
Chapter 8
Embedded Level Crossing Method

Much of this chapter is based on [15]. Section 8.4, however, was written by
the author for the first edition of this monograph. The ELC (embedded level
crossing) method, along with the continuous LC method used in Chaps. 1–7
and later in the monograph, often get results faster than with Lindley recur-
sions (see Sect. 1.2).

8.1 Dams and Queues

Consider a system modelled by {W (t)}t≥0, a continuous-parameter process
with state space S = [0, ∞). (The state space can be extended to S ⊆ R

n in
more general models.) Let {τn}n=1,2,... be an infinite set of embedded time
points such that

0 ≤ τ1 < τ2 < · · · < τn < τn+1 < · · · .

Let {Wn}n=1,2,... be the embedded discrete-parameter process, where W (τ−
n )

≡ Wn and W (τn) ≡ Wn + Sn, n = 1, 2,... . Assume W (t) is monotone in the
interval [τn, τn+1), and let

dW (t)

dt
= −r(W (t)), t ∈ [τn, τn+1), n = 1, 2, ...,

where r(x) ≥ 0. Denote the cdf ofSn,n = 1, 2,..., byB(x), x ≥ 0, withB(0) =
0, and pdf b(x) = dB(x)/dx, x > 0, wherever the derivative exists. Denote
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the cdf of Wn byFn(x), x ≥ 0, with pdf dFn(x)/dx = fn(x), wherever it exists.

8.1.1 Embedded Downcrossings and Upcrossings

Definition 8.1 An embedded downcrossing of state-space level x occurs
during the closed interval [τn, τn+1] if Wn > x ≥ Wn+1.

An embedded upcrossing of level x occurs during [τn, τn+1] if Wn ≤ x <

Wn+1.

Fix level x ∈ S. Definition 8.1 classifies the set of intervals

{[τn, τn+1]}, n = 1, 2,...

into three mutually exclusive and exhaustive subsets with respect to level x
(see Fig. 8.1):

1. intervals that contain an embedded downcrossing,
2. intervals that contain an embedded upcrossing,
3. intervals that contain no embedded level crossing.
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Fig. 8.1 Embedded level crossings and non-crossings during the time interval
[τn, τn+1]
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8.1.2 Rate Balance Across a State-Space Level

Consider the time interval [0, τn], n ≥ 2 and a fixed level x ∈ S. Let Dn(x),
Un(x) denote respectively the number of embedded down- and upcrossings
of level x during [0, τn]. Assume that a typical sample path has an infinite
number of embedded time points τn, n = 1, 2,.... with probability 1. The
principle of rate balance across level x is

limn→∞ Dn(x)
n = limn→∞ Un(x)

n (a.s.),

limn→∞ E(Dn(x))
n = limn→∞ E(Un(x))

n .
(8.1)

8.1.3 Method of Analysis

If {W (t)}t≥0 is stable, the steady-state probability distribution of W (t) as
t → ∞ and of Wn as n → ∞, exist. Let f (x) = limn→∞ fn(x), F(x) =
limn→∞ Fn(x), x ∈ S. In the following sections, we shall derive an integral
equation for f (x) and F(x) by using only:

1. the concept of embedded level crossings,
2. the principle of rate balance,
3. properties of the model,
4. knowledge of the efflux function r(x), x ≥ 0.

8.2 GI/G/r(·) Dam

Assume inputs to the dam occur in a renewal process with inter-input times
having common cdf A(·). The model description is the same as for the
M/G/r(·) dam in Sect. 6.2.1, except for the general renewal input stream here.

The embedded process {Wn}n=1,2,... is a Markov chain, since

Wn+1 = max{Wn + Sn − �n, 0}
where Sn is the input amount at instant τn and �n is the change in content
during the time interval [τn, τn+1).

Define G(x) as the anti-derivative of 1
r(x) for r(x) > 0. Then G(x) is a

continuous increasing function of x, since dG(x)/dx = 1/r(x) is > 0. The
time for the content to decline from state-space level v to level u > 0, is (see
Sect. 6.2.4)

http://dx.doi.org/10.1007/978-3-319-50332-5_6
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∫ v

u

1

r(x)
dx = G(v) − G(u).

