
Chapter 3
M/G/1 Queues and Variants

3.1 Introduction

This chapter considers the virtual wait process (workload) and related
concepts in the M/G/1 queue, and variants of the model. It first develops rela-
tionships between sample-path level crossings and the time dependent (tran-
sient) distribution of wait. These relationships provide sample-path quantities
obtainable via simulation or computation, which can estimate the analytical
transient pdf of wait. They also lead in Sect. 3.3 to an alternative proof of the
basic LC theorem for the steady-state pdf of wait (Theorem 1.1 in Sect. 1.6),
by taking limits as time tends to infinity. The relationships are also of inherent
interest for general time-dependent methods of analysis.

Next, in Sect. 3.3.1, alternative forms of Eq. (1.8) are derived by using
a different, but very useful LC interpretation of sample-path jumps. These
equation forms facilitate the analysis of certain variants of M/G/1 queues such
as M/Discrete/1 where the service time has a general discrete distribution
(Sect. 3.11.3).

The remainder of the chapter gives LC analyses of M/M/1 and M/G/1
models in the steady state, which illustrate the effectiveness of LC in practice.

3.2 Transient Distribution of Wait

Consider an M/G/1 queue with Poisson arrival rate λ, positive service times
with cdf B(x), x ≥ 0, and pdf d

dx B(x) = b(x), where the derivative exists.
Let B(x) ≡ 1 − B(x). Consider a sample path of the virtual wait {W (t)}t≥0,
and fix level x > 0 in the state spaceS = [0, ∞) (Figs. 2.1 and 3.1). Let Dt (x)
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and Ut (x) denote the number of down- and upcrossings of level x ≥ 0 during
(0, t), respectively. Both {Dt (x)}t≥0 and {Ut (x)}t≥0 are counting processes
(e.g., p. 312 in [125]). The existence of ∂

∂t E(Dt (x)) and ∂
∂t E(Dt (x)) is impor-

tant for the transient analysis, so we consider this property in Sects. 3.2.1 and
3.2.2.

3.2.1 Derivative ∂ E(Dt(x))/∂ t, x ≥ 0

For economy of notation, we define Dt (0) ≡ Dt (0+) = Ha,c
t (0) (number of

left-limit continuous hits of 0 from above during (0, t)) = It (0) (number of SP
entrances into {0} during (0, t)) (see Sect. 2.4.11). (Here all downcrossings
are continuous downcrossings).

Proposition 3.1 The partial derivative ∂
∂t E(Dt (x)), x ≥ 0, exists and is pos-

itive for t > 0.

Proof The memoryless property of the exponential distribution implies that
for each x ≥ 0 {Dt (x)}t≥0 is a delayed renewal process (e.g., p. 466 in
[125]; p. 197 in [99]), i.e., after each downcrossing of level x the future is a
probabilistic replica of the whole process starting at time d0. The delay d0
depends on the initial wait W (0) = x0. If x0 = x, d0 = 0. If x0 �= x , d0 is
the time from t = 0 to the first downcrossing of x . Starting from time d0, let
the level-x inter-downcrossing times be d1, d2, …, where dk ≡

dis
d1, k = 2, 3,

… (Fig. 3.1). Let Hd0(·), hd0(·) denote the cdf and pdf of d0, respectively.
We prove the result when d0 > 0; if d0 = 0, the proof is similar.

The following well-known relationship (e.g., p. 423 in [125]; p. 167 in
[99]) holds for n = 1, 2, …, and t > 0:

Dt (x) ≥ n ⇐⇒ d0 + d1 + · · · + dn−1 ≤ t.

Thus P(Dt (x) ≥ n) = P(d0 + d1 + · · · + dn−1 ≤ t).

Summing on both sides over n = 1, 2, . . ., gives, by mutual independence of
{di }i=0,1,2,...,

E(Dt (x)) =
∞∑

n=1

Fd0+d1+···+dn−1(t) =
∞∑

n=1

∫ t

s=0
Fn−1

d1
(t − s)hd0(s)ds,

where Fd0+d1+···+dn−1(t), t > 0, is the cdf of d0 + d1 + · · · + dn−1 and
Fn−1

d1
(·) is the (n − 1)-fold self convolution of Fd1(·). Since {Dt (x)}t≥0 is a

delayed renewal process, E(Dt (x)) is the renewal function. Thus E(Dt (x))

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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is finite for all t , and the series
∑∞

n=1 Fd0+d1+···+dn−1(t) converges uniformly
(e.g., p. 182 in [99]).

Since Fn−1
d1

(0) = 0, we obtain the derivative of the (n − 1)-th summand
as

∂
∂t

∫ t
s=0 Fn−1

d1
(t − s)hd0(s)ds

= ∫ t
s=0

∂
∂t Fn−1

d1
(t − s)hd0(s)ds + Fn−1

d1
(0)hd0(t)

= ∫ t
s=0 f n−1

d1
(t − s)hd0(s)ds,

where f n−1
d1

(·) is the pdf of the (n − 1)-fold convolution of d1. (Due to Poisson
arrivals, di is a continuous random variable implying d0 + d1 + · · · + dn−1
is continuous.) If we assume the parameters of the M/G/1 queue are such

that the series of derivatives
{∫ t

s=0 f n−1
d1

(t − s)hd0(s)ds
}

n=1,2,...
also con-

verges uniformly, then we can interchange the order of differentiation and
summation (e.g., p. 317 in [6]), giving

∂

∂t
E(Dt (x)) =

∞∑

n=1

∂

∂t

∫ t

s=0
Fn−1

d1
(t − s)hd0(s)ds

=
∞∑

n=1

∫ t

s=0
f n−1
d1

(t − s)hd0(s)ds .
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Moreover, ∂
∂t E(Dt (x)) > 0 since both f n−1

d1
(t − s) > 0 and hd0(s) > 0.

(Alternatively, ∂
∂t E(Dt (x)) > 0 follows since E(Dt (x)) is a non-decreasing

function of t .) �

Let di = da
i + db

i , where da
i is the time interval spent above x and db

i is
the immediately preceding time interval spent below x by W (·) during di ,
i = 1, 2, ….

3.2.2 Derivative ∂ E(Ut(x))/∂ t, x ≥ 0

Consider a sample path of {W (t)}t≥0. The process {Ut (x)}t≥0 is a “delayed”
process. In general, however, {Ut (x)}t≥0 is not a renewal process. The delay
u0, is the time from t = 0 to the first (jump) upcrossing of x after time d0.
The subsequent level-x inter-upcrossing times starting at u0 are denoted by
u1, u2, . . . (Fig. 3.1). Let ui = ua

i + ub
i where ua

i is the time interval spent
above x and ub

i is the immediately following time interval spent below x by
W (·) during ui . In general the random variables {ui }i=1,2,... are not i.i.d. (see
Remark 3.1).

Remark 3.1 Let γx |y denote the excess of a jump over level x given that the
jump starts at level y < x and initiates the interval ui . Then P(γx |y > z) =
B(x−y+z)

B(x−y)
. Thus ua

i depends on x − y, and ua
i =

dis
Bγx |y , where Bγx |y denotes

an M/G/1 busy period that starts with W (0) =
dis

γx |y . (Note: The symbol “=
dis

”

means “is equal in distribution to”, henceforth.) If i �= j then ua
i �=

dis
ua

j a.s.

(almost surely, i.e., with probability 1) because the start-of-jump position y
is a continuous random variable. Now ub

i ≡
dis

ub
1, i = 2, 3, …, because at the

start of ub
i {W (t)}t≥0 downcrosses x and the future evolution is a probabilistic

replica of {W (t)}t≥0 from the start time of d1, due to Poisson arrivals (that
is, due to the memoryless property of the exponential interarrival times).

Proposition 3.2 The partial derivative ∂E(Ut (x))/∂t , x ≥ 0, exists and is
positive for t > 0.

Proof The delay time u0 is a continuous random variable (r.v.). The process
{Ut (x)}t≥0 is a counting process, but is not a renewal process (Fig. 3.1). Let
Hu0(·), hu0(·) denote the cdf and pdf of u0, respectively.

The following relationship, usually applied for a renewal process, also
holds for a counting process even though the inter-occurrence times are not
independent. Thus
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Ut (x) ≥ n ⇐⇒ u0 + u1 + · · · + un−1 ≤ t, n = 1, 2, . . .

P(Ut (x) ≥ n) = P(u0 + u1 + · · · + un−1 ≤ t).

Summing on both sides over n = 1, 2, . . . gives

E(Ut (x)) =
∞∑

n=1

Fu0+u1+···+un−1(t)

=
∞∑

n=1

∫ t

s=0
Fu1+···+un−1(t − s)hu0(s)ds

where Fu1+···+un−1(t) is the cdf of u1 + · · · + un−1. Since ui is continuous
for each i = 1, 2, …, the sum u0 + u1 + · · · + un−1 is a continuous r.v. Taking
∂
∂t on both sides (differentiating under the integral) gives

∂

∂t
E(Ut (x)) =

∞∑

n=1

(∫ t

s=0

∂

∂t
Fu1+···+un−1(t − s)hu0(s)ds

+ Fu1+···+un−1(0)hu0(t))

=
∞∑

n=1

∫ t

s=0
fu1+···+un−1(t − s)hu0(s)ds,

where fu1+···+un−1(·) is the pdf of u1 + · · · + un−1, since Fu1+···+un−1(0) =
0. The rest of the proof is similar to that in Proposition 3.1. Positiveness
follows since E(Ut (x)) is an increasing function of t . �

The derivatives ∂
∂t E(Ut (x)) and ∂

∂t E(Dt (x)) are fundamentally related to
the transient cdf of W (t) (Sects. 3.2.3–3.2.8).

Remark 3.2 Assume the service time S is exponentially distributed with
mean 1/μ as in M/M/1 (Sect. 3.5). Then for any sample path

P(γx |y > z) = B(x − y + z)

B(x − y)
= e−(x−y+z)

e−(x−y)
= e−μz,

which is independent of x , y, and x − y, so that ua
i ≡

dis
Expμ (:= expo-

nential r.v. with mean 1/μ). In that case ua
i ≡

dis
BM/M/1, i − 1, 2, . . . where

BM/M/1 := busy period of an M/M/1 queue with S =
dis

Expμ (Sect. 3.5.6).

Then {ui }i=1,2,... is a renewal process.
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3.2.3 Level Crossings and Transient CDF of Wait

Denote the transient time-t cdf, pdf and probability of a zero wait respectively
as

Ft (x) = P(W (t) ≤ x), x ≥ 0, t ≥ 0,

ft (x) = ∂
∂x Ft (x), x > 0, t ≥ 0, wherever ∂

∂x Ft (x) exists,
P0(t) = Ft (0), t ≥ 0.

(3.1)

Define the joint cdf of (W (t1), W (t2)) as

Ft1,t2(x1, x2) = P(W (t1) ≤ x1, W (t2) ≤ x2), t1 �= t2 ≥ 0, x1, x2 ≥ 0.
(3.2)

The marginal cdfs are

Ft1(x1) = Ft1,t2(x1, ∞), Ft2(x1) = Ft1,t2(∞, x2), x1, x2 ≥ 0 (3.3)

Note that Dt (x) − Ut (x) ∈ {0, +1, −1} for every x ≥ 0, t ≥ 0, since
down- and upcrossings of a fixed state-space level alternate in time (for-
mulas (2.4) and (2.2)). The simple but useful Theorem 3.1 below connects
E(Ut (x)), E(Dt (x)) and the transient cdf Ft (x), by using (3.3) with t1 = 0,
t2 = t > 0, and x1 = x2 = x (Fig. 3.2).

In M/G/1, Dt (x) = Dc
t (x) since all downcrossings are left-continuous (see

Sect. 2.4.5). Also Ut (x) = U j
t (x), since all upcrossings are jump upcrossings.

Theorem 3.1 (P.H. Brill 1983) In the M/G/1 queue, for fixed x ≥ 0, t ≥ 0,

E(Dt (x)) = E(Ut (x)) + Ft (x) − F0(x). (3.4)

Proof Equation (3.4) holds when t = 0 because D0(x) = U0(x) = 0, x ≥ 0.
For t > 0, we compare possible sample path values of {W (s)}0≤s≤t at s = 0
and s = t with respect to level x , and relate the possible values to F0(x),
Ft (x) and F0,t (x, x) (Fig. 3.2). This procedure leads to the following values
and probabilities for Dt (x) − Ut (x):

Fig. 3.2 Values of
Dt (x) − Ut (x) are
+1, 0,−1, with
probabilities shown in
the finite and infinite
sub-squares and two
infinite rectangles of the
(W (0), W (t)) plane
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Dt (x) − Ut (x) Probability
0 1 − Ft (x) − F0(x) + 2F0,t (x, x)

+1 Ft (x) − F0,t (x, x)

−1 F0(x) − F0,t (x, x)

(3.5)

From (3.5) we obtain for fixed x ≥ 0,

E(Dt (x)) − E(Ut (x)) = Ft (x) − F0(x), t ≥ 0, (3.6)

equivalent to (3.4). �

In (3.5) the term Dt (x) − Ut (x) = 0 contributes 0 to E (Dt (x) − Ut (x));
it is included for completeness. In further similar computations of expected
value, terms with value 0 may be omitted.

Equation (3.6) leads to Theorem 3.2 below, which is fundamental for relat-
ing the transient probability distribution of wait and sample-path properties
(see Remark 3.3 below).

3.2.4 Relating the Transient CDF and Level Crossings

Theorem 3.2 (P.H. Brill 1983) In the M/G/1 queue

∂

∂t
E(Dt (x)) = ∂

∂t
Ft (x) + ∂

∂t
E(Ut (x)), t > 0, x ≥ 0. (3.7)

Proof Differentiating (3.4) with respect to t gives formula (3.7). (Existence
of ∂

∂t (·) of each term in (3.4) is considered in Sects. 3.2.1 and 3.2.2.) �

Remark 3.3 Theorem 3.2 is a special case of the more general Theorem
B (Theorem 4.1 in Sect. 4.2.1), which connects the sample-path marginal
entrance rate and marginal exit rate of an arbitrary measurable set A ⊂ S
(S := state space) to Pt (A) (:= probability of A at time t). In Theorem 3.2
A = [0, x].

3.2.5 Downcrossings and Transient PDF of Wait

Theorem 3.3 below shows that the sample-path quantity ∂E(Dt (x))/∂t
equals the analytic pdf ft (x), x ≥ 0, where ft (0) :≡ ft (0+). We now briefly
outline an important consequence, realizable by a computer program.

http://dx.doi.org/10.1007/978-3-319-50332-5_4
http://dx.doi.org/10.1007/978-3-319-50332-5_4
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Simulate a finite number of independent sample paths of {W (s)}s≥0 on
[0, t + h] (h small) to estimate E(Dt (x)) and E(Dt+h(x)), respectively.
Then use (E(Dt+h(x)) − E(Dt (x))) /h to estimate ∂E(Dt (x))/∂t ≈ ft (x),
x ≥ 0. Adjust the values of t , x and h as needed to fit the particular model
being considered.

Another important consequence is Corollary 3.2 below, which leads to an
alternative proof of the crucial ‘downcrossing’ part of the basic LC theorem
for the steady-state pdf of wait (i.e., limt→∞ E(Dt (x))/t = f (x), in Theorem
1.1) in Chap. 1.

Theorem 3.3 In the M/G/1 queue, for each t > 0,

∂

∂t
E(Dt (x)) = ft (x), x > 0, (3.8)

∂

∂t
E(Dt (0)) = ft (0). (3.9)

Proof For the virtual wait {W (t)}t≥0, fix state-space level x > 0. Consider
the state-space triangular set 
t,x,h := {(t, x + h), (t, x), (t + h, x)}, t > 0,
where h is “small” (see Fig. 3.3). Examination of some possible sample paths
W (s) with respect to 
t,x,h leads to the possible values of Dt+h(x) − Dt (x)

and their corresponding probabilities given in the table in (3.10); a brief
explanation follows immediately after Theorem 3.3.

Dt+h(x) − Dt (x) Probability
+1 Ft (x + h) − Ft (x) + o(h)

−1 0, since Dt (x) increases with t

≥ 2 o(h)

(3.10)

Computing E (Dt+h(x) − Dt (x)) using (3.10), and dividing by h yields

E(Dt+h(x)) − E(Dt (x))

h
= Ft (x + h) − Ft (x)

h
+ o(h)

h
.

Letting h ↓ 0 gives (3.8); then letting x ↓ 0 yields (3.9). �

Explanation of the Probabilities in (3.10)
Let the Poisson arrival rate be λ. Assume the pdf b(x) of the common
service time is bounded on (0, ∞). In this paragraph we denote the event
{Dt (x + h) − Dt (x) = 1} by {Diff1} for brevity. Consider P(Diff1) for the
three types of paths that enter and exit set 
t,x,h in Fig. 3.3. Employing the
memoryless property of the exponential distribution, we get

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Fig. 3.3 Sample-path
examples in triangle
�t,x,h resulting in
Dt (x + h) − Dt (x) = 1.
Probabilities are: P(path
type 1) = 1 − λ(y −
x) + o(y − x); P(path
type 2) ≤ o(h); P(path
type 3) ≤ o(h)

x

x h+

Time   t

t t h+

13 2

y

P(Diff1|path 1) = e−λ(y−x) → 1 as h ↓ 0 since (y − x) < h,

P(Diff1|path is type 2) = [λh + o(h)] [b(·)h + o(h)] = o(h),

P(Diff1|path is type 3) < [λh + o(h)] [b(·)h + o(h)] = o(h),

where λh + o(h) = P(an arrival occurs in (0, h)), and b(·)h + o(h) = P(a
service-time jump ends in an interval of size < h). Similar considera-
tion of other possible paths implies that P(Dt+h(x) − Dt (x) = n) = o (h)

(n = 2, 3, . . .). Then P(Dt+h(x) − Dt (x) ≥ n) = o (h) results because a
countable sum of o(h)s = o(h).

Alternative Proof of Formula (3.8) for Perspective
We can write

E(Dt+h(x) − Dt (x)) = 1 · P(Dt+h(x) − Dt (x) = 1) + o(h)

= ∫ x+h
y=x e−λ(y−x) ft (y)dy + o(h)

= ∫ x+h
y=x [1 − λ(y − x) + o(y − x)] ft (y)dy + o(h)

= Ft (x + h) − Ft (x) − ∫ x+h
y=x [λ(y − x) − o(y − x)] ft (y)dy + o(h)

= Ft (x + h) − Ft ((x) − h
[
λ(y∗ − x) − o(y∗ − x)

]
ft (y∗)dy + o(h),

x < y∗ < x + h,
(3.11)
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by the mean value theorem for integrals (e.g., p. 237 in [137]). Dividing both
sides by h gives

E(Dt+h(x)−Dt (x))
h

= Ft (x+h)−Ft ((x)
h − λ(y∗ − x) + o(y∗ − x) · ft (y∗) + o(h)

h .

Letting h ↓ 0 leads to (3.8), because h ↓ 0 implies: (y∗ − x) ↓ 0; o(y∗ −
x) ↓ 0; ft (y∗) → ft (x); o(h)/h → 0.

Corollary 3.1 For fixed t > 0,

E(Dt (x)) =
∫ t

s=0
fs(x)ds, x > 0, t > 0. (3.12)

E(Dt (0)) =
∫ t

s=0
fs(0)ds, t > 0. (3.13)

Proof Solving (3.8) for E(Dt (x)) and (3.9) for E(Dt (0)) by integrating with
respect to t , and applying the initial condition E(D0(x)) ≡ 0, x ≥ 0, gives
(3.12) and (3.13), respectively. �

3.2.6 Alternative Proof of limt→∞ E(Dt(x))/ t = f (x)

Starting from the transient analysis, Corollaries 3.2 and 3.3 below provide an
alternative proof of the downcrossing-rate part of Theorem 1.1 in Sect. 1.6,
Chap. 1, i.e., Eqs. (1.12) and (1.13). Let {P0, f (x)}x>0 denote the limiting
(steady-state) mixed pdf of {W (t)}t≥0. We assume λE(S) < 1 (condition for
existence of steady state).

Corollary 3.2

lim
t→∞

∂

∂t
E(Dt (x)) = lim

t→∞
E(Dt (x))

t
= f (x), x > 0 (3.14)

lim
t→∞

∂

∂t
E(Dt (0)) = lim

t→∞
E(Dt (0))

t
= f (0+) ≡ f (0). (3.15)

Proof Let t → ∞ in (3.8) and (3.9) giving respectively

lim
t→∞

∂

∂t
E(Dt (x)) = lim

t→∞ ft (x) = f (x), x > 0,

lim
t→∞

∂

∂t
E(Dt (0)) = lim

t→∞ ft (0) = f (0).

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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In (3.12) and (3.13) divide both sides by t > 0, and let t → ∞. Then

lim
t→∞ E(Dt (x))/t = lim

t→∞
1

t

∫ t

s=0
fs(x)ds = f (x), x > 0,

lim
t→∞ E(Dt (0))/t = lim

t→∞
1

t

∫ t

s=0
fs(0)ds = f (0).

Then (3.14) and (3.15) follow. �

Corollary 3.3

lim
t→∞

Dt (x)

t
= f (x), x ≥ 0 (a.s.) . (3.16)

Proof Since {Dt (x)}y≥0 is a renewal process due to Poisson arrivals, by the
elementary renewal theorem,

lim
t→∞

E(Dt (x))

t
= lim

t→∞
Dt (x)

t
, x ≥ 0 (a.s.) .

Thus (3.16) follows from (3.14) and (3.15). �

Corollary 3.4 gives an alternative perspective of set and rate balance (see
Sect. 2.4.7) in Chap. 2.

Corollary 3.4

lim
t→∞

E(Dt (x))

t
= lim

t→∞
E(Ut (x))

t
, x ≥ 0, (3.17)

lim
t→∞

Dt (x)

t
= lim

t→∞
Ut (x)

t
, x ≥ 0 (a.s.) . (3.18)

Proof Dt (x) − Ut (x) ∈ {0, +1, −1}, t ≥ 0, x ≥ 0, for all possible sample
paths of {W (t)}t≥0. Hence −1 ≤ Dt (x) − Ut (x) ≤ +1, and −1 ≤ E(Dt (x))

− E(Ut (x)) ≤ +1. Dividing by t > 0 and letting t → ∞ gives (3.17) and
(3.18). �

Remark 3.4 Formulas (3.17) and (3.18) also state the principle of set balance
for sets [0, x) and [x, ∞), x ≥ 0. That is, the equation sample-path exit rate
from set [0, x) = sample-path entrance rate into [0, x) holds. The same
principle applies to set [x, ∞). Moreover, SP motion contains the sample
path as a subset; i.e., SP motion includes the “not-in-Time” state-space jumps
(see Sect. 2.3 in Chap. 2). Hence the same principle applies to SP exits and
entrances.

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2


60 3 M/G/1 Queues and Variants

3.2.7 Upcrossings and Transient PDF of Wait

Theorem 3.4 below connects the sample-path quantity ∂
∂t E(Ut (x)) to the

analytical transient mixed pdf {P0(t), ft (y)}0<y<x , t > 0.

Theorem 3.4 In the M/G/1 queue with arrival rate λ and service time cdf
B(·)

∂

∂t
E(Ut (x)) = λB(x)P0(t) + λ

∫ x

y=0
B(x − y) ft (y)dy (3.19)

∂

∂t
E(Ut (0)) = λP0(t). (3.20)

Proof We define Udiff := Ut+h(x) − Ut (x) here for brevity. Let x > 0, t > 0,
and small h > 0 be given. We examine possible SP upcrossings of level x
in the state-space infinite rectangle � := {(t, t + h) × (0, ∞)} (Fig. 3.4). We
consider possible SP entrances into � at time t . Entrances that occur: above
x + h imply Udiff = 0; within (x, x + h) imply Udiff = 0 or P(Udiff =
1) = [λh + o(h)] B(x − y) ft (y)dy for some y ∈ (x − h, x); within (0, x)

imply Udiff = 0 or P(Udiff = 1) = [λh + o(h)] B(x − y) ft (y)dy for
some y ∈ (0, x − h); at level 0 imply Udiff = 0 or P(Udiff = 1) =
[λh + o(h)] B(x)Pt (0). For any n ≥ 2, P(Udiff = n)=o(h) because at least

Fig. 3.4 Examples of
sample-path (and SP)
entrances and exits of
set shaped like �.
Numbers at the ends of
path segments are values
of Udiff

x

x+h

t t+h

0

0

1

1

0

1

0
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n arrivals would be required during (t, t + h) (equivalently during (0, h) due
to the memoryless property). Finally we get

Ut+h(x) − Ut (x) Probability
+1 [λh + o(h)] P0(t)B(x)

+ [λh + o(h)]
∫ x

0 B(x − y) ft (y)dy + o(h)

≥ 2 o(h).

(3.21)

In (3.21), the values Ut+h(x) − Ut (x) ≤ 0 are omitted since {U diff = 0}
does not affect E(Udiff), and negative values are not possible because Ut (x)

is a counting process (non-decreasing). Utilizing (3.21) gives

E(Ut+h(x) − Ut (x)) = [λh + o(h)] P0(t)B(x)

+ [λh + o(h)]
∫ x

y=0 B(x − y) ft (y)dy + o(h).

