used to reward an action while the latter parameter is
to penalise an unfavorable action. The aforementioned three update schemes are
determined based on how these two learning rates are set. If they are equal, the
update scheme is described as linear reward-penalty (LR−P ). When the second
rate is set to zero, the system is defined as linear reward-inaction (LR−I). In the
case of λ2 < λ1, it is defined as linear reward-ε-penalty (LR−εP ).

pi(t + 1) = pi(t) +λ1 β(t)(1 − pi(t))
−λ2(1 − β(t))pi(t) (2)
if ãi is the action taken at time step t

pj(t + 1) = pj(t) −λ1 β(t)pj(t)
+λ2(1 − β(t))[(r − 1)−1 − pj(t)] (3)
if ãj �= ãi

where r is the number of actions in Ã.
Applying the above to online algorithm selection, the actions are associated

with the choice of algorithms during run time. In this paper, we have chosen the
(LR−I) update scheme, which means that λ2 is set to 0. Moreover, the probability
update process is performed based on two feedbacks, which are finding a new
best solution and delivering an improved solution respectively. This means that
two values are chosen for λ1 depending on which of two feedbacks are received.
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5 Experimental Results

In order to empirically show the performance of our proposed algorithm selection
methods, we perform experiments on two classical combinatorial optimization
problems - the Quadratic Assignment Problem (QAP) and Traveling Salesman
Problem (TSP).

For each experiment, we perform six different selection methods: (1) SR with
constant step size (SR-Constant), (2) SR with random sampling from the contour
plot (SR-Contour), (3) LA with constant step-size (LA-Constant), (4) LA with
random sampling from the contour plot (LA-Contour), (5) SR with clustering
(SR-Cluster), and (6) LA with clustering (LA-Cluster). The learning rate (λ1)
for LA is set to 0.1 and 0.01 respectively for the feedbacks of finding a new best
solution or improving the current solution.

5.1 Quadratic Assignment Problem

The QAP is interested in the minimum cost allocation of facilities to locations,
taking the costs as the sum of all distance-flow products. A Simulated Annealing
- Tabu Search (SA-TS) hybrid meta-heuristic [34] is used as the target algorithm
with four parameters. Table 1 gives the details about the parameter configura-
tions from [23].

The QAP benchmark instances are from QAPLIB [35]. The instances are
grouped into four classes: unstructured instances (Group I), grid-based distance
matrix (Group II), real-life instances (Group III) and real-life-like instances
(Group IV). Due to the limitation of the target algorithm that can only han-
dle symmetrical distance matrix, we only focus on instances from the first

Table 1. The parameter space of the QAP

Parameters Initial range DOE range Step size Contour plot Clustering

Initial

temperature

(Temp)

[100, 7000] Group I [4378, 6378] 250 5 values 2 values

Group II [4238, 6238] 250 5 values 2 values

Group III [4000, 6000] 250 5 values 6 values

Cooling factor

(Alpha)

[0.5, 0.95] Group I [0.935, 0.945] 0.005 5 values 2 values

Group II [0.935, 0.945] 0.005 5 values 2 values

Group III [0.85, 0.95] 0.05 5 values 6 values

Tabu list length

(TabuLngth)

[5, 10] Group I 5 - - -

Group II 6 - - -

Group III 6 - - -

Diversification

factor (Limit)

[0.01, 0.1] Group I 0.01 - - -

Group II 0.1 - - -

Group III 0.1 - - -
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Fig. 2. Screening phase (Group III)

three classes. By referring to [23] for classifying instances into training and test-
ing instances, we conduct the experiments for two different set of instances: (1)
testing instances and (2) all instances (training + testing instances). Instance
classes consist of 11, 24, 14 training and 5, 11, 7 testing instances, respectively.
Those instances are selected randomly.

The application of DOE screening phase yields the following result for
Group III (Fig. 2). It reveals that two parameters (Temp and Alpha) are sta-
tistically significant (with p-value ≤5%), while the effect of other parameters:
TabuLngth and Limit are insignificant. Based on the coefficient value obtained,
we determine the constant value for each insignificant parameter, e.g. the effect
of parameter Limit is 0.137, so the value of this parameter is set to its lower
bound value, which is 0.01 (Table 1).

Using this information in the DOE exploration phase, we find the promising
planar region for both parameters (Temp and Alpha). The final ranges for both
parameters are summarized in Table 1. The contour plots generated from random
sampling for instances are as shown in Fig. 3. From the plots, we pick three and

Fig. 3. Contour plot (Groups I, II and III, respectively)
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Table 2. The performance of the tested approaches on the QAP instances with respect
to the best known solutions (P: ParamILS, Cs: Constant, Ct: Contour, Cl: Cluster)

Instances Metric Methods

RCS P SR-P LA-P SR-Cs LA-Cs SR-Ct LA-Ct SR-Cl LA-Cl

Group I % Dev Avg (Test) 0.606 0.692 0.779 0.509 0.535 0.492 0.473 0.471 0.512 0.534

% Dev Best (Test) 0.314 0.345 0.416 0.350 0.378 0.340 0.301 0.325 0.331 0.359

% Dev Avg (All) 0.880 0.973 1.011 0.756 0.737 0.734 0.716 0.700 0.709 0.748

% Dev Best (All) 0.505 0.581 0.618 0.470 0.449 0.444 0.444 0.476 0.556 0.465

Group II % Dev Avg (Test) 0.214 0.210 0.394 0.139 0.168 0.134 0.149 0.151 0.157 0.136

% Dev Best (Test) 0.030 0.024 0.061 0.025 0.022 0.018 0.012 0.032 0.028 0.029

% Dev Avg (All) 0.262 0.247 0.417 0.183 0.192 0.189 0.189 0.183 0.188 0.195

% Dev Best (All) 0.068 0.060 0.103 0.038 0.045 0.031 0.030 0.031 0.033 0.043

Group III % Dev Avg (Test) 1.231 1.196 1.990 0.667 0.744 0.767 0.636 0.935 0.704 0.866

% Dev Best (Test) 0.000 0.191 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

% Dev Avg (All) 2.921 2.848 3.414 1.620 2.563 1.824 2.516 1.700 1.737 1.590

% Dev Best (All) 1.114 0.873 0.278 0.252 1.170 0.241 0.266 0.231 0.239 0.251

two different parameter configurations randomly from two promising regions, A
and B, respectively.

Unlike the contour plots case, in the clustering based portfolio generation
approach, the number of configurations used in the resulting portfolio is auto-
matically determined. The last three columns show details on step sizes, number
of random samples used to generate the portfolio and number of parameter set-
tings generated by the clustering method.

In order to compare the performance of our proposed approach, we also
run the target algorithm with constant parameter values generated by RCS
and ParamILS. Both configurators also use the same inputs from DOE range
(Table 1). The parameter values are obtained from [23].

For each instance within a particular group, we perform 10 runs and compare
the percentage deviations of the average objective function value of the solu-
tions obtained and the best objective function value obtained against the best
known/optimal solutions. In order to ensure the fairness among approaches, we
use the same computational budget for each one. For example, ParamILS uses
z time units so others also use z time units.

The results are summarized in Table 2. In general, we see that we can obtain
better results by generating a portfolio of algorithms with different parameter
configurations, either by applying Simple Random (SR) or Learning Automata
(LA), compared against constant parameter values (RCS or ParamILS). The
best performers are SR-Contour and LA-Constant. SR and LA with clustering
(SR-Cluster and LA-Cluster) are also comparable with others. Those constant
parameter values (RCS and ParamILS) do not perform well.

We also run ParamILS five times in order to generate five parameter config-
urations. Both selections methods, simple random and learning automata (SR-
ParamILS and LA-ParamILS), are used to compare with others. The purpose of
this comparison is to show how generating a portfolio of algorithms with differ-
ent parameter values generated from the contour plot and the clustering method
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Table 3. Wilcoxon Signed Rank Test of Table 2 results

Methods Group I Group II Group III

RCS 5 5 5

ParamILS 6 5 5

SR-ParamILS 7 6 6

LA-ParamILS 3 1 1

SR-Constant 4 4 2

LA-Constant 2 1 2

SR-Contour 1 2 1

LA-Contour 1 2 4

SR-Cluster 3 3 1

LA-Cluster 4 1 3
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Fig. 4. The effect of learning automata on parameter configuration selection while
solving a QAP instance, tho150

outperforms a portfolio of algorithms using constant step-size and best-of-breed
parameter tuning approaches (e.g. ParamILS). The results are summarized in
SR-ParamILS and LA-ParamILS columns of Table 2.

For further analysis, Wilcoxon Signed Rank Test is used to test all pairwise
differences between each algorithm selection approach in terms of %Dev Avg
(Test) values. The ranks are summarized in Table 3. Some methods have the
same rank values, meaning that those methods are statistically indifferent. We
observe that algorithm selection with LA methods outperforms other methods
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in all groups of testing instances. SR also performs well in Group III instances
in terms of the percentage of average deviations for testing instances. In general,
using the contour plot to generate a portfolio of promising parameter values
outperforms other approaches.

Lastly, we provide a glimpse of the effectiveness of the generated portfolio by
examining the frequency distribution of selection, as shown in Fig. 4. As shown
in the figure, the cumulative frequency of choosing each parameter configuration
vary over iterations, suggesting that different configurations are effectively used
throughout the online selection process. And considering that LA outperformed
both ParamILS and SR, we can conclude that the LA’s learning process pays off.

5.2 Travelling Salesman Problem

The Travelling Salesman problem (TSP) requires finding a tour that visits all
cities exactly once that minimises the total distance travelled. In our experiment,
Iterated Local Search (ILS) with a 4-Opt perturbation [36] is used as the target
algorithm.

Table 4 summarizes the list of the parameters to be tuned, the initial and
final ranges for each parameters after applying DOE. Similar to QAP, the last
column provides how we generate the algorithm portfolio. We only compare
with ParamILS since RCS does not perform well in solving the QAP (Sect. 5.1).
47 TSP instances out of 70 instances from TSPLIB are used as the training
instances while the rest (23 instances) are treated as testing instances.

The experiment result is presented in Table 5. We observe that our app-
roach works well compared to existing configurators. In particular, the selection
method using LA-Contour outperforms others. The performance of algorithm
selection methods are ranked based on Wilcoxon Signed Rank Test as follows:
LA-Contour ≈ LA-Constant ≈ SR-Cluster � LA-ParamILS ≈ SR-Constant �
LA-Cluster ≈ SR-ParamILS � SR-Contour � ParamILS.

Similar to QAP, we also generate five parameter configurations using
ParamILS and compare against five points generated from the contour plot, as
shown in Table 5 (SR-ParamILS and LA-ParamILS columns). We again conclude
that our proposed approach using the contour plot outperforms the portfolio with
configurations generated by ParamILS.

Table 4. The parameter space of the TSP

Parameters Initial range DOE range Step size Contour plot Clustering

Maximum # iterations (Itermax) [100, 900] [400, 600] 50 5 values 2 values

Perturbation strength (Ps) [1, 10] [1, 3] 1 5 values 2 values

Non-improving moves [1, 10] [4, 6] 1 5 values 2 values

tolerance (Tlnip)

Perturbation choice (Pc) [3, 4] 3 - - -
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Table 5. The performance of the tested approaches on the TSP instances with respect
to the best known solutions (P: ParamILS, Cs: Constant, Ct: Contour, Cl: Cluster)

Metric Methods

P SR-P LA-P SR-Cs LA-Cs SR-Ct LA-Ct SR-Cl LA-Cl

% Dev Avg (Test) 1.742 1.331 1.321 1.325 1.295 1.377 1.291 1.295 1.332

% Dev Best (Test) 0.852 0.752 0.787 0.792 0.704 0.768 0.664 0.749 0.880

% Dev Avg (All) 1.671 1.259 1.211 1.262 1.272 1.304 1.207 1.252 1.277

% Dev Best (All) 0.838 0.736 0.702 0.815 0.717 0.770 0.684 0.800 0.800

6 Conclusion

This paper shows that Design of Experiments (DOE) coupled with random
sampling can automatically generate good portfolios of parameter configura-
tions that can be used by an online algorithm selection process. The computa-
tional results on two classical combinatorial optimisation problems showed the
strength of our proposed method compared to state-of-the-art configurators such
as ParamILS. We show that the proposed approach lead to improvements to two
combinatorial optimization problems, QAP and TSP, compared against single
configurations.

Many interesting problems arise from this research. For example, how to set
the learning rates in the learning automaton? How to improve our proposed
schemes at generating portfolios? Will our generic approach perform well in
other problems? How to speed up the process through parallelization?
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Abstract. Subgraph isomorphism is a computationally challenging
problem with important practical applications, for example in computer
vision, biochemistry, and model checking. There are a number of state-
of-the-art algorithms for solving the problem, each of which has its own
performance characteristics. As with many other hard problems, the sin-
gle best choice of algorithm overall is rarely the best algorithm on an
instance-by-instance. We develop an algorithm selection approach which
leverages novel features to characterise subgraph isomorphism problems
and dynamically decides which algorithm to use on a per-instance basis.
We demonstrate substantial performance improvements on a large set
of hard benchmark problems. In addition, we show how algorithm selec-
tion models can be leveraged to gain new insights into what affects the
performance of an algorithm.

1 Introduction

The subgraph isomorphism problem is to find an adjacency-preserving injective
mapping from vertices of a small pattern graph to vertices of a large target
graph. This NP-complete problem has many important practical applications,
for example in computer vision [6,25], biochemistry [8], and model checking [24].
There exist various exact algorithms, which have been compared on a large suite
of instances by McCreesh and Prosser [15]. These experiments indicated that the
single best algorithm depends on the CPU time limit considered: for very small
time limits, Vf2 [5] is the best choice, whereas the Glasgow algorithm [15] has
better success rates for larger time limits. They also showed that on an instance
by instance basis, other algorithms are often better.

The per-instance algorithm selection problem [21] is to select from an algo-
rithm portfolio [9,10] the algorithm expected to perform best on a given problem
instance. Algorithm selection systems usually build machine learning models of

L. Kotthoff – This work was supported by an NSERC E.W.R. Steacie Fellowship
and under the NSERC Discovery Grant Program.
C. McCreesh– This work was supported by the Engineering and Physical Sciences
Research Council (grant number EP/K503058/1).
C. Solnon – This work has been supported by the ANR project SoLStiCe (ANR-
13-BS02-0002-01).

c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 107–122, 2016.
DOI: 10.1007/978-3-319-50349-3 8



108 L. Kotthoff et al.

the algorithms or the portfolio which they are contained in to forecast which
algorithm to use in a particular context. Using the predictions, one or more
algorithms from the portfolio can be selected to be run sequentially or in parallel.

In our subgraph isomorphism context, algorithm performance is highly con-
strained by memory bandwidth (as pointed out by Sabharwal and Samulowitz
[22] for SAT solvers). Therefore, we cannot simply run different algorithms in
parallel, and we consider the case where exactly one algorithm is selected for
solving the problem. One of the most prominent and successful systems that
employs this approach is SATzilla [28], which defined the state of the art in
SAT solving for a number of years. Other application areas include constraint
solving [19], the travelling salesperson problem [13], and AI planning [23]. The
interested reader is referred to a recent survey [12] for additional information on
algorithm selection.

Overview of the Paper. We formally define the subgraph isomorphism problem in
Sect. 2. In Sect. 3, we describe the main existing algorithms for solving this prob-
lem, and we also introduce two new algorithms which are derived from Solnon’s
Lad algorithm [26]. In Sect. 4, we experimentally compare eight state-of-the-art
algorithms. We introduce a large benchmark set composed of 5725 instances
grouped into twelve classes. Ten of these classes were considered in the experi-
mental study reported by McCreesh and Prosser [15]; two are new. We evaluate
the algorithms on this benchmark set, and show that they have very complemen-
tary performance. In particular, we show that depending on the CPU time limit,
different algorithms achieve the best performance on the entire benchmark set.
In Sect. 5, we discuss the features that are used to describe instances, and we
describe our algorithm selection approach. It combines a presolving step, which
allows us to easy instances very quickly, with an algorithm selection step that
uses Llama [11]. In Sect. 6, we experimentally evaluate our selection approach
and show that it is able to close more than 60% of the gap between the single
best and the virtual best solver. We conclude and give directions for future work
in Sect. 7.

2 Definitions and Notations

A graph G = (N,E) consists of a node set N and an edge set E ⊆ N ×N , where
an edge (u, u′) is a pair of nodes. The number of neighbors of a node u is called
the degree of u, denoted d◦(u) = #{(u, u′) ∈ E}. In this paper, we implicitly
consider non-directed graphs, such that (u, u′) ∈ E ⇔ (u′, u) ∈ E. The extension
to directed graphs is rather straightforward, and all algorithms compared in this
paper can handle directed graphs as well.

Given a pattern graph Gp = (Np, Ep) and a target graph Gt = (Nt, Et), the
subgraph isomorphism problem consists of deciding whether Gp is isomorphic to
some subgraph of Gt. More formally, the goal is to find an injective matching
f : Np → Nt, that associates a different target node to each pattern node, and
preserves pattern edges, i.e. ∀(u, u′) ∈ Ep, (f(u), f(u′)) ∈ Et. Note that the
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subgraph is not necessarily induced, so that two pattern nodes not linked by an
edge may be mapped to two target nodes which are linked by an edge. We define
np = #Np, nt = #Nt, ep = #Ep, et = #Et, and dp and dt to be the maximum
degrees of the graphs Gp and Gt.

3 Subgraph Isomorphism Algorithms

Subgraph isomorphism problems may be solved by a systematic exploration of
the search space consisting of all possible injective matchings from Np to Nt:
starting from an empty matching, one incrementally extends a partial match-
ing by matching a non-matched pattern node to a non-matched target node
until either some edges are not matched by the current matching (so the search
must backtrack to a previous choice point and go on with another extension),
or all pattern nodes have been matched (a solution has been found). To reduce
the search space, this exhaustive exploration is combined with filtering tech-
niques that aim at removing candidate pairs of non-matched pattern-target
nodes (u, v) ∈ Np×Nt. Different filtering techniques may be considered; some are
stronger than others (they remove more candidate pairs), but also have higher
time complexities.

3.1 Filtering for Subgraph Isomorphism

The simplest form of filtering is to propagate difference constraints (which ensure
that the matching is injective) and edge constraints (which ensure that the
matching preserves pattern edges): each time a pattern node u ∈ Np is matched
with a target node v ∈ Nt, one removes every candidate pair (u′, v′) ∈ Np × Nt

such that either v′ = v (difference constraint) or (u, u′) is a pattern edge but
(v, v′) is not a target edge (edge constraint). This simple filtering (called Forward-
Checking) is very fast to achieve: in O(np) for difference constraints, and in
O(dp · nt) for edge constraints. It is used, for example, in McGregor’s algo-
rithm [17] and in Vf2 [5].

Régin [20] introduced a stronger filtering for difference constraints, which
ensures that all pattern nodes can be matched with different target nodes,
all together. This filtering (called All-Different Generalized Arc Consistency)
removes more candidate pairs than when each difference constraint is propagated
separately which Forward-Checking. However, it is also more time consuming as
it requires O(n2

p · n2
t ) time.

Various filtering techniques have been tried for edge constraints. Ullman [27]
introduced a filtering which ensures that for each pattern edge (u, u′) ∈ Ep and
each candidate pair (u, v) ∈ Np × Nt, there exists a candidate pair (u′, v′) ∈
Np × Nt such that (v, v′) is a target edge. Candidate pairs (u, v) that do not
satisfy this property are iteratively removed until a fixed point is reached. This
filtering (called Arc Consistency) removes more candidate pairs than Forward-
Checking, but it is also more time consuming as it runs in O(ep ·n2

t ) when using
AC4 [18].
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Stronger filtering may be obtained by propagating edge constraints in a more
global way, as proposed by Larrosa and Valiente [14]. The idea is to check
for each candidate pair (u, v) ∈ Np × Nt that the number of pattern nodes
adjacent to u is smaller than or equal to the number of target nodes that are
both adjacent to v and that may be matched with nodes adjacent to u. This is
done in O(n2

p · n2
t ). This idea was generalised by Solnon’s Lad algorithm [26],

where, for each candidate pair (u, v) ∈ Np ×Nt, a redundant Local All-Different
constraint ensures that each neighbour of u may be matched with a different
neighbour of v. This is done in O(np · nt · d2p · d2t ).

3.2 Propagation of Invariant Properties

Some filtering techniques exploit invariant properties, i.e. properties associated
with nodes such that nodes may be matched only if they have compatible proper-
ties. A classical property is the degree: a pattern node u ∈ Np may be matched
with a target node v ∈ Nt only if d◦(u) ≤ d◦(v). This property is usually
used at the beginning of the search to reduce the set of candidate pairs to
{(u, v) ∈ Np × Nt | d◦(u) ≤ d◦(v)}. Other examples of invariant properties are
the number of cycles of length k passing through the node, and the number of
cliques of size k containing the node, which must be smaller for a pattern node
than for its matched target node. Invariant properties may also be associated
with pairs of nodes. For example, the number of paths of length k between two
pattern nodes is smaller than or equal to the number of paths of length k between
the target nodes with which they may be matched. These invariant properties
are used, for example,

– by Battiti and Mascia [2], to remove candidate pairs (u, v) ∈ Np × Nt such
that the number of paths starting from pattern node u is greater than the
number of paths starting from target node v;

– by Audemard et al. [1] to generalise the locally all-different constraint proposed
by Solnon [26] so that it ensures that a subset of pattern nodes can be matched
with all different compatible target nodes, where compatibility is defined with
respect to invariant properties;

– by McCreesh and Prosser [15] to filter the set of candidate pairs before starting
the search, and to generate additional implied adjacency-like constraints which
are processed during search.

Audemard et al. [1] do not limit the length of paths considered, and iteratively
increment the length until no more pairs are removed. Battiti and Mascia [2], and
McCreesh and Prosser [15] parameterise their algorithms by the maximum path
length considered when counting paths: larger values for this parameter remove
more candidate pairs, but are also more time consuming. Battiti and Mascia’s
experiments show that the best setting depends on the instance considered, and
that a portfolio running several randomised versions in time-sharing decreases
the total CPU time needed to find a solution for feasible instances. McCreesh
and Prosser simply set the parameter to 3, as this setting presented the best
overall performance in their case.
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4 Experimental Comparison of Individual Algorithms

We consider six algorithms from the literature and propose two novel ones.

4.1 Algorithms from the Literature

We selected the following algorithms from the literature, based on their
performance.

– Vf2 [5] performs weak filtering that is especially fast on trivially satisfiable
instances;

– Lad [26] combines two strong but expensive filtering techniques (All-Different
Generalized Arc Consistency and Locally All-Different);

– Glasgow [15] does expensive preprocessing based on path length invari-
ant properties to generate additional constraints, followed by weaker filtering
(forward-checking, and a heuristic All-Different propagator which can miss
deletions) and conflict-directed backjumping during search.

We have not considered the algorithm introduced in [29] because it is outper-
formed by Lad. Also, we have not considered MIP nor SAT solvers because they
are not competitive with the selected algorithms [16].
The Glasgow algorithm has a parameter, which controls the lengths of paths
used when reasoning about non-adjacent vertices. In experiments reported by
McCreesh and Prosser [15], the choice of paths of length 3 was used as a rea-
sonable compromise—longer paths lead to prohibitively expensive preprocessing
on larger, denser instances. This is often not the best choice on an instance by
instance basis: sometimes path-based reasoning gives no benefit at all, some-
times considering only paths of length 2 suffices, occasionally paths of length 4
are helpful, and even looking at paths of length 3 is relatively expensive on some
graphs. We thus consider all lengths up to 4, naming these variants Glasgow1

through Glasgow4.

4.2 New Algorithms

We introduce two new variants of Lad. The first, called IncompleteLad, does
weaker filtering which is applied once, without performing a backtracking search,
and very quickly detects inconsistencies on many instances: for each pattern node
u, we check if there exists at least one target node v such that for each neighbor
u′ of u there exists a different neighbor v′ of v such that the degree of u′ is smaller
than or equal to the degree of v′. IncompleteLad is an incomplete algorithm
that checks a sufficient, but not necessary, condition for inconsistency: when it
does not detect inconsistency, the instance may still be unsatisfiable. Its main
benefit is that it runs very fast: its time complexity is O(np(nt + et)).

The second variant of Lad is called PathLad. It combines the locally all-
different constraints introduced by Solnon [26] with the exploitation of path
length properties proposed by Audemard et al. [1]. The idea is to label each
edge (u, v) with the number of paths of length 2 between u and v, and each
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node u with the number of cycles of length 3 passing through u, and to add the
constraint that the label of a pattern node (resp. edge) must be smaller than or
equal to the label of its associated target node (resp. edge).

4.3 Problem Instances

We consider a large benchmark set of 5725 instances, which are available in a
simple text format1. These instances are grouped into 12 classes.

– Class 1 contains randomly generated scale-free graphs [29].
– Classes 2 and 3 contain instances built from a database containing various

kinds of graph gathered by Larrosa and Valiente [14]: class 2 contains small
instances generated from the first 50 graphs of the database, and class 3 con-
tains larger instances with pattern graphs from the first 50 graphs of the
database and target graphs from the next 50 graphs.

– Classes 4 to 8 contain randomly generated graphs from a database of graphs
commonly used for benchmarking subgraph isomorphism algorithms [7]:
bounded-degree graphs for classes 4 and 5, regular meshes for classes 6 and
7, and random graphs with uniform edge probabilities for class 8. All of these
instances are satisfiable.

– Classes 9 and 10 contain instances from segmented images [6,25].
– Class 11 contains instances from meshes modeling 3D objects [6].
– Class 12 contains random graph instances chosen to be close to the satisfiable-

unsatisfiable phase transition—these instances are expected to be particularly
challenging, despite their small size.

Note that Classes 3 and 12 were not considered in the previous experimental
study by McCreesh and Prosser [15]. Our set of instances is much larger than
that of Battiti and Mascia [2], who were the first to propose algorithm portfo-
lios for subgraph isomorphism problems. Battiti and Mascia only considered a
pure parallel portfolio consisting of two randomised solvers without a selection
mechanism. Their problem set consisted entirely of satisfiable instances.

4.4 Experimental Setup

We measured runtimes on machines with Intel Xeon E5-2640 v2 CPUs and
64GBytes RAM, running Scientific Linux 6.5. We used the C++ implementation
of the Glasgow algorithm [15], the C implementation of Lad [26], and the
VFLib C++ implementation of Vf2 [5]. Software was compiled using GCC 4.9.
Each problem instance was run with a timeout of 108 ms (≈27.8 h).

4.5 Results

Figure 1 displays the evolution of the cumulative number of instances solved with
respect to CPU time. It shows us that the best solver depends on the time limit
1 http://liris.cnrs.fr/csolnon/SIP.html.

http://liris.cnrs.fr/csolnon/SIP.html
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Fig. 1. Cumulative number of solved instances over CPU time for the eight algorithms
we consider in this paper, and the virtual best solver (VBS) that shows the best solver
on an instance by instance basis. (Color figure online)

considered. IncompleteLad is able to solve easy unsatisfiable instances very
quickly, in a few milliseconds. For time limits less than 5 ms, it is the best solver.
However, it is not able to solve harder unsatisfiable instances, nor can it solve
satisfiable instances.

PathLad and Glasgow1 outperform IncompleteLad for longer time lim-
its: PathLad is the best solver for time limits greater than 5 ms and less than
40 ms, and Glasgow1 is the best solver for time limits greater than 40 ms and
less than 3000 ms.

Glasgow2 becomes the best solver for time limits greater than 3000 ms. As
we increase the CPU time limit, the performance of variants of Glasgow with
longer paths (Glasgow3 and Glasgow4) improves. This is what we expect, as
more reasoning is expensive, but increases the potential reduction of the search
space. Eventually, Glasgow2 and Glasgow3 become very closely matched,
and with runtimes very close to the limit, Glasgow4 nearly catches up. This
behavior is class-dependent: for class 2, for example, the behavior is roughly
monotone, with Glasgow1 dominating for low runtimes, then Glasgow2, then
Glasgow3, then Glasgow4 each becoming best as the runtimes increase.
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The figure illustrates the potential for portfolios and algorithm selection we
have: there is clearly no single solver that dominates throughout.

Furthermore, the virtual best solver (VBS), which considers the best algo-
rithm for each instance separately, obtains much better results, showing us that
the algorithms have complementary performance. The difference between VBS
and single best is particularly pronounced for CPU time limits less than 1000 ms.
In many applications, it is important to have the fastest possible algorithm even
if the absolute differences in CPU time are small. For example, in pattern recog-
nition [6,25] and chemical [8] applications, we often have to solve the subgraph
isomorphism problem repeatedly for a very large number of graphs (in order to
find a pattern image or molecule in a large database of target images or com-
pounds, for example), so having an algorithm that is able to solve an instance in
100 ms instead of 1000 ms makes a big difference. Therefore, it is important to
select the best algorithm for each instance, even if the instance is an easy one.
Furthermore, this selection process should not unduly penalise easy instances, i.e.
it should not take more time than the solution process time for these instances.

Table 1 shows us that we cannot simply select algorithms based on the
instance class. For all classes, there are always at least two algorithms which
are the best for at least one instance of the class. In particular, for classes 2 and
3, each algorithm is the best for at least one instance (except Glasgow4 for
class 3).

Table 1. Number of times each algorithm is best, for each class.

Class Vf2 Lad Glasgow

Incomplete Default Path 1 2 3 4

1 0 20 0 0 80 0 0 0

2 201 92 189 270 520 180 53 15

3 112 1608 617 959 396 195 21 0

4 270 0 0 0 5 0 0 0

5 266 0 1 3 31 0 0 0

6 71 0 0 0 7 14 1 0

7 270 0 0 0 5 0 0 0

8 0 0 0 1 195 69 6 0

9 77 3 0 19 103 1 0 0

10 13 0 2 2 7 0 0 0

11 2 142 71 17 23 0 0 0

12 0 0 1 2 158 6 1 0

Total 1282 1865 881 1273 1530 465 82 15
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5 Algorithm Selection Approach

Our approach is composed of three steps. First, we run two presolvers in a
static way to quickly solve easy instances. This ensures that we achieve good
performance on instances that can be solved in a small amount of time. Second,
we extract features from instances which are not solved by the first step. Finally,
we run algorithm selection to choose the algorithm to solve the instance with.

5.1 Presolving

Experimental results reported in Sect. 4.5 show that IncompleteLad is very
fast (7 ms on average) and able to solve 1919 instances from our benchmark
set very quickly. Therefore, we first run IncompleteLad: if unsatisfiability is
detected, we do not need to process it further.

Vf2 is also able to solve many easy instances very quickly: from the 3806
instances that are not solved by IncompleteLad, 1470 are solved by Vf2 in less
than 50 ms. Therefore, after running IncompleteLad, we run the Vf2 solver
for 50 ms. This solves easy instances without the overhead of running algorithm
selection and avoids potentially making incorrect solver choices.

We also include Vf2 in the portfolio, as it may solve an instance given more
time, but not IncompleteLad, as it is an incomplete solver that cannot solve
satisfiable instances.

After the presolving step, we are left with 2336 hard instances that we con-
sider for algorithm selection.

5.2 Feature Extraction

If presolving does not give us a solution, we extract features that characterize
the instances. For both the pattern and the target graph, we consider some basic
graph properties that can be computed very quickly:

– the number of vertices and edges;
– the density—we expect that some kinds of filtering (like those based upon

locally all-different constraints) might be expensive and ineffective on dense
graphs;

– how many loops (self-adjacent vertices) the graph contains—as loops must be
mapped to loops, this could have a strong effect on how easy an instance is;

– the mean and maximum degrees, and whether or not every vertex has the same
degree (the degree-based invariants used by Lad and Glasgow do nothing
at the top of search if every vertex has the same degree);

– whether or not the graph is connected;
– the mean and maximum distances between all pairs of vertices (if nearly all

vertices are close together, path-based reasoning is likely to be ineffective) and
the proportion of vertex pairs which are at least 2, 3 and 4 apart.
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Alongside these basic features, we include information computed by Incom-
pleteLad. To (try to) prove inconsistency, IncompleteLad removes candi-
date pairs. The number of successfully removed pairs gives information on the
distribution of edges (the fewer removed pairs, the more uniform the distribu-
tion). As well as the number of removed pairs, we also record the percentage
with respect to all possible pairs, and the minimum and maximum percentages
of removed values on a per-variable basis. Finally, we include the CPU time
required to compute these features as features. However, those features were not
more informative than the other ones.

5.3 Selection Model

We use Llama [11] to build our algorithm selection model. Llama supports
the most common algorithm selection approaches used in the literature. We
performed a set of preliminary experiments to determine the approach that works
best here.

We use 10-fold cross-validation to determine the performance of the Llama
models. The entire set of instances was randomly partitioned into 10 subsets
of approximately equal size. Of the 10 subsets, 9 were combined to form the
training set for the algorithm selection models, which were evaluated on the
remaining subset. This process was repeated 10 times for all possible combina-
tions of training and test sets. At the end of this process, each problem instance
in the original set was used exactly once to evaluate the performance of the
algorithm selection models.

Llama’s pairwise regression approach with random forest regression gave
the best performance. The idea is very similar to the pairwise classification
models used by Xu et al. [28]. For each pair of algorithms in our portfolio, we
train a model that predicts the performance difference between them. If the first
algorithm is better than the second, the difference is positive, otherwise negative.
The algorithm with the highest cumulative performance difference, i.e. the most
positive difference over all other algorithms, is chosen to be run.

As this approach gives very good performance already, we did not tune the
parameters of the random forest machine learning algorithm. It is possible that
overall performance can be improved by doing so and we make no claims that the
particular algorithm selection approach we use in this paper cannot be improved.

The data we use in this paper is available as ASlib [3] scenario GRAPHS-
2015.

6 Experimental Evaluation of Algorithm Selection

Table 2 shows the performance of our algorithm selection approach, compared
to two baselines, on the set of 2336 hard instances. The virtual best solver is
the oracle predictor that, for each instance, chooses the best solver from our
portfolio. This is the upper bound of what an algorithm selection approach can
achieve. The single best solver is the one solver from the portfolio that has the
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Table 2. Algorithm selection performance on the set of 2336 hard instances. MCP is
the misclassification penalty; that is, the additional time required to solve an instance
because of choosing solvers that perform worse than the best. Mean MCP and perfor-
mance are over all 2336 instances; when an instance is not solved, its performance is
set to the time limit (108 ms).

Model Mean MCP Solved instances Mean performance

Virtual best 0 2219 5822809

Llama 705097 2203 6529563

Glasgow2 1960683 2173 7783492

overall best performance across the entire set of instances, at the CPU time limit
of 108 ms, i.e. Glasgow2. We consider it a lower bound on the performance of
the algorithm selection approach. We are able to solve 30 more instances than
the single best solver within the timeout, with only an additional 16 to the
virtual best. In terms of average performance, we are able to close 64% of the
gap between the single best and the virtual best solver.

Figure 2 shows the cumulative number of solved instances over time for the
individual solvers, the virtual best solver, and the Llama algorithm selection
approach. The algorithm selection model does not perform well for instances
that can be solved quickly because of the overhead incurred through feature
computation. As the instances become more difficult to solve, its performance
improves.

Table 2 shows the performance of the selection model on its own. The perfor-
mance of the entire algorithm selection system, including the preprocessing, is
shown in Table 3. Our system is able to close more than 60% of the gap between
single and virtual best, similar to the results on the set of hard instances.

Figure 3 shows the cumulative number of solved instances over time for the
algorithm selection system including IncompleteLad and Vf2 presolving on
the full set of instances. The performance on small instances is much better than
the Llama selector alone (cf. Fig. 2) and the region where Llama performs worse
than the individual solvers is now limited to approximately 102 to 105 ms.

We train the algorithm selection model specifically for the timeout of 108 ms.
In particular, we are interested in minimising the performance difference to the
virtual best. Problem instances that take longer to solve contribute more to this
difference than easy instances and therefore carry more weight for the algorithm
selection model. That is, choosing the wrong solver for a hard instances is much
worse than choosing the wrong solver for an easy instance.

Figures 2 and 3 show that for the easy instances from the set of hard instances,
the performance improvement through algorithm selection is negated by the cost
of computing the features. The presolving steps improve performance dramati-
cally over the full set of instances (cf. Tables 2 and 3).
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Fig. 2. Cumulative number of solved instances over time for the virtual best solver,
Llama, and the single best solver Glasgow2 on the set of 2336 hard instances. Other
individual solvers are shown as dotted lines, in the same colors as Fig. 1. (Color figure
online)

Table 3. Algorithm selection system performance on the full set of 5725 instances.

Model Mean MCP Solved instances Mean performance

Virtual best 0 5608 2375913

Llama 287704 5592 2664293

Glasgow2 798660 5562 3174573

6.1 Analysis of Features Used by the Model

Analysing the final model, we saw that the most important features were, in
order:

– the maximum degree of the pattern graph;
– the mean degree of the target graph;
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– the proportion of target vertices that are at least distance 3 apart;
– the number of values removed during IncompleteLad presolving.

We introduced the proportion of target vertices that are at least 3 apart as a
feature expecting it to be helpful in distinguishing between Glasgow variants—
if few vertices are far apart, longer paths are unlikely to be useful. However,
in practice this feature also gives a rough indication of how sparse the graph
is—locally all-different filtering is weak and expensive on dense graphs, and
the feature turned out to be helpful for selecting between Glasgow and Lad
variants too.

As expected, both the pattern graph and the target graph provide impor-
tant features. We conclude that even basic graph properties are predictive of
sophisticated algorithms’ performance.
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6.2 Analysis of PathLad Versus Glasgow2

To gain further insight into the behavior of the algorithms, we investigated what
affects the relative performance of PathLad and Glasgow2. This pair is of
particular interest because they are the best “medium-case” algorithms that use
strong and weak filtering during search, respectively. We used machine learning
techniques (JRip [4]) to train a simple, human-understandable model which is
able to distinguish these solvers for the 2336 hard instances and gives perfor-
mance better than always choosing one of them. The model uses four rules:

1. If IncompleteLad presolving removes at least 28.01% of the pairs, and at
least 94.12% of the values from at least one domain, then pick PathLad.

2. If the target has at least 610 vertices, and if the maximum distance between
any two pattern vertices is at most 8, and if the pattern is not regular, and
if the time taken to compute the distance-based features on the target graph
is no more than 1277 ms, then pick PathLad.

3. If IncompleteLad filtering removed at least 5.90% of possible pairs, and if
less than 84.66% of the pattern vertices are within distance 2 of each other,
then pick PathLad.

4. Otherwise, pick Glasgow2.

The first and third rules intuitively make sense: if IncompleteLad filtering does
well, it is likely that continuing with this kind of filtering during search will be
successful. The third rule also excludes using PathLad on very dense pattern
graphs, where locally all-different filtering is expensive and weak. The second
rule is less obvious: while PathLad filtering is weak on regular graphs and it
makes sense to exclude this case, the other components appear to exclude large
and dense target graphs. The model suggests that it would be worth exploring
dynamically enabling or disabling locally all-different filtering during search,
based upon very simple features which could be recomputed as search progresses
and conditions change.

This provides an interesting insight into the behavior of our algorithms, as
well as giving indications for future work.

7 Conclusion and Future Work

The problem of identifying subgraph isomorphisms is a hard computational prob-
lem that has many applications in diverse areas. In this paper, we presented a
portfolio of six algorithms from the literature and two new variants of the Lad
algorithm. We introduced a set of novel features to characterise subgraph iso-
morphism problems and leveraged them to select the most appropriate algorithm
from the portfolio for each instance.

We demonstrated that our algorithm selection approach achieves substantial
performance improvements over the single algorithm that has the best perfor-
mance on our benchmark set. We showed that combining an algorithm selec-
tion approach with a new incomplete variant of Lad that is able to detect
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inconsistencies and a presolver boosts performance even further. Finally, we
showed how insights from machine learning can guide algorithm development.

Directions for future work include scheduling multiple solvers to run instead
of a single one; in particular the Glasgow algorithms provide a multi-core
parallel implementation, which can use a configurable number of threads. It
would also be interesting to investigate other variants of the subgraph isomor-
phism problem.
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Abstract. Real-world instances are critical for the development of state-
of-the-art algorithms, algorithm configuration techniques, and selection
approaches. However, very few true industrial instances exist for most
problems, which poses a problem both to algorithm designers and meth-
ods for algorithm selection. The lack of enough real data leads to an
inability for algorithm designers to show the effectiveness of their tech-
niques, and for algorithm selection it is difficult or even impossible
to train a portfolio with so few training examples. This paper intro-
duces a novel instance generator that creates instances that have the
same structural properties as industrial instances. We generate instances
through a large neighborhood search-like method that combines compo-
nents of instances together to form new ones. We test our approach on
the MaxSAT and SAT problems, and then demonstrate that portfolios
trained on these generated instances perform just as well or even better
than those trained on the real instances.

1 Introduction

One of the largest problems facing algorithm developers is a distinct lack of
industrial instances with which to evaluate their approaches. Yet, it is the use
of such instances that helps ensure the applicability of new methods and pro-
cedures to the real-world. Algorithm configuration and selection techniques are
particularly sensitive to the lack of industrial instances and are prone to overfit-
ting, as it is difficult to build valid learning models when little data is present.
Although a plethora of random instance generators exist, the structure of indus-
trial instances tends to be different than that of randomly generated instances,
as has been shown for the satisfiability (SAT) problem [3,4,20].

In this work, we therefore present a novel framework for instance generation
that creates new instances out of existing ones through a large neighborhood
search-like iterative process of destruction and reconstruction [28] of structures
present in the instances. Specifically, given an instance to modify, m, and a
pool of similar instances, P , we destroy elements of m that fit certain properties
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 123–140, 2016.
DOI: 10.1007/978-3-319-50349-3 9
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(such as variable connectivity) and merge portions of the instances in P into m,
to create a set of new instances. We compute the features of each new generated
instance and accept the instance if it falls into the cluster of instances defined
by P . To the best of our knowledge, our framework is the first approach able to
generate industrial-like instances directly from real data.

Aside from the immediate benefits of providing a good training set for portfo-
lio techniques, this type of instance generation has the potential of opening new
avenues for future research. In particular, the underlying assumption of most
portfolio techniques is that a representative feature vector can be used to iden-
tify the best solver to be employed on that instance. Techniques like ISAC [19]
take this idea further by claiming that instances with similar features are likely to
have the same underlying structure, and can therefore be solved using the same
solver. Structure-preserving instance generation uses and furthers this notion,
that in order to predict the best solver for a given instance, one should create
a plethora of instances with very similar features, train a model on them, and
then make a prediction for the original instance. Additionally, given recent results
regarding the benefits of having multiple, correlated instances for CSPs [14], our
instance generator may be able to help solvers more quickly find solutions, as it
can provide such correlated instances.

In theory, structure-preserving instance generation can even be used to gener-
ate instances significantly different from those observed before. This could in turn
allow the targeted creation of portfolios that can anticipate any novel instances
not part of the original training set. It would also allow for a systematic way
of studying the problem space to identify regions of hard and easy problems, as
in [31] but with a stronger basis in real instances. This would allow algorithm
designers to create new approaches to specifically target challenging problems.

In this work we primarily focus on the well-known SAT problem, as well as its
optimization version, maximum SAT (MaxSAT). These two problems pose ideal
test beds for our approach, as although the number of industrial instances is
low, it is still larger than what is available in most other domains. For example,
the MaxSAT competition in 2013 [7] had only 55 industrial instances in the
unweighted category, as opposed to 167 crafted and 378 random instances. We
show that the instances generated by our method have similar runtime profiles
as the industrial instances they are based on, that they have similar features,
and that they can be used in algorithm selection techniques with no loss of
performance and, in some cases, even provide small gains. We then show that
our technique will even help for problems with larger available datasets, as is
the case with SAT and the 300 available industrial instances from the 2013 SAT
Competition [8]. We also evaluate our generator using the Q-score from [11],
which is specifically designed for evaluating instance generators, and receive
near perfect scores. Finally, our source code is available in a public repository
at: https://bitbucket.org/eusorpb/spig.

https://bitbucket.org/eusorpb/spig


Structure-Preserving Instance Generation 125

2 Related Work

Numerous random instance generators exist for SAT/CSP problems, such
as [9,16,32], to name a few1. Some generators try to hide solutions within
the problem or generate a specific number of solutions ([21,27], respectively),
whereas others convert problems from other fields to SAT/CSP problems (e.g.,
[1]). The approach of Slater (2002) [29] creates instances by connecting “mod-
ules” of 3SAT instances with a shared component, a structure that is often
present in industrial instances. For MaxSAT, several generators exist, e.g. [12],
which generates bin packing-like problems. The generator from Motoki [24] can
create MaxSAT problems with a specific number of unsatisfied clauses. How-
ever, in all of these generators the structures inherent in industrial problems are
not present.

The most industry-like SAT/MaxSAT instances are generated by Ansótegui
et al. [2] through the modification of a random instance generator to use a
power-law distribution. In contrast, our framework is able to specifically tar-
get certain types of industrial instances. Our approach is similar to instance
morphing [15], the primary difference being our focus on instance features and
a destroy-repair paradigm. Furthermore, morphing is meant to “connect” the
structures of instances, while our goal is to also find new combinations of struc-
tures leading to new areas of the instances’ feature space.

Burg et al. propose a way of generating SAT instances by clustering the
variables based on their degree in a weighted variable graph in Burg et al. [13].
Several approaches are tested to try to “re-wire” the instance by adding and
removing connections between the variables. The authors compute the features
from Nudelman et al. [26] for the original instances and the generated ones,
noting that several features of the generated instances no longer resemble the
original instances. In contrast, the instances we generate have similar features to
their original instances and stay in the same cluster as the original instance pool.

