
Chapter 6
Dams and Inventories

6.1 Introduction

In this chapter we analyze several models of dams and inventories with state space
S ⊆ R, using LC. When the content in a dam, or stock on hand in an inventory, is
positive-valued, it can decline at varying instantaneous rates in accordance with a
general release rule specified in the model. Thus the efflux differs from the virtual
wait or workload in M/G/1 queues, which decreases at rate 1 when positive, or the
extended age in G/M/c queues, which increases at rate 1.

Section 6.2 describes a dam with general release rule, denoted by M/G/r(·) (or
‘M/G/1 dam’). The function r(x), x ≥ 0, denotes the efflux rate when the content is
at level x, having dimension [(Content unit)/Time]. We discuss sample-path and SP
transitions in the time-state space, and derive integro-differential equations for the
transient (time-dependent) distribution of the content. The subscript “t” is used to
indicate transience. Integral equations for the steady-state (limiting) distribution of
content are then obtained by taking limits as t → ∞.

Sections 6.3–6.9 apply SPLC to analyze several models of dams and inventories
in steady state.

6.2 M/G/r(·) Dam

6.2.1 Model Description

Consider a dam with state space S = [0,∞). Denote the content at instant t by
W (t), t ≥ 0. Assume inputs occur at a Poisson rate λ. Denote the instants of input
by τn, n = 1, 2, . . . , where 0 ≡ τ0 < τ1 < τ2 < · · ·. Denote the input size at τn by
Sn. We assume {Sn}n=1,2,... are i.i.d. positive r.v.s independent of n, with Sn ≡

dis
S. Let

B(x) = P(S ≤ x), and B(x) = 1 − B(x).
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338 6 Dams and Inventories

In some state-dependent model variants, the input size may depend on the content
W (τ−

n ) just before input instant τn (denoted by S(W (τ−
n )), or on a Markovian envi-

ronment (e.g., denoted by S(i) where i is a state of a continuous-time Markov chain
describing the environment). Other input-time dependencies are possible.

If S depends on the current content only, the conditional cdf of S(W (τ−
n )) given

W (τ−
n ) = y, is denoted as

By(x) = P(S(W (τ−
n )) ≤ x|W (τ−

n ) = y), y ≥ 0, n = 1, 2, . . . .

The efflux rate of content out of the dam, is denoted by r(W (t)), defined in
Sect. 6.2.2 below. Generally, the efflux rate depends on the current content (see Sect. 5
in [77]).

In M/G/r(·), we assume that the entire input amount goes into the dam instan-
taneously at an input instant. Under this assumption the model applies to some
real-world situations, e.g., systems involving torrential rainfalls, repeated shocks,
bolus injections of a prescription medication in pharmacokinetics, instillment of cer-
tain eye drops, consumer response to a particular product when exposed to repeated
non-uniform advertising in marketing-science models (e.g., [40, 47]), etc.

6.2.2 General Efflux Rate

Let r(W (t)) denote the instantaneous efflux rate at which the content decreases (flows
out of the dam) at instant t, when the content is W (t). Assume r(W (t)) is finite and

r(x) > 0 if x > 0,

r(x) = 0 if x = 0.

}
(6.1)

The rate of decline of W (t) between input instants is (see Sect. 5 in [77])

dW (t)

dt
= −r(W (t)), τn ≤ t < τn+1, n = 0, 1, 2, . . . , (6.2)

independent of n. The variable r(W (t)) has ‘physical’ dimension (unit) [content unit]
[Time] ,

e.g., [Volume]
[Time] = [L3T−1], where L := Length and T := Time.

This section assumes that r(x), x ∈ S is a time-homogeneous piecewise right-
continuous function, except at level 0. Usually, r(0) 	= r(0+) = limx↓0 r(x). However,
equality of r(0) and r(0+) is possible in some models.

Example 6.1 Suppose r(x) = (x+ 1)2, x > 0, r(0) = 0. Then r(0+) = 1 	= r(0). On
the other hand, suppose r(x) = x2, x > 0, and r(0) = 0. Then r(0+) = r(0).

In some model variants, r(x), x ≥ 0, may have different functional forms on sepa-
rate state space intervals. In such cases, consider a state-space partition

{
xj
}
j=0,1,...,n+1

where 0 ≡ x0 < x1 < x2 < · · · < xn < xn+1 ≡ ∞. Let I1 := (x0, x1), and



6.2 M/G/r(·) Dam 339

Ij := [
xj−1, xj

)
, j = 2, . . . , n + 1. Define

{
rj(x)

}
j=0,1...,n+1 by

r(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r0(0) = 0
r1(x), x ∈ (0, x1) ≡ I1

r2(x), x ∈ [x1, x2) ≡ I2

· · · · ·
rn(x), x ∈ [xn−1, xn) ≡ In
rn+1(x), x ∈ [xn,∞) ≡ In+1,

(6.3)

where rj(x), x ∈ Ij is positive and continuous, j = 1, 2,…, n+ 1. (See, e.g., Sects. 3.1
and 3.2 in [19] for examples using state-space partitions.)

Remark 6.1 In some model generalizations r(W (t)) may also depend on t. We
would then append a subscript t, i.e., denote the efflux rate as rt(W (t)).

6.2.3 Sample Paths

We use the symbol ‘W (t)’ to denote the content of the dam, and also to denote the
ordinate of a sample path of the content at instant t (unless specified otherwise), for
economy of notation, and because the usage will be clear from the context.

A sample path of {W (t)}t≥0 is a piecewise deterministic function plotted in the
time-state plane T × S, where T := {t|t ≥ 0} (Fig. 6.1).

6.2.4 Time for {W(t)}t≥0 to Decrease to a Level

In Eq. (6.2), separating variables gives the differential equation

dW (t)

r(W (t))
= −dt, τn ≤ t < τn+1, n = 0, 1, 2, . . . ;

integrating both sides gives

∫ W (ty)

W (tx)

1

r(W (t))
dW (t) = −

∫ ty

tx

dt = tx − ty.

(See Fig. 6.2). The time required for a sample path of {W (t)}t≥0 to descend from
level W (ty) = y at instant ty to a lower level W (tx) = x ≥ 0 at instant tx, if no inputs
to the dam intervene, i.e., if

W (τn) > y > x ≥ W (τ−
n+1) ≥ 0, for some fixed n,

is
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Fig. 6.1 Sample path of {W (t)}t≥0 in M/G/r(·) dam

tx − ty =
∫ y

z=x

1

r(z)
dz. (6.4)

upon substituting W (t) = z.
Formula (6.4) is useful when analyzing models of dams and inventories in contin-

uous time (as in this chapter), or when analyzing a dam via the embedded LC method
(see Sect. 8.2 in Chap. 8).

6.2.5 Condition for {W(t)}t≥0 to Return to Level 0

Formula (6.4) implies that a necessary and sufficient condition for a return by
{W (t)}t≥0 to level 0, is

lim
x↓0

∫ y

z=x

1

r(z)
dz < ∞ for every finite y > 0, (6.5)

(see pp. 116–117 in [77]).

6.2.6 Transient Probability Distribution of Content

Transient CDF and PDF
Denote the transient cdf of W (t) by Ft(x), x ≥ 0, and let Ft(0) := P0(t). Let
ft(x) := ∂Ft(x)/∂x, x > 0, wherever the derivative exists. We denote the transient
pdf of W (t) by {P0(t), ft(x)}t≥0. Assume Ft(x), ft(x) are right continuous in x. We
use ft(0+) and ft(0) interchangeably for notational convenience since ft(0) adds zero
probability to P0(t). The function ft (x) may have jump discontinuities depending on

http://dx.doi.org/10.1007/978-3-319-50332-5_8
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the distribution of the input r.v.s. (See, e.g., Sects. 3.10 and 3.11 regarding the pdf of
wait in M/D/1 and M/Discrete/1 queues.)

For each t ≥ 0,

Ft(x) = P0(t) +
∫ x

y=0
ft(y)dy,

and the normalizing condition is

Ft(∞) = P0(t) +
∫ ∞

y=0
ft(y)dy = 1.

Steady-State Probability Distribution
We mention the steady-state cdf and pdf now because we will derive them in
Sect. 6.2.11, immediately after the discussion of the transient cdf and pdf below.
The steady-state cdf and pdf of content are denoted as F(x), x ≥ 0, and {P0, f (x)}x>0

respectively, and are obtained by letting t → ∞, i.e.,

F(x) = lim
t→∞Ft(x), x ≥ 0, f (x) = lim

t→∞ ft(x), x > 0, P0 = lim
t→∞P0(t).

Remark 6.2 P0 exists if and only if a sample path of {W (t)}t≥0 returns to level 0 with
probability 1. However, some forms of r(W (t)) make returns to level 0 impossible
(see pp. 116–117 in [77], and Sect. 6.2.5).

6.2.7 Sample-Path and SP Downcrossings

Consider a sample path of {W (t)}t≥0 (Fig. 6.1). Fix level x ∈ S. Let Dt(x) denote
the number of SP downcrossings of level x during (0, t). The SP traces the sample
path during piecewise continuous segments between input instants. At sample-path
discontinuities, the SP makes an upward jump, not in Time (see Sects. 2.4.3 and
2.4.4). Let Dc

t (x) and Dj
t(x) denote respectively the number of SP left-continuous

downcrossings and SP jump downcrossings of level x during (0, t). Then

Dt(x) = Dc
t (x) + Dj

t(x), x ≥ 0, t ≥ 0.

In the basic M/G/r(·) dam of this section, Dj
t(x) ≡ 0, t ≥ 0. In variations of the

basic model, however, SP downward jumps can indeed occur. Both SP left-continuous
downcrossings and SP jump downcrossings also occur in a vast number of inventory
and production-inventory models. Thus, we shall distinguish Dt(x) from Dc

t (x) in
Theorem 6.1 in Sect. 6.2.8. Note that Dc

t (0) may equal 0 in certain cases of r(W (t))
(see Sect. 6.2.5).

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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yt xt

Time t 

( ) ( ( ))dW t r W t
dt

= −

Level x

Level y

Level 0

W(t)

Fig. 6.2 M/G/r(·) dam: time to descend from level y to level x > 0 is tx − ty =∫ y
z=x

1
r(z)dz

6.2.8 Level Crossings and Transient PDF of Content

In a sample path of {W (t)}t≥0, fix level x ∈ S (Fig. 6.1). Let Ut(x) := number of SP
upcrossings of level x during (0, t). It can be shown, along the lines of Sects. 3.2.1
and 3.2.2, that ∂

∂t E(Dc
t (x)),

∂
∂t E(Ut(x)) exist and are positive.

Theorems 6.1 and 6.2 were originally proved using LC in [23].

Downcrossings

Theorem 6.1 For the M/G/r(·) dam

∂

∂t
E(Dc

t (x)) = r(x)ft(x), x > 0, (6.6)

∂

∂t
E(Dc

t (0)) = r(0+)ft(0). (6.7)

Proof Consider a sample path of {W (t)}t≥0, and fix state-space level x ∈ Ij for some
j ∈ {1, . . . , n + 1} in (6.3). Fix instant t. Consider t + h, (h > 0) and define δ > 0
by ∫ x+δ

z=x

1

r(z)
dz = h. (6.8)

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Assume h is sufficiently small so that level x + δ ∈ Ij; h is the time for the content
to decrease from level x + δ to level x if there are no inputs during (t, t + h) (see
formula (6.4)). Applying the (first) mean value theorem for integrals with continuous
integrand (see, e.g., Problems 27–28, p. 237 in [137]) to Eq. (6.8) yields

h = 1

r(z∗)
δ ⇐⇒ δ = r(z∗)h (6.9)

for some z∗ such that x < z∗ < x + δ.
The event Dc

t+h(x) −Dc
t (x) = 1 occurs iff W (t) ∈ (x, x + δ) and there is no input

in a time subinterval (t, t + ξ) ⊆ (t, t + h), or an event with probability o(h) occurs.
From (6.9)

P(Dc
t+h(x) − Dc

t (x) = 1) = ft(x) · δ · (1 − λh) + o(h)

= ft(x) · r(z∗) · h · (1 − λh) + o(h).

