
Chapter 4
M/M/c Queue

4.1 Introduction

In Sect. 4.2 below we prove a useful general result (which we call Theorem
B) about SP transitions. This theorem facilitates the analysis of transient
distributions of state variables, and will be applied variously in the sequel.

Sections 4.3–4.5 explain the sample-path structure and dynamics of the
generalized M/M/c queue. In the generalized model the SP can make a tran-
sition between disjoint state-space sets (called pages or sheets). Geometri-
cally, sheets are analogous to a package of sheets of paper, cards in a deck, or
pages of a book. They form a discrete number of disjoint subsets of the state
space, not connected by a continuous segment of the sample path. (We can
also model complex single-server queues using the method of sheets (aka
method of pages) (see, e.g., [39, 53, 93]). The method of sheets provides
LC with great flexibility to analyze different types of stochastic models: e.g.,
queues; dams (see Sect. 11.8); inventories; production-inventories; actuarial
risk models, replacement models; models in the natural sciences, etc.

Sections 4.6.1–4.6.9 develop equations for transient and steady-state pdfs
of wait in the generalized M/M/c model. Sections 4.7–4.12 provide steady-
state analyses of M/M/c variants using LC. In particular, Sect. 4.8 derives
known results for the standard M/M/c queue as a special case of the general-
ized model. The remaining Sections of the Chapter study variants of M/M/c
queues. All Sections provide empirical background for potentially novel ap-
plications of LC.
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4.2 Theorem B for Transient Analysis

We state and prove Theorem B. This straightforward theorem facilitates the
transient analyses of a variety of stochastic models.

4.2.1 Theorem B

We first give a fundamental generalization of Theorems 3.1 and 3.2 of Chap. 3,
which is useful for LC derivations of integro-differential equations for tran-
sient distributions in general.

Let {X (t)}t≥0 denote a sample path of a general stochastic process with
state space S. Let A, B be arbitrary measurable subsets of S. Denote the tran-
sient probability P(X (t) ∈ A) at instant t by Pt (A), t ≥ 0. Let Pt1,t2(A, B)
be the joint probability P(X (t1) ∈ A, X (t2) ∈ B) at instants t1, t2 ≥ 0. Let
It (A) be the number of SP entrances and Ot (A) the number of SP exits of
A, during (0, t) (see Fig. 2.7). Assume the derivatives

∂

∂t
Pt (A),

∂

∂t
E(It (A)),

∂

∂t
E(Ot (A))

exist for all t > 0. Both

∂

∂t
E(It (A)) > 0 and

∂

∂t
E(Ot (A)) > 0

hold wherever the derivatives exist, since It (A) and Ot (A) are counting
processes which increase (wide sense, i.e., not strictly; they may be step
functions) as t increases. The following useful result holds.

Theorem 4.1 Theorem B (P.H. Brill, 1983)

E(It (A)) = E(Ot (A)) + Pt (A) − P0(A) (4.1)

∂

∂t
E(It (A)) = ∂

∂t
E(Ot (A)) + ∂

∂t
Pt (A). (4.2)

Proof We give two proofs in order to develop intuition about the result.
Proof 1: This proof is similar to that of Theorems 3.1 and 3.2 in Sect. 3.2.3

above. We make the correspondence:

A ↔ (−∞, x], It (A) ↔ Dt (x), Ot (A) ↔ Ut (x),

Pt (A) ↔ Ft (x), t ≥ 0, Pt1,t2(A, A) ↔ Ft1,t2(x, x), t1, t2 ≥ 0.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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SP down- and upcrossings of level x are entrances and exits of sets (Defi-
nitions 2.2–2.5). Note that

It (A) − Ot (A) = +1 ⇐⇒ X (0) ∈ Ac, X (t) ∈ A,

It (A) − Ot (A) = −1 ⇐⇒ X (0) ∈ A, X (t) ∈ Ac,

It (A) − Ot (A) = 0 ⇐⇒ X (0) ∈ A, X (t) ∈ A

or X (0) ∈ Ac, X (t) ∈ Ac.

We thus obtain the following values and corresponding probabilities:

It (A) − Ot (A) Probability
+1 P0,t (Ac, A) = Pt (A) − P0,t (A, A)
−1 P0,t (A, Ac) = P0(A) − P0,t (A, A)

0 1 − Pt (A) − P0(A) + 2P0,t (A, A)

Taking the expected value E(It (A) − Ot (A)) and then the derivative
∂
∂t E(It (A) − Ot (A)) yields (4.1) and (4.2).
Proof 2: Fix t ≥ 0. The probability of the sure event S is

Pt (S) = Pt (A ∪ Ac) = Pt (A) + Pt (Ac) = 1.

Consider Pt1,t2(A, S). Events {X (t1) ∈ A} and {X (t2) ∈ S} are independent
for every 0 ≤ t1 
= t2. Knowledge that {X (t1) ∈ A} has occurred, does not
effect the probability of event {X (t2) ∈ S}, which is Pt2(S) = 1, and vice
versa. Similarly, the events {X (t1) ∈ S} and {X (t2) ∈ B} are independent.
Note that S = A ∪ Ac = B ∪ Bc. Hence

Pt1(A) = Pt1,t2(A,S) = Pt1,t2(A, B ∪ Bc),

Pt2(B) = Pt1,t2(S, B) = Pt1,t2(A ∪ Ac, B),

}

or
Pt1(A) = Pt1,t2(A, B) + Pt1,t2(A, B

c),

Pt2(B) = Pt1,t2(A, B) + Pt1,t2(A
c, B).

}
(4.3)

The possible values of It (A) − Ot (A) and corresponding joint probabilities
at time points t1 = 0 and t2 = t > 0 are:

It (A) − Ot (A) Probability
0 P0,t (A, A) + P0,t (Ac, Ac)

+1 P0,t (Ac, A)
−1 P0,t (A, Ac)

(4.4)

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Taking the expected value of It (A) − Ot (A) in (4.4) yields

E (It (A) − Ot (A)) = P0,t (Ac, A) − P0,t (A, Ac)

= P0,t (Ac, A) + P0,t (A, A)

− (P0,t (A, A) + P0,t (A, Ac))

= Pt (A) − P0(A),

which gives (4.1). Taking ∂/∂t in (4.1) yields (4.2). �

Remark 4.1 Theorem B also applies to multi-dimensional processes with
state space S ⊆ R

n , n = 2, . . ., whose states are described by more than one
continuous random variable. (Note: The symbol R denotes the set of real
numbers.) We analyze two multi-dimensional inventory models in steady
state, in Chap. 7.

4.3 Generalized M/M/c Queue

Customers arrive at an M/M/c queue in a Poisson stream at rate λ. There
is one waiting line and c servers. Arrivals start service from the first avail-
able server, in order of arrival. We assume that for each arrival, the service
time is exponentially distributed with rate selected from a nonempty set µ =
{μ0, . . . ,μJ } of J + 1 positive constants, depending on a server-assignment
policy specified for the model; this allows service rates to be state dependent.
Thus the standard M/M/c queue is a special case (see Sect. 4.8 below; p. 66ff
in [84]).

For the generalized M/M/c queue we use a ‘partition/synthesis’ technique.
We partition the state space into zero-wait and positive-wait states, and an-
alyze the partitioned states to obtain ‘partial’ pdfs of the waiting time using
LC. Then we synthesize those results to obtain the ‘total’ pdf of the waiting
time, and related quantities of interest.

We next discuss: virtual wait; server workload; system configuration; the
system point process (SP process); and give examples. (References for this
section are [11] and [52], and others cited below.)

4.3.1 Virtual Wait and Server Workload

Notation 4.2 In the remainder of Sect. 4.3 we use two symbols for customers
arriving to the system, depending on the context. (1) C (t) denotes a would-

http://dx.doi.org/10.1007/978-3-319-50332-5_7
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be (potential) time-t arrival, t ≥ 0. (2) Ca,t denotes an actual time-t arrival,
that arrives at t−.

Let C(t) be a would-be (potential) time-t arrival to the system, t ≥ 0. Let
Ri (t) denote the (remaining) workload (in time units) at instant t ≥ 0, of
server i , i = 1, . . . , c (server numbering is arbitrary). Let {W (t)}t≥0 be the
virtual wait process. The random variable W (t) is the would-be wait required
by C(t) measured from time t until the start of service of C(t). Thus W (t)
= mini=1,...,c {Ri (t)} , t ≥ 0. We assume: sample paths of {W (t)}t≥0 and of
{Ri (t)}t≥0 are right continuous and have left limits; the model parameters are
such that the steady state exists (condition relaxed for the transient analysis
in Sects. 4.6.1–4.6.8 below).

Remark 4.2 In M/M/c (c ≥ 2), virtual wait 
= system workload. The system
workload at time t is

∑c
i=1 Ri (t).

Since Ca,t is an actual time-t arrival to the system, that arrives at t−, Ca,t ’s
wait is W (t−) before starting service, from some server i∗t . If R j (t−) = 0 for
some server j , then W (t−) = 0, and i∗t is one of the idle servers at t

_
. For

zero-wait arrivals, server i∗t is selected from the idle servers according to the
model’s server-assignment policy (e.g., randomly, or by server number, etc.).
If Ri (t−) > 0, i = 1, . . . , c, then W (t−) > 0, and Ca,t will start service from
server i∗t at instant t + W (t−) if i∗t has the minimum workload among the c
occupied servers at t− (further explained in Sect. 4.4 below).

4.3.2 Sample Paths of Workload and Virtual Wait

In some models, sample paths of Ri (t), i = 1, . . . , c, are useful for the overall
analysis. We now outline how to construct a sample path of each Ri (t), t ≥ 0,
i = 1, . . . , c. (Refer to Fig. 4.1, which depicts sample paths for a special case
of generalized M/M/c with c = 2.) Without loss of generality, assume the
system is empty at t = 0. Then Ri (t) = 0, i = 1, . . . , c, from t = 0 until the
first arrival instant (C1). A new arrival (C2) starts service from a server i∗ and
Ri∗(·) jumps upward to the ordinate =

dis
Expμi∗ , where μi∗ ∈ µ. Ri∗(·), then

decreases steadily with slope = −1 as service progresses.
Eventually all c servers become occupied simultaneously (just after C2

arrives). Let t1 := min{t |all c servers are occupied}. If the next customer Cτ

arrives at time τ > t1 before any further service completion, then Cτ is the
sole customer waiting to start service at time τ (C3). Cτ ’s server will be i∗τ
if Ri∗τ (τ

−) = mini=1,...,c
{

Ri (τ
−)
} := W (τ−) (virtual wait). The workload
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Fig. 4.1 Sample paths
of R j (t), j = 1, 2, and
W (t), t ≥ 0 in M/M/2.
Cn , n = 1, 2, …, denote
customers at successive
arrival instants

1R (t)

2R (t)

W(t)

Time

1C

2C 3C

4C

5C

Ri∗τ (τ
−) jumps upward by Cτ ’s service time si∗τ =

dis
Expμi∗τ , where μi∗τ ∈ µ.

Thus Ri∗τ (τ ) = Ri∗τ (τ
−) + si∗τ = W (τ−) + si∗τ . For all other servers, Ri (τ ) =

Ri (τ
−), i 
= i∗τ . Subsequently W (τ ) = mini=1,...,c {Ri (τ )}.

The next arrival that “sees” at least one idle server (C4), will cause the
{W (t)}t≥0 to evolve similarly. The next arrival that finds all servers busy will
be assigned to that server which has minimum workload (C5) and so forth.
If arrivals find several customers waiting in line, the dynamics are similar to
the case ‘all servers busy’ (described in Sect. 4.4 below).

4.3.3 Distinguishable Servers

When tracking server workloads, we regard the servers as distinguishable
(Fig. 4.1). However, we are often interested in the statistical properties of the
entire system, rather than the processing of each individual customer, or the
action of a particular server. Here we analyze the system by constructing
a sample path of {W (t)}t≥0 generated according to the model’s prescribed
probability laws for the service and interarrival times, and operational poli-
cies.

Suppose we can keep track of the c server workloads in continuous time.
Then we could assign a ‘ticket’ to each arrival, which points to its up-coming
server, identified because it has the minimum workload at the arrival instant.
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This procedure distributes theoretical waiting lines to the c servers, although
there is only one physical waiting line in the waiting room.

4.3.4 Indistinguishable Servers

In many M/M/c models, it is not necessary to construct sample paths of the
server workloads {Ri (t)}t≥0, i = 1, . . . , c, in order to construct a sample path
of {W (t)}t≥0. It suffices to regard the servers as indistinguishable. Then it
is not necessary to track individual server workloads. To analyze important
statistical properties of the model, it is sufficient to track directly the virtual
wait W (t) := mini=1,...,c {Ri (t)}. Thus we utilize what we call the system
configuration (Sect. 4.4).

4.4 System Configuration

In generalized M/M/c, assume a ‘system manager’ knows the up-coming
target server i∗t to be occupied at instant t + W (t−) by a would-be time-t
arrival, denoted by C(t) (i.e., the manager knows the server having minimum
workload at time t). Let M(t) := system configuration at time t . The process
{M(t)}t≥0 tracks the service rates of the c − 1 servers other than i∗τ . We
assume that the model specifies J + 1 possible exponential service rates: µ
= {μ0,μ1, . . . ,μJ }. Each arrival is assigned a service rate selected from the
set µ. Recall that if t is not an arrival instant, sample-path right continuity
implies W (t−) = W (t).

Definition 4.1 The system configuration M(t) is a J + 1 vector of server
occupancy numbers m j ≥ 0, namely M(t) = (m0, . . . ,m J ), where m j :=
number of servers having service rate μ j ∈ μ, among the c − 1 servers
other than i∗t at t + W (t−).

Definition 4.2 The set of all possible configurations is denoted by M =
{m|m = (m0, . . . ,m J )}.

For each configuration m ∈ M, 0 ≤∑J
j=0 m j ≤ c − 1; C(t) would

start service at instant t + W (t−) and would be assigned a service rate
μt (W (t−),m) ∈ µ, which nay be a function of three variables: t , W (t−),
and m. That is

(t, W (t−),m) → μ j ∈ µ, for some j = 0, . . . , J .
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Remark 4.3 In various models, the service rate μt (·, ·) may also depend
on other variables as well. It may be selected randomly from the set µ.
Additionally, the number of possible service rates in µ may be countable.

4.4.1 Inter Start-of-service Depart Time St

In generalized M/M/c a key random variable is the time-t ‘look-ahead’ in-
ter start-of-service depart time, denoted by St . For example, let the state
(W (t−), M(t−)) be (x,m) when customer Ca,t arrives. Then Ca,t ’s re-
quired wait before starting service is x ≥ 0 and the configuration is m. If
0 ≤∑J

i=0 m j ≤ c − 1 then x = 0 and Ca,t starts service immediately by one
of the idle servers. If

∑J
i=0 m j = c − 1 there are two possibilities for x . If

x = 0 then Ca,t starts service immediately by the single idle server. If x >

0 then Ca,t waits time x before starting service by the first available server
thereafter. Just after Ca,t starts service at time t + x all c servers will be
occupied.

Definition 4.3 The inter start-of-service depart timeSt is the time measured
from t + x (start of Ca,t ’s service time) until the first departure from the
system after t + x . In other words St := time from the start of service of
Ca,t until the first departure from the system thereafter.

Importantly,

St =
dis

min
{
Expm0μ0

, . . . ,Expm J μJ
,Expμt (W (t−),m)

}
,

which is the minimum of
∑J

i=0 m j + 1 (= c) independent exponential r.v.s.
Among these, m j servers have rate μ j , j = 0, . . . , J , and one server has rate
μt (x,m) (assigned to C a,t ). Thus St =

dis
Expνt where νt =

∑J
j=0 m jμ j +

μt (x,m).
An important aspect of the forgoing definition of system configuration and

use of St when W (t−) > 0, is that once all c servers are occupied, the prob-
ability distribution of St is independent of future arrivals to the system. That
is, the set of active servers functions like a separate sub-system until the first
departure thereafter, mindful of the memoryless property of the exponential
service times. Although the concept ‘system configuration’ may appear ‘dif-
ferent’, it is straightforward to apply when developing model equations for
the pdf of the waiting time in complex M/M/c queues (see, e.g., pp. 80–97
in [11], and also in [38, 52, 53]).
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4.4.2 Number of Configurations

Let (W (t), M(t)) = (x,m) (see Definition 4.1 above). Looking ahead to t +
W (t), assume m = (m0, . . . ,m J ) is such that

J∑
j=0

m j = k, 0 ≤ k ≤ c − 1.

The servers are considered to be indistinguishable (as in subsequent models
in this monograph, unless otherwise noted). We track only the number of
servers occupied with service rate μ j ∈ µ, j = 0, . . . , k.

The number of possible configurations such that exactly k servers are
occupied, is the number of non-negative integer solutions of the equation

m0 + · · · + m J = k.

It is the same as the number of ways of distributing k indistinguishable balls
in J + 1 distinguishable cells, namely

(J+k
J

)
=
(J+k

k

)
(see Lemma, p. 36,

Chap. II in [73]). Thus, the total number of possible configurations is

c−1∑
k=0

(
J + k

J

)
=
(

J + c

J + 1

)
=
(

J + c

c − 1

)
. (4.5)

The first equality in (4.5) is readily proved by induction.

Example 4.1 Consider an M/M/c queue with c = 3 and J = 2, so that
µ = {μ0,μ1,μ2}. If a potential arrival C(t) finds the system empty, then
(W (t), M(t)) = (0, (0, 0, 0)); thus mi = 0, i = 0, 1, 2. C(t) would wait zero
and “see” zero servers occupied, (0, 0, 0). The number of solutions of m0 +
m1 + m2 = 0 is

(J+0
J

)
=
(2

2

)
= 1. C(t) would wait W (t−) = 0 and start service

from one the three unoccupied servers, per the server-assignment policy.
If C(t) would find one customer in the system (one occupied server), then

W (t−)= 0 and the configuration that C(t) would “see” is one of three possible
vectors

M(t−) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The number of solutions of m0 + m1 + m2 = 1 is

(J+1
J

)
=
(3

2

)
= 3. C(t)

would start service from one of the two unoccupied servers, per the server-
assignment policy.

If C(t) would find two customers in the system, then W (t−) = 0 and the
configuration that C(t) would “see” is one of six possible vectors
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M(t−) ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
The number of solutions of m0 + m1 + m2 = 2 is

(J+2
J

)
=
(4

2

)
= 6. C(t) would

start service from the one unoccupied server.
If C(t) would find three or more customers in the system, then all three

servers would be occupied at t−. The look-ahead configuration that C(t)
would “see” just before start of service at t + W (t−) is also one of six
possible vectors

M(t) ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
The six possible configurations are the same as when C(t) sees two occu-

pied servers. This is because a configuration tracks the service-rate occupan-
cies of those servers other than C(t)’s eventual server. Customer C(t) would
wait a positive time and start service at t + W (t−) from some server i∗t .
We “look ahead” to the start of service instant t + W (t−) and assign rate
μt (W (t−), M(t−)) to i∗t . The random variable M(t) tracks the service-rate
occupancies of the two servers other than i∗t at t + W (t−). (The look-ahead
idea is not new. For example, it is tacitly assumed for the virtual wait in the
standard M/G/1 queue, where we increase the virtual wait by a service time
at an arrival instant, although the service is not started until the end of the
waiting time. The generalized M/M/c generalizes the M/G/1 look-ahead idea
to the start-of-service time.)

At instant t , the state (W (t), M(t)) conveys sufficient information to deter-
mine the probabilities of the m j ( j = 0,…,J ) occupied servers that will have
the minimum service time among all the occupied servers at time t + W (t−).
These probabilities depend on the Markovian property. We shall illustrate this
more fully in Example 4.2 below.

The total number of possible configurations is

c−1∑
k=0

(
J + k

J

)
=

2∑
k=0

(
J + k

J

)
=
(

J + c

J + 1

)
=
(

5

3

)
= 10.

4.4.3 Border States

In Example 4.1 the zero-wait state {(0,m)} is a border state if

m ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
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Definition 4.4 We call the state (W (t), M(t)) a border stateif W (t) = 0 and
M(t)) is such that

∑J
j−0 m j = c − 1. A border state is a discrete zero-wait

state in a boundary separating other discrete zero-wait states and a set of
continuous positive-wait states.

In the above definition, the other zero-wait states are non-border states
such that 0 ≤∑J

j−0 m j < c − 1. Border states communicate with continuous
positive-wait states in one step: at arrival instants (zero-wait →positive-wait);
or at departure instants (positive-wait → zero-wait). When the SP moves on
a path from a non-border zero-wait state to a continuous positive-wait state
the path must pass through a border state at an arrival instant. In the opposite
direction, from a positive-wait state to a non-border zero-wait state, the path
must pass through a border state at a departure instant.

We denote the set of border states by Sb, and the set of border configura-
tions by Mb. Thus

Sb =
{
(0,m) |∑J

j=0 m j = c − 1
}
,

Mb = {m| (0,m) ∈ Sb} =
{
m|∑J

j=0 m j = c − 1
}
.

(4.6)

4.4.4 The Next Configuration

Consider an actual arrival Ca,t at instant t . Ca,t “sees” configuration M(t−).
Just after the arrival the configuration is M(t). Either M(t) = M(t−) or
M(t) 
= M(t−). We illustrate by example how to compute the probability
mass function of M(t).

Example 4.2 Consider Example 4.1 for M/M/c with c = 3, J = 2. Suppose
Ca,t arrives when the wait is W (t−) and the configuration is (m0,m1,m2) =
(1, 1, 0). The state is

(W (t−), M(t−)) = (0, (1, 1, 0)).

Suppose that Ca,t is assigned service rate μ0, i.e., μt (W (t−), (1, 1, 0)) = μ0.

At instant t + 0, just after Ca,t starts service, there will be two servers
with rate μ0 since m0 = 1. There will be one server with rate μ1, since m1 =
1. The inter-start-of-service-depart time St =

dis
Exp2μ0+μ1 .

We now compute the probability distribution of the next configuration
at instant t + W (t). Thus,
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P(M(t) = (2, 0, 0))

= P(rate-μ1 server finishes first)

= μ1

2μ0 + μ1
,

P(M(t) = (1, 1, 0))

= P(rate-μ0 server finishes first)

= 2μ0

2μ0 + μ1
.

Importantly

P(M(t) = (2, 0, 0)) + P(M(t) = (1, 1, 0)) = 1.

The only two possible configurations for M(t) are (2, 0, 0) and (1, 1, 0),
independent of whether W (t−) = 0 or W (t−) > 0 (illustrated below in Ex-
ample). No other configuration is possible for M(t) once the arrival at t−
has been assigned rate μ0. Knowledge of their probabilities is sufficient to
analyze the sample path to write down model equations using LC.