An evolutionary algorithm approach is used by Smith-Miles and
van Hemert [31] to generate traveling salesman problem instances that are
uniquely hard or easy for a set of algorithms. This approach starts from a
random instance under some assumptions about the size and structure of the
resulting instance. In Lopes and Smith-Miles [22], real-world-like instances for a
timetabling problem are generated using an existing instance generator. While
similar to our approach, their work focuses mainly on generating instances that
are able to discriminate between solvers in terms of performance. Furthermore,
our approach does not require an existing instance generator. TSP instances
are also evolved in Nallaperuma et al. [25] for a parameter prediction model
for an ant colony optimization model. However, all these works focus on cre-
ating hard instances for particular solvers, rather than instances that resemble
industrial instances.

1 An extended version of this work provides a more extensive literature review; see:
https://bitbucket.org/eusorpb/spig/.

https://bitbucket.org/eusorpb/spig/
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The most similar work to ours is from Smith-Miles and Bowly [30], in which
instances are generated for the graph coloring problem targeting specific instance
features. The authors project their features into a two dimensional space with
a principal component analysis, and then check if the instance features to be
generated are in a feasible region of the space. A genetic algorithm is then used
to try to find an instance matching the input features. This approach is more
general than ours, but it is not known how well it works with industrial instances,
or other problem types.

3 Structure-Preserving Instance Generation

Our instance generation algorithm is motivated by the differing structures found
in SAT instances, especially between the industrial, crafted and random cate-
gories of instances. Figure 1 provides some visualizations of SAT instances based
on their clause graphs. In these graphs, each node represents a clause in the
formula, with an edge specifying that the two clauses share at least one vari-
able. The nodes are also color coded from red to blue, where nodes with only
a few edges are colored red and those with the most edges are colored blue.
A force-based algorithm is used to spread nodes apart. In this way, nodes that
share many edges between each other are pulled together into clumps, while the
others are pushed away.

(a) AProVE07-08 (I) (b) aes 32 3 keyfind 1 (I) (c) eq-atree-braun-7-. . . (I)

(d) battleship-10-17-sat (C) (e) ccp-s8-facto2 (C) (f) unif-k3-r4.26-v35. . . (R)

Fig. 1. Visualizations of industrial (I), crafted (C) and random (R) instances made
with Gephi [10]. Nodes are clauses, and an edge exists if the corresponding clauses
share a variable. (Color figure online)
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Algorithm 1. Structure-preserving instance generation algorithm.
1: function SpIG(m, P , α, β)
2: gen ← ∅, m′ ← m
3: repeat
4: do
5: m′ ← destroy(m′, select-struct(m′))
6: while size(m′) > β · size(m)
7: do
8: i ← random instance in P
9: d ← max(0,vars(m) − vars(m′))

10: m ← repair(m′, select-struct(i), d)
11: while size(m′) < α · size(m)
12: if accept(m′, P ∪ {m}) then
13: gen ← gen ∪ {m′}
14: until terminate
15: return gen

Note that the industrial instances, which in Fig. 1 are (a), (b) and (c), tend
to contain a core set of clauses that share at least one variable with many other
clauses. In addition, a large number of small subsets of clauses are built on the
same set of variables. A few variables link the subsets of clauses to the common
core. In contrast, instances (d) and (e), which are from the crafted category
from the SAT competition, and (f), which is from the random category, show
significantly more connectivity between clauses and less modules or groupings
of nodes within the graph.

Given a pool of instances, P , and an instance to modify, m, structure-
preserving instance generation works as shown in Algorithm1 to create a set
of generated instances gen. The instance pool should be a set of homoge-
neous instances, such as the instances in a particular cluster from the ISAC
method [19]. While using a heterogeneous pool would still result in instances,
recall that in this work we aim to create instances with similar properties. In
cases where an industrial instance has no similar instances, our method can still
be used with a pool consisting of only the instance to modify. The parameters
α ∈ [0, 1] and β ∈ [1,∞] define the minimum and maximum of the size of the
generated instances in proportion to m, respectively. We use these values as
general guidelines rather than hard constraints in order to prevent the instance
from growing too large or too small.

Our proposed algorithm can be thought of as a modified large neighborhood
search [28], in which the incumbent solution, in this case the instance to mod-
ify, is iteratively destroyed and repaired. The destroy function identifies and
removes a particular structure or component of m. The destroy process is run
at least once, and is continued until the instance drops below its maximum size.
The repair function then identifies and extracts structures from one or more
randomly chosen instances from P and inserts them into m. This is repeated
until m is larger than the minimum instance size. The d parameter taken by the
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repair method makes sure that the total number of variables in the problem also
stays constant. An acceptance criterion determines whether or not the modified
instance should be added to the dataset of instances being built. We base this
acceptance on the features of the instance and check whether each individual
feature is close to the features of the cluster formed by P ∪ {m}. For problems
like SAT or CSP, where an unsatisfiable component or tautology could be intro-
duced, a check can be performed to ensure that the instance did not become
trivial to solve. The algorithm terminates when enough instances are generated.

Here it may be argued that an alternate search strategy may also work as
well or even better than the one outlined in this section. While alternatives
are certainly possible, they are beyond the scope of this work (although some
have been tried). For example, one can imagine a combination of local search
strategies where each method adjusts an instance to match some combination
of features. This modifies the internals of an instance while keeping the instance
features relatively unchanged, or moves them back if they change too much. The
issue with this method is that the features of interest for problems like SAT are
highly interdependent, making any fine grained control over them an arduous
task at best. Furthermore, it is frequently very easy to make an instance trivial
to solve by introducing an infeasibility, a position that is very difficult to remedy.

Alternatively, one can argue that as long as the provided acceptance criteria
is utilized as is, it is possible to employ a local search to just try a number of
instantiations. While possible in theory, this approach can take a considerable
amount of time before stumbling over even a single seemingly useful instance.
The problem space of instance generation is simply too vast. Therefore, while
we do not claim that the approach presented here is the only way of generating
instances or even the best way, it is a systematic procedure that allows rich
datasets to be quickly generated that we can empirically demonstrate works
well in practice.

4 Application to SAT and MaxSAT

We present an instantiation of the structure-preserving instance generation
framework on the NP-complete SAT problem and NP-hard MaxSAT problem.
A SAT problem consists of a propositional logic formula F given in conjunctive
normal form. The goal of the SAT problem is to find an assignment to the vari-
ables of F such that F evaluates to true. MaxSAT is the optimization version
of SAT, in which the goal is to find the largest set of clauses of F that have
some satisfying assignment. A version of MaxSAT can also have a weight asso-
ciated with each clause, with the objective then being to maximize the sum of
satisfied clauses. In this work, however, we concentrate only on the unweighted
variant of MaxSAT and describe our structure identification routines (select-
struct), destroy, repair and acceptance operators. Due to the similarity of the
SAT and MaxSAT problems, our instance generation procedure is the same with
the exception of the acceptance criteria, which we modify to avoid trivial SAT
instances.
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Algorithm 2. Variable based structure selection heuristic.
1: function select-struct-var(i)
2: E ← ∅, f ← 0
3: a ← mean-var-in-clauses(i)
4: while E = ∅ do
5: E ← {v ∈ vars(i) | |clauses(v) − a| ≤ f}
6: f ← f + 1

7: return in-clauses(random variable in E)

Algorithm 3. Clause based structure selection heuristic.
1: function select-struct-clause(i, σ)
2: C = ∅
3: mcod ← mean-clause-out-degree(i)
4: scod ← std-clause-out-degree(i)
5: while C = ∅ do
6: c ← random clause in i
7: cod ← clause-out-degree(c)
8: if |cod − mcod | < σ · scod then
9: C ← {c′ ∈ clauses(i) | c and c′ share at least one variable.}

10: return C

Structure Identification. Many industrial SAT/MaxSAT instances consist of
a number of connected components that are bound together through a core of
common variables (see Fig. 1). Our goal is to identify one of these components in
an instance at random and remove it. To this end, we propose two heuristics for
identifying such structures that we use in both the destroy and repair functions
with 50% probability in each iteration. The first heuristic identifies a set of
clauses shared by a particular variable, whereas the second identifies a clause
and selects all of the clauses it shares a variable with.

Our goal in the variable-based selection heuristic is to identify components of
instances with a shared variable, as shown in Algorithm 2. We first calculate the
mean number of clauses that a variable is in. Variables in many clauses are likely
to be a part of the “core” of an instance that connects various sub-components,
whereas variables in the average number of clauses are more likely to be part
of the sub-components themselves. The algorithm selects a set of variables, E,
in the average number of clauses, if there are any. If E is empty, the algorithm
relaxes its strictness of how many clauses a variable should be in until some
clauses are found. Finally, the algorithm selects a variable from E at random
and returns all of the clauses that variable is present in.

In contrast to our previous heuristic, the clause-based selection heuristic
focuses on clauses with an average out degree. The out degree of a clause is
defined as the number of clauses sharing at least one variable in common with
the clause. This corresponds to the out degree of the clause’s node in the clause-
variable graph. Algorithm 3 accepts an instance i and a parameter σ, described
below. The heuristic selects a random clause and compares its out degree to
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the average out degree of all the clauses. If the clause’s out degree is within σ
standard deviations of the average clause out degree, we accept the clause and
return all of the clauses it is connected to in the clause-variable graph.

Destroy. Our destroy function accepts an instance i and a set of clauses C
selected by select-struct-var or select-struct-clause that are to be
removed from the instance. First, all clauses in C are removed, i.e., clauses(i) ←
clauses(i) \ C, and then all variables that no longer belong to any clause are
removed from vars(i).

Repair. Our repair procedure maps the variables contained within a previously
selected set of clauses to the variables present in the instance to modify, and adds
new variables with some probability. To avoid confusion, we refer to the instance
being modified as the receiver, and the instance providing clauses as the giver.
Algorithm 4 shows the repair process, which is initialized with the receiving
instance r, the set of clauses to add, C, and some number of variables to add to
the instance, d. The parameter d is used to increase the size of the receiver if too
many variables are deleted during the destruction phase. Additionally, we note
that C contains clauses from the giver, meaning the variables in those clauses do
not match those in the receiving instance. Thus, the main action of the repair
method is to find a mapping, M , that allows us to convert the variables in C
into similar variables in the receiver.

We map the variables in C into the variables of r by computing the following
three features for each variable in the var-features function. We use these
features because our goal is to map variables with similar connectivity to other
parts of the instance with each other and they are easy to compute.

Algorithm 4. SAT/MaxSAT instance repair procedure.
1: function Repair(r, C, d)
2: Vg ← ⋃c∈C vars(c)
3: Fr ← var-features(r)
4: Fg ← var-features(Vg)
5: M ← ∅
6: for vg ∈ Vg do
7: if ¬trivial(vg) and rnd(0, 1) < d/|Vg| then
8: v′ ← new variable
9: vars(r) ← vars(r) ∪ {v′}

10: M ← M ∪ {vg �→ v′}
11: else
12: dists ← {‖Fr(v) − Fg(vg)‖2, ∀v ∈ vars(r)}
13: v′ ← argminv∈vars(r){dists(v) | v �∈ M}
14: M ← M ∪ {vg �→ v′}
15: clauses(r) ← clauses(r) ∪ map-vars(C, M)
16: return r
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1. Number of clauses the variable is in divided by the total number of instance
clauses.

2. Percent of clauses the variable is in, in which the variable is positive.
3. Average of the number of variables of each clause the variable v is in.

On Line 7 of Algorithm 4 we decide whether to map vg to an existing vari-
able in r or to a new variable. The function trivial(vg) returns true if vg is
not (i) positive in at least one clause in C, and (ii) negated in at least one
clause C. This ensures that if we map vg to a new variable, a valid assignment
of vg is not entirely obvious. We assign vg to a new variable with probability
d/|Vg|, as with this probability we add roughly d new variables in the absence
of trivial variables.

We compute the L2 norm between the giver variables and the receiver’s
variables on line 12, and should we decide not to add a new variable to r, we
map vg to the variable in r that most closely resembles its features that is not
yet assigned to a different variable. This is a greedy procedure, that finds the
best match for each variable individually. Finally, the algorithm performs the
variable mapping and merges the clauses of C into r. We omit the details of the
merging process as it is straight forward.

Acceptance Criteria. We compute a set of well known features for SAT and
MaxSAT2 problems from [26] in order to determine whether to accept a modified
instance. We compute the average and standard deviation for each feature across
the entire pool of instances (including the instance to modify). An instance is
accepted if all of its features are within three standard deviations of the mean.
That is, we compare a feature to the cluster center on a feature by feature
basis. However, some features do not vary at all in a cluster, meaning they
have a standard deviation of 0. In such cases, even small changes to an instance
can result in a rejection of all generated instances, although the instance is for
the most part within the cluster. Thus, when absolutely no instance could be
generated we relax the conditions for features that do not vary within the cluster,
and allow them to vary by some epsilon value. We note that in our experiments
such instances were still well situated within clusters when measured with the
Euclidean distance to the cluster center.

For SAT problems, we extend this acceptance criteria with an execution of the
instance with a SAT solver. If the instance is solvable in under 30 s it is discarded.
We do this because our generation procedure sometimes introduces unsatisfiable
components to satisfiable problems that are easily found and exploited by solvers.
This clearly breaks the structure of the instance that we are striving to preserve,
thus the instance must be discarded. Note that this does not guarantee that the
instance will be satisfiable, all we are checking is that the generated instance is
not trivially solvable. This issue generally only happens to a couple of instances
per generation procedure.

2 We do note use local search probing features in this work.
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5 Computational Evaluation

We perform an evaluation of structure-preserving instance generation on
instances from the MaxSAT and SAT competitions. We show that the instances
generated using our method preserve structure well enough such that they are
effectively solved using the same algorithms as the original instances. To eval-
uate this, we train an algorithm selection approach on the generated data and
evaluate it on the subset of original test instances that were neither part of
the training nor the generation. It is assumed that if our generated instances
can allow us to train a portfolio to identify the most appropriate solver for the
instance at hand, then they successfully embody the same key structures as the
original industrial data. For SAT, we also use the Q-score method of [11] to show
the quality of our instance generator. All experiments were performed on a clus-
ter of Intel Xeon E5-2670 processors with 4 GB of RAM for random instances
and 12 GB for industrial instances for MaxSAT (as industrial MaxSAT instances
are very large), and 4 GB of RAM for all SAT instances.

5.1 MaxSAT

For MaxSAT, we evaluate our technique on both the random as well as industrial
instances from the MaxSAT 2013 competition [7]. Using the random dataset in
addition to the industrial dataset shows that our method can be used for any
group of similar instances, even though our main target is industrial instances.
Here we generate our datasets according to a manually established similarity
measure based on the filenames of the instances. For each pool of instances, we
perform 10 instance generations for each instance of the pool with a different
random seed. For the experiments presented in this section, we limit each gen-
eration attempt to 25 destroy/repair iterations. This process generated 5,306
instances based off of 378 random instances, and 2,606 instances based off of 42
industrial instances3.

One measure to ensure the quality of the generated instances is to compare
the runtime of a solver on both the original and the new dataset. Should the
runtime performance of an algorithm be similar on both the original and the
new dataset, we can conclude that the new dataset is similar to the old one.
This is a desirable property for our instance generator, and is based on a funda-
mental argument on which algorithm portfolios are built and what makes them
so successful in practice: that a solver/algorithm performs analogously well or
poorly on instances that are similar.

Figure 2 shows the average solution time of the original instances and their
generated counterparts for the akmaxsat and msuncore2013 solvers for several
clusterings of instances on the random and industrial datasets, respectively. The
clusters were generated based on the categories of the instances. The solutions
times are comparable for both random and industrial instances, with the excep-
tion of clusters 2 and 5 on the industrial dataset in which the generated instances

3 The MaxSAT 2013 dataset contains 55 instances, but we remove instances over 110
MB after performing unit propagation, as SpIG cannot fit them in RAM.
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(a) Akmaxsat on the random dataset. (b) Msuncore2013 on the industrial dataset.

Fig. 2. The average solution time in CPU seconds and standard deviation for each
cluster in terms of original (left bar, light gray) and generated (right bar, dark gray)
instances.

are too hard. This runtime performance similarity strongly indicates that our
generator preserves the structure of instances during generation.

Note that by comparable runtimes, we do not mean identical, which would
be an undesirable quality since generated instances should be slightly differ-
ent from the originals. Furthermore, even when running a solver on the same
instance runtimes can vary. The results displayed for the industrial dataset are
somewhat noisy, due to the fact that very few original instances exist as a basis
for comparison. For example, if we had more instances for cluster 2 (in reality
we only have a single instance), it could very well be the case that they are hard
to solve as well, but the one instance we have turned out to be solved through
a smart (or lucky) branching decision by msuncore2013.

Another important result of our CPU runtime experiments is that
“industrial” solvers perform well on our generated industrial instances, whereas
“random” solvers tend to timeout. The opposite is also true; when we run an
industrial solver on our generated random instances the industrial solvers tend
to timeout, but the random solvers perform well. This means that our instance
generation framework is able to preserve instance structure nearly regardless of
what type of instance it is used on. We note, however, that we do not intend for
our instance generator to be used on random or crafted instances, as perfectly
good generators already exist for these categories of instances. We show results
from these categories only to serve as an evaluation of the overall approach.

One might not even expect our generator to work at all on random instances,
as they tend to have little structure. We believe the effectiveness of our approach
for such instances is simply due to random changes to a random instance not
having a huge effect. Industrial instances (or any instance with some kind of
global/local structure), however, require an approach like the one we provide
so that generated instances do not get malformed through completely random
changes.
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Table 1. Comparison of a portfolio trained (leave-one-out) on only the original
MaxSAT instances, and one that is trained on the generated instances. The average
time is given in seconds.

Model Original Generated

Average time Unsolved Average time Unsolved

Best single 735 2 735 2

Random forest 988 5 599 2

SVM (radial) 734 2 591 1

VBS 184 0 184 0

Our final experimental comparison on the MaxSAT dataset observes the
effect of training a simple portfolio on only the generated instances as opposed
to the original ones. Table 1 shows the performance of a portfolio trained and
evaluated using leave-one-out cross validation. Note here that for evaluating the
generated dataset, none of the instances generated from the test instances were
included in the training set. We compare the performance of only using the over-
all best solver to a portfolio that uses either a random forest or a support vector
machine (SVM) to predict the runtime of each solver, selecting the solver with
the best expected performance. There are of course a plethora of other popular
and more powerful portfolio techniques that could be used and compared, but
random forests and SVMs are readily available to anyone and have been previ-
ously shown to be effective for runtime prediction, and here we show that even
they are able to perform well in our case. The virtual best solver (VBS) gives
the performance of an oracle that always picks the fastest solver. Due to the
limited training set, the best the portfolio can do is match the performance of a
single solver. However, if we train the same solvers on the generated instances
and evaluate on the original instances, we are able to see improvements over the
best solver, meaning the extra generated instances provide value to the portfolio
approach. Our generator is able to help fill in gaps between training instances
in the feature space, allowing learning algorithms to avoid having to make a
guess as to which algorithm will work best within such gaps. Instead, learning
approaches have data on the instances in these gaps and can make informed
decisions for their portfolio.

5.2 SAT

We next use the instances from the 2013 SAT competition [8] to conduct further
experiments. For the competition, these instances are split into three categories
each consisting of 300 instances: application (industrial), crafted, and random.
And although this competition has taken place annually for the last decade, it
is important to note that the majority of the industrial instances repeat each
year, which means our experiments use most of the instances available. We first
evaluate our generated dataset using the Q-score technique from [11]. We then
use an algorithm selection approach to confirm the usefulness of our generator.
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Algorithm Selection with CSHC. Due to the increased number of available
instances over the Max-SAT scenario, we apply a more automated technique for
grouping SAT instances for generation. In MaxSAT, the instances were grouped
based on a manually defined similarity metric associated with the filenames. For
SAT, however, the industrial instances are clustered based on their features using
the g-means algorithm from [17], an approach that automatically determines
the best number of clusters based on how Gaussian distributed each cluster is.
Limiting the minimum size of a cluster to 50 resulted in a total of 7 clusters. We
typically use 50 instances for a cluster to ensure we have a reasonable statistical
evidence that a particular solver works better than another. We sample 15% of
the instances from each cluster to compose our training set, and to form the
subsets of similar instances for generation.

We perform a more standard portfolio evaluation of the generator for SAT
since so many instances are available. For this evaluation we use the top solvers
from the 2013 SAT Competition: glucose, glue bit, lingeling 587f, lingeling aqw,
MIPSat, riss3g, strangenight, zenn, CSHCapplLC, and CSHCapplLG.

Our test set for all the subsequent experiments is the collection of 254 indus-
trial instances remaining after the subset of training instances is removed. This
list is then further reduced by removing those instances for which no solver
finds a solution within 1,800 s. This leaves a total of 195 instances. We compare
the portfolios based on three metrics: average time without timeouts (Average),
PAR10, and number of instances solved (Solved). PAR10 is a penalized average
where a timeout counts as having taken 10 times the timeout time.

For our underlying portfolio technique, we utilized CSHC [23], the technique
that won the “Open Track” at the 2013 SAT Competition and was behind the
portfolio of ISAC++ [6] that won the MaxSAT Evaluation in 2013 and 2014.
The core premise of this portfolio technique is a branching criteria for a tree that
ensures that after each partition, the instances assigned to sub-node maximally
prefer a particular solver other than the one used in the parent node. Training
a forest of such trees then ensures the robustness of the algorithm.

The results of the experiments are presented in Table 2. The best stand-
alone solver is Lingeling aqw, which solves a total of 157 instances. We trained

Table 2. Comparison of a portfolio evaluated on 195 Industrial SAT instances when
trained on either 300 randomly generated instances, 300 crafted instances, a subset of
46 industrial instances, 300 generated instances, or 1500 generated instances.

Average PAR10 Solved

Best Single 453 3,872 157

Random (300) 541 5,107 144

Crafted (300) 386 4,090 154

Industrial (46) 348 3,426 161

Generated (300) 502 3,463 162

Generated (1,500) 437 3,049 166

VBS 364 364 195
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the portfolio on a variety of training sets: 300 random instances, 300 crafted
instances, 46 industrial instances, 300 generated (industrial) instances and 1500
generated (industrial) instances. Not surprisingly, training on random or crafted
instances does not perform well. In both cases, less instances can be solved than
just using the best single solver, and the PAR10 scores are significantly higher.
This further confirms a well-known result in the algorithm selection literature
that training and test sets need to be similar in order for the learning algo-
rithm to be successful. We include these results to emphasize the fact that if our
generated instances were significantly different from the datasets they were gen-
erated from, we would expect similarly bad performance on the test set. Indeed,
using even just 46 industrial instances already results in better performance
than the best single solver in terms of average time, PAR10 and the number of
instances solved.

Using 300 generated industrial instances shows similar performance to the
original industrial instances in terms of the number of the PAR10 score and
number of instances solved, although the average runtime is higher. This is
already enough evidence to further confirm that our instance generation routine
is successful at preserving instance structures in SAT, as in Max-SAT. However,
because we are not limited by the number of instances we generate, we can create
much larger training samples. We therefore evaluate our portfolio trained on
1,500 generated instances and observe that 166 instances can be solved, 5 more
than with the original training set. In a competition setting, this improvement
is often the difference between first place and finishing outside the top three
solvers. This provides further support that our approach fills in gaps in the
instance feature space, and that this provides critical information to selection
algorithms that improves their performance.

Q-score. The Q-score, introduced by Bayless et al. in [11], provides a mech-
anism for assessing whether or not a dataset of instances can act as a proxy
for some other set of instances. In other words, using the Q-score we can check
whether the instances we generate share similar properties with the original
dataset of industrial instances. The score is based on the performance of para-
meters found through algorithm configuration using a method like [5] or [18].
We use SMAC [18] as it was previously used for calculating the Q-score in [11].
We configure the Lingeling and Spear solvers each three times for five days on
the same 1500 generated instances used in our algorithm selection experiments
and all 300 original industrial instances, which we label S and T , respectively.
Adopting the notation of [11] (which we refer to for full details), the Q-score is
computed by c(A(θ′

T ), T )/c(A(θ′
S), T ), where c is the PAR10 score of a parame-

terization on the specified dataset, A specified an algorithm configuration, and
θ′
T and θ′

S are the best performing configurations (on the test set) of all tuned
configurations and on the generated set, respectively.

We found the Q-score 0.9177 for lingeling and 0.9978 for Spear on our gen-
erated instances. We note that 1.0 is the best possible score. This indicates that
the datasets we generate lead to high quality parameter configurations that gen-
eralize to the original instances. Interestingly the best parameter configuration
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for Lingeling on the test set was one of the parameterizations trained on the
generated instances. However, its training set evaluation was beaten by another
parameterization, thus we do not use it in the calculation of the Q-score for the
set S. This is especially noteworthy given that our generated instance set is not
even based on all of the industrial instances, but is nonetheless being compared
to parameters specifically tuned on all 300 industrial instances.

5.3 Structure Comparison

As a final evaluation of our instance generation methodology we present a com-
parison of the original and generated instances when their features are projected
into a two dimensional space. We do this using a standard principal component
analysis (PCA). Figure 3 presents the results for both the MaxSAT and SAT
datasets. The figure shows that there is not a perfect matching between the
generated and original instances. While future work can focus on reducing the
spread between these instances, we note that a perfect matching is not desirable
as we do not want exact replicas of our instance pool. Instead, we want to cover
a range of scenarios of similar instances, which can be seen in many parts of the
projection. This subsequently leads to a better trained portfolio. Furthermore,
note that the generated instances tend to be close to their original counter-
parts in this projected space. This means that although they are not completely
identical, the generated instances are still fairly representative of their originals.

(a) MaxSAT (b) SAT

Fig. 3. Projection of the instances into 2D using PCA on their features. Original train-
ing instances are represented as blue circles, the generated instances are represented
by red triangles. (color figure online)

6 Conclusion and Future Work

One of the current key problems in solver development is the limited number of
instances on which algorithms can be compared. This is especially the case for
industrial instances, where datasets are extremely limited and difficult to expand.
To remedy this, this paper presented a novel methodology for generating new
instances with structures similar to a given dataset. We then demonstrated the
quality of the generated datasets by training portfolios on them and evaluating
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them on the original instances. This showed that not only do the instances have
similar structures as the originals, but that those structures also allow a portfolio
(and algorithm configuration) to correctly learn the best solver for provided
instances. For future work, will evaluate our instance generation framework on
other types of problems, such as CSPs and MIPs, as well as explore how to
improve the generated instances’ coverage of the feature space.
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Abstract. Feature selection in classification can be modeled as a
combinatorial optimization problem. One of the main particularities of
this problem is the large amount of time that may be needed to evaluate
the quality of a subset of features. In this paper, we propose to solve
this problem with a tabu search algorithm integrating a learning mech-
anism. To do so, we adapt to the feature selection problem, a learning
tabu search algorithm originally designed for a railway network problem
in which the evaluation of a solution is time-consuming. Experiments are
conducted and show the benefit of using a learning mechanism to solve
hard instances of the literature.

1 Introduction

A lot of computational challenges are linked to the big-data context and knowl-
edge discovery represents a very active research domain. Classification is one of
the critical tasks of knowledge discovery. In a classification context, a dataset is
composed by a set of observations. Each observation is defined by a set of fea-
tures and a class. The goal is to learn a model on those data in order to predict
classes of new observations. However, the high number of features complicates
the learning of the model, and, as a result, makes difficult the correct prediction
of new observations. Consequently, a preliminary phase is applied to help the
construction of the model, the feature selection phase.

The feature selection problem consists in choosing a subset of features, among
a larger set. It may be used (i) to simplify the understanding of a model in order
to facilitate its comprehension by users, (ii) to reduce the computational time
of algorithms that exploit those data, (iii) to reduce overfitting, in other words,
to reduce the specialization of the model to known observations.

The feature selection problem in classification can be modeled as a combina-
torial optimization problem [4], first because it consists in choosing a subset of
features among N (2N possible subsets exist), and secondly because the qual-
ity of a subset may be evaluated (by the quality of the classification model
constructed with this subset, for example). However, the use of a classifier to
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construct the model may be time expensive if an elaborate one is used. This may
be a difficulty for optimization approaches to deal with large datasets.

In this paper we investigate an optimization approach able to jointly deal
with large datasets and time-consuming classifiers. This approach based on Tabu
Search integrates a learning mechanism in order to evaluate only promising sub-
sets of features.

The remainder of this paper is organized as follows. Section 2 introduces the
feature selection problem. Section 3 presents the Learning Tabu Search approach
proposed. Section 4 drives experiments and compares results with the classical
Tabu Search approach in order to appreciate the contribution of the learning
mechanism. Finally, Sect. 5 gives some conclusions and perspectives for future
works.

2 The Feature Selection Problem in Classification

2.1 Problem Description

In a classification problem, a set of observations with known classes is used
to learn a classification model to predict the class of any new observations. A
feature selection process may be used to select information that may help the
classification. In this context, a dataset (in the following called instance) is
represented by a set of d observations. Each observation i is characterized by n
features and one class. Hence an instance is represented by a matrix A of d rows
and n columns which represents the value of each feature for each observation,
and a vector C of size d which represents the class of each observation, as follows:

A =

⎡

⎢

⎣

a11 · · · a1n

...
. . .

...
ad1 · · · adn

⎤

⎥

⎦ , C =

⎡

⎢

⎣

c1
...
cd

⎤

⎥

⎦ (1)

where ci ∈ {1, ..., k} with k the number of classes.
An instance is composed by two sets. The first one, called training set, allows

resolution approaches to learn a model and, the second one, called validation
set, is used to evaluate that model on new observations.

2.2 Resolution Approaches

For this problem, resolution approaches may be classified in three major types
according to the way the search procedure and the classifier are combined:

– Filter Approaches: Select features independently of the classification
method used.

– Wrapper Approaches: Exploit the classifier performance to select features.
This type of approaches is used in this paper, and detailed hereafter.

– Embedded Approaches: Combine filter and wrapper approaches. They are
used to reduce overfitting.
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All features features subset Classify Quality + Best subset

Evaluate subset

Training Set Validation Set

Fig. 1. Wrapper approach

The wrapper model, initiated by Kohavi [13], applies a search procedure to
find different subsets that are evaluated with a classifier on the training set.
The best subset found during the search procedure is then evaluated on the
validation set (see Fig. 1). An advantage of this approach is to be able to deal with
correlations between features and to find relevant associations of them. However,
this kind of approaches may generate overfitting, i.e., the specialization of the
model to observations used to build the model. Moreover, the computing time
may become large with regard to the classifier used, when the dataset contains
a large number of observations and/or features.

2.3 State of the Art

Finding the best subset of features can be viewed as a combinatorial optimization
problem. Hence, a lot of methods, such as metaheuristics have been proposed to
solve it. Table 1 presents some metaheuristics from the literature, to tackle this
problem together with the type of approach used for resolution.

Table 1. Metaheuristics for the feature selection problem. The bibliographic
reference, the date and the resolution approach are also given.

Ref Date Algorithm Approach

[20] 1998 Genetic algorithm with DistAl Wrapper

[7] 2000 Niched pareto genetic algorithm Wrapper

[15] 2006 Genetic algorithm Wrapper

[14] 2007 HillClimbing Filter + Wrapper

[12] 2007 NSGA II Wrapper

[6] 2009 Genetic algorithm + iterated local search Embedded

[1] 2010 Multi-cluster feature selection Wrapper

[8] 2010 Simulated annealing and genetic algorithm Wrapper

[3] 2012 Particle swarm optimization Wrapper

[19] 2013 Particle swarm optimization Wrapper

[18] 2014 Modified micro genetic algorithm Wrapper
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This table shows that very recent methods have been proposed. Most of them
are wrapper approaches. The population-based algorithms are mainly applied
and, in particular, genetic algorithms which seem to be the favored metaheuris-
tics for this problem. On the contrary, very few local search algorithms exist.

While using an efficient classifier, such as SVM (Support Vector Machine)
[17], on large datasets, the evaluation of a subset may be time consuming. In this
context, population based metaheuristics that need to make many evaluations at
each generation, are not any more good candidates and local search approaches
may be privileged. Indeed, local search approaches benefit from neighborhood
relationships, exploit them to guide the search and to spare some evaluations.

Following these remarks, this paper proposes a local search that integrates a
mechanism to learn about these neighborhood relationships to guide the search
efficiently.

3 The Feature Selection Problem with Learning Tabu
Search

Learning Tabu Search is an efficient local search integrating a learning mecha-
nism. This section presents the steps needed to adapt this method to the Feature
Selection (FS) problem. First, the modeling of this problem is described. Then,
the integration of the learning mechanism into a tabu search is explained. Finally,
each component of the method is detailed to understand the adaptation.

3.1 Feature Selection Problem Modeling

Representation of Solutions. A solution s is a subset of features. It is repre-
sented by a bit string of size n, the total number of features: s = [a1, ..., an] with
ai ∈ {0, 1},∀i ∈ {1, ..., n}. The ith bit ai indicates if the feature i is chosen
(ai = 1) or, on the contrary, if it is not (ai = 0).

Evaluation of Solutions. For the FS problem in classification, several crite-
ria are commonly used to measure the quality of a solution. First, it may be
measured by the quality of the classification realized using the selected features.
Most of classifiers propose to compute the accuracy, which is defined as the
ratio between the well-classified observations and the total number of observa-
tions tested. The accuracy is computed as follows:

accuracy =
number of well-classified observations

total number of observations

Secondly, the number of selected features is an important criterion for FS
problem. Indeed, in order to obtain more interpretable models, the number of
selected features should be minimized. This criterion is defined as the ratio
between the number of selected features (# S Features) and the total number of
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features (# Features). In order to obtain a maximization criterion, the criterion,
noted features, is defined as follows:

features = 1 − # S Features
# Features

This paper considers these two maximization criteria, accuracy and features.
Note that, in the literature, other criteria are also used such as sensitivity or
specificity. In this work, the FS problem is presented as a single-objective com-
binatorial optimization problem.

Consequently, the fitness function f is defined as a weighted sum between
accuracy and features:

f = α ∗ accuracy + (1 − α) ∗ features

where α ∈ [0, 1] is a weighting coefficient (set to 0.75 in the experiments). The
goal is to find the subset of features that maximizes f .

Neighborhood. For the FS problem, we consider the well-known one-flip neigh-
borhood defined, for all s in the search space, as follows:

N 0
1 (s) = {s′ | ∃i ∈ {1, ..., n} s.t. a′

i �= ai and ∀j �= i, a′
j = aj}

As the number of selected features has to be minimized, a good solution is
represented with most of bits equal to 0. Hence the probability of flipping a bit
from 0 to 1 is higher than flipping a bit from 1 to 0. Consequently, in order to
give the same chance to both flips 0 to 1 and 1 to 0, we divided the neighborhood
into two sub-neighborhoods. The add neighborhood (NA) is the set of neighboring
solutions where one bit has been flipped from 0 to 1. The drop neighborhood (ND)
is the set of neighboring solutions where one bit has been flipped from 1 to 0.
Then, N 0

1 (s) = NA(s) ∪ ND(s) and NA(s) ∩ ND(s) = ∅. The neighborhoods NA

and ND are mathematically defined as:

NA(s) = {s′ | ∃i ∈ {1, ..., n} with a′
i = 1 and ai = 0 and ∀j �= i, a′

j = aj}

ND(s) = {s′ | ∃i ∈ {1, ..., n} with a′
i = 0 and ai = 1 and ∀j �= i, a′

j = aj}

3.2 From Tabu Search to Learning Tabu Search

In local search algorithms and in particular in Tabu Search, the exploration of
the neighborhood of a solution can be time-consuming. Indeed, in the original
Tabu Search method, all the non-tabu neighbors of a solution are evaluated at
each iteration. In the FS problem, the evaluation of a solution is computed by
applying a classification procedure (KNN, SVM, ...). This one can be compu-
tationally expensive when the number of observations and/or features becomes
large. Hence, the evaluation of the whole neighborhood at each iteration can not
be considered.
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Schindl, and Zufferey designed the Learning Tabu Search (LTS) [16] in order
to avoid this. Hence, the exploration of the neighborhood is divided into two
steps: (i) the quality of all neighbors is estimated and, (ii) the Q most promising
ones are fully evaluated. LTS is based on an estimation function used to esti-
mate the potential quality of each neighboring solution. The computation of this
estimation is based on this idea: “if, some combinations of characteristics often
belong to good solutions during the search process, such combinations of char-
acteristics should be favored when generating new solutions”. The estimation of
the quality of one combination is computed from the quality of solutions where
this combination appears. Therefore, LTS needs a memory to save the quality
of each features combination.

The performance of LTS rests on the definition of this memory that represents
the learning mechanism. This mechanism is related to the pheromones concept of
ant colony optimization (ACO) algorithms [5]. The quality of one combination
is then called its trail value. The higher the trail value of a combination, the
better is its quality. Like in ACO, the memory has to be updated to increase the
trail of promising combinations and to decrease those that are associated to bad
ones. An evaporation procedure is used to forget them.

In LTS, the update procedure is applied at regular intervals, called cycles.
The quality of the best solution found during each cycle is used to update the
trail values. The size of the cycle is a sensible parameter of LTS., as it impacts
the performance of the learning mechanism.

The update procedure aims to concentrate the search in regions contain-
ing high quality solutions. In order to visit new regions of the solutions space,

Algorithm 1. Learning Tabu Search (LTS)
begin

s ← initial solution;
s∗ ← s;
repeat

Estimate the quality of non-tabu neighbors of N (s);
NQ ← Q most promising neighbors of N (s) according to the
diversification policy;
s ← max

s′∈NQ

f(s′);

if s > s∗ then
s∗ ← s;

if s > ŝ then
ŝ ← s;

Update the tabu list;
if End of cycle then

Update trails of each combination with ŝ;

until Stopping condition is met ;
return s*
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a diversification procedure has been introduced. This procedure modifies the
policy of choosing the Q most promising neighbors to be evaluated during the
neighborhood exploration. Usually, a learning mechanism favors the neighbors
with the highest estimation values but, it may lead to a premature convergence
of LTS. To avoid this issue, when diversification is triggered, the combinations
with the lowest estimation values are favored.

Algorithm 1 gives an insight of LTS. From an initial solution, different steps
are applied until the stopping criterion is met. Every non-tabu neighbors are esti-
mated and then, the Q most promising neighbors are evaluated. Most promising
neighbors stands for neighbors with the highest estimation when diversification
is disabled but, ones with the lowest estimation when diversification is triggered.
At the end of the neighborhood exploration, the best solutions s∗ of the search, ŝ
of the current cycle and the tabu list are updated. At the end of each cycle, trail
values are updated from the fitness of ŝ according to the diversification policy.

3.3 Learning Tabu Search for Feature Selection

In the following, we explain the adaptation of LTS to the FS problem.

Definition of Trail. This paper proposes to consider the combination of two
features. A combination of two features is interesting if these features are both
selected in good solutions i.e., the combination of these two features brings
information for the classification task. The trail value tr(ai, aj) associated to
features ai and aj , indicates if the combination of ai and aj is promising, thanks
to the observations of the search history.

Estimation of Neighbors. A solution s and each neighbor s′ differ from one
bit ai. The estimation of a neighbor (Estim(s, ai)) (i.e., its potential quality),
is computed from the relevance of selecting the feature ai in relation to other
features in s: Estim(s, ai) =

∑

aj∈s tr(aj , ai).

Neighborhoods Exploration. NA and ND are the neighborhoods composed
with add flips and drop flips respectively. A promising add flip is to add a feature
ai to a solution s, if Estim(s, ai) is high in order to select a feature which
brings the most information to the solution. A promising drop flip is to delete a
feature ai from a solution s, if Estim(s, ai) is low. During the exploration of the
neighborhood in LTS, only the Q best promising neighbors are evaluated. Then,
Aq (resp. Dq) is the subset of non-tabu neighbors of NA (resp. ND) composed of
the q neighbors with the highest (resp. lowest) estimations. Finally, all neighbors
of Aq ∪ Dq are evaluated and the best one is chosen.

Update Procedure. As mentioned before, the trail values tr(ai, aj) are
updated at the end of each cycle from the best solution ŝ found during this
cycle: tr(ai, aj) = ρ ∗ tr(ai, aj) + Δtr(ai, aj), where ρ ∈ [0, 1] is the evaporation
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rate and Δtr(ai, aj) is proportional to the fitness of ŝ, if ai and aj both belong
to ŝ, and is equal to 0 otherwise.

Diversification Procedure. It is used to escape from a region of the search
space. Therefore, when the mechanism is triggered, the construction of the sets
Aq and Dq during the exploration of the neighborhood is inverted i.e., Aq (resp.
Dq) is the subset of non-tabu neighbors of NA(s) (resp. ND) composed of the q
neighbors with the lowest (resp. highest) trail values. This mechanism depends on
two parameters t1 and t2: the mechanism is triggered after t1 iterations without
improving s∗ (the best solution found during the search), and is disabled as soon
as s∗ has improved, or after t2 iterations with diversification.

4 Experiments

4.1 Experimental Protocol

We choose to compare LTS to other local search algorithms: a Hill Climbing
(HC) and a Tabu Search (TS). Hill Climbing is a classic local search algorithm,
that has the major inconvenient, to stop the search when it falls in a local
optimum. In order to give the same chance for all algorithms, when HC falls in a
local optimum, it restarts the search with a random solution until the stopping
time is reached.

The Tabu Search is a local search that uses a memory to escape from local
optima. The memory is used to store recently visited solutions that are qualified
as tabu. At each step, the tabu search moves to the best non-tabu solution of the
neighborhood. Hence, the tabu search is able to escape from a local optimum by
moving to the least deteriorating neighbor. In the literature, Tabu Search applies
the best improvement strategy for the neighborhood exploration. Nevertheless,
this strategy may be time-consuming when the evaluation is costly, therefore in
this paper, we choose a first improvement strategy.

Instances used for experiments are divided into two parts. The first one is
the training set, used by the algorithm to look for the best subset of features.
The second one is the validation set, used to evaluate the ability of the subset
of features previously found, to well classify new data.

For each instance with their training and validation sets, we performed for
each algorithm the following different steps: (i) the search algorithm is performed
on the training set, (ii) the best solution found is selected and its accuracy
on the validation set is computed, (iii) these two steps are executed 30 times
per instance per algorithm, (iv) the statistical Wilcoxon test is performed on
fitness obtained on the training set to compare algorithms, and (v) the statistical
Wilcoxon test is performed on accuracy obtained on the validation set.

4.2 Description of Instances

Experiments are computed using six instances from the literature. Each line of
these instances represents an observation. Table 2 details information about the
instances used for experiments (well-balanced binary classes).
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Table 2. Instances description. The total number of features (# Features), the
size of the training |T | and validation |V | sets (i.e., number of observations), the run-
time (in seconds) needed by SVM to build and evaluate a model on each training set
(without feature selection), and the runtime (in seconds) allocated to each optimiza-
tion algorithm are given. Instances are divided into two groups according to the SVM
runtime.

Name # Features |T | |V | SVM runtime Allocated runtime

Schizophrenia [2] 410 56 30 0.01 500

Colon [21] 2000 62 32 0.052 120

Breast [21] 24481 78 26 0.734 500

Arcene [10] 10000 100 100 1.123 3000

DNA [9] 180 1400 600 1.172 500

Madelon [11] 500 2000 600 38.089 5000

An important point is the classifier used to compute the accuracy. In this
paper, we used SVM [17] (Support Vector Machine) that constructs hyperplanes
to separate data into two classes. This procedure becomes time consuming when
the number of observations increases and when data are difficult to separate into
two classes. Hence, for such instances, the runtime needed by SVM to construct
and then evaluate a model is expensive.

In consequence, we choose to distinguish two groups of instances (low evalu-
ation cost vs. high evaluation cost) according to the SVM runtime when applied
on the training sets. The first one groups Schizophrenia, Colon and Breast
instances (SVM runtime lower than 1 s) and the second one groups Arcene, DNA
and Madelon instances. Note that, SVM requires more than 38 s on Madelon
instance to compute the accuracy on the whole training set.

Preliminary experiments helped to set the allocated runtime given to HC,
TS and LTS. This allocated runtime is the same for the three methods, and is
partially dependent on SVM runtime, since it is used within the evaluation to
compute the accuracy of a solution. Let us remark, that even if Arcene instance
requires less than 2 s to compute the accuracy, preliminary experiments showed
that the convergence is quite low but happened for each algorithm before 3000 s.

4.3 Parameters

Different parameter settings were studied before deciding which one to use for
the final experiments. Table 3 shows parameters involved in this study.

Two parameters deserve special attention. The first one is q that tunes the
number of promising estimated neighbors from each set, Aq and Dq, that will be
evaluated. Indeed, if q is small, LTS converges quickly because the first best solu-
tions are often the same. Otherwise, if q is large, LTS becomes time-consuming
because many solutions are evaluated. Note that q could be adapted to the
instance size, but preliminary experiments show that q = 10 appears to be
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Table 3. Learning tabu search parameters. Gives each parameter together with
its setting value.

Parameter Value

Size of Tabu List 7

Size of Aq and Dq (q) 10

Cycle (I) 10

Evaporation rate (ρ) 0.9

Number of iterations with diversification (t1) 10

Number of iterations without diversification (t2) 10

Aggregation factor (α) 0.75

a good trade-off for these instances. The second one is the size of a cycle (I).
If I is small, the learning mechanism will make overfitting because the search
has not enough time to find a new best solution. Otherwise, if I is large, the
learning mechanism will take much time to discover good combinations and to
forgot bad ones. Preliminary experiments show that I = 10 appears to be also
a good trade-off.

4.4 Performance Analysis

This analysis is organized in two parts. The first part deals with the optimization
perspective (capacity of the method to find a good subset of selected features
i.e., with a high fitness value) and evaluates its performance on the training set
with the single-objective function defined in Sect. 3.1. The second part concerns
the datamining perspective (capacity of the model to predict class of unknown
observations) and evaluates results obtained on the validation set.