The value Dc
t+h(x) − Dc

t (x) = 0 has no affect on E(Dc
t+h(x) − Dc

t (x)). Due to the
Poisson input stream, P(Dc

t+h(x) − Dc
t (x) ≥ 2) = o(h). Hence the expected value

E(Dc
t+h(x) − Dc

t (x)) = 1 · P(Dc
t+h(x) − Dc

t (x) = 1) + o(h),

E(Dc
t+h(x)) − E(Dc

t (x)) = ft(x) · r(z∗) · h · (1 − λh) + o(h). (6.10)

Dividing both sides of (6.10) by h and letting h ↓ 0 gives (6.6) since z∗ ↓ x and
r(z∗) ↓ r(x+) = r(x), x > 0, as h ↓ 0. Then letting x ↓ 0 in (6.6) gives (6.7). �

Corollary 6.1 For each t ≥ 0,

E(Dc
t (x)) = r(x)

∫ t

s=0
fs(x)ds, x > 0,

E(Dc
t (0)) = r(0+)

∫ t

s=0
fs(0)ds.

Proof In (6.6) and (6.7) set t = s, integrate with respect to s ∈ [0, t], and apply the
initial condition E(Dc

0(x)) = 0, x ≥ 0. �

Corollary 6.2 The steady-state pdf of {W (t)}t≥0 as t → ∞ is given in terms of
downcrossing rates by

lim
t→∞

E(Dc
t (x))

t
= r(x)f (x), x > 0, (6.11)

lim
t→∞

E(Dc
t (0))

t
= r(0+)f (0). (6.12)
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Proof In Corollary 6.1, since lims→∞ fs(x) = f (x), for every ε > 0 there exists tε
such that |fs(x) − f (x)| < ε for s > tε, implying

∫ t

s=0
fs(x)ds < Cε +

∫ t

tε

(f (x) + ε) ds = Cε + (t − tε) (f (x) + ε) ,

∫ t

s=0
fs(x)ds > Cε +

∫ t

tε

(f (x) + ε) ds = Cε + (t − tε) (f (x) − ε) ,

where the constant Cε := ∫ tε
s=0 fs(x)ds and t > tε. Combining both inequalities yields

Cε + (t − tε) (f (x) − ε) <

∫ t

s=0
fs(x)ds < Cε + (t − tε) (f (x) + ε) .

Dividing throughout by t gives

Cε

t
+
(

1 − tε
t

)
(f (x) − ε) <

1

t

∫ t

s=0
fs(x)ds <

Cε

t
+
(

1 − tε
t

)
(f (x) + ε) .

Letting t → ∞ gives

f (x) − ε < limt→∞ 1
t

∫ t
s=0 fs(x)ds < f (x) + ε

=⇒ limt→∞ 1
t

∫ t
s=0 fs(x)ds = f (x)

since ε > 0 is arbitrarily small, thus yielding (6.11); then setting x = 0
gives (6.12). �

Upcrossings

Theorem 6.2 For the M/G/r(·) dam

∂

∂t
E(Ut(x)) = λ

∫ x

z=0
B(x − z)dFt(z)

= λP0(t)B(x) + λ

∫ x

z=0
B(x − z)ft(z)dz, x > 0, (6.13)

∂

∂t
E(Ut(0)) = λP0(t). (6.14)

Proof Fix instants t and t + h, t ≥ 0, h > 0 (h small). Fix level x > 0. Then
Ut+h(x)−Ut(x) = 1 iffW (s) = z < x at an instant s ∈ (t, t+h) at which there is an input
of size S > x−z, or an event having probability o(h) occurs. The valueUt+h(x)−Ut(x)
= 0 does not contribute to E(Ut+h(x)−Ut(x)). Also P(Ut+h(x)−Ut(x) ≥ 2) = o(h).



6.2 M/G/r(·) Dam 345

E(Ut+h(x) − Ut(x)) = E(Ut+h(x)) − E(Ut(x))

= λ

∫ x

z=0

∫ h

s=0
B(x − z)dsdFt+s(z) + o(h)

= λh
∫ x

z=0
B(x − z)dFt+s∗(z) + o(h) (6.15)

where 0 < s∗ < h. Dividing both sides of (6.15) by h and letting h ↓ 0 gives (6.13)
since s∗ ↓ 0 as h ↓ 0, and Ft(·) is right-continuous in t. Then letting x ↓ 0 in (6.13)
gives (6.14).

Note: If r(0+) = 0 then P0(t) = 0, t > 0 (see Sect. 6.2.5 and Remark 6.2) in
Sect. 6.2.6. �
Corollary 6.3

E(Ut(x)) = λ

∫ t

s=0

∫ x

z=0
B(x − z)dFs(z)ds

= λ

∫ t

s=0
P0(s)B(x)ds + λ

∫ t

s=0

[∫ x

z=0
B(x − z)fs(z)dz

]
ds, x > 0,

E(Ut(0)) = λ

∫ t

s=0
P0(s)B(x)ds.

Proof Set t = s in (6.13) and (6.14), integrate with respect to s ∈ [0, t] and apply
the initial condition E(U0(x)) = 0, x ≥ 0. �
Corollary 6.4

lim
t→∞

E(Ut(x))

t
= λ

∫ x

z=0
B(x − z)dF(z)dz

= λP0B(x) + λ

∫ x

z=0
B(x − z)f (z)dz, x > 0,

lim
t→∞

E(Ut(0))

t
= λP0B(x).

Proof In Corollary 6.3, interchange the order of integration. Divide both sides
by t and let t → ∞. The result follows since lims→∞ fs(z) = f (z) implying
limt→∞ (1/t)

∫ t
s=0 fs(z)ds = f (z). (See the proof of Corollary 6.2 above in this Sec-

tion. Also see theNote immediately after Theorem 6.2 above, regarding the condition
ensuring P0 > 0). �

6.2.9 Equation for Transient Distribution of Content

The following theorem has been proved using classical methods by various authors
(see, e.g., Eq. (5.4) in [77]). Here we prove it using LC (based on [23]).
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Theorem 6.3 In the M/G/r(·) dam, the transient pdf of content, ft(x), x > 0, satisfies
the integro-differential equation

r(x)ft(x) = ∂
∂t Ft(x) + λ

∫ x
z=0 B(x − z)dFt(z)

= ∂
∂t Ft(x) + λB(x)P0(t)

+λ
∫ x
z=0 B(x − z)ft(z)dz, x > 0,

(6.16)

and P0(t) satisfies the differential equation

d

dt
P0(t) + λP0(t) = r(0+)ft(0). (6.17)

Proof In Theorem 4.1 (i.e., Theorem B in Sect. 4.2), substitute set [0, x] = A, Dc
t (x)

= It(x), Ut(x) = Ot(x). This gives

∂

∂t
E(Dc

t (x)) = ∂

∂t
Ft(x) + ∂

∂t
E(Ut(x)) (6.18)

Substituting from (6.6) and (6.13) into (6.18) gives (6.16). Equation (6.17) then
follows by letting x ↓ 0 in (6.16), noting that Ft(0) = P0(t).

See the Note at the end of Theorem 6.2 in Sect. 6.2.8. �

Remark 6.3 The dimension of r(x) is
[
content unit

Time

]
. The dimension of ft(x) is[

1
content unit

]
. The dimension of the left sides of (6.16) and of (6.17), is

[
r(x)ft(x)

] =
[
content unitt

Time

]
·
[

1

content unit

]
= 1

[Time] , x ≥ 0,

which matches the dimensional unit of the right side.

6.2.10 Estimate of Transient Probability P0(t)

We briefly outline an ‘LC estimation’ procedure for the transient probability P0(t),
t ≥ 0, assuming P0(t) exists for all t > 0, which occurs provided returns to level 0 are
regenerative points (i.e., r(0+) > 0). (See Sect. 6.2.5 and Remark 6.2 in Sect. 6.2.6.)
We also call this procedure LCE, or LC computation. LCE to compute a pdf ft(x),
x > 0, would be similar. We do not detail LCE for transient pdfs elsewhere in
this monograph. See Remark 9.2 in Sect. 9.2 in Chap. 9. We detail LCE for limiting
distributions in Chap. 9.

To solve differential equation (6.17) multiply by the integrating factor eλt , and
integrate with respect to t, yielding

P0(t) =
[∫ t

s=0
eλs ∂

∂s
E(Dc

s (0))ds + P0(0)

]
e−λt , (6.19)

http://dx.doi.org/10.1007/978-3-319-50332-5_4
http://dx.doi.org/10.1007/978-3-319-50332-5_4
http://dx.doi.org/10.1007/978-3-319-50332-5_9
http://dx.doi.org/10.1007/978-3-319-50332-5_9
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where

P0(0) =
{

1 if W (0) = 0,

0 if W (0) 	= 0.

Formula (6.19) connects P0(t) and ∂E(Dc
s (0))/ds, 0 < s < t, which appears as a

factor in the integrand. This connection leads to an estimation method for P0(t), by
estimating the integral in (6.19).

The idea is to first simulate N independent sample paths of {W (t)}t≥0 denoted as
{Wn(s)}s≥0,n=1,...,N on the same time interval [0, tM + r], where tM is the maximum
finite time of interest, r is an “extra” finite time which ensures that tM is not the right
end point of the simulated time interval. N is a large positive integer. A reasonable
value of N would be in the range [400, 1,000]. Due to the high speed of today’s
computers, N may be considerably larger than 1,000. Let h = tM/m be small, where
m is a positive integer. We can use, e.g., h = 0.001 or 0.0001, or any small value h <

r. The accuracy of the estimation of P0(t), t ∈ [0,TM], improves with larger values
of N and smaller values of h.

We then compute the number of SP left-continuous downcrossings (hits of level
0) denoted by Dc

ih,n(0), i = 0, . . . ,m, for each sample path, {Wn(s)}n=1,...,N . For fixed
i and n, the Dc

ih,n(0)s are independent since the N sample paths are independent. We
compute point estimates of the true downcrossing rates Dc

ih,n(0) and Dc
(i+1)h,n(0) at

times ih and (i + 1) h respectively by averaging over the N sample paths. Then we
compute estimates of E(Dc

ih(0)) and E(Dc
(i+1)h(0)) using

Ê(Dc
ih(0)) = 1

N

N∑
n=1

Dc
ih,n(0), Ê(Dc

(i+1)h(0)) = 1

N

N∑
n=1

Dc
(i+1)h,n(0).

An estimate of the derivative ∂E(Dc
ih(0))/dt is then given by the difference quotient

∂̂

∂t
E(Dc

ih(0)) = Ê(D(i+1)h(0)) − Ê(Dc
ih(0))

h
, i = 0, . . . ,m.

Finally, we approximate the integral
∫ kh
s=0 e

λs ∂
∂sE(Dc

s (0))ds as a finite Riemann sum

h
k∑

i=0

eλih ∂̂

∂t
E(Dc

ih(0)), k = 1, . . . ,m
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A point estimate of P0(kh) is

P̂0(kh) =
[
h

k∑
i=0

eλih ∂̂

∂t
E(Dc

ih(0)) + P0(0)

]
e−λt, k = 1, . . . ,m, (6.20)

where mh = tM . This technique results in estimates of P0(h), P0(2h), …, P0(mh).
Thus, we estimate P0(t), t = 0, h, 2h, …, tM . Smoothing techniques can be applied
to estimate intermediate values. Then we can plot P̂0(t), 0 < t < tM . (We can also
develop interval estimates for P0(kh), k = 1, . . . ,m.)

Generalizations and variations of this technique can be used to estimate transient
distributions of state variables in many stochastic models having a continuous time
parameter.

The foregoing example of LCE relates to Chap. 9, which describes LCE for
steady-state distributions. LCE has also been discussed in [17] and [24]. (Also, see
Remark 9.2 in Sect. 9.2 in Chap. 9.)

Remark 6.4 Future computer speeds will undoubtedly increase. Thus the compu-
tational method described above will achieve better and better accuracy. It will be
possible to increase N and decrease h, while completing the computations in a much
shorter amount of real time.

Remark 6.5 In the M/G/r(·) dam, possibly P0(t) = 0 for all t ≥ τ1 (instant of first
input). For example, if r(x) = kx, x > 0, k > 0, the decline of the sample-path has
a negative exponential form between inputs. In theory the content will never reach
level zero after the first input at τ1. If the inter-input time is very long, the content
eventually declines below any preassigned level ε > 0 however small, but never
reaches level 0. In that case we may use downcrossings of an arbitrary level ε> 0 as
regeneration points of a regenerative process. {W (t)}t≥0 will then move along level
ε until the next arrival. We may then use ‘Pt(ε)’ like ‘P0(t)’. Alternatively, we just
estimate ft(x), x > 0 (see Remark 6.2 in Sect. 6.2.6).