Remark 4.4 The service mechanism can be generalized considerably. We
can expand the domain of μt (w,m) to include: type or priority class of
Ca,t ; type of customer replaced by Ca,t in server i∗t ; type of any customer
followed by Ca,t into service; identity of server i∗t (e.g., server number or
unique property); number of customers in the system or waiting for service
at the arrival or start of service instant of Ca,t ; various types of bounds on
the virtual wait; reneging indices; blocked and cleared customers, etc. (see,
e.g., [38] for an effective definition of M(t) due to L. Green; [42]; also see
[39, 44, 53]; and others).

Other generalizations may incorporate: a non-homogeneous Poisson ar-
rival process with intensity λt , or a Poisson arrival rate λ(W (t), M(t)) which
is a function of the current state (W (t), M(t)); or various Markov arrival
processes.

4.5 System Point Process

We now discuss the system point process and the geometry of its state space
(see Fig. 4.2).
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Fig. 4.2 Sample path of SP process {W (t), M(t)}t≥0 for Example 4.4 with random
assignment of service rates independent of state at arrival instants (c = 3, J = 1). The
space T × S has 6 lines for zero-wait states, and 3 pages (sheets) for positive-wait
states (pages 20, 11, 02). The cover is the projection of the sample path from all lines
and pages onto one non-negative planar quadrant

We call {W (t), M(t)}t≥0 the system point (SP) process. Its nomenclature
derives from the fact that the SP traces out a sample path as the system
evolves over time. The SP process for M/M/c queues is a generalization (with
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exponential service times) of the virtual wait process for M/G/1 queues. State
variable W (t) := virtual wait; state variable M(t) := system configuration
at time t. Random variable M(t) is discrete. The SP process is a Markov
process (Sect. 4.5.7 below).

We partition the state space S into three disjoint state-space sets S0, Sb,
S1. S0 contains the zero-wait states that are non-boundary states. Sb contains
the zero-wait states that are boundary states. S1 contains the positive-wait
states. The states in S0 ∪ Sb are atoms (see Sect. 2.4.9 for ‘atom’). The states
in S1 are points in a continuum, e.g., (x,m) , x > 0, and m= (m0,...,m J ).
Specifically,

S0 = {(0,m)|0 ≤∑J
j=0 m j ≤ c − 2},

Sb = {(0,m)|∑J
j=0 m j = c − 1},

S1 = {(x,m)|x > 0,
∑J

j=0 m j = c − 1}.
(4.7)

Note that S = S0 ∪ Sb ∪ S1, and S0 ∩ Sb = S0 ∩ S1 = Sb ∩ S1 = φ, the
empty set. The corresponding sets of system configurations are

M0 = {m|(0,m) ∈ S0) = {m|0 ≤∑J
j=0 m j ≤ c − 2};

Mb = {m|(0,m) ∈ Sb) = {m|∑J
j=0 m j = c − 1};

M1 = {m|(x,m) ∈ S1} = {m|x > 0,
∑J

j=0 m j = c − 1};
(4.8)

thus Mb = M1 (see Sect. 4.4 above).

W(t−) = 0 An arrival C(t) would “see” W (t−) = 0 if and only if the
state at time t− is in S0 ∪ Sb. C(t) would then wait zero and start service
from some server, say i∗t , at time t . Geometrically, we associate a distinct
horizontal line T × (0,m) with each state (0,m) ∈ S0 ∪ Sb where T is the
time axis [0,∞). We call the line T × (0,m) “line m” (e.g., Fig. 4.2).

W(t−) > 0 C(t) would “see” W (t−) > 0 if and only if the state is in
S1. C(t) would wait time W (t−) and start service from some server, say i∗t ,
at time t + W (t−). Geometrically, we associate the quadrant of the plane
T × (0,∞) with each set of continuous states (x,m) ∈ S1, x > 0. We call
the positive quadrant T × ((0,∞),m) sheet (or page) m (e.g., Fig. 4.2).

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Sample Path Diagram The LC analyst draws (or visualizes) a plot of W (t)
versus t on page mwhile the system is in the state corresponding to configura-
tion m. In a diagram, we may place the zero-wait border lines (corresponding
to the states in Sb) T × (0,m), (0,m) ∈ Sb, alongside the zero-wait non-
border lines for states (0,m) ∈ S0; or else at level 0 of the corresponding
sheets for the positive-wait states S1 having the same configurations m. There
is a one-to-one correspondence between sheets and states in Sb (Fig. 4.2).

4.5.1 Sample Path of SP Process

A sample path of {W (t), M(t)}t≥0 is a piecewise right-continuous function
of t having left limits. It has a finite number of jumps during finite time
intervals (see Sect. 2.2 and Definition 2.1 in Chap. 2). We plot a sample path
within a Cartesian product space T × S = T × (S0 ∪ Sb ∪ S1). The direction
of time is from left to right. It is useful to envisage each Cartesian product
T × (0,m), (0,m) ∈ S0 ∪ Sb as a line; and each quadrant T × ((0,∞),m),
m ⊆ M1, as a sheet (or page in a book).

Description of a Sample Path
Assume that the system starts empty. The SP moves among the zero-wait
lines, jumping from line to line at arrival and departure instants, eventually
reaching a zero-wait border line (often placed at level zero of some sheet
m ∈ Mb). Eventually the SP jumps from line m ∈ Mb, to a positive level
on some sheet ‘k’, at an arrival instant. It then moves steadily with slope
−1 on sheet k. It is possible that either m = k, or m 
= k, depending on the
probabilities governing the motion of the SP. (See Fig. 4.2 and Example 4.4
in Sect. 4.5.5 for a detailed example.) Other clarifying examples are in the
author’s Ph.D. thesis (Fig. 4.3, p. 79, Chap. 4 in [11]; and in [52]).

At an arrival instant while the SP is on sheet k, the SP may jump to another
sheet, say m′, and move steadily with slope −1 on sheet m′ for a positive
time. Otherwise the SP may jump, and stay on the same sheet k. On each
sheet it moves downward with slope −1. If the SP hits level 0 from above
on page k before the next arrival, it starts moving immediately on the border
line k (no customers waiting, c − 1 servers occupied).

If the SP is in a state in Sb ∪ S1 having configuration m at some arrival
instant, it makes a jump ending either on page m or on some page k �= m. If
k �= m, the SP is said to make an m → k transition. This may be an upward

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2


202 4 M/M/c Queue

jump from a border line m, or from sheet m to sheet k, at an arrival instant.
Generally, m → k transitions do not give rise to ‘typical’ level crossings as
in M/G/1 models that have exactly one ‘page’. However, m → m transitions
from a border line m or from a point on sheet m to a higher point on sheet m,
are similar to SP jumps as discussed for models with a single sheet (Sect. 2.3
in Chap. 2).

Remark 4.5 In some model variants, an m → k transition may be a parallel
jump. That is, the SP makes a jump from a level y on pagem to level y on page
k �= m, at an arrival instant. For example, in an M/G/1 queue, we may utilize
a modified configuration M(t) = n, where n is the number of customers
waiting for service, and the virtual wait is unchanged at some arrival instants.
Such parallel jumps occur in M/G/1 or M/M/c queues with bulk service (see,
e.g., [93]).

4.5.2 A Metaphor for Sample Path and SP Motion

The SP motion over the state space is like the motion of the tip of a pen writing
out a single-page history of the system over time. The writing takes place in
a book of transparent pages all the same size. The cover is also transparent.
The pen moves from left to right, and never overlays what has been written
already. After writing flat or sloped lines on a page for a random amount
of time, the pen jumps to a different page, and continues writing. The pen
jumps in this manner at random time points from page to page. The next page
is selected by a random mechanism depending on where it is presently. The
entire history up to an instant in time can be seen only by holding all the pages
one behind the other, like pages in a book, and viewing the projected history
on the cover. The projected history on the cover is invariant with respect
to shuffling or mixing the pages, which change their relative positions. An
analyst that views an arbitrary page in isolation, sees only local segments of
the history specific to that page (see Fig. 3.2, p. 49 and Fig. 4.3, p. 79 in [11]).

The global history is like the total sample path of the SP process over
the state space S0 ∪ Sb ∪ S1. The local histories on various pages are like
sample-path segments due to sojourns on the ‘lines’ and ‘sheets’ of the state
space. On the cover, SP motion on all the lines occurs at level 0. That is, when
all the lines are projected onto the cover, they are placed at level zero—to
form a single “line 0”.

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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We may think of the overall method as having several steps.

1. Partition the Time-State space into mutually exclusive and exhaustive
lines and sheets.

2. Analyze the sample-path segments on the lines and sheets using LC
methods.

3. Project the sample-path segments from the lines and sheets onto the
‘cover’ of the ‘book’. Analyze the projected path on the cover using LC.

4. Combine all the LC results with a normalizing condition. Construct the
model equations (usually Volterra integral equations of the second kind
with parameter for the pdf’s of interest) and derive probability distribu-
tions of the model.

The LC method utilizes statistical properties of the local path segments on
the lines and sheets. It also uses statistical properties of the projected path on
the cover. It employs the one-step communication properties among the lines
and sheets (at successive arrivals and/or departures) to construct a sample
path. Basic LC theorems apply to each page m ∈ M. Jumps out of, and into
lines and sheets, follow rate-conservation laws.

Equations for PDF of Wait
We use sample-path structure, and transition rates into and out of state-space
sets, to construct (by inspection of the sample path) integro-differential and
differential equations in a transient analysis. Similarly, we construct integral
equations and algebraic equations in a steady-state analysis. These are equa-
tions for the joint pdf and/or cdf of wait and system configuration. We can
also derive equations for the marginal (total) pdf and cdf of wait, or for the
probabilities of the system configurations.

Remark 4.6 The author originally had the idea for partitioning the state
space, visualizing the positive-wait states over time in separate quadrants,
and having a ‘system point’ moving on the quadrants over time, from an
analogy with Riemann sheets and diagrams of winding numbers in complex
variable theory (see, e.g., Sect. 3.4, p. 137ff in [96]). My Ph.D. thesis used
the term ‘sheets’. The term ‘pages’ was introduced soon after. I also thought
of using the term ‘cards’, analogous to boxes of computer cards for data and
programs, which were widely in use in 1974. Then, the state space could be
pictured like a box or deck of rectangular cards. Such (‘IBM’) cards had been
ubiquitous until personal computers became common in the 1980s.
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4.5.3 Notation: Probabilities and Distributions

Transient Probabilities and Distributions
We denote: the zero-wait probabilities by

Pt (0,m) = P(W (t) = 0, M(t) = m), (0,m) ∈ S0 ∪ Sb;

the mixed joint cdf of (W (t), M(t)) by

Ft (x,m) = P(W (t) ≤ x, M(t) = m)

= Pt (0,m) + P(0 < W (t) ≤ x, M(t) = m)

= Pt (0,m) +
∫ x

y=0
ft (y,m)dy, x ≥ 0, t ≥ 0,

(0,m) ∈ S0 ∪ Sb, (x,m) ∈ S1,

where P(0 < W (t) ≤ x,M(t) = m) = P(φ) = 0 if x = 0; and the mixed joint
pdf of (W (t), M(t)) is

ft (x,m) = ∂

∂x
Ft (x,m), x > 0, t ≥ 0, (x,m) ∈ S1,

wherever ∂
∂x Ft (x,m) exists.

We assume:

1. Ft (x,m) and ft (x,m) are right continuous in x for every t ≥ 0, m ∈ M1.
2. ∂

∂t Ft (x,m) and ∂
∂t ft (x,m), t > 0, x ≥ 0, exist and are finite for every

m ∈ M1.

Let P0(t) := P(W (t) = 0) be the marginal probability of a zero wait at t .
Then

P0(t) =
∑

(0,m)∈S0∪Sb

Pt (0,m)

=
∑

(0,m)∈S0

Pt (0,m) +
∑

(0,m)∈Sb

Pt (0,m), t ≥ 0.
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The transient marginal cdf of wait P(W (t) ≤ x) is

Ft (x) =
∑

(0,m)∈S0

Pt (0,m) +
∑

(0,m)∈Sb

Ft (x,m)

=
∑

(0,m)∈S0∪Sb

Pt (0,m) + P(0 < W (t) ≤ x)

= P0(t) + P(0 < W (t) ≤ x)

= P0(t) +
∫ x

y=0
ft (y)dy, x ≥ 0, t ≥ 0.

Note that Pt (0,m) = Ft (0,m) for (0,m) ∈ Sb.
(Recall the definitions of Mb and Sb in (4.6), and Mb = M1, which is the

set of system configurations for positive-wait states.)
The transient marginal pdf of W (t) is

ft (x) = ∂

∂x
Ft (x) =

∑
m∈M1

ft (x,m), x > 0, t ≥ 0.

A potential (would-be) arrival C(t) would find the system configuration
to be m ∈ M0 ∪ Mb with probability Pt (0,m). C(t) would find the configu-
ration to be m ∈ M1 with probability Ft (∞,m). The normalizing condition
for fixed t ≥ 0, is

Ft (∞) =
∑

m∈M0

Pt (0,m) +
∑

m∈M1

Ft (∞,m)

=
∑

m∈M0∪Mb

Pt (0,m) +
∑

m∈M1

∫ ∞

y=0
ft (y,m)dy

=
∑

(0,m)∈S0∪Sb

Pt (0,m) +
∑

m∈M1

∫ ∞

y=0
ft (y,m)dy = 1.

Steady-State Probabilities and Distributions
We denote the steady-state zero-wait probabilities, pdfs and cdfs of wait
by dropping the subscript t in the immediately foregoing notation for the
transient quantities.
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4.5.4 Configuration Just After an Arrival

Example 4.3 below demonstrates the probability of a system configuration
just after an arrival. Assume that an actual customer Ca,t arrives and finds
the state to be (W (t−),M(t−)) = (x,m). The service rate assigned to Ca,t
is μt (x,m) ∈ µ. Recall that sample paths are right continuous and have left
limits.

Example 4.3 Consider Example 4.2 in Sect. 4.4.4, where c = 3, J = 2. Let
each arrival receive a service rate selected with equal probability from the
set µ := {μ0,μ1,μ2}. Then

P(Ca,t starts service at t + W (t−) with service rate μi ) = 1

3
, i = 0, 1, 2,

independent of t and W (t−). Assume (W (t−), M(t−)) = (x, (2, 0, 0)), x >

0, just before Ca,t arrives. Then Ca,t will wait a positive time x . Looking
ahead to time t + W (t−), two other occupied servers will have service rates
μ0 (m0 = 2, m1 = m2 = 0) when Ca,t starts service at t + W (t−), in the
just-vacated server. Question: What is the configuration M(t) just after Ca,t
arrives? It can be either (2, 0, 0), (1, 1, 0), or (1, 0, 1). The probabilities for
M(t) are:

P(M(t) = (2, 0, 0)) = P(μt (x, (2, 0, 0)) = μ0) · 1

+P(μt (x, (2, 0, 0)) = μ1) · μ1
2μ0+μ1

+P(μt (x, (2, 0, 0)) = μ2)
μ2

2μ0+μ2

= 1
3

(
1 + μ1

2μ0+μ1
+ μ2

2μ0+μ2

)
.

P(M(t) = (1, 1, 0)) = P(μt (x, (2, 0, 0)) = μ1) · 2μ0
2μ0+μ1

= 1
3 · 2μ0

2μ0+μ1
.

P(M(t) = (1, 0, 1)) = P(μt (x, (2, 0, 0)) = μ2) · 2μ0
2μ0+μ2

= 1
3 · 2μ0

2μ0+μ2
.

Thus

P(M(t) = (2, 0, 0)) + P(M(t) = (1, 1, 0)) + P(M(t) = (1, 0, 1))

= 1
3

(
1 + μ1

2μ0+μ1
+ μ2

2μ0+μ2

)
+ 1

3 · 2μ0
2μ0+μ1

+ 1
3 · 2μ0

2μ0+μ2
= 1.
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The resulting virtual wait at time t is

W (t) = W (t−) + St = x + St ,

where St is the inter start-of-service-depart time, distributed as a mixture

St =
dis

⎧⎪⎨
⎪⎩

Exp3μ0
,

Exp2μ0+μ1
,

Exp2μ0+μ2
,

with probability 1/3 each.

(see Sect. 4.4.1). The sample path will have a jump whose size is distributed
as St at instant t (see Fig. 4.2).

4.5.5 Sample Path of SP Process Revisited

We first describe a typical sample path of the virtual wait in Example 4.4
wherein J = 1 and µ = {μ0,μ1}, to facilitate exposition. If J > 1, sample-
path construction would be similar, but with more lines and pages (sheets)
in the product space T × S (see Fig. 4.2). Next, Example 4.5 discusses the
general nature of a typical sample path with reference to Example 4.4 and
then we outline the mechanics of a specific sample path in Example 4.4, based
on the M/M/3 queue in Example 4.3 above.

Example 4.4 Consider M/M/c with c = 3, J = 1. (Here we take J= 1 for
exposition.) A typical sample path of the virtual wait is given in Fig. 4.2).

Arrivals are assigned an exponential service rate from µ = {μ0,μ1} with
equal probability 1/2. (In general the probabilities can be, e.g., p0, p1 =
1 − p0.) The total number of possible configurations is

(J+c
J+1

)
=
(4

2

)
= 6. The

full set of configurations is

M = {00, 10, 01, 11, 20, 02}.
We write (2, 0) as 20 when m0 = 2, m1 = 0, indicating that 2 servers are oc-
cupied with rate μ0; and similar notation for the other system configurations.

Example 4.5 General Nature of Sample Path with reference to Example
4.4. The state space consists of: (1) six discrete points for the zero-wait
states (0,m), m ∈ M0 ∪ Mb. Thus M0 = {00, 10, 01} and Mb = M1 =
{11, 20, 02}; (2) three intervals ((0,∞),m),m ∈ M1. The three border states
are (0,m), m ∈ Mb.
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Arrival Waits Zero. Assume an arrival “sees” state (0,m), m ∈ M0. The
SP moves horizontally at time-rate 1 on a line T × (0,m), m ∈ M0. If the
next arrival occurs before a departure, the SP jumps to a line T × (0,m′),
m′ ∈ M0 ∪ Mb, where

m′
0 + m′

1 = m0 + m1 + 1,

because there is one more occupied server. If a departure occurs before an
arrival, the SP jumps to a line T × (0,m′′), m′′ ∈ M0, where

m′′
0 + m′′

1 = m0 + m1 − 1,

because there is one less occupied server. If m = (0, 0), the state can change
only due to an arrival.

If an arrival finds the system to be in state (0,m), m ∈ Mb the SP jumps
to a sheet T × ((0,∞), k), k ∈ M1. Configuration k is determined by the
service rate assigned to the new arrival, and which server finishes first after
the new arrival starts service. Denote the service time of an arrival Ca,t by
st . Then st =

dis
Expμt where

P(μt = μi ) = 1

2
, i = 0, 1;

(see Fig. 4.2).
To fix ideas, let the SP be on the border line T × (0, 20) at arrival instant

t . Thus
〈
W (t−), M(t−)

〉
= 〈0, 20〉. Ca,t starts service upon arrival in the one

idle server and is assigned either rate μ0 or μ1 with probability 1/2 each. Let
St denote the time from the start-of-service of Ca,t until the first departure
from the system thereafter. (Since all 3 servers are busy St is independent of
any future arrivals that join the waiting line.)

Case 1: Let us assume the service time st has been assigned rate μ0. Then
St =

dis
Exp3μ0 because St = min

{
3 i.i.d. Expμ0

s
}
. The SP jumps upward an

amount St . The virtual wait at time t is

W (t) = W (t−) + St = 0 + St = St .

At instant t + W (t−) + St (= t + St ), one of the three occupied servers
completes service. The service rate of each of the resulting two occupied
servers at t + St must be μ0. By the look-ahead process, the configuration
at t is M(t) := M(t−) = 20. In this scenario the configuration remains the
same as when the test customer arrived. Geometrically, at instant t , the look-
ahead process impels the SP to jump from line 20 to page 20, at a height =

dis
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Exp3μ0 (see Fig. 4.2). In Case 1, the SP jumps from line 20 to page 20 at
ordinate =

dis
Exp2μ0+μ1 , resulting in W (t) =

dis
Exp2μ0+μ1 and M(t) = 20.

Case 2. Let us assume that st has been assigned rate μ1. Then St =
dis

Exp2μ0+μ1 . At t + St one of the three servers completes service. The service
rates of the other two still-occupied servers at t + St are either: (a) both μ0
with probability μ1

2μ0+μ1
(the rate-μ1 server finishes first), or (b) μ0 and μ1

with probability 2μ0
2μ0+μ1

(a rate-μ0 server finishes first).
In Case 2(a) at instant t , the SP jumps from line 20 to page 20 at an ordinate

=
dis

Exp2μ0+μ1 . Thus W (t) =
dis

Exp2μ0+μ1 and M(t)= 20. In Case 2(b) at instant

t , the SP jumps from line 20 to page 11 at ordinate =
dis

Exp2μ0+μ1 , resulting

in W (t) =
dis

Exp2μ0+μ1 and M(t) = 11.

ArrivalWaits aPositiveTime.Assume Ca,t arrives when the state is (x, 20),
x > 0 (SP is at ordinate x on page 20). If the service-rate assignment policy
assigns st =

dis
Expμ0 , the SP jumps upward an amount Exp3μ0 , and moves

with slope −1 steadily on page 20. If the service-rate assignment policy
assigns st =

dis
Expμ1 , the SP can end up on either page 20 or page 11 at t .

The SP jumps upward to W (t) =
dis

W (t−) + Exp2μ0+μ1 and moves with slope

−1 steadily on page 20, with probability μ1
2μ0+μ1

. The SP jumps upward to

ordinate W (t) =
dis

W (t−)+Exp2μ0+μ1 on page 11, with probability 2μ0
2μ0+μ1

.

If the SP descends to the bottom of page 20 and hits level 0 from above
in a continuous manner before a new arrival occurs, it immediately enters
border line 20, and continues its motion along line 20.

4.5.6 A Specific Sample Path

We expound further on a possible realization of the SP motion as it traces out
the sample path, with reference to Fig. 4.2. Assume that initially the system
is empty. The SP moves on line 00. Arrival 1 (C1) sees an empty system. The
server-assignment policy assigns C1 service rate μ0. The SP jumps to, and
moves on, line 10. C2 arrives before C1 completes service and is also assigned
rate μ0. At C2’s arrival the SP jumps to line 20. C3 arrives while both C1 and
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C2 are in service. C3 receives rate μ1. The SP jumps to an ordinate Exp2μ0+μ1 ,
and if the rate-μ1 customer finishes first among the three customers in service,
the resulting configuration is again 20. The probability of this event is μ1

2μ0+μ1
,

due to the memoryless property of exponential variates. This explains why
at C3’s arrival instant the SP jumps to page 20.

Just before C4 arrives the SP is descending at slope −1 on page 20. C4 is
assigned service rate μ0. The SP jumps upward an amount Exp3μ0 . It remains
on page 20. That is, whichever server finishes first, the two remaining active
service rates will be μ0, resulting in configuration 20. C5 arrives when the
SP is on page 20. C5 is assigned rate μ1. Suppose a server with rate μ0

finishes first. The probability of this event is 2μ0
2μ0+μ1

. The SP jumps upward
by Exp2μ0+μ1 . It simultaneously makes a 20 → 11 transition from page 20
to page 11, since the two remaining occupied servers have rates μ0 and μ1
when the first service ends. The configuration changes immediately from 20
to 11.