Analysis of the Optimization Approach: Table 4 shows a comparative
study between the proposed approach LTS and the other approaches. For each
instance, the accuracy computed with SVM from the whole features is pointed
out in order to exhibit the benefit of the feature selection.

This table shows that concerning results about the fitness, LTS gives in most
of the cases the best results with a standard deviation close to zero. In details,
we can see that LTS often gives the best accuracy and selects always the least
number of features.

This may be explained by the neighborhood exploration strategy. Indeed,
LTS selects for evaluation the q best add flips as well as the q best drop ones.
Consequently, drop flips have as much chances to be chosen as add flips. On
the contrary, other approaches have a random neighborhood. As the number
of selected features is small, the probability to find a drop flip is low and may
required the evaluation of many neighbors. As a result, LTS can find a solu-
tion with a good accuracy with the least number of features faster than other
algorithms.
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Table 4. Average and standard deviation (in brackets) of Fitness, Accuracy and
# S Features values obtained on training sets for HC, TS and LTS. For each algo-
rithm, the fitness values have been computed from the Accuracy and # S Features, the
number of selected features (see Sect. 3.1). Fitness values in bold stand for algorithms
outperforming the other one(s) according to the Wilcoxon test. For each instance, the
value of the accuracy obtained by SVM without any feature selection is pointed out
in brackets. The statistical comparison between algorithms is given under the instance
name.

Instance Algorithm Fitness Accuracy (%) # S Features

HC 0.992(0) 99.946(0.097) 11.788(3.735)

Schizophrenia (69.64%) TS 0.968(0) 97.132(4.173) 16.939(26.246)

LTS > HC > TS LTS 0.995(0) 100(0) 8.758(0.627)

HC 0.998(0) 99.951(0.079) 10.909(11.835)

Colon (87.09%) TS 0.982(0) 97.752(3.405) 10.97(6.905)

(LTS = HC) > TS LTS 0.996(0) 99.609(0.655) 6.788(3.047)

HC 0.98(0) 97.319(7.382) 18.394(44.684)

Breast (67.3%) TS 0.94(0) 92.308(16.18) 13.121(7.86)

HC > (LTS = TS) LTS 0.94(0) 92.075(16.817) 11.879(8.172)

HC 0.999(0) 99.879(0.11) 21.97(40.405)

Arcene (83%) TS 0.971(0) 96.273(10.392) 22.273(18.08)

LTS > HC > TS LTS 0.999(0) 100(0) 14.97(9.905)

HC 0.941(0) 95.71(0.364) 19.152(27.82)

DNA (89.57%) TS 0.941(0) 95.762(0.343) 19.485(21.633)

LTS > (HC = TS) LTS 0.945(0) 95.234(0.46) 13.606(8.434)

HC 0.712(0) 64.135(0.331) 37.273(92.017)

Madelon (56,45%) TS 0.714(0) 63.885(0.453) 31.03(46.905)

LTS > (HC = TS) LTS 0.731(0) 65.152(0.107) 15.606(10.246)

Table 4 also shows that, for each instance, LTS improves results obtained by
the original Tabu Search. These results show the improvement obtained by the
introduction of the learning mechanism.

In order to analyze the behavior of the different algorithms, we computed
their evolution over time. Figure 2 shows the evolution of the average fitness of
each approach over the time and gives the box-and-whisker plots (after one third,
two thirds, and at the end of the allocated runtime) on Madelon instance, which
is the most difficult instance to solve. For this one, LTS has a quick progression
compared to the two other methods. Indeed, Madelon is a high-cost instance,
so thanks to the estimation function, LTS avoids a large number of evaluations.

Consequently, LTS finds the potential good solutions more quickly than other
approaches. These results show the interest of the estimation function.

To understand the behavior of the learning mechanism, we also investigate
the dynamic of add and drop flips over time. Thus, Fig. 3 shows, for one execu-
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Fig. 2. Evolution of algorithms on Madelon instance

Fig. 3. Evolution of Fitness, Accuracy and # S Features values for LTS on Madelon
instance. For more readability, the accuracy curve has been translated by +0.08.

tion, the evolution of the different metrics (Fitness, Accuracy and # S Features)
for LTS on Madelon instance. We can observe several phases on this figure.
The first one (from the beginning to time 1000 s approximately) adds features to
increase the accuracy, and in consequence also the fitness. The second one starts
when fitness is high. In this phase, the learning mechanism chooses the worst
features to remove thanks to the trail values. As LTS removes features, which
bring the least information, the accuracy decreases slightly while the second
part of the fitness that favors small subsets of features increases. Consequently
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LTS makes a good trade-off between the accuracy and the number of selected
features.

Analysis of the Datamining Approach: Table 5 shows the results about
the accuracy values on both training and validation sets for each instance. The
objective is to analyze the ability to make a good classification on the validation
set, using features selected on the training set.

A first observation is that performance decreases between the training set and
the validation one. This difference reveals overfitting, that is to say, the solution

Table 5. Average and standard deviation (in brackets) of Accuracy values obtained
on both training and validation sets for HC, TS and LTS. Accuracy values in bold
stand for algorithms outperforming the other one(s) according to the Wilcoxon test.
The statistical comparison between algorithms is given. The double line shows the
separation between low and high evaluation time cost.

Instance Algorithm Accuracy (%) Training Accuracy (%) Validation

Schizophrenia HC 99.946(0.097) 60.208(87.454)

TS 97.132(4.173) 55.457(119.31)

LTS 100(0) 61.319(66.62)

(LTS = HC) > TS LTS > HC > TS

Colon HC 99.951(0.079) 94.318(26.523)

TS 97.752(3.405) 91.004(39.524)

LTS 99.609(0.655) 94.127(23.655)

HC > LTS > TS (LTS = HC) > TS

Breast HC 97.319(7.382) 54.079(105.34)

TS 92.308(16.18) 50.116(106.77)

LTS 92.075(16.817) 52.098(98.087)

HC > (LTS = TS) LTS = HC = TS

Arcene HC 99.879(0.11) 72.18(16.028)

TS 96.273(10.392) 71.69(22.15)

LTS 100(0) 74.60(21.43)

(LTS = HC) > TS LTS > HC > TS

DNA HC 95.71(0.364) 93.63(2.50)

TS 95.762(0.343) 93.25(2.57)

LTS 95.234(0.46) 94.09(2.37)

(HC = TS) > LTS LTS = HC = TS

Madelon HC 64.135(0.331) 57.07(4.84)

TS 63.885(0.453) 56.56(4.23)

LTS 65.152(0.107) 59.69(1.485)

LTS > (HC = TS) LTS > (HC = TS)
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built on the training set is specific for these data. Consequently, the solution
looses in prediction quality for new data. This is especially true for instances with
few observations and confirms the difficulty to find a good classification model.
The standard deviations obtained with the validation set on these instances are
high and show a bad stability of the results produced. Conversely, in instances
with a large numbers of observations, the standard deviations obtained with the
validation sets are reasonable. Solutions are less sensitive to the data used for
the validation.

As for the training set, LTS manages to obtain better or equivalent results
than other approaches on the validation set. In particular, we can observe an
improvement about the results obtained by LTS compared to TS.

In conclusion, these experiments show the good performance of the Learning
Tabu Search regarding both the optimization and the datamining perspectives.
In particular, these experiments show the contribution of the learning mecha-
nism, as the Learning Tabu Search is able to find better subset of features than
the classical Tabu Search although they are based on the same components.

5 Conclusion and Perspectives

This work proposes to consider the Feature Selection problem for classification
as a combinatorial optimization one and presents an adaptation of the Learn-
ing Tabu search to solve it. The objective was to be able to jointly deal with
large datasets and efficient classifiers. Indeed, these two elements may lead to an
expensive objective function, which is a difficult aspect for optimization methods
that require a large amount of evaluations.

Therefore, to solve the Feature Selection problem with a local search, we
first propose of modelization, including the definition of neighborhood operators.
Then we propose some adaptations of the Learning Tabu Search, previously pro-
posed to solve a railway network problem, to the FS problem. Some specificities
for the FS problem are presented and explained.

Experiments are conducted in order to analyze the benefit of the integration
of a learning mechanism. Then, the Learning Tabu Search is mainly compared to
the classical Tabu Search, using exactly the same components except the learn-
ing mechanism. Datasets from the literature are used. Some of them have a low
cost evaluation time, whereas others are more costly. The main conclusions are
that according to the optimization perspective (the ability to obtain good fitness
solutions), the Learning Tabu Search obtained better results than the classical
Tabu Search, especially for high evaluation cost instances. This is due to the use
of the estimation function that avoids many evaluations and allows the Learn-
ing Tabu Search to progress faster. Regarding the datamining perspective (the
ability to find solutions that can lead to good classifications on other datasets),
a same observation is done: the Learning Tabu Search obtained better results
than the classical Tabu Search. This may be explained by the small number
of features selected by the Learning tabu Search compared to other methods.
Hence, these experiments show the contribution of the learning mechanism.
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This work is very encouraging and perspectives of future works are interest-
ing. As far as the Feature Selection problem is concerned, such perspectives may
deal either with the extension of the learning mechanism (other definition of
the trail, for example) for LTS, or with the integration of the proposed learning
mechanism in other metaheuristics that may benefit from the estimation func-
tion. Other perspectives deal with the definition of such a learning mechanism
for other optimization problems with a high cost evaluation function.
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Abstract. Automated algorithm configuration is a powerful and
increasingly widely used approach for improving the performance of algo-
rithms for computationally hard problems. In this work, we investigate
the impact of automated algorithm configuration on the scaling of the
performance of two prominent inexact solvers for the travelling salesman
problem (TSP), EAX and LKH. Using a recent approach for analysing
the empirical scaling of running time as a function of problem instance
size, we demonstrate that automated configuration impacts significantly
the scaling behaviour of EAX. Specifically, by automatically configuring
the adaptation of a key parameter of EAX with instance size, we reduce
the scaling of median running time from root-exponential (of the form

a · b
√

n) to polynomial (of the form a ·nb), and thus, achieve an improve-
ment in the state of the art in inexact TSP solving. In our experiments
with LKH, we noted overfitting on the sets of training instances used
for configuration, which demonstrates the need for more sophisticated
configuration protocols for scaling behaviour.

1 Introduction

The travelling salesperson problem (TSP) is a well known and widely studied
NP-hard problem. Given a set of cities and pair-wise distances between them,
the objective of the TSP is to find the shortest round trip that visits each
city exactly once. TSP algorithms are usually categorised into two kinds: exact
algorithms, which are guaranteed to find an optimal solution to any TSP instance
and can prove the optimality of the solution, and inexact algorithms, which
may find optimal solutions but cannot prove optimality. Presently, Concorde [2]
represents the long-standing state of the art among exact TSP algorithms. In
terms of inexact TSP algorithms, LKH [5,6] had been the best available solver
until the recent introduction of EAX [20], an evolutionary algorithm that makes
uses of an improved edge assembly crossover operator [19] for recombining short
tours. Empirical results show that EAX tends to perform better than LKH on
a broad range of TSP instances [20]; however, it has been shown recently that
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 157–172, 2016.
DOI: 10.1007/978-3-319-50349-3 11
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LKH is not dominated by EAX in that there are many instances for which LKH
finds optimal solutions more efficiently than EAX [14].

In theoretical computer science, time complexity is arguably the most impor-
tant concept for analysing and understanding the difficulty of problems and the
performance of algorithms. The time complexity of an algorithm is characterised
by the scaling of the time required for solving a problem instance as a func-
tion of instance size. In spite of the significant role that theoretical methods
play in understanding the complexity of problems and algorithms, many high-
performance algorithms are beyond the reach of such methods, and therefore
have to be studied using principled empirical approaches.

In this work, we investigate the question whether and to which extent the
empirical scaling of the running time of state-of-the-art inexact TSP solvers
EAX and LKH changes as the parameter settings of these solvers are optimised.
This question is particularly relevant as automated procedures for optimising
parameter settings (so-called algorithm configurators) are now readily available
and used increasingly frequently in the development of state-of-the-art solvers for
computationally challenging problems as well as for customisation of such solvers
for particular application contexts (see, e.g., [1,3,10,11]). To study the scaling
behaviour of EAX and LKH, we use an advanced empirical scaling analysis
approach that challenges automated fitted scaling models by extrapolation and
uses bootstrap re-sampling to statistically assess scaling models [7,18]. Our main
findings are as follows:

– automated algorithm configuration can significantly improve the scaling
behaviour of EAX, and by adapting the population size with instance size,
the empirical time complexity of EAX is reduced from root-exponential (of
the form a · b

√
n) to polynomial (of the form a · nb);

– the state of the art in inexact TSP solving can thus be improved: for instance,
we reduce the median running time of EAX for solving instances of size n =
4500 (three times larger than those used for training the configurator) by
about a factor of 1.13;

– automated algorithm configuration can significantly impact the scaling of
LKH, but configuring LKH suffers from overfitting that leads to improved
running times for small instances but worse performance for larger ones.

In the remainder of this work, we first describe the benchmark instances, algo-
rithms and methods that we use in our experiments (Sect. 2); next, we present
in detail our results (Sect. 3); and finally, we draw some general conclusions and
briefly outline avenues for future work (Sect. 4).

2 Instances, Algorithms and Methods

2.1 Benchmark Instances

2D Euclidean TSP instances, i.e., instances where the locations to be visited
correspond to points in the Euclidean plane, often occur in practical applications.
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A particularly widely studied type of 2D Euclidean TSP instances are obtained
by placing cities uniformly at random in a square. The so-called RUE instances
thus obtained are known to have properties similar to a broad range of other 2D
Euclidean instances and represent a challenging, widely used benchmark for TSP
solvers [12,13]. In the following, we use the benchmark sets of RUE instances
generated and studied earlier by Hoos and Stützle [8,9]. These instances were
generated using the portgen generator from the 8th DIMACS implementation
challenge for TSP, which places n points in a 100 000×100 000 square uniformly
at random and computes the Euclidean distances between pairs of points. There
are 1000 instances for each instance size n = 500, 600, . . . , 1500, 2000 and 100
instances for each n = 2500, 3000, . . . , 4500.

2.2 Inexact Algorithms for TSP

The inexact TSP solvers we selected for our study are the latest versions of LKH
and EAX. LKH [5,6], Helsgaun’s variant of the Lin-Kernighan TSP heuristic,
is a variable-depth search algorithm that performs sophisticated heuristically
guided local search moves based on sequences of five or more edge exchanges.
It restarts the local search based on perturbations of previously found solu-
tions using various strategies. LKH represents a milestone in the development
of inexact TSP solvers and is arguably the most prominent method for finding
finding high-quality solutions to challenging TSP instances. In this work, we
used LKH version 2.0.7, keeping all parameters at their default values, except
for PATCHING A and PATCHING C, which we set to 2 and 3, respectively, to
include patching of cycles in searching for improving moves. These values were
also adopted in the example parameter file for solving TSPLIB instance pr2392
and used in earlier work studying LKH [4].

EAX [20] is a recent evolutionary algorithm that makes use of improved
variants of the edge assembly cross-over recombination operator. It also exploits
diversity preservation techniques and initialises the initial population by local
optimisation. For our experiments, we used EAX with default parameter settings,
namely with population size set to 100 and the number of offsprings generated
per recombination attempt set to 30.

For our analyses, we used the same modified implementations of LKH and
EAX as Dubois-Lacoste et al. [4], who enhanced the original solvers with a restart
mechanism to achieve improved performance. This type of modification is a sim-
ple, yet effective means for overcoming stagnation behaviour often encountered
in stochastic local search algorithms [21]; in the case of LKH and EAX, the
added restart mechanism helps considerably in finding optimal solutions more
efficiently.

2.3 Algorithm Configurator

To automatically configure the parameters of EAX and LKH, we used SMAC,
a prominent, state-of-the-art algorithm configurator [10]. SMAC is based on a
sequential model-based optimisation procedure that builds and iteratively refines



160 Z. Mu et al.

a statistical model mapping parameter configurations of a given algorithm to
performance predictions. This empirical performance model is used to select
promising configurations in each iteration of SMAC; these configurations are
then run, and the performance values thus observed are used to update the
model. The standard version of SMAC, as used in our experiments for configuring
EAX and LKH, uses random regression forests to model performance.

2.4 Scaling Analysis

We use a recent boostrap approach for studying the empirical scaling of algo-
rithm performance with input size [7]. It automatically fits scaling models to a
set of support data and then challenges these models by testing the performance
predictions obtained from them for larger input sizes. Most importantly, it uses a
re-sampling approach to assess the models and their predictions in a statistically
meaningful way. This approach has been used to characterise the scaling behav-
iour of state-of-the-art exact and inexact TSP algorithms [4,8] and to study the
empirical time complexity of state-of-the-art solvers for the propositional sat-
isfiability problem (SAT) [18]. In this latter work, Mu and Hoos extended the
approach to compare scaling models based on bootstrap confidence intervals for
predicted and observed running times and to assess differences in the scaling
models for two given algorithms. To perform this type of scaling analysis for
different configurations of EAX and LKH, we used the ESA system [17].

2.5 Computing Environment and Experimental Setup

For the automatic configuration of EAX and LKH, we used a standard protocol,
according to which we performed 25 independent runs of SMAC for each scenario
and selected the best parameter configuration according to the performance on
the given set of training instances for scaling analysis. The cut-off time for each
run of the algorithm being configured and the overall time budget for each run of
SMAC differ between our experiments for EAX and LKH, and we report them
as we discuss each experiment.

For our scaling analysis, we considered three parametric models:

– Exp [a, b] (n) = a · bn (2-parameter exponential);
– RootExp [a, b] (n) = a · b

√
n (2-parameter root-exponential);

– Poly [a, b] (n) = a · nb (2-parameter polynomial).

Models were fitted to performance observations in the form of medians of the
distributions of running times over sets of instances for given n. Compared to
the mean, the median has two advantages: it is statistically more stable and
immune to the presence of a certain number of timed-out runs. We performed
10 independent runs per instance and used the median over those 10 running
times as the running time for the respective instance. Our approach could be
easily extended to other scaling models, but, as we will show in the following,
these models jointly characterise the scaling observed in all our experiments, and,
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thus, we saw no need to consider different or more complex models. For fitting
parametric scaling models to observed data, the ESA system we used for scaling
analysis uses the non-linear least-squares Levenberg-Marquardt algorithm.

Following previous work [4,7,8], we computed 95% bootstrap confidence
intervals for the performance predictions obtained from our scaling models, based
on 1000 bootstrap samples per instance set and 1000 automatically fitted vari-
ants of each scaling model. For collecting running time data for our TSP solvers,
we used the Compute Canada/Westgrid cluster orcinus (DDR), each node of
which is equipped with two 3.0 GHz Intel Xeon E5450 quad-core CPUs and
16 GB of RAM, running 64-bit Red Hat Enterprise Linux Server 5.3.

3 Experimental Results

3.1 Treatment of Running Time Data

EAX and LKH cannot prove the optimality of the solutions they find; in our
experiments, they therefore need access to the optimal solution qualities of the
instances we consider, in order to measure the running time required to reach
optimal solutions and to terminate runs once an optimal solution has been found.
The optimal solutions to the RUE instance we used have been determined in an
earlier study of the scaling of Concorde [8]. However, Concorde did not solve all
instances within the allotted time in that study. To make more instances avail-
able for EAX and LKH to solve, we ran Concorde on the previously unsolved
instances with different seeds and/or on faster machines. In addition, we per-
formed multiple runs of EAX and LKH on those instances that were then still not
solved by Concorde. For some of these instances, EAX and LKH found the same
best solution in every run; we conjecture these solutions to be optimal and we
refer to them as pseudo-optimal. For our analysis, we use data for both optimal
and pseudo-optimal instances, but we note that qualitatively similar conclusions
are obtained when excluding instances with pseudo-optimal solutions.

We took special care in dealing with the eight instances for which we did
not succeed in establishing pseudo-optimal solutions (two of size 4000 and six
of size 4500). As reported by [4], the pairwise performance correlations between
EAX, LKH and Concorde are very low, and the instances for which we were
unable to determine even pseudo-optimal solutions may still be easy for one
of the inexact solvers. Thus, they are treated using an optimistic/pessimistic
estimation, as done by [4]. More precisely, we treat these instances as easy with
smaller-than-median running times in the optimistic estimation, and as timed-
out instances in the pessimistic treatment. This gives us intervals for the median
running times on those instance sizes for which some instances are lacking even
pseudo-optimal solutions (n = 4000 and n = 4500). We note that these intervals
are not confidence intervals, but bounds on the median running times, as they
must contain the true median running times.
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3.2 Scaling of EAX and LKH with Default Parameters

We first repeat the scaling analyses for EAX and LKH of [4,16] with new sets of
running time data collected using our machines. This ensures that the compar-
isons described below are not affected by differences between the machines used.
The results we thus obtained are qualitatively similar to those reported in [4,16].
More precisely, we found that the scaling of EAX is reasonably well described
by a root-exponential model, while that of LKH is bounded from below and
above by a polynomial and a root-exponential model, respectively. We report
detailed results for EAX, labelled EAX (default), including the best fitted mod-
els and the bootstrap confidence intervals for the model parameters, in Tables 1
and 2, respectively. Analogous results for LKH, labelled LKH (default), can be
found in Tables 6 and 7. Comparing our models to those reported in [16], our
new results lead to a larger value of b in the root-exponential model for EAX,
while large overlaps are seen in the bootstrap confidence intervals for b in the
root-exponential and polynomial models of LKH, respectively.

3.3 Impact of Automated Configuration on Scaling of EAX

Next, we automatically configured the two parameters exposed by EAX: Npop

(fNumOfPop in the source code), the population size, and Nch (fNumOfKids
in the source), the number of offsprings generated per recombination attempt,
which also affects the way EAX switches between different search strategies.
The default values for these parameters are Npop = 100 and Nch = 30. In
our experiments, we enforced a cut-off of one CPU day for each SMAC run.
To ensure that SMAC could perform at least 1000 runs of EAX, we further
enforced a cut-off time of 86 s for each EAX run. We note that even though EAX
has only two parameters to configure, which makes the use of SMAC seemingly
excessive, we still chose to use SMAC, because we saw no harm in doing so
and because this allowed us to use the same configuration protocol as for LKH,
whose configuration space is much larger. After configuration on a set of RUE
instances with n = 1500, SMAC determined a parameter setting with Npop (167
vs 100) and smaller Nch (20 vs 30).

Table 1. Most accurate scaling models (according to RMSE on challenge data) for
the median running times required by different variants of EAX for finding optimal
solutions to RUE instances and corresponding RMSE values (in CPU sec). EAX (con-
figured) uses a parameter configuration determined by SMAC, and EAX (configured +
var pop) additionally determines Npop as a linear function of instance size. All models
were fitted using performance data obtained on RUE instances of size 500...1500 and
challenged by performance data for instances of size 2000...4500.

Solver Model RMSE
(support)

RMSE
(challenge)

EAX (default) RootExp. 0.086254 × 1.1439
√

n 0.12518 [73.961, 116.47]

EAX (configured) RootExp. 0.19910 × 1.1193
√

n 0.22625 [22.278, 32.899]

EAX (configured + var pop) Poly. 1.6194 × 10−8 × n2.8364 0.027288 [37.049, 44.847]
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Table 2. 95% bootstrap confidence intervals for the parameters of the scaling models
from Table 1.

Solver Model Confidence interval for a Confidence
interval for b

EAX (default) RootExp. [0.08287, 0.08991] [1.1424, 1.1452]

EAX (configured) RootExp. [0.19024, 0.20586] [1.1182, 1.1208]

EAX (configured + var pop) Poly.
[
1.3424 × 10−8, 1.9355 × 10−8

]
[2.8110, 2.8623]

We then investigated the scaling behaviour of EAX with these optimised
parameters. The most accurate scaling model, according to the root mean
squared error (RMSE) on challenge data (i.e., instance sets not used for model
fitting), is shown in Table 1, where this version of EAX is labelled EAX (con-
figured). Similar to results for the default version of EAX, a root-exponential
model characterises the scaling most accurately, while the best exponential and
polynomial models can be rejected with 95% confidence. We cross-checked the
predictions of the root-exponential model for the default version of EAX against
the observed running times for the optimised version of EAX. Our results, illus-
trated in Fig. 1, clearly show that even though the optimised version loses some
performance on small instances, the performance on larger instances is signifi-
cantly improved. Thus, the original model over-estimates the running times for
the optimised version of EAX. In addition, from the confidence intervals of the
model parameters, as shown in Table 2, there is evidence that algorithm con-
figuration significantly improves the scaling of EAX, since it reduces the value
of b in the 2-parameter root-exponential models from 1.144 to 1.119, with non-
overlapping confidence intervals ([1.1424, 1.1451] vs. [1.1182, 1.1208]).

In preliminary experiments, we noted that the performance for larger
instances could be improved by using larger population sizes, Npop. Furthermore,
the README file distributed with the source code of EAX recommends to use
Npop = 300 for instances with n > 10 000 cities. We therefore considered the
possibility of increasing Npop with n and performed an experiment to quantify
the impact of varying the population size as a simple linear function of n, i.e.,

Npop(n) := α · n.

To obtain an estimate for α, we divided the optimised value of Npop by
the instance size n = 1500 at which this setting was obtained, resulting in
α = 0.111. We then analysed the empirical scaling behaviour of EAX with
Npop(n) detemined in this manner and the optimised value of Nch = 20 from our
previous experiment and refer to this setting as EAX (configured + var pop). The
most accurate scaling model is presented in Table 1, with bootstrap confidence
intervals for the model parameters shown in Table 2. To our surprise, the best
accuracy is now achieved by a polynomial model, while the best exponential
and root-exponential models are rejected with 95% confidence, as illustrated in
Fig. 2. Furthermore, from Fig. 1, it is obvious that this also stands in contrast
with the scaling behaviour of EAX (default).
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Fig. 1. Most accurate scaling models for the median running times required by three
variants of EAX for finding optimal solutions to RUE instances and confidence intervals
for model predictions, along with observed performance data; see Tables 1 and 2 for
details.

As a result of its improved scaling behaviour, the optimised version of EAX
significantly improves the previous state of the art in inexact TSP solving, as
represented EAX (default); this can also be seen from the respective observed
and predicted running times in Table 3.

We also compared this optimised version of EAX with EAX (default) on
solving a set of TSPLIB instances with n between 500 and 4500, based on median
running times determined from 10 independent runs per instance. Our results
indicate that EAX (configured + var pop) performs better in some cases, but
worse in others, and overall does not achieve significantly improved performance.
We believe that this is primarily as most TSPLIB instances are actually easier to
solve than RUE instances of a similar size, and smaller population size values are
sufficient to solve these instances. We note that for the two TSPLIB instances
that are harder than similarly-sized RUE instances, EAX (configured + var
pop) does perform significantly better than EAX (default). Two other TSPLIB
instances were not solved by EAX with any of the two parameter settings.

In addition, we compared LKH with EAX (configured + var pop). As illus-
trated in Fig. 3, the median running times of EAX (configured + var pop) for
n = 4500 show substantially less variability than those of LKH (analogous obser-
vations hold for other n); furthermore, although EAX performs better than
LKH on aggregate, there are many instances on which the converse is true.
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Fig. 2. Scaling models for the median running times required by EAX (configured +
var pop) for finding optimal solutions to RUE instances and confidence intervals for
predictions obtained from these models, along with observed median running times. All
models were fitted using performance data obtained on RUE instances of size 500...1500
and challenged by performance data for instances of size 2000...4500.

Table 3. Improvement of the state of the art in inexact TSP solving, as demonstrated
by the bootstrap confidence intervals for observed (for n = 4500) and predicted (for
n = 6000, 10000) median running times for the default and optimised (configured +
var pop) versions of EAX.

n Median running time for EAX 75th percentile of running time for EAX

Default Configured
+ var pop

Speedup Default Configured
+ var pop

Speedup

4500 [364.1, 685.6] [404.8, 478.5] ≈1.2× [685.6, 2350.3] [482.8, 573.8] ≈ 2.9×
6000 [2711, 3026] [809, 880] ≈3.4× [5052, 9908] [873, 1090] ≈7.6×
10000 [54511, 64275] [3401, 3800] ≈16.5× [132120, 364836] [3613, 4826] ≈58.9×

We performed an analogous performance comparison for the previously men-
tioned set of TSPLIB instances. Both EAX and LKH fail to solve two of the
28 instances, and LKH fails to solve one instance solved by EAX. As seen in
Fig. 3, once again, EAX (configured + var pop) performs better on aggregate,
but LKH is considerably faster in solving several of these instances and therefore
still contributes substantially to the state of the art in inexact TSP solving.

Analysing the performance results for EAX (configured + var pop) in more
detail, we found that by increasing the population size for large instances, the
success probability of each restart segment (i.e., the part of a run between two
restarts, between initialisation and the first restart and between the last restart
and termination) is significantly increased. Figure 4, showing the distributions
of the success probabilities of restart segments from all runs of EAX on RUE
instances with n = 1500 and 4500, clearly illustrates this finding. Increasing
population size, however, also increases the running time of the restart segments.
The two effects can be clearly seen from medians of success probabilities and
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Fig. 3. Running time required by EAX (configured + var pop) vs the default version
of LKH for solving RUE instances of size n = 4500 (left) and a set of TSPLIB instances
(right); all running times are reported in CPU seconds. For RUE instances, the median
running time for EAX and LKH lies within [430.8, 454.8] and [870.3, 1131.1], respec-
tively. For TSPLIB instances, the median running time for EAX and LKH is 6.6 and
13.0, respectively.

Table 4. Median success probability and running time per restart segment of EAX
(default) and EAX (configured + var pop) on sets of RUE instances.

n Success probability per restart segment Running time per restart segment

Default Configured + var pop Default Configured + var pop

500 1.00 0.77 1.524 0.930

1500 0.77 0.91 16.265 17.991

2500 0.53 0.91 37.986 77.950

3500 0.30 0.91 70.406 218.735

4500 0.16 1.0 119.231 450.940

times to restart shown in Table 4. Hence, there is a tradeoff between the two
effects. To achieve better scaling for EAX, it is critical to set the population size
at the right point balancing the two effects.

To summarise, our experiments indicate that adapting the population size,
Npop, with instance size can significantly improve the scaling behaviour of EAX
on RUE instances. After optimising the adaptation mechanism using automated
configuration of α (together with Nch), the scaling of EAX is best captured by
a polynomial model, and the resulting version of EAX represents a significant
improvement in the state of the art for inexact TSP solving. In particular, we
observed an ≈1.13× improvement in the median running time for EAX and even
more substantial improvements for higher percentiles when solving instances
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Fig. 4. Distributions of the success probability of each restart segment within EAX
solving RUE instances with n = 1500, 4500. (For details, see text.)

of size n = 4500. Based on our scaling analysis, we expect the performance
advantage of EAX (configured + var pop) over EAX (default) to grow further
with instance size.

3.4 Impact of Automated Configuration on Scaling of LKH

We also attempted to configure LKH for improved scaling of running time. With
over 40 parameters, LKH is arguably much more configurable than EAX. Out
of these parameters, some require additional information, such as initial tours
or sub-division of a given TSP instance, which are not available in our case.
Thus, we selected the 21 parameters (12 numerical and 9 categorical) listed
in Table 5, which we could configure without additional information or code
modification. We used the same default values as specified in the user guide,
except for PATCHING A and PATCHING C, as mentioned in Sect. 2.2. The
ranges or sets of settings for all parameters were determined based on the user
guide; when in doubt, we used large ranges to create a large configuration space
for SMAC to explore. We enforced a cut-off of 2 CPU days for each SMAC run.
To ensure that SMAC could perform at least 1000 runs of LKH, we further
enforced a cut-off time of 172 s for each LKH run.

We first configured LKH analogously to EAX, that is, we performed 25 SMAC
runs using a set of 100 RUE instances of size n = 1500 randomly selected from
the full set, and selected from the 25 configurations the one with the best per-
formance across the 100 training instances. The resulting configuration achieved
improved performance only for instances up to size 2000, but did not scale to
larger instance sizes, suggesting overfitting on smaller instance sizes.

Next, we attempted to improve the scaling performance by following a pro-
tocol proposed by Styles et al. [23]. More precisely, we performed 25 SMAC runs
to configure LKH using a set of 100 instances with instance size n = 1000 and
selected the best configuration based on performance on a set of 50 validation
instances selected uniformly at random from the the set of RUE instances of
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Table 5. List of numerical (N) and categorical (C) parameters for LKH considered in
our configuration experiments.

Parameter name Type Domain

ASCENT CANDIDATES N [10, 500]

BACKBONE TRIALS N [0, 5]

BACKTRACKING C {YES, NO}
CANDIDATE SET TYPE C {ALPHA, DELAUNAY, NEAREST-NEIGHBOR,

QUADRANT}
EXTRA CANDIDATES N [0, 20]

EXTRA CANDIDATE SET TYPE C {NEAREST-NEIGHBOR, QUADRANT}
GAIN23 C {YES, NO}
GAIN CRITERION C {YES, NO}
INITIAL STEP SIZE N [1, 5]

INITIAL TOUR ALGORITHM C {BORUVKA, GREEDY, MOORE, NEAREST-
NEIGHBOR, QUICK-BORUVKA, SIERPINSKI,
WALK}

KICK TYPE N {0} ∪ [4, 20]

KICKS N [0, 5]

MAX CANDIDATES N [3, 20]

MOVE TYPE N [2, 20]

PATCHING A N [1, 5]

PATCHING C N [1, 5]

POPULATION SIZE N [0, 1000]

RESTRICTED SEARCH C {YES, NO}
SUBGRADIENT C {YES, NO}
SUBSEQUENT MOVE TYPE N {0} ∪ [2, 20]

SUBSEQUENT PATCHING C {YES, NO}

size n = 1500. We then analysed the scaling of LKH with the configuration
such obtained and found a root-exponential model to fit best, with a value of
b very similar to that obtained for the default configuration (1.2077 vs 1.2067).
Based on these scaling models and observed running times, we determined that
this configuration performs better than the default configuration of LKH up to
n = 3500, but not beyond. This indicates that using the modified configura-
tion protocol reduces, but does not completely eliminate overfitting on smaller
instance sizes.

After inspecting the parameter settings obtained from the two configu-
ration experiments described so far in more detail, we concluded that they
help LKH to more carefully check possible local search steps in a way that
is effective only for smaller TSP instances. Based on this observation, we fixed
KICKS, MOVE TYPE, POPULATION SIZE and RESTRICTED SEARCH to
their default values and performed another round of configuration following the
protocol by Styles et al.. Results from the analysis of the scaling behaviour of



The Impact of Automated Algorithm Configuration 169

Table 6. Most accurate (bounding) scaling models for the median running times
required by variants of LKH for finding optimal solutions to RUE instances and cor-
responding RMSE values (in CPU sec). LKH (scaling configuration) uses parameter
settings obtained using SMAC and the protocol by Styles et al.; LKH (scaling con-
figuration w/fewer para) uses a configuration obtained analogously using a reduced
parameter space (for details, see text). All models were fitted using performance data
obtained on RUE instances of size 500...1500 and challenged by performance data for
instances of size 2000...4500.

Solver Model RMSE
(support)

RMSE
(challenge)

LKH (default) RootExp. 0.010186 × 1.2067
√

n 0.34977 [859.21, 968.83]

Poly. 8.2328 × 10−10 × n3.2255 0.30801 [190.79, 293.36]

LKH (scaling configuration) RootExp. 0.0066414 × 1.2077
√

n 0.13341 [533.13, 1165.9]

LKH (scaling configuration w/fewer para) RootExp. 0.0048097 × 1.2010
√

n 0.15081 [1394.8, 2090.6]

Table 7. 95% bootstrap confidence intervals for the parameters of the scaling models
from Table 6.

Solver Model Confidence interval for a Confidence

interval for b

LKH (default) RootExp. [0.0047391, 0.01955] [1.1836, 1.2333]

Poly.
[
4.3312 × 10−11, 1.0215 × 10−8

]
[2.8684, 3.6341]

LKH (scaling configuration) RootExp. [0.0040961, 0.010936] [1.1908, 1.2245]

LKH (scaling configuration w/fewer para) RootExp. [0.0027107, 0.008814] [1.1802, 1.2210]
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Fig. 5. Scaling models for default LKH and optimised LKH (scaling configuration
w/fewer para) from Table 6, along with observed performance data and bootstrap con-
fidence intervals for predicted performance obtained from the scaling models.

the configuration of LKH thus obtained are shown in Tables 6 and 7. We note
that the confidence interval for b in the root-exponential model largely overlaps
with that for LKH with default parameters ([1.1802, 1.2210] vs [1.1836, 1.2333]).
Again, the root-exponential model gives the best fit (according to RMSE on chal-
lenge data), and fits the running times well up to n = 4000, as seen in Fig. 5. The
value of b = 1.2010 in this model is very similar to that for the default version
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of LKH (b = 1.2077), with a large overlap in the respective confidence intervals
([1.1802, 1.2210] vs [1.1908, 1.2245]). Comparing the running times and scaling
models between these two configurations of LKH, as illustrated in Figure 5, we
noticed that the new configuration decreases the running times for n ≤ 4000, but
performs worse for n = 4500. In other words, the Styles et al. protocol applied
to our reduced parameter space seems to overfit less, but still suffers from some
overfitting to the instance sizes used for configuration.

4 Discussion

In this work, we investigated the impact of parameter settings and automated
configuration on the scaling of inexact TSP algorithms. For EAX, algorithm con-
figuration helps improve the scaling, which can be further improved by adapting
the population size with instance size. In particular, we achieved an improvement
in the median running time for EAX on RUE instances of size n = 4500 of a
factor of ≈1.13 and of a factor of ≈1.87 for the 75th percentile of the distribution
of running times over sets of RUE instances; based on our scaling models, we
expect the improvement to be even more significant for larger instances.

Surprisingly, when adapting the population size with instance size, we obtain
polynomial scaling of the median running time with instance size, compared to
root-exponential scaling for the default configuration of EAX. To the best of
our knowledge, this is the first time, polynomial scaling of the empirical median
running time for an inexact TSP solver has been reported for a widely used set
of challenging 2D Euclidean TSP instances.

Overall, our work complements earlier work on the scaling of state-of-the-art
TSP solvers [4,8,9] and indicates potential for improvements in scaling behav-
iour through automated algorithm configuration and through setting certain
parameters in dependence of features of the problem instance to be solved.

We see significant potential in developing automated configuration proce-
dures for better scaling behaviour. Such procedures can make algorithm config-
uration more applicable to real-world situations, as problem instances from the
target distribution may take a long time to solve. This poses a substantial chal-
lenge to existing algorithm configuration techniques, which require many runs of
the target algorithms with different parameter settings. There is some previous
work on configuration protocols addressing this challenge [15,22,23], but based
on the findings for LKH reported in our study here, we believe that there is the
need (and, indeed much room) for further improvements. In particular, we see
the tight integration of empirical scaling analysis into the configuration process
as a promising avenue for future research in this area.
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8. Hoos, H.H., Stützle, T.: On the empirical scaling of run-time for finding optimal
solutions to the travelling salesman problem. Eur. J. Oper. Res. 238(1), 87–94
(2014)
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algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

12. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in
local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combi-
natorial Optimization, pp. 215–310. Wiley, Chichester (1997)

13. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP.
In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Varia-
tions, pp. 369–443. Kluwer Academic Publishers, New York (2002)

14. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens,
C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-19084-6 18
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Abstract. We present a new multi-agent approach to managing how
requests are sent between users of smartphone-based applications for
reaching bi-lateral agreements. Each agent is modelled as having a self-
ish behaviour based on his preferences and an altruist behaviour with
respect to the links between the agent and his neighbours. The objective
is to maximise the likelihood of an acceptable match while minimising
the burden on the users due to unnecessary messaging. We provide a
dynamic algorithm using this architecture and we present an empiri-
cal evaluation with various mathematical models of user behaviour and
altruism. The evaluation shows that our approach can reduce the risks
of rejections and the number of requests while increasing the likelihood
of acceptable matches.

1 Introduction

Recently the use of smartphone-based applications has received attention due
to the emergence of a number of new online optimisation problems that involve
reaching bi-lateral agreements, such as in ride-sharing applications. The majority
of such apps require sending a large number of requests or notifications to users.
A typical goal of providers of these apps is to reduce the inconvenience to users by
minimising the number of requests sent. The interaction with users represents the
single greatest challenge in these applications. A social model/approach cannot
be used for this problem because of the lack of information from the users. The
system knows only the positive/negative answers from each user who received a
request, and when a response was received. The system can only decide dynami-
cally when it must send a new request. We can only simulate realistic behaviour
of users to help the system in his decision.

Several robotics systems that propose an easy dialogue with, and a limited
number of interactions for, each user have emerged in the literature. Many models
and self-satisfaction architectures have also been developed and proposed for
reactive robotic multi-agents systems [2,4,7]. These authors focus their models
on communication and cooperation between learning situated agents. Robotic
applications require distributed solutions and adaptive cooperation techniques.
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 173–186, 2016.
DOI: 10.1007/978-3-319-50349-3 12
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The agents learn to select behaviours that are well adapted to their neighbours’
activities. Multi-agent systems for solving complex combinatorial problems are
often formulated as Distributed Constraint Optimisation Problems (DCOPs)
[3,5,6]. These authors propose search algorithms for DCOPs that are analogous
to a reactive multi-agent architecture. These methods and algorithms are not
applicable in our case since we are concerned with predicting an appropriate time
to send a request between users. For our problem, we only need the principle of
distributed communication but not the cooperation aspect. Our agents will not
act to help a global mission or achieve a goal. We are using a self-satisfaction
architecture and a model of altruistic behaviour for the purpose of simulating
the potential stress of each user and helping the system to decide when and
whom to send a new request.

The remainder of the paper is organised as follows. Section 2 presents our
requests problem and how it relates to the Satisfaction-Altruism-based archi-
tecture for the multi-agent problem. In Sect. 3 we present this architecture for a
multi-agent system, along with our hybrid model with the different concepts and
functions. Section 4 focuses our study on the specific application of ride-sharing,
where we propose a more detailed model for this specific problem. Finally, in
Sect. 5 we present experiments with this specific model and compare the effect
of varying the critical parameters of the model with an greedy system used.

2 The General Requests Problem

One of the advantages of smartphone-based applications is their ability to reduce
the demands placed on users and their ability to reach decisions in a timely man-
ner. In many applications (ride-sharing, on-line service between users, games,
sales, etc.) users must find a bi-lateral agreement, e.g. a driver is happy to offer
a ride to someone who is happy to accept that offer. Each user sends a request
to other users and waits for a positive/negative response. In many applications
this leads to a proliferation of notifications and requests sent to and by users.
For this reason many automated systems that take decisions on behalf of users
have emerged. In these systems, users can only initiate the agreement process,
but they cannot control how an agreement is reached.

This requests problem can be modelled as a graph: the set of vertices repre-
sents users and we define an edge between two users if there exists a potential
bi-lateral agreement, a deal, between them. A weight is assigned to each edge
in order to quantify the quality of the potential deal. The edge weight encodes
importance, but not likelihood of a match. The objective is to minimise the risk
of rejection and the number of notifications/requests sent between users. There-
fore, the goal is to select a maximum number of edges (deals) that maximises
the sum of the weights. It is obvious that this selection is constrained by the
structure of the problem and by the nature of the smartphone app in question.
For example, in the ride-sharing problem, we want to select the potential riders
in the same car. Therefore, we want three edges from a driver, if we want to fill
the car, and one edge for a rider. From a deterministic global solution (see [9]),
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requests are sent by the system to each user. If a user does not respond quickly,
the system has to propose an alternative solution to another potential partner
who is waiting to make a deal. However, this alternative partner could be a poor
quality match in comparison to the first ones, thus it might be advantageous to
allow additional time to the partners already contacted before sending a request
to an alternative new partner. The question is when should the system send such
a new request? The quality of the solution depends on the reactivity and the
type of answers from users. This problem can be seen as an online one in which
we need a good protocol to satisfy our objectives.

One can see the requests problem as a Satisfaction-Altruism-based archi-
tecture for multi-agent problems [1,8] where each user is represented by an
agent. Each agent has a personal behaviour based on his preferences and altru-
istic behaviour with respect to the links between the agent and his neighbours.
Such a behaviour-based approach provides a basis to design each agent’s actions
over time. This perspective allows us to define agents that are able to evolve in
dynamic and partially unknown environments.

3 A Multi-agent Approach

The main principle of our approach is to model, in real time, a realistic behav-
iour for smartphone users and to manage the automatic systems that control the
sending of notifications and requests. This architecture uses three concepts of
agent satisfaction: the personal satisfaction which measures the level of sat-
isfaction (e.g. stress, wait); the interactive satisfaction which describes the
benefit of the interaction values between an agent and its neighbours; and the
altruistic reactions which involve monitoring personal/interactive satisfaction
between agents/neighbours and in transforming them into specific actions. When
an agent perceives a prior signal of mutual interaction from a neighbour and pos-
sess a negative personal satisfaction, it can have an altruistic reaction in order
to satisfy the protagonists (agent/neighbour) involved. The general architecture
is presented in Fig. 1.

In our setting, actions are the requests sent from a user to his potential part-
ners during a given period of time. When an agent has a negative personal sat-
isfaction and perceives from one of his partners a signal of potential interaction,

Fig. 1. Illustration of the requests managing architecture
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the user can change its action or start a specific one. The interactive satisfactions
of neighbours are represented by the weight of edges between potential partners.