6.2.11 Equation for Steady-State PDF of Content

Assume the system is stable and {W (t)}t≥0 returns to level 0 with probability 1. Then

F(x) = lim
t→∞Ft(x), f (x) = lim

t→∞ ft(x), P0 = F(0) = lim
t→∞P0(t)

all exist, and limt→∞ ∂
∂t Ft(x) = 0. In Eq. (6.16), taking limits of all terms as t → ∞

yields
r(x)f (x) = λ

∫ x
y=0 B(x − y)dF(y), x > 0,

r(x)f (x) = λP0B(x) + λ
∫ x
y=0 B(x − y)f (y)dy, x > 0,

r(0+)f (0) = λP0.

(6.21)

Alternative Forms of Equation for Steady-State PDF

http://dx.doi.org/10.1007/978-3-319-50332-5_9
http://dx.doi.org/10.1007/978-3-319-50332-5_9
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Two alternative forms of the integral equation in (6.21) are

r(x)f (x) = λF(x) − λ
∫ x
y=0 B(x − y)f (y)dy, x > 0; (6.22)

r(x)f (x) = λF(x) − λ
∫ x
y=0 F(x − y)b(y)dy, x > 0, (6.23)

where b(y) = dB(y)/dy.
Explanation of (6.22) and (6.23). In each equation the left side is lim Dt(x)/t, the
SP downcrossing rate of level x. On the right side, the first term λF(x) is the rate
of inputs when the content is ≤x; these inputs generate upward jumps that start in
state-space interval [0, x]. The second term subtracts off the rate of such jumps that
do not upcross level x. Hence the right side is lim Ut(x)/t, the upcrossing rate of level
x. Applying rate balance lim Dt(x)/t = lim Ut(x)/t, gives the alternative equations.

Equations (6.22) and (6.23) are analogous to Eqs. (3.43) and (3.44) in Sect. 3.3.1
for the M/G/1 queue.

Stability
A condition for stability of the M/G/r(·) dam is

λE(S) < lim
x→∞ r(x). (6.24)

Formula (6.24) asserts the rate at which the content increases is less than the efflux
rate when the content is at high levels. So the content is prevented from increasing
to indefinitely high amounts. Condition (6.24) guarantees the return of {W (t)}t≥0 to
every level x > 0 in a finite time (see pp. 116–117 in [77]; Theorem 2 in [134].).

A condition that guarantees the content will return to level 0, therefore implying
P0 > 0, is Eq. (6.5) in Sect. 6.2.5 above.

Example 6.2 The M/G/1 queue is a special case of the M/G/r(·) dam with r(x) ≡ 1,
x > 0, and r(0) = 0. Stability holds iff λE(S) < limx→∞ r(x) = 1, the well-known
stability condition for M/G/1 queues; if stability holds {W (t)}t≥0 returns to level 0
(a.s.) since for all finite x > 0

lim
u↓0

∫ x

y=u

1

r(y)
dy = lim

u↓0

∫ x

y=u
1 · dy = lim

u↓0
(x − u) = x < ∞

if no arrivals intervene.

Example 6.3 In the M/G/r(·) dam with λ > 0, E(S) < ∞, and r(x) = kx, k > 0,

lim
u↓0

∫ x

y=u

1

ky
dy = 1

k
lim
u↓0

(
ln
( x
u

))
= ∞,

for every finite x > 0. Hence the content does not return to level 0, implying
P0 = 0. On the other hand, this dam is stable for every k > 0 because

λE(S) < lim
x→∞ r(x) = lim

x→∞ kx = ∞.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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6.2.12 Sojourn Times Related to State-Space Level x

Consider a sample path of {W (t)}t≥0. Fix level x > 0. Due to Poisson arrivals and
the level-dependent slope of the efflux, {Dt(x)}t≥0 (same as

{Dc
t (x)

}
t≥0) is a renewal

counting process. The times between successive downcrossings of level x (renewals)
are i.i.d. r.v.s. The instants of SP downcrossings of level x are regenerative points
with respect to the process {W (t)}t≥0, where {W (t)}t≥0 restarts independent of the
past.

Let dx := time between successive downcrossings of level x. Let ax, bx denote
sojourn times above and below level x, respectively. A sojourn ax begins with an
upcrossing of x and ends with the first downcrossing of x thereafter. A sojourn bx
begins with a downcrossing of x and ends with the first upcrossing of x thereafter.
Thus dx = bx + ax.

Inter-downcrossing Time dx
For the process {Dt(x)}t≥0, using (6.11) and the elementary renewal theorem, the
renewal rate is

lim
t→∞

E(Dc
t (x))

t
= lim

t→∞
Dc

t (x)

t
=
a.s.

r(x)f (x) = 1

E(dx)
, x > 0.

Hence

E(dx) = 1

r(x)f (x)
, x > 0. (6.25)

Sojourn ax Above Level x
From the renewal reward theorem

E(ax)

E(dx)
= limt→∞(time SP is above level x during (0,t))

t
= 1 − F(x),

E(ax) = (1 − F(x)) · E(dx) = 1 − F(x)

r(x)f (x)
, x > 0. (6.26)

From (6.26)

f (x)

1 − F(x)
= 1

r(x)E(ax)
, x > 0, (6.27)

d

dx
ln(1 − F(x)) = −1

r(x)E(ax)
, x > 0. (6.28)

Integrating on both sides of (6.28) with respect to x and computing the constant of
integration by letting x ↓ 0, gives

F(x) = 1 − (1 − P0)e
− ∫ x

y=0
1

r(y)E(ay )
dy

, x ≥ 0,

f (x) = 1−P0
r(x)E(ax)

e− ∫ x
y=0

1
r(y)E(ay )

dy
, x > 0.

(6.29)
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(Possibly 0 < P0 < 1 or P0 = 0.) The normalizing condition F(∞) = 1, is

1 − (1 − P0)e
− ∫∞

y=0
1

r(y)E(ay )
dy = 1,

which implies that e− ∫∞
y=0

1
r(y)E(ay )

dy = 0 if 0 < P0 < 1.

Hazard Rate of PDF of Content at x
The left side of (6.27) is the hazard rate of the steady-state pdf of content at x. An
inverse relation holds between it and the product r(x)E(ax). The hazard rate has the
same dimension as f (x), i.e., 1/[content unit]. (See Sect. 3.4.18 for definition and
discussion of hazard rate.)

Sojourn bx Below Level x
By the renewal reward theorem, E(bx)/E(dx) = F(x). Thus

E(bx) = F(x) · E(dx) = F(x)

r(x)f (x)
, x > 0, (6.30)

implying
f (x)

F(x)
= d

dx
lnF(x) = 1

r(x)E(bx)
, x > 0,

and
F(x) = P0e

∫ x
y=0

1
r(y)E(by )

dy
, x ≥ 0,

f (x) = P0
r(x)E(bx)

e
∫ x
y=0

1
r(y)E(by )

dy
, x > 0,

(6.31)

using F(0+) = P0.
Interestingly, formulas (6.29) and (6.31) give two different expressions for F(x)

and f (x), in terms of E(ax) and E(bx), respectively.
If r(x) ≡ 1, x > 0, the right side of the second equation in (6.31) reduces to the

pdf of wait in the M/G/1 queue, i.e., since E(bx) = F(x)/f (x), x ≥ 0,

P0

1 · E(bx)
e
∫ x
y=0

1
1·E(by )

dy = P0 · f (x)
F(x)

e
∫ x
y=0

f (y)
F(y) dy

= P0 · f (x)
F(x)

e(lnF(x)−lnF(0)) = P0 · f (x)
F(x)

F(x)P−1
0 = f (x).

as in formula (3.95).
As a mild check on (6.31), we compute f (x) for the M/M/1 queue in which

E(bx) = F(x)

f (x)
= 1 − (1 − (1 − λ

μ
))e−(μ−λ)x

λ(1 − λ
μ
)e−(μ−λ)x

, x ≥ 0,

and F(0) = P0 = 1 − λ
μ

. Substituting these values directly for E(bx) and P0 in (6.31)

leads to f (x) = λ(1 − λ
μ
)e−(μ−λ)x, x ≥ 0, the steady-state pdf of wait in M/M/1

(formula (3.112) in Sect. 3.5).

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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6.2.13 CDF and PDF of Excess of Jump over Level x

Let γx := excess of an input upcrossing of x (jump starts below x). Let Gx(z), z > 0,
gx(z) = ∂Gx(z)/∂z, z > 0, denote the cdf and pdf of γx, respectively. We determine
these quantities by means of an argument analogous to that in the proof of Theorem
(3.7) in Sect. 3.7. In steady state,

lim
t→∞Ut(x)/t = lim

t→∞Dt(x)/t = r(x)f (x).

The rate at which the SP upcrosses level x + z whenever an input amount jump-
upcrosses level x is

r(x)f (ẋ) [1 − Gx(z)] .

A different expression for the upcrossing rate of level x + z, whenever the input
amount jump-upcrosses level x is

λP0B(x + z) + λ

∫ x

y=0
B(x + z − y)f (y)dy,

which is the rate of jumps that start below level x, having excesses over x that upcross
level x + z.

Therefore

r(x)f (x) [1 − Gx(z)] = λP0B(x + z) + λ

∫ x

y=0
B(x + z − y)f (y)dy,

1 − Gx(z) = λP0B(x + z) + λ
∫ x
y=0 B(x + z − y)f (y)dy

r(x)f (x)

= λP0B(x + z) + λ
∫ x
y=0 B(x + z − y)f (y)dy

λP0B(x) + λ
∫ x
y=0 B(x − y)f (y)dy

,

and

Gx(z) = 1 − λP0B(x + z) + λ
∫ x
y=0 B(x + z − y)f (y)dy

λP0B(x) + λ
∫ x
y=0 B(x − y)f (y)dy

, (6.32)

gx(z) = λP0b(x + z) + λ
∫ x
y=0 b(x + z − y)f (y)dy + λB(z)f (x)

λP0B(x) + λ
∫ x
y=0 B(x − y)f (y)dy

.

(6.33)

http://dx.doi.org/10.1007/978-3-319-50332-5_3


6.2 M/G/r(·) Dam 353

6.2.14 Expected Nonempty Period

Let BD := nonempty period of the dam. Then BD = a0. Generally, the structure
of BD differs from that of the busy period B in the M/G/1 queue given in (3.83),
because in M/G/r(·) the efflux rate r(x) varies as x varies. This variation causes the
sub-nonempty periods to depend on the beginning ordinate of their initial inputs.
For example, in M/G/r(·), a0 is infinite if P0 = 0, corresponding to the case r(x) =
kx, x > 0, k > 0, since sample paths decay exponentially between inputs and never
decay completely to level 0 (see Example 6.3, Sect. 6.2.11).

Constant Efflux Rate k > 0
In the particular case where there is some constant k > 0 such that r(x) ≡ k, x > 0,
the structure of B given by (3.83) and Fig. 3.6, Sect. 3.4.12, is preserved for BD,
except that the slope of the sample path between inputs is −k. Then 0 < P0 < 1. Let
S := input size. In particular, S is the size of the first input of a nonempty period.
Let NS := number of inputs during the time required for the first S to deplete, i.e.,
during a time

∫ S
y=0

1
r(y)dy =

∫ S
y=0

1
k dy = S/k time units. Then

BD = S

k
+

NS∑
i=1

BD,i, (6.34)

whereBD,i, i = 1, . . . ,NS are sub-nonempty periods =
dis
BD, independent ofNS . Taking

expected values on both sides of (6.34) gives

E(BD) = E(S)

k
+ E(NS)E(BD) = E(S)

k
+ λ

E(S)

k
E(BD), (6.35)

since E(NS) = λ (E(S)/k). Equation (6.35) gives

E(BD) = E(a0) = E(S)

k
(
1 − λ

k E(S)
) . (6.36)

Alternative Derivation of E(BD)

We can obtain P0 directly from formula (6.21) when r(x) ≡ k, x > 0, by dividing by
k and integrating both sides with respect to x ∈ (0,∞). Since 1 − P0 =

∫∞
x=0 f (x)dx,

we get

P0 = 1 − λ

k
E(S). (6.37)

We now use P0 in (6.37) and the renewal reward theorem. Since E(nonempty
cycle) := E(d0) = 1/

(
r(0+)f (0)

)
= 1/ (λP0), we get

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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E(BD)

E(d0)
= 1 − P0

E(BD) = 1 − P0

r(0+)f (0)
= 1 − P0

λP0
.