Dividing both sides by h and taking limits as h ↓ 0 gives (3.19). Letting
x ↓ 0 in (3.19) gives (3.20) since Ut (0) ≡ Ut (0+), and B(0) = 1, since B(x)

is right continuous. �

Corollary 3.5 For fixed t > 0,

E(Ut (x)) = λ

∫ t

s=0
B(x)P0(s)ds + λ

∫ t

s=0

∫ x

y=0
B(x − y) fs(y)dyds, x > 0, (3.22)

E(Ut (0)) = λ

∫ t

s=0
P0(s)ds. (3.23)

Proof Integrate over time from 0 to t in (3.19) and (3.20). The constants of
integration are 0 because E(U0(x)) = 0, x ≥ 0. �

Corollary 3.6 If the steady state exists, then

lim
t→∞

∂

∂t
E(Ut (x)) = lim

t→∞
E(Ut (x))

t
= λB(x)P0 + λ

∫ x

0
B(x − y) f (y)dy,

(3.24)

lim
t→∞

∂

∂t
E(Ut (0)) = lim

t→∞
E(Ut (0))

t
= λP0. (3.25)

Proof Note that

lim
t→∞ Ft (x) = F(x), lim

t→∞ ft (x) = f (x), lim
t→∞ P0(t) = P0.

In (3.24) and (3.25), the results for
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lim
t→∞

∂

∂t
E(Ut (x)) and lim

t→∞
∂

∂t
E(Ut (0))

follow from (3.19) and (3.20) respectively. The results for

lim
t→∞

E(Ut (x))

t
and lim

t→∞
E(Ut (0))

t

follow from (3.22) and (3.23). �

Corollary 3.6 completes the alternative transient-analysis derivation of
Theorem 1.1, which seems to provide a more general perspective than the
equilibrium-analysis approach of Sect. 1.6.

3.2.8 Integro-differential Equation for PDF of Wait

We apply LC to derive the Takács integro-differential equation for the
transient probability distribution of wait, by utilizing Theorems 3.2, 3.3 and
3.4 above. (See Remarks 3.5, 3.6 and 3.7 below.)

Theorem 3.5 For an M/G/1 queue with arrival rate λ and service time cdf
B(·), the transient distribution of the virtual wait satisfies the following equa-
tions for each t > 0:

ft (x) = ∂

∂t
Ft (x) + λB(x)P0(t)

+ λ

∫ x

y=0
B(x − y) ft (y)dy, x > 0, (3.26)

ft (0) = ∂

∂t
P0(t) + λP0(t), (3.27)

P0(t) +
∫ ∞

y=0
ft (y)dy = 1. (3.28)

Proof The theorem follows by applying (3.7), substituting from (3.8), (3.9),
(3.19), (3.20), and using (3.1). Equation (3.28) is the normalizing condi-
tion. �

Remark 3.5 Equation (3.26) was derived by Takács in [139] by a different
technique. Also, see formula (17), p. 87 in [140].

Remark 3.6 Minor extensions of the proofs in this section yield relation-
ships and integro-differential equations for the transient pdf of wait in the

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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important cases where the arrival rate and probability distribution of the
service time are also time-dependent. In the formulas (3.26) and (3.27)
we can replace λ by λ(t) so that the arrival process is non-homogeneous
Poisson; and B(y) by Bt (y) so that the service time is time-dependent
(see Sect. 3.2.9 below). Equation (3.26) is called in the literature the Takács
integro-differential equation (see [139]; formula (5.172), p. 227 in [104]).

Remark 3.7 The LC proofs of (3.26) and (3.27) have important ramifi-
cations. The relationship of both sides of (3.26) and (3.27) to E(Dt (x)),
E(Ut (x)), x ≥ 0, leads to techniques forLCestimation of the transient dis-
tributions by simulation of multiple independent sample paths (see Remark
9.2 in Sect. 9.2). LC estimation (computation, approximation) for steady-
state distributions is discussed in Chap. 9. LC estimation is a form of non-
parametric distribution (or density) estimation.

Example 3.1 below illustrates how transient sample-path quantities can be
used to solve transient integro-differential equations numerically for analyt-
ical transient pdfs or transient probabilities.

Example 3.1 Assume W (0) = x0 (≥ 0) so that P0(x0) = 1. Note that P0(s)
= 0, 0 ≤ s ≤ x0. What is a point estimate of Pt (0) for a finite time t > x0?
From Eqs. (3.27) and (3.9) we have the differential equation

∂

∂t
P0(t) + λP0(t) = ∂

∂t
E(Dt (0)), t > x0. (3.29)

Using integrating factor eλt in (3.29) and solving for P0(t) we get

d

dt

(
eλt P0(t)

)
= eλt d

dt
E(Dt (0)),

eλt P0(t) =
∫ t

s=x0

eλs
[

d

ds
E(Ds(0))

]
ds + A

where A is a constant. Letting t ↓ x0 implies A = eλx0 P0 (x0) = eλx0 , and

P0(t) = e−λt
(∫ t

s=x0

eλs
[

d

ds
E(Ds(0))

]
ds

)
+ e−λ(t−x0), t > x0. (3.30)

We estimate the function d
ds E(Ds(0)), x0 ≤ s ≤ t in (3.30) as follows. Select

a partition on [x0, t] having small norm h such that t − x0 = νh, ν ∈ N
+

(set of positive integers). E.g., if t − x0 is rational or irrational select
h = 0.001 (t − x0) or 0.0002 (t − x0), etc. Simulate N independent sam-
ple paths of W (s), s ∈ [0, t + h], where N is large. Let Di, j (0) := number of

http://dx.doi.org/10.1007/978-3-319-50332-5_9
http://dx.doi.org/10.1007/978-3-319-50332-5_9
http://dx.doi.org/10.1007/978-3-319-50332-5_9
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downcrossings of level 0 (left continuous hits from above) during time inter-
valls [x0 + ( j − 1)h, x0 + jh], j = 1, . . . , ν + 1 for the i th sample path,
i = 1, . . . , N . Let D j (0) = 1

N

∑N
i=1 Di, j (0), j = 1, . . . , ν + 1. An estimate

of d
ds E(Ds(0)) is the step function

D j (0)

h
, x0 + ( j − 1) h < s < x0 + jh, j = 1, . . . , ν + 1.

Substituting
D j (0)

h into (3.30), we get the point estimate of P0(t) as

P̂0(t) = e−λt

h

ν+1∑

j=1

D j (0)

∫ x0+ jh

s=x0+( j−1)h
eλsds + e−λ(t−x0)

= e−λt

λ

ν+1∑

j=1

(
D j (0) · eλ(x0+ jh) − eλ(x0+( j−1)h)

h

)
+ e−λ(t−x0). (3.31)

FORTRAN-programmed computations were carried out in the Masters
project [120] to estimate P0(t) when x0 = 0, using a special case of the
method outlined in this example. The computations generally agreed with the
known analytical value of P0(t), t > 0, computed from the analytic formula
given in [140].

Remark 3.8 Concepts in Example 3.1 relate to renewal theory since down-
crossings of level 0 occur at the ends of busy cycles, which are i.i.d. random
variables forming a renewal process (see formula (5.1) p. 189 in [99]). This
will be discussed further in Chap. 10.

3.2.9 PDF When Arrivals and Service Are Time Dependent

We very briefly revisit the transient pdf of wait in the M/G/1 queue in
Theorem 3.5 above in Sect. 3.2.8. We can prove by a slight generalization of
the proofs in Sect. 3.2, that the theory holds for models where the arrival rate
λ and cdf of service time B(x), x > 0, depend on time t . Denoting them by
λ (t) and Bt (x), x > 0, respectively, we obtain

ft (x) = ∂
∂t Ft (x) + λ (t) Bt (x)P0(t)

+λ (t)
∫ x

y=0 Bt (x − y) ft (y)dy, x > 0,

ft (0) = ∂
∂t P0(t) + λ (t) P0(t).

(3.32)

http://dx.doi.org/10.1007/978-3-319-50332-5_10
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The solution of the differential equation for P0(t) in (3.32) is

P0(t) = e−m(t)
∫ t

s=0
em(s) fs(0)ds + P0(0)e−m(t), (3.33)

where m(t) =
∫ t

s=0 λ (s) ds and P0(0) =

{
1 if W (0) = 0,

0 otherwise.

3.2.10 Steady-State PDF of Wait from Transient PDF

Equation (1.8) for the steady state distribution of wait, is now proved directly
from the foregoing LC connections between sample paths and the transient
distribution of wait. The next theorem gives two such proofs.

Theorem 3.6 For an M/G/1 queue with arrival rate λ and service time S
having cdf B(·), where λE(S) < 1, the steady state pdf of the virtual wait
{P0, f (x)}x>0, is given by

f (x) = λB(x)P0 + λ

∫ x

0
B(x − y) f (y)dy, x > 0, (3.34)

f (0) = λP0, (3.35)

P0 +
∫ ∞

0
f (y)dy = 1. (3.36)

Proof Since λE(S) < 1, the transient probability distribution converges
to the steady state probability distribution, i.e., limt→∞ Ft (x) = F(x),
limt→∞ ft (x) = f (x), limt→∞ P0(t) = P0. Moreover

lim
t→∞

∂

∂t
Ft (x) = 0, x ≥ 0, lim

t→∞
∂

∂t
P0(t) = 0.

Then (3.34) and (3.35) follow from Theorem 3.5 by letting t → ∞.
Alternatively, (3.34) and (3.35) follow from the principle of rate balance

expressed in (3.17), (3.18), and substituting from (3.14), (3.15), (3.24), and
(3.25). �

Remark 3.9 For the M/G/1 queue with λE(S) < 1, it is well known that

lim
t→∞P(W (t) ≤ x) = lim

n→∞P(Wn ≤ x), x ≥ 0,

where Wn is the waiting time of the nth customer (arrival-point wait) (see
[140]). Hence Eqs. (3.34)–(3.36) hold for the steady-state distributions of
both the arrival-point wait and the virtual wait.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Remark 3.10 Using LC to derive (3.34)–(3.36) is useful because each alge-
braic term corresponds to a unique down- or upcrossing rate of level x ≥ 0.
This one-to-one correspondence enables the derivation of exact analytical
integral equations for steady-state distributions of state variables in many
complex stochastic models, intuitively and straightforwardly, using the sam-
ple path as a template. The idea is to construct a pertinent typical sample path
of the stochastic model; then write the integral equation(s) by inspection
using LC theorems and the principle of rate and/or set balance. The solution
of the equation(s) is found with the aid of initial conditions (e.g., f (0) =
λP0, f ′(0) = −λP0b(0) + λ2 P0). This procedure can save time and help the
analyst focus on the model dynamics.

3.3 Steady-State Distribution of Wait

We begin with Example 3.2 below, which illustrates the derivation of the
steady-state pdf of wait in an M/G/1 queue, where G := Erlk,μ is the sum of k
i.i.d. Expμ r.v.s. (Erlk,μ denotes an Erlang r.v.; Expμ denotes an exponential
r.v. with mean 1/μ.) In the M/Erlk.μ/1 queue E(S) = k · E(Expμ) = k/μ.

Example 3.2 Consider the M/Erlk.μ/1 queue with arrival rate λ. Let Sk(x)

:= event {sum of k i.i.d. Expμs ≤ x}, and Gk(x) := event {number of Poiμ
events in (0, x) is ≥ k}, where Poiμ denotes a Poisson process with rate μ
(see pp. 312–316 in [125]). Since Sk(x) ⇐⇒ Gk(x), we have P(Sk(x)) =
P(Gk(x)), and cdf B(x) = P(S ≤ x) = P(Sk(x)) = P(Gk(x)). Therefore

B(x) = P(Gk(x)) =
∞∑

i=k

e−μx (μx)i

i ! , x > 0. (3.37)

(See Sect. 2.3.2 for Expμ; Chap. 5 for Poiμ, in [125].) Taking d
dx in (3.37)

readily shows that b(x) (:= d
dx B(x)) is given by

b(x) = e−μx (μx)k−1μ

(k − 1)! , x > 0. (3.38)

(Intuitively, (3.38) is equivalent to ‘b(x)dx = P((k − 1) Poiμ events in (0, x)

and the kth event occurs at time x) dx’.) Since
∑∞

i=0 e−μx (μx)i/ i ! = 1,

B(x) = 1 − B(x) = e−μx

(
k−1∑

i=0

(μx)i

i !

)
, x ≥ 0. (3.39)
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The condition for existence of the steady state is λE(S) < 1 or λ < μ/k.

Substituting e−μx
(∑k−1

i=0
(μx)i

i !
)

for B(x) in (3.34), we obtain

f (x) = λP0e−μx
(∑k−1

i=0
(μx)i

i !
)

+λ
∫ x

y=0 e−μ(x−y)
(∑k−1

i=0
(μ(x−y))i

i !
)

f (y)dy, x > 0.

(3.40)

where P0 = 1 − λE(S) = 1 − (λk) /μ. The normalizing condition is

P0 +
∫ ∞

x=0
f (x)dx = 1.

Case k = 2: We illustrate the solution when k = 2, which corresponds to
the M/Erl2,μ/1 queue. From (3.40) we have

f (x) = λP0e−μx (1 + μx) + λ

∫ x

y=0
e−μ(x−y)(1 + μ(x − y)) f (y)dy, x > 0. (3.41)

Differentiating (3.41) with respect to x twice results in the second order
differential equation

f ′′(x) + (2μ − λ) f ′(x) + (μ2 − 2λμ) f (x) = 0, x > 0,

with solution
f (x) = a1er1x + a2er2x , x > 0, (3.42)

where a1, a2 are constants to be determined, and

r1 = −μ + λ

2
− 1

2

√
λ2 + 4μλ, r2 = −μ + λ

2
+ 1

2

√
λ2 + 4μλ,

are the solutions of the characteristic function

z2 + (2μ − λ)z + (μ2 − 2λμ) = 0.

Both r1 < 0, r2 < 0. The constants a1, a2 and P0 can be determined
from the initial condition f (0) = λP0, and the normalizing condition P0 +∫∞

y=0 f (y)dy = 1, giving
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a1 = r1r2

r1 − r2
(1 − P0 + λP0

r2
),

a2 = λP0 − a1,

P0 = 1 − 2λ

μ
.

3.3.1 Alternative LC Equations for PDF of Wait

We now give two different forms of the basic integral equation (1.8) for the
limiting pdf of wait in the M/G/1 queue (see Fig. 1.6). The alternative forms
are useful due to their applicable LC interpretation. We can write (1.8) as

f (x) = λ(1 − B(x))P0 + λ

∫ x

y=0
(1 − B(x − y)) f (y)dy

= λ

(
P0 +

∫ x

y=0
f (y)dy

)
− λ

(
B(x)P0 +

∫ x

y=0
B(x − y) f (y)dy

)

which gives two alternative forms of the LC equation:

f (x) = λF(x) − λ

∫ x

y=0
B(x − y)d F(y), x ≥ 0; (3.43)

f (x) = λF(x) − λ

∫ x

y=0
F(x − y)d B(y), x ≥ 0, (3.44)

noting that F(x) = P0 + ∫ x
y=0 f (y)dy, and F(∞) = 1. Formulas (3.43) and

(3.44) have intuitive LC interpretations which help us write them immedi-
ately. Consider a sample path of the virtual wait (Fig. 1.4) and observe a
one-to-one correspondence between the set of algebraic terms in the equa-
tions and a set of mutually exclusive and exhaustive sample-path crossings
of level x , different from those depicted in Fig. 1.6.

In (3.43) and (3.44) the left side is the SP downcrossing rate of level x ,
as usual (see formula (3.14)). However, on the right side, λF(x) is the rate
of all SP jumps that start in the state-space interval [0, x]. The second term
subtracts off the rate of such jumps that end below level x (do not upcross x).
Therefore the right side is precisely the total rate at which SP jumps upcross
level x . Rate balance, (3.17) or (3.18), gives these equations directly. Note
that (3.43) yields (3.44) by using the transformation z = x − y, dz = −dy,
and integrating by parts.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Equations (3.43) and (3.44) are useful when analyzing variants of M/D/1
and M/Discrete/1 queues (Sects. 3.10 and 3.11); they help us derive the
steady-state cdf F(x) directly since f (x) = F ′(x). They are also useful in
theoretical applications, such as in TAM (transform approximation method)
[87, 129, 130]. The LC intuitive interpretations of (3.43) and (3.44) also sug-
gest how to use LC to develop integral equations for the pdf of state variables
in more general models.

Example 3.3 Consider the M/U(0,c)/1 queue with arrival rate λ, where the
service time S =

dis
U(0,c), a uniformly distributed r.v. on (0, c), c > 0, i.e.,

B(x) =

⎧
⎪⎨

⎪⎩

0, x < 0,

x
c , 0 ≤ x < c,

1, x ≥ c.

(3.45)

We assume: {W (t)}t≥0 is unbounded, i.e., 0 ≤ W (t) < ∞; the steady state
pdf {P0, f (x)}x>0 and cdf F(x), x ≥ 0, exist. A necessary and sufficient
condition for the steady state to exist is λE(S) < 1 ⇐⇒ (λc/2) < 1. Then
busy periods are finite (a.s.), and P0 = 1 − λE(S) = 1 − λ c

2 .

Solution Approach in Example 3.3
We first solve (3.52) for f (x), 0 < x < c; then we indicate the iteration on
successive state-space intervals [c, 2c), [2c, 3c), …. (In Sect. 3.10 we obtain
a complete solution for the M/D/1 queue, using a similar technique.)

Substituting from (3.45) into (3.43) and using F(x − c) = 0, 0 < x < c,
gives (3.46).

f (x) = λF(x) − λ

∫ x

y=0

(x − y)

c
d F(y), 0 < x < c, (3.46)

f (x) = λF(x) − λF(x − c) − λ

∫ x

y=x−c

(x − y)

c
d F(y), x ≥ c. (3.47)

The LC explanation of (3.46) is the same as for 3.43. In (3.47) on the right
side, λF(x) is the total rate of jumps that start below x . The term −λF(x − c)
subtracts off the rate of jumps that start at any y ∈ [0, x − c), and thus cannot
upcross level x . The term −λ

∫ x
y=x−c

(x−y)
c d F(y) subtracts off the rate of

jumps that start in (x − c, x) but are too small to upcross x .
Differentiating (3.46) twice with respect to x results in the second order

linear homogeneous differential equation

f ′′(x) − λ f ′(x) + λ

c
f (x) = 0, x ∈ (0, c). (3.48)
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with characteristic (also called “auxiliary”) equation

r2 − λr + λ

c
= 0,

having solution

r = 1

2

(
λ ±

√
λ2 − 4

λ

c

)
. (3.49)

This gives

f (x) = a1·e
λ
2 x cos

(
1

2

√
4λ

c
− λ2 · x

)

+ a2 · e
λ
2 x sin

(
1

2

√
4λ

c
− λ2 · x

)
, x ∈ (0, c), (3.50)

where a1, a2 are constants to be determined. The cos and sin functions occur

because we assumed that λ < 2/c < 4/c, so that the discriminant
√

λ2 − 4λ
c

in (3.49) is a complex number (see Sect. 3.5, pp. 106–114 in [10]). In (3.46),
applying the initial conditions f (0) = λP0, f ′(0) = λ2 P0 − λP0

c with P0 =
1 − λc

2 , gives a1, a2 in (3.50) as

a1 = λ(1 − λc

2
), a2 = (1 − λc

2 )λ(λ − 1
c )

√
4λ
c − λ2

.

We can iterate to solve for f (x), x ∈ [c, 2c), x ∈ [2c, 3c), etc., by using
(3.50). For x ∈ [c, 2c), we have

f (x) = λF(x) − λ
∫ x

y=c
(x−y)

c d F(y)

−λ
∫ c

y=x−c
(x−y)

c f (y)dy − λF(x − c), c ≤ x < 2c.
(3.51)

We solve (3.51) by substituting f (y) from (3.50) on the interval (x − c, c)
into the second integral in (3.51), Then use discontinuity at x = c, i.e.,
f (c+) − f (c−) = −λP0 (letting x ↓ c in (3.51), x ↑ c in (3.50), and subtract-
ing). The computation of f (x), c < x < 2c by stepping upward from state-
space interval (0, c) to interval [c, 2c) is iterated on intervals [ic, (i + 1)c),
i ≥ 2. (A similar discontinuity in the pdf f (x) occurs at x = D in the M/D/1
queue considered below in Sect. 3.12.)
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Example 3.4 Now we assume a workload-bounded M/U(0,c)/1 queue, i.e.,
{W (t)}t≥0 is bounded at level K > 0. To demonstrate the solution technique
we let K := c, and assume all service times that cause the virtual wait to exceed
level c are truncated at level c. (See variant 1 in Sect. 3.16 and Fig. 3.33.)

The steady-state cdf F(x) exists for all λ > 0 (see Sect. 2.1 in [25]). Sub-
stituting from (3.45) into (3.43) and using F(x − c) = 0, 0 < x < c, gives

F ′(x) = λF(x) − λ
∫ x

y=0
(x−y)

c d F(y)

= λF(x) − λ
∫ x

y=0
(x−y)

c f (y)dy − λP0
x
c , 0 < x < c,

(3.52)

for the steady-state cdf F(x).

Solution Approach for Example 3.4
Taking d/dx in (3.52) leads to the second order differential equation

F ′′(x) − λF ′(x) + λ

c
F(x) = 0, 0 ≤ x ≤ c. (3.53)

Assuming λ > 4/c, the solution of (3.53) is

F(x) = a1 · er1x + a2 · er2x , 0 ≤ x ≤ c, (3.54)

where

r1 =
1
2

(
λc + √

c2λ2 − 4cλ
)

c
, r2 =

1
2

(
λc − √

c2λ2 − 4cλ
)

c
,

and a1 and a2 are constants to be determined. Using the initial conditions

F(0) = a1 + a2 = P0,

F ′(0+) = a1 · r1 + a2 · r2 = λP0,

results in

a1 = r2 − λ

r1 − r2
P0, a2 = r1 − λ

r1 − r2
P0. (3.55)

From (3.54) we get

F(x) = P0

(
r2 − λ

r1 − r2
· er1x + r1 − λ

r1 − r2
· er2x

)
, 0 ≤ x ≤ c; (3.56)

by using the boundary condition F(c) = 1,
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P0 =
[

r2 − λ

r1 − r2
· er1c + r1 − λ

r1 − r2
· er2c

]−1

.

Generalization When Workload Bound is Greater Than c
Suppose the workload bound k is such that c < k < 2c. Define F(x) :=
F0(x) · I [0,c](x) + F1(x) · I [c,k](x), where I A(x) = 1 if x ∈ A, and 0 if x /∈
A. The corresponding pdfs are fi (x) = d Fi (x)/dx , i = 0, 1. Thus F0(x)

= a0 · er1x + b0 · er2x , 0 ≤ x ≤ c as in (3.54). (Here a0 and b0 will have
different values than a1, a2 in (3.55) because now F1(k) = 1.) An integral
equation for F1(x), c ≤ x ≤ k, is given in terms of F0(·) and f0(·) as

F ′
1(x) =λF1(x) − λ

∫ x

y=c

(x − y)

c
f1(y)dy − λF0(x − c)

− λ

∫ c

y=x−c

(x − y)

c
f0(y)dy, c < x ≤ k. (3.57)

If the bound k ∈ ( jc, ( j + 1)c], j ∈ N
+, we can iterate to solve for

Fj+1(x), x ∈ [ jc, k), j = 1, 2, . . ., similarly as in (3.57). In the solution,
we can use Fj+1( jc−) = Fj ( jc+) by continuity of the cdf at jc, j =
1, 2,…,�k/c� to facilitate solving for the constants. A related solution tech-
nique is applied for the M/D/1 queue in Sect. 3.12. When numerics are substi-
tuted for the parameters λ and c, the solution procedure can be programmed
on a computer.

3.3.2 Relating System and Waiting Times Using LC

Let σ denote the system time in the M/G/1 queue. Denote the pdf and cdf
of σ as fσ(x) and Fσ(x), x > 0, respectively (see, e.g., Sect. 3.5.2). Then
σ = Wq + S, where Wq is the wait before service and S is the common
service time. The pdf and cdf of Wq are f (x), x > 0, and F(x), x ≥ 0,
respectively. We use LC interpretations of sample-path quantities to develop
an analytical equation relating f (x), F(x) and Fσ(x). This is an example
where using LC interpretations of sample-path quantities can lead directly
to analytical results, or to estimation methods for analytical quantities in
particular models (see LC estimation in Chap. 9).

Peaks, Troughs and Downcrossings
A sample path of {W (s)}s≥0 (Fig. 3.5) has a sequence of peaks (relative
maxima) and troughs (relative ‘minima’, which are infima, i.e., greatest lower
bounds, due to sample-path right continuity). A trough at level 0 is considered

http://dx.doi.org/10.1007/978-3-319-50332-5_9
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Fig. 3.5 Sample path of virtual wait {W (s)}0≤s≤t showing peaks, troughs, level
x , and subset of the associated partition {0 = x0 < x1 < · · · < x18 < x19} which
depends on the realized sample path over [0, t]

to be an interval which starts at an instant the SP hits level 0 from above, and
ends at the next instant the SP leaps (jumps upward) from level zero.