A necessary and sufficient condition for the content of the dam to return
to level 0 is: for every v > 0,

lim
u↓0

∫ v

x=u

1

r(x)
dx = lim

u↓0
[G(v) − G(u)] = G(v) − lim

u↓0
G(u) < ∞ (8.2)

(see Sect. 6.2.5). For example, in a pharmacokinetic model (Sect. 11.6) with
“first order” kinetics, r(x) = kx, x > 0. In theory the drug concentration never
returns to level 0. In practice, the drug may be entirely removed from the body
after some finite time.

8.2.1 Embedded Downcrossing Rate

Proposition 8.1 The probability of an embedded downcrossing of level x
occurring in [τn, τn+1] is

dn(x) =
∫ ∞

y=0

∫ γ(x,y)

α=x
B(γ(x, y) − α)dFn(α)dA(y)

=
∫ ∞

α=x

∫ ∞

y=η(α,x)
B(γ(x, y) − α)dA(y)dFn(α), n = 1, 2, ... , (8.3)

where γ(x, y) = G−1(G(x) + y), and η(α, x) = G(α) − G(x).

Proof An embedded downcrossing occurs in [τn, τn+1] ⇐⇒ Wn > x and
the time for W (t) to descend from level Wn + Sn to level x is ≤ (τn+1 −
τn) ⇐⇒

∫ Wn+Sn

z=x

1

r(z)
dz = G(Wn + Sn) − G(x) ≤ τn+1 − τn. (8.4)

Conditioning on τn − τn+1 = y, (8.4) is equivalent to

G(Wn + Sn) − G(x) ≤ y,

G(Wn + Sn) ≤ G(x) + y. (8.5)

Note that G(·) and its inverse G−1(·) are both continuous and increasing
functions. Taking the inverse G−1 on both sides of (8.5) gives

http://dx.doi.org/10.1007/978-3-319-50332-5_6
http://dx.doi.org/10.1007/978-3-319-50332-5_11
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Sn ≤ G−1(G(x) + y) − Wn = γ(x, y) − Wn.

Conditioning on Wn = α, gives

P(embedded downcrossing in [τn,τn+1]|τn − τn+1 = y)

=
∫ γ(x,y)

α=x
B(γ(x, y) − α)dFn(α).

We obtain the unconditional probability of an embedded downcrossing of x
during [τn, τn+1] by integrating with respect to the inter-input time y having
distribution A(y). This yields dn(x) given in (8.3). �


Let

δn(x) =
{

1 if there is an embedded downcrossing of x in [τn, τn+1],
0 if there is no embedded downcrossing of x in [τn, τn+1].

Then E(δn(x)) = dn(x). The number of embedded downcrossings of level x
in [0, τn+1] is

Dn(x) =
n∑

i=1

δi(x).

Thus

E(Dn(x)) =
n∑

i=1

di(x).

The long-run expected embedded downcrossing rate of level x is

lim
n→∞

E(Dn(x))

n
= lim

n→∞
1

n

n∑
i=1

di(x).

From (8.3), since limn→∞ Fn(x) ≡ F(x), then limn→∞ dn(x) = d(x), where

d(x) =
∫ ∞

α=x

∫ ∞

y=η(α,x)
B(γ(x, y) − α)dA(y)dF(α).

Also,

lim
n→∞

1

n

n∑
i=1

di(x) = lim
n→∞ dn(x) = d(x)
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implies the expected embedded level downcrossing rate of level x is

lim
n→∞

E(Dn(x))

n
=

∫ ∞

α=x

∫ ∞

y=η(α,x)
B(γ(x, y) − α)dA(y)dF(α). (8.6)

8.2.2 Embedded Upcrossing Rate

Proposition 8.2 The probability of an embedded upcrossing of level x occur-
ring in [τn, τn+1] is

un(x) =
∫ ∞

y=0

∫ x

α=0
B(γ(x, y) − α)dFn(α)dA(y)