3.1 Personal Satisfiability

Each user u (agent) is active between a starting time t0u and an End of Time
(EoTu) and is looking for one/several deal(s), or matches, with other users. A
deal is represented as a mutual agreement to a request between the user and
one of his partners. We want to simulate the fact that the closer a user gets to
his time limit, the greater his stress. We can define a threshold under which the
system may send a new request. Under this threshold, we can assume that the
user is under stress. Therefore, the personal satisfiability Satu(t) measures, at
each moment in time, a simulated behaviour/stress of the user u. This function
is bounded by [−1, 1] and is decreasing exponentially according to a variation
function ΔSatu(t) at each elapsed time point, e.g. every second (see Fig. 2). In
delimiting the threshold by 0, every time the function has a negative value, the
user’s stress is enough to let the system send a new request if there exists a
potential partner. In this case, we increase the value Satu(t) by 1.

Fig. 2. Illustration of the personal satisfaction. Each spike represents the sending of a
new request to a potential partner (we are adding +1 to Satu(t)).

This variation function can change during the horizon time. For example, one
can consider the very natural behaviour which is that the closer the user gets to
time EoTu, if a deal has not been made, the higher his stress level is likely to
be. Likewise if he has already a deal and waits for another possiblity, his stress
decreases more slowly. It is important to limit the decrease in the variation func-
tion, nevertheless in worse case the user’s satisfiability will be always be equal
to −1. This limitation depends on the application and the context; therefore we
can define a maximum variation.

We also define a minimum waiting time duration between two new potential
actions (sending a new request, that means a negative personal satisfaction). Let
Tmin be the minimum time for the personal satisfaction function to go from 1
to 0. We propose a particular variation function for the personal satisfiability of
a user limited by the upper bound 1/Tmin.



Requests Management for Smartphone-Based Matching Applications 177

Definition 1 (Variation Function). The variation function ΔSatu(t) for the
personal satisfiability of a user is defined by:

ΔSatu(t) = min
(

1
Tmin

,
βu

EoTu − t

)

. (1)

Here βu is a positive stress impact factor that is dependant on EoTu. The impact
factor is an important parameter in our study. The higher its value, the faster the
variation function will decrease. Observe that with βu ≥ 0 and t0u < t < EoTu,
we can bound the variation function, ΔSatu(t) ∈ [0, 1/Tmin]. From Definition 1
we can give the definition of personal satisfaction as follows.

Definition 2 (Personal Satisfaction). The personal satisfaction Satu(t) of
an active user u at time t is defined by:

Satu(t) = Satu(t − 1) − ΔSatu(t). (2)

A second function, which is somewhat more accurate, could take into
account the number of deals the user is already involved in. In this setting
his stress/behaviour score will decrease more slowly if he is already partially
satisfied. Thus we propose to reduce the variation with the number of the user’s
deals NbDealsu as follows.

Definition 3 (Variation Function with Deals). The variation function
with deals ΔD

Satu
(t) for the personal satisfaction of a user is defined by:

ΔD
Satu(t) = min

(

1
Tmin

,
βu

EoTu − t
× 1

NbDealsu + 1

)

. (3)

From the fact that βu ≥ 0 and t0u < t < EoTu, we can still bound the
variation function by ΔD

Satu
(t) ∈ [0, 1/Tmin]. In Sect. 4 we will define a specific

personal satisfaction function with different values to describe the impact factor
βu and Tmin for the ride-sharing version of our general problem.

3.2 Interactive Satisfaction for Partners

Each active user u has a list of potential partners P = {p1, p2, . . . , pk}. For
each pair 〈u, pi〉, we have a weight representing the preference w−→upi

from u to
pi. Thus we can define a list of weights for the potential partners: W−→

uP
=

{w−−→up1
, w−−→up2

, . . . , w−−→upk
}. Weights are defined on the range [0,MaxW ], where

MaxW is the highest value. The higher the value of a weight, the better the
chances of a deal. In the following, we will call best partner the one with the
highest weight from the list of the unrequested partners.

The interactive satisfaction IntSatupi
(t) measures, at every moment in

time, the potential interaction between user u and his potential partner pi during
the user’s time window ]t0u, EoTu[. This function is bounded by [0,MaxW ] and
is decreasing differently according to a variation function ΔIntSat−−→upi

(t) at each
elapsed time period, say every second (see Fig. 3).
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Fig. 3. Illustration of the interactive satisfaction function.

According to the satisfaction of u and his partners, ΔIntSat−−→upi
(t) will change

over time. At every time step, this variation value decreases (resp. increases) if
a request has been already sent to pi (resp. not sent):

– In the decreasing case, the interactive value is decreasing from t0u to EoTu

according to faster/slower variations around the constant decreasing ratio
w−−→upi

EoTu
.

– In the increasing case, the interactive satisfaction remains at the same value or
can increase slowly according to the partner’s personal satisfaction. If his per-
sonal satisfaction is negative, the interaction value will increase. The increasing
part of the variation function for the interactive satisfaction is upper bounded
by a value in [0, 1

EoTu
].

Definition 4 (Variation Function for Interactive Satisfaction). The
variation function for the interactive satisfaction between an user u and his
partner pi is defined by:

ΔIntSat−−→upi
(t) = x−→upi

×
(

w−→upi
× βpi

(t)
EoTu

)

+ [1 − x−→upi
] ×

(

min{0, Satpi(t)}
EoTu

)

(4)

where x−→upi
=

{

1, if a request has already been send to pi,

0, if no request has not been send to pi.

and βpi
(t) is a positive impact factor of stress depending of the partner’s per-

sonal satisfaction and the time. The higher its value, the faster the variation
function will decrease. From (4), we can give the definition of the interactive
satisfaction:

Definition 5 (Interactive Satisfaction). The interactive satisfaction Int
Sat−→upi

(t) of an active user u at time t is define by:

IntSat−→upi
(t) = IntSat−→upi

(t − 1) − ΔIntSat−−→upi
(t). (5)
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A second, more accurate, function could take into account the number of
deals already owned by the user or his partners. His/their stress/behaviour
will decrease/increase slower if he is already partially satisfied. Thus we pro-
pose to reduce the variation based on the number of the user’s deals NbDealsu
(NbDealspi

for the partner pi) already in place.

Definition 6 (Variation Function with Deals). The variation function
with deals for the interactive satisfaction of a user u and his partner pi is:

ΔD
IntSat−−→upi

(t) = x−→upi
×

(

w−→upi
× βpi

(t)
EoTu[NbDealsu + 1]

)

+[1 − x−→upi
] ×

(

min{0, Satpi(t)}
EoTu[NbDealspi

+ 1]

)

. (6)

In Sect. 4 we will propose a specific definition of the impact factor βpi
(t) for

a ride-sharing version of our general problem.

3.3 Altruistic Reaction

According to the updated values for the personal/interactive satisfactions, we
can take into account the level of user stress and define a protocol to allow agents
to modify their actions. In our problem, the system is authorised to send a new
request from a user to his partners when specific conditions are satisfied. We
define two conditions required to allow at time t a new request to be sent from
a user u:

– The value of the personal satisfaction of u is negative.
– One of his unrequested partners has an interactive satisfaction higher than

the current highest one. Specifically, the weight w−→upi
increased enough and is

now higher than the current highest weight from requested partners.

If both conditions are respected, the system is authorised to send a new
request. The first condition allows to minimise the delay between two messages.
Indeed, when a notification is sent the system increases satu(t) by 1. The second
condition allows more time to the best partners who might answer positively to
the user u.

We are interested in finding a global solution over all users in our graph.
When the system receives an authorisation to send a new request for a user u
(vertex) to pi, that means the edge {u, pi} can be selected in the global solution.
If the computation of a global solution contains this edge, the system can send
a new request to pi from u.

From the point of view of the model, the system gives a reward to
Satu(t). This bonus can depend of the number of deals required by the user
MaxNbDealsu, and thus Satu(t) increases by 1/MaxNbDealsu.
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3.4 The Algorithm

We present the algorithm that monitors a user and his partners using the three
multi-agent concepts, presented above, over time in order to reduce the number
of requests sent while also minimising the risk of rejection (requests sent to
partners with too low a weight).

Data: A user u, his partners list P = {p1, . . . , pk},
His bounds t0u and EoTu, and a boolean Change

1 begin
2 Request sent to the best partner;
3 while t0u < t < EoTu do
4 Change ← False;
5 while Not Change do
6 Values updated;
7 if Negative answer received then
8 Remove the partner;
9 if Positive answer received then

10 if Deal accepted by u then
11 Satu(t) ← 1;
12 NbDealsu ← NbDealsu + 1;
13 if u fully satisfied then
14 End of process;

15 end
16 Remove the partner;

17 if Altruism reaction for one partner pi then
18 Change ← True;
19 end
20 t ← t + 1;

21 end
22 New Global Solution with 1 more edge from u;
23 if the edge {u, pi} is selected in the solution then
24 Send a new request to pi;
25 Satu(t) ← Satu(t) + 1;

26 end

27 end

28 end
Algorithm 1: Monitoring of requests sending for a user u.

Algorithm 1 comprises a while loop inside another general loop. At Line 3,
we start a general loop on the time windows of user u. This while loop represents
the active time of the agent/user u, during this time interval the system monitors
the personal/interactive satisfaction functions.

In Lines 5–21 we are in the Decision-Action loop. This while loop involves first
computing and updating, after every time unit, the user’s personal satisfaction
Satu and the interactive satisfactions of his partners. Second we check every case
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Table 1. Example of the system between a user u and three partners. The boxes
represent the sending of a request.

Time w−−→up1 w−−→up2 w−−→up3 Satu

t = 0 s
�

�

�

�

10 5 3 0

t = 600 s 7.458 6.458 4.458 −0.49

t = 900 s 6.09
�

�

�

�

7.091 5.091 −0.836 → 0.164

t = 1200 s 4.53 5.53 5.53 −0.406

t = 1320 s NO→ 0 4.855
�

�

�

�

5.655 −0.721 → 0.279

t = 1380 s 0 YES 5.342 0.062 → 1

when a partner answers negatively or positively. If we have a positive answer and
a deal with the user, it is necessary to increase values and to check if the user
is fully satisfied. If he need more deals, we continue the process, else the system
stops the monitoring. Third, we test if the required conditions to send another
request are satisfied, that means the personal satisfaction is negative and there
exists a partner who has not yet received a request and has a weight higher than
the best weight from partners already requested.

In Lines 22–26 we compute a new global solution with the new constraints
and we send a new request if it’s relevant. The new request leads to a lower level
of stress for the user and to an increase in Satu(t).

An example of the algorithm in operation is presented in Table 1 for a user u
with three partners {p1, p2, p3} during the time window [0, 1500]. The ending of
the process can advance if the user is fully satisfied. We monitor user behaviour
every five minutes, with the first request sent to p1 with the highest weight.
After 900s, the required conditions are satisfied to send a new request to the
new best partner. At 1320s, the request by the partner p1 is declined and leads
two actions: p1 is removed from the list of potential partners and a new request
can be sent if the conditions are satisfied. At 1380s, p2 answer positively to u. If
u accepts the deal and is fully satisfied, the process stops and we remove him.

4 The Ride-Sharing Case

In this section, we focus on the specific case of our problem where users are
drivers and riders, and where the smartphone-based application is for ride-
sharing providing an automatic system to users to propose matchings through
bi-lateral agreements. Each driver can have three riders in his car, and the system
tries to find a match for each user u on the time windows [t0u, EoTu]. Using data
collected, in association with an industry partner, from the application users and
their comments, we provide the best functions representing their potential stress
and behaviour. The system automatically computes the matching and request
messages. Users do not know what the system is doing (sending requests to their
partners). Therefore, we cannot model and represent their true behaviour and
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stress. We use this partial model to create a good protocol to the system to know
what to do and when.

4.1 Greedy Model

Previously the application offered by our industry partner was using a greedy
strategy consisting in sending repeatedly more requests to other partners if the
first ones did not receive an answer. This method provides solutions for each
user but the quality can be poor, and the number of requests sent increases
exponentially. For a large number of users, it can be critical in terms of commu-
nication and management. This system does not take into account the quality
of the weights. If none of the first partners answers quickly, a new one can be
selected from a new request and his fast positive answer can lead to a matching
of bad quality (low weight). In the experimental section, we will use the minimal
delay required to send a new request in the greedy system as a lower bound for
the value Tmin.

4.2 Multi-agent Model

We developed a multi-agent model for the ride-sharing requests problem as pre-
sented in the previous section. As one can see in the algorithm, the decision
to send a new request depends on the values of the personal and interactive
satisfaction functions. We define a specific function for each satisfaction for the
ride-sharing version. Their update leads to an altruistic reaction from users to
their partners. This section focuses on the specificities of these functions and on
their implications for the objectives to control the risk of rejection while min-
imising the number of requests. In the following, we present for each function
the different parameters which will vary in the simulations.

4.3 Updated Values: Personal Satisfaction

In Definition 1 we gave the definition of the personal satisfaction variation
ΔSatu(t) for a user u (and the deals version in Definition 3). This function
depends on a stress impact factor βu which depends on EoTu. The higher its
value, the faster the variation function will decrease.

A way to compute this impact factor involves choosing the number of times
that we want the function to arrive at −1. For this, one can imagine that if
every time the function arrives at −1 we add 2, we could compute the number of
times the personal satisfaction function is reaching −1. Using the lower bound
variation −1/Tmin, we can compute this number from EoTu. From the fact
that we need 2 × Tmin to decrease the function by −2 (see Fig. 4), and that
the personal satisfaction function is reaching −1 at least k times, we have the
following definition.

Definition 7 (Impact Factor). The impact factor βu is define by:

βu = max
(

1,
EoTu

2 × k × Tmin

)

. (7)
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Fig. 4. Illustration of the lower bound.

From Definition 7 one can see that the only parameters that vary for the personal
satisfaction function (with or without the deals) are k and Tmin.

4.4 Updated Values: Interactive Satisfaction

In Definition 4 we defined the interactive satisfaction function ΔIntSat−−→upi
(t) for

a user u and his partners (and the deals version in Definition 6). This function
depends of a stress impact factor βpi

(t) which depends on the user u and his
partner pi. The higher its value, the faster the variation function will decrease.
We tried several types of behaviour model and functions for the interactive
satisfaction variation, and we kept the most relevant according to our problem.

Definition 8 (Ride-Sharing Requests Problem). In the Ride-Sharing
requests problem, the stress impact factor depending on the user u and his part-
ner pi is equal to βpi = max{0, 1−Satu−Satpi

} ∈ [0, 3]. The greater the level of
stress, the faster other partners will receive a request. Therefore, the interactive
satisfaction varies according to the personal satisfactions from protagonists at
rate

−w−→upi
× (1 − Satu − Satpi

)
EoTu

.

5 Empirical Study

As one can see in Algorithm 1, the decision to send a new request depends on
the values of the personal and interactive satisfaction functions. Their update
leads to an altruistic reaction from users to their partners.

For the evaluation, we have been working with an industry partner in the
area of ride-sharing. Our model was proposed to them. They implemented it in
full, except for the notion of personal satisfaction. They deployed the application
over a number of days to measure the impact on system performance. The results
were very good, significantly reducing the number of rejections and the number
of requests sent to users. However, we explained to them the necessity in also
using the personal satisfaction parameter to ensure their service could scale as
the number of uses increases over time.
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We do not present this evaluation in the paper because (a) of confidentiality
issues, and (b) because the number of users using the apps were not large enough
to see extreme cases and prove our model. This is why we rely on simulation on
huge numbers of users and varying several parameters.

Our experiments focus on the specificities of these functions and on the objec-
tives to control the risk of rejection while minimising the number of requests.
In the following, we present the different parameters which will vary in the
simulations.

5.1 Variation of Parameters

As seen in Definition 7, we define a specific function to describe the personal
satisfaction. This function depends on three parameters k, Tmin and EoTu. By
definition, the higher the parameters Tmin and k are, the longer the time required
to send a new request. We focus our simulation around these three parameters,
in order to identify the cases where the reduction of the number of requests or
rejections is the most visible. The variations are the following:

– k will vary between 2 and 6. It represents the number of time that the personal
satisfaction is decreasing by −1 at rate −1/Tmin between t0u and EoTu;

– Tmin will vary between 300 s and 600 s. In the greedy system, the time between
each new request was 300 s. From this information, we put this value as a lower
bound and to observe its impact on our model by increasing it;

– For each user, the horizon EoTu will take a commun value of 3600 s, 7200 s or
10800 s. An analysis at 1 h can show the limit of our technique if there are not
enough answers, whereas at 2/3 h the system should be more robust;

– The density of the graph will also vary to check the impact of a large number
of partners. We will focus our simulation on a small density of 30% or a larger
one of 60%.

5.2 Results and Discussion

In Fig. 5, we present the simulation results between the Greedy system where
requests are sent every Tmin minutes to a new partner and our Multi-Agent
model (M-A). We considered randomly generated graphs and simulated our
on-line protocol to manage the sending of requests, then compared the results
according the different parameters of the functions introduced in this paper. We
computed the percentage of benefit/loss between the two systems. All experi-
ments were run on Intel quad-core i7 running Mac-OS X 10.9.5 with 16 GB of
RAM. We present for each instance (depending on a small number of critical
parameters) the number of rejections, requests sent, sum of weights for deals
selected and the number of satisfied users.

One can see quickly that the number of requests sent decreases strongly. For
each instance, there are in average a reduction of 700 requests sent in the new
model. One can observe that in each instance where we increase the value of
Tmin or k, the number of rejections is reduced in the new model.
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Inst. EoT Tmin k

I1 3600 300 2
I2 3600 300 6
I3 3600 600 2
I4 7200 600 6
I5 7200 300 2
I6 7200 300 6
I7 7200 600 2
I8 7200 600 6
I9 10800 300 2
I10 10800 300 6
I11 10800 600 2
I12 10800 600 6

Table 2
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Fig. 5. Comparaison between the Greedy model and the Multi-Agent one using differ-
ent values of k, Tmin, EoT and density

The good news is that our approach seems robust in terms of its ability to
reduce the number of requests sent in all cases. When the number of satisfied
users is close between the two versions, the sum of weights is always better for
our system. But for smaller values of EoTu, the number of satisfied users is
low for our system, since it does not have enough time to find a matching to
everyone. This leads to a reduction of the number of deals obtained, and thereby
of the sum of weights. By computing a ratio between the number of deals realised
and the sum obtained, the matching obtained has a low level of risk as shown
by the average value (weight) of each deal done for our system. Note that in
real-world settings, users will start the application most often and the matching
process three or four hours in advance. Finally, as the graph density increases
the performance of our proposed method dramatically increases and describes
well what we shown previously.

6 Conclusions

We have presented a new multi-agent approach to managing the requests made
between users of applications for reaching bi-lateral agreements. The objective is
to maximise the likelihood of acceptable matches while minimising the burden on
the users due to unnecessary requests being sent. We presented a general model
for this kind of smartphone-based matching problem, with two specific functions
to describe the satisfaction/stress behaviours and to limit spamming. We also
defined and experimented with a specific model for the Ride-Sharing Requests
Problem. Our results showed that this system succeeded in significantly and



186 G. Simonin and B. O’Sullivan

robustly reducing the number of requests sent even with large variation between
the parameters. Their increase leads to a reduction the number of rejections and
an increase in the sum of weights in the solution.
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Abstract. Evolutionary Algorithm is a well-known meta-heuristics
para-digm capable of providing high-quality solutions to computation-
ally hard problems. As with the other meta-heuristics, its performance
is often attributed to appropriate design choices such as the choice of
crossover operators and some other parameters. In this chapter, we
propose a continuous state Markov Decision Process model to select
crossover operators based on the states during evolutionary search.
We propose to find the operator selection policy efficiently using a
self-organizing neural network, which is trained offline using randomly
selected training samples. The trained neural network is then verified on
test instances not used for generating the training samples. We evaluate
the efficacy and robustness of our proposed approach with benchmark
instances of Quadratic Assignment Problem.

1 Introduction

Evolutionary algorithms (EAs) such as genetic algorithm (GA) and memetic
algorithm (MA) have been widely used for solving NP-hard problems [8,10,21].
Using EA, a population of chromosomes representing the candidate solutions to
an NP-hard problem are evolved over a number of generations. The aim of the
search process is to optimize some objective value. These evolutionary operators
constitute the algorithmic core of the evolutionary search (ES). Therefore, the
quality of the evolutionary operators is critical for the performance of EAs [5].

Many genetic operators are known, and the applicability of these operators
vary across problems. And this is also true even among different instances in
the same problem [4]. The success of an evolutionary operator depends (among
other things) on the characteristics of the fitness landscape of the problem. This
information, however, is usually not readily available. Although the literature
might provide comparisons between operators on certain problem instances, an
evolutionary search algorithm designer is left with a difficult choice of operator
selection when designing an evolutionary search algorithm for a new problem.
These technical choices quite often lead to the design of ad-hoc methods to solve
specific problem instances.
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Automated tuning algorithms [3,15] can be used to adjust parameters of
evolutionary search prior to testing it on new problems. This does not, however,
exploit the fact that the usefulness of the operators often changes during the
evolutionary search. Besides, dependencies between operators can exist and the
interaction of multiple operators might lead to better results than when used
alone. During the search for a solution to the problem, the application rates of
the variation operators can be controlled using recent performance of the opera-
tors. Such methods are categorically referred to as Adaptive Operator Selection
(AOS) [7]. At each iteration, AOS provides an adaptive mechanism for selecting
suitable variation operators during the evolutionary search. Recent works [12,19]
have proposed such adaptive mechanisms for general evolutionary search with
possibly many variation operators whose behavior may be unknown, giving rise
to uncertainty.

Against this backdrop, we propose a formulation of a Markov Decision
Process (MDP) [23] for selecting crossover operators adaptively. Uncertainty over
the outcomes of applying a certain crossover operator suggests that MDP can be
an alternative approach for performing AOS. Furthermore, MDP uses concepts
of states and transitions, which is in line with the fact that the best choice of
the operator is very much dependent on, among others, the multi-modality of
the fitness landscape and the diversity levels of the population.

We claim the following contributions for this chapter.

1. We formulate a MDP with continuous states and discrete actions for AOS
with discrete action space. Decisions are made in discrete time. The state
features are generic in that they are problem-independent, i.e., they repre-
sent common features found in most ES methods for solving optimization
problems.

2. We proposed the use of a self-organizing neural network within such a MDP.
In this work, our self-organizing neural network is trained offline using training
samples of problem instances to discover action policies.

3. We compare and contrast the proposed neural network approach to several
benchmark AOS methods on QAP instances. Results of our experiments show
our approach have the best performance outcome for the optimization of QAP
instances using evolutionary search.

This chapter continues with Sect. 2 where the related works are surveyed.
Section 3 formulates AOS as MDP with continuous states and discrete actions.
Components of the MDP and our proposed neural network approach are also
described. The experiments and the results are presented in Sect. 5. Section 6
concludes and suggests some extensions to this work.

2 Related Works

Reactive Tabu Search (RTS) [2] is a state-based adaptive search method. The
tabu list length is adjusted based on whether or not repeated solutions appear
or a new best-so-far solution is found. Enhancement to the original RTS [1]
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features a Markov Decision Process (MDP) model with continuous states. The
states include among others the current objective function value.

In evolutionary computing context, reinforcement learning (RL) has been
used to adapt the step size in (1 + 1) evolutionary strategy [22] while solving
continuous optimization problem. Furthermore, reinforcement learning has also
been used to adapt crossover probability, mutation probability, and population
size based on some continuous states including best fitness, mean fitness, stan-
dard deviation, breeding success number, average distance from the best, number
of evaluations, and fitness growth [9].

While these works deal with the adaptation of numerical parameters, more
recently, a discrete-state RL has been proposed to deal with the adaptation of
categorical parameters [14] in the context of memetic algorithm. Specifically, the
crossover operator is the parameter being adapted.

This work differs from the above works in two ways. Firstly, we propose the
use of continuous state features for learning action policies used for AOS. Sec-
ondly, we learn the action policies offline using a self-organizing neural network.
This is in line with the spirit of [13] which found the advantage of offline-tuning
the parameters of an algorithm for online adaption.

3 Adaptive Operator Selection as Markov Decision
Process

Adaptive Operator Selection (AOS) is used in several context. In [18], AOS is
employed in the context of multi-objective evolutionary algorithms. In [17] and
[29], AOS is used to select local search operators and meta-heuristics algorithms,
respectively. In this chapter, AOS seeks out crossover operators best suited to
the current stage of evolutionary search.

At times, a crossover operator can degrade the overall quality of a population
in the immediate steps but may lead to a global optimum eventually. Therefore,
it is essential to choose the crossover operators strategically to optimize the
cumulative reward over a sequence of heuristic search. To employ the exploratory
operators at the right stage of the search, we propose to model AOS as a markov
decision process (MDP) with continuous states and discrete actions.

We define such a MDP as a 5-tuple < S,A, T,R, γ > [30] where

– S is the set of states, also known as the state space
– A is a finite set of action choices, also known as the action space
– T : S × A × S is the transition function specifying the probability of going

from state s1 to state s2.
– R : S × A × S is the reward function giving a numerical reward value r ∈

[0.0, 1.0] received at time t after transiting from state s1 to state s2 as a result
of applying action choice a at time t − 1

– γ is the discount factor of the feedback signals recieved over time

The state space, action space and reward function of this AOS and the func-
tion approximator are described below.
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3.1 The State Space

A total of 15 features is defined as the state features. The state features are
dichotomized into fitness landscape features and parent-oriented features. The
eight continuous and a binary fitness landscape features are described below.

1. Restart rs ∈ {0, 1}: At each generation, if div(p) < divt(p) where divt(p) is
a threshold of population diversity or when the average fitness has remained
unchanged for ges generations, the population will be restarted. All the chro-
mosomes except the best chromosomes are mutated to give dist(co, pc1) >
δdist and dist(co, pc2) > δdist where δdist is the percentage of differences among
the parent chromosomes.

2. Population Diversity div(P ) ∈ [0.0, 1.0]: Different crossover operators may
be preferred at different population diversity. The population diversity tracks
the number of differences among the corresponding elements of a pair of
chromosomes. It is normalized by the size of a problem instance n and the
number of pairs of chromosomes npair.

3. Population Fitness Diversity fdiv(P ) ∈ [0.0, 1.0]: The population fitness
diversity tracks the fitness differences between a pair of chromosomes. It is
normalized by the number of pairs of chromosomes.

4. Proportion of new best offspring Nbest ∈ [0.0, 1.0]: Offsprings are created
by crossover and mutation processes. An offspring is a new best offspring
when its fitness level fo is better than the best fitness level from the previous
generation fbest. In this work, an offspring is considered to be better than
the best offspring from the previous generations when fo < fbest. Nbest is
normalized using the number of crossover operations Nco and the number of
mutation operation Nmu.

5. Proportion of improving offspring Nimp ∈ [0.0, 1.0]: An offspring is improv-
ing when fo < fbetter where fbetter is the fitness level of the better parent
chromosome cbetter. Nimp tracks the number of improving offspring and is
normalized using the number of crossover operations Nco.

6. Proportion of worsening chromosomes Nwrs ∈ [0.0, 1.0]: An offspring is wors-
ening when fo > fworse where fworse is the fitness level of the worse parent
chromosome cworse. Nwrs tracks the number of worsening offsprings and is
normalized using the number of crossover operations Nco.

7. Proportion of equal quality offspring Neql ∈ [0.0, 1.0]: It may also be possible
that fbetter < fo < fworse. Such offspring is considered to be of equal quality
to the parent chromosomes. Neql tracks the number of equal quality offsprings
and is normalized using the number of crossover operations Nco.

8. Amount of improvements Δimp ∈ [0.0, 1.0]: The amount of improvement Δimp

is recorded as fbetter−fo

fbetter
. It is aggregated over Nco crossover operations in a

generation. Δimp is normalized using Nco.
9. Amount of worsening Δwrs ∈ [0.0, 1.0]: The amount of worsening to the

fitness level Δwrs is recorded as fo−fworse

fworse
. It is aggregated over Nco crossover

operations in a generation and then normalized using Nco.
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An offspring is a product of the parent chromosomes after crossover opera-
tion. Therefore, the following parent-oriented features are included as the observ-
able features.

1. Normalized distance between parent chromosomes dist(cp1, cp2) ∈ [0.0, 1.0]:
This is a measure of the number of differences between the corresponding
elements of cbetter and cworse. dist(cworse, cbetter) is normalized using the size
of the given QAP instance n.

2. Normalized fitness gap between parent chromosomes fgap(cp1, cp2) ∈ [0.0,
1.0]: This is a measure of the amount of difference between the fitness levels
of cworse and cbetter, i.e., fworse−fbetter

fworse
.

3. Mean distance of cbetter with population dist(cbetter, P ) ∈ [0.0, 1.0]: The num-
ber of differences between the corresponding elements of cbetter and chromo-
some ci where ci �= cbetter and ci �= cworse is tracked as part of the observable
feature. dist(cbetter, P ) is derived using 1

p−2

∑p
i=0 dist(cbetter, ci).

4. Mean distance of cworse with population dist(cworse, P ) ∈ [0.0, 1.0]: The num-
ber of differences between the corresponding elements of cworse and ci where
ci �= cbetter and ci �= cworse is tracked as part of the observable feature.
dist(cworse, P ) is derived using 1

p−2

∑p
i=0 dist(cbetter, ci).

5. Mean fitness gap of cbetter with population fgap(cbetter, P ) ∈ [0.0, 1.0]: The
amount of differences between the fitness levels of cbetter with ci where
ci �= cbetter and ci �= cworse is also tracked as part of the observable fea-
ture. fgap(cbetter, P ) is derived using 1

p−2

∑p
i=0 fgap(cbetter, ci).

6. Mean fitness gap of cworse with population fgap(cworse, P ) ∈ [0.0, 1.0]: Sim-
ilarly, the amount of differences between the fitness levels of cworse and ci

where ci �= cbetter and ci �= cworse is also tracked as part of the observable
feature. fgap(cworse, P ) is derived using 1

p−2

∑p
i=0 fgap(cworse, ci).

3.2 The Action Space

The action choices are the crossover operators c ∈ Γ where Γ is the set of
all crossover operators. This implies Γ is equivalent to action space A. Four
crossover operators from [13] are used here.

1. Cycle crossover (CX): This crossover operator first include the elements of
the chromosome common to parent chromosomes cp1 and cp2 for creating
offspring co. An unassigned element of co indexed at j is then chosen. co(j)
is then given the value at cp1(j), i.e., co(j) = cp1(j). A second element of
co indexed at k is again picked. co(k) is then given the value at cp2(j), i.e.,
co(k) = cp2(j).

2. Distance-preserving crossover (DPX): This crossover operator produces co

equi-distance apart from cp1 and cp2. Like CX, this crossover operator first
include the elements of the chromosome common to cp1 and cp2 for creating
co. The remaining unassigned elements of co are given values that is the
permutation of cp1 and cp2. In this way, co will have the same distance to cp1

and cp2.
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3. Partially-mapped crossover (PMX): This crossover operator chooses ran-
domly indices j and j′ where j < j′. co(k) is then assigned the value at
cp1(k)∀k /∈ [j, j′] and co(k)) is assigned the value at cp2(k)∀k ∈ [j, j′]. If co

is an invalid permutation, then for each co(k) and co(z) where j < z < j′,
co(k) = cp1(z).

4. Order crossover (OX): Like PMX, this crossover operator also chooses ran-
domly indices j and j′ where j < j′. co(k) is assigned the value at cp1(k)∀k ∈
[j, j′]. The kth unassigned elements of co is assigned the value of the kth

element of cp2 such that cp2(k) �= co(z) for j ≤ z ≤ j′.

3.3 The Reward Function

The feedback signal rc is derived using a reward function R. Known reward
functions differ mainly in the calculation of the credit and the measurement
method [7,12,16,28]. Our reward function makes reference to the current best,
and the reward is assigned only when the offspring improves over both its parents.
The feedback signal rc is derived using

rc = min
{ Cbest

Coffspring
sign(Cparent − Coffspring), ζ

}

where ζ ∈ [0.5, 1.0]. The sign(·) function returns 1 if the offspring is better than
the fitter parent. Otherwise, 0 is returned. The feedback signal rc is used in (1)
to estimate the long-term value Q(s, a) of choosing the crossover operators.

3.4 Function Approximator

The state space described in Sect. 3.1 is continuous. Other than discretizing the
continuous state space, a function approximator can be used to generalize the
states. The function approximator used here is a self-organizing neural known as
FL-FALCON [26]. Based on the adaptive resonance theory (ART) [6], it can learn
incrementally in real time while generalizing on the states without compromising
on its prediction accuracy.

Structure and Operating Modes. Seen in Fig. 1, FL-FALCON has a two-
layer architecture, comprising an input/output (IO) layer and a knowledge layer.
The IO layer has a sensory field F c1

1 for accepting state vector S, a motor field
F c2

1 for accepting action vector A, and a feedback field F c3
1 for accepting reward

vector R. The category field F c
2 at the knowledge layer stores the committed

and uncommitted cognitive nodes. Each cognitive node j has template weights
wck for k = {1, 2, 3}.

FL-FALCON operates in one of the following modes. In PERFORM mode,
the Fusion-ART algorithm is used to select cognitive node J for deriving action
choice a for state s. In LEARN mode, FL-FALCON learns the effect of action
choice a on state s.
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Fig. 1. The FL-FALCON architecture.

The Fusion-ART Algorithm. The Fusion-ART algorithm [25] is used for
selecting winning cognitive node J from a collection of committed cognitive
nodes. In PERFORM mode, cognitive node J is used to derive action choice a.
In LEARN mode, the weights wck

J for k = {1, 2, 3} of cognitive node J will be
updated using template learning. The performance of FL-FALCON is dependent
on the use of suitable vigilance parameters ρck for the operating modes.

Using activity vector xck for k = {1, 2, 3} as the inputs, the process of select-
ing winning cognitive node J begins with the code activation procedure. This
procedure derives the choice function T c

j using

T c
j =

3
∑

k=1

γck
|xck ∧ wck

j |
αck + |wck

j | ,

where the fuzzy AND operation (p∧q)i ≡ min(pi, qi), the norm ‖.‖ is defined by
|p| ≡ ∑

i pi for vectors p and q, αck ∈ [0, 1] is the choice parameters, γck ∈ [0, 1]
is the contribution parameters and k = {1, 2, 3}.

The choice function T c
j is then used for selecting a winning cognitive node J

during the code competition procedure. This procedure selects cognitive node J
using

J = arg max
j

{T c
j : for allF c

2 node j}.

The match function mck
J of cognitive node J is then derived in the template

matching procedure using

mck
J =

‖xck ∧ wck
J ‖

|xck| ≥ ρck,

where ρck ∈ [0, 1] for k = {1, 2, 3} are the vigilance parameters.
A resonance state is attained when the vigilance criterion, mck ≥ ρck for

k = {1, 2, 3}, is satisfied. Otherwise, a reset is performed by T c
J = 0.0 and the

state vigilance ρc1 is modified in a match tracking procedure using

ρc1 = min{mc1
J + ψ, 1.0},

where ψ is a very small step increment to match function mc1
J .
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After that, another winning cognitive node J is determined using the code
competition procedure. The process repeats until the vigilance criterion is
satisifed.

The attainment of the resonance state in LEARN mode leads to the template
learning procedure. This procedure updates wck

J of cognitive node J using

wck(new)
J = (1 − βck)wck(old)

J + βck(xck ∧ wck(old)
J ),

where βck ∈ [0, 1] is the learning rate.
The attainment of the resonance state in PERFORM mode leads to the

activity readout procedure. The action choice a is obtained by decoding action
vector xc2(new) using

xc2(new) = xc2(old) ∧ wc2
J .

In this work, FL-FALCON operates in LEARN mode when it is trained
offline. After that, the trained FL-FALCON operates in PERFORM mode to
select the crossover operators during evolutionary search.

Offline Training. The action policies π for selecting crossover operators are
discovered by presenting training samples to FL-FALCON operating in LEARN
mode. The training samples are gathered from the experiments conducted based
on the problem instances.

To train FL-FALCON, training samples comprising the state features,
the selected crossover operator and the estimated value function Q(s, a) are
presented to the sensory, motor and feedback fields respectively as xck =
{S,A,Q(s, a)}. Depending on the degree of match xck has with the existing
cognitive nodes, the presented training sample is either learned as a new cog-
nitive node or used to update a matching cognitive node J . One-shot training
of FL-FALCON is performed by presenting randomly selected training samples
to it.

The trained FL-FALCON is used in PERFORM mode for AOS. The choice
of crossover operators is made by selecting a winning cognitive node J using the
Fusion-ART algorithm. FL-FALCON is used in this way because the scope of
this work is limited to testing its generalization capability for AOS.

4 The Operator Selection Policies

This section briefly reviews various strategies for AOS. Based on a recent
study [13], there are two probabilistic and one deterministic allocation strategies,
namely probability matching (PM), adaptive pursuit (AP) and Multi-Armed
Bandit (MAB). In addition, for the sake of comparing with an MDP-based app-
roach, we will review a reinforcement learning (RL) approach [14] for finding the
action policy.
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4.1 Probabilistic Matching

As the feedback signal Rc is received only after applying crossover operator c,
it is difficult to estimate the quality of c using a fixed strategy. A probabilis-
tic strategy (PS) that biases towards the good-performing operators while still
allowing unused operators to be chosen would be desirable. Such a PS tuner
assigns a probability value proportional to the credits of crossover operators.

At each generation, c is then randomly chosen following this probability
distribution. For this purpose, each crossover operator c is assigned a quality
Qc ∈ [0.0, 1.0] which is updated using Qold

c + α(Rc − Qold
c ). Using a probability

matching (PM) mechanism, the probability Pc of choosing a crossover operator
c is then derived using Pmin + (1 − |Γ |Pmin) Qc∑

c′ Qc′ where Γ is the set of all
crossover operators considered. The lower threshold Pmin is included to guaran-
tee that every operator has a chance to be chosen. A drawback of PM is that
convergence of Pc can be slow in some cases.

4.2 Adaptive Pursuit

The adaptive pursuit mechanism [27] may be used to speed up convergence of
Pc using

Pc =

{

Pc + β(Pmax − Pc), if Qc = maxc′ Qc′

Pc + β(Pmin − Pc), otherwise,

where Pmax = 1−(|Γ |−1)Pmin. Eventually, Pc of a promising operator converge
to Pmax while Pc of the less promising crossover operators is reduced to Pmin.

4.3 Multi-armed Bandit

The problem of Multi-armed Bandit (MAB) [24] chooses a slot machine to mini-
mize the regret level over a fixed time horizon. The players are initially unaware
of the amount of payoff from the slot machines. The players would begin dis-
covering the payoff of the slot machines. As the players gain more knowledge
of the payoff of the slot machines, decisions have to be made on whether to
explore further or to exploit the existing knowledge. Well-studied methods to
solve MAB problem are widely applied in real world domains such as network
routing, financial investment, machine controller and clinical trials.

In the context of AOS [11], each crossover operator can be modelled as a
slot machine. The corresponding problem is then to choose crossover operator c

that maximize reward over time using argmaxc∈Γ

{

Qc + γ
√

2 ln
∑

c′ nc′
nc

}

where

Qc is the average reward computed since the beginning of the search and nc is
the number of times the crossover operator c is chosen. The second term in the
above equation is an exploratory term with similar significance to Pmin seen in
the probabilistic strategies.
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4.4 Reinforcement Learning

Following [14], the evolutionary search is modelled as a Markov Decision Process
(MDP). This approach estimates the expected Q-value Q(s, a) of each state-
action (s, a) pair using

Q(s, a) = R(s, a) +
∑

s′
P (s′, a, s)max

a′
Q(s′, a′), (1)

where P (s′, a, s) is the probability of entering into new state s′ and R(s, a) is
the expected reward from executing action a in state s.

Given that R(s, a) and P (s′, a, s) are well estimated, Q(s, a) can be estimated
using (1). However, in the evolutionary search domain, Q(s, a) is instance-specific
value. Significant number of runs on several instances is needed to estimate
the model. This is infeasible and has also gone out of the scope of this work.
Therefore, a model-free RL approach such as the Q-learning is used to solve the
MDP-based search progressively. Using Q-learning, the Q-value of using different
action choices can be explored and learned as part of the action policies. Within
the MDP framework, Q(s, a) is estimated using Q-learning [24].

Qt+1(st, at) = Qt(st, at) + αt(st, at)TDerr,

where αt(st, at) is the learning rate and TDerr is derived using

TDerr = Rt+1(st, at) + δ max
a

Qt(st+1, a) − Qt(st, at),

where δ is the discount rate. It is used in our search process to reflect the fact
that the chance of improvement is reduced as the search continues.

5 Performance Evaluation

This section presents experiments that evaluate and compare the efficacy of our
proposed approach on QAP instances [20].

5.1 Experiment Setup

The AOS methods used as the benchmark methods are the Reinforcement Learn-
ing approach (RL), Probability Matching (PM), Adaptive Pursuit (AP), Multi-
Armed Bandit (MAB), and a naive (N) allocation strategies. Due to similar
context to [13], the following parameter settings from [13] were used.

PM: αpm = 0.30, Pmin = 0.05; AP: αap = β = 0.30, Pmin = 0.05;
MAB: γmab = 1.00; RL: α = 0.03, δ = 0.90

For the memetic algorithm, a population size p of 40 chromosomes was
adopted. At each generation, as many as 20 offsprings were produced using
a selected crossover operator c. Each offspring was then refined using the
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random-order first-improvement 2-opt local search. When the average distance
over all pairs of chromosomes is below 10 or the average fitness has remained
unchanged for 30 generations, restart was initiated. This was achieved by mutat-
ing all but the best chromosomes in the population until each resulting chromo-
some differed from its parent by as much as δdist = 0.30 of problem size n. Each
run is terminated after 100 generations.

There are two rounds of experiments. The first round of experiments
described in Sect. 5.2 is the offline training of the neural network-based function
approximator. The second round of experiments described in Sect. 5.3 compares
our proposed approach to the benchmark AOS methods.

5.2 Offline Training of Neural Network

The training samples were prepared by experimenting each crossover opera-
tor c ∈ Γ on each QAP instance pi taken from the QAPLib (from bur26a to
scr20). Experiments were performed using four crossover operators mentioned
in Sect. 3.2. Each experiment based on the pairing of c and pi was performed
for 100 generations. A training sample is produced for each generation of the
evolutionary process.

A training sample is assembled as state s comprising 15 state features, action
choice a which a particular crossover operator c ∈ Γ and feedback signal rc.
State s and action choice a are taken at time t while the feedback signal rc is
taken at time t + 1. This means a training sample ts = {s, a, rc} is only fully
assembled at time t + 1. For t = 0, state s comprise the initial value of the state
features, action choice a comprise the crossover operator c used for that round
of experiment based on problem instance pi.

The raw form of the test results are the aggregated fitness levels of the
offsprings. Comparisons are made among the neural networks by ranking the
aggregated fitness levels in ascending order. Smaller rank value is given to train-
test configuration with lower aggregated fitness level. The ranks of 100 train-test
configurations are illustration in Fig. 2.

From Fig. 2, the neural network has the best test performance across the
different problem instances when trained using Bur-based problem instances.
The worst test performance across the different problem instances is observed
when neural network is trained using the Rou-based problem instances. The
mean rank of the train instances plotted using the dotted line illustrates the
aggregated effect of using different problem instances to train the neural network.

Following the above observation, the performance of neural networks trained
differently are ranked and compared directly. Seen in Fig. 3, the mean rank
of NN-S is based on the mean fitness values of neural networks trained using
the same train and test problem instances. The mean rank of NN-D is based
on the mean fitness values of neural networks trained using training samples
of problem instances not used for testing. Following this train-test criteria, for
each test problem instance pi ∈ P, |P −pi| other QAP instances can be used for
training NN-D. The heterogeneity of training samples are ensured by picking it
randomly from those QAP instances. Then, there is NN whose rank is based on
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Fig. 2. The mean rank of different
train-test configurations.

Trained Neural Networks

NN NN-S NN-D

M
e

a
n

 R
a

n
k

0

0.5

1

1.5

2

2.5

3

Bur

Chr

Els

Esc

Had

Kra

Lipa

Nug

Rou

Scr

Fig. 3. The mean rank of the trained
neural networks for the QAP instances.

the mean fitness values of the best performing neural network trained using a
problem instance selected based on Table 1.

From Fig. 3, NN is observed having the best ranking of 1.0 when compared
to NN-S and NN-D. NN-S has the next best ranking of the three trained neural
network while NN-D is the trained neural network with the lowest rank. The
rank of NN-S imply that the neural network may not necessarily have the best
performance when trained using the problem instances used for testing it. The
rank of NN-D implies that the neural network cannot be trained arbitrarily and
expect it to generalize well. The rank of NN shows that the neural network can
generalize well when trained selectively.

Table 1. Mean rank of train-test configurations

Test-train Bur Chr Els Esc Had Kra Lipa Nug Rou Scr

Bur N.A. 1.00 1.75 2.88 1.00 2.13 1.00 1.00 1.00 1.75

Chr 3.71 N.A. 4.64 2.93 2.86 2.71 3.86 2.79 3.64 3.79

Els 1.00 1.00 N.A. 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Esc 1.30 1.45 1.20 N.A. 1.30 1.40 1.50 1.05 1.20 1.05

Had 1.00 1.00 1.00 1.00 N.A. 1.00 1.00 1.00 1.00 1.00

Kra 1.67 4.00 2.00 6.67 3.67 N.A. 5.67 6.33 9.33 4.33

Lipa 3.69 2.88 3.00 1.00 4.31 2.75 N.A. 3.50 5.44 3.13

Nug 2.21 2.36 1.29 1.00 1.93 3.93 2.79 N.A. 1.79 2.21

Rou 1.33 1.67 2.67 3.00 2.00 4.00 2.33 3.67 N.A 1.00

Scr 1.00 3.33 1.00 1.00 1.00 4.00 1.00 1.00 1.00 N.A
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5.3 Adaptive Operator Selection

Further experiments were conducted to compare the performance of the neural
network-based approach with the several benchmark AOS methods. The bench-
mark AOS methods include Reinforcement Learning (RL), Probability Matching
(PM), Adaptive Pursuit (AP), Multi-Armed Bandit (MAB), näıve (N) alloca-
tion strategy and the proposed neural network (NN) approach. The RL app-
roach regards AOS as a finite MDP while the neural network-based approach
regards AOS as a MDP. The test results using fixed crossover operators such as
Cycle crossover (CX), Distance-preserving crossover (DPX), Partially-mapped
crossover (PMX) and Order crossover (OX) are also compared in Fig. 5.
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The test results are the mean ranks on the mean fitness values of the AOS
methods. The mean value is based on 10 runs of each experiment. Test results
for the QAP instances mentioned in Sect. 5.2 are presented here. The neural
network can be trained using any problem instance that has the lowest mean
rank as seen in Table 1.