Fix time t > 0 and level x ≥ 0. Let P+
t (x), T +

t (x) denote respectively
the number of peaks and troughs strictly above x during [0, t). When s =
t the point (t, W (t)) is a trough since d

ds W (s) = −1 · I (0,∞)(W (s)) + 0 ·
I {0}(W (s)). Then Dt (x) (number of SP downcrossings of x during (0, t)), is
a step function with respect to x, with constant integer values on subintervals
of the partition {0 = x0 < x1 < · · · xn−1 < xn}, where x j is the ordinate of
a peak or trough ( j = 1, . . . , n − 1) and xn is the highest peak during [0, t].
Such a fixed partition exists for each realized sample path (Fig. 3.5). An LC
interpretation leads to

Dt (x) = P+
t (x) − T +

t (x), x > 0. (3.58)

The values of Dt (x) in adjacent subintervals,
(
x j−1, x j

)
and

(
x j , x j+1

)
, j

= 1, 2, …, differ by ±1, or 0 if S is a continuous random variable. If S has
discontinuities, as in M/D/1 in which S ≡ D, then the values of Dt (x) in
the two subintervals abutting on D will generally differ by more than 1; in
this case, a difference >1 is the result of a discontinuity in the pdf of wait
at x = D. Formula (3.58) can be useful when simulating sample paths for
estimating state-space pdfs.
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Equation Relating f (x), F(x) and Fσ(x)

Let NA(t) denote the number of arrivals during (0, t). Assume NA(t) > 0.
Dividing (3.58) by t > 0, we obtain

Dt (x)

t
= P+

t (x)

t
− T +

t (x)

t

= NA(t)

t
· P+

t (x)

NA(t)
− NA(t)

t
· T +

t (x)

NA(t)
, t > 0. (3.59)

Note that P+
t (x) represents the number of system times greater than x in

(0, t). Also T +
t (x) represents the number of waiting times greater than x in

(0, t). Taking limits of the terms on the right side of (3.59) as t → ∞ yields

lim
t→∞

NA(t)

t
=
a.s

λ, lim
t→∞

P+
t (x)

NA(t)
=
a.s

1 − Fσ(x), lim
t→∞

T +
t (x)

NA(t)
=
a.s

1 − F(x),

which provides two more alternative forms of the M/G/1 integral equation
for the pdf of wait, namely

f (x) = λ(1 − Fσ(x)) − λ(1 − F(x)), (3.60)

and
f (x) = λF(x) − λFσ(x). (3.61)

LC Interpretations of (3.60) and (3.61)
On the right side of (3.60) the first term is the rate of all jumps that end above
level x (system time > x). The second term subtracts off the rate of those
jumps that start above level x (wait > x). Thus, the right side is the rate of
SP jumps that upcross x .

The LC interpretation of (3.61) is that the first term on the right side is the
rate of all jumps that start in [0, x] (wait ≤ x). The second term subtracts off
the rate of those jumps that end at levels in [0, x] (system time ≤ x). Thus the
right side is the rate of SP jumps that upcross x . Equation (3.61) is equivalent
to (3.43) since, by independence of S and Wq

Fσ(x) = P(S + Wq ≤ x) =
∫ x

y=0
P(S ≤ x − y|Wq = y)d F(y)

=
∫ x

y=0
B(x − y)d F(y).

Remark 3.11 Equation (3.59) combines sample-path peaks and troughs and
the key part of the basic LC theorem limt→∞ Dt (x)

t =
a.s.

f (x), for a concrete

derivation of integral equation (1.8) (same as (3.34)) in Fig. 1.6, based on LC
interpretations of SP motion.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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3.4 Waiting Time Properties in Steady State

We derive several familiar properties of the steady-state distribution of the
waiting time before service starting from the basic LC integral equation
(3.34). We let Wq := wait before start of service.

3.4.1 Probability of Zero Wait

In (3.34) integrate both sides with respect to x over (0, ∞). This yields

1 − P0 = λP0

∫ ∞

x=0
B(x)dx + λ

∫ ∞

x=0

∫ x

y=0
B(x − y) f (y)dydx ;

interchanging the order of integration in the double integral leads to

1 − P0 = λP0 E(S) + λE(S)(1 − P0),

P0 = 1 − λE(S) = 1 − ρ. (3.62)

3.4.2 Pollaczek-Khinchine (P-K) Formula

In (3.34) multiply both sides by x and integrate with respect to x over (0, ∞).
We obtain
∫ ∞

x=0
x f (x)dx = λP0

∫ ∞

x=0
x B(x)dx + λ

∫ ∞

x=0

∫ x

y=0
x B(x − y) f (y)dydx .

In the double integral, interchange the order of integration, write x = x −
y + y, and simplify, giving

E(Wq) = λP0
E(S2)

2
+ λ(1 − P0)

E(S2)

2
+ λE(Wq)E(S),

from which we obtain the well-known Pollaczek-Khinchine (P-K) formula

E(Wq) = λE(S2)

2(1 − λE(S))
= λE(S2)

2 (1 − ρ)
= λ(var(S) + (E(S))2)

2P0
, (3.63)

where var(S) := E(S2) − (E(S))2. (See pp. 220–225 in [84] for a discussion
and variations of the P-K formula.)
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3.4.3 Expected Number in Queue and in System

Let Nq denote the number of customers waiting in the queue before service;
let Lq = E(Nq). From Little’s formula L = λW (see [110]), and formula
(3.63), we get

Lq = λE(Wq) = λ2 E(S2)

2(1 − λE(S))
= λ2 E(S2)

2(1 − ρ)
= λ2 E(S2)

2P0
. (3.64)

The expected number in the system is

L = Lq + Ls

where Ls denotes the expected number in service, given by

Ls = 1 · (1 − P0) + 0 · P0 = λE(S) = ρ.

Thus

L = λ2 E(S2)

2(1 − λE(S))
+ λE(S) = λ2 E(S2)

2P0
+ ρ. (3.65)

3.4.4 Laplace-Stieltjes Transform (LST) of a PDF

Before deriving the LST of f (x), i.e., the pdf of Wq , we very briefly define the
LST and related Laplace transform LT of a function. (See pp. 455–460 in [84]
for a concise, clear introduction to the LST and LT.) The LST applies when
the function has atoms or is continuous. The LT applies when the function
is continuous. (Sect. 11.9 in Chap. 11 below presents an LC technique for
estimating the LST and LT.)

LST
The Laplace-Stieltjes transform of f (x) is

F∗(s) := E(esWq ) =
∫ ∞

x=0
e−sx d F(x) = P0 +

∫ ∞

x=0
e−sx f (x)dx, s > 0.

(3.66)
The LST of b(x), i.e., the pdf of the service time, is

B∗(s) :=
∫ ∞

x=0
e−sx d B(x) =

∫ ∞

x=0
e−sx b(x)dx .

http://dx.doi.org/10.1007/978-3-319-50332-5_11
http://dx.doi.org/10.1007/978-3-319-50332-5_11
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LT
The Laplace transform (LT) of B(x), i.e., the cdf of the service time, is

B̃(s) :=
∫ ∞

x=0
e−sx B(x)dx .

Integrating B̃(s) by parts shows that B∗(s) = s B̃(s), s > 0.
In (3.34), the basic Volterra integral equation for f (x), x > 0, we multiply

both sides by e−sx and integrate with respect to x over (0, ∞), giving

f̃ (s) = F∗(s) − P0 = ∫∞
x=0 e−sx f (x)dx

= λP0
∫∞

x=0 e−sx B(x)dx + λ
∫∞

x=0 e−sx
∫ x

y=0 B(x − y) f (y)dydx .

(3.67)
In the double integral, express e−sx as e−sy · e−s(x−y) and interchange the
order of integration, giving

f̃ (s) = λP0
∫∞

x=0 e−sx B(x)dx

+λ
∫∞

y=0 e−sy f (y)
∫∞

x=y e−s(x−y)B(x − y)dxdy
(3.68)

Simplifying yields the well-known formula

f̃ (s) = s P0

s − λ(1 − B∗(s))

= s(1 − λE(S))

s − λ(1 − B∗(s))
= 1 − ρ

1 − ρ
(

1−B∗(s)
s E(S)

) , s > 0, (3.69)

(see p. 237 in [84]). Substituting ρ := λE(S) and expanding f̃ (s) as a geo-
metric series gives

f̃ (s) = (1 − ρ)

∞∑

k=0

ρk
(

1 − B∗(s)
s E(S)

)k

. (3.70)

3.4.5 Series for PDF of Wq by Inverting ˜f (s)

Let γS denote the limiting excess service time having pdf g(x), x > 0. Gen-
erally g(x) = B(x)/E(S), x ∈ (0, ∞) ∩ (domain of S). (See, e.g., p. 193 in
[99]; p. 453 in [125]; p. 317 in [143]; and others.) (In Chap. 10 below we use

http://dx.doi.org/10.1007/978-3-319-50332-5_10
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LC to derive an analytical expression for g(x), which is denoted as fγ(x)

therein.) Then

g̃(s) = 1

E(S)

∫ ∞

x=0
e−sx (1 − B(x))dx = 1

E(S)

(
1

s
−
∫ ∞

x=0
e−sx B(x)dx

)

= 1

E(S)

(
1

s
− B∗(s)

s

)
= 1 − B∗(s)

s E(S)
,

which is raised to the power k in the series (3.70). Moreover, (g̃(s))k is the
LT of the kth self convolution of g(x), which we denote by g

(k)
(x), with

g
(0)

(x) ≡ 1. Since the LT uniquely defines a function and conversely, we can
write (3.70) as the series

f (x) = (1 − ρ)

∞∑

k=0

ρk g
(k)

(x), x > 0, (3.71)

which is known as the Beneš series (see [8]). Due to its importance in queueing
theory we give several additional references for (3.71): pp. 200–201 in [104];
p. 236 in [84]; Example 7.24, p. 453 in [125]; pp. 169–170 in [99] ; Theorem
18, p. 37 in [118]; and also see [32, 65]; Sect. 10.1.3 in Chap. 11 below.
Section 3.17 shows that (3.71) is a special case of a more general series
having a term by term level-crossing interpretation.

Probabilistic Interpretation of LT

Remark 3.12 Equations (3.67) and (3.69) can be interpreted as the proba-
bility that the waiting time in queue is less than an independent ‘catastrophe’
random variable, say Y =

dis
Exps . That is, the wait in queue finishes before the

catastrophe occurs with probability F∗(s). This probabilistic interpretation
is useful for deriving Laplace transforms of random variables associated with
stochastic models (see, e.g., Sect. 7.2, p. 267ff in [104]; Sect. 3 in [41]; and
also see [92, 126]; many major papers supervised by M. Hlynka, University
of Windsor).

3.4.6 Another Look at System Time

Here we use the notation of Sect. 3.3.2. For an arbitrary arrival, σ > x iff the
arrival waits in queue y ≤ x and its service time exceeds x − y, or, the arrival
waits in queue > x . Thus

http://dx.doi.org/10.1007/978-3-319-50332-5_10
http://dx.doi.org/10.1007/978-3-319-50332-5_11
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1 − Fσ(x) = P(σ > x)

= P0 B(x) +
∫ x

y=0
B(x − y) f (y)dy + 1 − F(x)

= f (x)

λ
+ 1 − F(x), (3.72)

implying
f (x) = λF(x) − λFσ(x),

which is the same as (3.61). If f (x) is known, then F(x) can be computed.
Then Fσ(x) and F ′

σ(x) ≡ fσ(x) can be obtained.

3.4.7 Connecting PDFs of System and Waiting Times

We now give a new LC-derived equation connecting fσ(x) directly with
f (x). Consider a sample path of the virtual wait and fix level x > 0. We view
the SP jumps at arrival instants from the ends of the jumps (rather than from
the starts of the jumps). The level of the end of a jump represents the system
time of the corresponding arrival.

The downcrossing rate of level x is given by

λ

∫ ∞

y=x
e−λ(y−x) fσ(y)dy,

since λ fσ(y)dy is the rate of SP jumps that end within a “dy” neighborhood
about level y > x , and e−λ(y−x) is the probability that the next customer
arrives more than y − x later. Thus the time interval of duration y − x is
devoid of new arrivals and associated SP jumps. The SP descends with slope
−1 to level x , making a left-continuous downcrossing of x . (In this scenario,
the jumps that end ‘at’ y may start either below x or in state-space interval
(x, y). The end level y is the system time of the associated arrival.)

By Theorem 1.1, another expression for the SP downcrossing rate of x is
f (x) (also equal to upcrossing rate of x). Hence we have the equation

f (x) = λ

∫ ∞

y=x
e−λ(y−x) fσ(y)dy. (3.73)

Multiplying both sides of (3.73) by e−λx and differentiating with respect
to x yields

fσ(x) = f (x) − f ′(x)

λ
, x > 0, (3.74)

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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wherever f ′(x) exists. Thus, if f (x) is known, fσ(x) can be found directly
using (3.74).

Example 3.5 In Mλ/Mμ/1, f (x) = λP0e−(μ−λ)x , x > 0 (see (3.112) and
(3.117) in Sect. 3.5.2). Substituting f (x) into (3.74) yields

fσ(x) = (μ − λ) e−(μ−λ)x , x > 0,

Fσ(x) = ∫ x
y=0 fσ(y)dy = 1 − e−(μ−λ)x , x ≥ 0,

(3.75)

Example 3.6 In M/Erl2,μ/1, the continuous part of the pdf of wait is

f (x) = a1er1x + a2er2x , x > 0;
thus

fσ(x) = a1er1x + a2er2x − a1r1er1x + a2r2er2x

λ
, x > 0,

where ai , ri , i = 1, 2 are given in Example 3.2, Sect. 3.3.

3.4.8 Number in System Probability Distribution

We obtain the steady-state probability distribution of the number in the system
in two ways: by conditioning on Wq , or conditioning on σ. Let Pn, n =
0, 1, . . ., denote the probability of n customers in the system at an arbitrary
time point (Pn := proportion of time n are in the system). Let an, dn, n =
0, 1, . . ., denote the steady-state probability of n in the system just before an
arrival, and just after a departure, respectively (an := proportion of arrivals
that “see” n; dn := proportion of departures that leave n).

For the M/G/1 queue it is well known that Pn = an due to Poisson arrivals,
and generally an = dn (e.g., pp. 501–502 in [125]; see also in [145]).

Conditioning on Wq , we obtain

Pn =
∫ ∞

y=0
P(n − 1 arrivals during y|Wq = y) f (y)dy

=
∫ ∞

y=0
e−λy (λy)n−1

(n − 1)! f (y)dy, n = 1, 2, . . . . (3.76)

Equation (3.76) is consistent with P0 + ∫∞
y=0 f (y)dy = 1 since the propor-

tion of time the system presents a positive wait to a potential arrival is
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∞∑

n=1

Pn =
∫ ∞

y=0
e−λy

∞∑

n=1

(λy)n−1

(n − 1)! · f (y)dy

=
∫ ∞

y=0
e−λyeλy f (y)dy =

∫ ∞

y=0
f (y)dy = 1 − P0.

Alternatively, conditioning on σ,

Pn =
∫ ∞

y=0
P(n arrivals during y|σ = y) fσ(y)dy

=
∫ ∞

y=0
e−λy (λy)n

n! fσ(y)dy, n = 0, 1, . . . , (3.77)

which is also consistent with P0 + ∫∞
y=0 f (y)dy = 1 since

∞∑

n=0

Pn =
∫ ∞

y=0
e−λy

( ∞∑

n=0

(λy)n

n!

)
· fσ(y)dy =

∫ ∞

y=0
fσ(y)dy = 1.

If f (·), fσ(·) are known for a particular M/G/1 model, either Eq. (3.76) or
(3.77) can be applied to yield {Pn}n=0,1,.... Note that both an and dn are also
given by (3.76) or (3.77).

Interestingly

P0 =
∫ ∞

y=0
e−λy fσ(y)dy = f̃σ(λ), (3.78)

the Laplace transform of fσ(·). Using the probabilistic interpretation of the
LT, formula (3.78) says that P0 = P(σ < Y ) where Y is a an independent
exponentially distributed “catastrophe” variable having rate λ (see Remark
3.12 in Sect. 3.4.4).

3.4.9 Renewal Reward Theorem: Statement

We state here the renewal reward theorem for easy reference, due to inter-
mittent use in the sequel. The theorem applies generally to regenerative
processes, although we state it here with respect to busy cycles in the stan-
dard M/G/1 queue. This brief section is based on the references in the Proof
section immediately after Eq. (3.79) below.

Theorem Let Rn denote the amount of ‘reward’ earned during the busy cycle
Cn , where {Rn}n=1,2,... are i.i.d. random variables. Assume E(|R1|) < ∞, and
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let R(t) denote the total reward earned during the time interval (0, t), t > 0.
Then {R(t)}t≥0 is called the renewal reward process. The key result is

E(R1)

E(C)
= lim

t→∞
R(t)

t
with probability 1. (3.79)

Proof Proofs of (3.79), and related material, are given in the following
references: p. 41ff in [143]; p. 439ff in [125]; Proposition 3.4.1, p. 192
in [122]. �

3.4.10 Expected Busy Period in M/G/1

Let B denote a busy period, I an idle period, and C a busy cycle. Then C =
B + I. The sequence {Cn}n=1,2,..., where Cn =

dis
C, forms a renewal process.

Consider a sample path of the virtual wait {W (t)}t≥0. {W (t)}t≥0 is a regen-
erative process with respect to {Cn}n=1,2,.... (For discussions on regenerative
processes see, e.g., p. 447ff in [125]; p. 215ff in [122]; also see [132, 134],
and others.)

Expected Busy Period
We now look at several ways to derive E(B), for perspective.
{1} An expression for the (long-run) expected proportion of time that the
sample path is in the state-space interval (0, ∞) is 1 − P0 = ρ := λE(S). A
different expression for the same proportion of time is

lim
t→∞

Ut (0)E(B)

t
= lim

t→∞
Ut (0)

t
E(B) = λP0 E(B),

since each exit of level 0 above (upcrossing of 0) initiates an independent
busy period; moreover limt→∞ Ut (0)/t = λP0. Equating these two different
expressions gives

λP0 E(B) = λE(S),

E(B) = E(S)

P0
. (3.80)

{2} From the elementary renewal theorem (see, e.g., Proposition 7.1, p. 428
and Theorem 7.1, p. 432 in [125]), and LC theory,

E(C) = 1

downcrossing rate of level 0
= 1

f (0)
= 1

λP0
. (3.81)
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In the renewal reward theorem let Rn = Bn , where Bn is the busy period
embedded in Cn , Bn =

dis
B, n = 1, 2, …. Then E(R1) = E (B). Equation

(3.79) gives

E(B)

E(C)
= E(B)

1
λP0

= lim
t→∞

amount of time server is busy during (0, t)

t

= proportion of time workload is in (0, ∞) = ρ = λE(S).

E(B) = λE(S)

λP0
= E(S)

P0
,

which agrees with (3.80).
{3} Since C = B + I,

E(B) = E (C) − E (I) = 1

λP0
− 1

λ
= 1 − P0

λP0
= E(S)

P0
.

{4} Intuitively E(B) is the (1 − P0)-th proportion of E (C), i.e.,

E(B) = (1 − P0) · E(C) = 1 − P0

λP0
= λE(S)

λP0
= E(S)

P0
;

this is really a version of the renewal-reward-theorem method.
The appearance of P0 in the denominator of (3.80) follows from the

renewal reward theorem, or from f (0) = λP0 in Theorem 1.1, Corollary
1.1. The expression

E(B) = 1 − P0

λP0
(3.82)

appears to be more fundamental than the expression E(B) = E(S)
1−λE(S)

, since
in some well-known variants of the standard M/G/1 queue, P0 �= 1 − λE(S)

(e.g., if the workload has a positive barrier (see [25]; also Sects. 3.9 and 3.13
below).
{5} Busy periods and idle periods form an alternating renewal process. Hence

P0 = E(I)

E(B) + E(I)
=

1
λ

E(B) + 1
λ

= 1 − λE(S);

the last equality implies (3.82). This derivation also assumes the renewal
reward theorem, so is similar to derivation {2}. However, it does not directly
“explain” the appearance of P0 in the denominator; derivation {2} does pro-
vide the explanation.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Remark 3.13 Formula (3.82) shows immediately that

E(B) < ∞ iff 0 < P0 ≤ 1,

and equivalently
E(B) = ∞ iff P0 = 0.

The stability condition for the standard M/G/1 queue is P0 > 0 (same as
λE(S) < 1). The queue is stable iff state {0} is positive recurrent iff B is
finite (a.s.)

Remark 3.14 Formula E(B) = 1−P0
f (0)

is even more fundamental than

E(B) = 1−P0
λP0

, since in some M/G/1 variants f (0) �= λP0. For example
f (0) = λP0 B(K ) in a workload-barrier M/G/1 queue with finite barrier
K > 0, where a customer balks if its service time would cause the work-
load to overshoot the barrier (variant 2 of Sect. 3.16.3); in that case E(B) =

1−P0
λP0 B(K )

.

3.4.11 Equation for f (x) via Renewal Reward Theorem

Consider {W (t)}t≥0. Let {P0, f (x)}x>0 be the limiting pdf of wait in M/G/1.
We have f(x) = limt→∞ Dt (x)/t by Theorem 1.1. We now apply the renewal
reward theorem to derive the right hand side of Eq. (1.8), as a check on
the upcrossing-rate interpretation in Theorem 1.1, and because the renewal
reward theorem is useful for analyzing many complex models as well (see
references following Eq. (3.79)). Let C := an M/G/1 busy cycle, and AC :=
number of arrivals during C (same as number of SP jumps of the embedded
busy period B). Denote the customers served in B as {Ci }i=1,...,AC . Let

Ui (x) =
{

1 if customer-i’s service jump upcrosses level x, i = 1, . . . , AC ,
0 otherwise.

Assume we do not know the order of arrival of the Ci ’s. Conditioning on the
starting levels of the SP jumps, we have

P(Ui (x) = 1) = P(S > x |Wi = 0)P(Wi = 0)

+
∫ x

y=0
P(S > x − y|Wi = y)d ẏ, i = 1, . . . , AC .

where the events {Wi = 0} and {Wi = y}y>0 are mutually exclusive and
exhaustive. Thus

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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P(Ui (x) = 1) = B(x)P0 +
∫ x

y=0
B(x − y) f (y)dy, i = 1, . . . , AC ;

E(Ui (x) = B(x)P0 +
∫ x

y=0
B(x − y) f (y)dy, i = 1, . . . , AC .

Since E(AC) = 1/P0 (see 3.4.14 below), The number of upcrossings of x
during AC is,

UC(x) =
AC∑

i=1

Ui (x), x > 0,

E(UC(x)) = E(AC)E(Ui (x)

= 1

P0

(
B(x)P0 +

∫ x

y=0
B(x − y) f (y)dy

)

= B(x) + 1

P0

∫ x

y=0
B(x − y) f (y)dy.

Finally the renewal reward theorem implies

lim
Ut (x)

t
= E(UC(x))

E(C)
= B(x) + 1

P0

∫ x
y=0 B(x − y) f (y)dy

1/(λP0)

= λP0 B(x) + λ

∫ x

y=0
B(x − y) f (y)dy;

rate balance across level x , viz., limt→∞ Dt (x)/t = lim Ut (x)/t , yields
Eq. (1.8).

3.4.12 Busy Period Structure in Standard M/G/1

The M/G/1 busy period B can be partitioned into a set of sub-busy periods,
different from a classical partition (see pp. 206–211 and p. 220ff in [104]; also
[140]). Direct observation of a sample path of {W (t)}t≥0 in Fig. 3.6, leads to
a partition of B which preserves the scale with respect to the time axis ‘t →’
and the ordinates W (t) throughout B. Suppose a customer arrives at t−A and
W (t−A ) = y ≥ 0; the SP then has coordinates (t−A , y). The SP immediately
jumps an amount =

dis
S, ending at (tA, y + S). Let

ty = min{t > tA|W (t) = y}.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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S

W(t)

= Busy Period

Time

1
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τ 3

τ
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τ
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τ 6
τ
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τ

*

1
τ *

2
τ *

3
τ

1

0

2
3

Fig. 3.6 Busy period B =
dis

S+ ∑NS
i=1 Bi . Bi =

dis
B, i = 1, . . . , NS . NS = number of

“tagged” (pseudo) arrivals in B. Here NS = 3. NS =
dis

number of arrivals during S.

Tagged arrival times are τ ∗
1 = τ1, τ ∗

2 = τ4, τ ∗
3 = τ6. Tagged arrivals 1, 4, 6 during B

initiate sub-busy periods B1, B2, B3

The interval
(
tA, ty

)
having length ty − tA is a busy period B if y = 0;(

tA, ty
)

is a sub-busy period =
dis

B if y > 0. The time interval ty − tA is

independent of y, since the initial SP jump at tA is =
dis

S. We utilize this

partition of B to study its structure. (The foregoing definition of busy period
is equivalent to the usual definition made for y = 0 only, e.g., [140]; see also
p.10 and p. 102 in [84].)

Consider B within which n ≥ 1 customers arrive. Denote their arrival times
within B by τ1 < τ2 < · · · < τn , implying that τ1 occurs within the initial
service time S. Then W (τ−

i ) > 0, i = 1, 2, . . .. Define τ∗
1 = τ1 and τ∗

j =
min{t > τ∗

j−1|0 < W (t) < W (τ∗
j−1)}, j = 2, . . . , n. Due to the memoryless

property of the inter-arrival times and since d
dt W (t) = −1 (W (t) > 0), the

ordinates {W (τ∗−
j )} j=1,...,n are distributed the same as n customer arrival

times during the first service time S of B. We call the customers that arrive
at {τ∗

j } j=1,...,n “tagged” or “pseudo” arrivals with respect to the initial S of
B (see Fig. 3.6).