Substituting for P0 from (6.37) gives

E(BD) = E(a0) = E(S)

k
(
1 − λ

k E(S)
) . (6.38)

Formula (6.38), derived by LC and the renewal reward theorem, illustrates the use-
fulness of the formula

E(a0) = 1 − P0

λP0
, (6.39)

which also applies to E(B) in M/G/1 queues, as well as to the nonempty period in
M/G/r(·) dams where 0 < P0 < 1.

6.3 M/M/r(·) Dam

Assume inputs are of size S =
dis

Expμ occurring at a Poisson rate λ. Assume the

dam is stable, i.e., λE(S) < limx→∞ r(x) (see formula (6.24)), so the steady-state
distribution of content exists.

6.3.1 Equation for Steady-State PDF of Content

Substitute B(x − y) = e−μ(x−y), 0 ≤ y < x, in Eq. (6.21), resulting in the integral
equation for the steady-state pdf of content f (x),

r(x)f (x) = λP0e
−μx + λ

∫ x

y=0
e−μ(x−y)f (y)dy, x > 0, (6.40)

f (x) = λ

r(x)

(
P0e

−μx +
∫ x

y=0
e−μ(x−y)f (y)dy

)
, x > 0. (6.41)

6.3.2 Solution of Equation (6.40) for PDF of Content

Assume P0 > 0. (Recall P0 > 0 iff {W (t)}t≥0 returns to 0, i.e., (6.5) holds.) Applying
differential operator 〈D+μ〉 to both sides of (6.40), leads to the differential equation
for f (x),
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f ′(x)
f (x)

= − r′(x) + μr(x) − λ

r(x)
, x > 0,

d

dx
ln (r(x)f (x)) = −μ + λ

r(x)
, x > 0, (6.42)

by transposing r′(x)/r(x) (=d ln r(x)/dx) to the left side and using well-known prop-
erties of derivatives and logarithms. The solution of (6.42) is

f (x) = λP0

r(x)
e
−
(
μx−λ

∫ x
y=0

dy
r(y)

)
, x > 0, (6.43)

upon applying the initial condition r(0+)f (0) = λP0.
Substituting f (x) from (6.43) into the normalizing condition P0 + ∫∞

x=0 f (x)dx =
1 gives

P0 = 1

1 + λ
∫∞
x=0

1
r(x)e

−
(
μx−λ

∫ x
y=0

1
r(y) dy

)
dx

. (6.44)

As a mild check, let r(x) = k > 0. From (6.44)

P0 = 1/ (1 + λ/ (k (μ − λ/k))) = (kμ − λ) / (kμ) = 1 − λ/ (kμ) ,

which agrees with (6.37), since E(S) = 1/μ. In the M/M/1 queue, k = 1, so r(x) ≡
1, x > 0. Substituting r(x) ≡ 1 in (6.43) and (6.44) gives (3.112) and (3.113)
respectively, agreeing with the analogous results for M/M/1.

6.3.3 Sojourn Times and State-Space Levels

Assume P0 > 0. From (6.25) and (6.26) with x = 0, we get E(nonempty cycle) and
E(nonempty period) as

E(d0) = 1

r(0+)f (0)
= 1

λP0
,

and E(a0) = E(BD) = (1 − P0)E(d0) = 1 − P0

λP0
,

respectively, with P0 given in (6.44).

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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In M/M/r(·), all upward jumps are =
dis

Expμ. By the memoryless property, the excess

of a jump over any level x is also =
dis

Expμ. But, generally ax depends on x. This

differs from the M/M/1 queue or M/M/r(·) dam with r(x) = k > 0, x > 0, where
ax is independent of x, and E(ax) ≡ E(B), and E(ax) ≡ E(BD); respectively. The
structure of B and BD guarantees this independence (see formula (3.83)). However,
generally In M/M/r(·), r(x) varies with x; so ax depends on the values of r(y), y > x,
x ≥ 0. Nevertheless, we can still determine E(ax), E(bx) and E(dx) as long as we
can solve for {P0, f ((x)}x>0 as in Sects. 6.3.1–6.3.2.

Constant Efflux Rate
When r(x) ≡ k, k > 0, x > 0, the structure of BD is similar to that of B in M/G/1.
Thus, from (6.37) and (6.38),

P0 = 1 − λ

kμ

E(ax) = E(BD) =
1
μ

k
(

1 − λ
kμ

) = 1

kμ − λ
, x ≥ 0.

6.4 M/M/r(·) Dam with r(x) = kx

When the efflux rate varies directly with content, r(x) = kx, x > 0, for some fixed
k > 0, andP0 = 0 (i.e., the efflux rate is proportional to content). (See Example 6.3 in
Sect. 6.2.11).The sample path of {W (t)}t≥0 has a negative exponential shape between
input instants, because r(W (t)) = kW (t) = −dW (t)/dt, implying that dW (t)/W (t)
= −kdt, with solution W (t) = W (τn)e−k(t−τn), τn ≤ t < τn+1, n = 0, 1, 2,…(see
Formula (6.2) in Sect. 6.2.2).

6.4.1 PDF of Content and Its Laplace Transform

Upon substituting r(x) = kx in (6.41) with P0 = 0, we solve for f (x) using Laplace
transforms (see Sect. 3.4.4). The Laplace transform of f (x) is

f̃ (s) ≡
∫ ∞

x=0
e−sxf (x)dx, s > 0.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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In (6.41), multiplying both sides by e−sx, and integrating on x ∈ (0,∞) yields

f̃ (s) = λ

∫ ∞

x=0
e−sx 1

kx

∫ x

y=0
e−μ(x−y)f (y)dydx. (6.45)

Taking d/ds on both sides of (6.45) and interchanging the order of integration gives

d

ds
f̃ (s) = −λ

k

∫ ∞

y=0
e−syf (y)

∫ ∞

x=y
e−(s+μ)(x−y)dxdy.

The inner integral is 1/ (μ + s), implying the right side is − (λ/k) f̃ (s)/ (μ + s),
yielding differential equation

d

ds
f̃ (s) + λ

k

(
1

μ + s

)
f̃ (s) = 0. (6.46)

Separation of variables in (6.46), and integration with respect to s gives

f̃ (s) = A(μ + s)−
λ
k ,

for some constantA. The identity f̃ (s) ≡ ∫∞
x=0 e

−sxf (x)dx implies f̃ (0+) =
∫∞
x=0 f (x)dx

= 1 (normalizing condition since P0 = 0). Thus

f̃ (0+) = Aμ− λ
k = 1 and A = μ

λ
k .

Hence

f̃ (s) =
(

μ

μ + s

) λ
k

=
(

1

1 + s
μ

) λ
k

=
(

1 + s

μ

)− λ
k

, s > 0. (6.47)

In (6.47) f̃ (s) is the Laplace transform of a Gamma pdf (e.g., p. 128, Sect. 3.3.1, in
[84]); p. 166ff in [97]; p. 109 in [75]), namely

f (x) = 1

�
(

λ
k

)
μ− λ

k

x(
λ
k −1)e−μx = 1

�
(

λ
k

) (μx)
λ
k −1 e−μxμ, x > 0. (6.48)

In (6.48), letting u = μx gives

∫ ∞

x=0
(μx)

λ
k −1 e−μxμdx =

∫ ∞

0
u(

λ
k −1)e−udu = �

(
λ

k

)
,
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implying
∫∞
x=0 f (x)dx = 1. The uniqueness of f (x) in (6.48) is guaranteed due to a

one-to-one correspondence between f̃ (s) and its inverse, up to a set of measure 0
(see pp. 13–14 in [95]).

The statistical moments of f (x) about 0, are

E(Wn) = (−1)n
dn

dsn
f̃ (s)

∣∣∣∣
s=0

, n = 1, 2, . . . .

The first and second moments are

E(W ) = λ

kμ
,E(W 2) = λ

kμ2

(
λ

k
+ 1

)
.

The variance is

Var(W ) = E(W 2) − (E(W ))2 = λ

kμ2
.

Remark 6.6 In the literature the formula for a standard Gamma pdf is often

g(x) = 1

b�(c)

(x
b

)c−1

e− x
b , x > 0,

where b > 0, c > 1 (see p. 109 in [75]), having Laplace transform

g̃(s) = (1 + bs)−c, s > −1

b
.

Since b > 0, it is sufficient to take s > 0. (The significance of s > 0 is discussed on
pp. 13–14ff in [95].) Setting b = 1

μ
, c = λ

k gives g̃(s) = f̃ (s) in (6.47).

6.4.2 CDF of Content

The steady-state cdf F(x) and pdf f (x) of the content are

F(x) =
∫ x

y=0
f (y)dy = 1

�
(

λ
k

)
∫ x

y=0
(μy)(

λ
k −1)e−μyμ dy = �(λ

k , x)

�
(

λ
k

) , x > 0, (6.49)

where �(λ
k , x) =

∫ x
y=0 u

( λ
k −1)e−udu is the incomplete Gamma function (e.g., p. 15

in [138]). Thus F(∞) = �(λ
k ,∞)/�

(
λ
k

)
= 1. Generally, F(x) in (6.49) cannot be

expressed in closed form for finite x > 0, but can be evaluated numerically.



6.4 M/M/r(·) Dam with r(x) = kx 359

6.4.3 Sojourns with Respect to a Level x

We examine next the inter-downcrossing time dx, and sojourns ax and bx. Consider a
sample path of {W (t)}t≥0. Referring to Eqs. (6.25), (6.26), and (6.30) above, we get

E(dx) = 1

r(x)f (x)
= 1

kxf (x)
= �

(
λ
k

)
kx(μx)(

λ
k −1)e−μxμ

, x > 0; (6.50)

E(ax) = (1 − F(x))E(dx) =
1

�( λ
k )

∫∞
y=x(μy)

( λ
k −1)e−μyμdy

kx 1
�( λ

k )
(μx)(

λ
k −1)e−μxμ

=
∫∞
y=x μ(μy)(

λ
k −1)e−μydy

kx(μx)(
λ
k −1)e−μxμ

, x > 0; (6.51)

E(bx) = F(x)E(dx) =
∫ x
y=0(μy)

( λ
k −1)e−μyμdy

kx(μx)(
λ
k −1)e−μxμ

, x > 0. (6.52)

Naturally, E(ax)+E(bx) = E(dx). Quantities E(dx), E(ax), E(bx) can be evaluated
numerically and plotted over a range of x in the state space, for any valid triplet of
model parameters {λ, k,μ} (see Figs. 6.3, 6.4, 6.5, 6.6, and 6.7).

Fig. 6.3 Steady-state pdf f (x), cdf F(x), and complementary cdf 1 − F(x), in
M/M/r(·) dam: r(x) = kx, λ = 5.0, μ = 1.0, k = 2.0
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Fig. 6.4 Limt→∞Dt(x)/t versus x in M/M/r(·) dam: r(x) = kx, λ = 5.0, μ = 1.0,

k = 2.0. Limt→∞Dt(x)/t = Limt→∞Ut(x)/t

Example 6.4 Consider an M/M/r(·) dam with r(x) = kx, x > 0. (See Figs. 6.3, 6.4,
6.5, 6.6, 6.7 and 6.8.) Set λ = 5.0, μ = 1.0, k = 2.0. The steady-state pdf of content is

f (x) = 0.752253x1.5e−x, x > 0.

The cdf of content is, for x > 0,

F(x) = −0.188063
(
4.0x3/2 + 6.0x1/2 − 5.317362 · erf (x1/2) · ex) · e−x,

where erf (x) := (
2/

√
π
) ∫ x

0 e−t2dt, the error function (see p. 262 in [1]). Because
μ = 1 in this example,

E(W ) = λ

kμ
= Var(W ) = λ

kμ2
= 2.5.

The hazard rate of f (x) is plotted for values of x in Fig. 6.8.
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Fig. 6.5 E(dx) versus x, in M/M/r(·) dam: r(x) = kx, λ = 5.0, μ = 1.0, k = 2.0.