The illustration of the mean rank of the AOS methods for the QAP instances
in Fig. 4 shows a broad spectrum of performance characteristics. The dotted-line
plot shows the mean value of the mean rank of the AOS methods and it implies
the level of difficulty of the QAP instances. It can be observed that many AOS
methods perform quite well for Bur, Els, Had and Scr type of QAP instances,
The more challenging QAP instances are Chr, Kra, Lipa, Nug and Rou.

Aggregation of the mean rank of the AOS methods over all QAP instances
used here confirms NN to be the best performing approach while DistPres to be
the worst performing approach. It turns out that the AP, Cycle and DistPres
methods are performing worse than the näıve allocation strategy N. The best
performance of NN implies the robustness of the neural network for selecting
crossover operators during the evolutionary search aimed at optimizing a broad
spectrum of QAP instances.
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6 Conclusions

Many methods for AOS such as Probability Matching, Adaptive Pursuit, Multi-
Armed Bandit and Reinforcement Learning (RL) are known to date. In this
chapter, we propose the use of a self-organizing neural network for AOS. In
contrast to the RL approach where AOS is formulated as discrete state MDP,
our neural network approach is better suited for AOS modelled as MDP with
continuous states and discrete actions.

The neural network used is a self-organizing neural network based on the
Adaptive Resonance Theory (ART) known for addressing the generalization-
specialization dilemma [6]. This work evaluates the generalization capability of
such a self-organizing neural network for AOS. To do that, the neural network
was trained offline using training samples from the problem instances. Several
train-test configurations were used to study the performance of the trained neural
network rigorously. To generalize well on the test instances, the results imply that
the neural network has to be trained properly using training samples from the
suitable problem instances.

The performance of the neural network is compared with the benchmark AOS
methods. The test results reveal several characteristics of the AOS methods and
the problem instances. Firstly, there are problem instances that can be optimized
using any AOS methods. There are also problem instances where several AOS
methods are performing worse than the näıve allocation strategy. In such cases,
MDP-based approaches such as RL and our proposed neural network approach
are among the better performing AOS methods. Such observations imply the
feasibility of using MDP-based approaches for AOS in evolutionary search. Last
but not least, aggregation of the mean rank of the AOS methods shows the
proposed neural network to be sufficiently robust to give the best performance
for all the QAP instances.

There are several directions to extend this work. First, we should determine
the performance of the neural network in more challenging QAP instances as well
as other permutation-based instances such as the flow-shop scheduling problem
(FSP). Second, the incremental learning capability of the neural network can be
tested using RL during evolutionary search. Doing so, allow the neural network to
improve on the learned action policies while performing AOS during evolutionary
search. The hypothesis here is that the neural network may able to be converge
faster for simpler problem instances and still converge on the more challenging
problem instances using available resources.
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Abstract. A natural way of attacking a new, computationally chal-
lenging problem is to find a novel way of combining design elements
introduced in existing algorithms. For example, this approach was made
systematic in SATenstein [15], a highly parameterized stochastic local
search (SLS) framework for SAT that unifies techniques across a wide
range of well-known SLS solvers. The focus of such work so far has been
on building frameworks and identifying high-performing configurations.
Here, we focus on analyzing such frameworks, a problem that currently
requires considerable manual effort and domain expertise. We propose
a quantitative alternative: a new metric that measures the similarity
between a new configuration and previously known algorithm designs.
We first introduce concept DAGs, a data structure that preserves the
hierarchical structure of configurations induced by conditional parame-
ter dependencies. We then quantify the degree of similarity between two
configurations as the transformation cost between the respective con-
cept DAGs. In the context of analyzing SATenstein configurations, we
demonstrate that visualizations based on transformation costs can pro-
vide useful insights into the similarities and differences between existing
SLS-based SAT solvers and novel solver configurations.

Keywords: SAT · Stochastic local search · Algorithm configuration
similarity

1 Introduction

When faced with a new, computationally hard problem to solve, researchers do
not typically want to reinvent the wheel. Instead, it makes sense to draw on
design ideas from existing high-performance solvers. Such an approach can be
made systematic by designing a single, highly parameterized solver that incorpo-
rates these different ideas, and then identifying a parameter configuration that
achieves good performance via an automatic algorithm configuration method
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[9,15]. Indeed, many powerful configuration procedures have recently become
available to meet this challenge [10,11,14,20]. The types of solvers configured in
this way can range from simple heuristic switching [30] to a complex combination
of multiple algorithms [28]. While the result is often an algorithm with excellent
performance characteristics, it can be difficult to understand such an algorithm,
e.g., in terms of how similar (or dissimilar) it is to the existing solvers from which
design ideas were drawn—a problem that has received little attention to date
by the research community. This work seeks to address this gap. We propose
a new metric for quantitatively assessing the similarity between configurations
for highly parametric solvers, which computes the distance between two algo-
rithm configurations in two steps. In the first step, the hierarchical structure of
algorithm parameters is represented by a novel data structure called a concept
DAG. In the second step, we estimate the similarity of two configurations as the
transformation cost from one configuration to another, using concept DAGs.

In order to demonstrate the effectiveness of our approach, we investigate the
configurations of SATenstein, a well-known, highly parameterized SLS solver.
SATenstein has a rich and complex design space with 43 parameters, drawing
design ideas from several existing solvers, and is one of the most complex SLS
solvers in the literature. We show that visualizations based on transformation
costs can provide useful insights into similarities and differences between solver
configurations. In addition, we argue that this metric can help to suggest poten-
tial links between algorithm structure and algorithm performance.

To our knowledge, there is little previous work directly relevant to the prob-
lem of quantifying the similarity of algorithm configurations. Visualization tech-
niques have been used previously to characterize the structure of instances of the
well-known propositional satisfiability problem (SAT) [26]; instead, we focus on
algorithm design elements. Most similar to our work, Nikolić et al. [21] used the
notion of edit distance to automatically quantify algorithm similarity. Our main
innovation is to address hierarchies of conditional parameters by saying that edits
to lower-level parameters are less significant than edits to higher-level parame-
ters. Conditional parameters are increasingly important as algorithm develop-
ment shifts to rely on algorithm configuration tools and hence parameter spaces
become richer and more complex; see e.g., recent work on assessing parameter
importance [13] and finding critical parameters [4].

The remainder of this paper is organized as follows. We present a high-level
description of SATenstein in Sect. 2. Next, we describe concept DAGs (Sect. 3)
and then present our experimental setup (Sect. 4). We describe our results on
quantifying similarities between algorithm configurations in Sect. 5 and then
conclude (Sect. 6).

2 SATenstein

In this section, we provide a short description of the overall design of
SATenstein. A detailed description of SATenstein is given in [16]. As shown
in the high-level algorithm outline, any instantiation of SATenstein proceeds as
follows:
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1. Optionally execute B1, which performs search diversification.
2. Execute either B2, B3 or B4, thus performing WalkSAT-based local search,

dynamic local search or G2WSAT-based local search, respectively.
3. Optionally execute B5 to update data structures such as promising list, clause

penalties, dynamically adaptable parameters or tabu attributes.

SATenstein consists of five building blocks and eight components, some of
which are shared across different building blocks. It has 43 parameters in total.
The choice of building block is encoded by several high-level categorical para-
meters, while the design strategies within each component are determined by a
larger number of low-level parameters.

3 Concept DAGs

We now introduce concept DAGs, a novel data structure for representing algo-
rithm configurations that preserves the hierarchical structure of parameter
dependencies. Our notion of a concept DAG is based on that of a concept
tree [31]. We work with a DAG-based data structure because parameters may
have more than one parent, where the child is only active if the parents take cer-
tain values (e.g., SATenstein’s noise parameter phi is only activated when both
useAdaptiveMechanism and singleClauseAsNeighbor are turned on). We then
define four operators whose repeated application can be used to map between
arbitrary concept DAGs, and assign each operator a cost. To compare two para-
meter configurations, we first represent them using concept DAGs and then
define their similarity as the minimal total cost of transforming one DAG into
the other.

A concept DAG is a six-tuple G = (V,E,LV , R,D,M), where V is a set of
nodes, E is a set of directed edges between the nodes in V such that (V,E) is an
acyclic graph, LV is a set of lexicons (terms) for concepts used as node labels,
R is a distinguished node called the root, D is the domain of discourse (i. e.,
the set of all possible node labels), and M is an injective mapping from V to
LV that assigns a unique label to every node. A parameter configuration can be
expressed as a concept DAG in which each node in V represents a parameter,
and each directed edge in E represents the conditional dependence relationship
between two parameters. LV is the set of parameter values used in a particular
configuration (i. e., a set containing exactly one value from the domain of each
parameter), D is the union of the domains of all parameters, and M specifies
which value assigned to each parameter v ∈ V in the given configuration. We
add an artificial root node R, which connects to all parameter nodes that do not
have any parent, and refer to these parameters as top-level parameters.

We can transform one concept DAG into another by a series of delete, insert,
relabel and move operations, each of which has an associated cost. For measuring
the degree of similarity between two algorithm configurations, we first express
them as concept DAGs, DAG1 and DAG2. We define the distance between these
DAGs as the minimal total cost required for transforming DAG1 into DAG2.
Obviously, the distance between two identical configurations is 0.



206 L. Xu et al.

Input: CNF formula φ; real number cutoff ;
Booleans performDiversification, singleClauseAsNeighbor,

usePromisingList ;
Output: Satisfying variable assignment

Start with random assignment A;
Initialize parameters;
while runtime < cutoff do

if A satisfies φ then
return A;

end
varFlipped ← FALSE;
if performDiversification then

B1 with probability diversificationProbability() do
B1 c ← selectClause();
B1 y ← diversificationStrategy(c) ;
B1 varFlipped ← TRUE;

end
if not varFlipped then

if not usePromisingList then
if singleClauseAsNeighbor then

B2 c ← selectClause();
B2 y ← selectHeuristic(c) ;

else
B3 sety ← selectSet();
B3 y ← tieBreaking(sety);

end

else
B4 if promisingList is not empty then
B4 y ← selectFromPromisingList() ;

else
B4 c ← selectClause();
B4 y ← selectHeuristic(c) ;

end

end
flip y ;

B5 update();

end

end

Procedure. SATenstein(. . .)

The parameters with the biggest impact on an algorithm’s execution path
are likely to appear high in the DAG (i.e., to be conditional upon few or no
other parameters) and/or to turn on a complex mechanism (i.e., to have many
parameters conditional upon them). Therefore, we say that the importance of a
parameter v is a function of its depth (the length of the longest path from the
root R of the given concept DAG to v) and the total number of other parameters
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conditional on it. To capture this definition of importance, we define the cost of
each of the four DAG-transforming operations as follows.

Deletion cost C(delete(v)) = 1
|V | · (height(DAG) − depth(v) + 1 + |DE(v)|),

where height(DAG) is the height of the DAG, depth(v) is the depth of node v
and DE(v) is the set of descendants of node v. This captures the idea that it is
more costly to delete top-level parameters and parameters that (de-)activate
complex mechanisms.

Insertion cost C(insert(u, v)) = 1
|V | ·(height(DAG)−depth(u)+1+ |DE(v)|),

where DE(v) is the set of descendants of v after the insertion, and u is the
node under which v is inserted.

Moving cost C(move(u, v)) = |V |−2
2·|V | · [C(delete(v)) + C(insert(u, v))], where

|V | > 2.
Relabelling cost C(relabel(v, lv, lv

∗
) = [C(delete(v)) + C(insert(u, v))] ·

s(lv, lv
∗
), where u is the parent node of v and s(lv, lv

∗
) is a measure of the dis-

tance between the old label, lv, and the new label, lv
∗
, of node v. For parame-

ters with continuous domains, s(lv, lv
∗
) = |lv − lv

∗ |. For parameters whose
domains are some finite, ordinal and discrete set {lv1 , lv2 , . . . , lvk}, s(lv, lv

∗
) =

abs(v − v∗)/(k − 1), where abs(v − v∗) measures the number of interme-
diate values between v and v∗. For categorical parameters, s(lv, lv

∗
) = 0 if

lv = lv
∗

and 1 otherwise. Since ParamILS, the algorithm configurator we used,
requires discrete parameter domains, all our parameters are either categori-
cal or have finite, ordinal and discrete domains; therefore, s(lv, lv

∗
) is always

bounded between [0, 1].

In our implementation, we did not use the move operator, because the struc-
ture of SATenstein’s parameter space does not provide much scope for its
application. Also, instead of finding the minimal transformation cost over all
sequences of delete and insert operations (a potentially expensive computation),
we used an easily implemented, yet effective stochastic local search procedure
to produce upper bounds. This procedure is based on randomised iterative first
improvement (with a random walk probability of 0.01); starting from a permu-
tation of the delete and insert operations required to transform the first concept
DAG into the second that is chosen uniformly at random, it swaps two opera-
tions in each step. The search process is restarted whenever no improvement in
the best transformation cost seen so far has been obtained within 200 iterations
and terminates upon the 10th such restart. For each sequence of inserts and
deletes, it is straightforward to compute the transformation cost that also takes
into account the corresponding relabelling operations.

4 Experimental Setup

Our quantitative analysis of SATenstein configurations is based on performance
comparisons with eleven high-performance SLS solvers on six well-known SAT
distributions, listed in Table 1 (we call each of these solvers a challenger) and
Table 2, respectively.
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Table 1. Our eleven challenger algorithms.

Algorithm Abbrev Reason for inclusion Parameters

Ranov [22] Ranov gold 2005 SAT Competition
(random)

wp

G2WSAT [17] G2 silver 2005 SAT Competition
(random)

novNoise, dp

VW [24] VW bronze 2005 SAT
Competition (random)

c, s, wpWalk

gNovelty+ [23] GNOV gold 2007 SAT Competition
(random)

novNoise, wpWalk, ps

adaptG2WSAT0 [18] AG20 silver 2007 SAT Competition
(random)

NA

adaptG2WSAT+ [19] AG2+ bronze 2007 SAT
Competition (random)

NA

adaptNovelty+ [8] ANOV gold 2004 SAT Competition
(random)

wp

adaptG2WSATp [19] AG2p performance comparable to
G2WSAT [17], Ranov, and
adaptG2WSAT+; see [18]

NA

SAPS [12] SAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp

RSAPS [12] RSAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp

PAWS [27] PAWS prominent DLS algorithm maxinc, pflat

Table 2. Our six benchmark distributions.

Distribution Description Generator parameters Train/Test size

QCP SAT-encoded quasi-group
completion problems [6]

order O ∈ [10, 30]; holes
H = h ∗ O1.55, h ∈ [1.2, 2.2]

1000/1000

SW-GCP SAT-encoded small-world
graph-colouring problems [5]

ring lattice size
S ∈ [100, 400]; nearest
neighbors connected: 10;
rewiring probability: 2−7;
chromatic numbers: 6

1000/1000

R3SAT uniform-random 3-SAT
instances [25]

variable: 600;
clauses-to-variables ratio:
4.26

250/250

HGEN random instances generated
by HGEN2 [7]

variable n ∈ [200, 400] 1000/1000

FAC SAT-encoded factoring
problems [29]

prime number ∈ [3000, 4000] 1000/1000

CBMC(SE) SAT-encoded bounded
model checking [1],
preprocessed by SatELite [3]

array size s ∈ [1, 2000]; loop
unwinding n ∈ 4, 5, 6

302/302

We performed algorithm configuration using ParamILS [11], a well-known
automatic algorithm configurator. On each benchmark distribution, we con-
figured SATenstein on the training set, and evaluated its performance of the
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configuration on the test set. For each test set instance, we ran each solver 25
times with a per-run cutoff of 600 CPU seconds. Following [11], we evaluate
performance in terms of penalized average run time (PAR), which is defined as
average run time with each timed out run counted as having completed in 10
times the cutoff time (in this case, 6000 CPU seconds). For a particular solver,
we consider an instance solved if a majority of runs found a satisfying assign-
ment. In practice, PAR can be sensitive to the choice of cutoff; however, in
past work [15], we showed that PAR did not affect the qualitative evaluation of
SATenstein’s performance in all six distributions we considered. We conducted
all of our experiments on a cluster of 55 machines each equipped with dual
3.2 GHz Intel Xeon CPUs with 2 MB cache and 2 GB RAM, running OpenSuSE
Linux 11.1 and managed by Sun Grid Engine (version 6.0). Code for SATenstein
and our transformation cost computation can be found at http://www.cs.ubc.
ca/labs/beta/Projects/SATenstein/.

5 Quantitative Comparison of Algorithm Configurations

In previous work, we performed an extensive performance evaluation on six well-
known benchmark distributions, finding that SATenstein outperformed all chal-
lengers in every distribution [16]. Moreover, we found that SATenstein outper-
formed tuned challengers as well, albeit to a reduced extent. In order to refer to
them in what follows, we summarize these results in Tables 4 and 5.

Table 3 gives a high-level description of SATenstein solvers in terms of build-
ing blocks used and overall SLS category. Recall that SATenstein draws compo-
nents from three major SLS solver categories: WalkSAT, dynamic local search
and G2WSAT-based algorithms.

5.1 Comparison of SATenstein Configurations

We now compare our automatically identified SATenstein solver designs to all
of the challengers. As shown in Table 1, 3 of our 11 challengers (AG2p, AG2+,
and AG20) are parameter-less. Furthermore, RANOV only differs from ANOV by the
addition of a preprocessing step, and so can be understood as a variant of the

Table 3. High-level summary of SATenstein solvers.

Solver Uses building blocks Broad category

SATenstein[QCP] 1, 2 and 5 WalkSAT

SATenstein[SW-GCP] 2 and 5 WalkSAT

SATenstein[R3SAT] 1, 3 and 5 Dynamic local search

SATenstein[HGEN] 1, 2 and 5 WalkSAT

SATenstein[FAC] 3 and 5 Dynamic local search

SATenstein[CBMC(SE)] 1, 3 and 5 Dynamic local search

http://www.cs.ubc.ca/labs/beta/Projects/SATenstein/
http://www.cs.ubc.ca/labs/beta/Projects/SATenstein/
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Table 4. Performance of SATenstein and the 11 challengers. Every algorithm was run
25 times on each instance with a cutoff of 600 CPU seconds per run. Each cell 〈i, j〉
summarizes the test-set performance of algorithm i on distribution j as a/b, where
a (top) is the penalized average runtime; b (bottom) is the percentage of instances
solved (i.e., those with median runtime < cutoff). The best-scoring algorithm(s) in
each column are indicated in bold, and the best-scoring challenger(s) are underlined.

SATenstein[D] [15] 0.08 100% 0.03 100% 1.11 100% 0.02 100% 10.89 100% 4.75 100%

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

AG20 [18] 1054.99 0.64 2.14 137.02 3594.40 2169.77

81.2% 100% 100% 98.1% 35.9% 61.1%

AG2p [19] 1119.96 0.43 2.35 105.30 1954.83 2294.24

80.1% 100% 100% 98.4% 80.6% 61.1%

AG2+ [19] 1091.37 0.67 3.04 148.28 1450.89 2181.92

80.3% 100% 100% 98.0% 91.0% 61.1%

ANOV [8] 25.42 4.86 11.17 109.94 2897.52 2021.22

99.6% 100% 100% 98.6% 51.4% 61.1%

G2 [17] 2942.13 4092.29 3.69 104.55 5947.80 2139.12

50.9% 31.0% 100% 98.7% 0% 65.4%

GNOV [23] 414.69 1.20 11.14 52.58 5935.39 2236.85

93.3% 100% 100% 99.4% 0% 61.5%

PAWS [27] 1127.84 4495.50 1.77 62.18 22.05 1693.82

81.0% 24.3% 100% 99.4% 100% 70.8%

RANOV [22] 73.38 0.15 18.29 151.11 887.33 1227.07

99.1% 100% 100% 98.2% 96.8% 79.7%

RSAPS [12] 1255.94 5635.54 18.42 33.28 17.86 827.81

79.2% 5.4% 100% 99.7% 100% 85.0%

SAPS [12] 1248.34 3864.74 22.93 40.17 16.41 646.89

79.4% 34.2% 100% 99.5% 100% 89.7%

VW [24] 1022.69 161.74 12.45 176.18 3382.02 385.12

81.9% 99.4% 100% 97.8% 35.3% 93.4%

same algorithm. This leaves us with 7 parameterized challengers to consider.
For each, we sampled 50 configurations (consisting of the default configuration,
one configuration optimized for each of our 6 benchmark distributions, and 43
random configurations). We then computed the pairwise transformation cost
between the resulting 359 configurations (7 × 50 challengers’ configurations +
6 SATenstein solvers + AG2p + AG2+ + AG20). The result can be understood as
a graph with 359 nodes and 128 522 edges, with nodes corresponding to concept
DAGs, and edges labeled by the minimum transformation cost between them.
To visualize this graph, we used a dimensionality reduction method to map it
onto a plane, with the aim of positioning points so that the Euclidean distance
between every pair of points approximates their transformation cost as accu-
rately as possible; in particular, we used the MDS algorithm [2] as implemented
in MATLAB’s mdscale function, with option sstress.
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Table 5. Performance summary of the automatically configured versions of 8 chal-
lengers (three challengers have no parameters). Every algorithm was run 25 times on
each problem instance with a cutoff of 600 CPU seconds per run. Each cell 〈i, j〉 sum-
marizes the test-set performance of algorithm i on distribution j as a/b, where a (top)
is the penalized average runtime; b (bottom) is the percentage of instances solved (i.e.,
having median runtime < cutoff). The best-scoring algorithm(s) in each column are
indicated in bold.

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

ANOV[D] [8] 26.13 0.06 2.68 119.75 1731.16 994.94

99.6% 100% 100% 98.2% 90.1% 83.4%

G2[D] [17] 514.29 0.05 3.64 98.70 617.83 1084.60

91.4% 100% 100% 99.1% 97.8% 81.4%

GNOV[D] [23] 417.33 0.22 8.87 68.24 5478.75 2195.76

92.9% 100% 100% 99.4% 0.3% 61.8%

PAWS[D] [27] 68.06 0.70 1.91 64.48 22.01 1925.56

99.2% 100% 100% 99.4% 100% 67.7%

RANOV[D] [22] 75.06 0.15 13.85 141.61 336.27 1223.83

98.9% 100% 100% 98.1% 100% 80.4%

RSAPS[D] [12] 868.37 0.19 1.32 42.99 12.17 67.59

85.2% 100% 100% 99.5% 100% 99.0%

SAPS[D] [12] 27.69 0.31 1.54 31.77 10.68 62.63

99.8% 100% 100% 99.6% 100% 99.0%

VW[D][24] 0.33 417.71 1.26 57.44 32.38 16.45

100% 94.8% 100% 99.6% 100% 100%

The final layout of similarities among 359 configurations (16 algorithms) is
shown in Fig. 1. Observe that in most cases the 50 different configurations for a
given challenger solver were so similar that they mapped to virtually the same
point in the graph.

As noted earlier, the distance between any two configurations shown in Fig. 1
only approximates their true distance. In addition, the result of the visualization
also depends on the number of configurations considered: adding an additional
configuration may affect the position of many or all other configurations. Thus,
before drawing further conclusions about the results illustrated in Fig. 1, we vali-
dated the fidelity of the visualization to the original distance data. As can be seen
from Fig. 2, there was a strong correlation between the computed and mapped
distances (Pearson correlation coefficient: 0.96). Also, the mapping preserved the
relative ordering of the true distances between configurations quite well (Spear-
man correlation coefficient 0.96)—in other words, distances that appear similar
in the 2D plot tend to correspond to similar true distances (and vice versa).
Digging deeper, we confirmed that the top two closest challengers in Fig. 1
to each given SATenstein were always the ones having the lowest true
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Fig. 1. Visualization of the transformation costs in the design of 16 high-performance
solvers (359 configurations) obtained via MDS.
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Fig. 2. True vs mapped distances in Fig. 1. The data points correspond to the complete
set of SATenstein[D] for all domains and all challengers with their default and domain-
specific, optimized configurations.

transformation costs. For distant challengers, relative distance in the visualiza-
tion did not always reflect true relative transformation costs; however, we find
this acceptable, since we are mainly interested in examining which configurations
are similar to each other.

Having confirmed that our dimensionality reduction method is performing
reliably, let us examine Fig. 1 in more detail. Overall, and unsurprisingly, we first
note that the transformation cost between two configurations in the design space
is very weakly related to their performance difference (quantitatively, the Spear-
man correlation coefficient between performance difference (PAR ratio) and
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configuration difference (transformation cost) was 0.25). Examining algorithms
by type, we note that all dynamic local search algorithms are grouped together,
on the right side of Fig. 1; likewise, the algorithms using adaptive mechanisms
are grouped together at the bottom-left of Fig. 1. SATenstein() solvers were
typically more similar to each other than to challengers, and fell into two broad
clusters. The first cluster also includes the SAPS variants (SAPS, RSAPS), while
the second also includes G2 and VW. None of the SATenstein solvers uses an
adaptive mechanism to automatically adjust other parameters. In fact, as shown
in Table 5, the same is true of the best performance-optimized challengers as nei-
ther SAPS, G2, or VW use adaptive mechanism. This suggests that in many cases,
contrary to common belief (see, e.g., [8,19]) it may be preferable to expose
parameters so they can be instantiated by sophisticated configurators rather
than automatically adjusting them at running time using a simple adaptive
mechanism.

We now consider benchmarks individually. For the FAC benchmark, SATen-
stein[FAC] had similar performance to SAPS[FAC]; as seen in Fig. 1, both solvers
are structurally very similar as well. Overall, for the ‘industrial’ distributions,
CBMC(SE) and FAC, dynamic local search algorithms often yielded the best per-
formance amongst all challengers. Our automatically-constructed SATenstein
solvers for these two distributions are also dynamic local search algorithms. Due
to the larger search neighbourhood and the use of clause penalties, dynamic local
search algorithms are more suitable for solving industrial SAT instances, which
often have some special global structure.

For R3SAT, a well-studied distribution, many challengers showed good perfor-
mance (the top three challengers were VW, RSAPS, and SAPS). The performance
of SATenstein[R3SAT] is only slightly better than that of VW[R3SAT]. Figure 1
shows that SATenstein[R3SAT] is a dynamic local search algorithm similar to
RSAPS and SAPS.

For HGEN, even the best performance-optimized challengers, RSAPS[HGEN] and
SAPS[HGEN], performed poorly. SATenstein[HGEN] achieves more than 1 000-
fold speedups against all challengers. Its configuration is far away from any
dynamic local search algorithm (the best challengers), and closest to VW, a Walk-
SAT algorithm, and G2.

For QCP, VW[QCP] does not reach the performance of SATenstein[QCP], but
significantly outperforms all other challengers. Our transformation cost analysis
shows that VW is the closest neighbour to SATenstein[QCP]. For SWGCP, many
challengers achieve similar performance to SATenstein[SWGCP]. Figure 1 shows
that SATenstein[SWGCP] is close to G2[SWGCP], which is the best performing
challenger on SWGCP.

5.2 Comparison to Configured Challengers

Since there were large performance gaps between default and configured chal-
lengers, we were also interested in the transformation cost between the configu-
rations of individual challenger solvers. Table 5 shows that after configuring each
challenger for each distribution, we found that SAPS was best on HGEN and FAC;
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Fig. 3. The transformation costs of configuration of individual challengers and selected
SATenstein solvers. (a): SAPS (best on HGEN and FAC); (b): SAPS and SATenstein[HGEN,

FAC]; (c): G2 (best on SWGCP); (d): G2 and SATenstein[SWGCP]; (e): VW (best on
CBMC(SE), QCP, and R3SAT); (f): VW and SATenstein[CBMC, QCP, R3SAT].

G2 was best on SWGCP, and VW was best on CBMC(SE), QCP, and R3FIX. Figure 3
(left) visualizes the parameter spaces for each of these three solvers (43 random
configurations + default configuration + 6 optimized configurations). Figure 3
(right) shows the same thing, but also adds the best SATenstein() configurations
for each benchmark on which the challenger exhibited top performance.

Examining these figures in the left column of Fig. 3, we first note that the
SAPS configurations optimized for FAC and HGEN are very similar but differ
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substantially from SAPS’s default configuration. On SWGCP, the optimized con-
figuration of G2 not only performs much better than the default but, as seen
in Fig. 3(c), is also quite different. All three top-performing VW configurations
are rather different from VW’s default, and none of them uses the adaptive
mechanism for choosing parameter wpWalk, s, and c. Since the parameter
useAdaptiveMechanism is a top-level parameter and many other parameters
are conditionally dependent on it, the transformation costs between VW default
and optimized configurations of VW are very large, due to the high relabelling
cost for these nodes in our concept DAGs.

The right column of Fig. 3 illustrates the similarity between optimized
SATenstein() solvers and the best performing challenger for each benchmark.
As previously noted, SATenstein[FAC] and SAPS[FAC] are not only very simi-
lar in performance, but also structurally similar. Likewise, SATenstein[SWGCP]
is similar to G2[SWGCP]. On R3SAT, many challengers had similar performance.
SATenstein[R3SAT] (PAR = 1.11) was quite different from the best challenger
VW[R3SAT] (PAR = 1.26), but resembled SAPS[R3SAT] (PAR = 1.53). For the
three remaining benchmarks, SATenstein() solvers exhibited much better per-
formance than the best optimized challengers, and their configurations likewise
differed substantially from the challengers’ configurations.

As an aside, it might initially be surprising that qualitative features of the
visualizations in Fig. 3 appear to be absent from Fig. 1. In particular, the sets
of randomly sampled challenger configurations that are quite well-separated in
Fig. 3 are nearly collapsed into single points in Fig. 1. The reason for this lies in
the fact that the 2D-mapping of the highly non-planar pairwise distance data
performed by MDS focuses on minimal overall distortion. For example, when
visualizing the differences within a set of randomly sampled SAPS configurations
(Fig. 3(a)), MDS spreads these out into a cloud of points to represent their dif-
ferences. However, the presence of a single SATenstein configuration that has
large transformation costs from all of these SAPS configurations forces MDS to use
one dimension to capture those differences, leaving essentially only one dimen-
sion to represent the much smaller differences between the SAPS configurations
(Fig. 3(b)). Adding further very different configurations (as present in Fig. 1)
leads to mappings in which the smaller differences between configurations of the
same challenger become insignificant.

6 Conclusion

We have proposed a new metric for quantitatively assessing the similarity
between configurations of highly parametric solvers. Our metric is based on a
data structure, concept DAGs, that preserves the internal hierarchical structure
of parameters. We estimate the similarity of two configurations as the transfor-
mation cost from one configuration to another. In the context of SATenstein, a
highly parameterized SLS-based SAT solver, we have demonstrated that visual-
izations based on transformation cost can provide useful insights into similarities
and differences between solver configurations. In addition, we believe that this
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metric could be useful for suggesting potential links between algorithm structure
and algorithm performance further exploration of which could be an interesting
future research direction.
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Abstract. In this paper we describe a procedure that automatically
synthesizes a neighborhood from an ensemble of Mixed Integer Program-
ming (MIP) and/or Constraint Programming (CP) models. We move on
from a recent paper by Adamo et al. (2015) in which a neighborhood
structure is automatically designed from a (single) MIP model through
a three-step approach: (1) a semantic feature extraction from the MIP
model; (2) the derivation of neighborhood design mechanisms based on
these features; (3) an automatic configuration phase to find the “proper
mix” of such mechanisms taking into account the instance distribution.
Here, we extend the previous work in order to generate a suitable neigh-
borhood from an ensemble of MIP and/or CP models of a given com-
binatorial optimization problem. Computational results show relevant
improvements over the approach considering a single model.

Keywords: Combinatorial optimization · Neighborhood search ·
Automatic neighborhood design · Feature extraction

1 Introduction

The definition of “good” neighborhood structures on the solution space is a key
step when designing neighborhood search heuristics for combinatorial optimiza-
tion problems. In order to make the search efficient, it is fundamental to tailor
the neighborhood structures not only to the specific problem but also to the ref-
erence instance population (i.e., the particular distribution of the instances to be
solved). Our aim is to develop mechanisms that may derive automatically suit-
able neighborhoods by exploiting some features of an ensemble of Mixed Integer
Programming (MIP) and/or Constraint Programming (CP) models of the prob-
lem. In particular, we extend a recent work by Adamo et al. (2015) in which
a neighborhood structure is automatically designed from a (single) MIP model
with a three-step procedure: (1) extraction of semantic features from the MIP
model; (2) derivation of neighborhood design mechanisms (based on these fea-
tures), obtained by freeing a subset of the variables and then fixing them again;
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(3) search of a good mix of such mechanisms in an automatic configuration phase.
Since multiple models (taken from the existing literature or written from scratch
by the analyst/researcher) may be known for a given combinatorial optimization
problem, we extend this approach in order to feed the Automatic Neighborhood
Design (AND) algorithm with an ensemble of MIP and/or CP models, and show
the advantages of this approach.

We now review the most relevant literature related to our work. Along the
line of research aiming to improve a given feasible solution by machine-generated
neighborhood structures, it is relevant the work on the Local Branching algo-
rithm (Fischetti and Lodi 2003) that identifies suitable spherical neighborhoods
by means of branching conditions (local branching cuts) and explores them
by using a generic black-box MIP solver. Other remarkable contributions are
due to Danna et al. (2005) and Parisini and Milano (2012). More recently,
Ghiani et al. (2015) move on from a MIP compact formulation and show how
to exploit its features to automatically design efficient neighborhoods. They use
an unsupervised learning approach to automatically identify good regions of the
search space around a given feasible solution. Similarly, Van Hentenryck and
co-authors (see, e.g., Mouthuy et al. 2012) show how to synthesize local search
algorithms from high-level constraint-based local search models. In addition, our
work is also related to Automatic Algorithm Configuration (AAC), in which the
most appropriate parameter setting is found by an automatic procedure (Hutter
et al. 2007).

2 Automatically Designed Neighborhoods

Given a combinatorial optimization problem P , a neighborhood structure asso-
ciates a set of feasible solutions N(s) to each feasible solution s of P . In this
paper, we assume the user supplies an ensemble M1, . . . ,ML of MIP and/or CP
models, each of which is characterized by its own vector x(l) ∈ Rnl of nl decision
variables (l = 1, . . . , L). Model M1 (which is referred to as the leading model
in the following) plays a special role since it is used by the AND procedure to
extract the main features of both the problem P and its feasible solution s.
We also assume the user describes in a high-level language how to convert each
x(l) vector (l = 2, . . . , L) from/to the corresponding x(1) vector. Since a good
neighborhood structure must be adapted to the specific problem as well as to
the particular distribution of the instances to be solved, the user also provides
a training set representative of the reference instance population. Moreover, we
require the MIP and the CP models are written through an algebraic modeling
language (e.g., AMPL, GAMS or OPL). Such languages are characterized by
sets of entities (e.g., vehicles, commodities or customers) and parameters, vari-
ables and constraints of the model are then “tagged” (or indexed) by one or
more entities. For example, the constraint

∑

i∈A xij = dj , j ∈ B is tagged by
the entities in set B. Moreover, variables x are tagged by entity sets A and B,
while parameters d are tagged by entity set B. This tagging defines implicitly
relationships between entities. In this paper we require that the MIP and the
CP models share the same set of entities E that can be subdivided into one or
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Algorithm 1. Sketch of the Automatic Neighborhood Design procedure using an
ensemble of models. The output is the (possibly) improving solution s′

1: procedure AND(M1, . . . , ML, TS, s) //TS is the training set
//compute the vector w used to weight the parameters of the model and
//identify among M1, . . . , ML the model Ml∗ to use in the repair phase

2: w, l∗ ← AAC(M1, . . . , ML, TS)
//extract the set S of semantic features from M1 and the current solution s

3: S ← ExtractSemanticFeatures(M1, w, s)
//select the entities that make up set F

4: F ← SelectEntities(S, s)
//explore the automatically-designed neighborhood

5: s′ ← DestroyAndRepair(Ml∗ , s, F )
6: end procedure

more sets Ek (k = 1, . . . ,K) of homogeneous entities (e.g., a set of facilities, a
set of commodities and a set of orders).

To measure the strength of the relationships between the entities, our proce-
dure extracts some semantic features (that can be model- or solution-based) as
follows. Given two entities e, e′ ∈ Ek, we first identify the Pk parameters (i.e.,
the data of the problem) tagged by Ek and then we build a dataset in which the
rows are associated with the entities in Ek, while each column reports the values
of a parameter. Each parameter is given a weight wk and the most appropriate
values of the weight vector w are determined through an AAC phase performed
on a training set. The similarity between e and e′ is obtained by first normalizing
the weighted columns of the dataset and then computing the inner product of
the corresponding rows. In addition, we also consider some solution-based fea-
tures that take into account the similarity between entities with respect to the
current solution. More specifically, two entities e, e′ ∈ E are considered similar
(adjacent) with respect to s if: (i) they are both tagged by a variable with a
non-zero value in s or (ii) there is a constraint tagged by e that is active in s, in
which a variable, tagged by e′ and having a non-zero value in s, appears with a
coefficient different from zero (or vice versa).

We define a neighborhood structure N(s) as the set of feasible solutions
that can be obtained by first destroying and then repairing the fragment of the
current solution s tagged by a selected subset F ⊆ E of entities. The destroy
phase is obtained by freeing the decision variables tagged by F . On the other
hand, the repair step fixes such variables again by means of an off-the-shelf MIP
or CP solver (e.g., CPLEX or CP Optimizer with a given parameter setting). The
model employed in the repair phase is chosen among M1, . . . ,ML by the AAC
procedure as the one providing the best performance across the training set. In
our algorithm, a key aspect is how to choose F . In this paper, this is done on the
basis of the semantic features previously extracted from the leading model M1

and the current solution s (the details of the procedure can be found in Adamo
et al. 2015). In particular, the semantic features are used to identify entities
that are “similar” and may have a strong impact on the objective function.
The main steps of our approach are summarized in Algorithm 1. First, the
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training set TS and the ensemble of models M1, . . . ,ML are used to determine
the values of the weights to be assigned to the parameters of the model as
well as the most appropriate model Ml∗ for the repair phase (line 2). Then,
the ExtractSemanticFeatures procedure utilizes the weight vector w, the
leading model M1 and the current solution s to extract a set S of semantic
features (line 3). At line 4, the semantic features S and the current solution s are
inputs for the SelectEntities procedure that selects the entities constituting
the set F . Finally, the model Ml∗ , the set F and the current solution s are used
to synthesize and explore the neighborhood of s (line 5).

3 Computational Results

We test our approach on several classical combinatorial optimization problems,
as in Adamo et al. (2015). Here, we report the results on the Capacitated Vehicle
Routing Problem with Time Windows (VRPTW) and the Generalized Traveling
Salesman Problem (GTSP). For each test problem, we consider a MIP formula-
tion for which a “repair” is made through CPLEX 12.5, and a CP formulation
for which a “repair” is made through CP Optimizer 12.5. The initial solutions
are the first feasible solutions provided by CP Optimizer. A time limit of 60 s
is imposed on the exploration of each neighborhood (repair phase). Finally, we
use ParamILS (Hutter et al. 2007) as an AAC tool. Given a feasible solution
and a time limit, our computational experiments aim to compare the average
percentage objective function improvements from the initial solution of: (1) our
approach using an ensemble of models (ENS in the tables); (2) the single model
approach of Adamo et al. (2015) (MIP in the tables).

3.1 Capacitated Vehicle Routing Problem with Time Windows

We consider two models: a MIP formulation (Cordeau et al. 2006, Sect. 3.1) and a
CP formulation (CP Optimizer Forum 2009). Our tests are made on the classical
Solomon (1987) instances which are made up of six classes: C1, C2, R1, R2, RC1,
RC2. To assess the AND algorithm for different reference instance populations,
we generate additional classes of instances by tightening the customers’ time
windows. In particular, if [ai, bi] is the original time window of a customer i,
we tighten it as: [ai + α(bi − ai), bi − α(bi − ai)] for α = 0.1, 0.3 and 0.5. We
also completely relax the time windows. The most relevant feature to tune is the
number of variables freed in the destroy phase. After a training step, the best
results are achieved when such variables amount to 20% of the overall number.
The results are reported in Table 1 and show that the approach considering an
ensemble of models provides the largest objective function improvements when
the time windows are removed (No TW) and for the original instances (α = 0). In
the former case, the average improvement of the ENS neighborhood is around 7%
on average while the MIP-based neighborhood provides an improvement equal to
5.30%. In the latter case, the average ENS improvement is around 5% on average
while the MIP-based neighborhood provides an improvement around 3.50%. On
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Table 1. Results for the VRPTW (bold numbers represent the best results)

Dataset No TW α = 0 α = 0.1 α = 0.3 α = 0.5

ENS MIP ENS MIP ENS MIP ENS MIP ENS MIP

C1 6.31 5.29 4.95 3.76 3.87 3.78 3.84 3.84 3.75 3.75

C2 7.21 5.75 4.67 3.95 6.39 6.39 5.55 5.55 6.37 6.37

R1 5.87 4.46 4.37 2.05 3.69 3.07 4.10 2.96 3.66 3.66

R2 8.23 5.60 5.81 4.64 6.08 6.08 6.31 6.31 5.49 5.49

RC1 6.98 5.90 5.43 2.59 4.56 4.49 4.74 4.74 2.84 2.84

RC2 7.27 4.82 5.21 4.29 6.03 6.03 6.38 6.38 5.77 5.77

AVERAGE 6.98 5.30 5.07 3.55 5.10 4.97 5.15 4.96 4.65 4.65

the other hand, for the tighter instances (α = 0.1, α = 0.3 and α = 0.5) the
two approaches are comparable (indeed, the results are exactly the same for
α = 0.5, meaning that the AAC phase identified the MIP model as the best
model to perform the repair step). Here, the difference between the two classes
of neighborhoods is rather small (around 0.1–0.2%).

3.2 Generalized Traveling Salesman Problem

The GTSP MIP model we consider is the same described in Adamo et al. (2015),
whereas the CP model is implemented from scratch. The instances used to per-
form our experiments are taken from Fischetti et al. (1997), who derive test prob-
lems by modifying standard instances of the Traveling Salesman Problem. For
the GTSP, after the training step it turns out that the best results are obtained
when the maximum number of variables made free in the destroy phase amounts
to 5% of the overall number. The results are reported in Table 2 and show that
the ENS neighborhoods allow to achieve considerably higher improvements when

Table 2. Results for the GTSP (bold numbers represent the best results)

Instance ENS MIP Instance ENS MIP

64lin318 70.65 24.88 131p654 59.31 25.53

80rd400 63.67 27.18 132d657 63.69 0.00

84fl417 68.29 26.42 145u724 62.50 0.00

88pr439 62.31 30.68 157rat783 47.80 0.00

89pcb442 63.54 34.34 201pr1002 69.73 0.00

99d493 60.41 0.00 212u1060 74.48 0.00

115u574 69.15 28.84 217vm1084 29.17 0.00

115rat575 68.61 32.58

AVERAGE 62.22 15.36
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compared to the neighborhoods based on a single MIP model. In particular, the
average ENS objective function improvement is about 62%, while the MIP-based
neighborhoods provide an average improvement of about 15%. This latter result
is influenced by several instances (namely, 99d493, 132d657, 145u724, 157rat783,
201pr1002, 212u1060 and 217vm1084) for which the procedure is not able to
improve the initial solution within the time limit.

4 Conclusions

In this paper, we propose a procedure to synthesize automatically “good” neigh-
borhood structures from an ensemble of MIP and CP models, by extending
a previous approach for the case of a single MIP model. The algorithm takes
into account the characteristics of the problem as well as the reference instance
population. In particular, the procedure employs a leading model to extract
some semantic features used to derive automatically some neighborhood design
mechanisms. Then, an automatic algorithm configuration phase allows to find a
good mix of such mechanisms, as well as the best model to be used during the
repair phase. Computational experiments show that the approach considering
an ensemble of models outperforms the neighborhoods based on a single MIP
model.
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Abstract. The Resource-Constrained Project Scheduling Problem
(RCPSP) is a well-known scheduling problem aimed at minimizing the
makespan of a project subject to temporal and resource constraints. In
this paper we show that hard RCPSPs can be efficiently tackled by a
portfolio approach that combines the strengths of different constraint
solvers Our approach seeks to predict and run in parallel the best solvers
for a new, unseen RCPSP instance by enabling the bound communi-
cation between them. This on-average allows to outperform the oracle
solver that always chooses the best available solver for any given instance.

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) [10] is the
problem of minimizing the makespan (i.e., the total duration) of a project,
defined as a collection of tasks subject to precedence relations between the activ-
ities and constrained by resource availabilities. This well-known NP-hard prob-
lem [9] has countless industrial applications and it is probably one of the most
studied scheduling benchmark. The Constraint Programming (CP) [18] para-
digm allows to model and solve hard combinatorial problems, and in particular
the RCPSP can be naturally and elegantly encoded into a Constraint Optimiza-
tion Problem (COP) where: (i) integer variables are used to track the start
time of each task; (ii) constraints over such variables ensure compliance with
the precedence relations and resource capabilities; (iii) a special integer variable
keeps track of the makespan. The goal is to find a consistent assignment of the
variables which minimizes the makespan. An effective solving technique to do
so is the Lazy Clause Generation (LCG) [17] approach. The key idea of LCG is
to mimic the Finite Domain propagation by properly generating corresponding
SAT clauses during the search.