Let NS denote the number of tagged arrivals during B. Then NS
is distributed as the number of arrivals to the system during the service
time S. Tagged arrivals initiate their own sub-busy periods starting at{
(τ−∗

n , W (τ−∗
n ))

}
n=1,...,NS

similar to B1, B2, B3 depicted in Fig. 3.6 (where
τ∗

1 = τ1, τ∗
2 = τ4, τ∗

3 = τ6). The tagged arrivals during B are customers 1, 4
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and 6, which initiate B1, B2, B3, respectively. Note that (τ−∗
n ,

W (τ−∗
n ))n=1,...,NS are strict descending ladder points [74] within B. Then

B = S +
NS∑

i=1

Bi , (3.83)

where {Bi }i=1,2,... are i.i.d. sub-busy periods =
dis

B, and independent of NS .

Equation (3.83) is known, and is usually derived by different, but equivalent,
reasoning (see Example 5.27, pp. 347–349 in Ross [125]). From (3.83), we
obtain

E(B) = E(S) + E(NS)E(B) = E(S) + λE(S)E(B) (3.84)

which gives E(B) as in (3.80).
Also, we can obtain (3.80) by recursively substituting for Bi in (3.83).

This gives an infinite series of terms

B =
dis

S +
NS∑

i=1

Si +
NS∑

i=1

NS∑

j=1

Si, j +
NS∑

i=1

NS∑

j=1

NS∑

k=1

Si, j,k + · · ·

where Si , Si, j , Si, j,k, . . ., are =
dis

S. Assuming 0 < λE(S) < 1, {P0, f (x)}x>0

exists and B < ∞ (a.s.). Then

E(B) = E(S) + ≥(E(S))2 + ≥2(E(S))3 + · · ·
= E(S) · (1+≥E(S)+(≥E(S))2 + · · · )
= E(S)

1 − λE(S)
.

If λE(S) ≥ 1 it is possible for the busy period to be infinite. Then its mean
and variance do not exist.

We compute the known formula for the variance of B assuming it exists
from (3.83) and the definition V ar(B) = E(B2) − (E(B))2,for complete-
ness; we intend to use the result for E(B2) when discussing M/G/1 priority
queues in Sect. 3.14 (see p. 349 in [125]).

To compute E(B2), we first obtain a formula for B2 from (3.83) as

B2 = S2 + 2S
NS∑

i=1

Bi +
⎛

⎝
NS∑

i=1

Bi

⎞

⎠
2

.
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Conditioning on S = s, gives the conditional expected value

E(B2|S = s) = s2 + 2s E

( Ns∑

i=1

Bi

)
+ E

⎛

⎝
( Ns∑

i=1

Bi

)2⎞

⎠ .

In the second term on the right
∑Ns

i=1 Bi is a compound Poisson process with
rate λ (see p. 346 in [125]). Thus

E

( Ns∑

i=1

Bi

)
= λs E(B).

The third term on the right is

E

⎛

⎝
( Ns∑

i=1

Bi

)2⎞

⎠ = E

⎛

⎝
Ns∑

i=1

B2
i +

Ns∑

i �= j=1

BiB j

⎞

⎠

= λs E(B2) + E(Ns(Ns − 1)BiB j )

= λs E(B2) + E(Ns(Ns − 1))(E(B))2

= λs E(B2) + (λs)2(E(B))2.

since

E(Ns(Ns − 1)) =
∞∑

n=2

n(n − 1)e−λs(λs)n

n! = (λs)2.

Thus

E(B2|S = s) = s2 + 2λs2 E(B) + λs E(B2) + (λs)2(E(B))2.

Unconditioning with respect to the service time distribution, substituting from
(3.80) and simplifying yields

E(B2) = E(S2)(1 + λE(B))2

1 − λE(S)
= E(S2)

(1 − λE(S))3 = E(S2)

(1 − ρ)3 , (3.85)

where ρ := λE(S).

Since V ar(B) = E(B2) − (E(B))2, from (3.80) and (3.85)

V ar(B) = V ar(S) + λ(E(S))3

(1 − λE(S))3 = V ar(S) + λρ3

P3
0

. (3.86)
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3.4.13 Probability Distribution of the Busy Period

Starting from formula (3.83) above, we can proceed as on pp. 211–226 in
[104] to derive FB(y), y > 0 := the cdf of B. Formula (5.169) on p. 226 in
[104] gives an explicit expression for FB(y), y > 0 as

FB(y) =
∫ y

s=0

∞∑

n=1

e−λs (λs)n

n! b(n)(s)ds, y > 0, (3.87)

where b(n)(s) := the n-fold self convolution of b(s). The paragraph following
(5.169) therein observes that the “study of the busy period has really been the
study of a transient phenomenon”, which makes it more complicated than
the analysis of a phenomenon in steady state.

3.4.14 Expected Number Served in Busy Period

Let NB := the number of customers served in a busy period. Let AC := number
of arrivals in a busy cycle. Then NB = AC . Let A(t) denote the number of
arrivals to the system during time interval (0, t). We get E(NB) by applying
the renewal reward theorem; thus

E(NB)

E(C)
= E(AC)

E(C)
= lim

t→∞
A(t)

t
= λ,

E(NB) = λE(C) = λ
1

λP0
= 1

P0
. (3.88)

(See Exercise 17, p. 233 in [64].)

Another View for E(NB) using NB as a Stopping Time
Let Si , Ti denote the i th service and inter-arrival times during B, respectively,
i = 1, 2, . . .. Then NB = min{n|∑n

i=1(Si − Ti ) ≤ 0} is a stopping time for
the sequence {(Si − Ti )}n=1,2,... (see, e.g., Exercise 13, p. 486, and pp. 678–
679 in Ross [125]). Since Ti ≡

dis
Expλ, the excess inter-arrival time at the

end of B is also distributed as Expλ due to the memoryless property. Hence∑NB
i=1(Si − Ti ) ends a distance below 0, which is =

dis
Expλ, implying

E

⎛

⎝
NB∑

i=1

(Si − Ti )

⎞

⎠ = − 1

λ
.
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Applying Wald’s equation (aka Wald’s identity; see, e.g., p. 47ff in [122])
gives

E(NB)

(
E(S) − 1

λ

)
= − 1

λ
, (3.89)

E(NB) = 1

1 − λE(S)
= 1

P0
. (3.90)

We may also write NB = min{n|∑n
i=1 Si ≤∑n

i=1 Ti }. In this form it is
seen that NB is a stopping time for both sequences {Si}i=1,2,... and {Ti }i=1,2,....
That is, we observe the r.v.s in the order S1, T1, S2, T2, … and stop at n in both
sequences when the stopping criterion (

∑n
i=1 Si ≤∑n

i=1 Ti ) is first satisfied.
Thus the event {NB = n} is independent of Sn+1, Tn+1, . . .. Moreover, since
B =∑NB

i=1 Si where Si ≡
dis

S, from (3.80) we have

E(B) = E(NB)E(S) = E(S)

1 − λE(S)
,

which yields (3.90). (Interestingly, E(S) × E(NB) is an intuitive way of
thinking about E(B).)

Note that C =∑NB
i=1 Ti (one interarrival time precedes each arrival in a

busy cycle). From E(C) = 1/ (λP0) we have

E(C) = 1

λP0
= E(NB)E(T ) = (E(NB))

1

λ
, (3.91)

which also gives (3.90).
We may write

NB = 1 +
NS∑

i=1

NBi

where NBi ≡
dis

NB, and NS ≡ number of arrivals in the first service time of

B (see Fig. 3.6; one sub-busy period for each arrival during the first service
time). Then

E(NB) = 1 + E(NS)E(NB) = 1 + λE(S)E(NB),

again leading to (3.90).
In (3.90) if P0 � 1 (close to 1) corresponding to a very low traffic intensity

ρ, then E(NB) � 1 (close to 1) meaning most customers in service are alone
in the system.
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The role of LC in this section, is that the downcrossing rate of level 0 (SP
hit rate of 0 from above) is f (0), which implies E(C) = 1

f (0)
= 1

λP0
. Also,

applying the stopping-time definition of a busy cycle just preceding (3.89),
leads to (3.90).

3.4.15 Inter-Downcrossing Time of a State-Space Level

Consider a sample path of {W (t)}t≥0 (Fig. 3.7). Let dx denote the time
between two successive downcrossings of level x ≥ 0. Starting at the instant
of the first downcrossing of state-space level x , dx is an interval of a renewal
process {Dt (x)}t≥0 due to exponential inter-arrival times. The renewal rate
is limt→∞ Dt (x)

t = limt→∞ E(Dt (x))
t = f (x) (see Corollary 3.2 in Sect. 3.2.5

above; Theorem 7.1, p. 432 in Ross [125]). Thus,

E(dx ) = 1

f (x)
, x ≥ 0 (3.92)

where f (x) is the solution of (3.34) and (3.36).
Since d0 = C := busy cycle, d0 = B + I (B := busy period; I := idle period).

Letting x ↓ 0 in (3.92) gives

E(d0) = 1

f (0)
= E(B) + E(I).

Thus, using method {3} in Sect. 3.4.10 we get E(B) in (3.80).

3.4.16 Sojourn Below a Level of {W(t)}t≥0

Let bx denote a sojourn time below, or at, level x ≥ 0 (Fig. 3.7). Assuming
the queue is stable (ρ < 1), the proportion of time a sample path spends at or
below x , is limt→∞ E(Dt (x))/t · E(bx ) = f (x)E(bx ), and is also equal to
the limiting cdf F(x). Hence

E(bx ) = F(x)

f (x)
(3.93)

(see Remark 3.15 below). Letting x ↓ 0, reduces (3.93) to the expected idle
period
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E(b0) = F(0)

f (0)
= P0

λP0
= 1

λ
.

Also, from (3.93)
d

dx
ln F(x) = 1

E(bx )
,

which leads to expressions for the cdf F(x) and pdf f (x) (= F ′ (x)) of wait
in terms of E(by), 0 < y < x ,

F(x) = P0e
∫ x

y=0
dy

E(by ) , x ≥ 0, (3.94)

f (x) = P0

E(bx )
e
∫ x

y=0
dy

E(by ) , x > 0 . (3.95)

3.4.17 Sojourn Above a Level of {W(t)}t≥0

Let ax denote a sojourn time above level x ≥ 0 (Fig. 3.7). Then a0 = B. By
Theorem 1.1 in Sect. 1.6 the down- and upcrossing rates of level x are both
equal to f (x), x ≥ 0. The proportion of time that a sample path spends above
x is limt→∞ (Ut (x) · E(ax )) /t = limt→∞ (Ut (x)/t) · E(ax ) = f (x)E(ax ),
and is also equal to 1 − F(x). Therefore

E(ax ) = 1 − F(x)

f (x)
, x ≥ 0. (3.96)

0

W(t)

Time 

x

Busy Period

W(0) SP

Idle Period

t

xa xa xaxb xb xb

xd xd xd

xa

Fig. 3.7 Sample path of {W (t)}t≥0 in M/G/1. Shows inter-downcrossing time dx ,
sojourns ax and bx , busy and idle periods

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Letting x ↓ 0, in (3.96) gives E(a0) = (1 − P0) / (λP0) = E(B).

Remark 3.15 Formula (3.96) can also be proved using the renewal reward
theorem (Sect. 3.4.9), since {Dt (x)}t≥0 is a renewal process (starting from
the first downcrossing of level x) since interarrival times are =

dis
Expλ having

the memoryless property. Thus

E(ax )

E(dx )
= lim

t→∞
time spent above xduring(0, t)

t
=

a.s.
1 − F(x),

E(ax ) = E(dx ) · (1 − F(x)) = 1 − F(x)

f (x)
.

We can derive formula (3.93) for E(bx ) similarly.

Proposition 3.3 below shows that if E(ax ) ≡ E(B), x ≥ 0, then the
absolutely continuous part of {P0, f (x)}x>0 has an exponential form. Assume
ρ := λE(S) < 1.

Proposition 3.3 If E(ax ) = E(B) for all x ≥ 0, then the steady-state cdf of

wait is F(x) = 1 − ρe− x
E(B) and {P0, f (x)}x>0 is given by

P0 = 1 − ρ, f (x) = λP0e− x
E(B) , x > 0.

Proof If E(ax ) ≡ E(B), x ≥ 0, then from (3.96)

f (x)

1 − F(x)
≡ 1

E(B)
, x > 0, (3.97)

d

dx
ln(1 − F(x)) ≡ − 1

E(B)
, x > 0.

Formula (3.97) is the hazard rate (failure rate) of the pdf of wait at x . (See
Sect. 3.4.18 below.) Integration with respect to x yields

1 − F(x) = Ae− x
E(B) , x > 0,

where A is a constant. Letting x ↓ 0 gives

A = 1 − F(0) = 1 − P0 = ρ;
F(x) = 1 − ρe− x

E(B) , x ≥ 0.
(3.98)

Differentiation of F(x) in (3.98) with respect to x > 0 gives
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f (x) = 1

E(B)
ρe− x

E(B) = 1
E(S)

P0

λE(S) · e− x
E(B) = λP0e− x

E(B) , x > 0.

(3.99)
�

Remark 3.16 The standard Mλ/Mμ/1 queue satisfies the hypothesis of
Proposition 3.3 because S =

dis
Expμ. All jumps that upcross level x have

excess above x =
dis

Expμ by the memoryless property, implying ax =
dis

B,

x ≥ 0 (see Sect. 3.5.6).

3.4.18 Hazard Rate of PDF of Waiting Time

The term hazard rate, also called failure rate, is usually defined for positive
continuous random variables in renewal theory, and failure time of compo-
nents in reliability models (see, e.g., pp. 1–7 in [66]). In this monograph,
we apply the ‘hazard rate’ to the pdf at x of waiting time (and other state
variables, e.g., pdf at x of content of a dam in Sect. 6.2.12 in Chap. 6, etc.). In
M/G/1 we may think of sojourn ax as a ‘lifetime’ spent above level x . Thus,
φ(x)E(ax ) = 1, where φ(x) := f (x)/ (1 − F(x)), the hazard rate at x . Then
E(ax ) (E(lifetime above x)) varies inversely with φ(x). This idea fits the
notion of failure rate in reliability models. Let X := lifetime of a component
(also called failure time). The failure rate at lifetime x is the conditional pdf
of lifetime given the lifetime exceeds x . Following pp. 1–4 in [66],

φ(x) = lim
�x↓0

P(x < X ≤ x + �x |X > x)

�x

= lim
�x↓0

P(x < X ≤ x + �x)

�x P(X > x)

= lim
�x↓0

F(x + �x) − F(x)

�x

1

(1 − F(x)

= f (x)

(1 − F(x))
.

For the pdf of waiting time, the dimension of φ(x) is the same as that of f (x),
viz., 1/ [T ime]. In other stochastic models the dimension of φ(x) is the same
as that of the pdf of the state variable.

http://dx.doi.org/10.1007/978-3-319-50332-5_6
http://dx.doi.org/10.1007/978-3-319-50332-5_6


3.4 Waiting Time Properties in Steady State 95

3.4.19 Sojourn Above a Level and Distribution of Wait

Proposition 3.4 below relates E(ay), y ∈ (0, x), to F(x) and f (x), x > 0.
In general E(ay) varies with y > 0. (However, in M/M/1 E(ay) ≡ E(B),
y > 0.)

Proposition 3.4 For the M/G/1 queue in equilibrium (ρ < 1),

F(x) = 1 − ρ · e
− ∫ x

y=0
1

E(ay )
dy

, x ≥ 0. (3.100)

f (x) = ρ

E(ax )
· e

− ∫ x
y=0

1
E(ay )

dy
, x > 0. (3.101)

Proof Consider a sample path of {W (t)}t≥0. The pdf f (x) is the SP upcross-
ing (and downcrossing) rate of level x . Hence the long-run proportion of time
{W (t)}t≥0 spends above level x is

f (x)E(ax ) = 1 − F(x).

Thus
f (x)

1 − F(x)
= 1

E(ax )
, x > 0. (3.102)

The term f (x)/ (1 − F(x)) is the hazard rate of the waiting time at level x
(see Sect. 3.4.18 above). From (3.102)

d

dx
ln(1 − F(x)) = − 1

E(ax )
, x > 0.

Integrating with respect to x gives

1 − F(x) = Ae
− ∫ x

y=0
1

E(ay )
dy

,

where A is a constant. Letting x ↓ 0, gives

A = 1 − F(0+) = 1 − F(0) = 1 − P0 = ρ.

Hence we obtain (3.100); (3.101) follows by taking d F(x)/dx in (3.100). �

Equivalence of Formulas for F(x) in Terms of E(bx ) and E(ax )

We now check that the right sides of (3.100) and (3.94) are both equal to
F(x), x > 0, and therefore to each other. Thus
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P0e
∫ x

y=0
f (y)dy
F(y) = P0e

∫ x
y=0 d ln F(y) = P0e

ln
(

F(x)
F(0)

)

= P0
F(x)

F(0)
= F(x), x ≥ 0,

and

1 − ρe− ∫ x
y=0

f (y)dy
1−F(y) = 1 − ρe

∫ x
y=0 d ln(1−F(y))

= 1 − ρe
ln
(

1−F(x)
1−F(0)

)

= 1 − ρ

(
1 − F(x)

1 − F(0)

)

= 1 − ρ

(
1 − F(x)

ρ

)
= F(x), x ≥ 0,

proving the equivalence of the two formulas.

3.4.20 Computing F(x) via E(ax)

Suppose we do not have an explicit formula for F(x) in a particular M/G/1
model. We can compute E(ax ) (reciprocal of hazard rate) either analytically
or using simulation, and apply formula (3.100) to obtain an analytical formula
for F(x), or an estimate of F(x).

Analytical We can get analytic expressions for E(ax ) in some models. We
know E(ax ) = B in M/M/1. In general, however, E(ax ) may be difficult
to compute analytically. Example 3.7 below computes E(ax ) analytically
in an Mλ/Erl2,μ/1 queue. (Erlk,μ := Erlang random variable; see Gamma
distribution in Table 2.2, p. 66 in [125].)

Example 3.7 In M/Erl2,μ/1 with arrival rate λ, E(S) = 2/μ and ρ = λ · 2
μ <

1, consider a sample path of {W (t)}t≥0 (see also Example 3.2 in Sect. 3.3). S
=
dis

Erl2,μ is the sum of two i.i.d. Expμ random variables; we call these phase

1 and phase 2 respectively. Either ax =
dis

B for the standard Mλ/Erl2.μ/1

queue, or ax =
dis

B for the Mλ/Erl2,μ/1 queue where zero-wait customers

have S =
dis

Expμ (i.e., special (exceptional) service for ‘zero-wait’ arrivals),

depending on the initial service-time phase that covers x . That is, ax ’s initial
SP upcrossing of x covers x either during phase 1 or during phase 2 of the
Erl2,μ service time. If phase 1 covers x , then the excess jump above x =

dis
Erl2,μ, due to the memoryless property of Expμ. If phase 2 covers x , then the
excess jump above x =

dis
Expμ. If phase 1 covers x , applying (3.82) we get
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E(B) = 2
μ−2λ . If phase 2 covers x then the initial S =

dis
Expμ; this results

in an Mλ/Erl2,μ/ 1 with E(ax ) = E(B) = 1
μ−2λ , because ax =

dis
B in which

zero-wait customers receive “special” service Expμ different from the rest of
the service times which are Erl2,μs (see Sect. 3.6.1 below). Thus,

E(ax ) = p1(x)

(
2

μ − 2λ

)
+ p2(x)

(
1

μ − 2λ

)
,

where pi (x) = P (phase i of an SP jump covers x |SP upcrosses x), i = 1, 2.
From (3.100)

F(x) = 1 − ρ exp

⎛

⎝−
∫ x

y=0

1

p1(y)
(

2
μ−2λ

)
+ p2(y)

(
1

μ−2λ

)dy

⎞

⎠ .

(3.103)
In Example (3.2), Eq. (3.41) for Mλ /Erl2,μ/1 yields

p1(x) = λ
(

P0e−μx+∫ x
y=0 e−μ(x−y) f (y)dy

)

f (x)

= P0e−μx+∫ x
y=0 e−μ(x−y) f (y)dy

P0e−μx (1+μx)+∫ x
y=0 e−μ(x−y)(1+μ(x−y)) f (y)dy,x>0

,

p2(x) = P0e−μxμx+∫ x
y=0 e−μ(x−y)μ(x−y) f (y)dy

P0e−μx (1+μx)+∫ x
y=0 e−μ(x−y)(1+μ(x−y)) f (y)dy,x>0

, x > 0.

(3.104)

where {P0, f (y)}y≥0 is specified in (3.42).

Example 3.8 In Example 3.7, S =
dis

Erl2,μ and E(B) = E(S)/P0 = 2/μ
1−λ(2/μ)

=

2
μ−2λ . Then E(ax ) = p1(x)

(
2

μ−2λ

)
+ p2(x)

(
1

μ−2λ

)
where p1(x) + p2(x)

= 1 and p1(x) > 0, p2(x) > 0. Thus E(ax ) < 2
μ−2λ = E(B).

Alternatively, we could estimate p1(x), p2(x), x > 0, from a simulated
sample path of {W (t)}t≥0. Then substitute the estimated values into (3.103)
to estimate F(x), x > 0. This hybrid technique combines estimated values
from simulation and analytical results.

Simulation to Estimate E(ay)

To estimate E(ay), y ∈ [0, x], simulate a single sample path of {W (t)}, 0 ≤
t ≤ Tsim , where Tsim is “large”. We utilize {W (t)}0≤t≤Tsim

to estimate E(ay j )

where y j is a level of a state-space partition of [0, x]: 0 = y0 < y1 < · · · <

yN , and choose the subintervals to be “small”, e.g., y j+1 − y j ≡ h > 0, j =
0, . . . , N − 1 (depending on the required accuracy). Take N = �x/h� where
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�α� denotes the greatest integer ≤ α. Suppose in the simulated sample path
there are M j sojourns above level y j during [0, Tsim]; let their observed
values be ay j ,1, . . . , ay j ,M j . Assume Tsim is sufficiently large so that each
M j is “large” enough for the required accuracy. Then estimate E(ay j ) using

Ê(ay j ) = 1

M j

M j∑

i=0

ay j ,i , j = 0, 1, . . . , N .

We can estimate the value of
∫ x

y=0
1

E(ay)
dy in (3.100) by

∫ x

y=0

1

E(ay)
dy =

est
h

N∑

j=0

1

Ê(ay j )
.

(We consider LC estimation in Chap. 9.)

Intuitive Meaning of the Hazard Rate
Denote the hazard rate of wait at x by φ(x). From (3.102), a plausible estimate
of φ(x) is

φ̂(x) = 1

Ê(ax )
. (3.105)

By definition

φ(x)dx = P(Wq ∈ (x, x + dx)|Wq > x) = P(x < Wq < x + dx)

P(Wq > x)
,

where Wq is the teady-state queue wait (see, e.g., p. 299 in [125]). Formula
(3.102) suggests an intuitive meaning based on φ(x) = 1/E(ax ), i.e., φ (x)

is large iff E(ax ) is small, and φ(x) is small iff E(ax ) is large. This suggests
studying connections between hazard rates of state random variables, and
their sample-path expected sojourn times with respect to state-space levels
in related stochastic models. (See Sect. 3.4.18 for pertinent comments.)

3.4.21 Events During an Inter-downcrossing Time

Consider {W (t)}t≥0. We derive formulas for E(number of SP downcrossings
of an arbitrary level x ≥ 0) during dy , y ≥ 0, and E(number of customer
arrivals) during dy , y ≥ 0; see Sect. 3.4.15 and Fig. 3.1. (See also Sect. 3.5
below regarding the M/M/1 queue.)

http://dx.doi.org/10.1007/978-3-319-50332-5_9
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Consider a sample path of {W (t)}t≥0 for an M/G/1 queue with ρ < 1.
Denote the steady-state pdf of wait by {P0, f (x)}x≥0. Fix level y ≥ 0. Let
Ddy (x) denote the number of SP downcrossings of an arbitrary level x ≥ 0
during a sample-path inter-downcrossing dy .

Proposition 3.5

E(Ddy (x)) = f (x)

f (y)
. (3.106)

Proof Since {Dt (y)}t≥0 is a renewal process starting at the first downcrossing
of y,

E(Ddy (x))

E(dy )
= lim

t→∞
Dt (x)

t
= f (x),

by Theorem 1.1 and the renewal reward theorem. Also, E(dy ) = 1/ f (y) by
the elementary renewal theorem. Equation (3.106) follows. �

Observe that for arbitrary x , E(Ddy (x))/E(dy ) is invariant for all y ≥ 0.
For example, if y = 0 then d0 = C (busy cycle), and E(Dd0(x))/E(d0) =
E(Dd0(x))/ (1/ (λP0)) = f (x).

If y = 0 and x ↓ 0 then E(Dd0(0)) = E(DC(0)) = 1. Thus

E(Dd0(0))/ (1/ (λP0)) = 1/ (1/ (λP0)) = λP0 = f (0),

which is compatible with Theorem 1.1.
Let Ady := number of customer arrivals during dy . Let A(t) := number of

customer arrivals during (0, t).