The “bathtub” shape of E(dx) is intuitive

6.5 M/M/r(·) with Special Zero-Content Inputs

Assume P0 > 0, and inputs when the dam is empty, have a special size S0 having
cdf B0(x), x > 0, pdf b0(x), x > 0, and B0(x) = 1 −B0(x), x ≥ 0. Rate balance across
level x, and the law of total probability (normalizing condition), imply

r(x)f (x) = λP0B0(x) + λ
∫ x
y=0 B(x − y)f (y)dy, x > 0,

P0 + ∫∞
y=0 f (x)dx = 1.

(6.53)

We can solve (6.53) for {P0, f (x)}x>0 (analytically or numerically); then obtain F(x),
and E(CD) (=E(d0)) = 1/

(
r(0+)f (0)

)
using equality r(0+)f (0) = λP0. Applying

the renewal reward theorem, we obtain E(ax) = (1 − F(x)) /(λP0) and E(bx) =
F(x)/(λP0), x ≥ 0. Thus E(BD) = (1 − P0) / (λP0). In particular, the first ‘input’ of
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Fig. 6.6 E(ax) versus x in M/M/r(·) dam: r(x) = kx, λ = 5.0, μ = 1.0, k = 2.0

ax is =
dis

γx, the excess of a jump over x, distributed differently from all other jumps

during ax. In that case the cdf of γx, denoted Gx(·), is given by formula (6.32) in
Sect. 6.2.13.

An interesting inference about the structure of BD (including ax and bx) follows
because {Dt(x)}t≥0 is a renewal process. Although the structure of BD generally
differs from that of B in M/G/1, or BD in M/G/r(·) (r(x) = k > 0, x > 0), we
can always derive E(ax) and E(bx) once F(x), x ≥ 0 and P0 are known. Thus, the
LC-connected derivation of E(ax) or E(bx), is more general than the derivation based
directly on structure.

6.6 Generalization of M/G/r(·) Dam

We discuss a generalization of the M/G/r(·) dam considered in Sects. 6.2–6.3.The
generalized model allows for SP downward jumps due to exogenous events; state-
dependent prescribed jumps just after the SP hits or jump-crosses designated state-
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Fig. 6.7 E(bx) versus x in M/M/r(·) dam: r(x) = kx, λ = 5.0, μ = 1.0, k = 2.0

space levels, e.g., thresholds or barriers; specialized state-dependent jumps if an
exogenous event occurs when the SP is in a designated state-space interval; etc.

For example, in Marketing Science a target population of repeated advertisements
for a product may develop a “rebound” effect against purchasing the product due to
“overselling” (i.e., over-advertising). Let {W (t)}t≥0 represent the consumer response
process for the product, where high measures are favorable, and low measures are
unfavorable. The SP may take a sudden jump downward if a new advertisement
occurs while the SP is above a ‘tolerance’ threshold. A sample path of {W (t)}t≥0

would increase in a roughly “saw-tooth”, possibly non-linear, pattern, but make
exceptional downward jumps from levels above the threshold. (See, e.g., [40].)

A related model applies in multiple dosing of a medication in pharmacokinetics.
Suppose the control of a patient’s illness depends on lowering to a therapeutic range,
systolic blood pressure denoted by {BP(t)}t≥0. The goal of the dosing regime is to
maintain BP(t) within a specified finite range, say (L,H) measured in millimeters
of mercury (mmHg). This implies the concentration in the blood of the medication,
denoted by {BC(t)}t≥0, should be in a corresponding therapeutic range, say (α,β)

measured in milligrams per liter (mg/L). If BC(t) upcrosses threshold β, then BP(t)
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Fig. 6.8 Hazard rate f (x)
1−F(x) for steady-state distribution of content in M/M/r(·) dam:

r(x) = kx, λ = 5.0, μ = 1.0, k = 2.0. Note the inverse relation with E(ax)

will drop below threshold L. If BC(t) downcrosses threshold α, then BP(t) will
upcross threshold H. A sample path of {BP(t)}t≥0 would move in a roughly “saw-
tooth” pattern, inversely emulating the pattern of {BC(t)}t≥0. Similar remarks apply
to illnesses depending on blood-thinning medications to protect against strokes (see
Sect. 11.6; also [47]).

6.6.1 Model and Steady-State Distribution of Content

Let {W (t)}t≥0 denote the content of a dam with “wide-sense” state space S ⊆ R,
which may contain sets having probability 0 (see Sect. 2.3.1). For example, in the
standard 〈s, S〉 inventory, the usual state space is interval (s, S], which supports
the probability distribution of inventory. The wide-sense state space is (−∞, S]
because some demands propel the sample path of {W (t)}t≥0 below the reorder point
s. Prescribed replenishments then cause the SP to jump immediately up to level S
(double jump), so {W (t)}t≥0 spends zero time below level s (see Example 2.2 and

http://dx.doi.org/10.1007/978-3-319-50332-5_11
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Fig. 2.2 in Sect. 2.2.2). The proportion of time {W (t)}t≥0 spends below level s is zero,
so the probability of (−∞, s] is zero.

A particular model may permit jumps due to exogenous events or by prescription.
Assume that the SP makes upward and downward jumps at exogenous Poisson rates
λu, λd respectively, which are independent of each other and of the current state
of the system. Let the corresponding upward and downward jump magnitudes have
cdfs Bu(·), Bd(·), and complementary cdfs Bu(·), Bd(·), respectively. Let F(·), f (·)
denote, respectively, the steady-state cdf and pdf of W (t) as t → ∞. Our immediate
aim is to derive an integral equation for f (x).

Let the downward jumps occur at instants 0 ≡ τd,1 < τd,2 < ···, and upward jumps
at instants 0 ≡ τu,1 < τu,2 < ···, respectively. Possibly, the SP makes both an upward
and downward jump at the same instant (see Sect. 2.3). Without loss of generality, we
assume the initial state is W (0) > 0. Let {τn}n=1,... = {τd,i}i=1,2,... ∪ {τu,i}i=1,2,...Thus
{τn}n=1,2,... is a refinement of {τd,i}i=1,2,... and {τu,i}i=1,2,.... The SP jumps occur at
instants 0 < τ1 < τ2 < · · ·.
Efflux Rate
The efflux rate r(W (t)) := dW (t)/dt is specified by Eqs. (6.2) and (6.3), above.

Sample Path
A typical sample path of {W (t)}t≥0 is a piecewise continuous function in the time-
state plane, which decreases continuously between jumps (see Definition 2.1 in
Sect. 2.2.1).

6.6.2 SP Downcrossings

Consider the following types of downcrossings of level x, and their number during
(0, t).
Dc

t (x) := number of left-continuous downcrossings of level x.

Dj
t,d(x) := number of jump downcrossings of level x at exogenous Poisson rate λd .

Dj
t,p(x) := number of state-dependent policy (i.e., prescribed) jump downcrossings

of x, e.g., following hits of a threshold or barrier above x.

Dj
t(x) := total number of SP downward jumps of x.

Then Dj
t(x) = Dj

t,d(x) + Dj
t,p(x).

Theorem 6.4

lim
t→∞

E(Dc
t (x))

t
= lim

t→∞
Dc

t (x)

t
=
a.s.

r(x)f (x), x ∈ S, (6.54)

lim
t→∞

E(Dj
t,d(x))

t
= lim

t→∞
Dj

t,d(x)

t
=
a.s.

λd

∫ ∞

y=x
Bd(y − x)f (y)dy, x ∈ S. (6.55)

Proof Formula (6.54) follows similarly as in Theorem 6.1 and Corollary 6.2 in
Sect. 6.2.8. Formula (6.55) follows as in Theorem 6.2 in Sect. 6.2.8. �

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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6.6.3 SP Upcrossings

Consider the following types of upcrossings of level x and their number during (0, t).
U j
t,u(x) := number of jump upcrossings of level x due to the exogenous Poisson rate

λu.
U j
t,p(x) := number of prescribed or policy state-dependent jump upcrossings of level

x.
U j
t (x) := total number of SP jump upcrossings.

Then U j
t (x) = U j

t,u(x) + U j
t,p(x). In this model, every upcrossing is a jump up-

crossing.

Theorem 6.5

lim
t→∞

E(U j
t,u(x))

t
= lim

t→∞
U j
t,u(x)

t
=
a.s.

λu

∫ x

y=−∞
Bu(x − y)f (y)dy, x ∈ S, (6.56)

Proof Similar to proof of Theorem 6.2 in Sect. 6.2.8. �
Remark 6.7 All three terms in Theorem 6.5 represent the long-run rate of SP upward
jumps due to Poisson rate λu, from state-space set (−∞, x] into (x,∞).

6.6.4 Integral Equation for PDF of Content

Applying rate balance across level x, total downcrossing rate of x = total upcrossing
rate of x. Thus

lim
t→∞

E(Dc
t (x))

t
+ lim

t→∞
E(Dj

t(x))

t
= lim

t→∞
E(U j

t,u(x))

t
+ lim

t→∞
E(U j

t,p(x))

t
. (6.57)

Substituting from Theorems 6.4 and 6.5 gives

r(x)f (x) + λd
∫∞
y=x Bd(y − x)f (y)dy + limt→∞

E(Dj
t,p(x))
t

= λu
∫ x
y=−∞ Bu(x − y)f (y)dy + limt→∞

E(U j
t,p(x))
t , x ∈ S.

(6.58)

In models where Eq. (6.58) applies, the terms

lim
t→∞

E(Dj
t,p(x))

t
and lim

t→∞
E(U j

t,p(x))

t

are usually expressed in terms of f (x), or as constants. For example, in a standard
〈s, S〉 inventory model,

λu = 0, lim
t→∞

E(Dj
t,p(x))

t
= 0,
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and lim
t→∞

E(U j
t,p(x))

t
= r(s)f (s) + λd

∫ S

y=s
B(y − s)f (y)dy,

where λd is the demand rate (see Sect. 6.8, in which λd ≡ λ).

Remark 6.8 Integral Eq. (6.58) can serve as a template for variants of the M/G/r(·)
dam. We do not solve the equation here. In any related variant, Eq. (6.58) will have
a particular form, depending on the model parameters. It can then be solved for f (x)
(see Sect. 6.8 below).

〈S, S〉 Inventory
The 〈s, S〉 continuous review inventory system is a special case of this model. If there
is no lead time and no backlogging, then r(x) > 0 for all x ∈ (s, S]. If there is a lead
time and backlogging is allowed, then the regular state space and wide-sense state
space are both equal to the interval (−∞, S]; also r(x) = 0 for x < s (see, e.g., [4]).

In the 〈s, S〉 model, prescribed (i.e., policy) jump upcrossings occur, due to
replenishments up to level S whenever the inventory jumps to or below level s, or
makes a left-continuous hit of level s from above.

6.7 r(·)/G/M Dam

Consider a dam with a continuous influx when the content is positive. The influx is
interrupted by “demands” for content (i.e., instantaneous outputs), which occur in an
independent Poisson process. The demand sizes are i.i.d. positive random variables,
having a common general distribution. If a demand exceeds the current content, the
dam becomes empty. Empty periods are exponentially distributed with a common
mean, independent of other factors. We may regard an empty period as “setup time”
needed before starting a new influx cycle. We call a dam having these properties as
an ‘r(·)/G/M’ dam, to emphasize the continuous influx rate r(·). The r(·)/G/M dam
generalizes the “extended age” process for a G/M/1 queue (Sect. 5.1.1).