=
∫ x

α=0

∫ ∞

y=0
B(γ(x, y) − α)dA(y)dFn(α), n = 1, 2, ... . (8.7)

Proof An embedded upcrossing of level x occurs in [τn, τn+1] ⇐⇒ Wn ≤
x, Wn + Sn > x, and the time for W (t) to descend from level Wn + Sn to level
x exceeds τn+1 − τn

⇐⇒ ∫ Wn+Sn
z=x

1
r(z)dz = G(Wn + Sn) − G(x) > τn+1 − τn

⇐⇒ Sn > G−1(G(x) + y) − Wn = γ(x, y) − Wn,

where we have conditioned on τn − τn+1 = y. Therefore

P(embedded upcrossing in [τn,τn+1]|τn − τn+1 = y)

=
∫ x

α=0
B(γ(x, y) − α)dFn(α),

where B(z) = 1 − B(z), z ≥ 0. Therefore, the unconditional probability of
an embedded upcrossing of x in [τn,τn+1] is given by (8.7). �


As in the derivation of (8.4), it follows that the long-run expected embedded
upcrossing rate of level x is

lim
n→∞

E(Un(x))

n
=

∫ x

α=0

∫ ∞

y=0
B(γ(x, y) − α)dA(y)dF(α). (8.8)
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8.2.3 Integral Equation for Steady-State PDF of Content

Applying (8.1), rate balance across level x, to formulas (8.6) and (8.8) gives
an integral equation for f (x) and F(x), namely,

∫ ∞

α=x

∫ ∞

y=η(α,x)
B(γ(x, y) − α)dA(y)dF(α)

−
∫ x

α=0

∫ ∞

y=0
B(γ(x, y) − α)dA(y)dF(α) = 0, x ≥ 0. (8.9)

CDF Form of Integral Equation
In the second term of (8.9) write B(·) = 1 − B(·) and apply F(x) = ∫ x

α=0
dF(α). This yields a cdf form with F(x) on the left side explicitly,

F(x) = ∫ x
α=0

∫ ∞
y=0 B(γ(x, y) − α)dA(y)dF(α)

+ ∫ ∞
α=x

∫ ∞
y=η(α,x) B(γ(x, y) − α)dA(y)dF(α), x ≥ 0.

(8.10)

PDF Form of Integral Equation
Differentiation of (8.10) with respect to x > 0, gives a pdf form with f (x)
explicitly on the left side,

f (x) = ∫ x
α=0

∫ ∞
y=0 �(x, y) · b(γ(x, y) − α)dA(y)dF(α)

+ ∫ ∞
α=x

∫ ∞
y=η(α,x) �(x, y) · b(γ(x, y) − α)dA(y)dF(α), x > 0,

(8.11)
where �(x, y) = ∂γ(x, y)/∂x = r(γ(x, y))/r(x).

Probability of Zero Content
Letting x ↓ 0 in (8.10) gives

F(0) =
∫ ∞
α=0+

∫ ∞
y=η(α,0)

B(γ(0, y) − α)dA(y)dF(α)∫ ∞
y=0 B(γ(0, y))dA(y)

. (8.12)
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The normalizing condition is

F(0) +
∫ ∞

α=0
f (α)dα = 1 (8.13)

If condition (8.2) does not hold, then F(0) = 0 (recall that f (0) ≡ f (0+)).

Solution Method
The solution method in the following sections will be to obtain the functional
form of f (x) and F(x) using (8.10) or (8.11), and applying the boundary
conditions (8.12) and (8.13) to specify f (x), F(x), x ≥ 0.

8.2.4 M/G/r(·) Dam

In this model, A(y) = 1 − e−λy, y ≥ 0. Note that

∂ (γ(x, y))

∂y
= ∂(G−1(G(x) + y))

∂y
= r(γ(x, y)) = r(G−1(G(x) + y)).