Proposition 3.6

E(Ady ) = λ

f (y)
, y ≥ 0. (3.107)

Proof
E(Ady )

E(dy )
= E(Ady )

1/ f (y)
= lim

t→∞
A(t)

t
= λ,

by Theorem 1.1 and the renewal reward theorem, resulting in (3.107). �

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Letting y ↓ 0 in 3.106 gives

E(Ad0) = E(AC) = E(NB) = λ

f (0)
= λ

λP0
= 1

P0
,

which is an additional proof of Eq. (3.88).

3.4.22 Boundedness of PDF in Steady State

Why is it potentially useful to know that in the limiting pdf of wait
{P0, f (x)}x>0, f (x) is bounded by a finite quantity? Suppose we want to
estimate f (x) in an analytically intractable M/G/1 model by means of sim-
ulation of a sample path. It would be helpful to know this fact when writing
a computer program for the simulation.

In the standard M/G/1 queue let the arrival rate be λ, let S have cdf B(y),
y > 0, and ρ < 1. Assume B(·) is absolutely continuous.

Proposition 3.7
f (x) ≤ λ, x > 0. (3.108)

Proof (1) In the integral equation for {P0, f (x)}x>0 (1.8), repeated here for
convenience,

f (x) = λP0 B(x) + λ

∫ x

y=0
B(x − y) f (y)dy, x > 0.

B(x) < 1, x > 0 (for any cdf H(·), 0 ≤ H(x) ≤ 1, where H(x) is right-
continuous and monotone increasing). Thus

f (x) < λP0 + λ

∫ x

y=0
f (y)dy = λ

(
P0 +

∫ x

y=0
f (y)dy

)
= λF(x) ≤ λ, x > 0.

(2) On the right side of the alternative form of the LC integral equation
(3.43) (repeated here)

f (x) = λF(x) − λ

∫ x

y=0
B(x − y) f (y)dy, x > 0.

the subtracted term is > 0. Thus

f (x) < λF(x) ≤ λ.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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(3) Consider a sample path of {W (t)}t≥0. Let Dt (x) and A(t) denote
the number of SP downcrossings of level x , and number of arrivals to the
system during (0, t), respectively. Examination of the sample path yields
Dt (x) < A(t), x ≥ 0, t > 0, (a.s.). Hence

f (x) = lim
t→∞

Dt (x)

t
≤ lim

t→∞
A(t)

t
= λ,

since {A(t)} is a Poisson process with rate λ. �

Example 3.9 In Mλ/Mμ/1, f (x) = λP0e−(μ−λ)x , x > 0, P0 = 1 − ρ > 0
(Sect. 3.5.1). Both 0 < P0 < 1 and 0 < e−(μ−λ)x < 1, x > 0. Therefore
f (x) < λP0, x > 0.

Inequality (3.108) also holds in: the workload-bounded M/G/1 queue
(Sect. 3.16); the M/D/1 queue (Sect. 3.12); and others.

3.5 M/M/1 Queue

We now derive some steady-state results for the standard M/M/1 queue
with FCFS (first come first served) discipline. Some well-known results
are included to develop facility with LC and reinforce intuitive background.
Let λ := arrival rate, service time S =

dis
Expμ, B(x) = e−μx , x ≥ 0, B(x) =

1 − e−μx , x≥̇0, ρ := λE(S) = λ/μ < 1.

3.5.1 Waiting Time PDF and CDF

Consider a sample path of {W (t)}t≥0 (e.g., Fig. 3.5). From the basic LC
integral equation (3.34), or Fig. 1.6 in Sect. 1.7, we get

f (x) = λP0e−μx + λ

∫ x

y=0
e−μ(x−y) f (y)dy, x > 0, (3.109)

where {P0, f (x)}x>0 is the steady-state pdf of wait.
Differentiating both sides of (3.109) with respect to x , yields the ordinary

differential equation

f ′(x) + (μ − λ) f (x) = 0, x > 0, (3.110)

with solution

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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f (x) = Ae−(μ−λ)x , x > 0; (3.111)

the constant A is determined by letting x ↓ 0 in both (3.109) and (3.111).
Thus A = f (0+) = λP0, giving

f (x) = λP0e−(μ−λ)x , x > 0, (3.112)

where, for the standard M/G/1 (see e.g., Eq. (3.62))

P0 = 1 − ρ = 1 − λ

μ
. (3.113)

We may also compute P0 by substituting (3.112) into the normalizing con-
dition,

P0 +
∫ ∞

x=0
f (x)dx = 1, (3.114)

which yields (3.113) directly.
From (3.112) the cdf of wait is

F(x) = P0 +
∫ x

y=0
λ(1 − ρ)e−(μ−λ)ydy = 1 − ρe−(μ−λ)x , x > 0.

(3.115)

3.5.2 System Time PDF and CDF

Let σ denote the system time, fσ(x) its pdf, Fσ(x) its cdf, x > 0 (see
Sect. 3.3.2). Since σ = Wq + S, we obtain

P(σ > x) = P(S > x |Wq=0)P0 + ∫ x
y=0 P(S > x − y|Wq = y) f (y)dy

+ P(Wq > x)

= P0e−μx + λP0
∫ x

y=0 e−(μ−λ)ye−μ(x−y)dy + ∫∞
y=x λP0e−(μ−λ)ydy

= P0

1− λ
μ

e−(μ−λ)x = e−(μ−λ)x , x > 0.

(3.116)
We can also obtain (3.116) using Eq. (3.61) (or equivalently Eq. (3.72)).
Thus σ =

dis
Expμ−λ, i.e.,

fσ(x) = (μ − λ) e(μ−λ)x , x > 0

Fσ(x) = 1 − e(μ−λ)x , x ≥ 0.
(3.117)
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Additionally, we can obtain fσ(x) directly in terms of f (x) using (3.74),
thus getting (3.117) similarly as in Example 3.5 in Sect. 3.4.7.

3.5.3 Number in System Probability Distribution

Let N denote the number of units in the M/M/1 system at an arbitrary time
point in the steady state. Let P(N = n) = Pn , n = 0, 1, . . . (see Sect. 3.4.8).
We obtain the distribution of N by conditioning on Wq , or on σ.

Conditioning on Wq , substitute f (x) in (3.112) into (3.76), getting

Pn =
∫ ∞

y=0
e−λy (λy)n−1

(n − 1)!λP0e−(μ−λ)ydy

= P0

(
λ

μ

)n ∫ ∞

y=0
e−μy (μy)n−1

(n − 1)!μdy = P0ρ
n, n = 0, 1, . . . ,

since the integrand e−μy(μy)n−1μ/(n − 1)! is the pdf of Erln,μ (see formula
(3.38) in Example 3.2, Sect. 3.3).

The normalizing condition
∑∞

n=0 Pn = 1 yields P0
∑∞

n=0 ρn = 1, whence
P0 = 1 − ρ, giving the well-known geometric distribution

Pn = P0 (1 − P0)
n = (1 − ρ)ρn, n = 0, 1, . . . . (3.118)

Conditioning on σ, substitute fσ(x) from (3.117) into (3.77) in Sect. 3.4.8,
getting

Pn =
∫ ∞

y=0
e−λy (λy)n

n! (μ − λ)e−(μ−λ)ydy

=
(

λ

μ

)n (
1 − λ

μ

)∫ ∞

y=0
e−λy (μy)n

n! μdy

=
(

1 − λ

μ

)(
λ

μ

)n

= (1 − ρ)ρn, n = 0, 1, . . . ,

because the integrand e−λy(μy)nμ/n! is the pdf of Erln+1,μ; Pn so derived
is consistent with (3.118).

E(number in system) The right tail probability is P(N ≥ n) = ρn, n =
0, . . .. Thus
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E(N ) =
∞∑

n=1

P(N ≥ n) =
∞∑

n=1

ρn = ρ

1 − ρ
= λ

μ − λ
, (3.119)

which agrees with the M/G/1 result E(N ) = L = λ2 E(S2)
2P0

+ ρ in (3.65), since

E(S2) = 2/μ2 when S =
dis

Expμ.

Remark 3.17 A classical way to derive Pn , n = 0, 1, …, in M/M/1 is via
birth and death processes (e.g., pp. 49–55 in [84]; Sect. 6.3, p. 374 and
Example 6.14, p. 395 in [125]; and others). Using the birth-death derived
values of Pn , the pdf {P0, f (x)}x>0 of wait is then derived by condition-
ing on N . Here, we reason in the opposite direction: first derive the pdf
{P0, f (x)}x>0 or fσ(x), x > 0, then condition on Wq or on σ to derive the
values of Pn, n = 1, 2, …. Similar remarks apply to other exponential mod-
els, like multiple server M/M/c queues (Chap. 4).

3.5.4 Expected Busy Period

The Mλ/Mμ/1 queue is an Mλ/G/1 queue having E(S) = 1
μ . Substituting 1

μ
into (3.80) in Sect. 3.4.10 gives the well-known result

E(B) = E(S)

P0
= 1

μ
(

1 − λ
μ

) = 1

μ − λ
. (3.120)

3.5.5 CDF and PDF of Busy Period in M/M/1

Applying formula (3.87) in Sect. 3.4.13 we obtain, since the n-fold convo-
lution of b(y) (:= μe−μy) is b(n)(y) =

dis
Erln,μ(y). The cdf of B is

FB(x) =
∫ x

y=0

∞∑

n=1

e−λy (λy)n−1

n!
e−μy(μy)n−1μ

(n − 1)! dy

=
∫ x

y=0
e−(λ+μ)y μ√

λμy

∞∑

n=1

(√
λμy

)2n−1

n! (n − 1)! dy

=
∫ x

y=0
e−(λ+μ)y

√
μ

λ

1

y

∞∑

n=1

(
2
√

λμy
2

)2n−1

n! (n − 1)! dy, x > 0,

http://dx.doi.org/10.1007/978-3-319-50332-5_4
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which yields FB(x) and pdf fB(x) of B as

FB(x) =
∫ x

y=0

√
μ/λe−(λ+μ)y I1(2

√
λμy)

y
dy, (3.121)

fB(x) =
√

μ/λe−(λ+μ)x I1(2
√

λμx)

x
, x > 0, (3.122)

where I1(z) := modified Bessel function of the first kind of order 1 given by

I1(z) =
∞∑

n=1

(z/2)2n−1)

(n − 1)!n!

(see, e.g., pp. 101–102 in Gross et al. [84]).

3.5.6 Geometric Derivation of CDF and PDF of Wait

Consider a sample path of {W (t)}t≥0 in M/M/1. Let B denote a busy period.
Given that the SP upcrosses level x , the sojourn above x is ax =

dis
Ḃ, inde-

pendent of x ≥ 0, due to the memoryless property of Expμ (Fig. 3.8). (See
Proposition 3.4 in Sect. 3.4.19; also paragraph following “Key Question” in
Sect. 1.5.2.)

Substituting E (B) for E(ax ) in formulas (3.100) and (3.101), and applying
(3.120) yields

Time  t

Level x

W(t)

0

Sojourn time
 above x distributed

 as busy period

SP

Like 
busy 

period

Like 
busy 

period

Fig. 3.8 Sample path of {W (t)}t≥0 in Mλ/Mμ/1 queue showing ax =
dis

B. SP excess

jumps above x are ≡
dis

Expμ

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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F(x) = 1 − ρe− x
E(B) = 1 − ρe−(μ−λ)x , x ≥ 0, (3.123)

f (x) = λ(1 − ρ)e−(μ−λ)x = λP0e−(μ−λ)x , x > 0. (3.124)

The M/M/1 model satisfies Proposition 3.3 in Sect. 3.4.17.

3.5.7 Inter-crossing Time of Level x

We now consider dx , bx , ax , defined in Sects. 3.4.15, 3.4.16 and 3.4.17,
respectively. We look at the time between SP successive upcrossings (inter-
upcrossing time), and E(number of SP crossings of a level) during a busy
cycle or during sojourns above or below an arbitrary level.

Inter-downcrossing Time of Level x
We have

dx = bx + ax , E(dx ) = E(bx ) + E(ax ).

In M/M/1 the inter-arrival and service times are =
dis

Expλ and Expμ, respec-

tively. For fixed x ≥ 0, successive triplets {dx,n, bx,n, ax,n}n=1,2,... form a
sequence of i.i.d. random variables (dx,n =

dis
dx , bx,n =

dis
bx , ax,n =

dis
ax ).

Thus
{
dx,n

}
n=1,2,...

forms a renewal process and {bxn , ax,n}n−1,2,... forms an
alternating renewal process. As in Sects. 3.4.15, 3.4.16 and 3.4.17,

E(dx ) = 1

f (x)
, E(bx ) = F(x)

f (x)
, E(ax ) = 1 − F(x)

f (x)
. (3.125)

Since ax ≡
dis

B

E(ax ) = 1

μ − λ
, x ≥ 0, (3.126)

E(dx ) = F(x)

f (x)
+ 1

μ − λ
, x ≥ 0. (3.127)

Letting x = 0 in (3.127) gives E(d0) = E(C) where C := busy cycle = d0.
Thus

E(C) = F(0)

f (0)
+ 1

μ − λ
= P0

λP0
+ 1

μ − λ
= 1

λ(1 − ρ)
= 1

λP0
, (3.128)

which agrees with formula (3.81). We obtain E(dx ) by substituting f (x)

from (3.124) into (3.127). Thus
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Fig. 3.9 Expected
inter-downcrossing (or
inter-upcrossing) time of
level x , E(dx ) (or
E(ux )) in M/M/1:
λ = 1.0, μ = 2.0,
ρ = 0.5

E(dx ) = e(μ−λ)x

λ(1 − ρ)
, x ≥ 0, (3.129)

which increases exponentially with x (Fig. 3.9).

Inter-upcrossing Time of a Level
Denote the inter-upcrossing time of level x by ux . Inspection of sample paths
of {W (t)}t≥0 indicates that ux =

dis
dx due to the memoryless property of both

the inter-arrival and service times in M/M/1. Hence the plot of E(ux ) versus
x is identical to that of E(dx ) versus x in Fig. 3.9.

3.5.8 Number of Crossings of a Level in a Busy Cycle

Denote the number of downcrossings of level x ≥ 0 during d0(= C) by
Dd0(x)(= DC(x)). Since Dt (x) is the number of downcrossings of x dur-
ing time interval (0, t), from the renewal reward theorem

E(Dd0(x))

E(d0)
= lim

t→∞
E(Dt (x))

t
= f (x) = λP0e−(μ−λ)x , x ≥ 0.

Hence,

E(Dd0(x)) = λP0e−(μ−λ)x · E(d0) = λP0e−(μ−λ)x · 1
λP0

= e−(μ−λ)x , x ≥ 0.
(3.130)
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Since λ < μ, E(Dd0(x)) ≤ 1. From (3.130), E(Dd0(x)) decreases exponen-
tially as x increases.

Let Ud0(x) := number of upcrossings of level x during d0. Since Dd0(x) =
Ud0(x), x ≥ 0, formula (3.130) gives

E(Dd0(0)) = E(Ud0(0)) = lim
x↓0

e−(μ−λ)x = 1. (3.131)

Equation (3.131) is intuitive, since during C the SP hits level 0 from above
exactly once, and egresses from level 0 above (upcrosses 0) exactly once.
The SP hit occurs at the end of the embedded B. The SP egress occurs at the
start of the embedded B.

3.5.9 Downcrossings at Different Levels

From formula (3.106) in Sect. 3.4.21 for the M/G/1 queue, E(number of SP
downcrossings of x) during an inter-downcrossing time dy is given by

E(Ddy (x)) = f (x)

f (y)
, x ≥ 0, (3.132)

which implies in M/M/1

E(Dd(y)(x)) = e−(μ−λ)(x−y), x ≥ 0, y ≥ 0, (3.133)

since f (x) = λP0e−(μ−λ)x , x ≥ 0. From (3.133)

E(Ddy (x))

⎧
⎨

⎩

< 1 if x > y,
= 1 if x = y,
> 1 if x < y.

(3.134)

In (3.134) E(Ddx (x)) = e−(μ−λ)(x−x) = 1, x ≥ 0, in agreement with intu-
ition, upon examining a sample path of {W (t)}t≥0.
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Proposition 3.8 For arbitrary state-space levels x , y, y1, y2, …, yn

E(Ddy (x)) = E(Ddy (y1)) · E(Ddy1
(y2)) · · · E(Ddyn−1

(yn)) · E(Ddyn
(x))

(3.135)

Proof From (3.132) we obtain

E(Ddy (x)) = f (x)

f (y)
= f (y1)

f (y)
· f (y2)

f (y1)
· · · f (yn)

f (yn−1)
· f (x)

f (yn)
, n = 1, 2, . . .

which is equivalent to (3.135). �

Remark 3.18 The results in (3.132) and (3.135) hold for the standard M/G/1
queue, since the proofs depend only on having a Poisson arrival process. In
order to apply these formulas to a specific M/G/1 model, we must have a
formula for f (x). The pdf f (x) is known analytically in many M/G/1 models,
e.g., M/D/1, M/Erlk,μ/1 and variants; otherwise f (x) can be approximated
or estimated by numerical or simulation methods.

3.5.10 Number Served in a Busy Period

Equation (3.88) in Sect. 3.4.14 yields

E(NB) = 1

P0
= 1

1 − ρ
. (3.136)

It follows that the number served in a k-busy period, starting with k customers
in the system at time 0, is equal to k/P0 (see Exercise 17, p. 233 in Cooper
[64]).

Remark 3.19 Sect. 5.1.15 in Chap. 5 considers the number of system times
above or below a state-space level x during a sojourn ay , y ≥ 0, and related
quantities. The M/M/1 results are presented in Sect. 5.1.15 because they fol-
low as special cases of related results for G/M/1 queues given in Sects. 5.1.13
and 5.1.14.

3.5.11 Relationship Between M/M/1 and M/M/1/1

The M/M/1/1 queue is an M/M/1 variant restricted to having at most one
customer in the system at all t ≥ 0. The second /1 in the notation M/M/1/1

http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
http://dx.doi.org/10.1007/978-3-319-50332-5_5
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Time    t

x

W(t)

0

SPμ λE  μ λE  μ λE  μ λE 

Fig. 3.10 Sample path of workload for Mλ/Mμ−λ/1/1 queue with arrival rate λ and
service rate μ − λ. Blocked customers are cleared

refers to the queue discipline, namely: customers arriving when there is
a customer in service, are blocked and cleared; customers arriving when
the system is empty start service immediately. We compare the virtual wait
process (same as workload) {W (t)}t≥0 for M/M/1 (Fig. 3.8) and the work-
load process {W (t)}t≥0 for M/M/1/1 (Fig. 3.10). (In M/M/1/1 all customers
that get served wait 0.) The LC approach immediately connects the two
models in steady-state. The cdf (3.123) and pdf (3.124) of wait (workload)
in Mλ/Mμ/1, are respectively identical to the steady-state cdf and pdf of
workload in Mλ/Mμ−λ/1/1 (arrival rate λ, service rate μ − λ).

This exact similarity of cdfs and pdfs is evident from a sample path of
the workload {W (t)}t≥0 in Mλ/Mμ−λ/1/1 (Fig. 3.10). Fix level x > 0. The
SP downcrossing rate of x is f (x), as in Theorem 1.1. The SP upcross-
ing rate of x is λP0 P(S > x) = λP0e−(μ−λ)x , since all SP jumps start at
level 0, and are distributed as Expμ−λ, where μ > λ. In both M/M/1 and
M/M/1/1, E(B) = 1

μ−λ and P0 = 1 − λ/μ. In Mλ/Mμ−λ/1/1, the busy period

B and the blocking time are identical, and are =
dis

(μ − λ)e−(μ−λ)x , x > 0.

Also, the system times are both =
dis

(μ − λ)e−(μ−λ)x , x > 0. Although the

expected busy periods are identical, their busy-period probability distribu-
tions are quite different—evident from formulas (3.121) and 3.122 involving
Bessel functions. These probability distributions depend on the (different)
jump structures of the {W (t)}t≥0s. The Mλ/Mμ−λ/1/1 workload has the same
distribution as the wait (workload) in Mλ/M μ/1, namely

P0 = 1 − λ

μ
, f (x) = λP0e−(μ−λ)x , x > 0.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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A key point is that the pdf of workload {P0, f (x)}x>0 in Mλ/Mμ−λ/1/1 is
derived immediately by inspection, since all SP jumps start at level 0.

The foregoing relationship suggests re-examining integral equation
(3.109). We substitute the Mλ/Mμ−λ/1/1 solution into the integral in (3.109),
i.e., f (y) = λP0e−(μ−λ)y , and simplify. The immediate result is the solution
for the Mλ/Mμ/1 model f (x) = λP0e−(μ−λ)x , x > 0, obtained while bypass-
ing differential equation (3.110). This solution for Mλ/Mμ−λ/1/1 “solves”
integral equation (3.109) for Mλ/Mμ/1.

This solution procedure suggests exploring conditions that facilitate solv-
ing for the pdf of state variables “by inspection” in more general models than
M/M/1. The idea is to identify a “companion” or “isomorphic” model having
a much simpler sample-path jump structure.

3.6 M/G/1: Service Time Depending on Wait

Consider an M/G/1 queue with arrival rate λ and service time depending on
the wait before service, S(Wq). Let P(S(Wq) ≤ x |Wq = y) = By(x), x ≥
0, y ≥ 0, having pdf by(x) = ∂

∂x By(x), x > 0, y ≥ 0, wherever the deriva-
tive exists. Let Wq have steady-state cdf F(x), x ≥ 0 and pdf {P0, f (x)}x>0

(assuming d
dx F(x) = f (x) exists). We define f (0) ≡ f (0+) for convenience

(does not add probability to P0). A sample path of {W (t)}t≥0 resembles that
for the standard M/G/1 queue, except that the SP jump size (service time)
generated by each arrival depends on the SP level at the start of the jump
(actual wait).

Consider a fixed state-space level x ≥ 0 in a sample path of {W (t)}t≥0.
The downcrossing rate of x is f (x), by Theorem 1.1. The total upcrossing
rate of x is

λP0 B0(x) + λ

∫ x

y=0
B y(x − y) f (y)dy; x > 0. (3.137)

In (3.137) the term λP0 B0(x) is the upcrossing rate of x by SP jumps at arrival
instants when the system is empty. The term λ

∫ x
y=0 B y(x − y) f (y)dy is the

upcrossing rate of x by SP jumps at arrival instants when {W (t)}t≥0 is at
state-space levels y ∈ (0, x). Rate balance across level x yields the integral
equation for f (x),

f (x) = λP0 B0(x) + λ

∫ x

y=0
B y(x − y) f (y)dy, x ≥ 0. (3.138)

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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As in the standard M/G/1 queue, letting x ↓ 0 gives f (0) = λP0 B0(0) =
λP0.

Integrating (3.138) on both sides with respect to x over (0, ∞) gives

1 − P0 = ρ0 P0 +
∫ ∞

y=0
ρy f (y)dy,

P0 = 1 − ∫∞
y=0 ρy f (y)dy

1 + ρ0
, (3.139)

where ρy ≡ λE(Sy), y ≥ 0. (Eq. (3.139) is an implicit formula for P0 since,
from (3.138), f (y) in the integral contains P0. See Eq. (3.144) below for an
explicit value for P0 in the case where zero-wait customers receive special
service.)

One way to deal with Eq. (3.138) is to partition the state space using
{xi }i=0,...,M+1, where integer M ≥ 0, and

0 ≡ x0 < x1 < x2 < · · · < xM < xM+1 ≡ ∞, (3.140)

as in the paper by Posner [117]. Denote the service time of a zero-wait
customer as S0, and of a y-waiting customer, y ∈ (xi−1, xi ), as Si . Assume
the service-time is S0 for all arrivals who wait zero, and Si for all arrivals
who wait y ∈ (xi−1, xi ). Thus the cdf of service time is

B0(x), x > 0 for zero-wait arrivals,

B j (x), x > 0 for all arrivals who wait y ∈ (xi−1, xi ), i = 1, . . . , M + 1.
(3.141)

Integral equation (3.138) can then be written

f (x) = λP0 B0(x) + λ
∑ j−1

i=1

∫ xi
y=xi−1

Bi (x − y) f (y)dy

+λ
∫ x

y=x j−1
B j (x − y) f (y)dy, x ∈ (x j−1, x j ), j = 1, . . . , M + 1.

(3.142)
where

∑0
i=1 ≡ 0. In (3.142), for any fixed x > 0, the right side is the upcross-

ing rate of level x . Thus, we have constructed integral equation (3.142) in a
fast, easy, intuitive, straightforward manner using LC.

Queues with service time depending on wait appear in the literature in, e.g.,
([57, 58]). The single-server model was treated in the literature using
Laplace transforms in [108], and by the embedded Markov chain technique
using a Lindley recursion in [117], who obtained an explicit solution for
{P0, f (x)}x>0.
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Remark 3.20 Deriving (3.142) using the embedded Markov chain technique
is “relatively” tedious and purely algebraic (see Sect. 1.3 in Chap. 1). The
single-server model was generalized to multiple servers using the embedded
Markov chain technique in [48, 49] (the original topic and methodology
of the author’s Ph.D. thesis). After my discovery of LC in 1974, the model
solution was completely revised using LC in the Ph.D. thesis [11], which
greatly simplified the derivation of the integral equations. An analysis of an
M/M/2 model with service time depending on wait is given in [53]; a revised
version appears in Sect. 4.11 below.