To exploit the diverse nature and performance of different solving techniques,
a fairly recent trend consists in using a portfolio approach [11]. Basically, given
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a portfolio {s1, . . . , sm} of m > 1 solvers, a portfolio solver seeks to predict the
best solver(s) si1 , . . . , sik (with 1 ≤ ij ≤ m for j = 1, . . . , k) for solving a new,
unseen problem p and then runs such solver(s) on p. Scheduling k > 1 solvers
can reduce the risk of selecting only one solver and especially enables the knowl-
edge sharing between solvers, as well as their parallel execution. Surprisingly,
despite their effectiveness, portfolio solvers have been poorly adopted in real-life
applications [5].

In this work we show how CP can be successfully applied for solving hard
RCPSP instances by means of a parallel portfolio approach. We retrieved a fairly
large number of non-trivial RCPSPs encoded in MiniZinc [16] and we defined
and test some variants of the parallel portfolio solver sunny-cp [3] to boost the
resolution of the RCPSP instances. Experimental results show that state-of-the-
art LCG solvers can be significantly overcome thanks to other constraint solvers
not employing LCG. The message of the paper is twofold: (i) we prove that the
belief that portfolios can not be applied in real-life scenarios characterized by
a dominating solver is false, and (ii) we show that by parallelizing the solvers
execution and by enabling the bounds communication between the scheduled
solvers we can get an overall better solver which is even greater than the sum of
its parts. To the best of our knowledge, we are not aware of similar approaches
for efficiently solving hard RCPSP instances.

2 Background

The RCPSP resolution has attracted a lot of attention over the last decades,
since this problem emerges from many real-life scenarios [12–14]. To our knowl-
edge, the LCG approach gives the best results for RCPSP [19] and variants like
RCPSP/max [20] and RCPSP/max-cal [15]. In this paper we examine a possible
CP formulation of RCPSP, as it appears in MiniZinc 1.6 benchmarks.1 The CP
model is annotated with a default search strategy imposing to select the variable
having smaller domain (min-dom heuristic) and trying to assign to such variable
the smaller value of its domain (min-value heuristic). The study of alternative
heuristics is outside the scope of this work.

sunny-cp is an open-source portfolio solver [3,4]. It enables to run more
solvers simultaneously by exploiting their cooperation via bound sharing [6] and
restarting policies. sunny-cp won the gold medal in the open category of MiniZ-
inc Challenge 2015 and it is currently the only parallel portfolio solver able to
solve generic COPs [1]. sunny-cp is built on top of SUNNY algorithm [2], which
exploits the k-Nearest Neighbors algorithm to produce a sequential schedule of
solvers for solving a given problem. In a multicore setting, the schedule is par-
allelized on the c available cores: the first and most promising c − 1 solvers
are allocated to the first c − 1 cores, while the remaining ones are assigned
to the last available core. For RCPSPs, the most promising solvers are those
that are faster in finding the minimal makespan values in the k-neighborhood.
1 Available at https://github.com/MiniZinc/minizinc-benchmarks/blob/master/rcpsp

/rcpsp.mzn.

https://github.com/MiniZinc/minizinc-benchmarks/blob/master/rcpsp/rcpsp.mzn
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/rcpsp/rcpsp.mzn
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A “bound-and-restart” mechanism is used for enabling the bound sharing
between the running solvers. Given a restarting threshold Tr, a running solver
is stopped and restarted if it has not found a solution in the last Tr seconds and
its current best bound is obsolete w.r.t. the overall best bound found by another
scheduled solver. sunny-cp uses a portfolio of solvers disparate in their nature.
Some of them are provided in two variants: fixed and free. The fixed variant is
optional, and forces a solver to use the search strategy possibly defined in the
MiniZinc input model. The free variant instead allows a solver to use its pre-
ferred search strategy. By default, sunny-cp uses the fixed variant. However,
as later detailed, the free variant may significantly outperform the fixed one.2

3 Methodology

The RCPSP model mentioned in Sect. 2 is the most represented problem class in
the MiniZinc 1.6 benchmarks with 2904 RCPSP instances coming from different
scenarios. However, most of these instances are not challenging: often the best
solvers of sunny-cp can solve them instantaneously. Therefore, we decided to
consider a narrowed dataset Δ of 647 RCPSPs for each of which no solver can
find an optimal solution in 90 s and at least one solver can find a feasible solution.

Fixed a universe of solvers U and a solving timeout T , we measure the per-
formance of solver s ∈ U on a problem instance p ∈ Δ within T seconds in
terms of:

– OPT: measures the optima proven. If s proves the optimality of a solution for
p, then OPT(s, p) = 1. Otherwise, OPT(s, p) = 0;

– TIME: measures the optimization time. If s proves the optimality of a solution
for p in t < T seconds, then TIME(s, p) = t. Otherwise, TIME(s, p) = T ;

– OBJ: measures the quality of a solution, by normalizing its makespan value
in the range [0, 1]. If s finds no solution, then OBJ(s, p) = 0. Otherwise, if
mkspan(s, p) is the best makespan found by s for problem p and said Mp =

{mkspan(s, p) | s ∈ U}, we have: OBJ(s, p) = 1 − mkspan(s, p) − min Mp

max Mp − min Mp
.

Table 1 shows the average performance of the individual solvers of sunny-cp
with T = 900 s. We added as baseline the Virtual Best Solver (VBS ), the oracle
portfolio solver that —for a given problem and performance metric— always
chooses the best solver in the portfolio. As can be seen, for almost 90% of the
dataset Δ (578 instances) no solver is able to prove the optimality in 900 s.
Chuffed clearly dominates all the other solvers, almost reaching the VBS per-
formance. The effectiveness of LCG is also confirmed by the performance of the
others LCG-based solvers, namely CPX and LazyFD. While using the free search
is often effective, it is not always the best choice. For this reason we decided to
test three different variants of sunny-cp:

2 For more details about sunny-cp, we refer the reader to [3].
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Table 1. Average performance. Fixed version is available only for the solvers marked
with *.

Solver OPT (%) TIME (sec.) OBJ × 100

Fixed Free Fixed Free Fixed Free

Chuffed* 2.63 7.42 887.77 858.64 88.96 96.50

G12/CPX* 1.24 1.08 894.66 894.26 89.03 75.66

G12/LazyFD* 0.15 2.62 899.90 888.48 72.76 75.38

HaifaCSP - 0.62 - 896.97 - 74.73

Choco* 0 0 900 900 66.75 72.76

OR-Tools* 0.31 0.16 899.05 899.14 65.00 67.11

G12/FD* 0 0 900 900 65.92 15.78

Gecode* 0 0 900 900 64.25 64.20

MinisatID - 0.31 - 898.32 - 63.64

iZplus* 0 0 900 900 43.43 33.74

G12/Gurobi - 2.94 - 885.90 - 2.94

VBS 10.67 841.33 100

– sunny-def: the default version of sunny-cp. It uses the portfolio Πdef of the
solvers listed in Table 1 and always chooses the fixed version when available;

– sunny-all: uses a portfolio Πall of 11 + 8 = 19 solvers which extends Πdef

by including all the versions of all the available solvers;
– sunny-stc: uses a variable sized portfolio Πc,μ of c solvers, where c is the

number of available cores and μ ∈ {OPT,TIME,OBJ} is a performance mea-
sure. Specifically, Πc,μ is the subset of the best c solvers of Πall according to
the average value of μ over dataset Δ.

Note that both sunny-all and sunny-def are dynamic approaches, since
they select the solvers to run on-line according to the instance to be solved.
sunny-stc follows instead a static approach. Indeed, since for each number of
cores c its portfolio Πc,μ contains exactly c solvers, no prediction is performed
and all its solvers are launched simultaneously regardless of the instance to be
solved.

4 Results

This Section presents the performance of sunny-def, sunny-all, and
sunny-stc in terms of OBJ, OPT, and TIME metrics by considering 1, 2, 4,

and 8 cores. For all the sunny-cp variants, we used the default value Tr = 5 s
for the restarting threshold, and we validated the predictions with a 10-fold
cross-validation [7]. In addition to the VBS we introduce the Virtual Par-
allel Solver (VPS c,μ), an oracle portfolio solver that for c ∈ {1, 2, 4, 8} and
μ ∈ {OPT,TIME,OBJ} simulates the parallel and independent execution of the
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Table 2. OBJ performance.

OBJ × 100 1 core 2 cores 4 cores 8 cores

sunny-def 92.14 94.25 95.83 96.04

sunny-all 94.67 96.36 98.25 98.45

sunny-stc 94.97 95.73 97.57 99.05

VPS 94.97 96.92 97.43 98.21

VBS 98.38

solvers of the portfolio Πc,μ introduced in Sect. 3. With this definition, the Single
Best Solver (SBS ) of the portfolio (i.e., the free version of Chuffed) is equivalent
to the VPS 1,μ, while VBS = VPS |Πall|,μ. Where there is no ambiguity, we will
use the notation VPS or VPS c instead of VPS c,μ.

Table 2 shows OBJ results. We can say that most of the sunny-cp
approaches provide high quality solutions (0.95 < OBJ < 1) even when optimal-
ity is not proven. The only approach that performs rather poorly is sunny-def
with one core. For c ≥ 4 the effectiveness of bounds communication becomes
clear. sunny-stc with 4 cores is better than VPS 4, i.e., its corresponding ver-
sion without bounds communication and synchronization issues. With 8 cores
sunny-stc outperforms not only VPS 8, but also the VBS . In other terms, 8
cores are enough for providing better solution than a “magic solver” that runs
simultaneously —without synchronization issues— all the 19 solvers of Πall. The
peak performance is reached by sunny-stc with 8 cores: the VBS is outper-
formed 158 times (24.42% of Δ), meaning that almost one time out of four it
finds a better solution than VBS .

The OPT performance is depicted in Table 3. This metric is challenging in our
context: we are dealing with hard RCPSP instances for which no solver is able to
prove the optimality in less than 90 s and the VBS can prove only 69 optimum
(10.66% of Δ). For c ≥ 2 the best approach is sunny-all, which is able to
outperform the VBS whith 4 or more cores. In particular, the gain with 8 cores
is somewhat impressive: 4.8% optima proven more than VBS . Here the perfor-
mance difference is not only due to parallelism and bounds communication, but
especially due to the solver selection. Indeed, the gap with sunny-stc becomes

Table 3. OPT performance.

OPT (%) 1 core 2 cores 4 cores 8 cores

sunny-def 2.01 4.64 9.58 10.36

sunny-all 6.65 9.58 12.52 15.46

sunny-stc 7.42 7.88 9.12 9.58

VPS 7.42 8.04 8.35 8.50

VBS 10.66
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Table 4. TIME performance.

TIME (sec.) 1 core 2 cores 4 cores 8 cores

sunny-def 889.33 869.42 830.71 825.55

sunny-all 858.20 838.41 823.18 797.53

sunny-stc 858.63 853.55 849.45 844.69

VPS 858.63 854.13 852.16 851.17

VBS 841.33

larger as the number of cores increases. Table 4 shows instead the average TIME
performances. Being the majority of the instances of Δ very hard to solve, it is
not surprising that the TIME values are very close to the timeout T = 900. All
the tested approaches perform well, since they are very close to, or better than,
the VBS . The effectiveness in reducing the optimization time is also corrobo-
rated by the fact that for 41 instances (6.33% of Δ) sunny-all can prove the
optimality of a solution in less than 90 s.

Summarizing, we can say that all the sunny-cp variants we tested can be
effective on the RCPSP instances of Δ, especially when more than one core
is used. The solver’s parallelization is not the only key for the success of such
approaches. The use of the free search and the bounds communication between
the scheduled solvers enable to outperform the VBS . Furthermore, it is also
important —especially for OPT and TIME metrics— to properly schedule a sub-
set of solvers dynamically, i.e., according to the instance to be solved. For a more
in depth discussion of the results and more data we invite the interested reader
to the companion technical report available at https://hal.inria.fr/hal-01295061.

5 Conclusions

The Resource-Constrained Project Scheduling Problem (RCPSP) is a well-
known scheduling problem applicable in many real-life scenarios. In this paper
we show how it is possible to boost its resolution by using a portfolio of different
constraint solvers for selecting and running a subset of them on multiple cores.
Improvements are manifold in terms of both solution quality, optima proven
and optimization time. We noticed in particular significant performance gains in
quickly proving more optima.

We believe that this work may open the way to several extensions. An inter-
esting one concerns the analysis of how to properly integrate and combine the
concurrent execution of different constraint solvers. It is also certainly worth
to evaluate and combine other search heuristics for the RCPSP resolution (e.g.,
precedence-setting searches, texture-based heuristics [8]). From the portfolio per-
spective, we hope that this work can stimulate the utilization of portfolio solvers
also in real-life scenarios where typically a single, dominant solver is used for
solving different instances of the same problem.

https://hal.inria.fr/hal-01295061
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Abstract. We consider a multi-neighborhood local search framework
with a large number of possible neighborhoods. Each neighborhood is
accompanied by a weight value which represents the probability of being
chosen at each iteration. These weights are fixed before the algorithm
runs, and can be tuned by off-the-shelf off-line automated algorithm
configuration tools (e.g., SMAC). However, the large number of para-
meters might deteriorate the tuning tool’s efficiency, especially in our
case where each run of the algorithm is not computationally cheap, even
when the number of parameters has been reduced by some intuition. In
this work, we propose a systematic method to characterize each neigh-
borhood’s behaviours, representing them as a feature vector, and using
cluster analysis to form similar groups of neighborhoods. The novelty of
our characterization method is the ability of reflecting changes of behav-
iours according to hardness of different solution quality regions based
on simple statistics collected during any algorithm runs. We show that
using neighborhood clusters instead of individual neighborhoods helps to
reduce the parameter configuration space without misleading the search
of the tuning procedure. Moreover, this method is problem-independent
and potentially can be applied in similar contexts.

Keywords: Algorithm configuration · Clustering · Multi-neighborhood
local search

This paper is organized as follows. We describe the considered tuning problem
in more detail in Sect. 1. The method for characterizing neighborhoods’ behav-
iours and clustering them is explained in Sect. 2. Section 3 shows the advantage
of using clustering in automated parameter tuning through out experimental
results. Section 4 gives conclusion and discussion on future work.

1 Parameter Tuning for a Multi-neighborhood Local
Search Algorithm

The local search algorithm considered in this work, which was developed by
CODeS group’s members of the University of Leuven (Belgium) [1], tackles the
Swap-body Vehicle Routing problem. It is the winner of the Verolog Solver
Challenge 2014 [2]. It is an iterated local search [3] algorithm that uses late
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 234–239, 2016.
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acceptance hill climbing [4] as the local search component. At each iteration of
the late acceptance hill climbing, a neighborhood Nk is randomly chosen with a
probability proportional to its weight.

The algorithm consists of 18 neighborhood types. A number of them can
be parameterized by their sizes, leading to a total number of 42 neighborhoods.
Intuition can be used to reduce the number of weights to 28: some neighborhoods
that belong to the same neighborhood type and have similar sizes can be grouped
into one. This manual clustering was learned from the setting provided by the
target algorithm developers, and is supposed to help the tuning better compared
to the 42-weights version. The 42 neighborhoods and their corresponding groups
of sizes (separated by slashes) are listed below:

– Non-parameterized neighborhood types: Swap, Intra-route-two-opt ,
Inter-route-two-opt , Change-swap-location, Merge-route, Split-to-sub-routes,
Remove-route, Remove-sub-route, Remove-sub-route-with-cheapest-insertion,
Convert-to-route, Convert-to-sub-route, Add-sub-route

– Parameterized neighborhood types:
• Cheapest-insertion: 1; 2; 3; 4; 5 / 10; 15 / 20; 25 / 35 / 50
• Ejection-chain: 3; 4; 5 / 10 / 15 / 35
• Ruin-recreate: 2; 3
• Remove-chain: 1; 2; 3; 4 / 5; 6 / 7; 8
• Each-sequence-cheapest-insertion: (2,5) / (5,2) / (4,4)

Parameter tuning is done on six (large) problem instances provided by the
competition. An algorithm run on each instance takes 600 s. Note that the algo-
rithm considered in this paper is actually not the same as the one that won the
competition. The winning one is multi-threaded (4 independent parallel runs)
while the one we use here is single-threaded. This is because the aim of our work
is not to beat the winning algorithm, but to use this case study as a proof of
concept for our characterization method.

2 Neighborhood Characterization and Clustering

Due to the limited space, in this section, the methodology is presented very
briefly. An extended version of the paper with detail explanation and an R
implementation of the method are available at https://sites.google.com/site/
nguyenttdangxyz/.

Inspired by the idea from OSCAR [5], which is an automated approach for
online selection of algorithm portfolio, we characterize each neighborhood Nk’s
behaviours on an instance I based on the following six observables:

– Probabilities that Nk improves, worsens or does nothing on a solution of I,
denoted as rimprove, rworsen, rnothing (they sum up to one)

– Magnitudes of improvement and worsening, denoted as aimprove and aworsen

– Nk’s running time (used for tie-breaking)

https://sites.google.com/site/nguyenttdangxyz/
https://sites.google.com/site/nguyenttdangxyz/
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Our method represents Nk using the estimated values of those observables on
different solution quality regions, as they reflect changes of Nk’s behaviours
according to the hardness of the solution that it is dealing with. The methodol-
ogy includes four steps 1:

2.1 Step 1: Collect Raw Statistics During Algorithm Runs

When an algorithm configuration is run on an instance, a number of raw statis-
tics representing each neighborhood’s behaviours can be collected for the char-
acterization. These statistics are accumulable among different algorithm runs.
Given a problem instance, we assume that an upper bound and a lower bound of
the optimal solution quality are available. We divide the range between the two
bounds into a large number of small intervals (here we set it as 1000). Because
higher quality solutions in general are harder to improve, we let the size of the
intervals decrease exponentially. Each next interval has a size 0.99 the size of
the previous interval. Now every time a neighborhood Nk is applied on a solu-
tion that has quality value belonging to an interval Ij , the following values are
accumulatively collected for the pair (Nk, Ij):

– niters: the number of times Nk is applied,
– nI , nSN , nW : the numbers of times Nk improves, does nothing, or worsens

solutions, respectively,
– sI , sW : sums of the amount of improvement and worsening,
– stime: sum of Nk’s running time.

2.2 Step 2: Identify Solution Quality Regions Based on the
Collected Statistics

Intervals are grouped into frames based on sum nIters, which is the sum of
all neighborhoods’ niters values on each interval. This grouping tries to reflect
the hardness of different regions in the solution quality space, based on the
observation that the search of the algorithm normally stays the most in the
regions around local optima or plateau.

2.3 Step 3: Characterize Neighborhood Behaviours as Feature
Vectors

In this step, observable values for each frame are extracted from the collected
raw statistics. For the first three observables, rimprove, rworsen and rnothing,
we just simply sum the three values nI , nW and nSN for all intervals belong-
ing to the same frame. We then divide them by the sum of niters to get the
ratios. For the other two observables aimprove and aworsen, aggregation is more
complicated due to the incomparableness of their relevant raw statistics among

1 Our provided R implementation does step 2, 3 and 4 automatically. The user only
needs to do step 1 herself/himself.



Characterization of Neighborhood Behaviours 237

different intervals. For each interval, neighborhoods are firstly ranked based on
the averages of their corresponding sI , sW values (tie-breaking by the average
running time). After that, these ranks are aggregated into frames using the R
package RobustRankAggreg [6], a robust ranking aggregation method.

2.4 Step 4: Cluster Analysis on Neighborhoods

The first three observables, rimprove, rworsen and rnothing, sum up to one. As a
result, their corresponding vector components belong to a special class named
compositional data. Therefore, we apply the isometric log-ratio transformation
proposed in [7] before applying a clustering method for high-dimensional data
implemented in the R package HDclassif [8]. In the end, 42 neighborhoods are
grouped into 9 clusters:

– Ejection-chain 3, 4, 5; Remove-chain 1, 2, 3, 6, 7, 8; Remove-sub-route-with-
cheapest-insertion;

– Swap; Inter-route-two-opt
– Cheapest-insertion 10, 15, 20, 25, 35, 50; Each-sequence-cheapest-insertion
(2,5), (4,4), (5,2); Remove-chain 4

– Cheapest-insertion 1, 2, 3, 4, 5
– Change-swap-location; Merge-route
– Add-sub-route; Convert-to-sub-route
– Ejection-chain 10, 15, 35; Remove-chain 5; Intra-route-two-opt
– Ruin-recreate 2, 3
– Convert-to-route; Remove-sub-route; Remove-route; Split-to-sub-route

3 Experimental Results

Our hypothesis is that the proposed characterization method does reflect neigh-
borhood behaviours on the given set of instances, so that the generated fea-
ture vectors should correctly represent the neighborhoods and the clusters we
obtained are meaningful. To test this hypothesis, we applied the automated tun-
ing tool SMAC [9] to three configuration scenarios:

– original : the original 42 neighborhoods are treated independently, i.e., there
is a weight value parameter for each neighborhood

– basic: the 28 groups of neighborhoods described in Sect. 1 are used.
– clustered : the 9 clusters of neighborhoods generated from our characterization

method are used.

We carried out 18 runs of SMAC on each scenario. Each one has a budget of
2000 algorithm runs (13.9 CPU days). Due to the large CPU time each SMAC
run requires, we use the shared-model-mode offered by SMAC with 10 cores
(walltime is reduced to 1.39 days), and take the configuration which has the best
training performance as the final one. Mean of optimality gaps (in percentage)
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on the instance set is used as tuning performance measure. Optimality gap on
each instance is calculated by:

optimalityGap = 100 ∗ (solutionCost − lowerBound)/lowerBound

where lowerBound is provided by the algorithm’s authors, and is the best solu-
tion cost obtained after running the multi-threaded version of the algorithm
on the corresponding instance in 6 h. The best algorithm configuration from
each SMAC run is evaluated using test performance, which is the mean of
optimality gaps obtained from 30 runs of the configuration on the instance set
(5 runs/instance). Their corresponding test performance box-plots are shown in
Fig. 1, in which the clustered scenario offers advantage over both of the others.
Paired t-tests conducted on the two pairs (clustered , original) and (clustered ,
basic) give p − values of 0.00216206 and 0.009258918 respectively, indicating
statistical significance 2.
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Fig. 1. The box-plots shows test performance of the three considered scenarios. The
horizontal line is the default configuration.

4 Conclusion

In this paper, we propose a systematic method to characterize neighborhood
behaviours in a multi-neighborhood local search framework, where the proba-
bility of choosing a neighborhood at each iteration is chosen in an off-line man-
ner. The characterization is based on the probabilities that a neighborhood will
improve, worsen or do nothing on a solution, on the magnitudes of its improve-
ment and worsening, and on its running time. We have observed that these
characteristics change according to hardness of different regions in solution qual-
ity space. As a result, we design our method such that it tries to detect these
regions based on collected information and represent neighborhood behaviours
on them as feature vectors. Cluster analysis is then applied to form groups
of similar neighborhoods. A tuning experiment with the automated algorithm
2 We also carried out another experiment to compare the tuned configurations with

their corresponding Simple Random versions, as usually done in the Hyper-heuristic
community. Interested readers are reffered to the extended version of this paper on
http://arxiv.org/abs/1603.06459 for more details.

http://arxiv.org/abs/1603.06459
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configuration tool SMAC [9] shows that using these clusters gives a statistically
significant improvement on test performances of the obtained algorithm con-
figurations over the non-clustered versions. It verifies the hypothesis that our
characterization method is able to correctly reflect neighborhood behaviours on
the given instance set. Since the information used in this method does not depend
on a specific problem, the characterization and clustering procedure potentially
can be applied in similar contexts. An R implementation of the methodology is
publicly available.

For future work, since our current method are only limited to a small number
of instances, we are seeking for the possibility of an extension to a large set of
instances. We might want to exploit problem-specific expert knowledge, e.g.,
instance features, in such a case.

Acknowledgement. This work is funded by COMEX (Project P7/36), a BEL-
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8. Bergé, L., Bouveyron, C., Girard, S.: HDclassif: an r package for model-based clus-
tering and discriminant analysis of high-dimensional data. J. Stat. Softw. 46(6),
1–29 (2012). http://www.jstatsoft.org/v46/i06/

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 40

http://dx.doi.org/10.1007/978-3-319-19084-6_6
http://www.jstatsoft.org/v46/i06/
http://dx.doi.org/10.1007/978-3-642-25566-3_40


Constraint Programming and Machine Learning
for Interactive Soccer Analysis

Robinson Duque1(B), Juan Francisco Dı́az1, and Alejandro Arbelaez2

1 Universidad del Valle, Cali, Colombia
{robinson.duque,juanfco.diaz}@correounivalle.edu.co

2 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
alejandro.arbelaez@insight-centre.org

Abstract. A soccer competition consists of n teams playing against each
other in a league or tournament system, according to a single or double
round-robin schedule. These competitions offer an excellent opportunity
to model interesting problems related to questions that soccer fans fre-
quently ask about their favourite teams. For instance, at some stage of
the competition, fans might be interested in determining whether a given
team still has chances of winning the competition (i.e., finishing first in
a league or being within the first k teams in a tournament to qualify
to the playoff). This problem relates to the elimination problem, which
is NP-complete for the actual FIFA pointing rule system (0, 1, 3), zero
point to a loss, one point to a tie, and three points to a win. In this paper,
we combine constraint programming with machine learning to model a
general soccer scenario in a real-time application.

1 Introduction

Soccer fans usually have questions related to their favourite teams and most
of the time they are subject to media speculations that are sometimes proved
wrong. Many domestic leagues use a two-stage tournament structure with a sin-
gle or double round-robin tournament for the regular season and a final knockout
stage (aka playoffs). The first stage of the league typically features between 16
and 30 teams, each team faces each other team once or twice with home and away
matches distributed evenly in the regular season. Depending on the results of
the matches, every team is awarded some points under the FIFA three-point-rule
(three points for a victory, one point for a draw, and zero points for a defeat),
and the top k teams (typically eight) qualify for the playoffs.

The elimination problem is well-known in sports competitions, particularly
from baseball [1,2] and consists in determining whether at some stage of the
competition a given team still has the opportunity to be within the top teams to
qualify for playoffs. The complexity of the problem depends on the score system
for the results of the matches. In [3,4] the authors showed that the elimination
problem is NP-complete for the current FiFA score system (0, 1, 3). However,
interestingly [4] pointed out that with the old FIFA score system (0, 1, 2) from
the 90’s, the elimination problem could be solved in polynomial time using a
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 240–246, 2016.
DOI: 10.1007/978-3-319-50349-3 18
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network flow algorithms as first proposed by [5]. In this paper we attempt to
present a general model to simulate scenarios and problems where fans can
formulate queries about the positions of the teams at the end of a tournament,
e.g., Will R. Madrid be in a better position than 3. To this end, we propose
a combination of constraint programming (CP) with machine learning (ML) to
answer soccer related queries.

2 CP Model for Soccer Queries

CP is a powerful technique to solve combinatorial problems which combines
backtracking with constraint propagation. At each step a value is assigned to
some variable. Each assignment is combined with a look-ahead process called
constraint propagation which can reduce the domains of the remaining variables.
In the following, we describe a CP formulation for soccer competitions, we start
by offering a list of variables and notations for a basic soccer model.

– n: number of teams in the competition;
– T : set of team indexes in the competition;
– i, j: team indexes, such that (i, j ∈ T );
– pi: initial points of team i. If i has not played any games, then pi = 0;
– F : number of fixtures left to be played in the competition. A fixture consists

of one or more games between competitors;
– k: represents a fixture number, (1 ≤ k ≤ F );
– G: set that represents the schedule of the remaining games to be played. Every

game is represented as a triple nge = (i, j, k) ∧ 0 ≤ e ≤ |G|, where k is the
fixture when both teams (i and j) meet in a game;

– ptik: represents the points that team i gets in fixture k, (1 ≤ k ≤ F and ptik ∈
{0, 1, 3}). If team i is not scheduled to play fixture k, then pti,k = 0.

– tpi: total points of team i at end of the competition;
– geqij : boolean variable indicating if team j has greater or equal total points

as i: if tpj ≥ tpi then geqij = 1; otherwise geqij = 0, (∀i, j ∈ T );
– eqij : boolean variable indicating if two different teams i and j tie in points at

the end of the competition: if tpj = tpi and i �= j then eqij = 1; otherwise
eqij = 0, (∀i, j ∈ T ).

– posi: position of team i at the end of the competition;
– worstPosi: upper bound for posi;
– bestPosi: lower bound for posi;

Position in Ranking Queries: we use this set of variables to represent queries
about positions of the teams at the end of the competition (e.g., R. Madrid will
be in position 3).

– P : set of possible position in ranking queries, defined as a set of triples npb =
(i, opri, ptni) and 0 ≤ b ≤ |P |;

– opri: logical operator (opri ∈ {<,≤, >,≥,=}) to constrain team i;
– ptni: denoting the expected position for team i; 1 ≤ ptni ≤ n;
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2.1 CP Model Formulation

Basic Soccer Model: Constraints (1), (2), and (3) represent a valid game point
assignment (0,3), (3,0) or (1,1) for each game nge ∈ G between two teams i and
j in a fixture k:

(0 ≤ ptik ≤ 3) ∧ (0 ≤ ptjk ≤ 3) ∀nge ∈ G ∧ nge = (i, j, k) (1)

(ptik �= 2) ∧ (ptjk �= 2) ∀nge ∈ G ∧ nge = (i, j, k) (2)

2 ≤ ptik + ptjk ≤ 3 ∀nge ∈ G ∧ nge = (i, j, k) (3)

Constraint (4) corresponds to the final points tpi of a team i. It is the addition
of the initial points pi and the points ptik obtained in every fixture k:

tpi = pi +
F

∑

k=1

ptik ∀i ∈ T (4)

Constraints (5) to (8) are used to calculate final positions. All the final positions
must be different and every position is bounded by bestPosi and worstPosi:

geqij =

{

1, if tpj ≥ tpi

0, otherwise
∀i, j ∈ T

worstPosi =
n

∑

j=1

geqij ∀i, j ∈ T

(5)

eqij =

{

1, if tpj = tpi and i �= j

0, otherwise
∀i, j ∈ T

bestPosi = worstPosi −
n

∑

j=1,j �=i

eqij ∀i, j ∈ T ∧ i �= j

(6)

bestPosi ≤ posi ≤ worstPosi ∀i ∈ T (7)

alldifferent(pos1, . . . , posn) (8)

Position in Ranking Queries: involves a set of constrained teams and indicates
whether a given team can be above, below, or at a given position ptni, constraint
(9) depicts the five possibilities:

∀npb ∈ P ∧ npb = (i, opri, ptni)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

posi = ptni, if opri is =
posi < ptni, if opri is <

posi ≤ ptni, if opri is ≤
posi > ptni, if opri is >

posi ≥ ptni, if opri is ≥

(9)
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2.2 Variable/Value Selection

Generic heuristics (e.g., [6,7]) typically do not perform well for real-life problems
as these heuristics do not exploit the structure of the problem. Therefore, in this
paper we propose some query based heuristics for variable/value selection. First
we introduce a set of required variables in order to describe a priority mechanism
to select the team variables constrained in queries P :

– sposi: starting position of team i before any branching strategy is applied;
– prii: denoting the priority of team i to be selected during branching, If team

i does not appear in any query, then prii = 0;
– stri: denoting the global branching strategy for the variables ptik of a partic-

ular team i in every fixture k. stri starts with “tie” as a default value.

Heuristics for Position in Ranking Queries (P). Recall from (9) that we
use the position posi to constrain a team to a wanted position ptni. Suppose we
have the query (posi < 8). It’s natural to try stri = win and assign a priority
using the position ptni from the query. We depict in (10) some general rules for
variable value selection:

∀npb ∈ P∧
npb = (i, opri, ptni)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

if opri is < or ≤, prii = n − ptni ∧ stri = win

if opri is > or ≥, prii = ptn ∧ stri = lose

if opri is =, prii = ptn ∧
{

stri = lose, if ptni > n/2
stri = win, otherwise

(10)

Interestingly the defined heuristics in (10) for queries with the “=” operator
seem to fail quite often (see Sect. 3). Suppose a scenario with a query (posi = 7)
where sposi = 9 with F = 8 fixtures to play. Given that the starting position
is 9 and we have to reach position 7, the global branching strategy stri = win
causes that posi overshoots position 7 and would require many backtracks of the
search algorithm in order to reach such position, therefore, it might be useful
to perform a bias search and in the following section we tackle this problem by
using machine learning.

Machine Learning for Value Selection. For teams constrained with the
“=” operator, we decided to assign a high priority (prii = |sposi − ptni| ·
n) for variable selection and to avoid position overshooting, we trained a
classifier that selects among 9 branching strategies: S1 = [1,0,0], S2 = [0,1,0],
S3 = [0,0,1], S4 = [0.5,0.5,0], S5 = [0.5,0,0.5], S6 = [0,0.5,0.5], S7 = [0.5,0.25,0.25],
S8 = [0.25,0.5,0.25], S9 = [0.25,0.25,0.5]. Each strategy defines probabilities to
select among [win, tie, lose] respectively, e.g., S7 means that for a team i, every
variable ptik will be assigned win with a probability of 0.5, tie and lose with
a probability of 0.25 each. We use the selected strategy with a restart-based
search; therefore we restart the algorithm when some cutoff in the execution
time is met. (3 s in this paper). Notice that we excluded a strategy [1/3, 1/3/,
1/3] as preliminarily tests showed a poor performance for this alternative.

Training the Classifier: In order to train this classifier, we created a total of
500 P queries with the equality operator at different stages of a tournament
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(fixture 7, 9, 11, 14 and 16) with 18 teams, scheduled in a single round robin.
We ran every query with each of the 9 branching strategies in order to get the
strategy that solved the instance in the shortest time and created a data set with
the following features: starting position (sposi), wanted position (ptni), direction
and distance (sposi − ptni), fixtures to play (F ), range rate (|sposi − ptni|/n),
best executing strategy ∈ {S1, S2, S3, S4, S5, S6, S7, S8, S9}.

In this paper we use J48 (the Weka v3.6.12 implementation of C4.5) to eval-
uate the performance of the algorithms. The objective is that for each query P
with the equality operator “=”, J48 assigns one of the nine branching strategies
to the constrained team.

3 Empirical Evaluation

Tests Configuration. We evaluated our models using Mozart-Oz (V 1.4.0)
as our CP reference solver. All the experiments were performed in a 4-core
machine, featuring an Intel Core i5 processor at 2.3 Ghz and 4 GB of RAM.
We focus our attention in the Colombian league (liga Postobón 2014-I) with 18
teams and 18 fixtures to play in a single round-robin schedule (17 fixtures +
1 extra fixture for the derbies). We provided five experimental scenarios (i.e.,
fixtures 7, 9, 11, 14, and 16). We also created a series of instances for each
fixture (100 with 2 suppositions, 100 with 3 suppositions, and the same for 4,
5, 7, and 9 suppositions). Each instance (3000 in total) was executed with a
time limit of 30 s. We recall that our models are implemented in SABIO, a Web
based application where long answer times are not desirable. We experimented
two scenarios: the basic CP implementation using the heuristics for position in
ranking queries and the CP-ML implementation configured with 10 restarts (i.e.,
3 s per restart), featuring the basic heuristics and the machine learning classifier
for equality constraints.

Tests Results. Table 1 shows the number of unsolved instances and the aver-
age runtimes of the solved ones in our experiments. We observe 1069 unsolved
instances with the CP model and we attribute this to 2 main reasons: first, the
position bounds (i.e., bestPosi and worstPosi) can only be computed after find-
ing the total points (tpi) for all the teams in the competition. As a result, position
in ranking constraints standing are validated only when the search algorithm
performs a complete game points assignment for all teams. Second, we observed
that our variable/value selection heuristics struggle with queries related to the
“=” operator and the lack of a biased search causes position overshooting. We
also observed that our CP-ML implementation seems to perform better and the
classifier improves the effectiveness of the algorithm by reducing the number of
unsolved instances from 1069 to 627 while displaying a small trade-off in run-
ning time.
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Table 1. Unsolved instances and average running times of CP and CP-ML

P Queries Running times

Fixture Test Sup.

2 3 4 5 7 9 2 3 4 5 7 9

Fixture CP 24 28 38 46 50 52 .22 .48 .31 .41 .77 1.10

7 CP-ML 6 9 14 21 27 35 1.19 1.34 1.83 2.40 3.28 3.09

Fixture CP 23 28 35 46 49 44 .08 .41 .23 .65 .31 .72

9 CP-ML 1 4 9 18 27 31 1.68 1.48 2.25 2.81 2.78 1.66

Fixture CP 25 27 31 44 49 47 .56 .10 .75 .69 .86 .45

11 CP-ML 2 7 11 18 31 34 1.53 1.09 2.01 2.67 2.56 2.46

Fixture CP 23 33 38 41 51 45 .42 .13 .49 1.01 1.53 .74

14 CP-ML 8 22 25 34 44 42 1.17 1.29 1.46 1.48 1.08 1.47

Fixture CP 23 31 29 31 25 13 .12 .04 .89 .55 .45 .65

16 CP-ML 19 25 25 33 28 17 .56 .50 .93 .05 .11 .03

CP results Unsolved: 1069 Avg: 0.51 s

CP-ML results Unsolved: 627 Avg: 1.60 s

4 Conclusions

In this paper we have combined the use of constraint programming and machine
learning to solve general soccer fan queries at different stages of a competi-
tion and presented 2 alternative solutions CP and CP-ML. Our computational
experiments showed that our CP-ML model improves CP effectiveness since it
performs a query biased search. We also plan to extend our models to deal with
more queries such as determining the maximum number of games that a team
can afford to lose and still qualify to the playoffs and also explore the implemen-
tation of a MIP model, based on the work of Ribeiro and Urrutia [8].

We would like to thank Luis Felipe Vargas, Maŕıa Andrea Cruz and Carlos
Mart́ınez for developing early versions of the CP model under the supervision of
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Abstract. The p-Cable Trench Problem is a telecommunications net-
work design problem, which jointly considers cable and trench installa-
tion costs and addresses the optimal location of p facilities. In this work,
a matheuristic approach based on the POPMUSIC (Partial Optimiza-
tion Metaheuristic under Special Intensification Conditions) framework
is developed. The inspected neighborhoods for building sub-problems
include lexicographic as well as nearest neighbor measures. Using bench-
mark data available from literature it is shown that existing results can
be outperformed.

1 Introduction

The Cable Trench Problem (CTP) reflects a scenario that appears in the instal-
lation of information technology infrastructure. In particular, it joins two cost
types that appear in the construction of wire-based networks, namely cost for
installation of cables and cost for preparing trenches. A trench may contain more
than one cable such that a solution has to balance lengths of the cables on the
one hand and the distance covered by the trenches on the other hand. As a result,
the CTP combines the problems of finding a shortest path tree and of finding a
minimum spanning tree. The CTP was proposed by [4] for the problem of con-
necting buildings to a central facility on a campus. Recent publications suggest
further applications. In [5] a problem from bioinformatics, the representation of
vascular network connectivity in medical image analysis is addressed by solving
a Generalized CTP (GCTP). Moreover, [6] models the setup of a low-frequency
radioastronomy station by applying a GCTP. An extension to the CTP is the
p-CTP proposed by [1] and now introduced in more detail.

Let G = (V,E) be a connected graph with nodes i ∈ V and directed edges
e ∈ E. For each edge (i, j) in E, the cost of installing one cable is given by
Dij > 0 and the cost of preparing a trench is denoted by Cij > Dij . In contrast
to the CTP, where each node has to be connected to a given, single source node,
the p-CTP requires to open exactly p facilities. The goal is to choose p of the
n = |V | nodes to act as facilities and to assign the remaining nodes to these p
facilities, such that the total cost for cable and trenches is minimized.

A small example for a p-CTP is presented in Figs. 1 and 2. We consider a
graph with n = 11 nodes and fix p = 2, i.e., two facilities shall be opened.
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 247–252, 2016.
DOI: 10.1007/978-3-319-50349-3 19
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Fig. 1. Instance, n = 11, p = 2. Fig. 2. Optimal solution: cost 97.

Moreover, Fig. 1 illustrates the graph G of the instance together with cable costs
Dij for each edge (i, j) ∈ E. The cost for preparing a trench on any edge (i, j)
is fixed to Cij = 2Dij . An optimal solution is presented in Fig. 2. Nodes 3 and 7
are facility nodes and are indicated by bold circles. Moreover, each edge (i, j) is
labeled with the number of installed cables (# cables). The cost of this solution
is 97 and divides into trenching cost of 56 and cable cost of 41.

In [1], a mixed-integer programming formulation is proposed for the p-CTP
and used to solve instances with up to 200 nodes. Nevertheless, when the dimen-
sions of the instances increase, the solver runs out of memory. Furthermore, two
heuristics based on Lagrangean relaxation are provided and tested for instances
of up to 300 nodes. In order to improve the solution quality and avoid the
memory-fault status, we propose in this work a matheuristic approach for the
p-CTP. In particular, the Partial Optimization Metaheuristic under Special
Intensification Conditions (POPMUSIC) [3] is applied. POPMUSIC addresses
large instances by decomposing them into a set of parts. Subsets of parts are
bundled and then used to form sub-problems for subsequently solving them.

The adaption of the POPMUSIC for the p-CTP is described in more detail in
Sect. 2. Afterwards, numerical experiments are provided in Sect. 3 and the paper
closes with concluding remarks in Sect. 4.

2 A POPMUSIC Approach for the p-CTP

The basic idea of POPMUSIC, proposed in [3], is to split an available solution
S of the problem into t parts part1, part2, . . . , partt and joining some of them to
build a sub-problem R. To construct R, first a particular part, namely partseed,
is selected. Afterwards, r parts closest to partseed are merged with partseed to
produce the sub-problem R. In order to determine the closeness of the parts, a
distance measure is defined. Once a sub-problem R is constructed, it is solved by
using an approximate or an exact solution approach. If parts and sub-problems
are defined in an appropriate way, every improvement of a sub-problem corre-
sponds to an improvement of the solution S. This process is repeated until the
solution contains no sub-problem that can be improved.
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Algorithm 1 depicts the POPMUSIC framework. An initial solution S is gen-
erated (line 1). Once it is build, the next step is to divide the solution into t
parts (line 2). Then, a seed, partseed, is selected (line 5). The sub-problem R is
constructed by considering its r nearest parts according to a distance measure
(line 6). In this regard, the unique parameter of this framework, r, is used for
delimiting the size of the sub-problems. The sub-problem R is then solved by
an approximate or exact procedure (line 7). In this framework, the set O gives
the seed parts that correspond to sub-problems that have been unsuccessfully
optimized. Once O contains all the parts of the complete solution (line 4), the
process stops as all sub-problems have been examined without success.

Algorithm 1. POPMUSIC framework

1 Generate an initial solution S at random
2 Decompose S in t parts, H = {part1, ..., partt}
3 Set O = ∅
4 while O �= {part1, ..., partt} do
5 Select a seed partseed /∈ O
6 Build sub-problem R composed of r parts of S closest to partseed
7 Optimize R by using an approximate or exact solution approach
8 if R has been improved then
9 Update solution S

10 O ← ∅
11 end
12 else
13 O ∪ {partseed}
14 end

15 end
16 return the improved solution S

In order to develop a POPMUSIC approach for the p-CTP, an initial solution
is decomposed by considering those p nodes selected to be the facilities. All
trenches and cables departing from each facility including the assigned nodes
can be seen as a sub-network. Thus, in the context of POPMUSIC, the size of
a solution is t = p and each part is a sub-network induced by a facility. In the
example provided in Fig. 2, the size of the solution structure is t = 2 and it is
composed by nodes part1 = 3 and part2 = 7.

The sub-problems are built by means of the sub-networks represented by their
starting nodes and the associated edges and nodes. Therefore, in the example
provided in Fig. 2, when building a sub-problem of size r = 2 with the seed part
part1 = 3 all the nodes belonging to the corresponding sub-networks form the
sub-problem. In the case of the aforementioned example, the new sub-problem
may consider all the nodes from the network starting with part1 = 3 and part2 =
7. Moreover, for building the sub-problems, different measures or strategies can
be used to indicate the closeness of the parts among themselves:
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– Lexicographic: The sub-problems are grouped according to the indexes of the
parts. That is, all the nodes belonging to part1 are grouped to those belonging
to part2 if r = 1, also to those of part3 if r = 2, and so on. For instance, for
a solution divided into 4 parts and r = 2, we can have the following sub-
problems, R = {part1, part2}, R = {part2, part3}, R = {part3, part4}, and
R = {part4, part1}.

– Distance: This strategy takes into account the minimum distance between the
facilities. For any parti ∈ H, let i∗ be the route node of parti. Then the
distance between parti and partj is given as D̄ij = Di∗j∗ , i.e., by the cable
costs assigned to edge (i∗, j∗). If (i∗, j∗) does not exist, a high-enough value is
assigned. The construction of the sub-problem is then performed in a greedy
way. Once the seed parti ∈ H has been selected, that part with the minimum
arc distance is assigned. That is, one partj = argmin(D̄ij)partj∈H,j �=i is cho-
sen. For r > 2, the following parts are added taking into account the minimum
average arc distance to the already assigned parts such that the next part to
be added is calculated by means of argmin(

∑

parti∈R D̄ij)partj∈H\R.

Once the sub-problem has been formed, it has to be solved by an approximate
or exact method. In this work, we investigate the approach of applying a branch
and cut method provided by a general-purpose solver such as CPLEX. The
rationale behind this is (i) to provide flexibility in terms of not requiring to
develop specific solvers for the problem itself, (ii) investigate the advantage of
decomposing the problem for large-sized problem instances, and (iii) provide a
competitive solution approach for addressing this problem in terms of solution
quality. At this point, we may stress that dividing the problem into parts allows
to address memory problems as the one indicated by Marianov et al. [1] for
large-sized instances, where directly managing them may require high-amounts
of computational memory.