Integrating (8.11) by parts, using the parts

λe−λy

r(y)
and r(γ(x, y)) · b(γ(x, y) − α)dy,

simplifying and substituting from (8.10), results in

r(x)f (x) = λ

∫ x

α=0
B(x − α)dF(α), x > 0. (8.14)

Equation (8.14) is identical to the integral equation (6.21) for the steady-state
pdf of content in the M/G/r(·) dam (derived using “continuous” LC).

Remark 8.1 In Eq. (8.14) f (x) = limn→∞ fn(x) since (8.14) has been derived
using embedded LC. In Chap. 6, Eq. (6.21), f (x) = limt→∞ ft(x) is the
time-average steady-state pdf of content. The fact that limn→∞ fn(x) and
limt→∞ ft(x) satisfy the same integral equation, demonstrates that the con-
tent of an M/G/r(·) dam satisfies the PASTA principle that Poisson arrivals
“see” time averages (see [145]). Here we have derived PASTA for the M/G/r(·)
dam by using continuous and embedded LC concepts only.

http://dx.doi.org/10.1007/978-3-319-50332-5_6
http://dx.doi.org/10.1007/978-3-319-50332-5_6
http://dx.doi.org/10.1007/978-3-319-50332-5_6
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8.3 GI/G/1 Queue

The GI/G/1 queue is closely related to the Gi/G/r(·) dam (see Table 8.1). For

the virtual wait of the GI/G/1 queue r(x) =
{

1, x > 0,

0, x = 0.
The anti-derivative of 1/r(x), x > 0, is

G(x) =
∫

1

r(x)
dx =

∫
1 · dx = x.

Thus,

γ(x, y) = G−1(G(x) + y)) = G−1(x + y)) = x + y

η(α, x) = G(α) − G(x) = α − x,

�(x, y) = r(γ(x, y))

r(x)
= r(x + y)

1
= 1

1
= 1.

In the GI/G/1 queue, Eqs. (8.10), (8.11) and (8.13) reduce respectively to

F(x) = ∫ x
α=0

∫ ∞
y=0 B(x + y − α)dA(y)dF(α)

+ ∫ ∞
α=x

∫ ∞
y=α−x B(x + y − α)dA(y)dF(α), x ≥ 0,

(8.15)

f (x) = ∫ x
α=0

∫ ∞
y=0 b(x + y − α)dA(y)dF(α)

+ ∫ ∞
α=x

∫ ∞
y=α−x b(x + y − α)dA(y)dF(α), x > 0,

(8.16)

F(0) =
∫ ∞
α=0+

∫ ∞
y=α B(y − α)dA(y)dF(α)∫ ∞
y=0 B(y))dA(y)

. (8.17)

Table 8.1 GI/G/r(.) dam versus GI/G/1queue

GI/G/r(·) Dam Gi/G/1 Queue

Input instant τ−
n Customer arrival instant τ−

n

Input amount at τ−
n Service time (jump size) Sn

Content at τ−
n Customer wait Wn in queue at τ−

n

Content at instant τn Virtual wait W (τn) = Wn + Sn
Content at time t ≥ 0 Virtual wait W (t) at time t ≥ 0

r(x) > 0, x > 0; r(0) = 0 r(x) = 1, x > 0; r(0) = 0

Distribution of content Distribution of waiting time
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The normalizing condition is

F(0) +
∫ ∞

α=0
f (α)dα = 1. (8.18)

8.3.1 Applications of Embedded LC

Some single-server queueing models can be analyzed using embedded LC,
by applying Eqs. (8.15)–(8.18). Other models are analyzed by deriving inte-
gral equations for the pdf of the state variables from first principles using
embedded LC. The next four sections illustrate some applications.

8.3.2 M/G/1 Queue

The M/G/1 queue is a special case of the M/G/r(·) dam, with r(x) = 1, x > 0,
and A(y) = 1 − e−λy, y ≥ 0. Substituting directly into Eq. (8.14) or into
(8.16) followed by some algebra yields

f (x) = λ

∫ x

α=0
B(x − α)dF(α)

= λP0B(x) + λ

∫ x

α=0
B(x − α)f (α)dα, x > 0, (8.19)

which is identical to Eqs. (3.34) in Sect. 3.2.10. Remark 8.1 above applies
also to this queueing model.