The r(·)/G/M dam can be regarded as a template for a variety of production-
inventory models where the production rate depends on the current stock level. There
are many related variations. We can include: a fixed upper bound on content; thresh-
olds indicating changes in influx rate; several fixed levels at which production may
pause for a time; lost sales; backlogging, etc. The r(·)/G/M model is related to the
surplus (risk reserve) in a risk model in actuarial science, where the influx is the rate
of increase of surplus due to premium payments, and the outputs correspond to claim
amounts (see Fig. 2.5 in Sect. 2.2.2, Table 2.1 in Sect. 2.4; Sect. 11.1).

http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_11
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Time
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Non-empty 
Period
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θ

Fig. 6.9 Sample path of standard r(·)/G/M dam

6.7.1 Model Specification and Notation

Let {W (t)}t≥0 denote the content of the dam at time t ≥ 0. The influx goes on
continuously at a positive rate dW (t)/dt = r(W (t)), when W (t) > 0. Demands for
content occur at a Poisson rate μ, and are filled immediately (e.g., a sudden demand
for water from a reservoir, oil from a storage tank; a rush order for a product; etc.).
The demand sizes are positive with common cdf A(·) and complementary cdf A(·).
If a demand at t−0 exceeds the current content, the resulting “content” would be
negative. The corresponding end point of the SP downward jump would be below
level 0 (Fig. 6.9). Only part of the demand is filled. Various policies can be used
regarding the excess demand (e.g., backlogging). To focus on the LC analysis, we
shall assume ‘no backlogging’. Then the content at t0 would be W (t0) = 0. It remains
at level 0 for a time = Expθ independent of the unfilled excess demand below 0.
During an empty period dW (t)/dt = 0. At the end of an empty period, the content
begins to rise from level 0 at rate r(0+), and continues to rise in a roughly ‘saw-tooth
pattern’ until some future demand takes the content ‘below level 0’ (see pass by in
Fig. 2.16). The content alternates between nonempty and empty periods (Fig. 6.9).

If the dam is stable then the content will return to level 0 (state {0} is positive
recurrent). Denote the transient pdf and cdf of content, t ≥ 0, by {P0(t), ft(x)}x>0
and Ft(x), x ≥ 0, respectively. Then P0(t) = Ft(0). Denote the steady-state pdf and
cdf of content by {P0, f (x)}x,>0 and F(x), x ≥ 0, respectively.

6.7.2 Equation for Transient PDF of Content

Consider a sample path of {W (t)}t≥0. Let Ut(x), Dt(x) denote the number of up- and
downcrossings of x during (0, t), respectively. In r(·)/G/M sample paths rise steadily

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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at rate r(x) depending on x. Even so we can readily modify the proofs in Theorem
3.4 in Sect. 3.2.7 and Theorem 3.3, in Sect. 3.2.5, getting

∂
∂t E(Ut(x)) = r(x)ft(x), x > 0, t > 0,

∂
∂t E(Ut(0)) = r(0+)ft(0) = θP0(t), t > 0,

∂
∂t E(Dt(x)) = μ

∫∞
y=x A(y − x)ft(y)dy, x ≥ 0, t > 0.

(6.59)

Consider set A = [0, x] , x ≥ 0, in the state space. Theorem B (see Theorem 4.2
in Sect. 4.2.1 and Theorem 3.2 in Sect. 3.2.4) gives

∂

∂t
E(It(A)) = ∂

∂t
E(Ot(A)) + ∂

∂t
Pt(A), (6.60)

where It(A), Ot(A) are the number of SP entrances and exits of A during (0, t),
respectively. We assume that a ‘pass by’ of level 0 due to a downcrossing of level
0 results immediately in an entrance of {0}. Thus It(A) = Dt(x), Ot(A) = Ut(x),
Pt(A) = Ft(x). Substitution from (6.59) into (6.60) results in an integro-differential
equation for ft(x) and a differential equation for P0(t), namely

μ

∫ ∞

y=x
A(y − x)ft(y)dy = r(x)ft(x) + ∂

∂t
Ft(x), x > 0,

= r(0+)ft(0) + ∂

∂t
P0(t) = θP0(t) + ∂

∂t
P0(t). (6.61)

The normalizing condition is

P0(t) +
∫ ∞

x=0
ft(x)dx = 1, for each t ≥ 0.

Remark 6.9 In Eq. (6.61), the terms ∂Ft(x)/∂t, ∂P0(t)/∂t appear on the opposite
side from the integrals, in contrast to Eqs. (6.16) and (6.17). The reason is that the
sample path of content increases in r(·)/G/M, whereas it decreases in the M/G/r(·)
dam discussed in Sect. 6.2.9.

6.7.3 Equation for Steady-State PDF of Content

If the dam is stable

lim
t→∞ ft(x) = f (x), lim

t→∞
∂

∂t
Ft(x) = 0, x ≥ 0, lim

t→∞P0(t) = P0.

We get an integral equation for f (x) by letting t → ∞ in (6.61), implying also a
rate-balance equation for state {0} , viz.,

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_4
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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r(x)f (x) = μ
∫∞
y=x A(y − x)f (y)dy, x > 0,

r(0+)f (0) = μ
∫∞
y=0 A(y)f (y)dy = θP0.

(6.62)

The normalizing condition is

P0 +
∫ ∞

x=0
f (x)dx = 1. (6.63)

We can also derive (6.62) directly by considering a sample path of {W (t)}t≥0

(Fig. 6.9). Fix level x > 0. The upcrossing rate of level x is r(x)f (x). The down-
crossing rate of x is μ

∫∞
y=x A(y− x)f (y)dy. Rate balance across level x gives the first

equation in (6.62); the second equation follows by balancing the SP entrance and
exit rates of state {0}.
Remark 6.10 In r(·)/G/M, Eq. (6.62) for the steady-state pdf of content generalizes
that for the pdf of “extended” age in the G/M/1 queue, i.e., r(x)f (x) replaces f (x) on
the left side of Eq. (5.7) in Sect. 5.1.3.

6.7.4 Sojourn Times Above and Below a Level

Let ax := sojourn time above level x, bx := sojourn time at or below level x. Due to
Poisson arrivals, the upcrossing instants of level x form a renewal process with dx :=
interarrival time, between successive upcrossings, and E(dx) = 1/(r(x)f (x)), x ≥ 0.

E(ax)
By the renewal reward theorem

E(ax)

E(dx)
= 1 − F(x).

Also,
E(BD)

E(d0)
= E(a0)

E(d0)
= 1 − F(0).

Thus,

E(ax) = 1 − F(x)

r(x)f (x)
, x > 0, (6.64)

E(BD) = E(a0) == 1 − P0

r(0+)f (0)
= 1 − P0

θP0
. (6.65)

where f (x), f (0) and P0 are the solutions of (6.62), and (6.63); and empty period =
dis

Expθ.
Relating f (x) and E(ax)
From (6.64), the hazard rate of f (x) is

http://dx.doi.org/10.1007/978-3-319-50332-5_5
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f (x)

1 − F(x)
= 1

r(x)E(ax)
, x > 0,

and
d

dx
ln (1 − F(x)) = −1

r(x)E(ax)
,

1 − F(x) = Ce− ∫ x
y=0

1
r(y)E(ay )

dy, (6.66)

where C is a constant, evaluated by letting x ↓ 0 in (6.66), resulting in C = 1 − P0.
Thus,

F(x) = 1 − (1 − P0)e
− ∫ x

y=0
1

r(y)E(ay )
dy

, x ≥ 0. (6.67)

Taking d/dx in (6.67) gives the pdf

f (x) = 1 − P0

r(x)E(ax)
e− ∫ x

y=0
1

r(y)E(ay )
dy

, x > 0. (6.68)

From (6.65)

f (x) = E(a0)θP0

r(x)E(ax)
e− ∫ x

y=0
1

r(y)E(ay )
dy

, x > 0. (6.69)

The normalizing condition P0 + ∫∞
x=0 f (x)dx = 1, gives

P0 = 1

1 + E(a0)θ
∫∞
x=0

(
e
− ∫ x

y=0
1

r(y)E(ay )
dy

r(x)E(ax)

)
dx

; (6.70)

from (6.65), another expression for P0 is

P0 = 1

1 + θE(a0).
(6.71)

Formula (6.71) implies that the integral in the denominator of

(6.70),
∫∞
x=0

(
e
− ∫ x

y=0
1

r(y)E(ay )
dy

r(x)E(ax)

)
dx = 1. This equality is verified by letting

u =
∫ x
y=0

1
r(y)E(ay)

dy, whence du = 1/(r(x)E(ax)) dx, resulting in

∫ ∞

u=0
e−udu = [−e−u

]∞
u=0 = −0 + e0 = 1.

E(bx)
Similarly, we obtain (using (6.62)),

E(bx) = F(x)

r(x)f (x)
= F(x)

μ
∫∞
y=x A(y − x)f (y)dy

, x ≥ 0, (6.72)

E(b0) = P0

r(0+)f (0)
= P0

μ
∫∞
y=0 A(y − x)f (y)dy

= P0

θP0
= 1

θ
. (6.73)
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Hence,
f (x)
F(x) = 1

r(x)E(bx)
,

d
dx lnF(x) = 1

r(x)E(bx)
,

F(x) = C1e
∫ x
y=0

1
r(y)E(by )

dy
,

F(x) = P0e
∫ x
y=0

1
r(y)E(by )

dy
, x ≥ 0,

f (x) = P0
r(x)E(bx)

e
∫ x
y=0

1
r(y)E(by )

dy
, x > 0.

(6.74)

In (6.74) F(0) = P0 and F(∞) = 1.

Example 6.5 As a mild check on (6.74) let r(x) ≡ 1, x > 0, A(x) = e−λx, x ≥ 0,
inter-demand time =

dis
Expλ (i.e., θ = λ), corresponding to an M/M/1 queue (i.e., age

in G/M/1 specialized to M/M/1).
In M/M/1 the relevant quantities are: F(x) = 1 − λ

μ
e−(μ−λ)x, x ≥ 0; f (x) =

λP0e−(μ−λ)x, x > 0; P0 = 1 − λ/μ. Then

E(bx) = F(x)

f (x)
= 1 − λ

μ
e−(μ−λ)x

λP0e−(μ−λ)x
.

In (6.74), using F(0) = P0,

∫ x

y=0

1

r(y)E(by)
dy =

∫ x

y=0

1

E(by)
dy =

∫ x

y=0

f (y)

F(y)
dy = ln

(
F(x)

F(0)

)
,

F(x) = P0e
∫ x
y=0

1
r(y)E(by )

dy = P0e
ln
(

F(x)
F(0)

)
= P0

F(x)

F(0)

= 1 − λ

μ
e−(μ−λ)x, x ≥ 0.

6.7.5 k/G/M Dam

Let the influx rate be r(x) = k, x > 0, k > 0, and assume the output sizes are =
dis

Expλ.

Thus A(x) = e−λx, x > 0, λ > 0 (see Fig. 6.10). Since the inter-output times when
W (t) > 0 are =

dis
Expμ, the sojourn time ax =

dis
a0 (nonempty period), and E (ax) =

(1 − P0) / (θP0), x > 0. From (6.68)

f (x) = E(a0)θP0

r(x)E(ax)
e− ∫ x

y=0
1

r(y)E(ay )
dy = θP0

k
e− θP0

k(1−P0)
x
, x > 0. (6.75)

From (6.70)
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P0 = 1

1 + θ
k

∫∞
x=0 e

− ∫ x
y=0

dy
kE(a0) dx

= μ − λk

μ − λk + θ
= 1

1 + θ/ (μ − λk)
, (6.76)

where the term (μ − λk) / (μ − λk + θ) in (6.76) is derived in formula (6.79) in
Sect. 6.7.7 below.

6.7.6 E(Nonempty Period)

Assume a nonempty (aka non-empty) period a0 starts at time τ0. Let τ1 < τ2 < · · · ,
be the times of successive outputs within a0, that occur after τ0. Let τ ∗

1 = τ1 and

τ ∗
n+1 = min{τi > τ ∗

n |0 < W (τi) < W (τ ∗
n )}, n = 1, 2, . . . .

The ordinates {W (τ ∗
n )}n=1,2,... are strictly descending ladder points (Fig. 6.10). (See

Example (d), p. 280 in [73]; Fig. 1, p. 192, and pp. 390–394 in [74])). Let I∗ be the
initial influx amount, i.e., up to the first output (decrement) at τ1 (I∗ = W (τ−

1 )). Let
NI∗ denote the number of descending ladder points during a0. Since output sizes
are =

dis
Expλ, the memoryless property implies these ladder points are distributed as

Poisson “arrivals” in a length I∗, where E(I∗) = E(τ1 − τ0) · k = k/μ. If the output
at τ1 should empty the dam, then a0 = τ1 − τ0 = I∗/k. In general,

a0 = I∗

k
+

NI∗∑
i=1

a0,i, (6.77)

Time

0

Non-empty 
Period

Empty
Period

W(t)

SP
Expθ

Slope = k

Excess 
demand
below 0

0τ *
1τ *

2τ *
3τ *

4τ

Expλ

0a

*I * * *
*

Fig. 6.10 Sample path for r(·)/G/M dam with r(x) ≡ k, A(x) = e−λx. Shows
I∗ = k(τ1 − τ0), and descending ladder points at τ ∗

1 , . . . , τ ∗
4 . The indicated ladder

point ordinates are equivalent to four Poisson arrivals (rate λ) within length I∗
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where the a0,is are i.i.d. r.v.s =
dis

a0, independent ofNI∗ (see Fig. 6.10 and Sect. 3.4.12).