No new arrivals occur prior to the completion of the first rate-μ0 customer.
The SP descends on page 11 with slope −1 and hits level 0 from above, exactly
when the first rate-μ0 customer finishes service. The system now presents a
zero wait to a potential arrival. When the SP hits level 0, it enters border line
11 (in Fig. 4.2 it jumps to line 11). C6 arrives, and starts service immediately.
C6 is assigned rate μ1. The SP jumps to page 02, with probability μ0

μ0+2μ1
(μ0-rate service finishes first), the next configuration is 02.

The system continues to evolve. The SP continues to trace a sample path
on the lines and pages according to the probability laws of the model. The
sample path gives us a precise picture of the evolving system over time.
Construction of the sample path goes hand in hand with understanding the
model dynamics, and writing the model equations by inspection.

Remark 4.7 In Sect. 4.8 below we develop the steady-state theory. We
will then return to Example 4.3, and formulate the balance equations for
the zero-wait probabilities P(0,m), m ∈ M ≡ M0 ∪ Mb; integral equations
for the ‘partial’ pdfs of wait f (x,m), x > 0,m ∈ M1, and for the total pdf
{P0, f (x), x > 0}.

4.5.7 SP Process Is Markovian

We outline a proof that the SP process is a Markov process. For t ≥ 0, let
(x,m)t := event {(W (t), M(t)) = (x,m)}. It is required to show that for
x, y ≥ 0, m, k ∈ M,
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P((y, k)t+h|(x,m)t , (W (u), M(u)0≤u<t )

= P((y, k)t+h|(x,m)t ), t ≥ 0, h > 0.
(4.9)

Formula (4.9) states that the probability of event (y, k)t+h given that event
(x,m)t occurred, is independent of the history (W (u), M(u))0≤u<t . We
sketch the proof in two steps: (1) zero-wait states; (2) positive-wait states.

For a Poisson (or non-homogeneous Poisson) process, the probability of
more than one event occurring in (t, t + h) is o(h) (e.g., Definition 5.3, p.
314, and Definition 5.4, p. 339 in [125]).

Zero-Wait Non-border States

Assume state (0,m)t ∈
{
(0,m)|0 ≤∑J

j=0 m j ≤ c − 2
}

(m ∈ M0, SP ∈ S0

at time t).
No Departure or Arrival in (t, t + h) The state remains (0,m) in (t, t + h)
iff no arrival or departure occurs during (t, t + h), or an event with probability
o(h) occurs. Thus

P((x,m)t+h|(x,m)t ) = 1 −
⎛
⎝λ +

J∑
j=0

m jμ j

⎞
⎠ h + o(h),

which is independent of (W (u), M(u))0≤u<t .
Arrival in (t, t + h) Possibly there is an arrival during (t, t + h). The next
configuration will have the form

mL+ := (m0, . . . ,mL + 1, . . . ,m J ),

for some L ∈ {0, . . . , J }. Then

P((0,mL+)t+h|(0,m)t )

= (λh + o(h)) · P(μt ((0,m)) = μL)

= λh P(μt ((0,m)) = μL) + o(h), L ∈ {0, . . . , J } ·
(4.10)

Formula (4.10) is the probability that there is an arrival during (t, t + h)
assigned service rate μL , which is independent of the history given by
(W (u), M(u))0≤u<t . Note that

J∑
L=0

P(μt ((0,m) = μL) = 1.

Departure in (t, t + h) Possibly there is a departure during (t, t + h). Let
configuration
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m
L− := (m0, . . . , θL · (mL − 1) , . . . ,m J ), L ∈ {0, . . . , J } ,

where

θL =
{

1 if mL ≥ 1,

0 if mL = 0.

Assume m 
= (0, . . . , 0). Then

P((0,mL−)t+h|(0,m)t ) = (mL · μL)h + o(h), (4.11)

which is the probability of a rate-μL departure during (t, t + h) (rate-
μL service finishes first). Expression (4.11) is independent of the history

(W (u), M(u)),0 ≤ u < t . Note that
(∑J

L=0 mLμL

)
h + o(h) is the proba-

bility of a departure during (t, t + h).

Zero-Wait Border States

Consider zero-wait border states
{
(0,m)t |∑J

j=0 m j = c − 1
}

(m ∈ Mb,

(0,m) ∈ Sb).
No Arrival in (t, t + h) If no arrival or departure occurs, or only a departure
occurs, during (t, t + h), the Markov property follows similarly as for the
zero-wait non-border states given above.
Arrival in (t, t + h) Possibly there is an arrival during (t, t + h). In this case,
the SP jumps to a positive level on a sheet (page). Let configuration

k := (m0, . . . ,mL + 1, . . . ,m R − 1, . . . ,m J )

= (k0, . . . , kJ ),

for some L , R ∈ {0, . . . , J }. Thus
∑J

j=0 k j =
∑J

j=0 m j = c − 1. Let

νL =
J∑

j=0

m jμ j + μL .

The probability that the SP jumps to sheet k during (t, t + h) and is in state-
space interval ((y, y + dy), k)y>0 at t + h, is

P((W (t + h), M(t + h)) ∈ ((y, y + dy), k)|(0,m)t )

= (λh + o(h)) · P(μt (0,m) = μL) · m RμR

νL
· νL · e−νL ·ydy

= λh · P(μt (0,m) = μL) · m RμR · e−νL ydy + o(h), L ∈ {0, . . . , J } ,
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which is independent of the history (W (u), M(u))0≤u<t . The right side is
the probability that there is an arrival in (t, t + h), which is assigned service
rate μL , and a rate-μR service finishes first among the occupied servers, at a
time in the state space interval (y, y + dy).

Positive-Wait States
Arrival In (t, t + h) Given (x,m)t , x > 0, where

∑J
j=0 m j = c − 1, there

may be an arrival during (t, t + h). Let

k = (m0, . . . ,mL + 1, . . . ,m R − 1, . . . ,m J ).

Reasoning as for zero-wait border states, we obtain

P((W (t + h), M(t + h) ∈ ((x + y, x + y + dy), k)|(x,m)t ))

= λh · P(μt (0,m) = μL) · m RμR · e−νL (y−x)dy + o(h),

which is independent of (W (u), M(u))0≤u<t .

Virtual Wait in (0, h)
Consider the case where all servers are occupied, no customers are waiting
and W (t) ∈ (0, h), where h is “small”. Assume a server completes service
before a new arrival occurs. Given (x,m)t , 0 < x < h,

∑J
j=0 m j = c − 1,

we obtain
P((0,m)t+h|(x,m)t ) = 1 − λx + o(x).

The SP hits level 0 from above in a continuous manner at t + x . It immediately
enters border line m corresponding to the border state (0,m), and continues
its motion in the direction of Time. This is independent of the past history
prior to t .

The above cases cover all possible situations. Formula (4.9) follows in
each case, implying that the SP process has the Markov property.

4.5.8 Departures from Positive-Wait States

We examine the departure rates during a sojourn on a sheet (page). (Table
4.1 describes the symbols in Fig. 4.3.)

Suppose the SP is at a positive level on page m ∈ M1 (
∑J

j=0 m j = c − 1
and all c servers are occupied, including the last arrival). The occupancy
number of service rate μ j among the c − 1 servers, not occupied by the last
arrival, is m j , j ∈ {0, . . . , J }.

The single remaining server, which is occupied by the last arrival, may
have an arbitrary service rate μ∗ ∈ µ. Assume μ∗ does not match a positive
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Table 4.1 Description of Symbols in Fig. 4.3

Symbol Description

τn Arrival instant

Cτn Customer that arrives at τn

σn Start of service instant of Cτn

Sτn σn+1 − σn = inter start-of-service
depart time

W(t)
Page m

Time t

SP  exits pg. m

0

0τ 1τ
2τ

0σ 1σ
3σ

3τ
4τ

2σ

SP  enters pg. m

1
Sτ

2
Sτ

4σ

0
Sτ

3
Sτ

Fig. 4.3 SP sojourn on page m. Departure rate may differ on intervals (τ0,σ0),

(σ0,σ1), (σ1,σ2), (σ2,σ3), (σ3, τ4). At instants σ0, σ1, σ2, arrivals Cτ0 , Cτ1 , Cτ2 start
service. Just after departure instants σ0 + Sτ0 , σ1 + Sτ1 , σ2 + Sτ2 , the remaining
c − 1 servers will have server occupancies m = (m0, . . . ,m J )

component in configuration m. In order for the SP to remain on page m just
after that arrival, the rate-μ∗ server must complete service first among the c
occupied servers (see Fig. 4.3).

While the SP is on page m, the system exponential departure rate will,
in general, differ during inter-departure intervals. These possibly different
exponential departure rates have no effect on the Markov property of the SP
process. The configurations are determined at arrival instants (i.e., earlier
when service rates are assigned) (Fig. 4.3).

4.6 Transient Analysis of Generalized M/M/c

Sections 4.6.1–4.6.6 develop LC relations and definitions leading to the for-
mulation of integro-differential equations for the transient time-t pdf of the
virtual wait, in Sect. 4.6.8 below. This development is based on the author’s
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working papers [21, 23]. The transient analysis complements the results in
[52], which focuses on the generalized M/M/c queue in steady-state. Sec-
tion 4.6.7 derives the steady-state integral equations by letting t → ∞ in the
transient equations. Section 4.7 serves as a brief tutorial on writing steady-
state model equations using LC and sample paths.

4.6.1 Transient PDF of Wait and Downcrossings

We next determine relationships between the transient pdf of wait and sample-
path transitions. Let Dt (x,m) := number of sample-path downcrossings of
level x on page m ∈ M1 during [0, t]. Let

Dt (x) =
∑

m∈M1

Dt (x,m)

denote the total number of downcrossings of level x on all pages during
[0, t]. Theorem 4.3 connects the instantaneous rate of change of the expected
number of downcrossings of level x in [0, t], to the time-t transient pdf of
wait at level x .

Theorem 4.3 For each configuration m ∈ M1,

∂

∂t
E(Dt (x,m)) = ft (x,m), x > 0, t > 0, (4.12)

∂

∂t
E(Dt (0,m)) = ft (0

+,m) (= ft (0,m)), t > 0, (4.13)

∂

∂t
E(Dt (x)) = ft (x), x > 0, t > 0, (4.14)

∂

∂t
E(Dt (0)) = ft (0

+) (= ft (0)), t > 0. (4.15)

Proof Fix state-space level x > 0. Consider instants t and t + h, where t >
0, and h > 0 is small. To prove (4.12) and (4.13) for page m, we develop
a table similar to (3.10) in Chap. 3 for the M/G/1 queue, and proceed as
in the proof of (3.8) and (3.9). Formulas (4.14) and (4.15) follow from the
definitions of Dt (x) and the total pdf ft (x), x > 0. �

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Corollary 4.1

E(Dt (x,m)) =
∫ t

s=0
fs(x,m)ds, (4.16)

E(Dt (0,m)) =
∫ t

s=0
fs(0

+,m)ds, (4.17)

E(Dt (x)) =
∫ t

s=0
fs(x)ds, (4.18)

E(Dt (0)) =
∫ t

s=0
fs(0

+)ds. (4.19)

Proof Integrating both sides of (4.12), (4.13), (4.14) and (4.15) with respect
to s over the interval [0, t] and applying the initial conditions

E(D0(x,m)) = E(D0(x)) = 0, x ≥ 0,

yield (4.16), (4.17), (4.18) and (4.19), respectively. �

4.6.2 Steady-State PDF of Wait and Downcrossings

Corollary 4.2 below connects the SP limiting downcrossing rate as t → ∞
and the steady-state pdf of wait, at a state-space level. It is analogous to
Corollary 3.2 for M/G/1. It also demonstrates the equality of the limit of the
instantaneous rate of change of the expected number of downcrossings in
[0, t], and the limit of the average downcrossing rate over [0, t].

Let Sm = ([0,∞),m) ,m ∈ M1. The results below apply to each pageT ×
Sm,m ∈ M1 as well as to the “book” T × (∪m∈M1Sm

)
.

Corollary 4.2 Assume the following limits exist

lim
t→∞ ft (x,m) ≡ f (x,m), x ∈ Sm,m ∈ M1.

Then

lim
t→∞

∂

∂t
E(Dt (x,m)) = lim

t→∞
E(Dt (x,m))

t
= f (x,m), x > 0, (4.20)

lim
t→∞

∂

∂t
E(Dt (0,m)) = lim

t→∞
E(Dt (0,m))

t
= f (0+,m) ≡ f (0,m),

(4.21)

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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lim
t→∞

∂

∂t
E(Dt (x)) = lim

t→∞
E(Dt (x))

t
= f (x), x > 0, (4.22)

lim
t→∞

∂

∂t
E(Dt (0)) = lim

t→∞
E(Dt (0))

t
= f (0+) ≡ f (0). (4.23)

Proof In (4.20), (4.21), (4.22) and (4.23), the equalities of the left-most terms
to the pdfs on the right, follow by letting t → ∞ in (4.12), (4.13), (4.14) and
(4.15), respectively. The equalities of the middle terms to the pdfs on the
right, follow by dividing both sides of (4.16), (4.17), (4.18) and (4.19) by
t > 0 and letting t → ∞. �

4.6.3 SP m → k Transitions

Before discussing the relationship between the transient pdf of wait and SP
upcrossings, we define SP m → k transitions. We say that the SP makes an
m → k transition at instant t0 if it exits state-space set Sm and enters state-
space set Sk at t0. That is, the SP exits ([0,∞),m) and enters ([0,∞), k)
at t0. If m = k, then an m → k transition maintains the SP on page m at t0.
Similar remarks apply to zero-wait lines m, k ∈ M0, or line m ∈ Mb and Sk
(see Sects. 2.4.3, 2.4.4 for definitions of entrance and exit).

m → kUpcrossing of a Level Consider Sm, Sk. Fix level x > 0. An m →
k upcrossing of level x occurs at instant t0 if the SP exits set ([0, x),m) and
enters set ((x,∞), k) at t0. That is, the SP makes both an m → k transition
and an upcrossing of level x at t0. Thus the SP moves instantaneously (not
in Time) from page m to page k and from a level below x to a level above x .
Viewed from the “cover” of the “book”, the upcrossing of level x resembles
an “ordinary” upcrossing of x by a sample path of the virtual wait in the
M/G/1 queue (see Fig. 4.2). Similar definitions apply to line m and Sk (page
k).

m → k Parallel Transition In some variants of the M/M/c queue, the SP
may make “parallel” transitions. The SP makes an m → k parallel transition
at t0 if it exits Sm from a level y and enters Sk at the same level y, at t0.
SP parallel transitions can also occur in variants of single-server queues
(e.g., queues with bulk service [20, 93]) and in other stochastic models. The
concepts of system configuration, pages (sheets), cover, m → k transitions,
etc., are useful in analyzing many other stochastic models.

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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4.6.4 SP m → K Upcrossings Viewed from “Cover”

Let
Ut (x,m, k),m, k ∈ M1

denote the number of SP m → k upcrossings of level x during [0, t]. Denote
the total number of upcrossings of level x during [0, t] (as viewed from the
“cover” of the “book”) by

Ut (x) =
∑

m,k∈M1

Ut (x,m, k). (4.24)

In (4.24) Ut (x,m, k) will be positive only if m, k are such that page k is
accessible from page m in one step at an arrival instant (considering lines m
and k as zero-levels of pages m, k respectively). For an m → k upcrossing
of level x to occur, the “target” page k can be either page m itself (k = m)
or a different page (k 
= m).

4.6.5 Number of Types of m → K Upcrossings

A type of m → k upcrossing is an ordered pair (m, k). The total number of
possible types of m → k upcrossings depends on how many pages commu-
nicate in one step at arrival instants. An upper bound on the total number of
possible m → k upcrossings is

number of ordered pairs (m, k) = (number of configurations in M1)
2

=
(

J + c − 1

c − 1

)2

=
(

J + c − 1

J

)2

.

This maximum number
(J+c−1

c−1

)2
is realized only if all

(J+c−1
c−1

)
pages commu-

nicate in one step. In that case, there are
(J+c−1

c−1

)
ways to select the “source”

page m and
(J+c−1

c−1

)
ways to select the “target” page k (with replacement).

Example 4.6 Consider an M/M/c queue with c = 3 and J = 1, as in Ex-
ample 4.4 (see Fig. 4.2). The set of configurations corresponding to pages is
M1 = {20, 11, 02}.Here

(J+c−1
c−1

) = (32) = 3. An upper bound on the number
of types of m → k transitions (ordered pairs (m, k)) is 32 = 9. This max-
imum can be realized only if all configurations in M1 communicate with
each other in one step. This will depend on the probabilities governing the
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evolution of the states over time. In the present example, configurations 20
and 02 do not communicate in one step (at an arrival instant). There are seven
possible types of one-step transitions, namely,

{20 → 20, 20 → 11, 11 → 20, 11 → 11, 11 → 02, 02 → 11, 02 → 02}.
Transition types 20 → 02 and 02 → 20 are not possible.

The Probability pt (z,m → k) We denote the probability that page k
is accessible in one step from level z on page m at an arrival instant t , by
pt (z,m → k). Thus for each m ∈ M1∑

k∈M1

pt (z,m → k) = 1.

Usually, for fixed z, there is some k for which pt (z,m → k) = 0. Then page
k is not accessible from level z on page m in one step. If such inaccessibility
applies for all (z,m), z ≥ 0, then page k is not accessible from page m in
one step. This is the case in Example 4.6: for m = 20 and k = 02,

pt (z, 20 → 02) = pt (z, 02 → 20) = 0, z ≥ 0;

so, pages m and k do not communicate in one step.

4.6.6 Transient PDF of Wait and Upcrossings

If a time-t arrival Ca,t finds the state to be (z,m), then Ca,t is assigned a
service rate μt (z,m) ∈ µ. We assume that μt (z,m) is a right continuous
with respect to both z and t . In Theorem 4.4 we use the fact that M1 = Mb

=
{
m|∑J

j=0 m j = c − 1
}

(defined in Sect. 4.4.3).

Theorem 4.4 For m, k ∈ M1, the instantaneous rate of change of the ex-
pected number of m → k upcrossings in [0, t] is given by

∂

∂t
E(Ut (x,m, k))

= λ

∫ x

z=0
pt (z,m → k)e−νt (z,m)(x−z)d Ft (z,m), x ≥ 0, t ≥ 0, (4.25)
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where

νt (z,m) =
J∑

j=0

m jμ j + μt (z,m).

Proof Fix level x > 0 on page m, and time t > 0. Examination of a sam-
ple path on page m over the time interval (t, t + h), h > 0, leads to the
non-zero values of Ut+h(x,m, k) − Ut (x,m, k), and corresponding proba-
bilities in (4.26) below. We omit Ut+h(x,m, k) − Ut (x,m, k) = 0, which
contributes 0 to E(Ut+h(x,m, k) − Ut (x,m, k)). We omit negative values,
because {Ut (x,m, k)}t≥0 is a counting process implying Ut+h(x,m, k) −
Ut (x,m, k) ≥ 0.

Ut+h(x,m, k) Probability
−Ut (x,m, k)

+1 λh P0(t)pt (0,m → k)e−νt (0,m)x

+λh
∫ x

h pt (z,m → k)e−νt (z,m)(x−z) ft (z)dz + o(h)
≥ 2 o(h).

(4.26)
In (4.26), taking the expected value of Ut+h(x,m, k) − Ut (x,m, k),

dividing by h > 0 and letting h ↓ 0, yields

∂

∂t
E(Ut (x,m, k)) = λ · P0(t) · pt (0,m → k) · e−νt (0,m)x

+ λ

∫ x

z=0
pt (z,m → k) · e−νt (z,m)(x−z)· ft (z)dz

= λ

∫ x

z=0
pt (z,m → k) · e−νt (z,m)(x−z) · d Ft (z,m),

(4.27)

which is the same as (4.25). �

Corollary 4.3 For m, k ∈ M1,

E(Ut (x,m, k))

= λ

∫ t

s=0

∫ x

z=0
ps(z,m → k) · e−νs(z,m)(x−z) · d Fs(z,m)ds, x ≥ 0, t ≥ 0.

(4.28)

Proof In (4.25) change the variable from t to s on both sides, integrate
with respect to s over the interval [0, t], and apply the initial condition
E(U0(x,m, k)) = 0. This yields (4.28). �
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Corollary 4.4 Consider the “cover”. For x ≥ 0, t ≥ 0,

∂

∂t
E(Ut (x)) = λ

∑
m,k∈M1

∫ x

z=0
pt (z,m → k) · e−νt (z,m)(x−z) · d Ft (z,m)

(4.29)

∂

∂t
E(Ut (0)) = λ

∑
m,k∈M1

pt (0,m → k) · Ft (0,m). (4.30)

Proof We define Ut (x), x ≥ 0 in (4.24). Equations (4.29) and (4.30) follow
by setting x > 0, and x = 0, respectively, in (4.27), and applying (4.24).
(The sample path viewed from the cover is the projection of the sample-path
segments from all pages onto a single sheet.) �
Corollary 4.5 For m, k ∈ M1 and x ≥ 0, t ≥ 0,

E(Ut (x)) = λ
∑
m,k

∫ t

s=0

∫ x

z=0
ps(z,m → k) · e−νs(z,m)(x−z) · d Fs(z,m)ds,

E(Ut (0)) = λ
∑
m,k

∫ t

s=0
ps(0,m → k) · Fs(0,m)ds.

Proof In (4.29) and (4.30) change t to s and integrate with respect to s on
[0, t]. Then apply the initial conditionU0(x) = 0, x ≥ 0. �

4.6.7 Steady-State PDF of Wait and Upcrossings

Corollary 4.6 below proves

lim
t→∞

∂

∂t
E(Ut (x,m, k)) = lim

t→∞
E(Ut (x,m, k))

t
,

by relating both limits to the steady-state pdf of wait. Let

p(z,m → k), ν(z,m), F(z,m), and f (z,m)

be the limiting values of

pt (z,m → k), νt (z,m), Ft (z,m), ft (z,m),

respectively, as t → ∞ (for definition of: pt (z,m → k) see Sect. 4.6.5;
νt (z,m) see formula 4.25).
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Corollary 4.6 For m, k ∈ M1 and x ≥ 0,

lim
t→∞

∂

∂t
E(Ut (x,m, k)) = lim

t→∞
E(Ut (x,m, k))

t

= λ

∫ x

z=0
p(z,m → k) · e−ν(z,m)(x−z) · d F(z,m)

= λp(0,m → k) · e−ν(0,m)x P0

+ λ

∫ x

z=0
p(z,m → k) · e−ν(z,m)(x−z) · f (z,m)dz. (4.31)

Proof The equality

lim
t→∞

∂

∂t
E(Ut (x,m, k)) = λ

∫ x

z=0
p(z,m → k) · e−ν(z,m)(x−z) · d F(z,m),

follows by letting t → ∞ on both sides of (4.25). The equality

lim
t→∞

E(Ut (x,m, k))
t

= λ

∫ x

z=0
p(z,m → k) · e−ν(z,m)(x−z) · d F(z,m)

is obtained upon dividing both sides of (4.28) by t > 0, letting t → ∞, and
using L’Hôpital’s rule (e.g., Theorem 9, p. 179 in [137]; and many Calculus
texts). Equation (4.31) then follows. �

The next corollary relates the limits

lim
t→∞

∂

∂t
E(Ut (x)) and lim

t→∞
E(Ut (x))

t
,

for the expected total number of upcrossings in [0, t], to the steady-state total
probability distribution of wait.