3 Numerical Results

The computational experiments were conducted on a computer with an Intel
i7 CPU 3.50 GHz and 6 GB of RAM, restricted to use one CPU. The model
was implemented in CPLEX 12.6. The instances used in this work are those
large-sized ones from [1] for the p-CTP.

Table 1 shows the results provided by the best approach reported in the lit-
erature based on a Lagrangean relaxation [1] and the results of our POPMUSIC
approach with t = p and r = 0.5p, for both measures distance (dist) and lex-
icographic (lex). Moreover, with the aim of reducing the computational time,
a modified stopping criterion is realized in rPOPMUSIC. In this version, the
algorithm stops if the set O, see Algorithm 1, line 4, contains r elements. That
is, in the experiments, rPOPMUSIC stops if 0.5p parts have been unsuccessfully
examined. The relative error of each approach is calculated by means of the lower
bound provided by the Lagrangean approach. Moreover, it should be mentioned
that the Lagrangean approach is executed until the step size is lower than 0.0001.
Therefore, due to the fact that both approaches reach their respective stopping
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criteria without running out of memory, the quality of the solutions provided by
them is analyzed.

Independent from the measurement used to determine the closeness among
the parts, the results are similar in terms of average gap, see Table 1. In terms
of computational time, however, differences are observed. In particular, rPOP-
MUSIC allows to provide high-quality solutions in less computational time
than required for the Lagrangean heuristic. Moreover, new best values for the
inspected instances are reported in bold font. It can be highlighted that for all
instances, POPMUSIC and its variants are able to provide new best values.

4 Conclusion

In this work, a matheuristic approach for the p-CTP based on the POPMUSIC
template is introduced. Two different ways for building the sub-problems and
stopping criteria are proposed and assessed. Moreover, solving the sub-problems
is done by means of an available mathematical programming formulation and
using the standard solver CPLEX. Under this approach, the complete prob-
lem is decomposed and can be treated by the solver, while for the full prob-
lem, depending on computer performance, it can reach an out-of-memory sta-
tus. Thus, the POPMUSIC-based approach provides new best values for all the
large-sized problem instances considered for this problem.

For future research, we are going to perform an extensive analysis of different
configurations for the POPMUSIC parameters (including various options for
choosing seed parts) as well as study other stopping criteria and neighborhood
measures.
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3. Taillard, É.D., Voß, S.: Popmusic - partial optimization metaheuristic under special
intensification conditions. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys
in Metaheuristics. Operations Research/Computer Science Interfaces Series, vol. 15,
pp. 613–629. Springer, New York (2002)

4. Vasko, F.J., Barbieri, R.S., Rieksts, B.Q., Reitmeyer, K.L., Stott Jr., K.L.: The cable
trench problem: combining the shortest path and minimum spanning tree problems.
Comput. Oper. Res. 29, 441–458 (2002)

5. Vasko, F.J., Landquist, E., Kresge, G., Tal, A., Jiang, Y., Papademetris, X.: A
simple and efficient strategy for solving very large-scale generalized cable-trench
problems. Networks 67(3), 199–208 (2015)

6. Zyma, K., Girard, J.N., Landquist, E., Schaper, G., Vasko, F.J.: Formulating and
solving a radio astronomy antenna connection problem as a generalized cable-trench
problem: an empirical study. Int. Trans. Oper. Res. (2016). doi:10.1111/itor.12312

http://dx.doi.org/10.1111/itor.12312


An Empirical Study
of Per-instance Algorithm Scheduling

Marius Lindauer(B), Rolf-David Bergdoll, and Frank Hutter

University of Freiburg, Freiburg im Breisgau, Germany
lindauer@cs.uni-freiburg.de

Abstract. Algorithm selection is a prominent approach to improve a
system’s performance by selecting a well-performing algorithm from a
portfolio for an instance at hand. One extension of the traditional algo-
rithm selection problem is to not only select one single algorithm but
a schedule of algorithms to increase robustness. Some approaches exist
for solving this problem of selecting schedules on a per-instance basis
(e.g., the Sunny and 3S systems), but to date, a fair and thorough com-
parison of these is missing. In this work, we implement Sunny ’s app-
roach and dynamic schedules inspired by 3S in the flexible algorithm
selection framework flexfolio to use the same code base for a fair com-
parison. Based on the algorithm selection library (ASlib), we perform
the first thorough empirical study on the strengths and weaknesses of
per-instance algorithm schedules. We observe that on some domains it
is crucial to use a training phase to limit the maximal size of schedules
and to select the optimal neighborhood size of k-nearest-neighbor. By
modifying our implemented variants of the Sunny and 3S approaches in
this way, we achieve strong performance on many ASlib benchmarks and
establish new state-of-the-art performance on 3 scenarios.

Keywords: Algorithm selection · Algorithm schedules · Constraint
solving

1 Introduction

A common observation in many areas of AI (e.g., SAT or CSP solving) and
machine learning is that no single algorithm dominates the performance of all
others. To exploit this complementarity of algorithms, algorithm selection sys-
tems [6,8,11] are used to select a well-performing algorithm for a new given
instance. Algorithm selectors, such as SATzilla [12] and 3S [7], demonstrated in
several SAT competitions that they can outperform pure SAT solvers by a large
margin (see, e.g., the results of the SAT Challenge 20121).

An open problem in algorithm selection is that the machine learning model
sometimes fails to select a well-performing algorithm, e.g., because of uninforma-
tive instance features. An extension of algorithm selection is to select a schedule
of multiple algorithms at least one of which performs well.
1 http://baldur.iti.kit.edu/SAT-Challenge-2012/.
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To date, a fair comparison of such algorithm schedule selectors is missing,
since every publication used another benchmark set and some implementations
(e.g., 3S ) are not publicly available (because of license reasons). To study the
strengths and weaknesses of such schedulers in a fair manner, we implemented
well known algorithm schedule approaches (i.e., Sunny [1] and dynamic sched-
ules inspired by 3S [7]) in the flexible framework of flexfolio (the successor of
claspfolio 2 [5]) and studied them on the algorithm selection library (ASlib [3]).

2 Per-instance Algorithm Scheduling

Similar to the per-instance algorithm selection problem [11], the per-instance
algorithm scheduling problem is defined as follows:

Definition 1 (Per-instance Algorithm Scheduling Problem). Given a set
of algorithms P, a set of instances I, a runtime cutoff κ, and a performance
metric m : Σ × I → R, the per-instance algorithm scheduling problem is to
find a mapping s : I → Σ from an instance π ∈ I to a (potentially unordered)
algorithm schedule σπ ∈ Σ where each algorithm A ∈ P gets a runtime budget
σπ(A) between 0 and κ such that

∑

A∈P σπ(A) ≤ κ and
∑

π∈I m(s(π), π) will
be minimized.

The algorithm scheduler aspeed [4] addresses this problem by using a static
algorithm schedule; i.e., aspeed applies the same schedule to all instances. The
schedule is optimized with an answer set programming [2] solver to obtain a
timeout-minimal schedule on the training instances. The scheduler aspeed either
uses a second optimization step to determine a well-performing ordering of the
algorithms or sorts the algorithms by their assigned times, in ascending order
(such that a wrongly selected solver does not waste too much time).

Systems such as 3S [7], SATzilla [12] and claspfolio 2 [5] combine static
algorithm schedules (also called pre-solving schedules) and classical algorithm
selection. All these systems run the schedule for a small fraction of the runtime
budget κ (e.g., 3S uses 10% of κ), and if this pre-solving schedule fails to solve the
given instance, they apply per-instance algorithm selection to run an algorithm
predicted to perform well. 3S and claspfolio 2 use mixed integer programming
and answer set programming solvers, respectively, to obtain a timeout-minimal
pre-solving schedule. SATzilla uses a grid search to obtain a pre-solving schedule
that optimizes the performance of the entire system.

The algorithm scheduler Sunny [1] determines the schedule for a new instance
π by first determining the set of k training instances Ik closest to π in instance
feature space, and then assigns each algorithm a runtime proportional to the
number of instances in Ik it solved. The algorithms are sorted by their aver-
age PAR10 scores on Ik, in ascending order (which corresponds to running the
algorithm with the best expected performance first).
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3 Instance-Specific Aspeed (ISA)

Kadioglu et al. [7] proposed a variant of 3S that uses per-instance algorithm
schedules instead of a fixed split between static pre-solving schedule and algo-
rithm selection. In order to evaluate the potential of per-instance timeout-
optimized scheduling, we developed the scheduler ISA, short for instance-specific
aspeed. Inspired by Kadioglu et al. [7], our implementation uses k-nearest neigh-
bor (k-NN) to identify the set Ik of training instances closest to a given instance
π and then applies aspeed to obtain a timeout-minimal schedule for them.

During offline training, we have to determine a promising value for the neigh-
borhood size k. In our experiments, we evaluated different k values between 1
and 40 by running cross-validation on the training data and stored the best per-
forming value to use online. We chose this small upper bound for k to ensure a
feasible runtime of the scheduler2 (in our experiments less than 1 second). Fur-
thermore, to optimize the runtime of the scheduler, we reduced the set of training
instances, omitting all instances that were either solved by every algorithm or
solved by none within the cutoff time.

For each new instance, ISA first computes the k nearest neighbor instances
from the reduced training set. This instance set is passed to aspeed [4], which
returns a timeout-minimal unordered schedule for the neighbor set. The schedule
is finally aligned by sorting the time slots in ascending order.

4 Trained Sunny (TSunny)

To offer a form of scheduling with less overhead in the online stage than ISA,
we implemented a modified version of Sunny [1] by adding a training phase.
For a new problem instance Sunny first selects a subset of k training instances
Ik using k-NN. Then time slots are assigned to each candidate algorithm: Each
solver gets one slot for each instance of Ik it can solve within the given time.
Additionally, a designated backup solver gets one slot for each instance of Ik

that cannot be solved by any of the algorithms. Having this slot assignment, the
actual size of a single time slot is computed by dividing the available time by the
total number of slots. Finally, the schedule is aligned by sorting the algorithms
by their average PAR10 score on Ik, thereby running the most promising solver
first.

Preliminary experiments for our implementation of this algorithm produced
relatively poor results. Examining the schedules, we found that Sunny tends to
employ many algorithms per schedule, which we suspected to be a weakness.
Thus, we enhanced the algorithm by limiting the number of algorithms used in
a single schedule to a specified number λ.

Originally, Sunny is defined as lazy, i.e. not applying any training procedures
after the benchmark data is gathered. However, to obtain better values for our
new parameter λ, and also to improve the choice of the neighborhood size k, we
2 Optimizing a schedule is NP-hard; thus the size of the input set, defined by k, must

be kept small to make the process applicable during runtime.
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implemented a training process for Sunny . Similar to ISA, different configura-
tions for λ (range 1 to the total number of solvers) and k (range 1 to 100) are
evaluated by cross-validation on the training data. To distinguish this enhanced
algorithm from the original Sunny , we dubbed this trained version TSunny .

5 Empirical Study

To compare the different algorithm scheduling approaches of ISA and Sunny, we
implemented them in the flexible algorithm selection framework flexfolio3 and
compared them to various other systems: The static algorithm scheduling system
aspeed [4], the default configuration of flexfolio (which is similar to SATzilla [12]
and claspfolio 2 [5] and includes a static-presolving schedule), as well as the per-
instance algorithm selector AutoFolio [9] (an automatically-configured version of
flexfolio without consideration of per-instance algorithm schedules). If not men-
tioned otherwise, we used the default parameter values of flexfolio. The compar-
ison is based on the algorithm selection library (ASlib [3]), which is specifically

Table 1. Gap metric on PAR10: 1.0 corresponds to a perfect oracle score and 0.0
corresponds to the single best score. The best score for each scenario is highlighted with
bold face and all system performances have a star that are not significantly worse than
the best system (permutation test with 100 000 random permutations and α = 0.05;
“Equal to Best”). All systems are implemented in flexfolio, except Sunny which is the
original version.

flexfolio AutoFolio aspeed Sunny TSunny ISA

ASP-POTASSCO 0.78∗ 0.80∗ 0.34 0.69 0.81∗ 0.72

CSP-2010 0.80∗ 0.75∗ 0.05 0.68 0.77∗ 0.74∗

MAXSAT12-PMS 0.67 0.90∗ 0.65 0.87 0.93∗ 0.94∗

PREMAR-2013 0.70 0.74∗ 0.74∗ 0.71 0.62 0.78∗

PROTEUS-2014 0.82 0.87 0.87 0.88 0.94∗ 0.91

QBF-2011 0.90 0.91 0.80 0.90 0.94∗ 0.92

SAT11-HAND 0.73∗ 0.71∗ 0.74∗ 0.54 0.52 0.69∗

SAT11-INDU 0.29∗ 0.36∗ 0.06 0.19 0.37∗ 0.43∗

SAT11-RAND 0.93∗ 0.95∗ 0.80 0.59 0.87 0.95∗

SAT12-ALL 0.69∗ 0.69∗ 0.10 0.58 0.69∗ 0.71∗

SAT12-HAND 0.68 0.71 0.46 0.57 0.72 0.78∗

SAT12-INDU 0.39 0.46∗ −0.22 0.01 0.53∗ 0.54∗

SAT12-RAND 0.17 0.24∗ −0.28 −0.14 0.32∗ 0.12

Average 0.66 0.70 0.39 0.54 0.69 0.71

Equal to Best 6 10 2 0 9 9

3 The source code and all benchmark data are available at http://www.ml4aad.org/
algorithm-selection/flexfolio/.

http://www.ml4aad.org/algorithm-selection/flexfolio/
http://www.ml4aad.org/algorithm-selection/flexfolio/
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designed to fairly measure the performance of algorithm selection systems. Ver-
sion 1.0 of ASlib consists of 13 scenarios from a wide range of different domains
(SAT, MAXSAT, CSP, QBF, ASP and operations research).

Table 1 shows the performance of the systems as the fraction of the gap
closed between the static single best algorithm and the oracle (i.e., the per-
formance of an optimal algorithm selector), using performance metric PAR104.
As expected, the per-instance schedules (i.e., Sunny and ISA) performed bet-
ter on average than aspeed ’s static schedules. However, aspeed still establishes
the best performance on SAT11-HAND. By comparing Sunny and TSunny ,
we see that parameter tuning substantially improved performance. Compar-
ing TSunny and ISA, we note that their overall performance is similar but
that either has advantages on different scenarios; thus, there is still room for
improvement by selecting the better of the two on a per-scenario basis. Surpris-
ingly, the per-instance schedules had a similar performance (ISA with 0.71) to
the state-of-the-art procedure AutoFolio (0.70); however, AutoFolio performed
slightly more robustly, being amongst the best systems on 10/13 scenarios. Nev-
ertheless, ISA establishes new state-of-the-art performance on PREMAR-2013

Table 2. Statistics of schedules: neighborhood size k, average size ∅|σ| of schedules,
average position ∅suc of successful solver in schedule for our systems aspeed , ISA,
Sunny ’ (a reimplementation of the lazy version of Sunny), and TSunny (the non-lazy
trained version of Sunny ’)

aspeed ISA Sunny ’ TSunny

∅|σ| ∅suc k ∅|σ| ∅suc k ∅|σ| ∅suc k ∅|σ| ∅suc

ASP-POTASSCO 5.9 1.96 14.4 1.6 1.07 34.0 10.7 1.15 19.6 1.0 1.01

CSP-2010 2.0 1.2 5.8 1.1 1.0 43.0 1.9 1.01 12.8 1.9 1.0

MAXSAT12-PMS 3.0 1.98 7.3 1.2 1.02 28.0 5.4 1.04 6.4 3.0 1.01

PREMAR-2013 4.0 1.75 32.6 2.3 1.3 22.0 4.0 1.22 9.0 3.6 1.21

PROTEUS-2014 18.3 7.27 30.6 3.2 1.41 60.0 13.9 1.77 26.6 12.5 1.5

QBF-2011 4.9 2.2 27.8 1.9 1.26 35.0 4.5 1.1 14.1 3.3 1.06

SAT11-HAND 5.9 2.96 27.8 3.1 1.92 16.0 13.5 1.6 10.2 1.7 1.02

SAT11-INDU 4.6 2.82 3.8 1.3 1.03 16.0 16.5 1.55 4.2 1.4 1.02

SAT11-RAND 3.8 1.94 14.4 1.8 1.13 23.0 7.8 1.04 18.3 1.5 1.02

SAT12-ALL 12.6 5.24 8.8 1.6 1.12 38.0 24.4 1.72 4.2 1.0 1.0

SAT12-HAND 10.9 5.45 4.8 1.5 1.09 26.0 26.2 1.68 4.6 1.0 1.01

SAT12-INDU 6.2 3.64 6.1 1.2 1.04 32.0 22.5 1.75 4.3 1.0 1.0

SAT12-RAND 5.2 2.27 18.3 1.8 1.07 35.0 15.7 1.12 67.2 1.0 1.0

4 PAR10 is the penalized average running time where timeouts are counted as 10 times
the running time cutoff.
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(short for PREMARSHALLING-ASTAR-2013) and TSunny on PROTEUS-
2014 and QBF-2011 according to the on-going evaluation on ASlib5.

Table 2 gives more insights into our systems’ behavior. It also includes our
implemented version of Sunny without training, dubbed Sunny ’. Sunny (and
also Sunny ’) sets the neighborhood size k as the square root of the number of
instances, whereas TSunny optimizes k on the training instances. The reason
for TSunny ’s better performance in comparison to Sunny is probably its much
smaller values for k on all scenarios except on SAT12-RAND. Also TSunny ’s
average schedule size was smaller on nearly all scenarios (except CSP-2010).

Comparing the static aspeed and the instance-specific aspeed (ISA), the aver-
age schedule size of aspeed is rather large since aspeed has to compute a single
static schedule that is robust across all training instances and not only on a small
subset. Surprisingly, the values of k for ISA and TSunny differ a lot, indicating
that the best value of k depends on the scheduling strategy.

6 Conclusion and Discussion

We showed that per-instance algorithm scheduling systems can perform as well
as algorithm selectors and even establish new state-of-the-art performance on 3
scenarios of the algorithm selection library [3]. Additionally, we found that the
performance of the algorithm schedules strongly depends on the adjustment of
their parameters for each scenario, here the neighborhood size of the k-nearest
neighbor and the maximal size of the schedules.

In our experiments we did not tune all possible parameters of Sunny and
ISA in the flexible flexfolio framework; e.g., we fixed the pre-processing strategy
of the instance features. Therefore, a future extension of this line of work would
be to extend the search space of the automatically-configured algorithm selector
AutoFolio [9] to also cover per-instance algorithm schedules. Another extension
could be to allow communication between the algorithms in the schedule [10].
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Abstract. Diversification plays an important role in portfolio-based
parallel SAT solvers. To maintain diversity, state-of-the-art solvers allo-
cate different search policies and share learned clauses. However, the
possibility of similarities between search space areas remains as learning
progresses. In this paper we attempt to avoid frequently visited areas.
We divide a search space into areas and convert each area into an index.
We propose a heuristic to dynamically change the search space area
using a history map of these indexes. The proposed heuristic was eval-
uated experimentally using the benchmarks from the application tracks
of SAT-Race 2015.

1 Introduction

The satisfiability (SAT) problem is a well-known NP-complete problem. Prob-
lem instances from domains such as puzzles, circuit verification, and planning
can be easily encoded into SAT problems. Throughout the evolution of mul-
ticore hardware, many types of parallel SAT solvers have been proposed. The
initial approach was divide-and-conquer [1,2]. However, finding a successful load-
balancing solution is difficult. In recent years, a portfolio-based approach [3,4]
has become mainstream for parallel SAT solvers. In portfolio approaches, main-
taining the diversification and intensification tradeoff is very important [5]. To
balance diversification and intensification, many solvers allocate different com-
binations of policies and share learned clauses among the workers. For exam-
ple, in ManySAT [3], each worker has different strategies for restart, decision
heuristics, polarity, and clause sharing. However, finding a good combination of
policies is difficult and clause sharing does not ensure diversity because of lim-
ited resources. In this paper, we propose a method for diversifying search among
different workers by sharing phase saving statuses. To share these statuses effi-
ciently, we devised a metric that represents the current phase saving status, i.e.,
Polarity Search Space Index (PSSI). By accumulating PSSI data as a history
map, and sharing the history map among workers, each worker can dynami-
cally walk toward the sparsely visited areas. We implemented this method in
our solver ParaGlueminisat, and evaluated our method experimentally using the
benchmarks from the application tracks of the SAT-Race 2015.

The remainder of this paper is organized as follows. In Sect. 2, we define
PSSI and describe preliminary PSSI experiments. In Sect. 3, we demonstrate
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 260–266, 2016.
DOI: 10.1007/978-3-319-50349-3 21
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our sparsely visited area walking on search space (SaSS) heuristic using a PSSI
history map and its implementation. We show effects of the PSSI experimentally
in Sect. 4 and present conclusions and suggestions for future work in Sect. 5.

2 Conversion of Current Area into an Index

In this section, we propose converting the current area of the search space into
an index. We use this metric primarily for the dynamic changes of the current
area in our heuristic. Details are given in Sect. 3.

2.1 Polarity Search Space Index (PSSI)

Many state-of-the-art solvers use phase saving to reuse a previous phase for
intensive search after restarts. This phase has a strong relationship with learned
clauses found by the current worker. However, clauses imported from other work-
ers may not fit the current phase. By changing only a small part of the phase, we
expect to maintain an intensive search and may be able to use imported clauses.

For this, we convert the current phase to a PSSI as follows. First, we divide
the variable set into k-blocks (B1, B2, ..., Bk). Second, we calculate the ratio
(r1, r2, ..., rk) of variables currently allocated to TRUE, and divide the ratio into
uniform m sections where each section has a value between 0 on the far left to
m−1 on the far right. For each block Bi, the ratio is converted to integer bi. For
Bi, bi = p if p/m ≤ ri < (p+1)/m, where p ∈ {0, 1, ...,m− 1}. After calculating
each bi, we calculate the PSSI as follows.

PSSI =
k

∑

i=1

bi × mi−1

PSSI is now an integer; thus, we can easily, although roughly, compare the areas
in the search space among the workers. Consider a problem with n variables
x1, x2, x3 and xn. We can solve this problem using the parallel SAT solver with
two workers w1 and w2. Let pi be the current phase of wi. If we simply calculate
the hamming distance between the workers, it takes only O(n) time. However,
to compute the distance between the workers, they must be synchronized. This
method would be unwieldy when the number of workers increases.

When p1 = 0, 1, 1, ..., 0 has been visited and we fail to find a model, then w1

and w2 should avoid the same status in future. However, memoization for this
needs a lot of memory.

In PSSI, for example, if we suppose k = 4 and m = 2, ratio(w1) = (0.3, 0.7,
0.0, 1.0) and ratio(w2) = (0.6, 0.7, 1.0, 0.2), then we get PSSI1 = (0 ∗ 20 + 1 ∗
2 + 0 ∗ 22 + 1 ∗ 23) = 10 and PSSI2 = (1 ∗ 20 + 1 ∗ 2 + 1 ∗ 22 + 0 ∗ 23) = 7. We
can compare their areas using PSSI based on bitwise XOR. In this case (0101 �
1110) = 1011, and we count the number of 1 s to obtain distance = 3. However,
we do not compare these areas directly because of the synchronization problem.
We prefer considering past PSSI results (Sect. 3).
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PSSIs have k-blocks, and this structure helps in maintaining search inten-
sification. We can easily modify fractional changes by selecting a block and
inverting each polarity in a phase. Using this structure, we dynamically change
a phase (Sect. 3).

Currently, we are dividing k-blocks by simply using the indexes of variables,
which means if there are kx variables in the original formula, we allocate 1 ∼ x
to block 1, x + 1 ∼ 2x to block 2, and so on. We have adopted this policy to
attempt to minimize sudden changes in the current area.

2.2 Block Division Policy

Optimal division of variable sets into blocks is difficult. Using a community detec-
tion algorithm such as the Louvain method [6] would be a good idea, because
when we pick a block representing a community and change the polarities in
a phase, these changes will have fractional effects on the entire search because
a community have sparse connections to other communities. However, at this
time, we simply divide the blocks according to their indexes. We have adopted
this policy based on our experiments. We performed 300 tests with a benchmark
to produce different models, and observed their polarity trends. The benchmark
chosen was 002-80-8.cnf from the application problems in SAT competition 2014
because a model for this benchmark can usually be found rapidly. For each
test, we obtained a model and checked its final polarities. The polarity distrib-
ution counts for each variable from 300 repeated tests are shown in Fig. 1. Each
point indicates the number of TRUEs assigned to the model. From this data, we
concluded that there is a high probability of strong relations among proximate
variables by index. For example, in Fig. 1, variables with an index between 0
and 2,500 have similar TRUE assigned numbers. Also, a group of variables with
less than 30 TRUE assigned numbers at indexes between 9,500 and 13,300 can
be seen in Fig. 1 relatively frequently. From the results of this experiment, we
suspect that some hidden structures based on the indexes of variables might
exist;, this is why we divided blocks using the index order.
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2.3 Representability of PSSI

To check how well PSSI differentiates between models, we chose four satisfiable
benchmarks from the application problems in SAT competition 2014 that can
relatively easily find a model using our solver. The benchmarks are 008-80-8.cnf,
002-80-8.cnf, 004-80-8.cnf and 004-22-160.cnf. We performed 20 tests per bench-
mark (i.e., a total of 80 tests) with a time limit of 3,600 s. Parameter settings of
the solver were the same for all tests. In 10 tests, we reached a time limit. Models
were obtained for the remaining 70 tests, and we checked their PSSIs. PSSI is
calculated under the conditions k = 10 and m = 4;, thus, there are 410 different
PSSIs. Sixty-seven different PSSIs were found in 70 models. These results indi-
cate that models for a CNF-formula could be found in many different areas in
the search space, and these areas might be differentiated through the PSSI.

3 Walk Towards the Sparsely Visited Areas
Using a History Map

We proposed the use of PSSI to represent the current area of the search space
in Sect. 2. Using this metric, we diversify the search space areas. Each worker
periodically calculates PSSI, and we accumulate these data as a history map
of PSSIs. Our main idea is to avoid the frequently visited areas, and to walk
towards the sparsely visited areas. The history map is a one-dimensional array
comprising the PSSI counts. Each element counts how many times this area is
visited. We can walk from the current area to a sparsely visited area by sharing
the history map among workers and by dynamically changing a phase. However,
we can not anticipate whether we will reach the sparsely visited area. It depends
on the block division policy and the structure of the problem. Therefore we refer
to this sparsely visited area as the target area.

Algorithms 1 and 2 show the pseudo-code of the SaSS heuristic. In
Algorithm 1, after every c conflicts (line 1), each worker calculates the current
area as PSSI (line 2), updates the history map of the PSSIs (shared for all work-
ers) and obtains a target area as a PSSI (line 3). If the target area differs from
the current area (line 4), it changes polarities to walk towards the target area
(line 5). A block is selected by calculating the bitwise XOR of p and p′, and
the polarity of each variable is updated. If the selected block is Bi, then each
variable’s polarity is allocated to TRUE bi in m. In Algorithm 2, we obtain a
target area using a history map. The history map is updated (line2), but the

Algorithm 1. SaSS heuristic: changeCurrentArea()
1: if conflicts % interval == 0 then
2: p := getCurrArea();
3: p′ := updateHistoryMap(p);
4: if p != p′ then
5: changeBlockPolarities(p, p′);
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Algorithm 2. SaSS heuristic: updateHistoryMap(p)
Input: PSSI p
Output: PSSI p′

1: p′ := p;
2: historyMap[p′]++;
3: if p′ < c-threshold × thread number then
4: return p′;
5: p′ := checkNearestAreas(p, d);
6: return p′;

area is not changed in the early stages (lines 3 and 4). When the early stages
end, the target area is searched on the basis of the current area (line 5). Areas
within hamming distance d from the current area are identified, and the area
with the minimal count in the history map is selected as the target area.

4 Experimental Results

In this section, we present an experimental evaluation of the SaSS heuristic.
SaSS is implemented in our parallel solver ParaGlueminisat and evaluated by
the number of solved instances and the runtime for both SAT/UNSAT. Currently
our parallel solver can be executed in two different environments. We used both
environments to maximize our test numbers because results from parallel solvers
are unstable, particularly for SAT problems.

– Work Station (WS): Xeon X5680 3.3 GHz (12 physical + 12 hyper-threading
cores) with 140 GB RAM

– VMware (VM): Intel(R) Xeon(R) CPU E5-2650 v2 2.60 GHz (16 physical +
16 hyper-threading cores) with 128 GB RAM

Parallel track benchmarks from SAT-Race 2015 were used for the evaluation.
As a default setting, each worker updates its history map of PSSIs in shared
memory every 50,000 conflicts. PSSI is calculated for k = 10 and m = 4, i.e., for
410 different PSSIs. SaSS only checks proximate areas with hamming distance = 1
from the current area. To assess scalability, we performed tests with 12 and 64
workers. We compared the results of SaSS and non-SaSS and, also of the test
with 12 and 64 workers. For comparison, we set the CPU time limit to 3600x
(where x is the number of workers) seconds. We only have 24 or 32 threads
including hyper-threading; therefore when we performed tests with 64 workers
their actual time limit is 9,600 s in WS and 6,400 s in VM.

We obtained the best results using SaSS with 64 workers. With 64 workers,
SaSS, solved 73 instances in 100 hard benchmarks from SAT-Race 2015. Overall,
SaSS solved more problems than non-SaSS for SAT problems with 12 and 64
workers. For UNSAT, SaSS did not deteriorate the results; however, we cannot,
claim that it provided better results. The implementation of SaSS provided a
speed-up of 7% over non-SaSS in the total running time over the SAT bench-
marks and solved 6.5 more instances on an average within the time limit (Fig. 2).
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Fig. 2. Time required to solve benchmarks within 3600 × worker number seconds.
Time limit is set by CPU time, not real time. Measured time (Y-axis) is real time.

5 Conclusions

In this study, we focused on the current phase and dynamically changed search
space areas using a history map to diversify search by walking towards the
sparsely visited areas. We experimentally evaluated this using benchmarks. The
proposed heuristic can be applied regardless of the size of the problem. However,
several questions remain unanswered. We used static parameters to divide search
space into blocks; however this approach may not suitable for some problems. To
address this issue, we could dynamically change the blocks. Our SaSS heuristic
deterministically chooses a sparsely visited area as the target area. We could
consider a biased random walk to increase the robustness of SaSS. We could also
consider the time factor because our map only counts the number of visits to
each area, and does not consider the time at which the area was last visited.
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Abstract. We present a Resource-Aware Model-Based Optimization
framework RAMBO that leads to efficient utilization of parallel computer
architectures through resource-aware scheduling strategies. Conventional
MBO fits a regression model on the set of already evaluated configura-
tions and their observed performances to guide the search. Due to its
inherent sequential nature, an efficient parallel variant can not directly
be derived, as only the most promising configuration w.r.t. an infill cri-
terion is evaluated in each iteration. This issue has been addressed by
generalized infill criteria in order to propose multiple points simulta-
neously for parallel execution in each sequential step. However, these
extensions in general neglect systematic runtime differences in the con-
figuration space which often leads to underutilized systems. We estimate
runtimes using an additional surrogate model to improve the scheduling
and demonstrate that our framework approach already yields improved
resource utilization on two exemplary classification tasks.

Keywords: Black-box optimization · Hyperparameter tuning · Model
selection · Model-based optimization · Resource-aware scheduling ·
Performance management · Parallelization

1 Introduction

In the field of hyperparameter optimization for machine learning methods, effi-
cient black-box optimization is often necessary to obtain a well-performing
hyperparameter configuration for a given data set. A state-of-the-art optimiza-
tion strategy for expensive black-box functions is the model-based optimization
(MBO) [6]. MBO is an iterative optimization algorithm that starts on an initial
set of already evaluated configurations. In each step a regression model is fitted
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on the so far available evaluations. It serves as a surrogate model to predict the
outcome of the black-box on yet unseen configurations. The infill criterion of the
model guides the search to a new configuration which is usually a compromise
between good predicted performance and uncertainty of the search space region –
expected improvement is a popular choice. The new configuration is evaluated,
appended to the current data and the next iteration step starts until the budget
of evaluations is depleted. Many extensions to the basic MBO algorithm have
been suggested for parallel point proposal [3].

One popular application for MBO is hyperparameter tuning [10,12] where
the objective function is defined as a resampled performance measure of a
machine learning algorithm. Here, resource requirements like CPU utilization
or memory usage heavily vary depending on the type and configuration of the
applied machine learning algorithm. Heterogeneous runtimes have already been
addressed in [11] where the authors suggest to model these with an additional
surrogate leading to an “expected improvement per second” which favors less
expensive configurations. We also use surrogate models to estimate resource
requirements but instead of adapting the infill criterion, we use them for effi-
cient scheduling of parallel point evaluations. Resource-aware scheduling is an
active field of research which is often tailored specifically for different hardware
platforms, from small embedded systems [13] up to heterogeneous clusters [4]. In
contrast to these classical scheduling problems, we are in control of the job gener-
ation as we can query the resource model for jobs with suitable resource require-
ments and postpone or skip suggested jobs if deemed not promising enough.

2 Resource-Aware Model-Based Optimization

Our framework (RAMBO) is shown in Fig. 1. In the first of three steps, the MBO
Method proposes a set of promising configurations w.r.t. the infill criterion.
Each configuration forms a job with different resource demands. Based on all
previous evaluations, we build surrogate regression models to predict the com-
putational resources for arbitrary configurations. Such a model is called Job
Utility Estimator and is used to create Job Profiles. Configurations to evaluate
are selected in the Job Selection step. Jobs are prioritized depending on their
estimated usefulness for optimization and their predicted resource requirements.
The Scheduling step uses the estimated Job Profiles and a System Description
(e.g., number of CPUs and free memory) to efficiently map the jobs to the avail-
able resources. The jobs are started and can be monitored by a Job Tracker.
Since job profiles are only estimated, a job whose resource utilization deviates
from its predicted requirements might need to be rescheduled or stopped to guar-
antee efficient resource utilization. We propose two possibilities to update the
model with results. One way is the synchronous feedback, where the results of
all jobs within one iteration are gathered before each model update. The other
way is to update the model each time a job has finished its computation in an
asynchronous fashion. Either way, the updated model is then used to propose
new candidate points.
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Fig. 1. Ressource-Aware Model-Based Optimization Framework.

To demonstrate our general framework, we show a simple exemplary setup
in this work. We pick kriging as surrogates to model the misclassification error
and the logarithmic runtime. We opt for a multipoint Lower Confidence Bound
(LCB), which is an optimistic estimate of the objective function, similar to [5]
as infill criterion, which we call qLCB. qLCB simultaneously generates q con-
figurations by drawing q random values λi (i = 1, . . . , q) from the exponential
distribution with a mean of 2. Each λi results in a different trade-off between
exploitation (λi ↓) and exploration (λi ↑) and thus leads to a different optimal
configuration x∗

i after solving

x∗
i := arg min

x
[LCB(x, λi)] = arg min

x
[ŷ(x) − λiŝ(x)] . (1)

Here, ŷ(x) denotes the posterior mean and ŝ(x) the root of the posterior standard
deviation of the regression model at point x, respectively. Unfortunately, there
is no direct ordering of the set of obtained candidates x∗

i . Therefore, we assign
candidates with a balanced exploration-exploitation trade-off a higher priority:
pi = − |log(λi) − log(2)| is inversely proportional to the absolute distance of λi

to its expected value 2 on a log-scale.
For scheduling, we use the synchronous approach. In each iteration we gen-

erate a list of q = 3m proposed jobs with the help of qLCB. We then determine
the job ji∗ , i∗ := arg maxi pi, with highest priority and run it CPU1 exclusively.
Accordingly, on a system with m homogenous CPUs the remaining jobs are
scheduled on CPU2, . . . ,CPUm, limited by the upper time bound t̂i∗ , which is
directly derived from the estimated runtime of job ji∗ . Jobs which have an esti-
mated runtime t̂i ≤ t̂i∗ are mapped in decreasing order of their priorities to the
remaining CPUs in a greedy first fit manner. A job ji is mapped on CPUk if
its runtime t̂i ≤ t̂i∗ − ∑

i∈Jk
t̂i where Jk is the set of jobs already mapped to

CPUk. Jobs of the inital list that do not fit on any CPU are discarded. If any
CPU is left without a job we query the surrogate model for a new job for each
CPU with a runtime smaller or equal to t̂i∗ to fill the gaps. When all scheduled
jobs are evaluated the surrogate model is updated and the iteration starts over.
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3 Evaluation

The subject of the experimental setup is to apply our framework on the w6a1

and magic042 data set to configure an SVM with the radial basis function kernel

k(x,x′) = exp(−γ ‖x − x′‖2) (2)

as implemented in the R package e1071 [7], based on libsvm. The kernel para-
meter γ and the cost C of constraint violations are both box-constrained to the
interval [−15, 15] on a log2-scale. We compare our approach to two established
alternatives:

Random Search (RS): A simple parallelized random search. This relatively
naive yet often effective [1] approach does not need a synchronization step
like MBO, therefore the next random point will be scheduled immediately
after each function evaluation which guarantees maximum load of all CPUs.

qLCB: A simple MBO approach with a multipoint LCB infill criterion [3], using
a kriging model and naive scheduling. At each sequential step, q = ncores
points are selected minimizing the LCB (1) w.r.t. random λi ∼ Exp(12 )
(i = 1, . . . , q).

Since the concept of a fixed budget of evaluations does not translate well into a
scenario with heterogeneous runtimes, we define the budget via the elapsed time.
We use a 3-fold cross validation to define the objective function for the tuner
and an outer 10-fold cross validation to evaluate the optimization results. All
variants start with an initial latin hypercube design with 10 points. To increase
comparability, initial designs are fixed per outer cross-validation fold.

The software is implemented in R using mlr3 to interface the machine learn-
ing algorithms and mlrMBO4 as optimization toolbox. BatchExperiments [2] is
used to parallelize the experiments on high performance computing cluster. The
traceR framework [8,9] guarantees reliable measures of computational resources.

Figure 2 shows the mean misclassification errors (MMCE) of the best config-
uration after 1, 10, 120 and 180 min. The left hand side displays the tuning error,
i.e. the over-optimistic error on the internal tuning set. The right hand side shows
the MMCE on the outer cross-validation. Unfortunately, on these data sets only
marginal improvements are achieved after evaluation of the initial design. Yet our
RAMBO approach seems to perform well, yielding comparable performance and
sometimes slightly less variance. The reasons for this can be found in Fig. 3 which
visualizes the mapping of parallel jobs. We can observe unused CPU time for

1 Platt: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary/w6a.
2 Bock: https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope.
3 Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E.,

Casalicchio, G., Jones, Z.M.: mlr: machine learning in R. J. Mach. Learn. Res.
17(170), 1–5 (2016). http://jmlr.org/papers/v17/15-066.html

4 Bischl et al., mlrMBO: Model-Based Optimization for mlr. https://github.com/
berndbischl/mlrMBO.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w6a
https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
http://jmlr.org/papers/v17/15-066.html
https://github.com/berndbischl/mlrMBO
https://github.com/berndbischl/mlrMBO
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Fig. 2. Averaged misclassification errors (MMCE): tuning (left) and test data (right)
for the best observed configuration after a given time budget.
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Fig. 3. Scheduling visualization for one run: The boxes show the mapping of jobs on
CPUs. Less empty spaces indicate higher CPU utilization. Vertical lines indicate the
end of one MBO iteration.

qLCB whereas RAMBO balances long execution times more evenly. The estimation
of runtimes reliably estimates the runtimes so that only 2.3% of the evaluations
exceed t̂ + 2 · s(t̂). qLCB often schedules four jobs with vastly different runtimes
and hence wastes available CPU time idling. Thus our results demonstrate that
RAMBO achieves higher CPU utilization, meaning more evaluations which yields
better knowledge of the hyperparameter space and thus higher confidence in the
optimization result. It also shows on magic04 that it not only prefers short jobs
but is also able to schedule long jobs more efficiently. On the w6a dataset RAMBO
is capable of evaluating twice as many configurations as the unscheduled baseline
method qLCB. In contrast it only yields 25% more evaluations on the magic04
dataset which indicates that promising configurations have longer runtimes then
average and vice versa for w6a.

4 Conclusion

With our RAMBO framework we present a novel approach to perform a
faster model-based optimization through resource-aware scheduling. We demon-
strate that our yet heuristic mapping approach already leads to improved
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resource utilization and thus to more evaluations within the same time budget.
This potentially yields a better knowledge of the hyperparameter space and thus
higher confidence in the optimization result. In order to efficiently use hardware
resources, we are planning further improvements. Firstly, further work will con-
centrate on integrating memory profiles since memory usage heavily influences
runtime if the amount of RAM in the system is too small to hold all required
data. Secondly, we aim to improve the resource estimation. Thirdly, we are plan-
ning to implement dynamic scheduling of jobs for cases of remaining deviations.
Fourthly, we plan to implement a multi-objective approach with respect to hard-
ware costs, memory, runtime and priority for performance optimization for an
more optimized resource-aware scheduling strategy. This is especially important
for an efficient utilization of heterogeneous architectures.

Acknowledgments. This work was partly supported by Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Center SFB 876, A3.
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Abstract. In the field of dynamic vehicle routing, the importance to
integrate stochastic information about possible future events in cur-
rent decision making increases. Integration is achieved by anticipatory
solution approaches, often based on approximate dynamic programming
(ADP). ADP methods estimate the expected mean values of future out-
comes. In many cases, decision makers are risk-averse, meaning that
they avoid “risky” decisions with highly volatile outcomes. Current ADP
methods in the field of dynamic vehicle routing are not able to inte-
grate risk-aversion. In this paper, we adapt a recently proposed ADP
method explicitly considering risk-aversion to a dynamic vehicle routing
problem with stochastic requests. We analyze how risk-aversion impacts
solutions’ quality and variance. We show that a mild risk-aversion may
even improve the risk-neutral objective.

Keywords: Dynamic vehicle routing · Anticipation · Risk-aversion ·
Approximate dynamic programming · Stochastic customer requests

1 Introduction

Many service providers dispatch a fleet of vehicles during the day to trans-
port goods or passengers and to conduct services at customers. Factors like
e-commerce, digitization, and urbanization lead to an increase in uncertainty
dispatchers have to consider in their plans, e.g., in travel times, service times, or
customer demands [1]. Especially, customer requests often occur spontaneously
during the day. In many cases, new requests require significant adaptions of
the current plan [2]. These are enabled by real-time computational resources.
Practical routing applications are generally modeled as dynamic vehicle routing
problems (DVRPs, compare [1]). For many DVRPs, static approaches applied
on a rolling horizon are not suitable [3]. Anticipation of possible future events
and decisions is mandatory to allow reliable, flexible, and effective plans.

Anticipation can be achieved by approximate dynamic programming [4].
ADP for DVRPs is widely established, especially for stochastic requests [2]. ADP

c© Springer International Publishing AG 2016
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methods evaluate decisions regarding the expected future rewards (or costs). The
expected future rewards are usually approximated via simulation. Generally, a
tradeoff between current and future rewards can be experienced. High imme-
diate rewards may lower the expected future rewards. Dispatchers aim for an
“optimal” balance between immediate and future rewards.

All ADP approaches applied to DVRPs maximize the sum of immediate and
expected future rewards. In practice, decisions also depend on the variance of
the expected future rewards, i.e., the service provider’s risk-aversion [5]. A risk-
averse provider may discount the expected future rewards if a high variance, i.e.,
a high uncertainty of a decision’s success is given. In some cases, practitioners
are able to quantify their risk-aversion. In other cases, the degree of risk-aversion
can be derived by analyzing historical decisions [6]. The derived properties then
have to be integrated in a suitable anticipatory DVRP-approach.

Work on risk-aversion for vehicle routing problems is limited. In (static) vehi-
cle routing with stochastic travel times explicit inclusion of risk-aversion is, e.g.,
achieved by [7]. [8] evaluate plans by risk for a dynamic orienteering problem.
Until now, the ADP methods applied to DVRPs are not able to integrate prac-
titioners’ risk-aversion. Anticipation is based on mean values. Especially low
probability - high impact incidences are not sufficiently considered [9]. Recently,
Jiang and Powell [10] proposed a general ADP method integrating quantiles of
the expected value-distribution and therefore the variance in the anticipation. In
this paper, we adapt the proposed method to an ADP approach of anticipatory
time budgeting (ATB, [2]) for a DVRP with stochastic customer requests. We
analyze the impact on rewards and variances for different instance settings and
degrees of risk-aversion.

This paper is the first work integrating risk-aversion in an ADP approach for
dynamic vehicle routing. We show that an explicit inclusion of risk-aversion in
DVRPs is possible and that a mild risk-aversion even strengthens the approxi-
mation process resulting in higher rewards and lower variances compared to the
risk-neutral equivalent.