From (6.77)

E(a0) = E(I∗)
k

+ E(NI∗) · E(a0)

= 1

μ
+ λE(I∗) · E(a0)

= 1

μ
+ λ

k

μ
· E(a0),

E(a0) =
1
μ

1 − λk
μ

= 1

μ − λk
. (6.78)

6.7.7 Probability of Emptiness and PDF of Content

We compute {P0, f (x)}x>0. Since E(empty period) = E(b0) = 1/θ, from (6.78)

Po = E(b0)

E(b0) + E(a0)
=

1
θ

1
θ

+ 1
μ−λk

= μ − λk

μ − λk + θ
. (6.79)

Substituting for P0 into (6.75) gives

f (x) = θ(μ − λk)

k(μ − λk + θ)
e− (μ−λk)

k x, x > 0. (6.80)

6.8 〈S,S〉 Inventory with Product Decay

Consider a continuous review 〈s, S〉 inventory system with reorder point s ≥ 0,
and order-up-to level S > s. Assume that demands for stock occur at a Poisson
rate λ. The demand quantities, Di, i = 1, 2, . . ., are i.i.d. random variables with
common cdf B(x), and B(x) = 1 −B(x), x ≥ 0. Denote the stock on hand process by
{I(t)}t≥0. Assume the stock decays at rate dI(t)/dt = −r(I(t)) < 0 when the stock
is at level I(t) ∈ (s, S]. The ordering policy is as follows. If the stock either decays

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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S

s

SP

0

Time 

I(t) Replenishment cycles

0t

Level x

1t

Fig. 6.11 Sample path {I(t)}t≥0 in 〈s, S〉 inventory with general deacy

continuously to level s, or jumps downward to, or below level s due to a demand,
then an order is placed and received immediately, replenishing the stock up to level
S. All SP upward jumps end at level S. The regular state space is (s, S] since all
probability is concentrated on (s, S]. The wide-sense state space is (−∞, S], which
accounts for SP downward jumps ending below s, and immediately jumping up to
end at S (double jumps). The latter upward SP jumps correspond to replenishments
(see Figs. 6.11 and 2.2 and Example 2.2). In order to focus on the LC analysis, we
assume there is no lead time or backlogging. These extensions, as well as others, can
be incorporated into the analysis (e.g., [4, 31]).

Let f (x), s < x ≤ S, and F(x), x ≤ S, denote, respectively, the steady-state pdf
and cdf of I(t) as t → ∞. Assume each order size =

dis
Expμ.

6.8.1 PDF of Inventory with Constant Decay Rate k

To focus on the LC solution technique, we let the rate of decay be r(x) := k > 0,
x ∈ (s, S], and assume demand sizes are =

dis
Expμ. We derive an integral equation for

f (x), x ∈ (s, S] in the following section. (The decay rate is generalized to r(x) = kx
in [36].)

This 〈s, S〉 model is a special case of the generalized M/G/r(·) dam in Sect. 6.6,
with demand rate λd ≡ λ, the rate of sample-path downward jumps. The cdf of the
demand sizes is Bd(x) ≡ B(x) = 1 − e−μx, x > 0. The upward jump rate due to

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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exogenous factors is λu ≡ 0. In this standard 〈s, S〉 model all upward jumps are due
to replenishments (prescribed, i.e., policy jumps). (The decay rate is generalized to
r(x) = kx in [36].)

6.8.2 Equation and Solution for PDF of Inventory

We develop an integral equation for f (x), x ∈ (s, S]. Consider a sample path of
{I(t)}t≥0 (similar to Fig. 6.11 with slope = −k). Fix level x ∈ (s, S). The rate at
which the SP decays into level x ∈ (s, S) from above (due to left-continuous strict
downcrossings of x) is

lim
t→∞

E
(Dc

t (x)
)

t
= r(x)f (x) = kf (x).

(We use the terms “rate” and “expected rate” synonymously when they are equal
a.s.). The SP decay rate into level s is

lim
t→∞

E
(Dc

t (s)
)

t
= r(s+)f (s+) ≡ r(s)f (s) = kf (s).

The rate at which the SP jump-downcrosses level x ∈ [s, S) due to demands is

lim
t→∞

E
(
Dj

t(x)
)

t
= λ

∫ S

y=x
B(y − xf (y)dy = λ

∫ S

y=x
e−μ(y−x)f (y)dy

(jumps start at y ∈ (x, S) and are greater than y− x). The total SP downcrossing rate
of level x ∈ (s, S] is

lim
t→∞

E
(
Dc

t (x)
)

t
+ lim

t→∞

E
(
Dj

t(x)
)

t
= r(x)f (x) + λ

∫ S

y=x
B(y − xf (y)dy

= kf (x) + λ

∫ S

y=x
e−μ(y−x)f (y)dy, x ∈ (s, S] .

The total “downcrossing” rate of the reorder point s is

lim
t→∞

E(Dt(s))

t
= r(s)f (s) + λ

∫ S

y=s
B(y − s)f (y)dy

= kf (s) + λ

∫ S

y=s
e−μ(y−s)f (y)dy,



6.8 〈S, S〉 Inventory with Product Decay 377

where we have counted a left-continuous hit of level s from above as a downcrossing
of s.

The SP total downcrossing rate of level s is equal to the SP egress rate out of
the order-up-to level S below (related to right limit tangent below in Fig. 2.15 in
Chap. 2). This equality is due to the ordering policy, which replenishes stock on hand
to level S with each left continuous hit, or jump downcrossing, of level s. (There is a
one-to-one correspondence between SP egresses from S below, and downcrossings
of level s.) Rate balance into and out of state {S} results in the equality

r(s)f (s) + λ
∫ S
y=s B(y − s)f (y)dy = r(S)f (S),

kf (s) + λ
∫ S
y=s e

−μ(y−s)f (y)dy = kf (S),
(6.81)

where r(S) := r(S−) and f (S) := f (S−).
A crucial simplifying feature of this model is: the total SP upcrossing rate of every

level x ∈ (s, S] is equal to the total downcrossing rate of level s (replenishment rate).
Applying Eq. (6.81), and rate balance across level x, yields an integral equation for
f (x)

r(x)f (x) + λ

∫ S

y=x
B(y − x)f (y)dy = r(s)f (s) + λ

∫ S

y=s
B(y − s)f (y)dy

= r(S)f (S), x ∈ (s, S], (6.82)

or, since r(x) ≡ k,

kf (x) + λ

∫ S

y=x
e−μ(y−x)f (y)dy = kf (s) + λ

∫ S

y=s
e−μ(y−s)f (y)dy

= kf (S), x ∈ (s, S]. (6.83)

The state space has no atoms, i.e., there is no state in which the SP spends a
positive time. The probability distribution of stock on hand is concentrated on (s, S].
The normalizing condition is ∫ S

x=s
f (x)dx = 1. (6.84)

6.8.3 Solution of Integral Equation (6.83)

Taking d/dx in (6.83) gives

kf ′(x) + μ
[
kf (S) − kf (x)

]− λf (x) = 0. (6.85)

In (6.85), using the second equality in Eq. (6.83) we replace the term
μλ
∫ S
y=x e

−μ(y−x)f (y)dy by μ
[
kf (S) − kf (x)

]
. The term −λf (x) results from taking

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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the derivative under the integral sign. Simplifying (6.85) gives the differential equa-
tion

f ′(x) −
(

μ + λ

k

)
f (x) = −μf (S). (6.86)

Multiplying both sides of (6.86) by the integrating factor e−(μ+ λ
k )x, integrating with

respect to x, and simplifying gives

f (x) = μf (S)

μ + λ
k

+ Ce−(μ+ λ
k )x, (6.87)

where C is a constant. Setting x = S in (6.87) yields

f (S) = μ + λ
k

λ
k

· Ce−(μ+ λ
k )S;

which substituted back into (6.87) gives

f (x) = μk

λ
· Ce−(μ+ λ

k )S + Ce−(μ+ λ
k )x, s < x ≤ S. (6.88)

Applying the normalizing condition (6.84) leads to

μk
λ

· Ce−(μ+ λ
k )S(S − s) + C e

−(μ+ λ
k )S−e

−(μ+ λ
k )s

μ+ λ
k

= 1,

or 1

C μk
λ e

−(μ+ λ
k )S

= (S − s) + λ
μk

1−e
−(μ+ λ

k )(S−s)

μ+ λ
k

.

Factoring (6.88) results in

f (x) = C
μk

λ
e−(μ+ λ

k )S
(

1 + λ

μk
e−(μ+ λ

k )(S−x)

)
, s < x ≤ S.

Letting A := C μk
λ
e−(μ+ λ

k )S gives

f (x) = A

(
1 + λ

μk
e−(μ+ λ

k )(S−x)

)
, s < x ≤ S, (6.89)

wherein (applying (6.84)),

A =
[
(S − s) + λ

μk
(
μ + λ

k

) (1 − e−(μ+ λ
k )(S−s)

)]−1

.
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Fig. 6.12 PDF f (x) in 〈s, S〉 inventory with decay rate k. λ = 2,μ = 0.10, k = 1,

S = 2.5, s = 1. Note that f (x) = 0

{
x < 1,

x > 2.5

In (6.89) f (x) is convex and increasing on (s, S) (i.e., f ′(x) > 0, f ′′(x) > 0).
This property agrees with intuition which suggests that the stock resides a large
proportion of time at high levels closer to S and a smaller proportion of time near
s, for every k > 0. This accumulation of inventory near S is a consequence of the
re-order policy, which instantaneously replenishes the stock up to level S at each
replenishment instant since there is no lead time. (See the numerical example in
Sect. 6.8.8 and Figs. 6.12 and 6.13.)

6.8.4 Sojourns Above and Below Level x

Let ax := sojourn time above x, and bx := sojourn time at or below x, x ∈ (s, S], in
{I(t)}t≥0. Every instant t ≥ 0 such that I(t) = S is a regenerative point of {I(t)}t≥0.
The regenerative property holds whether replenishments up to S are due to SP smooth
decays into level s from above, or due to SP jumps that end at or below level s as
a result of a demand. For example, consider Fig. 6.11. At time points like t1 the SP
makes a left-continuous hit of level s from above, and jumps upward to level S. The
Poisson arrival process for demands ensures that the excess arrival time until the next
demand is =

dis
Expλ (memoryless property).

Time Between Successive Hits of Level S
The times between successive instants when I(t) = S, form a renewal process. Let
dS := inter-level-S time. From (6.83), the total SP downcrossing rate of level s is
identical to the
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Fig. 6.13 CDF F(x) in 〈s, S〉 inventory with decay rate k. λ = 2,μ = 0.10, k = 1,

S = 2.5, s = 1

replenishment rate = kf (s) + λ

∫ S

y=s
e−μ(y−s)f (y)dy = kf (S).

The value of f (S) is obtained from (6.89). Thus, with A as in (6.89),

E(dS) = 1

kf (S)
= μ

A(kμ + λ)
, (6.90)

E(ax)
The proportion of time the SP spends above level x is 1 − F(x), which is equal to
E(ax)
E(dS)

= E(ax)kf (S) (by the renewal reward theorem). Thus

E(ax) = 1 − F(x)

kf (S)
= μ(1 − F(x))

A(kμ + λ)
, (6.91)

where F(x) =
∫ x
y=s f (y)dy is obtained from (6.89).

E(bx)
Similarly,

E(bx) = F(x)

kf (S)
= μF(x)

A(kμ + λ)
. (6.92)

We can also obtain E(bx) using (6.91) and

E(ax) + E(bx) = E(dS) = 1

kf (S)
.
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A check on E(ax), E(bx) when x = s, using F(s) = 0, 1 − F(s) = 1, and (6.90), is

E(as) = 1 − F(s)

kf (S)
= 1

kf (S)
= μ

A(kμ + λ)
= E(dS),

the expected replenishment cycle, as intuitively expected. Also E(bs) = F(s)/kf (S)
= 0, which agrees with the SP spending zero time below level s. (State-space jumps,
including jumps that end below s, occur not in Time because they are perpendicular
to the time axis. See Remark 2.2 in Sect. 2.3).