3.6.1 M/G/1: Zero-Wait Arrivals Get Special Service

A particular case of M/G/1 with service time depending on wait, which has
many useful applications, is a model where the initial customer of each busy
period receives special service; we set M = 0, x0 = 0, x1= ∞ in the state-space
partition (3.140). (e.g., see, [144]; also Example 3.7 in Sect. 3.4.19; the last
division of this Section; Example 3.11 in Sect. 3.8.5 below).

The integral equation (3.142) reduces to

f (x) = λP0 B0(x) + λ

∫ ∞

y=0
B1(x − y) f (y)dy, x > 0. (3.143)

Integrating (3.143) with respect to x over (0, ∞), using
∫∞

x=0 f (x)dx = 1 −
P0, gives

P0 = 1 − λE(S1)

1 − λE(S1) + λE(S0)
= 1 − ρ1

1 − ρ1 + ρ0
. (3.144)

A necessary condition for stability is ρ1 < 1 (guarantees P0 > 0 and {0} is
a positive recurrent state). (If ρ1 > 1 then 1 − ρ1 < 0. We would then need
1 − ρ1 + ρ0 < 0 to ensure that P0 > 0, causing |1 − ρ1 + ρ0| < |1 − ρ1|.
But that would imply P0 > 1 in (3.144), a contradiction. If ρ1 = 1, then
P0 = 0, which would imply the queue is unstable.)

Multiplying both sides of (3.143) by x, and integrating for x ∈ (0, ∞)

gives a Pollaczek-Khinchine (P-K)-like result for the expected wait before
service

E(Wq) = λ(E(S2
0) + E(S2

1))

2(1 − λE(S1))
. (3.145)

Expected Busy Period When M = 0 in Partition (3.140)
In this case there are two types of arrivals. Customers that don’t have to wait
(wait time = 0) have service time S0. Customers that wait a positive time

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_4
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have service time S1. We determine E(B) where B := busy period when
initial service is =

dis
S0 and all other services are =

dis
S1.

Method 1
The busy period is

B = S0 +
AS0∑

i=1

B1,i , (3.146)

where AS0 =
dis

number of arrivals, including pseudo arrivals during S0, the

initial service time of B (see Sect. 3.4.12 and Fig. 3.6 therein); the sub-
busy periods

{
B1,i

}
j=1,2,...

are i.i.d. r.v.s distributed as a busy period B1 in
a standard Mλ/G/1 queue with service time S1 (see Fig. 3.11). The B1,i s are
independent of AS0 . Taking the expected value in (3.146) gives

E(B) = E(S0) + λE(S0)E(B1) = E(S0) + λE(S0)
E(S1)

1 − λE(S1)

= E(S0)

1 − ρ1
= E(S0)

P0,1
, (3.147)

where P0,1 = P(wait = 0) in the standard M/G/1 with common service time
S1.

Method 2
Applying the LC-based result for the expected busy period in M/G/1 (3.82),
and using P0 in (3.144) we get (3.147) as follows:

W(t)

Time

0
S

1
S

1
S 1

S

1
S

0
S

Level x 1
S

1

1

1

λExp

1
S

Fig. 3.11 B’s are busy periods in Mλ/G/1 with zero-waits receiving service time
=
dis

S0. B1’s are busy periods of Mλ/G/1 with all service times =
dis

S1, generated by

pseudo arrivals during S0
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E(B) =1 − P0

λP0
= 1 − 1−λE(S1)

1−λE(S1)+λE(S0)

λ 1−λE(S1)
1−λE(S1)+λE(S0)

= E(S0)

1 − λE(S1)
= E(S0)

1 − ρ1
= E(S0)

P0,1
.

We can now derive the expression for P0 directly using the expression for
E(B). Thus

P0 =
1
λ

1
λ + E(B)

=
1
λ

1
λ + E(S0)

1−ρ1

= 1 − ρ1

1 − ρ1 + ρ0
.

3.6.2 M/M/1: Zero-Wait Arrivals Get Special Service

We now derive the pdf {P0, f (x)}ẋ>0 when service times are exponentially
distributed with B0(x) = 1 − e−μ0x , B1(x) = 1 − e−μ1x . Substituting e−μ0x

for B0(x) and e−μ1x for B1(x − y) in (3.143) and applying differential oper-
ator 〈D + μ0〉 〈D + μ1〉 (equivalent to differentiating twice with respect to
x , followed by some algebra) yields a second order differential equation

〈D + μ1 − λ〉 〈D + μ0〉 f (x) = 0,

with solution
f (x) = ae−(μ1−λ)x + be−μ0x , x > 0, (3.148)

provided μ0 �= μ1 − λ (if μ0 = μ1 − λ, f (x) in the differential equation has
a different solution; see, e.g., pp. 106–113 in [10]). Constants a, b are obtained
from two independent initial conditions:

f (0) = λP0 and f ′(0) = −μ0λP0 + λ f (0),

giving

a = −λ2 P0

μ1 − μ0 − λ
, b = λ(μ1 − μ0)P0

μ1 − μ0 − λ
, P0 = 1 − ρ1

1 − ρ1 + ρ2
, (3.149)

where ρi = λ/μi , i = 1, 2. (See Example 3.12 in Sect. 3.17.3 for an alternative
solution technique to derive f (x), x > 0.)

Expected Busy Period When Service Times Are Exponential
From Eq. (3.147),

E(B) =
1
μ0

1 − λ
μ1

= μ1

μ0(μ1 − λ)
.
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Mild check on E(B): If μ0 = μ1 = μ then E(B) = 1/ (μ − λ), as in the
standard Mλ/Mμ/1 queue.

Sojourn Above Level x When Service Times Are Exponential
Let γx denote the excess above x given {W (t)}t≥0 upcrosses level x . Then
γx =

dis
Expμ0 or γx =

dis
Expμ1 , where S0 =

dis
Expμ0 and S1 =

dis
Expμ1 . Then

E(ax ) = p1(x)
1/μ0

1 − λ
μ1

+ p2(x)
1/μ1

1 − λ
μ1

,

where pi (x) := P(an upcrossing is due to the service time jump of a type-
i arrival), i = 1, 2, and p1(x) + p2(x) = 1. If 1/μ0 < 1/μ1 then E(ax ) <

E(B). If 1/μ0 > 1/μ1 then E(ax ) > E(B). Moreover (see derivation of
(3.170) in Sect. 3.8.6 below)

p1(x) = P0e−μ0x

f (x)/λ
, p2(x) =

∫ x
y=0 B(x − y) f (y)dy

f (x)/λ
,

where {P0, f (x)}ẋ>0 is given in (3.148) and (3.149).

3.7 Expected Sojourn Above Level x in M/G/1

We derive E(ax ) in M/G/1 with general service time S, where ax := sojourn
by {W (t)}t≥0 above a fixed level x ≥ 0. The derivation utilizes a connection
with M/G/1 where zero-wait customers receive special service (Sect. 3.6.1).
Consider a sample path of {W (t)}t≥0. A sojourn ax is initiated by the excess
of an upcrossing of x . We derive a formula for E(ax ) when S is a positive con-
tinuous random variable having pdf b(y), y > 0, cdf B(y), y > 0, and B(y)

= 1 − B(y), y ≥ 0. Let {P0, f (x)}x>0 be the limiting mixed pdf of {W (t)}t≥0
as t → ∞. From Theorem 1.1 in Chap. 1, {P0, f (x)}x>0 is determined by
the equations

f (x) = λP0 B(x) + λ
∫ x

y=0 B(x − y) f (y)dy, x > 0,

P0 + ∫∞
x=0 f (x)dx = 1.

(3.150)

Let γx := excess over x , which initiates an ax whenever {W (t)}t≥0 upcrosses
level x . The ax s are i.i.d. random variables since they occur within regenera-
tive cycles delimited by successive level-x downcrossings (one ax per cycle)
(see Fig. 3.12).

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Time    t

Levelx

W(t)

0

SP

dis
0,1x

dis
a  =

x

S
S

dis

S

x x

S

0,1xa  =0,1xa  =

Fig. 3.12 γx := excess over level x . ax := sojourn above level x . B0,1 := busy period
when zero-wait service =

dis
γx and other services =

dis
S

The first jump size of each ax is =
dis

γx . However, during ax , all jump sizes

are =
dis

S. Thus, ax =
dis

busy period of an MG/1 queue where the first service

is exceptional (special), denoted as B0,1 in Fig. 3.12 (see formula (3.147) in
Sect. 3.6.1).

Let Gγx (z), z > 0, denote the cdf of γx .

Theorem 3.7 For fixed x ≥ 0,

E(ax ) = E(γx )

P0
=
∫∞

z=0

(
1 − Gγx (z)

)
dz

P0

=
∫∞

z=0

[
λ
∫ x

y=0 B(x + z − y)d F(y)
]

dz

f (x)P0
. (3.151)

Proof We employ the equation

(
1 − Gγx (z)

)
f (x) = λP0 B(x + z) + λ

∫ x

y=0
B(x + z − y) f (y)dy, x ≥ 0, z > 0, (3.152)

where the LHS = P(γx > z|S P upcrosses level x) × (rate at which SP
upcrosses level x), mindful that f (x) is both the up- and downctossing rate
of x (see Theorem 1.1). Thus the LHS is the upcrossing rate of level x + z
by the excess over x , of jumps starting below x . The RHS is a different
expression for the upcrossing rate of level x + z by jumps staring below x ;
all upcrosses of x + z occur during the excess over x . Therefore Eq. (3.152)
follows, implying

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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1 − Gγx (z) = λP0 B(x + z) + λ
∫ x

y=0 B(x + z − y) f (y)dy

f (x)
,

so that

E(γx ) =
∫ ∞

z=0

(
1 − Gγx (z)

)
dz =

∫∞
z=0

[
λ
∫ x

y=0 B(x + z − y)d F(y)
]

dz

f (x)
.

Formula (3.151) follows since E(ax ) = E(B0,1) = E(γx )
P0

by formula (3.147)
in Sect. 3.6.1. �

We can solve the equations in (3.150) for {P0, f (x)}x≥0 analytically,
numerically or by simulation; or obtain an approximate solution. Theorem
3.7 then enables us to calculate E(ax ), x ≥ 0.

3.8 M/G/1 with Multiple Poisson Inputs

Customers arrive at a single-server system in N independent Poisson streams
at rates λi , i = 1, . . . , N ,

∑N
i=1 λi = λ. Let the corresponding service times

be Si having cdf Bi (x), Bi (x) = 1 − Bi (x), x ≥ 0, and pdf bi (x) = d
dx Bi (x),

x > 0, wherever the derivative exists. The service discipline is FCFS. The
service time of an arbitrary arrival is Si with probability λi/λ. Denote the
steady-state pdf and cdf of the wait before service, Wq , by {P0, f (x)}x>0 and
F(x), x ≥ 0, respectively.

Due to independent Poisson arrivals, we may view the system as an M/G/1
queue with arrival rate λ and service time

S =
⎧
⎨

⎩

S1 with probability λ1
λ ,

· · ·
SN with probability λN

λ .
(3.153)

S has a mixture probability distribution with mixture components Si and mix-
ture weights λi/λ (> 0) such that

∑N
i=1 (λi/λ) = 1. Hence the nth moment

Sn = Sn
i with probability λi/λ, i = 1, . . . , N ; n = 1, 2, . . .. Thus

E(S) =
N∑

i=1

λi

λ
E(Si ), E(S2) =

N∑

i=1

λi

λ
E(S2

i ). (3.154)

Employing ρi = λi E(Si ), i = 1, . . . , N ,
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P0 = 1 − λE(S) = 1 −
N∑

i=1

ρi . (3.155)

Stability
The system is stable iff every typical sample path of {W (t)}t≥0 returns to
state {0} iff P0 > 0, i.e.,

N∑

i=1

ρi < 1. (3.156)

3.8.1 Integral Equation for PDF of Wait

Sample paths of {W (t)}t≥0 resemble those of the standard M/G/1 queue,
except that the jump size due to an arrival is =

dis
Si with probability λi/λ,

having cdf Bi (·), i = 1, . . . , N . Thus jumps =
dis

Si occur at Poisson rate λi .

By Theorem 1.1, for a fixed state-space level x > 0, the SP downcrossing
rate is f (x). The SP upcrossing rate for type i arrivals is

λi P0 Bi (x) + λi

∫ x

y=0
Bi (x − y) f (y)dy, i = 1, . . . , N .

Balancing the total SP down- and upcrossing rates of level x for all customer
types, yields the integral equation for f (x),

f (x) =
N∑

i=1

λi

[
P0 Bi (x) +

∫ x

y=0
Bi (x − y) f (y)

]
dy,

or

f (x) = λP0

(
N∑

i=1

λi

λ
Bi (x)

)
+ λ

∫ x

y=0

(
N∑

i=1

λi

λ
Bi (x − y)

)
f (y)dy.

(3.157)
Integral equation (3.157) is in the form of the analogous integral equation
(3.34) for the pdf of wait in a standard M/G/1 queue with λ =∑N

i=1 λi , and
B(x) =∑N

i=1 (λi/λ) Bi (x), ẋ > 0.

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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3.8.2 Expected Wait Before Service

Since E(S2) =
∑N

i=1
λi
λ E(S2

i ), the Pollaczek-Khinchine (P-K) formula (3.63)
gives the expected wait before service as

E(Wq) = λE(S2)

2(1 − λE(S))
= λ

∑N
i=1 (λi/λ) E(S2

i )

2(1 −∑N
i=1 ρi )

=
∑N

i=1 λi E(S2
i )

2P0
.

(3.158)
Alternatively, we can obtain E(Wq) in (3.158) directly from (3.157) upon

multiplying both sides by x , then integrating both sides with respect to
x ∈ (0, ∞), changing the order of integration in the double integral, and
doing some algebra.

3.8.3 Expected Number in Queue

Let Lq = expected number of units in the queue before service in the steady
state. Then by L = λW (Little [110]) and (3.158)

Lq = λE(Wq) = λ
∑N

i=1 λi E(S2
i )

2P0
. (3.159)

Denote the steady-state expected number of type i units in the queue by
Lq,i . Let the wait of an arbitrary type i customer be Wq,i , and the wait of an
arbitrary customer be Wq . Then Wq,i =

dis
Wq , because the waiting time of

any arrival depends only on the current workload at the arrival instant. Thus
E(Wq,i ) = E(Wq), i = 1, . . . , N , and by L = λW ,

Lq,i = λi E(Wq,i ) = λi E(Wq) = λi
∑N

i=1 λi E(S2
i )

2P0
, i = 1, . . . , N .

(3.160)

3.8.4 Expected Busy Period

Applying (3.82) and (3.155), the expected busy period is given by

E(B) = 1 − P0

f (0)
= 1 − P0

λP0
=

∑N
i=1 ρi

λ
(

1 −∑N
i=1 ρi

) . (3.161)
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As a mild check on formula (3.161), let S = Si with probability 1/N , i =
1, . . . , N . Then λi/λ ≡ 1/N so that

∑N
i=1 (λi/λ) =

∑N
i=1 (1/N ) = 1, ρi ≡

λi E(Si ) = (λ/N ) E(Si ) and
∑N

i=1 ρi = (λ/N )
∑N

i=1 E(Si ). The multiple
Poisson input model reduces to a standard M/G/1 queue with arrival rate λ

and E(S) = 1
N

∑N
i=1 E(Si ). From (3.161)

E(B) =
λ
N

∑N
i=1 E(Si )

λ
(

1 −∑N
i=1 ρi

) =
1
N

∑N
i=1 E(Si )

1 −∑N
i=1 ρi

= E(S)

P0
,

which is the formula for E(B) for the standard M/G/1 queue.

3.8.5 M/M/1 with Multiple Poisson Inputs

To outline a solution technique for integral equation (3.157), we assume
the service times are =

dis
Expμi

with Bi (x) = e−μi x , i = 1, 2, . . . , N . Then

(3.157) becomes

f (x) =
N∑

i=1

λi

[
P0e−μi x +

∫ x

y=0
e−μi (x−y) f (y)dy

]
, x > 0. (3.162)

We can apply the differential operator 〈D + μ1〉 . . . 〈D + μN 〉 to Eq.
(3.162), to derive and solve analytically an N th order differential equation
with constant coefficients for f (x), using initial conditions to obtain the
constants of integration.

The differential operator 〈D + μi 〉 is commutative with respect to expo-
nential functions of the form eαx+β , where α and β are constants, i.e., for
any permutation (i1, i2, . . . , iN ) of the numbers (1, 2, . . . , N )

〈(D + μ1) · · · (D + μN )〉eααx+β = 〈D + μ1〉 · · · 〈D + μN 〉 eαx+β

= 〈D + μi1

〉 · · · 〈D + μiN

〉
eαx+β

= 〈(D + μi1) · · · (D + μiN
)〉eαx+β .

The commutativity property simplifies the transformation of an integral equa-
tion into a differential equation, when the kernel of any integral in the equation
has an exponential form like e−μi (x−y) in (3.162).
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Expected Wait and Expected Number in Queue
If Si =

dis
Expμi then E(S2

i ) = 2/μ2
i , which substituted into (3.158) and (3.159)

respectively, yield

E(Wq) =
∑N

i=1
λi
μ2

i

1 −∑N
i=1

λi
μi

, (3.163)

Lq =
λ
∑N

i=1
λi
μ2

i

1 −∑N
i=1

λi
μi

. (3.164)

Similarly, substituting into (3.160), gives

Lq,i =
λi
∑N

i=1
λi
μ2

i

1 −∑N
i=1

λi
μi

, i = 1, . . . , N . (3.165)

Two Customer Types
To illustrate the solution, we consider two distinct customer types, and
derive {P0, f (x)}. Set N = 2 in (3.162). Applying differential operator
〈D + μ1〉〈D + μ2〉 to both sides, gives a second order differential equation

〈
D2 + (μ1 + μ2 − λ)D + (μ1μ2 − μ1λ2 − μ2λ1)

〉
f (x) = 0

having solution
f (x) = aeR1x + beR2x , (3.166)

where Ri , i = 1, 2 are the roots for z in the characteristic equation

z2 + (μ1 + μ2 − λ)z + μ1μ2 − μ1λ2 − μ2λ1 = 0.

Both roots are negative since the product R1 R2 = μ1μ2 − μ1λ2 − μ2λ1 >

0 (equivalent to 1 − ρ1 − ρ2 > 0, the stability condition), and R1 + R2 =
−(μ1 + μ2 − λ) < 0. Constants a and b are determined by applying two
independent initial conditions for f (0) = a + b and f ′(0) = R1a + R2b,
obtained from (3.166) and also from (3.162), resulting in two equations for
a, b:

a + b = λP0,

R1a + R2b = −(μ1λ1 + μ2λ2)P0 + λ f (0) = −(μ1λ1 + μ2λ2 − λ2)P0.
(3.167)
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Thus f (x) is given by (3.166) where [a, b] is the solution of the two equations
in (3.167):

a = −P0(R2λ − λ2 + λ1μ1 + λ2μ2)/(R1 − R2),

b = P0(R1λ − λ2 + λ1μ1 + λ2μ2)/(R1 − R2),
(3.168)

and

P0 = 1 − λ1
μ1

− λ2
μ2

,

R1 = −B
2 +

√
B2 − 4AC

2 , R2 = −B
2 −

√
B2 − 4AC

2 ,

A = 1, B = μ1 + μ2 − λ, C = μ1μ2 − μ1λ2 − μ2λ1.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(3.169)

Example 3.10 Consider a numerical example with N = 2, λ1 = 1,
λ2 = 0.5, μ1 = 3, μ2 = 2. Then P0 = 0.4167, R1 = −1.0, R2 = −2.5,
a = 0.555555, b = 0.069444, and

f (x) = 0.555555 e−1.0x + 0.069444 e−2.5x , x > 0.

A computational check shows that F(∞) = 1, and f (0) = λP0, i.e.,

F(∞) = P0 +
∫ ∞

x=0
f (x)dx

= 0.4167 +
∫ ∞

x=0
(0.555555 e−1.0x + 0.069444 e−2.5x )dx = 1,

f (0) = a + b = λP0 = 0.625.

3.8.6 Expected Sojourn Above Level x − E(ax)

Let pi (x) := P (arrival type i | {W (t)}t≥0 upcrosses x), i = 1, . . . N . Using
Bayes’ formula, and Eq. (3.162),

pi (x) = P({W (t)}t≥0 upcrosses x | arrival type i) · P(arrival type i)

P({W (t)}t≥0 upcrosses x)

=
(

P0 Bi (x) + ∫ x
y=0 Bi (x − y) f (y)dy

)
· (λi/λ)

∑N
i=1

[
P0 (λi/λ) Bi (x) + ∫ x

y=0 (λi/λ) Bi (x − y) f (y)dy
]

= P0 (λi/λ) Bi (x) + ∫ x
y=0 (λi/λ) Bi (x − y) f (y)dy

f (x)/λ
. (3.170)
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Let γSi
(x) := excess above level x due to a type-i upcrossing of x . Sojourn

ax =
dis

B(i) with probability pi (x), i.e., ax has a mixture distribution with

components B(i) and mixture probabilities pi (x). which is a busy period
where zero-waits get service S0 =

dis
γSi

(x), and positive-waits get service

time S1 (see formula (3.153)). Applying (3.147) in Sect. 3.6.1 and formula
(3.161) gives

E(ax ) = E(γS (x))

1 −∑N
i=1 ρi

. (3.171)

E(ax ) in M/M/1 with Two Types of Poisson Inputs
Consider two types of input with Si =

dis
Expμi , i = 1, 2. By the memoryless

property γSi
(x) =

dis
Expμi , i = 1, 2, for all x ≥ 0. If the upcrossing of x that

initiates ax is due to a type-i arrival then ax =
dis

Bi , an M/G/1 busy period

with initial service S0 = Expμi , and other service times a mixture of Expμ1

and Expμ2 . Thus

E(ax |excess = γSi
(x)) = 1

μi

(
1 −∑2

i=1 ρi

) , i = 1, 2,

and

E(ax ) =
2∑

i=1

pi (x)
1

μi

(
1 −∑2

i=1 ρi

) , (3.172)

From (3.170) the probability of a type-i upcrossing of level x is

pi (x) = P0 (λi/λ) e−μi x + ∫ x
y=0 (λi/λ) e−μi (x−y) f (y)dy

f (x)/λ
, i = 1, 2.

Example 3.11 Using the input values and f (x), x > 0, in Example 3.10,
Sect. 3.8.5, we compute

p1(x) = 0.27777 e−3.x (0.5 e0.5x + e2.x )

0.55555 e−x + 0.06944 e−2.5x
, p2(x) = 1 − p1(x), x ≥ 0.

Applying formula (3.172) and using p2(x) = 1 − p1(x) gives

E(ax ) = p1(x)
1

1.25
+ p2(x)

1

0.83333
.
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Fig. 3.13 E(ax ) versus
x in Example 3.11.
E(a0) = E(B)

( )E

( )xE a

x

Fig. 3.14 Changes in
pi (x), i = 1, 2 and
p1(x) − p2(x), x > 0,
in Example 3.11

1 2( ) ( )p x p x−

2 ( )p x

1( )p x
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From (3.161) the expected value of the M/G/1 busy period with multi-
ple Poisson inputs is E(B) = 0.9333. We see from a plot that E(ax ) >

E(B), x > 0, E(a0) = E(B) and limx→∞ E(ax ) = 1 (Fig. 3.13). Moreover
limx→∞ pi (x) = 0.5, i = 1, 2 (Fig. 3.14). These observations are readily
verified analytically. The growth of E(ax ) as x increases is due to the fact
that E(γx ) = 1/μi independent of x , implying that the evolution of E(ax )

on (0, ∞) is determined by the pi (x)s which do change as x increases. (In
examples where E(γx ) depends on x the properties of E(ax ) would be dif-
ferent.)

3.9 M/G/1: Wait-Number Dependent Service

Arrivals occur at Poisson rate λ. The queue discipline is FCFS. The service
time is denoted as S(Nq) where Nq := number of customers left waiting in
the queue just after a start of service. Thus Nq ∈ {0, 1, . . .}. For exposition,
we assume there are two different types of service. Let

S(Nq) =
{

S0, if Nq = 0,

S, if Nq = 1, 2, . . . .

Let P(S0 ≤ x) = B0(x), B0(x) = 1 − B0(x), P(S ≤ x) = B(x), B(x) =
1 − B(x). Denote the steady-state wait before service as Wq having cdf
P(Wq ≤ x) = F(x) and mixed pdf {P0, f (x)}x>0 wherever d

dx F(x)

(= f (x)) exists.
We represent this M/G/1 queue by M/G(Nq )/1. The analysis utilizes the

construction of a sample path of the virtual wait {W (t)}t≥0 by applying the
definition of virtual wait literally. The virtual wait W (t) at instant t , is defined
as the time that a potential (would-be) arrival at t must wait before starting
service. The virtual wait is a continuous-state continuous-time process. Its
value at any instant t is conditional on an arrival occurring at instant t .