Corollary 4.7 For x ≥ 0,

lim
t→∞

∂

∂t
E(Ut (x)) = lim

t→∞
E(Ut (x))

t

= λ
∑

m,k∈M1

∫ x

z=0
p(z,m → k) · e−ν(z,m)(x−z) · d F(z,m)

= λ
∑

m,k∈M1

p(0,m → k) · e−ν(0,m)x P0,m

+ λ
∑

m,k∈M1

∫ x

z=0
p(z,m → k) · e−ν(z,m)(x−z) · f (z,m)dz. (4.32)
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Proof The result (4.32) follows from (4.31) and the definition of Ut (x) in
(4.24). �

4.6.8 Equations for Transient PDF of Wait

We derive the transient model equations for the generalized M/M/c model.
These equations comprise: (1)

(J+c−1
c−1

)
integro-differential equations for the

partial pdfs ft (x,m), x > 0,m ∈ M1; (2)
(J+c−1

c−1

)
differential equations for

the zero-wait probabilities Pt (0,m),m ∈ M1(= Mb); (3)
(J+c−1

c−2

)
differen-

tial equations for the zero-wait probabilities Pt(0,m),m ∈ M0; (4) one equa-

tion for the normalizing condition. Also M0 =
{
m|0 ≤∑J

i=0 m j ≤ c − 2
}

(see definition in formula 4.8).
We also derive the model equations for the total transient mixed pdf of

wait {P0(t), ft (x)}x>0,t≥0 (cover of book—see definition in formula 4.5.3).
Formula (4.1) and especially (4.2) of Theorem B (Sect. 4.2.1) play im-

portant roles in these derivations. In Theorem B we take the set A to be an
interval in the state space having one of its boundaries equal to x .
Equations for Partial Transient PDFs of Wait
Before stating Theorem 4.5, we introduce/review some definitions.

Definition 4.5 page i := T × ((0,∞), i) where system configuration i ∈
M1 (=Mb)—technically page i excludes line i := T × (0, (0, i)), which may
be separately depicted, or appended to the bottom of page i , in geometric
figures (see, e.g., Fig. 4.2); J (0,x)

t (k,m) := number of k → m jumps that
start in state set ((0, x), k) during [0, t] and end in ((0,∞),m); J 0

t (k,m) :=
number of k → m jumps that start in state set (0, k) during [0, t] and end
in ((0,∞),m); Ut (x, k,m) := number of SP k → m transitions that start
in ([0,x) , k) and jump-upcross level x during [0, t] (start in ((0, x), k) or in
(0, k) during [0, t] and end in ((x,∞) ,m)).

Theorem 4.5 (1) The integro-differential equations for ft (x,m),m ∈ M1,
are

ft (x,m) + λ
∑
k 
=m

∫ x

z=0
pt (z, k,m)(1 − e−νt (z,m)(x−z)) ft (z, k)dz (4.33)

+λ
∑
k 
=m

pt (0, k,m)(1 − e−νt (0,k)(x−z))Pt (0, k)

= ∂

∂t
Ft (x,m) − ∂

∂t
Pt (0,m) + ft (0,m)
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+λ

∫ x

z=0
pt (z,m,m)e−νt (z,m)(x−z)) ft (z,m)dz

+λ
∑
k 
=m

∫ x

z=0
pt (z,m, k) ft (z,m)dz, x ≥ 0, t ≥ 0,

where configuration k ∈ M1.
(2) The differential equation for Pt (0,m),m ∈ M1, is

ft (0,m) + λ
∑
k

pt (0, k,m)Pt (0, k)

= ∂

∂t
Pt (0,m) +

⎛
⎝λ +

J∑
j=0

m jμ j

⎞
⎠ Pt (0,m) (4.34)

where k is such that
∑J

j=0 k j = c − 2.
(3) The differential equations for Pt (0,m),m ∈ M0, are

λ
∑
r 
=m

pt (0, r,m)Pt (0, r) +
∑
s 
=m

s jμ j pt (0, s,m)Pt (0, s)

= ∂

∂t
Pt (0,m) +

⎛
⎝λ +

J∑
j=0

m jμ j

⎞
⎠ Pt (0,m), (4.35)

where state (0,m) is accessible in one step from state (0, r) at an arrival
instant, and in one step from (0, s) at a departure instant. That is,

J∑
j=0

m j =
J∑

j=0

r j + 1 =
J∑

j=0

s j − 1.

(4) The normalizing condition is

∑
m∈M0∪M1

Pt (0,m) +
∑

m∈M1

∫ ∞

x=0
ft (x,m)dx = 1. (4.36)

Proof (1) We derive (4.33) by applying Theorem B (Sect. 4.2.1).
Choose A. In (4.1) and (4.2), choose A := ((0, x),m) (i.e., A is open interval
(0, x) on page m). The measure of set A at time t is

Pt (A) = Ft (x,m) − Ft (0,m) = Ft (x,m) − Pt (0,m).
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Entrance rate into A. The SP can enter A by: (i) downcrossing level x on
page m; (ii) making a k → m (k 
= m) upward jump starting in ((0, x) , k),
that ends in ((0, x) ,m); (iii) making a jump that starts from state (0,k)
(k ∈ M1) (sometimes located at level 0 on page k in figures), and ends in
((0, x) ,m).

The number of SP entrances into set A during [0, t] is

It (A) = Dt (x,m) +
∑

k 
=m∈M1

J (0,x)
t (k,m)

+
∑
k∈M1

J 0
t (k,m) −

∑
k∈M1

Ut (x, k,m). (4.37)

In (4.37) the algebraic sum∑
k 
=m∈M1

J (0,t)(k,m) +
∑
k∈M1

J 0
t (k,m) −

∑
k∈M1

Ut (x, k,m) (4.38)

= (number of SP jumps that start in ([0, x), k) on any pages or zero-wait
lines k ∈ M1, and end in ((0,∞),m) – (number of such jumps that end in
((x,∞) ,m) on page m during [0, t])). Thus, (4.38) is the number of SP
entrances into ((0, x),m) during [0, t], due to jumps that start below x on
pages or lines outside of T × ((0, x),m) and end in ((0, x),m). Therefore
It (A) is the total number of SP entrances into ((0, x),m) from all sources
in one step during [0, t].

Taking expected values and then ∂
∂t in (4.37) yields

∂

∂t
E (It (A)) = ∂

∂t
E (Dt (x,m)) +

∑
k 
=m

∂

∂t
E
(

J (0,x)
t (k,m)

)

+
∑
k∈M1

∂

∂t
E
(
J 0

t (k,m)
)−

∑
k∈M1

∂

∂t
E (Ut (x, k,m)) . (4.39)

Exit Rate of set A. The SP can exit set A by: (i) hitting level 0 on page m
from above in a continuous fashion, (i.e., exiting ((0, x),m) and simultane-
ously entering state (0,m)); (ii) starting in ((0, x),m) at an arrival instant
and making an m → k (including m → m) upcrossing of level x , ending in
((x,∞), k), k ∈ M1; (iii) starting in ((0, x),m) at an arrival instant instant
and making an m → k (k 
= m) jump-transition that ends below x on any
page k �= m, i.e., in ((0, x), k), k ∈ M1, k �= m

The total number of exits from set A during [0, t] is
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Ot (A) = Dt (0,m) +
∑
k∈M1

Ut (x,m, k)

+
∑

k 
=m∈M1

J (0,x)
t (m, k) −

∑
k 
=m∈M1

Ut (x,m, k). (4.40)

Explanation of (4.40). On the right side, Dt (0,m) is the number of
exits from A during [0, t] by downcrossing level 0 on page m (entering
(0,m)). The term

∑
k∈M1

Ut (x,m, k) is the number of SP jump exits from
([0, x),m) during [0, t] that upcross level x on any page k (including k= m).∑

k 
=m∈M1
J (0,x)

t (m, k) is the number jump-exits that start in ((0, x),m) and
end in ((0,∞) , k) for any k �= m. Term −∑k 
=m∈M1

Ut (x,m, k) cancels
the extra number of jump-exits from ([0, x),m) during [0, t] that upcross
level x on any page k 
= m, i.e., ending in ((x,∞), k).

Taking expected values and then ∂
∂t in (4.40) results in

∂

∂t
E (Ot (A))

= ∂

∂t
E (Dt (0,m)) +

∑
k∈M1

∂

∂t
E (Ut (x,m, k))

+
∑
k 
=m

∂

∂t
E
(
U (0,x)

t (x,m, k)
)

−
∑
k 
=m

∂

∂t
E (Ut (x,m, k)) . (4.41)

Integro-differential Equation: We substitute in (4.41) from (4.12), (4.13),
(4.25). This yields the integro-differential equation (4.33).
(2) We derive (4.34) by letting set A = (0,m) in Theorem B, and substi-

tuting formulas from Section 4.6.1 relating downcrossings and the transient
distribution of wait, as in the proof of (1).

(3) We derive (4.35) in a similar manner as in (2).
(4) The final equation is the normalizing condition

∑
m∈M0∪M1

Pt (0,m) +
∑

m∈M1

∫ ∞

x=0
ft (x,m)dx = 1.

�
Remark 4.8 In practice we can derive an equivalent set of model equations
by letting set A = ((x,∞),m), x > 0, in Theorem B (instead of substituting
((0, x],m)). This choice of A may simplify the derivation of the model
equations for ft (x,m). We would then consider SP jumps that start below
and end above level x . This would yield terms of the form e−νt (z,m)(x−z)
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rather than (1 − e−νt (z,m)(x−z)) in the integrands. In real-world applications,
writing the integro-differential equations is much simpler than it may seem
at this point. Some practice on a few simple models will quickly establish
the method. It is very intuitive.

Remark 4.9 We can generalize the model upon replacing λ by λt , depending
on t . The arrival stream would then be a non-homogeneous Poisson process.
This generalization holds because the developments in the foregoing sections
involving λ are essentially the same if λt is substituted for λ.

Model Equations for Total Transient PDF
In the following theorem, we utilize the previously defined equivalent notation
Ft (0,m) ≡ Pt (0,m),m ∈ M1, Ft (0) ≡ P0(t), ft (0) ≡ ft (0+).

Theorem 4.6 For the total pdf of wait {P0(t), ft (x)}x>0, as viewed from the
‘cover’, the following integro-differential and differential equations hold :

ft (x) = ∂

∂t
Ft (x) + λ

∑
m∈M1

∫ x

z=0
e−νt (z,m)(x−z)d Ft (z,m)

= ∂

∂t
Ft (x) + λ

∑
m∈M1

Pt (0,m)e−νt (z,m)x

+ λ
∑

m∈M1

∫ x

z=0
e−νt (z,m)(x−z) ft (z,m)dz, x > 0, t ≥ 0, (4.42)

ft (0) = ∂

∂t
P0(t) + λ

∑
m∈M1

Pt (0,m), t ≥ 0. (4.43)

Proof In Theorem B (Sect. 4.2.1), consider the set

A = (∪m∈M0∪M1(0,m)
) ∪ (∪m∈M1((0, x] ,m), x > 0

)
.

Set A includes all
(J+c

c−1

)
zero-wait states

{
(0,m)|0 ≤∑J

j=0 m j ≤ c − 1
}

,

as well as all positive-wait states
{
(y,m)|∑J

j=0 m j = c − 1, y ∈ (0, x]
}
.

Every SP entrance into A must occur from above at level x . Therefore all
entrances are due to (continuous) SP downcrossings of level x . Every exit
out of A must be due to a jump starting below level x on a page and ending
at a level above level x on some page. Therefore all SP exits from set A are
due to upcrossings of level x .
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Thus

It (A) = Dt (x), Ot (A) = Ut (x),

E (It (A)) = E (Dt (x)) , E (Ot (A)) = E (Ut (x)) ,

∂
∂t E (It (A)) = ∂

∂t E (Dt (x)) ,
∂
∂t E (Ot (A)) = ∂

∂t E (Ut (x)) .

We then substitute these expressions into formulas (4.14), (4.15), (4.29) and
(4.30). This substitution yields the integro-differential equation (4.42) and
the differential equation (4.43). �

The normalizing condition

P0(t) +
∫ ∞

x=0
ft (x)dx = 1,

is used along with (4.42), (4.43) to solve for the unknown time-t zero-wait
probabilities and positive-wait pdfs.

When it is not feasible to obtain an analytical solution, we can use nu-
merical, simulation or approximation techniques to solve for the transient
zero-wait probabilities and positive-wait pdfs.

4.6.9 Equations for Steady-State PDF of Wait

We obtain the model equations for the steady-state pdf of wait by letting t →
∞ in (4.34)–(4.36). All quantities subscripted by t have limits as t → ∞. We
denote the limits utilizing the same notation, omitting subscript t . If stability
holds, then

lim
t→∞

∂

∂t
Ft (x,m) = lim

t→∞
∂

∂t
Ft (0,m) = 0.

This corresponds to the cdf F(x,m) being independent of t .

Theorem 4.7 The integral equation for the steady-state pdf f (x,m), m ∈
M1, is

f (x,m) + λ
∑

k 
=m∈M1

∫ x
z=0 p(z, k,m)(1 − e−ν(z,m)(x−z)) f (z, k)dz

+ λ
∑

k∈M1
p(0, k,m)(1 − e−ν(0,k)(x−z))P(0, k)

= f (0,m)

+ λ
∫ x

z=0 p(z,m,m)e−ν(z,m)(x−z)) f (z,m)dz

+ λ
∑

k 
=m∈M1

∫ x
z=0 p(z,m, k) f (z,m)dz, x ≥ 0.

(4.44)
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Proof We obtain (4.44) by letting t → ∞ in (4.33). �

Theorem 4.8 The model equation for the total steady-state pdf is

f (x) = λ
∑

m∈M1
P(0,m)e−ν(z,m)x

+λ
∑

m∈M1

∫ x
z=0 e−ν(z,m)(x−z) f (z,m)dz, x > 0.

(4.45)

Proof Let t → ∞ in (4.42). �

Remark 4.10 In practice, it is often more efficient to derive balance
equations for SP exit/entrance rates with respect to the state-space sets
((x,∞) ,m)m∈M1

, x > 0, rather than with respect to the state-space sets
((0, x) ,m)m∈M1

, x > 0. The derived equations will be equivalent, no matter
which state-space sets are employed for rate balance.

Interpretation of Equations in Theorem 4.7 for Sheets
We now interpret (4.44) in terms of rate balance across levels and between
pages. This interpretation gives LC power for deriving steady-state model
equations by inspecting a typical sample path, in a vast array of complex
stochastic models.

In (4.44) the left side is the SP entrance rate into ((0, x),m). The term
f (x,m) is the SP downcrossing rate of level x on page m. The term

λ
∑

k 
=m∈M1

∫ x

z=0
p(z, k,m)(1 − e−ν(z,m)(x−z)) f (z, k)dz

is the rate at which the SP enters composite state ((0, x),m) due to jumps at
arrival instants that originate in ((0, x), k) on pages k 
= m. The term

λ
∑
k∈M1

p(0, k,m)(1 − e−ν(0,k)(x−z))P(0, k)

is the rate at which the SP enters composite state ((0, x),m) due to jumps
that originate at level (0, k) on any zero-wait line k ∈ M1). These three terms
exhaust the possible paths by which the SP can enter ((0, x),m).

The right side of (4.44) is the SP exit rate of ((0, x),m). The term f (0,m)

is the rate at which the SP exits ((0, x),m) and simultaneously enters the
zero-wait boundary state (0,m), due to downcrossings of level 0. The term

λ

∫ x

z=0
p(z,m,m)e−ν(z,m)(x−z)) f (z,m)dz
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is the rate at which the SP exits ((0, x),m) and simultaneously enters
([x,∞),m) due to jumps at arrival instants. The term

λ
∑
k 
=m

∫ x

z=0
p(z,m, k) f (z,m)dz

is the rate at which the SP exits ((0, x),m) and simultaneously enters any
page k 
= m. These three terms exhaust the possible paths by which the SP
can exit ((0, x),m).

Thus equation (4.44) is a rate-balance equation of the form:

Rate into ((0, x),m) = Rate out of ((0, x),m),

which is a well-known principle for stochastic processes with discrete states,
e.g., birth-death processes.

Interpretation of Equation for Total PDF
We now provide an LC interpretation of (4.45). We may view the LC analysis
of the sheets as a dissection of the states of the model (into a partition). The
total equation is like a synthesis , i.e., reconstruction of the parts into a single
whole. This idea helps to derive model equations in complex models directly
from sample-path considerations. It utilizes LC ideas for the sheets, lines and
the ‘cover’.

In (4.45) the left term f (x) is the total downcrossing rate of level x , on
all pages. On the right side, the term λ

∑
m∈M1

P(0,m)e−ν(z,m)x is the total
rate at which the SP upcrosses level x at arrival instants, due to jumps starting
at level 0. The term

λ
∑

m∈M1

∫ x

z=0
e−ν(z,m)(x−z) f (z,m)dz

is the total rate at which the SP upcrosses level x at arrival instants, starting
from levels in (0, x) on all pagesm ∈ M1. We form Eq. (4.45) by rate balance,
with respect to level x

Downcrossing rate = Upcrossing rate.

The normalizing condition is

P0 +
∫ ∞

x=0
f (x)dx = 1,
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which too has an LC interpretation. That is, multiply both sides by λ. This
yields

λP0 + λ

∫ ∞

x=0
f (x)dx = λ.

On the left side, λP0 is the rate at which the SP makes jumps at arrival instants
out of zero-wait states. The term λ

∫∞
x=0 f (x)dx is the rate at which the SP

makes jumps at arrival instants from positive-wait states. The right side λ is
the total rate at which the SP makes jumps at arrival instants. The left and
right sides are equal.

4.6.10 Discussion of Rate Balance in Complex Models

The rate-balance interpretation provides the analyst with a powerful tech-
nique for constructing model equations for steady-state distributions in very
complex models. The method is straightforward, intuitive, and relatively easy.

1. Select a state-space interval with boundary x .
2. Express the SP entrance and exit rates of the interval algebraically in

terms of the unknown probability of the interval and/or unknown pdf at
x .

3. Apply rate balance to construct an integral equation (or other type of
balance equation) for the probability and/or pdf at x .

4. Repeat (1)–(3) for every sub-partition of the state space as required, to
form a complete system of Volterra integral equations of the second kind
(as above), plus other relevant equations, depending on the model.

5. Write the normalizing condition.
6. Solve the entire system of equations simultaneously for the probabilities

and pdfs of the model. This can be done analytically, numerically, by
approximation, or by LC estimation (see Chap. 9).

Remark 4.11 The author realized in 1974 that the steady-state model equa-
tions discussed here, are really rate-balance equations. Originally, these
steady-state equations had been derived by starting with Lindley recursions,
analogous to those described for M/G/1 in Sect. 1.2 of Chap. 1. The derivation
for M/M/c queues started, however, with more complex Lindley recursions.

http://dx.doi.org/10.1007/978-3-319-50332-5_9
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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4.7 Example of Steady-State Equations

This Section serves as a brief tutorial on writing steady-state model equations
using LC and sample paths. We derive model equations for the steady-state
pdf of wait in the specific M/M/c queue with c = 3 and J = 1, discussed
in Example 4.4 in Sect. 4.5.5, with a sample path in Fig. 4.2. There are two
possible service rates: µ = {μ0,μ1}. We make a slight generalization for
the service-rate assignment policy. For each arrival, the rates {μ0,μ1} are
assigned with probabilities {α0,α1}, α0 + α1 = 1 (instead of 1/2 each). Our
present example reduces to Example 4.4 if α0 = α1 = 1/2.

We use α0, α1 to make it easier to follow the intuitive derivation of the
model equations, since α0,α1 appear explicitly in the equations.

The set of possible configurations is M0 ∪ M1 = {(m0,m1)}, where m j
denotes the number of servers occupied by customers with service rate
μ j , j = 0, 1. From the definition of system configuration (Sect. 4.4),

0 ≤
1∑

j=0

m j ≤ c − 1 = 2.

We abbreviate (m0,m1) as m0m1. There are six possible configurations
(same as in Example 4.4):

M0 ∪ M1 = {00, 10, 01, 20, 11, 02}, (4.46)

where
M0 = {00, 10, 01}, M1 = {20, 11, 02}.

When an arrival finds more than one server idle, it immediately occupies one
of them in accordance with a server-assignment rule, and starts service at
rate μi with probability αi , i = 0, 1.

First we will derive the equations for the zero-wait states (atoms). These
are represented in the virtual-wait diagram by the six lines T × (0,m) ,m ∈
M0 ∪ M1 (Fig. 4.2).

Next we will derive the integral equations for the pdfs of the positive-
wait states (continuous states). These states are represented by pages T ×
((0,∞),m), m ∈ M1 (Fig. 4.2). Fix level x > 0. For the equation corre-
sponding to m ∈ M1, the left side is the SP exit rate (out of) state-space inter-
val ((x,∞),m), and the right side is the SP entrance rate (into) ((x,∞),m).
(We use interval (x,∞) instead of (0, x), since (x,∞) results in simpler
(equivalent) equations.) Since M1 = {20, 11, 02}, there are three pages, three
pdfs, and three corresponding integral equations.
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Remark 4.12 To summarize, the zero-wait states are (0,m),m ∈ M0 ∪
M1. The positive-wait states we use for the derivation, are composite states
((x,∞),m), m ∈ M1. We could use alternative state-space intervals having
a fixed level-x boundary , such as ((0, x),m) or ((x, a),m), where constant
a > x , or ((x, bx),m), b > 1, etc. For different interval selections we would
derive a different, but equivalent set of model equations. A creative choice of
state-space interval may simplify the derivation and final form of the equa-
tions. It may lead to new identities or insights about the model. It may also
suggest easier ways to obtain solutions of the equations.

The configurations for the zero-wait states are given in M0 ∪ M1 and for
the pages in M1, in (4.46) above; (see also Fig. 4.2).

We now derive the model equations; a detailed explanation follows imme-
diately after.

4.7.1 Equations for Zero-Wait States

Notation 4.9 State (0,m0m1) means m0 + m1 servers are occupied: mi
serve at rate μi , i = 0, 1. Pm0m1 := P(system is in state (0,m0m1)).