8.3.3 GI/M/1 Queue

The GI/M/1 queue is a special case of the GI/G/1 queue with

B(x) = 1 − e−μx, x ≥ 0, b(x) = μe−μx = μ − μB(x), x > 0.

Substituting b(x) = μ − μB(x) into (8.16), simplifying and combining with
(8.15), gives the integral equation

f (x) = μ

∫ ∞

y=x
A(y − x)f (y)dy, x > 0, (8.20)

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Table 8.2 Interchanged roles of terms in integral equations for M/G/1 and G/M/1

Equation (8.19) for M/G/1 Equation (8.20) for G/M/1

λ μ

x is upper bound of integral x is lower bound of integral

B(x − y) A(y − x)

P0 appears explicitly P0 does not appear explicitly

which is identical to Eq. (5.7) in Sect. 5.1.3.

Duality of M/G/1 and GI/M/1 Queues
Upon comparing integral equations (8.19) and (8.20) it is evident that they

are duals, in the sense that the roles of certain terms are interchanged (see
Table 8.2). The significance of this “duality” is that we analyze the M/G/1
queue via LC using the virtual wait process. On the other hand, we are led
to analyzing the G/M/1 queue via LC using the extended “age” process (see
Sect. 5.1.1 and [15]).

Remark 8.1 applies also to GI/M/1, provided we analyze the extended age
process, for which departures from the system occur in a Poisson process at
rate μ conditional on the server being occupied. This implies that in (8.20),
f (x) on the left side (equal to time-average pdf of virtual wait) is the same
function as f (y) in the integrand on the right side (pdf of system time at
departure instants).

Solution for Steady-State PDF of Wait in GI/M/1
The pdf of wait has the form f (x) = Ke−γx, x > 0 (see formula (5.11) in

Sect. 5.1.5). Substituting Ke−γx into (8.20) yields the equation for γ

∫ ∞

z=0
A(z)e−γzdz = 1

μ
,

or
1

γ
− 1

γ
A∗(γ) = 1

μ
, (8.21)

where A∗(·) is the Laplace-Stieltjes transform of A(·) defined by

A∗(s) =
∫ ∞

y=0
e−sya(y)dy, s ≥ 0,

and a(y) = dA(y)/dy, assuming the inter-arrival times are continuous r.v.s.
We obtain an expression for P0 = F(0) upon substituting B(y) = 1 − e−μy

and f (α) = Ke−γα in (8.17), i.e.,

http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
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F(0) = [A∗(μ)]−1
[
γ − μ + μA∗(γ) − γA∗(μ)

γ(γ − μ)

]
· K . (8.22)

From (8.21)
μ − μA∗(γ) = γ,

which substituted into (8.22) leads directly to

F(0) = K

μ − γ
. (8.23)

The normalizing condition (8.18) gives

K

μ − γ
+ K

γ
= 1.

Then (8.23) implies

F(0) = γ

μ
. (8.24)

Formula (8.24) is important becauseF(0) = P0,ι in (5.31) which was derived
using “continuous” or “time-average” LC. (This provides further evidence
of the overall logical validity of the LC methodology.)

Check with M/M/1 Queue
It is instructive to check the result for the M/M/1 queue. Consider M/M/1

with arrival rate λ and service rate μ. Then A∗(s) = λ
λ+s . From (8.21) γ =

μ − λ, which substituted into (8.22), gives F(0) = P0 = K
λ . Applying the

normalizing condition F(0) + ∫ ∞
y=0 f (y)dy = 1, gives

K

λ
+ K

∫ ∞

y=0
e−(μ−λ)ydy = 1,

K = λ(1 − λ

μ
).

Thus

P0 = K

λ
= 1 − λ

μ
, �

f (x) = λP0e
−(μ−λ)x, x > 0, �

which checks with the M/M/1 solution given in (3.112) and (3.113) in
Sect. 3.5.1.

http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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8.3.4 Erlk,λ/M/1 Queue

Assume the common pdf of the inter-arrival times is a(·) := pdf of Erlk,λ.