Remark 3.21 In order to validate the LC method immediately after its dis-
covery in 1974, the author applied LC to derive {P0, f (x)}ẋ>0 in M/G(Nq )/1
(and in several other queueing models in the literature; and in multiple-server
state-dependent queues in his original Ph.D. thesis topic, where solutions
had been derived using Lindley recursions and embedded Markov chains
[48, 49]). The author included an LC analysis of M/G(Nq )/1 in his Ph.D.
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thesis (pp. 206–213 in [11]). The results agreed with the classically-based
analysis of M/G(Nq )/1 in C.M. Harris’s 1966 Ph.D. thesis [85] and in C.M.
Harris’s 1967 journal article [86]. (See also Example 5 in [51].)

3.9.1 Sample Path of {W(t)}t≥0

Consider Fig. 3.15. The first customer C1 arrives, initiates a busy period and
receives a service time S0, since zero customers are left behind in the queue
when C1 starts service. Customer C2 arrives at t− during C1’s service time
and is allotted a “virtual” service time S, although C2’s actual service time
is not known until later at C2’s start-of-service instant. The reason is that the
virtual wait may be considered to be the answer to the following question
asked a non-countably infinite number of times, i.e., at every instant t ≥ 0:
“How long would a new arrival at instant t have to wait before its start-of-
service instant?” The answer to this question forces us to allot service time S
to C2 at its arrival instant. That is, a would-be new arrival immediately after

0

W(t)

Time 

x

Busy Period

0
S

0
S

S

S

S

1
C

2
C

3
C

0S

4
C

Fig. 3.15 Sample path of {W (t)}t≥0 in M/G(Nq)/1 during a busy period. Shows
jumps of size S0 from level 0 and size S from positive levels. Illustrates a double
jumps in the virtual wait {W (t)}t≥0
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C2’s arrival, would force C2 to start service with at least one customer left
waiting in the queue. In other words, if C2 arrives at t−, the virtual wait at t
is the time that a would-be new arrival would have to wait before service.

Suppose, as depicted in Fig. 3.15, zero customers arrive during C2’s wait.
Then at C2’s start-of-service instant, C2 must receive an actual service time
S0. This cancels S assigned at C2’s arrival epoch, and substitutes an actual
service time S0. The SP jumps both downward to level 0, and upwards by an
amount S0, at the start-of-service instant of C2. All SP upward jumps from
level 0 are =

dis
S0, and all SP upward jumps from positive levels are =

dis
S.

At instants like the start-of-service instant of C2 the SP makes a dou-
ble jump (for other examples of double jumps see Examples 2.2 and 2.3 in
Sect. 2.3, and Figs. 2.3, 2.5 and 2.6 in Chap. 2).

Next we discuss and derive the steady-state distribution of the virtual wait
(in contrast to workload).

3.9.2 Integral Equation for PDF of Virtual Wait

Consider a sample path of {W (t)}t≥0 and fix level x > 0 in the state space
(Fig. 3.15). The SP downcrossing rate of x has two components:

1. f (x) by Theorem 1.1,
2. λB(x) f̃ (λ) due to SP downward jumps similar to that at the start-of-

service instant of C2. Here f̃ (s) :=
∫∞

y=0 e−sy f (y)dy, s > 0, is the Laplace

transform of f (x), and f̃ (λ) = f̃ (s)|s=λ. ( f̃ (s) is also denoted by L f (s)
or other symbols; Sect. 3.4.4 briefly discusses the Laplace transform.)

In component 2, S must be greater than x in order for a downcrossing of
x to occur at instants such as the start of service of C2 in Fig. 3.15. The rate
of such downcrossings is

λP(S > x, and zero customers arrive in a waiting time)

= λP(S > x)P(zero customers arrive in a waiting time)

= λP(S > x)

∫ ∞

y=0
e−λy f (y)dy = λB(x) f̃ (λ),

by independence of S and the arrival stream. The total downcrossing rate of
x is

f (x) + λB(x) f̃ (λ), x > 0. (3.173)

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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The SP upcrossing rate of x has three components:

1. λB0(x)P0, due to arrivals when the system is empty,
2. λ

∫ x
y=0 B(x − y) f (y)dy, due to arrivals when the virtual wait is y ∈

(0, x),
3. λB0(x) f̃ (λ), due to arrivals that must wait a positive time and have

zero customers arrive behind them during their wait in queue. The total
upcrossing rate is

λB0(x)P0 + λ

∫ x

y=0
B(x − y) f (y)dy + λB0(x) f̃ (λ). (3.174)

Rate balance across level x equates (3.173) and (3.174), leading to the
integral equation for f (·),

f (x) = λB0(x)P0 + λ
∫ x

y=0 B(x − y) f (y)dy

+λ
(
B0(x) − B(x)

) · f̃ (λ), x > 0.
(3.175)

3.9.3 Exponential Service

Assume B0(x) = e−μ0x , B(x) = e−μx , x > 0, and let ρ0 = λ
μ0

, ρ = λ
μ . Then

(3.175) reduces to

f (x) = λe−μ0x P0 + λ
∫ x

y=0 e−μ(x−y) f (y)dy

+λ
(
e−μ0x − e−μx

) · f̃ (λ), x > 0.
(3.176)

Applying differential operator 〈D + μ0〉〈D + μ〉 to both sides of (3.176)
yields the second order differential equation with constant coefficients

〈D2 + (μ0 + μ − λ)D + μ0(μ − λ)〉 f (x) = 0, (3.177)

with general solution

f (x) = ae−(μ−λ)x + be−μ0x , x > 0, (3.178)

assuming μ0 �= μ − λ �= 0. From the first term of formula (3.178), a neces-
sary condition for stability is λ < μ, since necessarily f (∞) = 0.
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Using the initial condition f (0) = λP0, substituting f (y) from (3.178)
into (3.176), and equating coefficients of common exponents, we obtain the
parameters in (3.178) as

P0 = 1 − ρ

1 − ρ + ρ0 + ρ2
0 − ρ0ρ

, (3.179)

and

a = −λρ2
0 P0

ρ0 − ρ − ρ0ρ
, b = λ(1 + ρ0)(ρ0 − ρ)P0

ρ0 − ρ − ρ0ρ
. (3.180)

Expected Busy Period
The rate at which the SP makes left-continuous hits of level 0 from above is
f (0) = λP0 (Fig. 3.15). Hence the expected busy period is, from (3.82),

E(B) = 1 − P0

λP0
= ρ0 + ρ2

0 − ρ0ρ

λ(1 − ρ)
. (3.181)

As a mild check on E(B), set ρ0 = ρ = λ
μ . Then the model reduces to a stan-

dard M/M/1 queue. Formula (3.181) reduces to E(B) = 1
μ−λ , corresponding

to E(B) for the standard M/M/1 queue.

Distribution of Number in System
Applying formula (3.76) and using (3.178) and (3.180) we obtain the steady-
state probability of n customers left in the system at departure instants,

dn =
∫ ∞

x=0

e−λx (λx)n−1

(n − 1)! f (x)dx

=
ρ0 ·

(
ρn−1

0 − ρρn−2
0 − ρn(1 + ρ0)

n−1
)

(ρ0 − ρ − ρ0)(1 + ρ0)n−1 P0, n = 1, 2, . . . , (3.182)

where P0 (=d0) is given in (3.179). The values in (3.182) agree with the
values of dn obtained in the earlier works [85, 86].

3.9.4 Workload

In the standard M/G/1, {W (t)}t≥0 is the same as the workload at instant t .
In M/G(Nq )/1, the workload is not known at the instant just after an arrival,
because the added service time is either S0 or S depending on future arrivals
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during its wait before service. We can determine the probabilities of these
two service times, which allows us to proceed with the analysis.

Consider the workload process which we designate {Wwk(t)}t≥0. Then
Wwk(t) := amount of remaining work in the system at time t . Denote the
steady-state pdf of {Wwk(t)}t→∞ by

{
P0,wk, g(x)

}
x>0 .

In order to construct a sample path, we ask the question immediately after
an arrival when the actual workload is y: “What is the workload just after
the arrival?”. The answer logically causes the SP to make a jump of size S
with probability (1 − e−λy) (P(at least 1 arrival in time y)), or size S0 with
probability e−λy (P(no arrivals in time y)). This leads to the upcrossing rate
of level x as the right side of (3.183) below. The downcrossing rate of x is
g(x). Rate balance across level x gives

g(x) = λB0(x)P0,wk + λ

∫ x

y=0
B(x − y)(1 − e−λy)g(y)dy

+λ

∫ x

y=0
B0(x − y)e−λyg(y)dy. (3.183)

If service time S0 =
dis

Expμ0 , S =
dis

Expμ then B0(z) = e−μ0z , B(z) =

e−μz , z > 0, in (3.183). Applying 〈D + μ〉 〈D + μ0〉 to the resulting integral
equation yields a second order differential equation with a variable coefficient
for g(x)

〈
D2 + (μ0 + μ − λ)D + μ0(μ − λ) − (μ − μ0)λe−λx

〉
g(x) = 0.

The solution is given by

g(x) = e
1
2 (−μ−μ0+λ)x

(
a BesselJ

(
−|−λ−μ+μ0|

λ ,
2
√

μ0−μ e− 1
2 λx

√
λ

)

+ b BesselY

(
−|−λ−μ+μ0|

λ ,
2
√

μ0−μ e− 1
2 λx

√
λ

))
,

(3.184)

where a, b are constants to be determined using the initial conditions g(0) =
λP0,wk , g′(0) = −(μ0 − λ)λP0,wk ; and BesselJ := first kind (ν = 1), BesselY
:= second kind (ν = 2), which satisfy Bessel’s equation

xy′′ + xy′ + (−ν2 + x2)y = 0, ν = 1, 2,

(see Bessel functions in Maple 17 software). We solve for P0,wk using the
normalizing condition P0,wk + ∫∞

x=0 g(x)dx = 1. Due to the Bessel functions
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in (3.184), it is difficult to get analytic solutions for a, b and P0,wk . However,
one can obtain numerical solutions when the input parameters λ, μ, and μ0
have numerical values.

3.10 M/D/1 Queue

The M/D/1 queue is a classical model in queueing theory, first analyzed by
A.K. Erlang in 1909 [72].

Here we use LC to derive the cdf of the wait before service, F(x), x ≥ 0,
the mixed pdf {P0, f (x)}x>0, where f (x) = d F(x)/dx , x > 0, wherever the
derivative exists. We also obtain the probability distribution of the number of
customers in the system Pn , n = 0, 1, 2, . . ., and related quantities.

The arrival stream is Poisson at rate λ. The service time for each customer
is deterministic S = D > 0. The traffic intensity is ρ = λE(S) = λD < 1,
implying stability. Consider the virtual wait {W (t)}t≥0, (Fig. 3.16) and the
actual waiting times {Wn}n=1,2,.... Denote P(Wn ≤ x) by Hn(x), x ≥ 0 and
limn→∞ Hn(x) = H(x), x ≥ 0. Due to Poisson arrivals (e.g., [140])

F(x) ≡ lim
t→∞ P(W (t) ≤ x) = lim

n→∞ P(Wn ≤ x) = H(x), x ≥ 0.

The {W (t)}t≥0 ↔ {Wn}n=0,1,... connection ensures that a study of the virtual
wait yields considerable information about both processes.

We define f (x), x > 0, to be right continuous, and for notational conve-
nience f (0) = f (0+) which adds zero probability to F(0). The probability

D

0

W(t)

Time

Fig. 3.16 Sample path of {W (t)}t≥0 in M/D/1 queue. Black circles at peaks indicate
right continuity
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of a zero wait is P0 = F(0) = 1 − ρ = 1 − λD. The mixed pdf {P0, f (x)}x>0
is related to F(x) by

F(x) = P0 +
∫ x

y=0
f (y)dy, x ≥ 0, F(∞) = P0 +

∫ ∞

y=0
f (x)dx = 1.

(3.185)

3.10.1 Properties of PDF and CDF of Wait

We use LC to derive three properties of {P0, f (x)}x>0 and a property of
F(x), x ≥ 0.

Proposition 3.9 For the M/D/1 queue: (1) {P0, f (x)}x>0 has exactly one
atom, which is at x = 0; (2) f (x) has a downward jump discontinuity of size
λP0 at x = D; (3) f (x) is continuous for all x > 0, x �= D.

Proof Consider sample paths of {W (t)}t≥0 in Figs. 3.16 and 3.17.

1. State {0} is an atom since a sample path spends a positive proportion of
time in {0} (a.s.), namely P0 = 1 − λD > 0 (from (3.62) in Sect. 3.4).
The state space S = [0, ∞) has no other atoms, since the proportion of
time the SP spends in each state x > 0, is 0.

2. Consider state-space levels D and D − ε, 0 < ε < D. Fix time t > 0.
T b

t (D) is the number of tangents of level D from below during (0, t)

D
D ε−

0
t

t ε+

SP

Time

Fig. 3.17 Sample path of {W (t)}t≥0 in M/D/1 showing levels D and D − ε and
instants t , t + ε. See Proposition 3.7, Proof, Part (2)
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(see Fig. 2.13 (row 2, column 2) in Sect. 2.5; and Examples 2.4 and 2.5 in
Sect. 2.4.10). We have

Dt+ε(D − ε) =
Dt (D)+T b

t (D)∑

j=1

I j (D, ε); (3.186)

where I j (χ, ε) = 1 if the j th downcrossing or tangent of level χ from
below, is followed by a downcrossing of level χ − ε exactly ε time
units later, and I j (χ, ε) = 0 otherwise. Due to the memoryless prop-
erty P(I j (χ, ε) = 1) = e−λε, χ > 0. Set χ = D; I j (D, ε) is indepen-
dent of Dt (D) + T b

t (D), and E(I j (D, ε)) = e−λε, j = 1, 2, . . .. Taking
expected values on both sides of (3.186) gives

E(Dt+ε(D − ε)) = E(Dt (D) + T b
t (D))e−λε. (3.187)

By Corollary 3.2 of Theorem 3.3 in Sect. 3.2.5

lim
t→∞

E(Dt (D))

t
= f (D) and lim

t→∞
E(Dt (D − ε))

t
= f (D − ε).

Also, limt→∞
E
(
T b

t (D)
)

t = λP0, due to the one-to-one correspondence
between zero-wait arrivals and tangents of level D from below. Dividing
both sides of (3.187) by t , writing 1

t = 1
t+ε · t+ε

t on the left side, and letting
t → ∞ gives

f (D − ε) = ( f (D) + λP0)e
−λε.

Letting ε ↓ 0 yields, since f (D) = f (D+),

f (D−) − f (D+) = λP0. (3.188)

3. Case x > D. With probability 1, sample paths are not tangent to level x
due to continuous inter-arrival times (=

dis
Expλ). Let ε be < (x − D) and

small. Then

Dt+ε(x − ε) =
Dt (x)∑

j=1

I j (x, ε) +
At (ε)∑

j=1

ν j (ε), (3.189)

where ν j (ε) = 1 if an arrival occurs when W (t) = ξ ∈ (x − ε − D, x −
D) causing a jump ending at ξ + D ∈ (x − ε, x). Note that P(ν j (ε) = 1)

=
∫ x−D

x−ε−D f (y)dy = ε f (ξ∗), ξ∗ ∈ (x − D − ε, x − D). But f (ξ∗) <

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2


3.10 M/D/1 Queue 135

λ, (see Proposition 3.7 in Sect. 3.4.22). So P(ν j (ε) = 1) < ελ. Thus
E(ν j (ε)) < ελ, which tends to 0 as ε ↓ 0.
Taking expected values in (3.189) and dividing both sides by t , gives

E (Dt+ε(x − ε)) = E (Dt (x)) · e−λε + E(At ) · E(ν j (ε))

lim
t→∞

E (Dt+ε(x − ε))

t
= lim

t→∞
E (Dt (x)) e−λε

t
+ lim

t→∞
λt E(ν j (ε))

t
f (x − ε) = f (x)e−λε + λE(ν j (ε)).

Letting ε ↓ 0 gives f (x−) = f (x).

3. Case 0 < x < D. If 0 < x < D then, similar to Eq. (3.186) with D
replaced by x , and omitting T b

t (x), we have

Dt+ε(x − ε) =
Dt (x)∑

j=1

I j (D, ε).

Taking expected values on both sires, dividing by t , letting t → ∞, then
letting ε ↓ 0, gives f (x−) = f (x). �

Proposition 3.10 (1) F(x), x ≥ 0, has a jump discontinuity at x = 0 of size
P0; (2) F(x) is continuous for all x > 0.

Proof (1) F(x) has a discontinuity at x = 0, since 0 is an atom having prob-
ability F(0) = P0. (2) Fix x > 0 in the state space. Then x is not an atom
(Proposition 3.9 Part (1)); therefore P({x}) = 0. That is, x is not a point of
increase in probability. Thus x is a point of continuity of F(·). �

3.10.2 Integral Equation for PDF of Wait

Applying the alternative form of the basic LC integral equation (3.44) with
B(x − y) = 0 if x − y < D and B(x − y) = 1 if x − y ≥ D, we immediately
write an equation for f (x) in terms of F(·), which is a differential equation
for the cdf F(x) since f (x) = F ′(x),

f (x) = λF(x) − λF(x − D), x > 0. (3.190)

To explain (3.190) in terms of LC, consider a sample path of {W (t)}t≥0
(Fig. 3.16). In (3.190) the left side f (x) is the SP downcrossing rate of level
x . SP jumps occur at rate λ, all upward of size D. On the right side of (3.190),
the first term λF(x) is the rate of SP jumps that start in state set [0, x]. The
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second term, −λF(x − D) subtracts off the rate of jumps that start in [0, x]
and end below x , because jumps starting below x − D cannot upcross x .
Thus the right side is the upcrossing rate of x . Rate balance across level x
then yields (3.190).

Remark 3.22 The properties in Proposition 3.9, and Eq. (3.190) are readily
inferred intuitively upon considering a sample path (Fig. 3.16), and applying
LC interpretations of transition rates. Such intuitive insights often lead to
formal proofs as in Proposition 3.9.

3.10.3 Analytic Solution for CDF and PDF of Wait

CDF of Wait We give the solution of (3.190), for completeness. For x ∈
[0, D), F(x − D) ≡ 0; thus f (x) = λF(x), or

F
′
(x) − λF(x) = 0,

having solution
F(x) = A0eλx , x ∈ [0, D)

where A0 is a constant. Letting x ↓ 0, gives the constant A0 = P0 = 1 − ρ.
Thus

F(x) = P0eλx , x ∈ [0, D).

For x ∈ [D, 2D), (3.190) is equivalent to

F
′
(x) − λF(x) = −λP0eλ(x−D), x ∈ [D, 2D).

Multiplying both sides by the integrating factor e−λ(x−D) and then integrating
both sides over [D, x) yields the solution up to a constant

F(x) = −P0λ(x − D)eλ(x−D) + A1eλ(x−D), x ∈ [D, 2D).

The constant A1 is determined from the continuity of F(x), x > 0 (Proposi-
tion 3.10). Thus F(D−) = F(D), or A1 = P0eλD resulting in the solution

F(x) = P0

(
−λ(x − D)eλ(x−D) + eλx

)
, x ∈ [D, 2D).

Mathematical induction on (3.190) yields the classical formula for the cdf of
wait originally derived in [72],



3.10 M/D/1 Queue 137

F(x) = P0

m∑

i=0

(−λ)i (x − i D)i

i ! eλ(x−i D), x ∈ [m, (m + 1)D), m = 0, 1, 2, . . . (3.191)

An alternative form of (3.191) is (e.g., p. 385 in [84]),

F(x) = P0

�x/D�∑

i=0

(−λ)i (x − i D)i

i ! eλ(x−i D), x ≥ 0, (3.192)

where �α� := greatest integer ≤ α.

PDF of Wait The pdf f (x) may be obtained by differentiating F(x) with
respect to x . More simply, we obtain f (x) by substituting (3.191) into (3.190)
giving

f (x) = λP0eλx , 0 < x < D

and for x ∈ [m D, (m + 1)D), m = 0, 1, 2, . . .,

f (x)

= λP0

m∑
i=0

(−λ)i (x−i D)i

i ! eλ(x−i D) −
m−1∑
i=0

(−λ)i (x−(i+1)D)i

i ! eλ(x−(i+1)D)

= λP0(−λ)m (x−m D)m

m! eλ(x−m D)

+
m−1∑
i=0

(−λ)i

i ! [(x − i D)i eλ(x−i D) − (x − (i + 1)D)i eλ(x−(i+1)D)].
(3.193)

The pdf f (x) in (3.193) has a discontinuity at x = D (Proposition 3.9 Part
(2)). That is f (D−) = λP0eλD , and f (D−) − f (D) = λP0, illustrating that
f (x) has a downward jump of size λP0 at x = D. Moreover f (x) is continuous
for all other x > 0 (see Fig. 3.18). In Fig. 3.18 there is a concave wave in f (x)

for x ∈ [D, 2D), the waviness dampens to the right of x = 2D. The cdf F(x),

Fig. 3.18 PDF f (x) of
wait in M/D/1:
λ = 0.95, D = 1,
ρ = 0.95 (high traffic).
Shows discontinuity and
downward jump of size
λP0 at x = D; and
extreme waviness in
right neighborhood
[D, 2D)
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Fig. 3.19 CDF F(x) of
wait in M/D/1:
λ = 0.95, D = 1.
Shows continuity of
F(x), x > 0; and
decrease in slope of
F(x) at x = D

for the same example, is given in formula (3.191) and plotted in Fig. 3.19,
where the continuity of F(x), x > 0, and discontinuity of d

dx F(x)|x=D are
evident.

Remark 3.23 An LC examination of a typical sample path of {W (t)}t≥0
suggests an isomorphism: {sample-path properties} ↔ {analytical properties
of f (x) and F(x)}.

3.10.4 Probability Distribution of Number in System

Let N be the number of customers in the system at an arbitrary time
point and let Wq (≥0) be the wait before service, in the steady-state. Let
Pn := P(N = n). Consider an , dn , the probabilities that the number of cus-
tomers in the system is n just before an arrival, and just after a depar-
ture, respectively. Due to Poisson arrivals, an = Pn = dn , n = 0, 1, 2, . . ..
Arrivals “see” n customers in the system iff Wq ≥ 0 and Wq ∈ ((n − 1)D,

nD], n = 0, 1, 2, . . .. Thus

an = F(nD) − F((n − 1)D) = Pn = dn, n = 0, 1, 2, . . . .

From (3.191)

P0 = F(0) − F(−D) = F(0) = P0

P1 = F(D) − F(0) = P0eλD − P0 = P0(e
λD − 1)

P2 = F(2D) − F(D) = P0eλD(−λD + eλD − 1)

· · ·
Pn = F(nD) − F((n − 1) D), n = 0, 1, 2, . . . (3.194)
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The cdf of N is

P(N ≤ n) =
n∑

i=0

Pi = F(nD), n = 0, 1, 2, . . . , (3.195)

where F(nD) is computed using (3.191) or (3.192).

3.11 M/Discrete/1 Queue Aka M/Dn/1

We look at the M/Dn/1 queue, which is an M/G/1 queue with multiple Poisson
inputs where the service times are discrete quantities {Dn}n=1,2,... (also called
an M/Discrete/1 queue). We study the wait before service Wq , and derive
analytical properties of its cdf F(x), x ≥ 0, and pdf {P0, f (x)}x>0, where
f (x) = d

dx F(x), x > 0, wherever the derivative exists. Consider a typical
sample path of the virtual wait {W (t)}t≥0 (Fig. 3.20).

Customers arrive in a Poisson stream at rate λ at a single server. For each
arrival,

P(S = Di ) = pi ,

N∑

i=1

pi = 1,

where Di > 0, i = 1, . . . , N , and N is a positive integer. Then E(S) =∑N
i=1 pi Di . Without loss of generality, reorder the Di s if necessary, such

that

D3

D2

D1

0
Time t

W(t)

Fig. 3.20 Sample path of {W (t)}t≥0 in M/{Dn}/1 queue with N = 3 service levels
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0 ≡ D0 < D1 < · · · < DN < DN+1 ≡ ∞.

Customers that receive a service time Di arrive at rate λpi . The traffic inten-
sity is ρ = λE(S) < 1 (stability). Due to Poisson arrivals (e.g., [140]),

lim
t→∞ P(W (t) ≤ x) = lim

n→∞ P(Wn ≤ x),

where {Wn}n=1,2,... is the process of actual (arrival-point) waits.
We define f (x), x ≥ 0, as right continuous. The probability of a zero wait

is

P0 ≡ F(0) = 1 − ρ = 1 − λ

N∑

i=1

Di pi .

The cdf and pdf are related by

F(x) = P0 +
∫ x

y=0
f (y)dy, F(∞) = P0 +

∫ ∞

y=0
f (x)dx = 1. (3.196)

Remark 3.24 The arrival stream may be viewed in two distinct ways:

1. A homogeneous class of customers arrives at rate λ. For each arrival the
service time S has a mixture probability distribution with components Di

and mixture probabilities (weights) pi ,
∑N

i=1 pi = 1.
2. N classes of customers arrive in independent Poisson processes at rates

λi ≡ λpi ,
∑N

i=1 pi = 1, and receive independent service times Di , i =
1, . . . , N , respectively. This way shows that M/Dn/1 is an M/G/1 queue
with multiple Poisson inputs.