Using the principle for discrete states rate out = rate in, we obtain the
equations for the zero-wait states, as in (4.47). A detailed explanation follows
below.

State Rate out Rate in
(0, 00) λP00 = μ0 P10+μ1 P01
(0, 10) (λ + μ0)P10 = λα0 P00+2μ0 P20+μ1 P11
(0, 01) (λ + μ1)P01 = λα1 P00+2μ1 P02+μ0 P11
(0, 20) (λ + 2μ0)P20 = λα0 P10+ f 20(0

+)
(0, 11) (λ + μ0+μ1)P11 = λα1 P10+λα0 P01+ f 11(0

+)
(0, 02) (λ + 2μ1)P02 = λα1 P01+ f 02(0

+)

(4.47)

Explanation for Discrete States (0,m), m ∈ M0 ∪ Mb
In (4.47) the first three equations are derived as in a “bubble” diagram
for discrete-state continuous-time Markov chains, using rate out = rate in.
The last three equations are derived similarly, except for the terms f20(0+),
f11(0+), f02(0+). These are the exit rates from ((0,∞), 20), ((0,∞), 11),
and ((0,∞), 02) into discrete states (0, 20), (0, 11), (0, 02) respectively. At
instants of these exits, the SP simultaneously enters the corresponding line
T × (0, 20), T × (0, 11), or T × (0, 02). It continues its motion.
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4.7.2 Equations for States ((x,∞),m), m ∈ M1

We now derive the model equations for pages m ∈ M1. Detailed explanations
follow immediately after Eq. (4.51) below.

Rate balance of rates out (left side) and in (right side) for composite state
((x,∞), 20), x > 0, result in the equation

f20(x) + λα1
2μ0

2μ0 + μ1

∫ ∞

y=x
f20(y)dy

= λ

(
α0e−3μ0x + α1

μ1

2μ0 + μ1
e−(2μ0+μ1)x

)
P20

+ λα0
μ1

2μ0 + μ1
e−(2μ0+μ1)x P11 + λα0

∫ x

y=0
e−3μ0(x−y) f20(y)dy

+ λα0
μ1

2μ0 + μ1

∫ x

y=0
e−(2μ0+μ1)(x−y) f11(y)dy

+ λα0
μ1

2μ0 + μ1

∫ ∞

y=x
f11(y)dy. (4.48)

Rate balance for composite state ((x,∞), 11) , x > 0, gives the equation

f11(x) + λα1
μ0

μ0 + 2μ1

∫ ∞

y=x
f11(y)dy + λα0

μ1

2μ0 + μ1

∫ ∞

y=x
f11(y)dy

= λ

(
α1

2μ1

μ0 + 2μ1
e−(μ0+2μ1)x + α0

2μ0

2μ0 + μ1
e−(2μ0+μ1)x

)
P11

+ λα1
2μ0

2μ0 + μ1
e−(2μ0+μ1)x P20 + λα0

2μ1

μ0 + 2μ1
e−(μ0+2μ1)x P02

+ λα1
2μ1

μ0 + 2μ1

∫ x

y=0
e−(μ0+2μ1)(x−y) f11(y)dy

+ λα0
2μ0

2μ0 + μ1

∫ x

y=0
e−(2μ0+μ1)(x−y) f11(y)dy

+ λα1
2μ0

2μ0 + μ1

∫ x

y=0
e−(2μ0+μ1)(x−y) f20(y)dy

+ λα0
2μ1

μ0 + 2μ1

∫ x

y=0
e−(μ0+2μ1)(x−y) f02(y)dy

+ λα1
2μ0

2μ0 + μ1

∫ ∞

y=x
f20(y)dy + λα0

2μ1

μ0 + 2μ1

∫ ∞

y=x
f02(y)dy.

(4.49)
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Rate balance for composite state ((x,∞), 02) , x > 0, gives the equation

f02(x) + λα0
2μ1

μ0 + 2μ1

∫ ∞

y=x
f02(y)dy

= λ

(
α1e−3μ1x + α0

μ0

μ0 + 2μ1
e−(μ0+2μ1)x

)
P02

+ λα1
μ0

μ0 + 2μ1
e−(μ0+2μ1)x P11 + λα1

∫ x

y=0
e−3μ1(x−y) f02(y)dy

+ λα1
μ0

μ0 + 2μ1

∫ x

y=0
e−(μ0+2μ1)(x−y) f11(y)dy

+ λα1
μ0

μ0 + 2μ1

∫ ∞

y=x
f11(y)dy. (4.50)

The normalizing condition is

P00 + P10 + P01 + P20 + P11 + P02

+
∫ ∞

x=0
[ f20(x) + f11(x) + f02(x)] dx = 1. (4.51)

Explanation of Equations for States ((x,∞),m), m ∈ M1
Left Side of Equation (4.48) In (4.48), the left side represents the SP exit
rate out of ((x,∞), 20). There are two routes by which the SP can exit this
composite state: (1) downcrossing level x on page 20; (2) jumping to page 11
pursuant to an arrival that is assigned rate μ1. The term f20(x) is the down-
crossing rate of level x on page 20.

The term

λα1
2μ0

2μ0 + μ1

∫ ∞

y=x
f20(y)dy

is the rate at which the SP jumps to page 11 at arrival instants. In this expres-
sion, λ f20(y)dy is the rate at which arrivals find the SP in interval (y, y + dy)
on page 20. The term α1 is the probability that an arrival gets assigned rate
μ1, resulting in two servers having rate μ0 and one server having rate μ1

just after the arrival starts service. The term 2μ0
2μ0+μ1

is the probability that a

rate-μ0 customer finishes first, causing the SP to jump to page 11. The SP
cannot jump to page 02 if an arrival finds the configuration to be 20. The sum
of the two terms on the left of side of (4.48) is the exit rate of the SP out of
(x,∞) on page 20.
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Right Side of Equation (4.48) The right side of (4.48) is the SP entrance
rate into ((x,∞), 20). The fist term

λ

(
α0e−3μ0x + α1

μ1

2μ0 + μ1
e−(2μ0+μ1)x

)
P20

is the entrance rate into ((x,∞), 20) due to arrivals that find the state to be
(0, 20). In it, the product λP20 is the rate at which arrivals find the state to
be (0, 20). The arrival does not wait, and immediately starts service from the
one available server. The term α0e−3μ0x is the product of two probabilities:
α0, that the arrival is assigned rate μ0; e−3μ0x , that the minimum of three
independent service times, each having rate μ0, exceeds x .

The term
α1

μ1

2μ0 + μ1
e−(2μ0+μ1)x

is the product of three probabilities: α1, that the arrival is assigned rate μ1;
μ1/ (2μ0 + μ1), that the minimum of three service times, two having rate μ0
and one having rate μ1, is the rate μ1; e−(2μ0+μ1)x , that the minimum of the
three service times exceeds x . Both terms result in the SP landing above x
on page 02. The entire term is the rate at which the SP moves from level 0
on page 20 to interval (x,∞) on page 20.

The term
λα0

μ1

2μ0 + μ1
e−(2μ0+μ1)x P11

is the rate at which arrivals find the state to be (0, 11) (rate λP11), are assigned
service rate μ0 (probability α0), the minimum service time is a rate-μ1 ser-
vice (probability μ1/ (2μ0 + μ1)), and the minimum exceeds x (probability
e−(2μ0+μ1)x ). This is the rate at which the SP moves from discrete level 0 on
page 11 to (x,∞) on page 20.

The term

λα0

∫ x

y=0
e−3μ0(x−y) f20(y)dy

is the rate at which arrivals find the state to be (y, 20), y ∈ (0, x), are assigned
service rate μ0 (probability α0), and the minimum of three service times each
having rate μ0 exceeds x − y (probability e−3μ0(x−y)) integrated over all y
∈ (0, x). This is the rate at which the SP moves from (0, x) on page 20 to
(x,∞) on page 20 (makes 20 → 20 upcrossings of x).

The term

λα0
μ1

2μ0 + μ1

∫ x

y=0
e−(2μ0+μ1)(x−y) f11(y)dy
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is the rate at which arrivals find the state to be in ((y, y + dy) , 11), y ∈ (0, x)
(factor λ f11(y)dy), are assigned service rare μ0, the rate-μ1 service ends first,
and the minimum of three exponential r.v.s (two having rate μ0 and one rate
μ1) exceeds x − y, integrated over all y ∈ (0, x). This is the rate at which
the SP moves from (0, x) on page 11 to (x,∞) on page 20 (makes 11 → 20
upcrossing of x).

The term

λα0
μ1

2μ0 + μ1

∫ ∞

y=x
f11(y)dy

is the rate at which arrivals find the state to be in ((y, y + dy) , 11), y > x , are
assigned service rate μ0, the rate-μ1 service finishes first, and the minimum
of three exponential service times (two having rate μ0 and one having rate
μ1) has any value in (x,∞). This is the rate at which the SP moves from
(x,∞) on page 11 to (x,∞) on page 20 (makes 11 → 20 transition, from
and to, points above x).

Integral Equations (4.49) and (4.50)
We derive integral equations (4.49) and (4.50) for the pdfs f11(x) and f02(x)
(pages 11 and 02), in a similar manner as for f20(x) above.

Normalizing Condition
The normalizing condition (4.51) ensures that the sum of all zero-wait and
positive-wait probabilities is 1.

4.8 Standard M/M/c: Steady-State Analysis

We analyze the standard M/M/c queue as a special case of the generalized
M/M/c queue developed in Sects. 4.3–4.7. It is instructive to derive known
results for M/M/c using LC. The standard M/M/c queue is one of the first
models the author analyzed in 1974, to validate the LC method (see pp. 37–39
in [11]).

We assume the number of servers is c ≥ 2, each customer receives the same
exponential service rate μ, and λ < cμ. Using the notation of Sect. 4.3, we
have here J = 0, µ = {μ0} := {μ}. A system configuration has one component
m0, which can take values in {0, 1, . . . , c − 1}. The virtual wait process is
denoted as {W (t)}t≥0.

In this model, a system configuration is a scalar m0 := number of cus-
tomers in the other servers just after an arrival starts service. Thus m0 ∈
{0, 1, . . . , c − 1}. Equivalently m0 is the number of other occupied servers
at a start of service instant. The set of all configurations, M = M0 ∪ M1, has
size

(J+c
c−1

)
=
(0+c

c−1

)
=
(c

1

)
= c (see Sect. 4.4.2). That is,
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Fig. 4.4 Sample path of
{W (t)}t≥0 in standard
M/M/c queue. There are
c lines and one page.
Line c − 1 is at level 0
of page c − 1

0
1
2

W(t)
Page c-1

Time t

x

Line

Line C-1

c-2

SP

0

M0 = {0, 1, . . . , c − 2}, M1 = {c − 1}.
(Recall that M1 = Mb, the set of ‘border’ configurations.)

A sample path of {W (t)}t≥0 has c lines for the zero-wait states (0, j), j =
0, . . . , c − 1, and one page (sheet) for the composite state ((0,∞), c − 1)
(Fig. 4.4). Line c − 1, the border line corresponding to state (0, c − 1), is
usually placed as the bottom line of page c − 1, but is arbitrarily located
among the other 0-wait states in Fig. 4.4. This does not change the analysis
because rate balance across level x > 0 (downcrossing rate = upcrossing rate)
is equivalent to rate balance between sets ((x,∞) , c − 1) and ([0, x] , c − 1)
i.e., rate from ((x,∞) , c − 1) into ([0, x] , c − 1) = rate from ([0, x] , c − 1)
into ((x,∞) , c − 1).

Denote the zero-wait probabilities as Pn, n = 0, . . . , c − 1, the pdf of wait
as f (x), x > 0, and the steady-state cdf of wait by F(x), x ≥ 0. Then

F(x) =
c−1∑
n=0

Pn +
∫ x

0
f (x)dx, x ≥ 0,

F(0) =
c−1∑
n=0

Pn.

4.8.1 Equations for Steady-State PDF of Wait

We derive model equations for the steady-state pdf of wait, and give further
explanations in Sect. 4.8.2 below.
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Zero-Wait States
For the zero-wait states (atoms) the model equations are (using rate out =
rate in)

λP0 = μP1

(λ + μ)P1 = λP0 + 2μP2

(λ + 2μ)P2 = λP1 + 3μP3

· ··
(λ + (c − 2)μ)Pc−2 = λPc−3 + (c − 1)μPc−1

(λ + (c − 1)μ)Pc−1 = λPc−2 + f (0+). (4.52)

The term f (0+) in the last equation in (4.52) connects the pdf of a continuous
random variable (waiting time) with the probabilities of atoms (states (0, c −
1) and (0, c − 2)). This observation (and other examples) led the author to
coin the term “border state” (i.e., state (0, c − 1) in the present context).

Positive-Wait States
For the composite state ((0,∞), c − 1) (the single page) the model equation
is

f (x) = λPc−1e−cμx + λ

∫ x

y=0
e−cμ(x−y) f (y)dy, x > 0. (4.53)

Composite state ((0,∞), c − 1) is accessible in one step at an arrival instant,
only from the border state (0, c − 1). The normalizing condition is

F(∞) =
c−1∑
n=0

Pn +
∫ ∞

y=0
f (x)dx = 1. (4.54)

4.8.2 Explanation of Equations (4.52) and (4.53)

Linear Equations (4.52)
Equation (4.52) are rate-balance equations, which equate SP rates out of, and
into, the discrete zero-wait states (0, n), n = 0, . . . , c − 1. The term f (0+)
(:= f (0)) is the SP downcrossing rate of level 0, i.e., the SP entrance rate
into state (0, c − 1) from above. (In sample-paths, line c − 1 may be equally
placed at level 0 of page (c − 1). If it is placed separately as in Fig. 4.4, we
can still imagine it to be at level 0 of the page with respect to SP motion.)

Integral Equation (4.53)
To derive the positive-wait integral equation (4.53) consider composite state
((x,∞), c − 1) on the (single) page (Fig. 4.4). We equate the SP exit rate
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(i.e., downcrossing rate of level x) to the entrance rate (i.e., ‘upcrossing’
rate of level x starting from line c − 1 thought of as being at the bottom of
the page). The downcrossing rate of level x is f (x) (see Corollary 4.2 in
Sect. 4.6.2).

The SP entrance rate into ((x,∞), c − 1) is from two sources:
(1) Entrances are generated by jumps due to arrivals when the state is the
border state (0, c − 1), starting from level 0 of the page and ending above level
x on the page. Since there is only one page, the only access to ((x,∞), c − 1)
in one step from a zero-wait state is from state (0, (c − 1)), i.e., line c − 1
in the sample path. The SP entrance rate from this source is λPc−1 · P(S >

x), where Pc−1 is the limiting probability of state (0, c − 1), andS is the inter
start-of-service depart time. (See Sect. 4.4.1 for a discussion of inter start-
of-service depart time.) Random variable S =

dis
Expcμ, since there would be

c customers with rate μ in service just after such an arrival starts service, and
S := minimum of c i.i.d. Expμ random variables. Thus, P(S > x) = e−cμx .
This gives the term λPc−1e−cμx in (4.53).
(2) Entrances into ((x,∞), c − 1) are generated by jumps due to arrivals
when the state is a continuous state (y, c − 1), y ∈ (0, x). Such jumps start
at level y and end above level x . Just after such an arrival begins service (y
after its arrival), all c servers will be occupied and S =

dis
Expcμ, independent

of any new arrivals to the system. The SP will enter ((x,∞), c − 1) with
probability e−cμ(x−y). This leads to Eq. (4.53).

4.8.3 Solution of Equations

We first solve (4.53). Differentiating both sides with respect to x and solving
the resulting first-order differential equation, gives

f (x) = Ae−(cμ−λ)x , x > 0,

where A is a constant. Letting x ↓ 0, we get the initial condition

f (0) = A = λPc−1 (4.55)

since f (0) (:= f (0+)) is the SP downcrossing rate of level 0, and λPc−1
is the “upcrossing” rate of level 0 (rate of egress from (0, c − 1) above).
(Equivalently, f (0) is the exit rate out of ((0,∞), c − 1) and λPc−1 is the
entrance rate into ((0,∞), c − 1).) Thus A = λPc−1 and

f (x) = λPc−1e−(cμ−λ)x , x > 0. (4.56)
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Note that the condition (4.55) is itself a rate-balance equation for the rates
out of, and into, ((0,∞), c − 1).

Next, from (4.52) and (4.56) we obtain

Pn =
(

λ

μ

)n 1

n! P0, n = 0, . . . , c − 1,

Pc−1 =
(

λ

μ

)c−1 1

(c − 1)! P0. (4.57)

Substituting (4.57) into (4.56) gives

f (x) = λ

(
λ

μ

)c−1 1

(c − 1)! P0 · e−(cμ−λ)x , x > 0.

The normalizing condition (4.54) is(
c−1∑
n=0

(
λ

μ

)n 1

n!

)
P0 + λ

(
λ

μ

)c−1 1

(c − 1)! P0

∫ ∞

x=0
e−(cμ−λ)x dx = 1.

This gives the well-known value

P0 = 1∑c−1
n=0

(
λ
μ

)n
1
n! +

(
λ
μ

)c cμ
c!(cμ−λ)

. (4.58)

The cdf of wait is

F(x) = P0 +
∫ x

y=0
λPc−1e−(cμ−λ)ydy

= P0

(
1 + λ

(
λ

μ

)c−1 1

(c − 1)!(cμ − λ)

(
1 − e−(cμ−λ)x

))
, x ≥ 0.

(4.59)

Boundedness of PDF of Wait
From (4.56) f (x) < λ, x> 0, since Pc−1 < 1 and e−(cμ−λ)x < 1 (cμ − λ >

0).
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4.8.4 CDF and PDF of Wait Geometrically

It is insightful and intuitive to derive the steady-state cdf and pdf of wait
geometrically, directly from sample path properties. This derivation bypasses
model equation (4.53). A similar geometric derivation for the cdf of wait in
the M/M/1 queue is given in Sect. 3.5.6.

Consider level x > 0 on the single page (Fig. 4.4). Rate balance across
level x applies the principle

Upcrossing rate of x = Downcrossing rate of x = f (x).

Equivalently, in symbols

lim
t→∞

Ut (x)

t
= lim

t→∞
Dt (x)

t
= f (x) (a.s.),

or

lim
t→∞

E(Ut (x))

t
= lim

t→∞
E (Dt (x))

t
= f (x).

The sojourn time above level x > 0 on the page, initiated by each upcross-
ing of x , is := busy period of a standard Mλ/Mcμ/1 queue with arrival rate
λ and service rate cμ because, when the SP is on the page, all c servers are
occupied and each is serving at rate μ. Thus the inter start-of-service depart
time (see Definition 4.3 in Sect. 4.4.1) S =

dis
size of each jump ending on the

page =
dis

Expcμ. Moreover, by the memoryless property, excess jumps above

level x are =
dis

Expcμ.

Let ax denote an SP sojourn time above x . Then ax =
dis

busy period in

Mλ/Mcμ/1 (λ < cμ). Thus

E(ax ) = 1

cμ − λ
, (4.60)

independent of x , since the expected value of the busy period in Mλ/Mcμ/1
is 1/ (cμ − λ).

Let dx := inter-downcrossing time at level x ≥ 0. Since level-x down-
crossings are regenerative points, similarly as in Sect. 3.4.15 we have

E(dx ) = 1/ f (x). (4.61)

The renewal reward theorem (Sect. 3.79), now yields

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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E(ax )

E(dx )
= lim

t→∞
time W (·) ∈ (x,∞) during (0,t)

t
= 1 − F(x),

1/ (cμ − λ)

1/ f (x)
= 1 − F(x),

or
f (x)

1 − F(x)
= cμ − λ, x > 0, (4.62)

equivalent to the differential equation

d
dx (1 − F(x))

1 − F(x)
= −(cμ − λ),

d

dx
ln(1 − F(x)) = −(cμ − λ),

with solution
1 − F(x) = A · e−(cμ−λ)x ,

where A is a constant, evaluated by letting x ↓ 0, and yielding the cdf of wait

F(x) = 1 − (1 − F(0))e−(cμ−λ)x , x ≥ 0, (4.63)

where F(0) = P(zero wait). Taking d F(x)/dx , x > 0, in (4.63) gives the
pdf of wait

f (x) = (1 − F(0))(cμ − λ)e−(cμ−λ)x , x > 0. (4.64)

We next employ the equations in (4.57) to get

F(0) =
c−1∑
n=0

Pn = P0

c−1∑
n=0

(
λ

μ

)n 1

n! . (4.65)

Note that f (0) = λPc−1., i.e., the SP entrance rate into state (0, c − 1)
from above (downcrossing rate of level 0) is equal to the SP exit rate from
state (0, c − 1) at arrival instants. Letting x ↓ 0 In (4.64) yields

f (0) = (1 − F(0))(cμ − λ) = λPc−1. (4.66)

From (4.66) and (4.57)

F(0) = 1 − λ

cμ − λ
Pc−1 = 1 − λ

cμ − λ

(
λ

μ

)c−1 1

(c − 1)! P0. (4.67)
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Substituting the value of F(0) from (4.65) into (4.67) and solving for P0
gives (4.58). The upshot is two different ways to determined P0; and two
different, equivalent formulas for f (x), x > 0 : (4.56) and (4.64).

Remark 4.13 Another way to obtain the second equality in (4.66) is to note
that the SP expected sojourn time above 0 is

E(a0) = E(busy period of Mλ/Mcμ/1) = 1

cμ − λ
.

The proportion of time the SP spends above level 0 is therefore

lim
t→∞

E(Ut (0))

t
· 1

cμ − λ
= λPc−1 · 1

cμ − λ
= 1 − F(0).

Busy Period in M/M/c
Note that a0 is equal to a busy period in M/M/c, denoted by Bc−1,c, defined
as the time measured from an arrival instant when the state is (0, c − 1) until
the first departure instant thereafter that leaves the system in state (0, c − 1)
again. (The arrival increases the number in the system to c. The departure
decreases the number to c − 1.) Since ax ≡ a0, x ≥ 0,

E
(Bc−1,c

) = E (a0) = E (ax ) = 1

cμ − λ
, x ≥ 0. (4.68)

We also call Bc−1,c a [c − 1, c] busy period.

4.8.5 PMF of Number in the System

We use the foregoing pdf of wait (4.56) to derive Pn, n = c, c + 1, . . .. This
approach is the reverse order of the usual derivation, which first derives the
pmf (probability mass function) of the number-in-system using a birth-death
analysis. It then obtains the pdf of wait by conditioning on the number in the
system when there is an arrival. The method we apply here utilizes partly
birth-death analysis and partly LC. It provides a different perspective on the
M/M/c model.

Due to Poisson arrivals, Pn = an = dn , where an , dn are the steady-state
probabilities of n units in the system just before an arrival, and just after
a departure, respectively (in this Section). Reasoning as for M/M/1 (see
Sect. 3.5.3), we get

Pn = dn = P(n − c arrivals during a waiting time), n = c, c + 1, . . . .