2 Dynamic VRP with Stochastic Requests

In this section, we define the DVRP with stochastic requests via a Markov deci-
sion process (MDP, [11]). The problem is an extension of [12]. An uncapacitated
vehicle serves customers in a service area considering a time limit. The tour starts
and ends in a depot. A set of known early request customers (ERC) has to be
served. During the day, new requests occur. If the vehicle is located at a cus-
tomer, the dispatcher has to decide about the subset of occurred requests to be
confirmed and the next customer to visit. Waiting is permitted. The dispatcher
aims on maximizing the confirmed late request customers (LRC). Modeling the
problem as MDP, a decision point k occurs if the vehicle is located at a customer.
A state Sk consists of the point of time, the vehicle’s position, the set of not yet
served ERC and confirmed LRC, and the set of new LRC. Decisions x are made
about the subset to be confirmed and the next customer to visit, respectively,
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waiting. The immediate reward R(Sk, x) is the number of newly confirmed LRC.
A post-decision state Sx

k consists of the point of time, the vehicle’s position, the
not yet served ERC and confirmed LRC, and the next customer to visit. The
transition results from the vehicle’s travel and provides a new set of requesting
LRC. The process terminates in state SK when no customers remain to be served
and the vehicle has returned to the depot. A solution for the DVRP is a policy
π, a sequence of decision rules (Xπ

0 , . . . , XK
π ) assigning a decision x = Xπ

k (Sk)
to every state Sk. The objective is to derive an optimal policy π maximizing
the expected sum of rewards over all decision points. Notably, the objective is
defined for a risk-neutral dispatcher.

3 Risk-Averse Time Budgeting

In this section, we extend ATB by [2] to ATBλ allowing the integration of risk-
aversion. ATB draws on the ADP method of approximate value iteration (AVI,
[4]) to evaluate post-decision states (PDSs) Sx regarding the expected number
of future confirmations, i.e., their value V (Sx). To be more specific, AVI rep-
resents ways of using past experience about the algorithm behavior to improve
future performance. Tuning refers to the update of values. Due to the curses of
dimensionality, PDSs are aggregated to vectors containing the point of time and
the remaining free time budget. The resulting vector space is then partitioned
to a lookup table (LT). Every entry of the LT contains a set of vectors. AVI
starts with initial tuning and entry values V̂0 inducing a policy π0. Then, AVI
iteratively simulates a problem’s realization i and tune the values V̂i−1 regard-
ing the algorithms performance. Within each approximation run i, policy πi−1

is applied based on Bellman’s Equation [11] depicted in Eq. (1). The values for
the new policy πi are tuned by the realized values of approximation run i.

Xπi

k (Sk) = argmax
x∈X (Sk)

{

R(Sk, x) + V̂i(Sx)
}

(1)

V (Sx) is a random variable. A risk-averse policy aims on avoiding highly
volatile V (Sx). Notably, V (Sx) is the sum of a sequence of interdependent ran-
dom variables R(Sk+i, x), 0 < i < K − k, i.e., the volatility and the impact of
the volatility may change over the subsequent decision points. A straightforward
evaluation of the variance of V (Sx) is not sufficient to consider risk-aversion in
dynamic decision problems. [13] describe dynamic risk measures ρ(Sx) consid-
ering the risk over the subsequent decision points. [10] present an algorithm to
approximate ρ(Sx) for every post-decision state by ρα via ADP methods. They
use the quantiles of ρα as an approximation of the real value distribution of ρ.
For ATBλ, we draw on the concept of conditional value at risk (CVaR, [14]).
The considered dynamic risk measure ρα is induced by the one-step conditional
risk measure ρλ as depicted in Eq. (2).

ρλ(Sx) = (1 − λ)V (Sx) + λρα(Sx) (2)
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The value of ρλ is then used instead of V (Sx) in Eq. (1). To achieve ρα, ρλ is
recursively applied over the subsequent decision points. For an efficient approxi-
mation, we simplistically assume that V (Sx) follows a uniform distribution. This
avoids an extensive estimation of the distribution for every value. As a result,
parameter λ ∈ [0, 1] directly determines the dispatcher’s risk-aversion. λ = 0
results in risk-neutrality and ATB. λ = 1 results in a myopic policy. For the
tuning of ATBλ, we approximate both V (Sx) and ρα(Sx) via AVI.

4 Computational Studies

In this section, we define the settings of ATBλ, briefly describe the instances, and
analyze the results. For ATBλ, we follow the parameter settings of [2]. We use a
(static) LT with interval length of one. The values are updated via moving aver-
age. We consider the tuning after 1 million approximation runs. The instances
base on [2]. The time limit is set to 360 min. The vehicle travels with monotone
speed v = 15 km/h in a service area of 20 × 20 km2. The depot is located in
the center of the service area. The expected number of customers is 100. The
percentage of LRC is 75%. Customer requests follow a Poisson distribution over
time. We consider three spatial customer distributions. Customers are distrib-
uted uniformly (FU ), equally grouped in two clusters (F2C), or distributed in
three clusters (F3C). For F2C , the cluster centers are (5, 5) and (15, 15). For
F3C , the cluster centers are (5, 5), (5, 15), and (15, 10). Within the clusters, the
request probability is normally distributed with standard deviation of 1 km.

Table 1. Results; best values are depicted in bold.

λ Confirmations Variance

FU F2C F3C FU F2C F3C

0.0 34.3 49.6 44.9 23.2 34.4 31.9

0.1 34.5 50.2 45.3 22.7 33.0 29.7

0.2 34.4 50.6 45.7 22.1 32.2 29.3

0.3 34.2 50.7 46.0 21.3 32.3 27.7

0.4 33.8 50.7 46.0 20.8 30.7 25.9

0.5 33.3 50.3 45.9 20.4 30.2 25.6

0.6 32.1 49.8 45.3 21.1 28.8 24.5

0.7 30.4 49.0 44.4 21.7 29.2 25.4

0.8 28.6 48.0 43.3 22.0 29.6 26.1

0.9 27.4 47.2 42.5 23.0 31.0 27.1

1.0 26.8 46.8 42.0 24.2 31.1 28.4

For each instance setting, we run 1,000 test runs for λ = 0.0, 0.1, . . . , 1.0.
The average number of confirmations and the variance are depicted in Table 1.
Notably, a mild risk-aversion leads to a higher risk-neutral objective value.



278 M.W. Ulmer and S. Voß

This can be explained by the impact of risk-aversion on the tuning process. For
a high λ, only the (relatively certain) outcomes of the next few decision points
define the decision policy leading to a fast and more reliable tuning process.
A low λ results in an equal consideration of all subsequent decision points and
outcomes. The according tuning process requires a high number of approxima-
tion runs to be accurate. This is especially the case for the clustered customer
distributions [2]. Further, ATB is based only on temporal attributes and may
provide a less reliable tuning for clustered distributions compared to FU [15].
As a result, the highest amount of confirmations is achieved for λ = 0.3 and
λ = 0.4 for the clustered distributions. As expected, we experience a constant
decrease of the variances between λ = 0.0 and λ = 0.5. Afterwards, the variance
increases, since a high λ is similar to a myopic policy.

Fig. 1. Solution quality and standard deviation for varying λ and FU

We now analyze the tuning process and the tradeoff between number of con-
firmations and variance in more detail. Figure 1 shows the number of confirma-
tions and variance for varying λ and FU for 1,000 test runs and policies achieved
by 100 k, 500 k and 1,000 k approximation runs. For 1,000 k, λ = 0.1 to λ = 0.5
span a Pareto-front for both dimensions similar to the theoretical results of [10].
For 100 k, the tuning for ATBλ with λ = 0.1 is (still) not sufficient. During the
tuning process, we experience an increase in the number of confirmations for low
λ, and a decrease in the variance for high λ. Hence, a directed tuning of ATBλ

(and AVI) to the two different objectives can be achieved. The integration of
risk-aversion further results in a faster and more reliable AVI-tuning.

5 Conclusion

In this paper, we applied an ADP method to a DVRP with stochastic cus-
tomer requests enabling anticipation and the inclusion of service provider’s risk-
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aversion. Even though we simplistically assume the expected values V to follow
a uniform distribution, results show that the integration is not only possible,
but also strengthens the tuning process and even improves the overall (risk-
neutral) objective. In this paper, we considered a “vanilla” DVRP. Future work
may focus on more real-world related problems and problems containing unlikely
events with significant impacts (e.g., vehicle breakdowns). For a more efficient
tuning process, risk directed sampling may be included in the approach as pro-
posed in [10]. Further, historical data about previous decision making may be
analyzed to quantify service providers’ risk-aversion. For a more accurate approx-
imation, the distribution of V could be explicitly considered by a set of quantiles.
Finally, a mild risk-aversion improves the (risk-neutral) objective. Hence, it may
be beneficial for many ADP methods to include a dynamic risk measure for a
strengthened and more reliable tuning process. The risk-aversion may decrease
during the tuning process once a more reliable approximation is achieved.
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Abstract. This paper describes an algorithm for solving multidimen-
sional multiextremal optimization problems. This algorithm uses Peano-
type space-filling curves for dimension reduction. It has been used for
solving problems at GENeralization-based contest in global OPTimiza-
tion (GENOPT). Computational experiments are carried out on 1800
multidimensional problems.

Keywords: Global optimization · Multiextremal functions ·
Space-filling curves · Mixed global-local algorithm · GENOPT

1 Introduction

A well-known approach to the investigation and comparing of the multiextremal
optimization algorithms is based on testing these methods by solving a set of test
problems, chosen randomly from some specially designed class. Each test prob-
lem can be considered as a particular instance of a random function generated
by a special generator. Application of multiextremal optimization algorithms to
large sets of such functions allows estimating the characteristics of the methods
and evaluating the efficiency of each particular algorithm.

Among such generators for the one-dimensional problems, there are samples
from Fourier series proposed by Hill [1]. A generator proposed by Shekel [2]
generates another well-known class of the one-dimensional test problems. For
the investigation of various one-dimensional algorithms using the samples of the
functions generated by Hill and Shekel generators Globalizer software has been
developed. A comprehensive description of the capabilities of this system and
the examples of its application are given in [3]. Note also that Hill and Shekel
functions have been successfully used in the construction of one-dimensional
constrained problems (with controlled measure of the feasible domain) [4].

A generator for a random sampling of two-dimensional test functions has
been proposed in [5]. A generator for the functions of arbitrary dimensionality
with known positions of the local and global minima (GKLS generator) has
been proposed in [6]. Its application for the studying of some multidimensional
algorithms has been described in [7,8].
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 283–295, 2016.
DOI: 10.1007/978-3-319-50349-3 24
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Approach to the comparison of the algorithms by solving a set of test prob-
lems has been used by the organizers of GENeralization-based contest in global
OPTimization (GENOPT). The functions to be optimized are broadly divided
into three function families: GKLS, conditioned transforms of classical bench-
marks (Rosenbrock (unimodal, narrowing bending valley), Rastrigin (strongly
multimodal), Zakharov (unimodal)), and a composition of classical benchmarks.
In their turn, each family is subdivided into six function types, which differ
by their analytical definition and by the number of dimensions. The functions
belonging to the same type share the majority of properties and can be assumed
to have the same difficulty. Finally, every function type of every family is realized
into an unlimited number of function instances which differ by some randomly
generated parameters. In particular, every instance will have a randomly gen-
erated offset c ∈ [−1, 1] added to the function’s output in order to make the
global minimum value unpredictable. A detailed description of the competition
problems can be found at the website http://genopt.org.

An efficient approach for solving global optimization problems has been devel-
oped under the supervision by prof. R.G. Strongin at Lobachevsky State Univer-
sity of Nizhni Novgorod [10–23]. Within the framework of this approach, solving
multidimensional global optimization problems is reduced to solving a set of the
corresponding one-dimensional ones. The corresponding dimension reduction is
based on the use of Peano space-filling curves (also called evolvents), unambigu-
ously mapping the unit interval of the real axis onto a hypercube, as well as the
generalization of these ones, which can be applied to solving the problems using
the multiprocessor systems. The proposed algorithms have been implemented in
ExaMin solver applied to solving the problems within GENOPT competition.
In the present work, a brief description of the global optimization algorithm
applied and of its modifications are given, and the results of the computational
experiments with the problems of the competition are presented.

2 Problem Statement

Let us consider the problem of search for a global minimum of an N -dimensional
function ϕ(y) within a hyperinterval D

ϕ(y∗) = min {ϕ(y) : y ∈ D}, (1)
D =

{

y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N
}

.

Let us assume that the function ϕ satisfies the Lipschitz condition with an a
priori unknown constant L

|ϕ(y1) − ϕ(y2)| ≤ L ‖y1 − y2‖ , y1, y2 ∈ D, 0 < L < ∞.

In this study, we will use the approach based on the idea of dimension reduc-
tion by means of a Peano curve y(x), which continuously and unambiguously
maps the unit interval [0,1] onto the n-dimensional cube

{

y ∈ RN : −2−1 ≤ yi ≤ 2−1, 1 ≤ i ≤ N
}

= {y(x) : 0 ≤ x ≤ 1} .

http://genopt.org
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Problems of numerical construction of Peano-type space filling curves and the
corresponding theory are considered in detail in [3,8]. Here we will note that a
numerically constructed curve is 2−m accurate approximation of the theoretical
Peano curve in L∞ metric, where m is an evolvent construction parameter.
Examples of the evolvent with different m in two dimensions are given in Fig. 1.

(a) (b) (c)

Fig. 1. Evolvents in two dimensions with (a) m = 3, (b) m = 4 and (c) m = 5

By using this kind of mapping it is possible to reduce the multidimensional
problem (1) to a univariate problem

ϕ(y∗) = ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1]}.

An important property of such mapping is preservation of boundedness of func-
tion relative differences (see [3,9]): if the function ϕ(y) in the domain D satisfies
the Lipschitz condition, then the function ϕ(y(x)) on the interval [0, 1] will sat-
isfy a uniform Hölder condition

|ϕ(y(x1)) − ϕ(y(x2))| ≤ H |x1 − x2|1/N
,

where the Hölder constant H is linked to the Lipschitz constant L by the relation

H = 2L
√

N + 3.

Therefore, it is possible, without loss of generality, to consider minimization
of univariate function

f(x) = ϕ(y(x)), x ∈ [0, 1],

satisfying the Hölder condition.

3 Global Search Algorithm

The considered algorithm for solving this problem (here, according to [3])
involves constructing a sequence of points xk, where the values of minimized
function zk = f(xk) = ϕ(y(xk)) are calculated. Let us call the process of calcu-
lating the function value (including the construction of an image yk = y(xk)) the
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“trial”, and the pair (xk, zk), the “trial result”. The set of pairs
{

(xk, zk)
}

, 1 ≤
k ≤ n, makes up the search data collected using the method after carrying out
n steps. The rules that determine the work of the global search algorithm are as
follows.

At the first iteration of the method the trial is carried out at an arbitrary
internal point x1 of the interval [0, 1]. The point of trial at the next iteration
(k + 1) is determined according to the rules presented below.

Rule 1. Renumber points of the set

Xk = {x1, . . . , xk} ∪ {0} ∪ {1} ,

which includes boundary points of the interval [0, 1] and the points of the pre-
vious trials, with subscripts in increasing order of coordinate values, i.e.,

0 = x0 < x1 < · · · < xk < xk+1 = 1.

Rule 2. Supposing that zi = f(xi) = ϕ(y(xi)), 1 ≤ i ≤ k, calculate values

μ = max
2≤i≤k

|zi − zi−1|
Δi

, (2)

M =
{

rμ, μ > 0,
1, μ = 0,

where r > 1 is a preset parameter of the method, and Δi = (xi − xi−1)
1/N .

Rule 3. Calculate a characteristic for every interval (xi−1, xi), 1 ≤ i ≤ k + 1,
according to the following formulae

R(1) = 2Δ1 − 4
z1
M

,

R(i) = Δi +
(zi − zi−1)2

M2Δi
− 2

zi + zi−1

M
, 1 < i < k + 1, (3)

R(k + 1) = 2Δk+1 − 4
zk

M
.

Rule 4. Find interval (xt−1, xt) with the maximum characteristic

R(t) = max {R(i) : 1 ≤ i ≤ k + 1}. (4)

Rule 5. Carry out a trial at the point xk+1 ∈ (xt−1, xt), calculated using the
following formulae

xk+1 =
xt + xt−1

2
, if t = 1 or t = k + 1,

xk+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[ |zt − zt−1|
μ

]N

, if 1 < t < k + 1. (5)
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The algorithm terminates if the condition Δt < ε is satisfied; here ε > 0 is
the preset accuracy. As the current estimate of an optimum at the step k we
accept the value

ϕ∗
k = min

1≤i≤k
zi, (6)

and the vector
y∗

k = arg min
y∈{y1,...,yk}

ϕ(y).

This global search algorithm (GSA) was developed in the framework of infor-
mation - statistical approach (see [3]). From this point of view the normalized
characteristics R(i) from (3) can be considered as probabilities of locating the
global minimum within the interval (xi−1, xi), 1 ≤ i ≤ k + 1. Thus, at each
iteration a new trial point is selected inside the interval, which has the greatest
probability of finding the global minimum. At the same time, use of running
estimates (2) of Lipschitz constant L allows us to apply GSA to the problems
with a priori unknown values of L.

Let us illustrate the work of GSA for minimization of a multiextremal func-
tion of two variables generated by GKLS generator [6]. The experiment used the
method parameters r = 3, ε = 10−3, and the evolvent construction parameter
m = 10. Fig. 2 shows the level lines of the function and the points of 421 trials
carried out by the method before the required accuracy was obtained.

Fig. 2. Minimization of a GKLS function of two variables by GSA
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The following theorem from [3] determines sufficient convergence conditions
of the global search algorithm.

Theorem. Let the point y be the limit point of the sequence yk generated by
the rules of GSA while minimizing the Lipschitzian with the constant L function
ϕ(y), y ∈ D. Then:

1. If side by side with y there exists another limit point y′ of the sequence yk ,
then ϕ(y) = ϕ(y′).

2. For any k ≥ 1 xk = ϕ(yk) ≥ ϕ(y).
3. If at some step of the search process the value μ from (2) satisfies the condition

rμ > 23−1/NL
√

N + 3,

than y is a global minimizer of the function ϕ(y) over D and any global
minimizer y∗ from () is also a limit point of the sequence yk.

Remark. As follows from the theorem, the limit points of the trial sequence yk

generated by GSA are global minimizers. This property makes GSA substantially
different from search techniques one way or another based on the random search
concept which generates trial sequences everywhere dense in the search domain.

4 Tuning the Method for GENOPT Problems

The organizers of GENOPT competition have offered 18 classes of problems (see
Table 1, where last two rows correspond to six classes of composite functions with
n = 0, 1, 2). In each class, 100 functions have been given.

The limit of 1 million computations of the function (trials) imposed by the
organizers is essential for finding the global minimum of the functions with given
dimensionalities. Thus, even for the 10-dimensional problems, having built a
uniform grid with four points in each dimension, one goes already out of the 1
million points limit. The global optimization algorithms that build non-uniform
grid in the search domain put the points more efficiently. However, for the 30-
dimensional problems such an efficiency appears to be not enough as well. In
this section, we describe four modifications of the core method used in solving
various problems within the competition. The first two modifications have been
applied to all problems, the third one – to the problems of GKLS class, and the
last one has been used for solving the problems with Rastrigin, Rosenbrock, and
Zakharov functions.

4.1 Mixed Global-Local Algorithm

One scheme aiming to accelerate the search process is to be outlined in this
subsection (other schemes are described, for example, in [24,25]). The idea of
acceleration is to magnify the characteristics of the intervals containing the best
current estimates by introducing some factor depending on the function values
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Table 1. The classes of problems to be solved within the competition

Index Family Type Dimension

0 GKLS non-differentiable 10

1 30

2 differentiable 10

3 30

4 twice differentiable 10

5 30

6 High condition Rosenbrock 10

7 30

8 Rastrigin 10

9 30

10 Zakharov 10

11 30

12 + 2n Composite 10

13 + 2n 30

estimated at the end-points of the corresponding interval. Following this idea,
we introduce the modified characteristics

Rα(i) =
R(i)

√

(zi − ϕ∗
k)(zi−1 − ϕ∗

k) + μ(1.5)−α
, (7)

where μ, R(i) and ϕ∗
k are respectively from (2), (3), (6), and α is some integer

parameter for setting the desired level of localization.
Next, it is possible to build a scheme mixing the ’global’ and the ’local’

decision rules, i.e. switching between formulae (3) and (7) in some systematic
way. In our experiments we use global-to-local ratio q, specifying the number of
global trials preceding each local trial.

The mixed strategy has the following features. Firstly, both decision rules
are based on the same information, so that each decision action (no matter
local or global) uses the outcomes of all the trials performed. Secondly, non-stop
global search assures the global convergence; the aim of the local refinement is
to accelerate the attainment of low function values.

Let us use a mixed global-local algorithm for solving a problem from Sect. 3
with the global-to-local ratio q = 4 and level of localization α = 15. With this
parameters the number of iterations was 203. Fig. 3 shows level lines of the same
function from Fig. 2 with points of the trials performed by the mixed method.

4.2 Local Refinement of the Best Current Estimate

The second implemented modification of the core method consisted in a direct
utilizing of a local optimization method, namely Hooke–Jeeves method [26] (see
also [27,28]). Schematically, the combined method works as follows:
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Fig. 3. Minimization of a GKLS function of two variables by mixed GSA

– The global phase
• Perform the GSA iterations until the current optimum (the minimal value

of the objective function in the trial points computed already) is reno-
vated.

– The local phase
• Start Hooke-Jeeves method from the current optimum point with given

exit condition according to precision.
• Add all the trial points of the local method into the GSA trial points

database.
• Upon achieving given accuracy by the local method, go to the global

phase.

The accuracy of the local method (the termination condition) was taken as
10−5 for all problem classes of GKLS as well as for the Rastrigin and composite
ones, 10−7 for Rosenbrock functions, and 10−6 for Zakharov ones.

4.3 Utilizing the Random Search for GKLS-30

The modification of the core method considered above have allowed solving
almost all problems from the 10-dimensional GKLS classes (see more details in
Sect. 5). However, these ones appeared to be insufficient for the 30-dimensional
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problems of this class. The multistart scheme was the next variant of the modifi-
cation. Using Sobol quasi-random number generator, we have selected 500 start
points. A local optimization method with the limitation not only in precision
(stated above) but also in the number of iterations (1000) has been started in
each point. Thus, 500 thousand trials could be spent in the local phase in the
worst case. All the points of the trials executed at the local phase are stored in
the database of the global method. Then, the global phase was started, when
the rest of 1 million trials were executed using GSA.

4.4 Use of Separable Search as an Initial Stage

Since Rastrigin function is a separable one, one can search for its global optimum
by performing the optimization in each coordinate separately. Thus, the following
scheme has been employed in order to solve Rastrigin problem:

– The separable stage
• Select a start point.
• For each coordinate to perform:

∗ Fix all coordinated except the current one.
∗ Perform the optimization by one-dimensional GSA.

• Store all the trial points of the local method into the trial point database
of GSA.

– The local stage
• Start Hooke-Jeeves method with given exit condition according to preci-

sion from the point of current optimum.
• Store all the trial points of the local method into the trial point database

of GSA.
• Upon achievement given precision by the local method, go to the global

stage.
– The global stage

• Perform the iterations of GSA, until the current optimum (the minimum
value of the objective function in the trial points computed already) is
renovated.

The scheme considered above has allowed us to solve all the problems with
10-dimensional Rastrigin functions as well as with the 30-dimensional ones.

The same approach has been applied to solving the problems based on the
unimodal functions (Rosenbrock and Zakharov ones) as well. In these cases,
the separable stage provides a good initial approximation for the local method.
Without the use of the separability, the local method starts from a point located
far away from the global minimum and performs too many iterations until the
termination conditions are satisfied.
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5 Numerical Experiments

The methods considered in Sects. 3 and 4 and the modifications of these ones
have been implemented in ExaMin solver intended for the parallel solving of
the multidimensional multiextremal global optimization problems developed in
Lobachevsky State University of Nizhni Novgorod. Global search algorithm and
block nested optimization scheme [20] make the algorithmic basis for ExaMin
solver. According to the competition conditions, the sequential mode of the solver
execution only has been used when solving the problems. However, ExaMin
supports the systems with distributed memory (using MPI) as well as with
shared memory (using OpenMP). Moreover, NVIDIA graphic processors and
Intel Xeon Phi coprocessors are supported.

In the final stage of the competition, ExaMin solver has taken the 3rd prize
in the overall ranking and the 1st one in the total number of the solved problems
(Fig. 4). The distribution of the classes of the solved tasks is presented in Table 2.
The parameter of the evolvents building was m = 10. The parameter of the
method was r = 2.5 for all problems besides the ones from GKLS class. For
GKLS, r varied from 2.5 to 20.

Fig. 4. Final GENOPT leaderboard

The modification with the separable stage with the precision 0.02 for the stop
condition of one-dimensional GSA was used for all classes except GKLS. When
solving the GKLS problems, the modifications from Subsects. 4.1 and 4.2 have
been used first, then modification from Subsect. 4.3 was applied. The number of
the solved problems with and without random search is presented in Table 3.



Solving GENOPT Problems with the Use of ExaMin Solver 293

Table 2. Total number of solved tasks from different classes

Class Tasks solved

GKLS–nd–10 99

GKLS–nd–30 15

GKLS–cd–10 96

GKLS–cd–30 1

GKLS–td–10 94

GKLS–td–30 0

Rosenbrock–10 100

Rosenbrock–30 100

Rastrigin–10 100

Rastrigin–30 100

Zakharov–10 100

Zakharov–30 100

Composite–10 100

Composite–30 100

Table 3. Total number of solved tasks from different classes

Class Solved without
random mode

Solved with
random mode

GKLS–nd–10 78 99

GKLS–nd–30 0 15

GKLS–cd–10 67 96

GKLS–cd–30 0 1

GKLS–td–10 65 94

GKLS–td–30 0 0

6 Conclusion

In this work, the results of solving of the 10- and 30-dimensional problems of the
unconditional global optimization from GenOpt 2016 competition are presented.
The optimization methods used and the modifications of these ones directed
onto the obtaining of a solution at given limitation of 1 million trials (computa-
tions of the objective function) are described. All the modifications considered
are implemented in ExaMin solver employed in the conducting of the exper-
iments. The numerical experiments have been carried out using Lobachevsky
supercomputer [29].
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Abstract. Choosing the correct algorithm to solve a problem still
remains an issue 40 years after the Algorithm Selection Problem was first
posed. Here we propose a hyper-heuristic which can apply one of two
meta-heuristics at the current stage of the search. A scoring function is
used to select the most appropriate algorithm based on an estimate of the
improvement that might be made by applying each algorithm. We use a
differential evolution algorithm and a genetic algorithm as the two meta-
heuristics and assess performance on a suite of 18 functions provided by
the Generalization-based Contest in Global Optimization (genopt). The
experimental evaluation shows that the hybridisation is able to provide
an improvement with respect to the results obtained by both the differen-
tial evolution scheme and the genetic algorithm when they are executed
independently. In addition, the high performance of our hybrid approach
allowed two out of the three prizes available at genopt to be obtained.

Keywords: Global search · Differential evolution · Genetic algorithm ·
Global continuous optimisation · Hyper-heuristic

1 Introduction

A significant amount of real-world applications requires finding global optima
over continuous decision spaces. Examples from diverse domains such as eco-
nomics and finance [28], circuit design [21], control theory [1], chemistry [23], and
electricity [26], among others, highlight the importance of properly addressing
them in order to provide satisfactory solutions. Due to this, the development of
efficient algorithms has been of increasing interest for researchers, also accompa-
nied by the urgency from the side of practitioners requiring high-quality feasible
and fast solutions for their difficult problems at hand.

In this context, various are the approaches that have been recently pro-
posed for non-differentiable global optimisation. For instance, in [13], a predic-
tive approach to the reproduction phase of new individuals for a well-known
c© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 296–305, 2016.
DOI: 10.1007/978-3-319-50349-3 25
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meta-heuristic was proposed. Another example is given by [14], where a
derivative-free global heuristic, which deals with constraints by static and
dynamic penalty function techniques, was presented. Finally, a modification over
an existing exact penalty algorithm for making it derivative-free, which in addi-
tion makes use of a local search procedure, was introduced in [7].

Evolutionary Computation (ec) is a relevant field with many applications
within global optimisation [5,25]. Its main goal is to study, develop, and analyse
algorithms following the biological notion of evolution within the Darwinian prin-
ciples. The above has motivated the development of a wide variety of algorithms.
In this regard, some of the most frequently used methods, which belong to the
family of Evolutionary Algorithms (eas), are Genetic Algorithms (gas) [10], due
to their easy and flexible implementation, as well as their exhibited performance.
Furthermore, during the last two decades, another ea called Differential Evolu-
tion (de), proposed in [22], has been successfully applied not only to benchmark
problems but also to several real-world applications [4].

Another field of research that has gained a significant popularity during last
years is that of Hyper-heuristics (hh). A hh can be defined as a search method
or a learning mechanism for selecting or generating meta-heuristics or tailored
heuristics to solve computational search problems [2]. Therefore, they function
at a higher level of abstraction when compared to meta-heuristics and heuristics,
and usually have no knowledge about the domain of the problem at hand. In
this context, hh based on selection try to address the Algorithm Selection Prob-
lem [15] by iteratively identifying and selecting the most promising low-level
meta-heuristics or heuristics, from a set of candidates, for solving a particular
instance of an optimisation problem [3]. This can be done by means of a scoring
function that is used for assessing the performance of each low-level approach.

In this work, we propose a hybridised ea that uses a selection-based hh
to address the set of global continuous optimisation problems provided for the
Generalization-based Contest in Global Optimization (genopt)1 organised in the
field of the Learning and Intelligent Optimization Conference (lion 10). The hh
selects the most suitable meta-heuristic to be applied at the current stage of the
search procedure, choosing between a de scheme and a ga. If both algorithms
are applied in isolation, then for some problems, de is the best performing app-
roach, with the ga failing to converge to high-quality solutions, while for other
instances, the opposite situation is observed. By combining the eas by means
of a hh, we are able to produce a more powerful approach that overcomes the
weaknesses of the individual algorithms on the majority of considered problems.

The remainder of this paper is organised as follows. Section 2 describes our
hybridisation of eas through the use of a hh. Section 3 describes the experimental
evaluation and provides a discussion of the results obtained. Finally, Sect. 4 draws
the main conclusions extracted from the work and provides several lines for
further research.

1 The manifesto of the contest, including its instructions and rules, can be found in
the following url: http://genopt.org/genopt.pdf.

http://genopt.org/genopt.pdf
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2 Hybridisation of Evolutionary Algorithms

This section is devoted to the description of the hybridisation, through the use
of a hh (Sect. 2.4), of two meta-heuristics. Section 2.1 introduces an adaptive
version of de, while Sect. 2.2 presents the implementation of the ga applied.
Additionally, with the aim of increasing the convergence speed of the whole
optimisation scheme, a Global Search (gs) procedure is described in Sect. 2.3,
which is incorporated into both meta-heuristics.

2.1 Adaptive Differential Evolution

de is a stochastic direct search method particularly suited for continuous global
optimisation [22]. In de, the decision variables of a given problem are defined by
a vector X = [x1, x2, . . . , xi, . . . , xD], being D the number of decision variables
or the dimensionality of the problem, and every xi a real number. The quality of
each vector X is given by the objective function f(X )(f : Ω ⊆ RD → R). The
goal of global optimisation, considering a minimisation problem, is thus to find
a vector X* ∈ Ω where f(X* ) ≤ f(X ) holds for all X ∈ Ω. In the particular
case of box-constrained optimisation problems, the feasible region Ω is defined
by particular values for the lower (ai) and upper (bi) bounds of each variable,
i.e. Ω =

∏D
i=1[ai, bi].

In this work, we apply an adaptive version of the approach de/current-to-
pbest/1/bin, which uses jade [27] as the control scheme. We selected this variant
since it showed to be one of the best exploitative schemes in [19]. jade is respon-
sible for adapting the values of the mutation scale factor F and the crossover
rate CR of de, which will be introduced in the following lines.

The operation of this de scheme is as follows. First of all, a population P
with NP individuals (P = [X 1,X 2, . . . ,X j , . . . ,XNP ]), also called vectors in
the scope of de, is initialised by using a particular strategy. Each individual
comprises D decision variables. The value of the decision variable i belonging
to the individual X j is denoted by xj,i. Then, successive iterations are evolved
by executing the following steps, until a stopping criterion is satisfied. For each
vector in the current population, referred to as target vector (X j), a new mutant
vector (V j) is created using a mutant vector generation strategy. In our case,
we apply the current-to-pbest/1 scheme. Any vector in the population different
from the target vector is randomly selected as the base vector. The mutant vec-
tor V j for target vector X j is thus created as shown in Eq. 1, where r1 and
r2 are mutually exclusive integers different from the index j chosen at random
from the range [1, NP ]. Moreover, the individual X r3 is randomly selected from
the fittest p × 100% individuals. Another parameter K is also introduced, but
in order to facilitate the parameterisation of the whole scheme, K = F is usu-
ally considered, with F the mutation scale factor allowing the exploration and
exploitation abilities of de to be balanced.

V j = X j + K × (X r3 − X j) + F × (X r1 − X r2) (1)
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After applying the mutant vector generation strategy, the mutant vector
is combined with the target vector to generate a trial vector (U j) through
a crossover operator. The combination of the mutant vector generation strat-
egy and the crossover operator is usually referred to as the trial vector gener-
ation strategy. The most commonly applied operator for combining the target
and mutant vectors, and the one considered herein, is the binomial crossover
(bin). The crossover operation is controlled by means of the crossover rate
CR. The binomial crossover generates a trial vector as shown in Eq. 2. A uni-
formly distributed random number in the range [0, 1] is given by randj,i, and
irand ∈ [1, 2, ...,D] is an index selected in a random way that ensures that at
least one variable is propagated from the mutant vector to the trial one. For the
remaining cases, the probability of the variable being inherited from the mutant
vector is CR. Otherwise, the variable of the target vector is considered.

uj,i =
{

vj,i if (randj,i ≤ CR or i = irand)
xj,i otherwise

(2)

The trial vector generation strategy, as described above, might generate vec-
tors outside the feasible region Ω. One of the most widely used schemes is based
on randomly reinitialising the infeasible values in their corresponding feasible
ranges, and it is the one applied herein. After generating NP trial vectors, each
one is compared against its corresponding target vector. For each pair, the one
that minimises the objective function is selected to survive. In case of a tie,
in our version the trial vector survives. Finally, the gs depicted in Sect. 2.3 is
applied to the surviving population.

2.2 Genetic Algorithm

The other approach we selected for our hybridisation is a generational ga with
elitism preservation. This was selected as it has previously been demonstrated to
be the best performing mono-objective approach when solving continuous opti-
misation problems with different dimensions [20]. The operation of this algorithm
follows the typical scheme of a ga. First of all, an initial population with NP
individuals is randomly generated. Then, for each generation, NP − 1 offspring
are created. Parents are selected by using the well-known Binary Tournament [8],
while offspring are obtained by applying the Uniform Mutation operator [8] and
the Simulated Binary Crossover operator [6], with mutation and crossover rates
pm and pc, respectively. Afterwards, during the replacement stage, all parents,
except the fittest one, are discarded, and they are replaced by the generated
offspring. Finally, the last step of the algorithm is the application of the gs
described in Sect. 2.3 to the surviving population. The above process is repeated
until a given stopping criterion is achieved. In order to complete the definition
of this ga, we should note that individuals are represented by a vector of D real
numbers, being D the number of decision variables of the problem considered.
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2.3 Global Search Procedure

In order to address potential slow convergence in both de and ga that arises
when addressing difficult problems, and to improve the quality of the solutions
provided, a gs procedure based on the one proposed in [11], is applied to both
algorithms. It is defined as follows. Given an individual X k randomly selected
from the current population, a new individual V is generated by means of Eq. 3,

V = a1 × X k + a2 × XBest + a3 × (X r1 − X r2), (3)

with a1, a2, and a3 being three numbers randomly selected from the range [0, 1],
and for which the condition a1 + a2 + a3 = 1 is satisfied. XBest is the best
individual in the current population, i.e. the one with the lowest objective value,
and X r1 and X r2 represent two different individuals randomly selected from
the current population. We should note that indexes k, r1, and r2 are mutually
exclusive. Once the new individual V is generated, it is evaluated and compared
to the individual X k. In case f(V ) < f(X k), V replaces X k in the current
population, i.e. X k = V , and the gs starts another iteration for trying to
improve X k. Otherwise, individual V is discarded and the gs is stopped. The
main novelty in our work is that the gs is iteratively applied to individual X k

until it cannot be improved anymore. This contrasts to earlier work in [11] in
which the gs is only applied once to individual X k.

2.4 Hyper-heuristic

A variant of the selection hh firstly proposed in [24] is used to select between the
two aforementioned eas. The said variant was proposed and has been success-
fully applied by the authors in previous work [16,17,20]. It is based on using a
scoring and a selection strategy for choosing the most suitable low-level configu-
ration. Once a low-level configuration is selected, only that strategy is executed
until a local stopping criterion is achieved. When this happens, another low-level
configuration is selected and executed. The final population of the last low-level
configuration becomes the initial population of the new low-level configuration.
This process continues until a global stopping criterion is satisfied. In the par-
ticular case of the current work, a fixed number of evaluations, established by
the genopt rules, is considered as the global stopping criterion.

The low-level configuration that must be executed is selected as follows. First,
the scoring strategy assigns a score to each of the two eas. This score esti-
mates the improvement that each configuration might achieve starting from the
current population. Larger values are assigned to more promising approaches,
based on their historical performance. To calculate this estimate, the previous
improvements in the objective value achieved by each configuration are used.
The improvement γ is defined as the difference, in terms of the objective value,
between the best individual found so far, and the best initial individual. Given
a configuration conf that has been executed j times, the score s(conf) is calcu-
lated as a weighted average of its last k improvements. This is shown in Eq. 4,
where γ[conf ][j − i] represents the improvement achieved by the configuration



Hybridisation of Evolutionary Algorithms Through Hyper-heuristics 301

conf in execution number j − i. The adaptation level of hh, i.e. the amount of
historical knowledge considered to perform its decisions, can be varied depend-
ing on the value of k. Finally, the weighted average assigns a greater importance
to the most recent executions, with the aim of better adapting decisions to the
current stage of the search procedure, thus discarding old information.

s(conf) =

min(k,j)
∑

i=1

(min(k, j) + 1 − i) · γ[conf ][j − i]

min(k,j)
∑

i=1

i

(4)

The hh is elitist, namely, it selects the low-level configuration that maximises
the score s(conf). However, some selections are randomly performed by following
a uniform distribution: this is tuned by means of a parameter β, which represents
the minimum selection probability that should be assigned to each low-level
configuration. If nh is the number of low-level configurations involved, then a
random selection is performed in β · nh percentage of the cases.

3 Experimental Evaluation

This section is focused on describing the experiments conducted with the opti-
misation scheme introduced in Sect. 2.

Experimental Method. The eas, as well as the hh framework, were imple-
mented using the Meta-heuristic-based Extensible Tool for Cooperative Optimi-
sation (metco) [12]. Tests were run on a debian gnu/linux computer with
four amd R© opteronTM processors (model number 6164 he) at 1.7 ghz and
64 gb ram. Since all experiments used stochastic algorithms, each execution
was repeated 100 times with different initial seeds. With respect to the former,
comparisons between algorithms were carried out by applying the following sta-
tistical analysis [18]. First, a Shapiro-Wilk test was performed to check whether
the values of the results followed a normal (Gaussian) distribution. If so, the Lev-
ene test checked for the homogeneity of the variances. If the samples had equal
variance, an anova test was done. Otherwise, a Welch test was performed. For
non-Gaussian distributions, the non-parametric Kruskal-Wallis test was used.
For all tests, a significance level α = 0.05 was considered.

Problem Set. Experiments were carried out using the set of continuous opti-
misation problems proposed for the genopt. The set is composed of three fam-
ilies of functions with different features, and a particular function is defined
by its identifier. For the contest, 6 functions created by the gkls gener-
ator [9] (f1–f6), 6 conditioned transforms of classical benchmarks (f7–f12),
and 6 composite functions (f13–f18), were proposed. Functions f1–f12 were
defined by identifiers 0–11, while functions f13–f18 were defined by identifiers
1586038869–1586038874. Initial seeds were fixed by the genopt organisation



302 E. Segredo et al.

Table 1. Parameterisation of the genetic algorithm

Parameter Value Parameter Value

Stopping criterion 1 · 106 evals. Mutation rate (pm) 1/D

Population size (NP ) 5 Crossover rate (pc) 1

Table 2. Parameterisation of the differential evolution scheme

Parameter Value Parameter Value

Stopping criterion 1 · 106 evals. Mutation scale factor (F ) jade

Population size (NP ) 32 Crossover rate (CR) jade

% of best individuals (p) 0.1

Table 3. Parameterisation of the hyper-heuristic

Parameter Value Parameter Value

Local stopping criterion 1.2 · 104 evals. Minimum selection rate (β) 0.1

Low-level configs. (nh) 2 Historical knowledge (k) 5

to values 1586038869–1586038968. Finally, following the instructions given for
the contest, in the current work, for those functions with an even identifier, the
number of decision variables D was fixed to 10. For the remaining functions, 30
decision variables were considered.

Parameters. Tables 1 and 2 show the parameterisation for the ga and de,
respectively. Parameter values for both eas were selected based on previous
knowledge of the authors [19,20]. However, in order to fix parameter values for
hh, different parameterisations were considered, which did not present statis-
tically significant differences among them. The above means that hh is robust
from the point of view of its parameters, since altering them is not going to
significantly affect the performance of the whole optimisation scheme. Table 3
shows the particular configuration of hh that we applied for the set of functions
considered. Regarding the number of low-level configurations nh, we should note
that different values were also tested, by taking into account different parameter-
isations for de and ga as the candidate set of hh. Nevertheless, the usage of more
than two low-level configurations, i.e. nh > 2, started to degrade somewhat the
performance of the whole optimisation scheme. The reader should recall that hh
makes some random decisions. If some candidate configurations do not perform
properly, some function evaluations might be lost due to the random selection
of one of those configurations, with the consequent decrease in performance of
the whole search procedure. This is the main reason why we selected only two
low-level configurations, one based on de and the other one based on ga.

Results. Table 4 shows, for each considered problem, a statistical comparison
among hh and each of both eas executed independently. Particularly, it shows if
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Table 4. Statistical comparison between hh and eas considering problems f1–f18

f Alg. p-value Dif. f Alg. p-value Dif. f Alg. p-value Dif.

f1 de 1.53e−26 ↑ f2 de 2.51e−28 ↑ f3 de 1.81e−29 ↑
ga 6.69e−12 ↑ ga 1.38e−10 ↑ ga 1.28e−12 ↑

f4 de 2.69e−21 ↑ f5 de 2.19e−28 ↑ f6 de 2.23e−18 ↑
ga 4.75e−05 ↑ ga 3.07e−13 ↑ ga 1.25e−03 ↑

f7 de 2.40e−16 ↑ f8 de 1.48e−01 ↔ f9 de 8.09e−02 ↔
ga 2.52e−34 ↑ ga 2.52e−34 ↑ ga 3.07e−34 ↑

f10 de 5.53e−39 ↑ f11 de 6.94e−14 ↑ f12 de 7.70e−12 ↑
ga 5.54e−39 ↑ ga 2.52e−34 ↑ ga 2.52e−34 ↑

f13 de 9.98e−09 ↑ f14 de 3.27e−02 ↑ f15 de 1.98e−05 ↓
ga 2.52e−34 ↑ ga 2.66e−33 ↑ ga 2.52e−34 ↑

f16 de 5.18e−34 ↑ f17 de 2.87e−30 ↑ f18 de 5.17e−05 ↑
ga 2.52e−34 ↑ ga 2.52e−34 ↑ ga 2.52e−34 ↑

hh statistically outperformed de or ga (↑), if hh was statistically outperformed
by de or ga (↓), and cases for which statistically significant differences did not
appear between hh and de or ga (↔). We should note that hh statistically out-
performs a particular ea if there exist statistically significant differences between
them, i.e. if the p-value is lower than α = 0.05, and if at the same time, the
Vargha Delaney effect size between hh and the given ea is lower than 0.5, since
we are dealing with minimisation problems.

It can be observed that hh was statistically better in 33 out of 36 statistical
comparisons. In 15 out of 18 problems, hh was able to provide statistically better
solutions than de and ga. For problems f8 and f9, de did not present statistically
significant differences with hh, but the latter was able to statistically outperform
ga. Finally, considering the problem f15, hh was statistically outperformed by
de. Bearing the above in mind, the superiority of hh when compared to de and
ga executed independently is clear. Using hh removes the issue of algorithm
selection from the user, with the hh autonomously selecting the most appropriate
algorithm at the current stage of the search for a given instance, and enabling a
hybridisation of both algorithms.

Additionally, hh is able to provide even better solutions than those obtained
by de or ga executed independently for most of the considered problems, thus
showing that it is able to properly combine the benefits of both eas for solving
global continuous optimisation problems.

4 Conclusions and Future Work

In this work, a hyper-heuristic solution approach, hh, enabling hybridisations
of eas for solving global continuous optimisation problems was proposed. The
approach hybridised a differential evolution de, and genetic algorithm ga.
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Furthermore, it included the use of a stochastic global search following the
selection of the surviving population. The hh selects the most appropriate
method to use at each point based on a scoring function that estimates potential
improvement. The method is evaluated using a set of continuous optimisation
problems proposed for the Generalization-based Contest in Global Optimization
(genopt).

The computational results show that the use of our proposed hyper-heuristic
framework leads to an overall enhancement when compared to the evolution-
ary algorithms executed in isolation. This highlights the capability of hh for
switching the best evolutionary algorithm along the search. Moreover, in the
majority of the cases, the improvement exhibited by hh goes further the best
performing ea for each given problem, suggesting its use instead of using the
embedded methods independently. Finally, it is worth mentioning that the high
performance of our hybridisation through hh was recognised with two out of the
three prizes available at the genopt, including the best overall approach prize.

On the basis of the findings presented in this paper, the next stage of our
research will be focused on extending the numerical experimentation including
the assessment of the different parameters of hh and its integrated eas, as well
as studying the performance of hh with additional algorithms and/or problems.
Another promising line of research would be to analyse the impact that different
scoring functions have over the performance of the whole optimisation scheme.
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