6.8.5 Replenishments Due to Two Types of Signal

The replenishment rate (total ordering) is the SP total downcrossing rate of level s,
which is the right side of (6.83), namely kf (S) = A(kμ + λ)/μ (A as in (6.89)).

Replenishments are made up to level S whenever one of two types of signals
occurs. A type-c signal denotes an SP left continuous decay into level s from above
(time point t1 in Fig. 6.11). A type-j signal denotes an SP downward jump that ends
at or below s, due to a demand (time point t0 in Fig. 6.11). (We use the term ‘type- k
order’ to mean an order is due to a type-k signal, k = c, j.) An order cycle (same as
replenishment cycle) is the time between two successive instants when an order is
received, namely, dS . Due to Poisson arrivals of demands, the sequence

{
dS,i
}
i=1,2,...

with dS,i =
dis

dS , is a renewal process. An order initiating dS is either type-c or type-j.

Let Pc := P(an order is type-c), Pj := P(an order is type-j). Then Pc + Pj = 1.
We now determinePc andPj. The counting process {Dc

t (s)}t≥0 is a renewal process
due to Poisson arrivals of demand. Since there is exactly 1 type-c or exactly 1 type-j
order in an ordering cycle,

E(number of type-c orders in dS) = 1 · Pc + 0 · Pj = Pc,

E(number of type-j orders in dS) = 0 · Pc + 1 · Pj = Pj.

By the renewal reward theorem,

E(number of type-c orders in dS)

E(dS)
= lim

t→∞
E(Dc

t (s))

t
= r(s)f (s)

=⇒ Pc

E(dS)
= lim

t→∞
E(Dc

t (s))

t
= r(s)f (s).

Since E(dS) = 1/ (r(S)f (S)),

Pc = r(s)f (s) · E(dS) = r(s)f (s)

r(S)f (S)
. (6.93)

Intuitively, in (6.93) the numerator is the rate of type-c orders; the denominator is
the total rate of orders.

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Also, {Dj
t(s)},≥0 is a renewal process (due to Poisson arrivals of demands). There-

fore

E(number of type-j orders in dS)

E(dS)
= 1 · Pj + 0 · Pc

E(dS)

= Pj

E(dS)
= lim

t→∞
E(Dj

t(s))

t
,

and (see Sect. 6.6),

Pj = lim
t→∞

E(Dj
t(s))

t
E(dS) = λ

∫ S
y=s B(y − s)f (y)dy

r(S)f (S)
. (6.94)

Intuitively, in (6.94) the numerator is the rate of type-j orders; the denominator is the
total rate of orders.

If r(x) ≡ k, x ∈ (s, S], and the demand sizes are =
dis

Expμ, then

Pc = kf (s)

kf (S)
= f (s)

f (S)
,Pj = λ

∫ S
y=s e

−μ(y−s)f (y)dy

kf (S)
.

implying, with A as in (6.89),

Pc = kμ + λe−( k
λ +μ)(S−s)

kμ + λ
, (6.95)

Pj =
μλA

∫ S
y=s e

−μ(y−s)

(
1 + λe

−( λ
k +μ)(S−y)

kμ

)
dy

kμ + λ
. (6.96)

6.8.6 Expected Order Size

Denote the replenishment order by R. If an order is type-c then R = S− s. If an order
is type-j then R = S − s + rs where rs := excess demand below s. If the demand
sizes are =

dis
Expμ then rs =

dis
Expμ (by memoryless property). Since Pc + Pj = 1, the

expected order size is

E(R) = (S − s)Pc +
(
S − s + 1

μ

)
Pj = S − s + Pj

1

μ
, (6.97)

where Pj is given in (6.96).
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6.8.7 Cost Rate

Since there is no backlogging or lead-time costs in the 〈s, S〉 model considered here,
the cost function accounts only for costs of setup of placing orders, and for holding
inventory. Let C := total average cost rate, Cs := setup cost per type-c order, Cj, :=
setup cost per type-j order. Let CH be the holding cost per unit per unit time. Then

C = Cs · (type-c ordering rate)

+ Cj · (type-j ordering rate) + CH
∫ S

x=s
xf (x)dx

= Cskf (s) + Cj
∫ S

x=s
e−(x−s)μf (x)dx + CH

∫ S

x=s
xf (x)dx, (6.98)

where f (x) is given by (6.89).

6.8.8 Numerical Example

In 〈s, S〉 with r(x) ≡ k and all demand sizes =
dis

Expμ, assume λ = 2, μ = 0.10,

k = 1, S = 2.5, s = 1. Calculations giveA = 0.094200 in (6.89). The pdf of inventory
is

f (x) = 0.094200 + 1.88400e(−5.250+2.10x), 1 < x ≤ 2.5,

f (1) = 0.1749, f (2.5) = 1.9782.

SP

S

s

Time

I(t)

Level x

0

Fig. 6.14 Sample path of {I(t)}t≥0 in 〈s, S〉 inventory with no decay. The SP stays
at a level for a time =

dis
Expλ
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The cdf of inventory is

F(x) = −0.132645 + 0.094200x + 0.897144e(−5.25+2.1x), 1 < x ≤ 2.5,

F(1) = 0, F(2.5) = 1.0.

Functions f (x) and F(x) are plotted in Figs. 6.12 and 6.13, which demonstrate
convexity and the probability massed towards level S.

6.9 〈S,S〉 Inventory with No Product Decay

Consider an 〈s, S〉 model as in Sect. 6.8, having demand sizes =
dis

Expμ and no decay

of inventory. Thus r(x) ≡ 0. Once the stock on hand enters a level in (s, S], it remains
at that level for a time =

dis
Expλ, until the next demand instant (see Figs. 2.6 and 6.14

above). The state space has an atom at level S (positive probability). Every state
{x} ∈ {y|y ∈ (s, S)} is continuous (not an atom), because the probability of entering
and remaining in such {x} for a positive time is 0, due to continuous demand sizes.

Let �S = P({I(t)}t≥0 is at level S) in the steady state. Equating the SP down- and
upcrossing rates of level x ∈ (s, S) yields an integral equation for f (x),

λ�Se
−μ(S−x) + λ

∫ S

y=x
e−μ(y−x)f (y)dy

= λ�Se
−μ(S−s) + λ

∫ S

y=s
e−μ(y−s)f (y)dy = λ�S, (6.99)

λ�Se
−μ(S−x) + λ

∫ S

y=x
e−μ(y−x)f (y)dy = λ�S, s < x < S. (6.100)

The first equality in Eq. (6.99) indicates that the upcrossing rate of every x ∈ (s, S)
is equal to the downcrossing rate of level s.

Equation (6.100) employs the second equality in (6.99), which expresses the fact
SP rate into {S} = SP rate out of {S}. The normalizing condition is

�S +
∫ S

x=s
f (x)dx = 1. (6.101)

6.9.1 PDF of Inventory

Some algebra using (6.100) and (6.101), shows that {�S, f (x)}x∈(s,S) is given by

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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�S = 1

1 + μ(S − s)
, f (x) = μ

1 + μ(S − s)
, x ∈ (s, S). (6.102)

That is, f (x) is uniformly distributed on state-space interval (s, S), and there is an
atom at S. In (6.102), if μ < 1 then �S > f (x), x ∈ (s, S)̇ ; if μ > 1 then �S < f (x),
x ∈ (s, S)̇. If μ = 1 then �S = f (x), x ∈ (s, S)̇.

6.9.2 Sojourn Times Above and Below a Level

The rate of replenishments up to S is the total SP downcrossing rate of level s, namely

λ�Se
−μ(S−s) + λ

∫ S

y=s
e−μ(y−s)f (y)dy = λ�S,

since all replenishments are due to type-j orders that include the excess s. Let dS :=
time between two successive replenishments up to level S (same as an ordering cycle).
Then

E (dS) = 1

λ�Se−μ(S−s) + λ
∫ S
y=s e

−μ(y−s)f (y)dy
= 1

λ�S
. (6.103)

Fix level x ∈ (s, S]. From the theory of regenerative processes (specifically the
renewal reward theorem)

E(ax)

E (dS)
= 1 − F(x),

E(bx)

E (dS)
= F(x), x ∈ [s, S] ,

E(ax) = (1 − F(x))E (dS) = 1 − F(x)

λ�S
, (6.104)

E(bx) = F(x)E (dS) = F(x)

λ�S
, (6.105)

where

F(x) =
∫ x

y=s
f (y)dy = μ(x − s)

1 + μ(S − s)
, s < x ≤ S.

The law of total probability gives

F(S) = μ(S − s)

1 + μ(S − s)
+ �S = μ(S − s)

1 + μ(S − s)
+ 1

1 + μ(S − s)
= 1.
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6.9.3 Ordering Characteristics

Ordering Rate
The total ordering rate is the right hand side of (6.100), i.e., λ�S = λ/ (1 + μ(S − s)).

Expected Order Size
All orders are type-j, signalled by demands ending at or below s. Thus Pc = 0 and
Pj = 1 (see Sect. 6.8.5 and 6.8.6). Hence the expected order size is

E(R) = S − s + 1

μ
. (6.106)

Expected Number of Demands in an Ordering Cycle
Let NdS := number of demands in an ordering cycle dS . By the renewal reward
theorem,

E(NdS )

E(dS)
= λ,

E(NdS ) = λE(dS) = λ

λ�S
= 1

�S
= 1 + μ(S − s). (6.107)

An alternative derivation of (6.107) using stopping times, is of interest. First,

NdS = min

{
n|

n∑
i=1

Di > S − s

}
, (6.108)

implying NdS is a stopping time for the sequence {Di}i=1,2,.... Also

dS =
NdS∑
i=1

Ti,

where Ti ≡
dis
T =

dis
Expλ.NdS is also a stopping time for the sequence {Ti}i=1.2.... because

there is a 1–1 correspondence between {Ti}i=1.2.... and {Di}i=1,2,.... Thus

E(dS) = E(NdS ) · E(T),

and

E(NdS ) = E(dS)

E(T)
=

1
λ�S

1
λ

= 1

�S
= 1 + μ(S − s), (6.109)

corroborating (6.107).
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6.9.4 Cost Rate

Let CO, CH denote the setup cost per order and holding cost per order per unit time,
respectively. The total average cost rate is

C = CO · (ordering rate) + CH
∫ S+

x=s
xf (x)dx.

The ordering rate is λ�S = λ/ (1 + μ(S − s)). The average stock on hand is

∫ S+

x=s
xf (x)dx = S�S +

∫ S

x=s

μx

1 + μ(S − s)
dx

= S

1 + μ(S − s)
+ μ(S2 − s2)

2(1 + μ(S − s))

= 2S + μ(S2 − s2)

2(1 + μ(S − s))
.

Thus

C = λ

1 + μ(S − s)
· CO + 2S + μ(S2 − s2)

2(1 + μ(S − s))
· CH . (6.110)

Remark 6.11 In the standard 〈s, S〉 with no decay, suppose the inter-demand times
form a renewal process (not necessarily a Poisson process). Then the results will
be the same as in this section, except for the arrival-point mixed pdf denoted{
�S,ι, fι(x)

}
x∈(s,S)

, because PASTA will not apply. The integral equation for the pdf
fι(x) would be the same as (6.100), where λ represents the renewal rate of the demand
process. The arrival rate λ cancels out of the equation. Thus the formulas for �S,ι

and fι(x), x ∈ (s, S) in (6.102) are independent of λ. The underlying reason for this
property is that all orders are type-j at the ends (and starts) of inter-demand times.
When the SP jumps up to level S, the time until the next demand is a full inter-arrival
time. Hence

{
dS,i
}

is a renewal process, where dS,i ≡
dis

dS .

Remark 6.12 For exposition, we have applied LC to only two basic 〈s, S〉 inventory
systems. We emphasize that LC equally applies to a vast array of other inventory
systems as well, e.g., 〈r, nQ〉, variations of EOQ models, models with lead time
and backlogging, production-inventory models of various complexity, models with
a variety of state-dependent control policies (e.g., [3, 4]).
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