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Substituting from (4.56) and (4.57)

Pn =
∫ ∞

x=0

e−λx (λx)n−c

(n − c)! f (x)dx

=
(

λ

μ

)n−c+1 1

cn−c+1 Pc−1

∫ ∞

x=0
cμe−cμx (cμx)n−c

(n − c)! dx

=
(

λ

μ

)n 1

cn−cc! P0, n = c, c + 1, . . . .

In summary, we obtain the well-known formulas (e.g., p. 67 in [84])

P0 = 1∑c−1
n=0

(
λ
μ

)n
1
n! +

(
λ
μ

)c cμ
c!(cμ−λ)

Pn =
(

λ
μ

)n
1
n! P0, n = 0, . . . , c − 1,

Pn =
(

λ
μ

)n
1

cn−c
1
c! P0, n = c, c + 1, . . . .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.69)

The probability that all servers are occupied is

∞∑
n=c

Pn = P(wait > 0) =
∫ ∞

x=0
f (x)dx

= λPc−1

∫ ∞

x=0
e−(cμ−λ)x dx = λ

cμ − λ
Pc−1

=
λ
(

λ
μ

)c−1
1
c!

cμ − λ
P0. (4.70)

The probability that there is at least one idle server is

c−1∑
n=0

Pn = P(wait = 0) = 1 −
λ
(

λ
μ

)c−1
1
c!

cμ − λ
P0. (4.71)

4.8.6 Inter-downcrossing and Sojourn Times

Consider dx , ax , bx (x ≥ 0), respectively: time between successive SP down-
crossings of level x ; sojourn time above x initiated by an upcrossing of x ;
sojourn time at or below x initiated by a downcrossing of x . Formula (4.61)



246 4 M/M/c Queue

shows

E(dx ) = 1

f (x)
= e(cμ−λ)x

λPc−1
, x ≥ 0; (4.72)

formula (4.60) shows that, independent of x ,

E(ax ) = 1

cμ − λ
.

Note that

lim
t→∞

(time that the SP is above x during (0, t))

t
= 1 − F(x);

by the renewal reward theorem (Sect. 3.4.9),

E(ax )

E(dx )
= E(ax )

1/ f (x)
= 1 − F(x),

E(ax ) = 1 − F(x)

f (x)
= 1

cμ − λ
., x > 0,

The last equality above corroborates formula (4.62) when solving for f (x)
geometrically in Sect. 4.8.4. Also, we can validate (4.62) in Sect. 4.8.4 using

1 − F(x)

f (x)
=

∫∞
y=x f (y)dy

λPc−1e−(cμ−λ)x

=
∫∞

y=x λPc−1e−(cμ−λ)ydy

λPc−1e−(cμ−λ)x
= 1

cμ − λ
.

Note that F(x) = limt→∞(time the SP spends at or below x during
(0, t))/t . Each instant that the SP downcrosses x ≥ 0 is a regenerative
point, due to the memoryless property of the interarrival times. From the re-
newal reward theorem (i.e., the theory of regenerative processes, e.g., [134])
E(bx )/E(dx ) = F(x), implying

E(bx ) = F(x)

f (x)
= 1 − (1 − F(0))e−(cμ−λ)x

λPc−1e−(cμ−λ)x

= e(cμ−λ)x

λPc−1
− (1 − F(0))

λPc−1

= 1

λ
(

λ
μ

)c−1
1

(c−1)! P0

(
e(cμ−λ)x − (1 − P0

c−1∑
n=0

(
λ

μ

)n 1

n!)
)

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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= e(cμ−λ)x − 1

λ
(

λ
μ

)c−1
1

(c−1)! P0

+
∑c−1

n=0

(
λ
μ

)n
1
n!

λ
(

λ
μ

)c−1
1

(c−1)!
. (4.73)

Remark 4.14 From (4.60), when the SP upcrosses x , it next downcrosses x
after a time ax where E(ax ) is independent of x . By contrast, (4.73) implies
when the SP downcrosses level x , it next upcrosses x after a time bx where
E(bx ) grows exponentially with increasing x .

The foregoing results for

dx , ax , bx , E(dx ), E(ax ), E(bx )

generalize analogous results for M/M/1 (Sect. 3.5.7).

4.9 M/M/c/c and Standard M/M/c Queues

The M/M/c/c queue is a special case of M/M/c/k, in which an upper limit k is
placed on the number of customers allowed in the system at any time (see, e.g.,
Sect. 2.5, p. 76ff in [84]). Here, we develop a relationship between M/M/c/c
and the standard Mλ/Mμ/c queue. By a judicious choice of parameters for
M/M/c/c, the pdf of the virtual wait in the two models have identical forms.
However, the jump structure of the sample path of M/M/c/c is much simpler
than that of the corresponding M/M/c model, for positive values of the virtual
wait. This jump structure makes it much easier to derive the pdf of the virtual
wait in M/M/c/c. The point of this exercise is to obtain the pdf of wait in
the parameter-modified M/M/c/c queue, which can be derived in one line,
without having to solve an integral equation (as in M/M/c), and the derived
pdf is the same as in M/M/c. This relationship suggests a broader prospect.
For a given complex model, can we identify a related model having the same
solution form, that can be solved more easily?

The M/M/c/c queue is usually analyzed using a birth-death analysis. Here,
we employ an LC approach. Consider an M/M/c/c queue where the service
time for each customer that enters the system has exponential rate μ − λ

c > 0.
(We choose λ < cμ because our related model is a standard Mλ/Mμ/c queue
in equilibrium.)

In M/M/c/c all actual waits are 0 – there is no waiting line. In a queue
where blocking is possible, we shall define the virtual wait as the time that a
potential arrival would wait to start service, if it were not blocked and cleared.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Thus the virtual wait is not 0 for every arrival. In M/M/c/c, customers that
arrive when the virtual wait is positive, are blocked and cleared from the
system. In both models, the virtual wait is positive if and only if all c servers
are occupied.

For M/M/c/c, consider the ‘system point’ process {W (t), M(t)}t≥0, where
W (t) is the virtual wait and M(t) ∈ {0, . . . , c − 1} is the system configuration
at time t . M(t) is the number of occupied servers at instant t−, if there is an
idle server at t−. We denote the c discrete states by {(0, 0) , . . . , (0, c − 1)}.
Thus M(t) = n if n other servers are occupied when a customer joins the
system and starts service, n = 0, . . . , c − 1. Denote the steady-state proba-
bility of (0, n) as Pn , n = 0,…, c − 1. Denote the positive virtual-wait states
as {(x, c − 1) , x ∈ (0,∞)}.

4.9.1 Sample Path of {W(t),M(t)}t≥0

Consider a sample path of {W (t), M(t)}t≥0 (Fig. 4.5). Without loss of gen-
erality, assume the system starts empty. The SP is on line 0 at t = 0. As the
system evolves, the SP moves among the lines until c − 1 of the servers are
occupied, just as in a standard Mλ/Mμ− λ

c
/c model. In Fig. 4.5 we situate line

c − 1 at level 0 of the page; this layout makes it easier to depict SP exchanges
between line c − 1 and the virtual-wait positive states.

Suppose a customer arrives when c − 1 servers are occupied. The arrival
joins the system and starts service in the one free server. All c servers are
busy just after the arrival starts service. The configuration is c − 1, since
c − 1 other servers are occupied just after the arrival instant. Each of the
c servers has service time =

dis
Expμ− λ

c
once the arrival starts service, due

to the memoryless property of exponential service times. The SP jumps to
ordinate y ∈ (0,∞) on the page, where y =

dis
Expcμ−λ which is distributed

as the minimum of c i.i.d. exponential r.v.s each distributed with rate μ − λ
c .

The SP descends at rate 1 (slope = −1), until it makes a continuous hit
of level 0 from above. New arrivals are blocked and cleared, and have no
effect on the sample path during this descent. Once the SP hits level 0, it
continues its motion among the states (0, 0) , . . . , (0, c − 1), until it makes
another jump out of state (0, c − 1) onto the page.

All upward jumps that end on the page start at level 0. Hence the jump
structure for M/M/c/c is much simpler than that of the standard M/M/c queue,
in which jumps that end on the page may start at any point in [0,∞) .
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Fig. 4.5 Sample path of
{W (t)}t≥0 in M/M/c/c
queue. All jumps ending
in (0,∞) begin at level
0 (state (0, c − 1)) with
size =

dis
Expcμ−λ

0
1
2

c-1

W(t) Page c-1

Time t
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4.9.2 PDF of Virtual Wait

Denote the pdf of the virtual wait as fc−1(x) ≡ f (x), x > 0. To derive the
pdf of f (x), fix level x > 0. The SP downcrossing rate of x is f (x). Since all
SP jumps ending on the page start from state (0, c − 1) at arrival instants, and
all jumps sizes are =

dis
Expcμ−λ, the upcrossing rate of x is λPc−1e−(cμ−λ)x .

Balancing SP rates out of and into set ((x,∞), c − 1) yields

f (x) = λPc−1e−(cμ−λ)x , x > 0. (4.74)

Remark 4.15 Formula (4.74) has precisely the same form as the steady-
state pdf of wait in the standard Mλ /Mμ/c queue given by (4.56), except that
Pc−1 has a different value. For the Mλ/Mμ−λ/c/c/c queue, formula (4.74) is
derived “instantly” from observing a sample path of the virtual wait. There
is no need to solve an integral equation, as in M/M/c. In M/M/c/c, the pdf
formula for f (x) is inherently a model equation. This is the main relation-
ship between the two models we discuss here. The result for Mλ/Mμ−λ/c/c/c
allows us to write the form of the pdf of wait in Mλ/Mμ /c immediately.

4.9.3 Non-blocking States

The rate-balance equations for the non-blocking states (0, 0) , . . . , (0, c − 1)
are the same as in (4.52) for Mλ/Mμ/c, with μ − λ

c substituted for μ. Thus in
M/M/c/c

Pn =
(

λ

μ − λ
c

)n
1

n! P0, n = 0, . . . , c − 1,
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so that

Pc−1 =
(

λ

μ − λ
c

)c−1
1

(c − 1)! P0.

The normalizing condition is(∑c−1
n=0

(
λ

μ− λ
c

)n
1
n!
)

P0 + ∫∞
x=0 f (x)dx = 1.

Applying (4.74) gives(
c−1∑
n=0

(
λ

μ − λ
c

)n
1

n!

)
P0

+ λ

(
λ

μ − λ
c

)c−1
1

(c − 1)! P0

∫ ∞

x=0
e−(cμ−λ)x dx = 1,

P0 = 1

∑c−1
n=0

(
λ

μ− λ
c

)n
1
n! + λ

(
λ

μ− λ
c

)c−1
1

(c−1)!
1

cμ−λ

= 1∑c
n=0

(
λ

μ− λ
c

)n
1
n!

.�

4.9.4 Blocking Time TB

Let TB denote the time from the instant the system gets blocked (all c servers
occupied) until the first instant that it becomes unblocked thereafter (at which
c − 1 servers are occupied). We call TB the blocking time.

The pdf of the virtual wait in Mλ/Mμ−λ/c/c/c is the same as the pdf of
S (inter start-of-service depart time) when an arrival “sees” state (0, c − 1).
Also, S =

dis
TB .

Then E(TB) = Expcμ−λ = 1/ (cμ − λ). Let Pc denote the proportion of
time the system is blocked. Then

Pc =
∫ ∞

x=0
f (x)dx = λPc−1

∫ ∞

x=0
e−(cμ−λ)x dx
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= λ

(
λ

μ − λ
c

)c−1
1

(c − 1)! P0

∫ ∞

x=0
e−(cμ−λ)x dx

=
(

λ

μ − λ
c

)c
1

c! P0

=

(
λ

μ− λ
c

)c
1
c!

∑c
n=0

(
λ

μ− λ
c

)n
1
n!

.

Pc is the probability that a right-truncated Poisson variate (truncated at c),
has value c. It is the classical Erlang-B loss formula for the Mλ/Mμ− λ

μ
/c/c

queue (see, e.g., p. 82, Sect. 2.6 in [84]).
Note that the blocking time is a [c − 1, c] busy period, denoted by Bc−1,c,

so that TB =
dis

Bc−1,c. From Remark 4.8.4, E
(Bc−1,c

)
= 1

cμ−λ .

Remark 4.16 Suppose that in the M/M/c/c model the servers were numbered
1, . . . , c. Let the service rates assigned to arrivals depend on which server is
occupied, say rates νi , i = 1, . . . , c. Assume

∑c
i=1 νi = cμ − λ > 0, where μ,

λ are the parameters of a stable Mλ/Mμ/c queue. Then the distribution of TB
would be the same as in (4.74). So this specialized M/M/c/c model can also
be used as a “companion” model to obtain the pdf of wait in the Mλ/Mμ/c
queue.

4.9.5 Discussion

We can derive formula (4.74) for f (x) geometrically as in Sect. 4.8.4. Let
F(x), x ≥ 0, be the cdf of the virtual wait. We get

d

dx
ln(1 − F(x) = −1

E(Bc−1,c)
= −(cμ − λ),

F(x) = 1 − (1 − F(0))e−(cμ−λ)x , x ≥ 0,

f (x) = (cμ − λ)(1 − F(0))e−(cμ−λ)x . (4.75)

Comparing (4.74) and (4.75) shows that

λPc−1 = (cμ − λ)(1 − F(0)) = (cμ − λ)Pc, (4.76)

where Pc is the probability of c units in the system.
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In M/M/c/c an arrival enters the system iff the virtual wait is 0. Thus
F(0) = P(an arrival enters the system). Hence (1 − F(0)) = P(an arrival is
blocked and cleared) = Pc. Equation (4.76) is precisely the balance equation
that would appear in a birth-death analysis of the system.

4.10 M/M/c in Which Zero-Wait Customers Get Special
Service

Consider an M/M/c (c ≥ 2) queue with arrival rate λ, in which zero-wait
customers get service rate μ0, and positive-wait customers get service rate
μ1 (
= μ0). Thus, the assigned service rate is state-dependent. We derive
below the steady-state pdf of wait, distribution of the number-in-system, and
related model characteristics.

Denote the state of the system as {W (t),M (t)}t≥0, where W (t) ≥ 0 is the
virtual wait and M(t) is the system configuration. Thus

M(t) = (m0,m1), 0 ≤ m0 + m1 ≤ c − 1,

where m j is the number of occupied servers operating at rate μ j , j = 0, 1. In
the notation of Sect. 4.4, integer J = 1. The number of zero-wait states is the
total number of non-negative integer solutions for m0, m1 in the c equations

m0 + m1 = k, k = 0, . . . , c − 1,

which is, since J = 1,

c−1∑
k=0

(
J + k

J

)
=
(

J + c

J + 1

)
=
(

c + 1

2

)

= c(c + 1)

2
= 1 + 2 + · · · + c.

From Sect. 4.4.2, M0 =
{
(0,m)|0 ≤∑J

j=0 m j ≤ c − 2
}

, which contains

(c−1)c
2 configurations. Set Mb =

{
m|∑J

j=0 m j = c − 1
}

comprises the dis-

crete boundary states, and contains
(J+c−1

J

)
=
(c

1

)
= c configurations. (Note

that Mb = M1.)

Zero-wait Probabilities Let Pm0m1 denote the steady-state probability
that an arrival “sees” m j rate-μ j customers in service, j = 0, 1, and waits
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zero before starting service. Pm0m1 is the steady-state probability of state
(0, (m0,m1)).

There are c positive-wait pages (sheets), one for each configuration in Mb,
where

Mb = {(c − 1, 0), (c − 2, 1), . . . , (1, c − 2) , (0, c − 1)} .
Positive-wait PDFs Let fm(x), x > 0, denote the steady-state pdf of the

virtual wait when the occupancies of the other c − 1 servers will be m ∈ Mb
at start of service (‘look-ahead’ property of virtual wait).

4.10.1 Equations for Probabilities of Zero-Wait States

The c(c+1)
2 zero-wait states, having configurations in M0 ∪ Mb, viz.,

(0, (m0,m1)), 0 ≤ m0 + m1 ≤ c − 1,

give rise to c(c+1)
2 linear equations for their probabilities, using the principle

rate out = rate in, as in (4.77)–(4.79) below.
First consider states (0,m), m ∈ M0. For m0 = m1 = 0, (empty system)

there is one equation:
λP00 = μ0 P10 + μ1 P01. (4.77)

For states (0, (m0,m1)), 1 ≤ m0 + m1 ≤ c − 2, there are (c−1)c
2 − 1 equa-

tions, each of the form

(λ + m0μ0 + m1μ1)Pm0m1 = λP(m0−1)m1

+(m0 + 1)μ0 P(m0+1)m1

+(m1 + 1)μ1 Pm0(m1+1).

(4.78)

For states (0, (m0,m1)) ∈ Mb, there are c equations, each of the form

(λ + m0μ0 + m1μ1)Pm0m1 = λP(m0−1)m1 + fm0m1(0). (4.79)

In (4.79) the term fm0m1(0) (= fm0m1(0
+)) is the rate at which the SP

enters border state (0, (m0,m1)) due to left continuous hits of level 0 from
above on page m0m1.
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4.10.2 Equations for PDF of Positive-Wait States

There are c Volterra integral equations for the positive-wait states. Consider
composite state ((x,∞),m), x > 0, on page m ∈ Mb. For positive-wait
states (y,m0m1), y > 0, m0 + m1 = c − 1. We first specify the SP exit
and entrance rates of the pertinent composite states in the state space. Then
we will write the equations.
Rate Out of ((x,∞),m0m1)

Because (m0,m1) is a configuration, m0 + m1 = c − 1. The SP rate out of
((x,∞),m0m1) is

fm0m1(x) + λ
m0μ0

m0μ0 + (m1 + 1)μ1

∫ ∞

y=x
fm0m1(y)dy. (4.80)

Explanation of Terms in (4.80)
The first term fm0m1(x) is the SP downcrossing rate of level x on page m0m1.
The second term

λ
m0μ0

m0μ0 + (m1 + 1)μ1

∫ ∞

y=x
fm0m1(y)dy

is the rate of arrivals when the state is (y,m0m1), y > x (being assigned
service rate μ1 thereby adding one rate-μ1 occupied server upon start of
service); and a rate-μ0 service completes first thereafter. At the arrival instant
the SP jumps to level y+ Expm0μ0+(m1+1)μ1 on page (m0 − 1,m1 + 1) (i.e.,
page (m0 − 1, c − m0)). If m0 = 0, the SP would be on page (0, c − 1).
The only exit from the page would be via a downcrossing of level 0. All
arrivals would be assigned service rate μ1 and cause the SP to jump upward
but remain on page (0, c − 1); the second term in (4.80) would equal 0 if m0
= 0.
Rate into ((x,∞),m0m1)

The SP rate into ((x,∞),m0m1) is

λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1
e−((m0+1)μ0+m1μ1)x Pm0m1

+ λ
(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1
e−(m0μ0+(m1+1)μ1)x Pm0−1,m1+1

+ λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1

∫ ∞

y=x
fm0+1,m1−1(y)dy

+ λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1

∫ x

y=0
e−((m0+1)μ0+m1μ1)(x−y) fm0+1,m1−1(y)dy
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+ λ
(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1

∫ x

y=0
e−(m0μ0+(m1+1)μ1)(x−y) fm0m1(y)dy.

(4.81)

where we have inserted a comma in subscripts like m0 − 1,m1 + 1, for clar-
ity.

Explanation of Terms in (4.81)
The term

λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1
e−((m0+1)μ0+m1μ1)x Pm0m1

is the rate at which the SP jumps at arrival instants from level 0 on page m0m1
into ((x,∞),m0m1). At arrival instants customers are assigned service rate
μ0 (wait = 0), resulting in (m0 + 1) rate-μ0 and m1 rate-μ1 customers in
service. A rate-μ0 service finishes first with probability

(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1
,

in which case the SP jumps to page m0m1. SP jumps from level 0 over level
x have probability e−((m0+1)μ0+m1μ1)x since S =

dis
Exp(m0+1)μ0+m1μ1 .

The term

λ
(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1
e−(m0μ0+(m1+1)μ1)x Pm0−1,m1+1

is the rate at which the SP jumps at arrival instants, from level 0 on page
(m0 − 1,m1 + 1) into ((x,∞),m0m1). The arriving customer is assigned
service rate μ0 (wait = 0), resulting in m0 rate-μ0 and (m1 + 1) rate-μ1
customers in service. If a rate-μ1 service finishes first thereafter, the SP jumps
to page m0m1; the probability is

(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1
.

SP jumps from level 0 upcross level x with probability e−(m0μ0+(m1+1)μ1)x

since the inter-start-of-service depart time S =
dis

Expm0μ0+(m1+1)μ1 .

The term

λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1

∫ ∞

y=x
fm0+1,m1−1(y)dy
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is the rate at which the SP jumps at arrival instants, out of (x,∞) on page
(m0 + 1,m1 − 1) into ((x,∞),m0m1). The arriving customer is assigned
service rate μ1 (wait > 0) resulting in (m0 + 1) rate-μ0 and m1 rate-μ1 cus-
tomers in service just after the start of service of the arrival. If a rate-μ0
service finishes first, the SP jumps to page m0m1; this has probability

(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1
.

A jump S of any size will cause such a jump to enter ((x,∞),m0m1) since
the start of the jump is already above level x .

The term

λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1

∫ x

y=0
e−((m0+1)μ0+m1μ()x−y) fm0+1,m1−1(y)dy

is the rate at which the SP jumps upward at arrivals, out of

((0, x),(m0 + 1,m1 − 1)) into ((x,∞),m0m1) .

That is, the SP makes a (m0 + 1,m1 − 1) → (m0m1) upcrossing of level x .
An arrival is assigned service rate μ1 (wait > 0). Just after the arrival starts
service there are m0 + 1 rate-μ0 and m1 rate-μ1 customers in service. The
probability that a rate-μ0 service finishes first is

(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1
,

causing the SP to jump to page m0m1. Starting at level y < x the SP will
upcross level x if S > x − y; since S =

dis
Exp(m0+1)μ0+m1μ1 , this event has

probability e−((m0+1)μ0+m1μ1)(x−y).
The term

λ
(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1

∫ x

y=0
e−(m0μ0+(m1+1)μ1)(x−y) fm0m1(y)dy

is the rate at which the SP jumps at arrival instants from ((0, x),m0m1)

upward into ((x,∞),m0m1), i.e., it upcrosses level x on page m0m1. Arrivals
are assigned service rate μ1 (wait > 0). Just after the arrival starts service
there are m0 rate-μ0 and (m1 + 1) rate-μ1 customers in service. A rate-μ1
service ends first with probability
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(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1
.

causing the SP to jump to page m0m1. If the SP starts at level y it will
upcross level x provided S > x − y; since S =

dis
Expm0μ0+(m1+1)μ1 , this event

has probability e−(m0μ0+(m1+1)μ1)(x−y) .