For integers k = 1, 2, ..., a(y) = e−λy (λy)k−1

(k−1)! λ, y > 0. Let A(·) denote the
cdf corresponding to a(·) (see Example 3.2 in Sect. 3.3). The LST of A(·) is

A∗(γ) =
(

λ
λ+γ

)k
, which substituted into Eq. (8.21) gives an equation for γ,

1

γ
− 1

γ

(
λ

λ + γ

)k

= 1

μ
, k = 1, 2, ... . (8.25)

We seek a unique positive solution of (8.25) for γ. Assume that λ, μ > 0 and
λ < kμ (stability condition for G/M/1 is a < μ, where a = k/λ = arrival
rate). Then Eq. (8.25) has exactly one real positive root for γ (see [15]). If k
is odd, all other roots are complex. If k is even, one other root is negative real
and all other roots are complex. Thus the solution for γ is unique. Denote it
by γk .

To solve for K ≡ ηk we first substitute γk into (8.22) and use (8.25) to
obtain

F(0) = ηk

μ − γk
.

(We use ηk instead of Kk in this section only, for notational contrast.) Then
apply the normalizing condition (8.18) to obtain

ηk = γk (μ − γk )

μ
= γk

(
1 − γk

μ

)
.

The steady-state pdf of wait is then given by

P0 = ηk

μ − γk
= γk

μ
,

f (x) = ηke
−γk x = γk

(
1 − γk

μ

)
e−γk x, x > 0.

Remark 8.2 The solution of Eq. (8.25) can be readily obtained numerically
for any specified values of λ, μ, k.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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8.3.5 D/M/1 Queue

Assume the common inter-arrival time is D > 0. Then A∗(s) = e−sD, s > 0.

Let the steady-state pdf of wait be f (x) = Ke−γx, x > 0. SubstitutingA∗(γ) =
e−γD into (8.21) gives the equation

μe−γD + γ − μ = 0

for γ, whose solution we call γD . From (8.22)

F(0) = K

μ − γD

.

Let KD := K . Substituting into (8.18) gives

KD

μ − γD

+ KD

γD

= 1,

KD = γD

(
1 − γD

μ

)
.

The steady-state pdf of wait is

P0 = KD

μ − γD

,

f (x) = KDe
−γD ·x, x > 0.

8.4 M/G/1: Wait Related Reneging/Balking

We revisit the M/G1 queue with balking/reneging in Sect. 3.13, in which
customers can balk from joining the system upon arrival, or renege from the
waiting line, depending on the required wait and staying resolve. Here, we
apply the embedded LC method to analyze the system. Assume the staying
function is R(y) = P(arrival stays for service|required wait = y). We show
that embedded LC will verify that the pdf f (x), x > 0, on the left and right
sides of Eq. (3.207) are the same functions. This is important because on
the left side f (x) = limt→∞ ft(x) (a time-average pdf ). On the right side
f (y) = limn→∞ fι,n(x) := fι(y) (an arrival-point pdf ), andP0 = P0,ι (arrival
point probability of a zero wait). We now use embedded LC to derive an
integral equation for fι(x), x > 0, and show that it is identical to Eq. (3.207).

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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8.4.1 Embedded Level Crossing Probabilities

The limiting probability of an SP embedded upcrossing of level x is

u =
∫ x

y=0−

∫ ∞

z=0
B(x − y + z)R(y)fι(y)λe

−λzdzdy, (8.26)

where the lower limit y = 0− means that the term B(x + z)P0,ι for the atom
{0}, is included in the evaluation of u. The right side of (8.26) holds because
an embedded upcrossing of x occurs iff 0 ≤ Wn = y < x, the arrival at τn
stays for service (probability R(y)), and given that the time to the next arrival
is z, the service time exceeds x − y + z.