Writing Equations for Positive-Wait States
The model equation for the positive-wait states on page m0m1 is written by
using the principle of rate balance with respect to set ((x,∞),m0m1), exit
rate = entrance rate. Equating exit rate (4.80) and entrance rate (4.81) gives

fm0m1(x) + λ
m0μ0

m0μ0 + (m1 + 1)μ1

∫ ∞

y=x
fm0m1(y)dy

= λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1
e−((m0+1)μ0+m1μ1)x Pm0m1

+ λ
(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1
e−(m0μ0+(m1+1)μ1)x Pm0−1,m1+1

+ λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1

∫ ∞

y=x
fm0+1,m1−1(y)dy

+ λ
(m0 + 1)μ0

(m0 + 1)μ0 + m1μ1

∫ x

y=0
e−((m0+1)μ0+m1μ1)(x−y) fm0+1,m1−1(y)dy

+ λ
(m1 + 1)μ1

m0μ0 + (m1 + 1)μ1

∫ x

y=0
e−(m0μ0+(m1+1)μ1)(x−y) fm0m1(y)dy.

(4.82)

Equation for “Cover”
The total probability of a zero wait is

P0 =
∑

m∈M0∪Mb

Pm =
∑

0≤m0+m1≤c−1

Pm0m1 . (4.83)

The total pdf of wait is

f (x) =
∑

m∈M1

fm(x) =
∑

m0+m1=c−1

fm0m1(x), x > 0. (4.84)

Let x > 0 be fixed. The total SP downcrossing rate of x is f (x). The total
SP upcrossing rate of x due to jumps starting from level 0 at arrival instants,
is
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λ
∑

m0+m1=c−1

e−((m0+1)μ0+m1μ1)x Pm0m1 .

The total SP upcrossing rate of x due to jumps starting from levels y ∈ (0, x)
at arrival instants, is

λ
∑

m0+m1=c−1

∫ x

y=0
e−(m0μ0+(m1+1)μ1)(x−y) fm0m1(y)dy.

Rate balance across level x gives the model equation for the cover,

f (x) = λ
∑

m0+m1=c−1

e−((m0+1)μ0+m1μ1)x Pm0m1

+ λ
∑

m0+m1=c−1

∫ x

y=0
e−(m0μ0+(m1+1)μ1)(x−y) fm0m1(y)dy.

(4.85)

Normalizing Condition
The normalizing condition P0 + ∫∞

x=0 f (x)dx = 1 can be expressed as

∑
0≤m0+m1≤c−1

Pm0m1 +
∑

m0+m1=c−1

∫ ∞

x=0
fm0m1(x)dx = 1. (4.86)

4.10.3 Solution of Model Equations

In Sect. 4.11 below, we formulate and solve the foregoing M/M/2 model with
zero-wait customers receiving exceptional service, whose solution illustrates
relevant SPLC ideas and related insights. A more general solution procedure
of a two-server M/M/2 queue where service time depends on waiting time in
a general manner is detailed in Chap. 4 of [11].

4.11 M/M/2: Zero-Waits Get Special Service

M/M/2/(μ0,μ1) , (0, (0,∞))

To fix ideas and clarify the system dynamics of M/M/c with special service for
zero-wait customers, we formulate the model with c = 2 servers. We discuss
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the solution for the zero-wait probabilities and the positive-wait pdfs. We
denote the model by M/M/2/(μ0,μ1) , (0, (0,∞)). This notation indicates
that 0-wait arrivals get service rate μ0 and (0,∞)-wait arrivals get service
rate μ1; diagrammatically, μ0 ↔ 0-wait, μ1 ↔ (0,∞)-wait.

There are only three zero-wait states in M0 ∪ Mb (compare Sect. 4.10),

{(0,m0m1)} = {(0, 00), (0, 10), (0, 01)}.
Denote the steady-state probabilities of the zero-wait states by P00, P10, P01
respectively.

For example, state (0, 10) indicates that an arrival would wait 0 and would
“see” a rate-μ0 customer being served by the other server. The arrival would
be assigned rateμ0 since it waits 0. There would then be two rate-μ0 customers
in service. The inter start-of-service depart timeS would be =

dis
Exp2μ0 .

There are only two zero-wait states such that m0 + m1 = 1 (both bor-
der states). Denote the pdfs of the positive-wait states (x, 10), (x, 01), by
f10(x), f01(x), x > 0, respectively. A would-be arrival that finds the state
(x, 10), x > 0, for example, would wait x before service, and be assigned
service rate μ1 (wait> 0). Just after its start of service, it would have a rate-μ0
customer as neighbor in the other server. Inter start-of-service depart time S
=
dis

Expμ0+μ1 . The rate-μ1 customer would finish service first with probabil-

ity μ1
μ0+μ1

, leaving the rate-μ0 customer in service (m0m1 = 10). The rate-μ0

customer would finish service first with probability μ0
μ0+μ1

, leaving the rate-μ1
customer in service (m0m1 = 01).

If an arrival “sees” state (x, 01), x > 0, S would be =
dis

Exp2μ1 . The first

customer to complete service would have rate μ1 with certainty. The customer
remaining in service just after that service completion would have service rate
μ1 (m0m1 = 01).

A sample-path diagram of the virtual wait process {W (t)}t≥0, has three
lines and two pages (Fig. 4.6).

The total (marginal) probability of a zero wait is

P0 = P00 + P10 + P01.

The total pdf of wait is

f (x) = f10(x) + f01(x), x > 0.
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W(t) Page 01

W(t) Page 10

x

x

Line

00

10

01Line

Line

Time t

Fig. 4.6 Sample path of virtual wait in M/M/2/(μ0,μ1) , (0, (0,∞)). Lines for states
(0, 10), (0, 01) are at level 0 of corresponding pages. Line for state (0, 00) is iso-
lated. The SP can enter state (0, 01) only by downcrossing level 0 on page 01 (See
Fig. 4.10.)

4.11.1 Model Equations

Zero-Wait States
Applying SP exit rate = SP entrance rate for the zero-wait states (0, 00),
(0, 10), (0, 01) gives, respectively,

λP00 = μ0 P10 + μ1 P01,

(λ + μ0)P10 = λP00 + f10(0),

(λ + μ1)P01 = f01(0). (4.87)

In (4.87), the terms f10(0), f01(0) (same as f10(0+), f01(0+)) are the
rates at which the SP hits level 0 from above on pages 10 and 01 respec-
tively. Immediately following such hits, the SP moves on lines 10 and 01
respectively.

Positive-Wait States
Applying SP exit rate = SP entrance rate for ((x,∞), 10) (on page 10) yields
the integral equation
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f10(x) + λ

∫ ∞

y=x

μ0

μ0 + μ1
f10(y)dy

= λP10e−2μ0x + λ
μ1

μ0 + μ1
P01e−(μ0+μ1)x

+ λ
μ1

μ0 + μ1

∫ x

y=0
e−(μ0+μ1)(x−y) f10(y)dy, x > 0. (4.88)

When formulating equation (4.88), note that the SP cannot jump directly
from a positive-wait state on page 01 into set ((x,∞), 10). An arrival that
“sees” state (y, 01), y > 0, will be assigned rate μ1 and start service after a
wait y; its neighbor in the other server will also have service rate μ1 (because
m0m1 = 01). The random variable S will be distributed as Exp2μ1 , and the
remaining customer in service just after the first departure thereafter, will
have rate μ1. At the arrival instant, the SP will start a jump at level y on
page 01, which ends at level y + S =

dis
y + Exp2μ1 , also on page 01. The

configuration remains 01 just after the arrival. The only exit route from page
01 is via a downcrossing of level 0 (continuous hit of 0 from above—see
Fig. 4.6).

Now we balance the SP exit and entrance rates for ((x,∞), 01) (page 01),
giving integral equation

f01(x) = λ
μ0

μ0 + μ1
P01e−(μ0+μ1)x

+ λ

∫ x

y=0
e−2μ1(x−y) f01(y)dy

+ λ
μ0

μ0 + μ1

∫ x

y=0
e−(μ0+μ1)(x−y) f10(y)dy

+ λ
μ0

μ0 + μ1

∫ ∞

y=x
f10(y)dy. (4.89)

When formulating (4.89), note that the SP can exit ((x,∞), 01) only by
downcrossing level x . Also, the SP cannot enter ((x,∞), 01) from state
(0, 10) at arrivals, since all jumps that start from line 10 (corresponding to
state (0, 10)) must end on page 10, at an ordinate =

dis
Exp2μ0 .

The equation for the total pdf is

f (x) = f10(x) + f01(x),
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as viewed from the “cover”, the result of projecting sample-path segments on
pages 10 and 01 onto a single sheet. An integral equation for f (x) is obtained
by balancing the SP total down- and upcrossing rates of level x > 0. This is
equivalent to equating the exit and entrance rates for the state-space set

((x,∞), 10) ∪ ((x,∞), 01).

The resulting equation is

f (x) = λP10e−2μ0x + λP01e−(μ0+μ1)x

+ λ

∫ x

y=0
e−(μ0+μ1)(x−y) f10(y)dy

+ λ

∫ x

y=0
e−2μ1(x−y) f01(y)dy, x > 0. (4.90)

Equation (4.90) can also be derived by summing the corresponding sides of
(4.88) and (4.89). However, it is intuitive and instructive to interpret equation
(4.90) as total SP rate-balance across level x > 0.

The normalizing condition is

P00 + P10 + P01 +
∫ ∞

x=0
f10(x)dx +

∫ ∞

x=0
f01(x)dx = 1,

or

P0 +
∫ ∞

x=0
f (x)dx = 1. (4.91)

4.11.2 Solution of Equations

Equation (4.88) is an integral equation in f10(x), which is not confounded
by the presence of f01(x); so we utilize it to obtain the functional form of
f10(x). Applying differential operator 〈D〉〈D + μ0 + μ1〉 to both sides of
(4.88) leads to the second order differential equation

f ′′
10(x) + (μ0 + μ1 − λ) f ′

10(x) − λμ0 f10(x)

= 2λμ0(μ0 − μ1)P10e−2μ0x , x > 0. (4.92)
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with solution

f10(x) = C10eax + C1
10ebx + λK10 P10e−2μ0x , x > 0,

where a and b are the roots of the auxiliary quadratic equation, namely

a = 1

2

(
λ − μ0 − μ1 −

√
λ2 + 2λμ0 − 2λμ1 + μ2

0 + 2μ0μ1 + μ2
1

)
< 0,

b = 1

2

(
λ − μ0 − μ1 +

√
λ2 + 2λμ0 − 2λμ1 + μ2

0 + 2μ0μ1 + μ2
1

)
> 0,

K10 = 2(μ0 − μ1)

λ + 2μ0 − 2μ1
,

and C10, C1
10 are constants of integration. A necessary condition for system

stability is limx→∞ f10(x) = 0, which implies C1
10 = 0 (since b > 0). Thus

the functional form of f10(x) is

f10(x) = C10eax + λK10 P10e−2μ0x , x > 0, (4.93)

where C10 is a constant to be determined.
The term K10 will be undefined if λ + 2μ0 − 2μ1 = 0. If λ + 2μ0 −

2μ1 
= 0 and μ0 − μ1 
= 0, then K10 may be positive or negative. If μ0 −
μ1 = 0 the model reduces to a standard M/M/c queue with c = 2 (Sect. 4.8);
the computed distribution of wait should then match that of a standard M/M/2
queue. (We will utilize this property later as a mild check on the correctness
of the present solution.)

We obtain the functional form of f01(x) by substituting the expression for
f10(x) (4.93) into (4.90). Since

f01(x) = f (x) − f10(x),

this substitution gives the integral equation

f01(x) = λ(1 − K10)P10e−2μ0x + λP01e−(μ0+μ1)x − C10eax

+ λ

∫ x

y=0
e−(μ0+μ1)(x−y)(C10eay + λK10 P10e−2μ0 y)dy

+ λ

∫ x

y=0
e−2μ1(x−y) f01(y)dy. (4.94)
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The first integral term in (4.94) is

λ

∫ x

y=0
e−(μ0+μ1)(x−y)(C10eay + λK10 P10e−2μ0 y)dy

= λC10

μ0 + μ1 + a
eax − λ2 K10 P10e

μ0 − μ1

−2μ0x

−
(

λC10

μ0 + μ1 + a
− λ2 K10 P10

μ0 − μ1

)
e−(μ0+μ1)x

1 .

Thus (4.94) is equivalent to the integral equation

f01(x) =H01C10eax + λB01 P10e−2μ0x

+ D01e−(μ0+μ1)x

+ λ

∫ x

y=0
e−2μ1(x−y) f01(y)dy, (4.95)

where

H01 = λ

μ0 + μ1 + a
− 1,

B01 = 1 − K10 − λK10

μ0 − μ1
,

D01 = λP01 − λC10

μ0 + μ1 + a
+ λ2 K10 P10

μ0 − μ1
.

Applying the differential operator 〈D + 2μ1〉 to both sides of (4.95) yields
the differential equation for f01(x),

f ′
01(x) + (2μ1 − λ) f01(x) = (2μ1 + a)H01C10eax

+ 2λ(μ1 − μ0)B01 P10e−2μ0x

+ (μ1 − μ0)D01e−(μ1+μ0)x . (4.96)

whose solution is

f01(x) = 2λ(μ1 − μ0)

2μ1 − λ − 2μ0
B01 P10e−2μ0x

+ μ1 − μ0

μ1 − λ − μ0
D01e−(μ1+μ0)x
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+ 2μ1 + a

2μ1 − λ + a
H01C10eax

+ C01e−(2μ1−λ)x , (4.97)

where C01 is a constant of integration to be determined (see Sect. 4.11.4).

4.11.3 Stability Condition

Consider the functional forms of f10(x) and f01(x) in (4.93) and (4.97). In the
exponents, all the coefficients of x are negative except possibly the coefficient
− (2μ1 − λ) in e−(2μ1−λ)x of (4.97). A necessary condition for stability is
that

f10(∞) = f01(∞) = f (∞) = 0;

implying − (2μ1 − λ) < 0, equivalent to λ < 2μ1. That is, the arrival rate
must be less than the system departure rate when both servers are occupied
by positive-wait customers, regardless how large x is. Thus, for stability, if
the waiting time is large and customers are arriving, then the mean inter-
arrival time should exceed the mean inter-departure time. This ensures that
the waiting time will return to zero in a finite time.

4.11.4 Determination of Constants

A complete solution for the distribution of wait requires the values of five
unknown constants

P00, P10, P01, C10, C01,

which we obtain from five independent equations.
In (4.93) letting x ↓ 0 to obtain f10(0), and referring to (4.87) gives

C10 + λK10 P10 = (λ + μ0)P10 − λP00. (4.98)

In (4.97) letting x ↓ 0 to obtain f01(0) gives

f01(0) = 2λ(μ1 − μ0)

2(μ1 − μ0) − λ
B01 P10

+ μ1 − μ0

μ1 − μ0 − λ
D01

+ 2μ1 + a

2μ1 + a − λ
H01C10 + C01. (4.99)
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Substituting f01(0) from (4.99) into (4.87) gives

C01 = (λ + μ1)P01 − 2λ(μ1 − μ0)

2(μ1 − μ0) − λ
B01 P10

− μ1 − μ0

μ1 − μ0 − λ
D01

− 2μ1 + a

2μ1 + a − λ
H01C10. (4.100)

We get another independent equation by substituting the functional form

f10(x) = C10eax + λK10 P10e−2μ0x

into the integral equation (4.88) and equating the coefficients of correspond-
ing exponential terms on both sides after evaluating the integral (different
exponentials are linearly independent—see, e.g., Sect. 3.3, pp. 99ff and p.
205 in [10]). The coefficient of e−(μ0+μ1)x on the right side of (4.88) must be
0. This yields the linear equation

λμ1

μ0 + μ1
P01 − 1

μ0 + μ1 + a
− λK10

μ1 − μ0
P10 = 0. (4.101)

The normalizing condition is

1 = P00 + P10 + P01 + C10

(−a)
+ λK10 P10

2μ0

+ λ(μ1 − μ0)

μ0(2(μ1 − μ0) − λ)
B01 P10 + μ1 − μ0

(μ1 + μ0)(μ1 − μ0 − λ)
D01

+ 2μ1 + a

(−a)(2μ1 + a − λ)
H01C10 + 1

2μ1 − λ
C01. (4.102)

We now have a set of five equations to solve for the five constants: from
(4.87)

λP00 = μ0 P10 + μ1 P01,

and (4.98), (4.100), (4.101), (4.102).

Remark 4.17 In the derivation of the functional forms of f10(x), f01(x) the
expressions

μ1 − μ0, 2μ1 − λ − 2μ0, μ1 − λ − μ0, 2μ1 − λ + a

appear in various denominators. If any of these four expressions were equal
to 0, the functional forms would have to be modified. The five equations used



4.11 M/M/2: Zero-Waits Get Special Service 267

to solve for the constants in the present model would have to be modified
accordingly. In this monograph we emphasize the system-point level-crossing
approach to derive model equations, and various techniques to solve them.
However, there are many techniques to solve systems of integral equations,
requiring additional study, outside the scope of the present volume. We give
numerical solutions of the equations in several examples below.

Remark 4.18 It would be interesting to explain the appearance of the im-
mediately above expressions in the denominators. Does the system reduce to
a particular queueing model when a denominator is equal to 0? For example,
when μ1 − μ0 = 0, the M/M/2/(μ0,μ1) , (0, (0,∞)) system reduces to a
standard M/M/2 model. In M/M/2/(μ0,μ1) , (0, (0,∞)) the only criterion
necessary for stability is λ < 2μ1. What do these exceptional denominators
mean with regard to physical models?

Another question is how to select a set of linearly independent equations to
solve for the constants. Once a set of equations is derived, it can be checked
for independence using matrix methods. But this amounts to trial and error. Is
there a way to derive five independent equations directly? Taking derivatives
may be the answer to this question.

Example 4.7 We first give a mild numerical check on the five equations by
letting μ1 − μ0 = 0. In this case M/M/2/(μ0,μ1) , (0, (0,∞)) reduces to a
standard M/M/2 queue. We arbitrarily take

λ = 1, μ0 = 1.5, μ1 = 1.5.

Then a = −2.581139. The solution for the constants is

C10 = 0.0, P01 = .133333, P10 = .20, C01 = .333333, P00 = .50.

We compare this solution with that of the standard M/M/2 queue with
λ = 1, μ = 1.5. In M/M/2, the probability of an empty system is P0 = 0.5.
The probability of 1 customer in the system is indeed P1 = 0.33333. The
values match P00 and P10 + P01 in M/M/2/(μ0,μ1) , (0, (0,∞)) model, as
expected.

Also, in M/M/2/(μ0,μ1) , (0, (0,∞)), we see from (4.97) that

f01(x) = C01e−(2μ1−λ)x

= λP1e−(2μ1−λ)x

= 1 · (0.33333)e−2x , x > 0,

since μ1 − μ0 = 0 and C10 = 0.
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Example 4.8 Let λ = 1, μ0 = 1.1, μ1 = 2.21. These values preclude that
any of the four above-mentioned denominators is 0. We get a = −2.715136.
We solve the equations and obtain

P00 = .417715, P10 = 0.339103, P01 = 0.0202270,

C01 = 0.022818, C10 = −0.322655.

The functions f10(x), x > 0, and f01(x), x > 0, are linear combinations of
exponentials,

f10(x) = −0.322655e−2.715136x + 0.617056e−2.2x ,

f01(x) = 0.505784e−2.2x + 0.067831e−3.31x

− 0.531504e−2.715136x + 0.022818e−3.42x .

We substitute the values of P00, P10, P01, f10(x), f01(x) into the normalizer
(4.91), and obtain 1; it checks.

The partial pdfs of wait f10(x), f01(x) and total pdf of wait f (x) are
depicted in Figs. 4.7, 4.8, and 4.9 respectively.
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Fig. 4.7 Partial pdf of wait f10(x) in M/M/2/(μ0,μ1), (0, (0,∞)). λ = 1,μ0 = 1.1,
μ1 = 2.21
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Fig. 4.8 Partial pdf of wait f01(x) in M/M/2/(μ0,μ1), (0, (0,∞)). λ = 1,μ0 = 1.1,
μ1 = 2.21

Fig. 4.9 Total pdf of
wait
f (x) = f10(x) + f01(x)
in
M/M/2/(μ0,μ1), (0, (0,∞)).
λ = 1, μ0 = 1.1,
μ1 = 2.21
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H

01T

Page 01

tα tω

W(t)

Time t

0

Fig. 4.10 T01 := sojourn on page 01. tα := start of T01, tω := end of T01.S =
dis

Exp2μ1 .

(See Fig. 4.6.)

4.11.5 Expected Sojourn Time on a Page

Consider page 01. The SP can enter page 01 from discrete state (0, 01) or
from page 10, due to a jump at an arrival (Fig. 4.6). It cannot enter directly
from state (0, 10) at an arrival instant, since zero-wait arrivals are assigned
rate μ0 resulting in both servers being occupied with rate-μ0 customers; so
any SP jump to a positive level must end on page 10.

In a sojourn on page 01, the first inter start-of-service depart time will be
=
dis

Expμ0+μ1 ; any other inter start-of-service depart times that follow while

on page 01 will be =
dis

Exp2μ1 . While the SP is on page 01, each departure will

leave a rate-μ1 customer in the neighboring occupied server. Given that the SP
enters page 01, its source state was (0, 01)with probability (using Bayes’ rule)

q = P01

P01 + ∫∞
y=0 f10(y)dy

.

Its source was composite state ((0,∞), 10) with probability

1 − q =
∫∞

y=0 f10(y)dy

P01 + ∫∞
y=0 f10(y)dy

.

Let H denote the height above level 0 (ordinate) at which the SP enters
page 01 (see Fig. 4.10). A sojourn on page 01 starts at level H , where
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E(H |source is (0, 01)) = 1

μ0 + μ1
,

and

E(H |source is level y on page 10) = y + 1

μ0 + μ1
, y > 0,

since the size of a jump from either source onto page 01 is =
dis

Expμ0+μ1 .

Thus

E(H) = 1

μ0 + μ1
· q +

(∫ ∞

y=0

(
y + 1

μ0 + μ1

)
f10(y)dy

)
· (1 − q) .

From (4.93) f10(y) is given by

f10(y) = C10eay + λK10 P10e−2μ0 y, y > 0,

and thus

E(H) = 1

μ0 + μ1
· q

+
(∫ ∞

y=0

(
y + 1

μ0 + μ1

)(
C10eay + λK10 P10e−2μ0 y

)
dy

)
· (1 − q)

= 1

μ0 + μ1
· q +(1

4
(4C10μ2

0μ1 + 4C10μ3
0

+ 3λK10 P10a2μ0 + λK10 P10a2μ1

− 4C10aμ2
0)/

(
a2μ2

0(μ0 + μ1)
)) · (1 − q). (4.103)

Let T01 denote a sojourn time on page 01, i.e., the time from SP entrance
until the first exit from page 01 thereafter. The only possible exit is due to a
downcrossing of level 0 (Fig. 4.6). Thus

T01 = H +
NH∑
i=1

Bi

where NH is the number of arrivals during time H and Bi represents a busy
period of an M/M/1 queue with service rate 2μ1, since both servers are busy
with rate-μ1 customers. (See Sect. 3.4.12 and Fig. 3.6.) The expected busy
period is obtained from (3.120) with 2μ1 substituted for μ. Thus

E(Bi ) = 1

2μ1 − λ
, i = 1, . . . , NH .

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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The r.v.s NH and Bi , i = 1, . . . , NH are independent, since the Bi s are i.i.d.
each distributed as an Mλ/M2μ1 /1 busy period. The expected sojourn time on
page 01 is

E(T01) = E(H) + E

( NH∑
i=1

Bi

)
= E(H) + E(NH )E(Bi )

= E(H) + λE(H)
1

2μ1 − λ
= E(H)

1 − λ/ (2μ1)
, (4.104)

where E(H) is given in formula (4.103). It is noteworthy that T01 is distrib-
uted as the busy period in an Mλ/M2μ1 /1 queue in which zero-wait arrivals
obtain special service =

dis
H , and positive-wait arrivals get service rate 2μ1.

This structure of T01 illustrates an interesting application, and the versatil-
ity, of the M/G/1 queue where zero-wait arrivals get exceptional service (see
Sect. 3.6.1).

Example 4.9 In Example 4.8 with λ = 1, μ0 = 1.1, μ1 = 2.21, we obtain

q = .111216, 1 − q = .888784, E(H) = 0.151416.

The expected sojourn time on page 01 is E(T01) = 0.195689.

Remark 4.19 Various questions arise regarding Example 4.9. What is the
proportion of time that the SP spends circulating on page 01, page 10, or in the
zero-wait states? Can this question be answered for a general M/M/c/(μ0,

μ1) , (0, (0,∞)) queue with c > 2? If yes, then it would be straightforward to
determine P00. This would facilitate solving for all the zero-wait probabilities
and the partial pdfs of wait.

4.12 M/Mi /c with Reneging

Consider an M/M/c queue, with c ≥ 2 distinguishable servers having fixed
exponential service rates μi , i = 1, . . . , c. Thus, the queue has heteroge-
neous servers. This model is denoted by M/Mi /c. Using the notation for
the generalized M/M/c model (Sects. 4.3, 4.4 and 4.5), let {W (t), M(t)}t≥0
denote the system point process, where W (t) := virtual wait at time t and
M(t) := system configuration at time t (see Sect. 4.5). The set of possible
exponential service rates is µ = {μ1, . . . ,μc}. A new arrival receives one of
those service rates, depending on which server it engages. We assume the

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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μi s are distinct. When some or all of the μi s are equal, the analysis is similar
with slight modification.

Assume zero-wait arrivals start service immediately (no balking). In gen-
eral, the zero-wait server-assignment policy is arbitrary. When formulating
equations for the zero-wait probabilities in a specific model, however, we
must specify a zero-wait server-assignment policy (see Sect. 4.12.7 below).

4.12.1 Staying Function

Let {τn}n=1,2,... be the arrival times of customers Cn,n = 1, 2, . . ., respectively.
Then W (τ−

n ) ≡ Wn := required wait before start of service of Cn .
Define

θn =
{

1 if Cn stays for a full service

0 if Cn reneges while waiting for service
, n = 1, 2, . . . .

With respect to the steady-state statistical properties of the waiting time, this
model is equivalent to one in which customers balk from joining the system
at arrival instants, depending on their required wait before service, i.e., on
their arrival-point Wns. (See a sample path of {W (t)}t≥0 in Fig. 3.24 for a
similar M/G/1 model with reneging.)

We define the staying function R(·) similarly as in Sect. 3.13.1. For each
y ≥ 0, define the conditional probabilities

R(y) ≡ P(θn = 1|Wn = y), R(y) ≡ P(θn = 0|Wn = y),

independent of n = 1, 2, . . .. Note that R(0) = 1, and R(y) + R(y) = 1,

y ≥ 0.
For each y ≥ 0, given Wn = y, θn has a Bernoulli distribution (e.g., p.

26 in [125]). The staying function R(y) is the conditional probability of an
arrival staying for a full service, given Wn = y. Its complement R(y) is the
probability of an arrival reneging while in the waiting line, given Wn = y.

Using the foregoing definition, 1 − R(y), y ≥ 0, is not necessarily a cdf.
We assume: R(0) = 1; R(y), y ≥ 0, is monotone decreasing in the wide

sense (i.e., not strictly monotone—it may be non-increasing); R(y), y > 0, is
bounded from below by 0. R(y) may be continuous or piecewise continuous;
it may be a step function.

Due to boundedness from below and monotonicity, limy→∞ R(y) exists.
Let

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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lim
y→∞ R(y) = L , 0 ≤ L ≤ 1.

If R(y) ≡ 1, y ≥ 0, the model reverts to a standard M/Mi /c queue with no
reneging; in that case L= 1 (see Sect. 3.13 and Theorem 3.8.)

4.12.2 System Configuration

The set of possible system configurations is

M = M0 ∪ M1 = {m|(m1,m2, . . . ,mc)|0 ≤
c∑

i=1

mi ≤ c − 1},

where mi =

{
1 if server i is occupied

0 if server i is idle
, just after a start of service in some

server, since the configuration represents the service rates of those servers
other than the one just occupied.

There are
(c

j

)
configurations in which exactly j servers are occupied (i.e.,∑c

i=1 mi = j). The total number of configurations in M is

c−1∑
j=0

(
c

j

)
= 2c − 1.

The number of configurations in M0 := {m|0 ≤∑c
i=1 mi ≤ c − 2}, is 2c −

1 − c. The number of configurations in M1 := {m|∑c
i=1 mi = c − 1} (bor-

der configurations), is c. (Recall that M1 = Mb.)

4.12.3 State of System and Sample Path

State of System
Denote the state of the system as {W (t), M(t)}t≥0 , where W (t) ≥ 0 := vir-
tual wait, and M(t) ∈ M := system configuration, at instant t .

Sample Path
Consider a sample path of {(W (t), M(t))}t≥0. A sample-path diagram has
2c − 1 lines corresponding to the zero-wait states (0,m), m ∈ M (i.e.,
W (t) = 0); and c sheets (pages) corresponding to the positive-wait states
(y,m), y > 0 (i.e., W (t) > 0). (See Fig. 4.11 for the special case c = 2.)

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Assume the system starts empty at t = 0. Initially, arriving customers wait
0, complete service and depart. Eventually customers in service accumulate
until c − 1 servers are occupied. Concurrently the SP moves among the 2c −
1 − c lines for the non-border zero-wait states. It resides on each such line
for an exponentially distributed time, making transitions from line to line.
Various states unfold until the SP ends up on one of the c border lines.

All zero-wait arrivals stay for full service (no balking). Assume that a new
arrival Cτ finds c − 1 servers occupied (SP on a border line). Then Cτ waits
0, and starts service in the single idle server. At τ− the configuration is some
m ∈ Mb. At instant τ all c servers are occupied. The SP jumps at instant
τ to one of the c sheets, depending on which service will finish first. The
probability that server k will finish first is μk/μ where μ := μ1 + · · · + μc.
The SP will be at a height =

dis
Expμ, since the inter start-of-service depart

timeS is the minimum of c independent exponentially distributed r.v.s with
rates μ1, . . . ,μc, due to the memoryless property.

Let m_
i denote a border configuration such that the rate-μi server (i.e.,

server i) is idle (see Remark 4.20). In configuration m_
i , m j = 1, if j 
= i , and

mi = 0, i.e.,

m1 + · · · + mi−1 + 0 + mi+1 + · · · + mc = c − 1.

At time τ the SP will end up at a positive height on page m_
k with probability

μk/μ, k = 1, . . . , c.

Remark 4.20 We use the notation ı̄ to shorten the representation of m if c
is large. If c is small, e.g. c = 3, we can use notation like 100, 010, 001, 110,
101, 011. If c = 2, we can use 01, 10—see Sect. 4.12.8.

4.12.4 Zero-Wait Probabilities

Let Pn , n = 0, . . . , c − 1 denote the steady-state probability of n customers
in the system at an arbitrary point in time. Let Pn,m denote the probability
that there are n customers in the system and the configuration is m ∈ M.
There are

(c
n

)
configurations such that

∑c
i=1 mi = n. Let

Mn = {m|
c∑

i=1

mi = n}.
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Thus
Pn =

∑
m∈Mn

Pn,m, n = 0, . . . , c − 1.

Due to Poisson arrivals Pn is the probability that an arrival waits 0 and “sees”
n other customers in service just before it starts service (using PASTA, e.g.,
[145]).

Remark 4.21 For the zero-wait states, a configuration specifies the service
rates in the servers at an arbitrary time point. Due to Poisson arrivals, this is
the same as the service rates just before an arrival. It is also the same as
the service rates in the other servers just after an arrival starts service in an
available server.

The probability of a zero wait is denoted by F(0), where

F(0) =
c−1∑
n=0

Pn =
c−1∑
n=0

∑
m∈Mn

Pn,m. (4.105)

4.12.5 Positive-Wait PDF and CDF

For the positive-wait states, a configuration defines the service rates in the
other servers just after start of service.

Let fm(x), x > 0, denote the partial pdf of wait for page m ∈ Mb. Denote
the marginal pdf for the cover as

f (x) =
∑

m∈M1

fm(x), x > 0.

The total pdf of wait is {P0, f (x), x > 0}. The cdf of wait is F(x) =
F(0) + ∫ x

y=0 f (y)dy, x ≥ 0, where F(0) is defined in (4.105). The normal-
izing condition is

lim
x→∞ F(x) = F(0) +

∫ ∞

y=0
f (y)dy = 1. (4.106)

4.12.6 Equations for Positive-Wait PDFs

A key assumption of this model is that each positive-wait arrival reneges
from the waiting line with probability R(y), and stays for complete service
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with probability R(y) (=1 − R(y)), where y ≥ 0 is the required wait before
service.

Equation for Total PDF f (x) We first derive an integral equation for
f (x), the total pdf of wait of stayers (who wait and receive a full service),
namely,

f (x) = λPc−1e−μx + λ

∫ x

y=0
e−μ(x−y)R(y) f (y)dy, x > 0, (4.107)

directly using the sample path, as follows (see Fig. 4.11).

Explanation of Equation (4.107) On the left side, f (x) is the total SP
downcrossing rate of level x over all c sheets, projected onto the “cover”.
On the right side, since all zero-wait arrivals stay for full service (R(0) = 1),
the term λPc−1e−μx is the total SP upcrossing rate of level x due to jumps
starting at level 0 (i.e., line 0) of any of the c sheets (from border states
{(0,mi )}, i = 1, . . . , c), at arrival instants. These jumps have size S =

dis
Expμ

(=
dis

mini=1,...,c
{
Expμi

}
). The term λ

∫ x
y=0 e−μ(x−y)R(y) f (y)dy is the rate

at which the SP upcrosses level x due to jumps starting at levels y ∈ (0, x),
on any page, at arrival instants of stayers. The right side is, therefore, the total
SP upcrossing rate of level x . Rate balance across x yields (4.107).

Comparing (4.107) with Eq. (3.211) implies that the solution of (4.107) is

f (x) = λPc−1e
−
(
μx−λ

∫ x
y=0 R(y)dy

)
, x > 0, (4.108)

where μ =∑c
i=1 μi and Pc−1 =∑c

i=1 Pc−1,m_
i
.

Equations for Partial PDFs fi (x), x > 0, i = 1, . . . , c We now obtain
integral equations for the pdfs fi (x), x > 0, on the c sheets (see Fig. 4.11);
they are

fi (x) + λ(1 − μi

μ
)

∫ ∞

y=x
R(y) fi (y)dy

= λ
μi

μ
Pc−1e−μx + λ

μi

μ

∫ x

y=0
e−μ(x−y)R(y) f (y)dy

+ λ
μi

μ

∫ ∞

y=x
R(y)

(
f (y) − fi (y)

)
dy, i = 1, . . . , c. (4.109)

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Fig. 4.11 Sample path
of {W (t), M(t)}t≥0 in
M/Mi /2, where
zero-wait arrivals join,
and positive-wait
arrivals may renege from
the waiting line. Times
marked × indicate
arrivals that renege (do
not contribute to the
limiting pdf of wait)

W(t) Page 01

W(t) Page 10

x

x

00
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Time  t
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01P
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Explanation of Equation (4.109) On the left side, fi (x) is the SP exit rate
from composite state ((x,∞), i) due to SP downcrossings of level x ; term
λ(1 − μi

μ )
∫∞

y=x R(y) fi (y)dy is the SP rate of jumps out of ((x,∞), i) into

the composite states ((x,∞), j), j 
= i , on other sheets. On the right side,
the first two terms are SP entrance rates into ((x,∞), i) due to jumps starting
at level-0 border states, and jumps starting at levels y ∈ (0, x) on any sheet,
respectively (recall f (y) =∑c

i=1 fi (y)). The third term is the SP entrance
rate into ((x,∞), i) due to jumps starting in ∪ j 
=i ((x,∞), j). Rate balance
of SP exits and entrances of ((x,∞), i) yields (4.109).

Solution of Equation (4.109) We obtain the solution of (4.109) in terms of
the solution for f (x), which is given in formula (4.108), using the following
Proposition.

Proposition 4.1 The partial pdf is given by

fi (x) = μi

μ
f (x), x > 0, i = 1, . . . , c. (4.110)

Proof Substitute μi
μ f (x) for fi (x) in Eq. (4.109), and cancel like terms. The

proposition is true if and only if the following is an identity:
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μi

μ
f (x) + λ

∫ ∞

y=x

μi

μ
R(y) f (y))dy

= λ
μi

μ
Pc−1e−μx + λ

μi

μ

∫ x

y=0
e−μ(x−y)R(y) f (y)dy

+ λ
μi

μ

∫ ∞

y=x
R(y) f (y)dy, x > 0, (4.111)

if and only if

f (x) = λPc−1e−μx + λ

∫ x

y=0
e−μ(x−y)R(y) f (y)dy, x > 0, (4.112)

is an identity. Equation (4.112) is identical to Eq. (4.107). Hence the Propo-
sition is true. �

Exponential Staying Function
Consider an exponential staying function, R(x) := e−r x , r > 0, x ≥ 0. (Note
that 0 < e−r x ≤ 1, and is strictly decreasing on (0,∞), satisfying the defini-
tion of staying function.) The total pdf f (x) is now obtained by substituting
e−ry for R(y) in (4.108), which substituted into (4.110), gives

fi (x) = λ
μi

μ
e

λ
r Pc−1e−μx− λ

r e−r x
, x > 0, i = 1, . . . , c. (4.113)

We shall solve an M/Mi /2 model using R(x) := e−r x,r > 0, x ≥ 0, in
Sect. 4.12.8 below.

4.12.7 Equations for Zero-Wait Probabilities

Assume that the zero-wait server assignment policy is: arrivals that find k
available servers, 1 ≤ k ≤ c, get served by a particular available server with
probability 1/k. (Other policies are also viable, e.g., the arrival gets served
by the lowest-numbered available server, or by the fastest-available service
rate, etc.) Using the principle SP exit rate = SP entrance rate for the zero-wait
states, we obtain the equations (notation explained below)
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(λ + μ − μi )Pc−1,i = fi (0) + λ
2

∑c
j∈J i

Pc−2,i j , i = 1, . . . , c,

(λ + μ − μi − μ j )Pc−2,i j = μ j Pc−1,i + μi Pc−1, j

+λ
3

∑c
k∈Ji j

Pc−3,i jk, j = 1, . . . , c,
· · ·

(λ + μi )P1,i =∑c
k 
=i=1 μk P2,ik + λ

c
P00, i = 1, . . . , c,

λP00 =∑c
i=1 μi P1,i .

(4.114)

Notation in equations (4.114) In the first c equations, the index j of
the sum takes values in J i := { j | j = 0, . . . , c, j 
= i}, and the subscript i j
means both serversi and j are idle. In the second set of

(c
2

)
equations, the

index k of the sum takes values in J i j = {k|k = 0, . . . , c, k 
= i, k 
= j}, and
the subscript i jk means all three servers i , j and k are idle. The row of dots
“· · ·” indicates similar rate balance equations for Pc−3,i jk , …, P2,· In the
second last equation, for P1,i , on the right side P2,ik denotes the probability
of two units in the system, in servers i and k having service rates μi and μk
respectively.

We solve Eq. (4.114) explicitly in Sect. 4.12.8 below for M/Mi /2, in order
to convey some characteristics of the solution.

4.12.8 Solution for M/Mi /2 with Reneging

Notation When there is a small number of servers we can use an alternative,
perhaps more familiar notation. If c = 2, there are two sheets corresponding
to configurations 1 and 2, which we now replace by 01 and 10 respectively.
Thus, configuration 01 means server 1 is available and server 2 is occupied;
configuration 10 means server 2 is available and server 1 is occupied.

Applying formula (4.113), the partial pdfs of wait are now denoted by

f10(x) = λμ2
μ e

λ
r P1e−μx− λ

r e−r x
, x > 0,

f01(x) = λμ1
μ e

λ
r P1e−μx− λ

r e−r x
, x > 0.

(4.115)

The marginal (“total”) pdf of wait is

f (x) = f10(x) + f01(x) = λe
λ
r P1e−μx− λ

r e−r x
, x > 0. (4.116)
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The zero-wait probabilities are P1,i , i = 1, 2, and P00; using the alternative
notation we have

P1 = P1,2 + P1,1 = P10 + P01,

P0 = P00 + P1,2 + P1,1 = P0 + P10 + P01

= P00 + P1.

The rate-balance equations for the zero-wait probabilities are

(λ + μ1)P10 = λ
2 P00 + f10(0),

(λ + μ2)P01 = λ
2 P00 + f01(0),

λP00 = μ1 P10 + μ2 P01.

(4.117)

Substituting for f10(0), f01(0) from (4.115), we rewrite the equations in
(4.117) as

(λ + μ1)P10 = λ
2 P00 + λμ2

μ P1,

(λ + μ2)P01 = λ
2 P00 + λμ1

μ P1,

λP00 = μ1 P10 + μ2 P01.

(4.118)

The solution of (4.118) in terms of P00 is

P01 = λ
2μ2

P00,

P10 = λ
2μ1

P00,

P1 = λ(μ1+μ2)
2μ1μ2

P00 = λμ
2μ1μ2

P00.

(4.119)

The normalizing condition

P00 + P1 +
∫ ∞

x=0
f (x)dx = 1,

yields

P00 =
(

1 + λ(μ1 + μ2)

2μ1μ2
+ λ(μ1 + μ2)

2μ1μ2
λe

λ
r

∫ ∞

x=0
e−μx− λ

r e−r x
dx

)−1

.

(4.120)
The analytic solution comprises the results in (4.120), (4.119), (4.116) and
(4.115).

Example 4.10 We present a numerical example for the M/Mi /2 queue with
reneging allowed from the waiting line (see Fig. 4.12). Let
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Fig. 4.12 Plot of f (x),
f01(x) (= f1(x)), f10(x)
(= f2(x)), in Example
4.10

( )f x

01( )f x

10 ( )f x

λ = 5.2, μ1 = 2.4, μ2 = 1.1, μ = μ1 + μ2 = 3.5, r = 2.1.

Then ∫ ∞

x=0
e−μx− λ

r e−r x
dx = 0.074741,

and

P00 = 0.049059, P01 = 0.115958, P10 = 0.053147,

P1 = 0.169105,

F(0) = P00 + P1 = 0.218164,

F(∞) = F(0) + λe
λ
r P1

∫ ∞

x=0
e−μx− λ

r e−r x
dx

= 0.218164 + 0.781836 = 1.0,

f (x) = λe
λ
r P1e−μx− λ

r e−r x = 10.461 · e−3.5x−2.476e−2.1x
,

f01(x) = μ1

μ
f (x) = 7.173 · e−3.5x−2.476e−2.1x

,

f10(x) = μ2

μ
f (x) = 3.288 · e−3.5x−2.476e−2.1x

.

Remark 4.22 In M/Mi /c with reneging from the waiting line allowed, we
can generalize the staying function R(x), x ≥ 0. For example, R(x) may
depend on the server that would be occupied by an arrival, i.e., on the system
configuration at the arrival instant. We may then use the notation R_

i
(x). Thus

R_
i
(x)may depend on, not only customer required wait before service, but also
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on customer attraction or aversion to the “target” server. A natural question
arises. Can this model be modified to study attraction or aversion in natural
processes such as: electrically charged particles approaching an electrically
charged or magnetized environment; asteroids approaching a planet; particles
adhering or falling away from a surface; laser pulses affecting cells containing
certain chemicals in biological or medical applications; etc.?

4.12.9 Stability Condition

Consider the Mλ/Mi /c (c ≥ 2) queue with heterogeneous servers having rates
μ1, . . . ,μc in which reneging depending on required wait is allowed before
service begins. Let the staying function R(x), x ≥ 0, be monotone decreasing
(includes non-increasing), let R(0) = 1 (no balking upon arrival), and assume
0 ≤ R(x) ≤ 1, x ≥ 0. Let L = limx→∞ R(x), which exists by monotonic-
ity and boundedness. The ideas in Theorem 3.8 also apply in the M/Mi /c
environment, as follows.

Theorem 4.10 In Mλ/Mi /c (c ≥ 2) with reneging from the waiting line al-
lowed, as described immediately above, a necessary and sufficient condition
for stability is

λ <
μ

L
if 0 < L ≤ 1,

λ < ∞ if L = 0,

where μ =∑c
i=1 μi .

Proof The proof is similar to that of Theorem 3.8. The alternative proof given
there, Remark 3.31 and Fig. 3.28 also apply for the present M/Mi/c queue
with reneging, upon substituting μ =∑c

i=1 μi . �

4.13 Discussion

We can use LC to analyze a vast array of additional M/M/c models. We
mention only a few examples.

LC has been applied to M/M/c queues in which customers receive simulta-
neous service from a random number of servers. The original source for such
queueing models is the Ph.D. thesis of L. Green [81, 82]. An LC analysis,
motivated by the work of L. Green, is given in [38].

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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LC has been applied to M/M/c with bounded system time (wait + ser-
vice). An arrival balks upon arrival if its system time would exceed an upper
bound K , e.g., a system manager informs an arrival of the current expected
system time (see Example 1, p. 44 in [52]). This generalizes variant 2 of
the M/G/1 model discussed above in Sect. 3.6. It is straightforward to apply
LC to analyze an M/M/c model analogous to variant 1 in Sect. 3.16. In that
model customers renege from service if their age in the system (elapsed sys-
tem time) reaches K . Similar remarks apply to M/M/c where the actual waits
are bounded by K (as in variant 3 in Sect. 3.16). In that case the workload
can exceed K . We can develop an expression for the tail of the steady-state
pdf of workload, from its integral equation.

LC can be used to analyze a variety of M/M/c queues with server vacations;
priorities; and many others.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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