The limiting probability of an SP embedded downcrossing of level x con-
sists of two terms,

d =
∫ ∞

y=x

∫ ∞

z=y−x
B(x − y + z)R(y)fι(y)λe

−λzdzdy

+
∫ ∞

y=x

∫ ∞

z=y−x
R(y)fι(y)λe

−λzdzdy. (8.27)

The first term on the right of (8.27) is similar to (8.26), except that an SP jump
starts at a level y > x and the service time must be less than x − y + z for an
embedded downcrossing to occur. The second term is due to arrivals that do
not stay for service (balk at joining the system or renege from the waiting line);
arrivals renege with probability R(y) = 1 − R(y). We can assume that an SP
“jump” is of size 0 (probability R(y)) when a reneger arrives; equivalently
there is no SP jump when a balker arrives. In this case the SP makes an
embedded downcrossing of level x provided the next inter-arrival time is z >

y − x. The second term in (8.27) simplifies to
∫ ∞
y=x R(y)fι(y)e−λ(y−x)dy.

Since B(x) ≡ 1 − B(x), x ≥ 0, Eq. (8.26) can be written as

u =
∫ x

y=0−
R(y)fι(y)dy −

∫ x

y=0−

∫ ∞

z=0
B(x − y + z)R(y)fι(y)λe

−λzdzdy

(8.28)

8.4.2 Steady-State PDF of Wait of Stayers

Applying embedded rate balance across level x, we set u = d. This yields,
from Eqs. (8.27) and (8.28), the integral equation
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∫ x

y=0−
R(y)f (y)dy =

∫ x

y=0−

∫ ∞

z=0
B(x − y + z)R(y)f (y)λe−λzdzdy

+
∫ ∞

y=x

∫ ∞

z=y−x
B(x − y + z)R(y)f (y)λe−λzdzdy

+
∫ ∞

y=x

∫ ∞

z=y−x
R(y)f (y)λe−λzdzdy. (8.29)

We take d/dx on both sides of (8.29), which involves differentiation under
the integral sign. Some algebra, including cancellation of terms and using
R(y) + R(y) = 1, gives

fι(x) =
∫ x

y=0−

∫ ∞

z=0
b(x − y + z)R(y)fι(y)λe

−λzdzdy

+
∫ ∞

y=x

∫ ∞

z=y−x
b(x − y + z)R(y)fι(y)λe

−λzdzdy

+ λ

∫ ∞

y=x

∫ ∞

z=y−x
R(y)fι(y)λe

−λzdzdy. (8.30)

Integrating each of the inner integrals
∫ ∞

z=0
b(x − y + z)λe−λzdz and

∫ ∞

z=y−x
b(x − y + z)λe−λzdz

in (8.30) by parts, using the parts λe−λz and b(x − y + z), leads to the integral
equation (assuming B(0) = 0)

fι(x) = −λ
∫ x
y=0− R(y)fι(y)B(x − y)dy

+λ
∫ x
y=0−

∫ ∞
z=0 B(x − y + z)R(y)fι(y)λe−λzdzdy

+λ
∫ ∞
y=x

∫ ∞
z=y−x B(x − y + z)R(y)fι(y)λe−λzdzdy

+λ
∫ ∞
y=x

∫ ∞
z=y−x R(y)fι(y)λe−λzdzdy.

(8.31)

From (8.29) the sum of the last three terms on the right of (8.31) is

λ

∫ x

y=0−
R(y)f (y)dy.

Hence
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fι(x) = λ

∫ x

y=0−
R(y)fι(y)dy − λ

∫ x

y=0−
R(y)fι(y)B(x − y)dy,

fι(x) = λ

∫ x

y=0−
B(x − y)R(y)fι(y)dy. (8.32)

Equation (8.32) is identical to (3.207). Hence, in (3.207), the time-average pdf
of stayers (left side) is equal to the arrival-point pdf of stayers (which occurs
in the integral on right side). The derivation of (3.207) using “continuous-
time” LC is far simpler than the derivation of (8.32). Nevertheless, the embed-
ded LC method is very useful in this case, and elsewhere. It helps to confirm
that “continuous” LC works in the wait-time dependent reneging/balking
model. The embedded LC method can often be applied to determine whether
the time-average and arrival-point pdfs are equal. The embedded LC method
is inherently very intuitive, and has additional applications as well.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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