These two viewpoints yield the same steady-state distribution of wait, as

reflected in the two equivalent forms for the traffic intensity ρ = λ
(∑N

i=1

pi Di ) =
∑N

i=1 λi Di , where λi = λpi (see Sect. 5.3.4, p. 319 in [125]).

Remark 3.25 A similar analysis of the M/Dn/1 queue applies if N = ∞.

3.11.1 Properties of PDF and CDF of Wait

The steady-state distribution of wait has analytical properties given in Propo-
sition 3.11.

Proposition 3.11 In the M/Dn /1 queue, {P0; f (x), x > 0}: (1) has exactly
one atom which is at x = 0 (state {0} is an atom); (2) has exactly N down-
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t ε+

SP

W(t)

0

Time

i
D

ε−iD

1−iD

1D
2

D

t

Fig. 3.21 Sample path in M/{Dn}/1 showing levels Di , Di − ε and instants t , t + ε.
See Proposition 3.11, Proof, Part (2)

ward jump discontinuities of sizes λpi P0 at x = Di , i = 1, . . . , N ; (3) is
continuous for all x > 0, x �= Di , i = 1, . . . , N .

Proof Check a typical sample path of {W (t)}t≥0 (Fig. 3.20).

1. State {0} is an atom since a sample path spends a positive proportion
of time in {0} (a.s.), namely P0 = 1 − λ

∑N
i=1 pi Di . Each sojourn time

in {0} =
dis

Expλ. There are no other atoms in the state space, since the

proportion of time that a sample path spends in each state x > 0, is 0.

2. The proof is similar to the proof of Part (2) in Proposition 3.9, Sect. 3.10,
upon replacing D, D − ε by Di , Di − ε; λ by λpi ; and where ε ∈
(0, Di − Di−1), i = 1, . . . , N ; (as in Fig. 3.21). Using similar reasoning
as in Proposition 3.9 we obtain

f (Di − ε) = ( f (Di ) + λpi P0)e
−λε, i = 1, . . . , N

where λpi P0 is the rate at which the SP makes a tangent to level Di from
below, which is the same as the arrival rate of type-i customers when the
system is empty (rate of SP jumps of size Di from level 0). Letting ε ↓ 0
results in

f (D−
i ) − f (Di ) = λpi P0, i = 1, . . . , N .

verifying downward jumps at Di of size λpi P0, i = 1, . . . , N .
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3. The proof is similar to the proof of Part (3) in Proposition 3.9. We thus
obtain for x > 0, x /∈ {Di }i=1,...,N

f (x − ε) = f (x) · e−λε.

Letting ε ↓ 0 yields f (x−) = f (x) so that x is a point of continuity. �

Remark 3.26 From Part (2) of Proposition 3.11, the sum of the downward
jumps at points of discontinuity of the pdf f (x) is λP0

∑N
i=1 pi = λP0. This

formula is the same as the size of the single downward jump in the pdf of
wait in the M/D/1 model, independent of N .

Proposition 3.12 In the M/{Dn}/1 queue the steady-state cdf of wait F(x),

x ≥ 0, has a single jump discontinuity at x = 0 of size P0, and is continuous
for all x > 0.

Proof F(·) has a jump discontinuity at level 0, since {0} is an atom having
probability P0 = F(0) (Proposition 3.11, Part (2)). Fix x > 0 in the state space.
Then x is not an atom (Proposition 3.11, Part (3)). Hence x has probability
0. Thus x is a point of continuity of F(·). �

3.11.2 Expected Busy Period

From (3.80) the expected busy period is

E(B) = E(S)

1 − λE(S)
= 1 − P0

λP0
=

∑N
i=1 Di pi

1 − λ
∑N

i=1 pi Di
.

Another way to compute P0 is, letting I denote an idle period,

P0 = E(I)

E(I) + E(B)
=

1
λ

1
λ +

∑N
i=1 pi Di

1−λ
∑N

i=1 pi Di

= 1 − λ

N∑

i=1

pi Di .

3.11.3 Integral Equation for PDF of Wait

The alternative form of the LC integral equation for M/G/1 (3.44) leads
immediately to an “integral” equation for the pdf f (x) (differential equation
for cdf F(x)),
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f (x) = λF(x) − λ

N∑

i=1

pi F(x − Di )

= λF(x) −
N∑

i=1

λi F(x − Di ), x > 0. (3.197)

To explain (3.197) consider a virtual-wait sample path (Fig. 3.20). In
(3.197), the left side f (x) is the downcrossing rate of level x . SP jumps
occur at rate λ =∑N

1=1 λi ; having size Di with probability pi = λi/λ. On
the right side, the first term λF(x) is the rate at which SP jumps start in state-
space set [0, x]. The second term, −λ

∑N
i=1 F(x − Di )pi , subtracts off the

rate of those jumps which start in state set [0, x] and end below level x . SP
jumps of size Di that start below x − Di , cannot upcross level x . Thus the
right side is the sample-path upcrossing rate of x . Rate balance across level
x gives (3.197).

3.11.4 Solution for CDF of Wait

Differential equation (3.197) for F(x) is solvable. However the form of F(x)

differs in the state-space intervals

[0, D1), [D1, 2D1),

. . . , [ j11 D1, D2), [D2, ( j11 + 1)D1), [( j11 + 1)D1, ( j11 + 2)D1),

etc., where j11 =
⌊

D2
D1

⌋
(greatest integer ≤ D2

D1
). At D3 in the state space, we

need to consider j12 =
⌊

D3
D1

⌋
and j22 =

⌊
D3
D2

⌋
, etc. This makes the solution

procedure complex. We must keep track of the positions in the state space
of the break points where the functional form changes, by considering the
relative sizes of D1, D2, . . . , DN . Section 3.11.5 discusses another approach
to solve for F(x), x ≥ 0.

3.11.5 Alternative Approach for CDF of Wait

We can obtain a solution for F(x), x ≥ 0, using a “specialized” M/Dn/1
queue. Assume, without loss of computational accuracy, that all Di s are
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rational numbers. (Rationals can approximate irrational numbers arbitrarily
closely.). Let

D1 = k1 D, D2 = k2 D, . . . , DN = kN D,

where D = gcd{D1, . . . , DN } (gcd denotes greatest common divisor); and
0 < k1 < k2 < · · · < kN are positive integers.

Consider an M/Dn/1 queue where Di = i D, i = 1, . . . , N . We call this
model an M/{i D}/1 queue. It is somewhat easier to obtain an analytical solu-
tion for the cdf and pdf of wait in M/{i D}/1 than in M/Dn/1. Once a solution
for M/{i D}/1 is obtained, then adjust the arrival rates for customers that
get service times ki D (=Di ) so that they correspond to those of the orig-
inal M/Dn/1 queue. The arrival rates for intermediate service time values
{i D|i D �= Di , i = 1, . . . , N } are set to 0 in that solution. The resulting cdf
for M/{i D}/1 is equal to F(x), x ≥ 0, for the original M/Dn /1 model (i.e.,
the solution of (3.197)).

Thus M/{i D}/1 (where D = gcd{D1, . . . , DN }) may be considered as
equivalent M/Dn/1. Also, it is more amenable analytically and computa-
tionally. We next examine the M/{i D}/1 queue.

3.12 M/{i D}/1 Queue

We analyze the M/{i D}/1 queue, mindful of its close relationship to
M/Dn /1 (Sect. 3.11.5).

In M/{i D}/1 there are N types of arrivals at Poisson rates λi , i = 1, . . . , N ,
where N is a positive integer. Customers of type i receive a service time
S = i D, where D > 0 is fixed. Equivalently, customers arrive at Poisson
rate λ and get S = i D with probability pi ,

∑N
i=1 pi = 1. Thus λpi ≡ λi . The

expected service time is E(S) =
∑N

i=1 i Dpi . Assume λE(S) < 1 (stability).
Let P0 denote the steady-state probability that the system is empty. Then

P0 = 1 − λE(S) = 1 − λ

N∑

i=1

i Dpi = 1 −
N∑

i=1

i Dλi . (3.198)

The M/D/1 queue is a special case of M/{i D}/1 with N = 1. The M/{i D}/1
queue is a special case of M/{Dn}/1, with Dn = kn D, n = 1, . . . , N , kn is
an integer in the set {1, . . . , N }, and D = gcd{D1, . . . , DN } (gcd := great-
est common divisor). Paradoxically, M/{i D}/1 may also be considered as a
generalization of M/Dn /1! (Sect. 3.11.5).
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3.12.1 Integral Equation for CDF of Wait

Let Wq denote the wait before service in the steady state, having cdf F(x) ≡
P(Wq ≤ x), x ≥ 0 and pdf f (x) = d

dx F(x), x > 0, wherever the derivative
exists. We apply the ‘alternative LC’ Eq. (3.43) (see also Eq. (3.190) for the
M/D/1 queue) relating f (x) and F(x) of wait to obtain

f (x) = λF(x) − λ

N∑

i=1

F(x − i D)pi = λF(x) −
N∑

i=1

λi F(x − i D), x > 0.

(3.199)
Consider the virtual wait process {W (t)}t≥0 (similar to Fig. 3.20). To

explain (3.199) the left side is the sample path downcrossing rate of x . On
the right side, the term λF(x) is the rate of jumps that start at levels in [0, x].
The term −∑N

i=1 λi F(x − i D) subtracts off the rate of jumps that start at
levels in [0, x] and end below x . For example, λi F(x − i D) is the rate of
type-i jumps of size i D that do not upcross x , since they start below x − i D.
Hence, the right side is the upcrossing rate of x . Equation (3.199) results by
rate balance across level x .

3.12.2 Recursion for CDF of Wait

We now outline a procedure to solve (3.199) recursively for F(x), x ∈
[m D, (m + 1)D), m = 0, 1, 2, . . .. Let

F(x) ≡ Fm(x), f (x) ≡ fm(x), x ∈ [m D, (m + 1)D), m = 0, 1, 2, . . .

and F−k(x) ≡ 0 if k is a positive integer (see Figs. 3.22 and 3.23). Then write
(3.199) as

fm(x) = λFm(x) −
N∑

i=1

λi Fm−i (x − i D),

x ∈ [m D, (m + 1)D), m = 0, 1, 2, . . . (3.200)

First, let us consider the state-space interval [0, D). The cdf F(x − D) = 0
if x − D < 0. For x ∈ [0, D), Eq. (3.200) reduces to

f0(x) = λF0(x), x ∈ [0, D),
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Fig. 3.22 PDF of wait
in M/{i D}/1 queue:
D = 1.0, four arrival
types (N = 4), λ = 0.2,
p1 = p4 = 0.01,
p2 = 0.39, p3 = .59.
Downward jumps at
x = 1, 2, 3, 4

Fig. 3.23 CDF of wait
in M/{i D}/1 queue.
D = 1.0, N = 4,
λ = 0.2,

p1 = p4 = 0.01, p2 =
0.39, p3 = 0.59. The
slope decreases abruptly
at x = 1, 2, 3, 4

or differential equation

F ′
0(x) = λF0(x), x ∈ (0, D),

with solution, using the initial condition F(0) = P0,

F0(x) = P0eλx , x ∈ [0, D).

Next, on interval [D, 2D), Eq. (3.200) reduces to

f1(x) = λF1(x) − F0(x − D)λ1, x ∈ [D, 2D),

or F ′
1(x) = λF1(x) − P0eλ(x−D)λ1, x ∈ [D, 2D).
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The last equation is a differential equation in F1(x), which is readily solved
up to a constant, by using continuity F0(D−) = F1(D), resulting in

F1(x) = P0

(
eλx + λ1(D − x)e−λ(D−x)

)
, x ∈ [D, 2D).

Imagine extending the domain of F0(x) to [0, ∞). The last equation can then
be written as

F1(x) = F0(x) + P0λ1(D − x)e−λ(D−x), x ∈ [D, 2D).

Similarly we obtain recursively

F2(x), x ∈ [2D, 3D), F3(x), x ∈ [3D, 4D), F4(x), x ∈ [4D, 5D),

where we extend the domains of Fm(x) to [m, ∞), m = 0, 1, . . .. The recur-
sive formulas in (3.201) below summarize the values of F(x) on state-
space interval [0, 5D) by specifying the corresponding functions on intervals
[0, D), …, [4D, 5D), respectively.

F0(x) = P0eλx ,

F1(x) = F0(x) + P0λ1(D − x)e−λ(D−x),

F2(x) = F1(x) + P0

(
λ2(2D − x) + λ2

1(2D−x)2

2!
)

e−λ(2D−x),

F3(x) = F2(x) + P0
(
λ3(3D − x) + λ2λ1(3D − x)2

+λ3
1(3D−x)3

3!
)

e−λ(3D−x),

F4(x) = F3(x) + P0

(
λ4(4D − x) + λ3λ1(4D − x)2 + λ2

2(4D−x)2

2!

+λ2λ
2
1(4D−x)3

3! + λ4
1(4D−x)4

4!
)

e−λ(4D−x).

(3.201)
The recursion (3.201) can be continued indefinitely. The general solution
appeared in an article in 2005 by J.F. Shortle and P.H. Brill (see [128]), and
is stated below in Sect. 3.12.3.
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3.12.3 Solution for CDF and PDF of Wait

Using mathematical induction, it can be shown that an analytical solution of
the indefinitely extended recursion (3.201) for the cdf of Wq is

Fm(x) = P0
∑m

i=0 e−λ(i D−x)
∑

L∈P(i)
(i D−x)|L|

H(L)

∏
j∈L λ j ,

x ∈ [m D, (m + 1)D), m = 0, 1, . . . ,
(3.202)

where: P(i) is the set of partitions of integer i ; L is a partition in P(i); r1 >

r2 > · · · > rd are the distinct integers in L with multiplicities n1, . . . , nd ,
respectively; H(L) ≡ n1! n2! · · · nd !; |L| = n1 + n2 + · · · + nd ;

∏
j∈L λ j

≡ λn1
r1 λn2

r2 · · ·λnd
rd . Also, if i = 0, then

∑

L∈P(0)

(i D − x)|L|

H(L)

∏

j∈L
λ j ≡ 1.

The pdf of wait is fm(x) = F ′
m(x). Differentiating (3.202) with respect to x ,

gives for x ∈ (m D, (m + 1)D), m = 0, 1, 2, . . .,

fm(x) = P0

m∑

i=0

e−λ(i D−x)
∑

L∈P(i)

(λ(i D − x) − |L|)(i D − x)|L|−1

H(L)

∏

j∈L
λ j .

(3.203)
As a mild check on the cdf of Wq in M/{i D}/1 given in (3.202), we obtain

from it the cdf of Wq in M/D/1 (formula (3.191)), namely

Fm(x) = P0
∑m

i=0 e−λ(i D−x) (i D−x)i

i ! λi = P0
∑m

i=0(−λ)i (x−i D)i

i ! e−λ(i D−x),

x ∈ [m D, (m + 1)D), m = 0, 1, . . . .

To explain, the latter M/D/1 formula it results since: (1) λ1 = λ and λi = 0,

i > 1; (2) for each i , the only partition in P(i) that contributes positive terms
is that of i 1s, {1, . . . , 1}; (3) each i yields one such partition with n1 = i ,
H(L) = i !, and

∏
j∈L λ j = λi .

Remark 3.27 In [128], formula (3.202) was derived by inversion of the
Laplace transform of wait (see Eq. (3.69). The inversion procedure is at least
as involved as the foregoing LC derivation. Moreover, it also requires the
induction step. The advantages of the LC approach are: (1) the analysis prior
to the induction step is intuitive and completely in the time domain; (2) the
effect on the solution, due to the discontinuities in f (x), and the continuity of
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F(x), is clear using LC; (3) since LC emphasizes sample paths, it enhances
intuitive understanding of the model dynamics, and suggests new avenues
for research.

3.13 M/G/1: Wait Related Reneging/Balking

We analyze an M/G/1 queue in which arrivals either: (1) join the system and
stay for full service, or (2) balk from joining the system or renege from the
waiting line, depending on their estimated (approximate) required arrival-
point wait and on their staying resolve (e.g., patience). We assume that the
arrivals to the system occur according to a Poisson process at rate λ, from a
homogeneous source.

Let {W (t)}t≥0 denote the virtual wait process, and τn the arrival time of
customer Cn , n = 1, 2, . . . (Fig. 3.24). Let the service time be

Sn =
{

S if Cn obtains full service,

0 if Cn balks/reneges before starting service
, n = 1, 2, . . . ,

where S has cdf B(x), x > 0, and B(x) = 1 − B(x), x ≥ 0, independent of
n. The arrival-point waiting time W (τ−

n ) (:=Wn) is the required wait before
service of C n, n = 1, 2, . . .. We assume that a system manager informs Cn

1
τ

2
τ 3

τ 5
τ

W(t)

S1

S2

SP

0

Time 

7
τ

Fig. 3.24 M/G/1 with wait-dependent reneging: busy period B, idle period I; stayers
arrive at τn , n = 1, 2, . . . ; balkers arrive at ×
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at time τ−
n , the estimated (approximate) waiting time Wn . Some arriving

customers will balk immediately upon arrival. Others will wait hoping that
the approximate wait is higher than the true wait, or that their patience will
endure the true wait, or joining has high personal priority. For example, a bus
terminal continuously displays electronically the (approximate) wait until
the next bus departure; a doctor’s office informs an arriving patient about the
(approximate) required wait to see the doctor; a telephone answering service
informs the caller about the (approximate) wait for the next available agent;
etc. If the customers are mechanical devices needing service, the manager
may accept or reject entrance to the system, according to the (approximate)
required wait before service.

Define, for n = 1, 2, . . .,

θn =
{

1 if Cn stays and receives full service,
0 if Cn balks from joining and is cleared.

(3.204)

Since the customer source is homogeneous, we define the common random
variable θ ≡ θn . Thus θ is a Bernoulli random variable taking the value 1
(stay), or 0 (balk).

Our aim here is to determine the steady-state mixed pdf of wait denoted
by {P0, f (x)}x≥0, where f (x) := pdf of customers who join and wait for
service; and related quantities.

3.13.1 The Staying Function R( y), y ≥ 0

For each y ≥ 0, we define the common conditional probabilities

R(y) := P(θ = 1|Wn = y), y ≥ 0,
R(y) := P(θ = 0|Wn = y), y ≥ 0,

(3.205)

independent of n = 1, 2, . . .. From (3.204)

R(y) + R(y) = 1, y ≥ 0; (3.206)

P(Cn stays|Wn = y) = R(y); P(Cn balks|Wn = y) = R(y).
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3.13.2 Sample Path of {W(t)}t≥0

The r.v., W (t), is the required wait until service of a would-be time-t arrival.
Consider a sample path of {W (t)}t≥0 (Fig. 3.24) and an arrival at τ−

n . If Wn=
y then the SP jump size =

dis
S having cdf B(·) with probability R(y), and

jump size = 0 with probability R(y). A would-be arrival at time τn just after a
balker/reneger arrives (and is cleared), also would have a required wait y until
service. This implies W (τn) = W (τ−

n ) = y if y > 0. The sample path would
be continuous with slope −1 at τn (such tns are denoted by × in Fig. 3.24).

Integral Equation for {P0, f (x)}x≥0
An integral equation for {P0, f (x)}x≥0 is (see, e.g., Fig. 1.6 in Sect. 1.7, and
Eq. (3.34) in Sect. 3.2.10)

f (x) = λR(0)P0 B(x) + λ

∫ x

0
B(x − y)R(y) f (y)dy, x > 0, (3.207)

with normalizing condition P0+
∫∞

0 f (x)dx = 1. The left and right sides of
Eq. (3.207) are equal to the sample path down- and upcrossing rates of level
x , respectively. The upward jump sizes are related to B(·) on the right side.
Jumps occur at rates that customers stay for service. These rates are state-
dependent, viz., λR(y), y ≥ 0. The pdf on the left side is a time-average
pdf, the pdf on the right side is the arrival-point pdf at arrival instants; their
equality is addressed below. We first briefly discuss the system dynamics
with respect to the state-dependence.

E(Idle Period) and State Dependence
Consider an idle period I (Fig. 3.24). When y = 0 arrivals enter the system at
Poisson rate λR(0), implying E(I) = 1/

(
λR(0)

)
. Viewed alternatively, cus-

tomers arrive at Poisson rate λ; at each arrival instant P(the customer stays for
service) = R(0), and P(the customer balks) = R(0). When y = 0, the num-
ber of balks until the next stay is distributed as a geometric random variable
where a start of service is a success and a balk is a failure. Thus, E(number
of arrivals until a start of service) = 1/R(0) (see, e.g., p. 37 in [125]). The
expected time between arrivals is 1/λ. By independence of the interarrival
times and random variable θ, E(I) = (1/λ) · (1/R(0)

) = 1/
(
λR(0)

)
, which

agrees with taking λR(0) to be the Poisson rate of stayers. A similar argument
holds for any fixed arrival-point wait y > 0.

Equality of Time-Average and Arrival-Point PDFs
In Sect. 8.4.2, Chap. 8, we use the embedded LC method to show that the
time-average pdf {P0, f (x)}x>0 is identical to the limiting arrival-point pdf

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_8
http://dx.doi.org/10.1007/978-3-319-50332-5_8
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Fig. 3.25 Staying
function R(x) = e−r x . (r
= 1 in the diagram); limit
L = 0. R(x) = 1 − R(x)

= 1 − e−r x ., x ≥ 0, the
cdf of an Expr random
variable ( )R x

as n → ∞, denoted by
{

Pι,0, fι(x)
}

x>0,...
, because both pdfs satisfy integral

equation (3.207) and the same normalizing condition.

Form of the Staying Function R(·)
We assume R(y), y ≥ 0, is a monotone, piecewise continuous, non-increasing
function (decreasing in the wide sense), with range a subset of [0, 1].
(See Figs. 3.25, 3.26 and 3.27.) Then limy→∞ R(y) := L ∈ [0, 1] exists. If
R(y) ≡ 1, y ≥ 0, then L = 1, and there would be no reneging or balking;
each arrival would receive full service. The model would be a standard M/G/1
queue.

Remark 3.28 In a more general model, R(y) may be an arbitrary function
such that R(y) ∈ [0, 1], y ≥ 0, is not necessarily monotone. In that case, the

Fig. 3.26 Staying
function R(x) = 1,
0 < x < 1, R(x) = 0,
x ≥ 1. Limit L = 0.
R(x) = 1 − R(x), is the
cdf of a deterministic r.v.

( )R x

x
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Fig. 3.27 R(x) = 1,
x < 1, R(x) = 0.5,

1 ≤ x < 2, R(x) = 0.1,

x ≥ 2. R(x) is not a cdf.
Limit L > 0

( )R x

x

0
0 1

1

0.8

0.6

0.4

0.2

2 3 4

presented analysis applies as well. However, the stability condition would be
slightly modified (see Theorem 3.8 and Remark 3.31 below).

Interestingly, the renege/balk M/G/1 queue where R(x) = 1 · I [0,1)(x) +
0 · I [1,∞)(x) is essentially the same as M/G/1 with a threshold at level 1
denoted as Variant 3 (with K = 1) in Sect. 3.16.6 below.

Proportion of Customers that Get Full Service
Denote by qS the proportion of arrivals that are stayers. Then qS := P(an
arbitrary arrival gets full service), namely

qS = R(0)P0 +
∫ ∞

y=0
R(y) f (y)dy. (3.208)

The proportion of customers that balk upon knowing their actual or approx-
imate required wait before service is

qB = 1 − qS = R(0)P0 +
∫ ∞

y=0
R(y) f (y)dy.

3.13.3 M/M/1: Wait Dependent Reneging/Balking

We now study the particular case where the service times of stayers are
=
dis

Expμ, with B(x) = e−μx , x ≥ 0. Then (3.207) becomes
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f (x) = λP0 R(0)e−μx + λ

∫ x

y=0
e−μ(x−y)R(y) f (y)dy. (3.209)

Applying differential operator 〈D + μ〉 to both sides of (3.209) yields the
first order differential equation

〈D + μ〉 f (x) = λR(x) f (x),

f ′(x) + (μ − λR(x)) f (x) = 0,

f ′(x)

f (x)
= d ln f (x)

dx
= −(μ − λR(x)).

Integration on both sides of the last equation with respect to x , followed by
exponentiation gives

f (x) = Ae
−
(
μx−λ

∫ x
y=0 R(y)dy

)

, x > 0, (3.210)

where A is a constant. Letting x ↓ 0 in (3.209) and (3.210) implies

f (0) = A = λP0 R(0).

From LC, f (0) is the SP entrance rate into T × {0} (i.e., into level 0) from
above. The term λP0 R(0) is the SP exit rate of level 0 above (i.e., into state-
space interval (0, ∞)). The resulting pdf of wait is

f (x) = λP0 R(0)e
−
(
μx−λ

∫ x
y=0 R(y)dy

)

, x > 0. (3.211)

The normalizing condition P0 + ∫∞
x=0 f (x)dx = 1 leads to

P0 = 1

1 + λR(0)
∫∞

x=0 e
−
(
μx−λ

∫ x
y=0 R(y)dy

)

dx .

. (3.212)

3.13.4 M/M/1: Reneging/Balking-Stability Condition

In the Mλ/Mμ/1 queue, Theorem 3.8 below gives a necessary and sufficient
condition relating λ and μ, such that {P0, f (x)}x>0 exists (stability).

Theorem 3.8 In Mλ/Mμ/1 with wait-time dependent reneging/balking
assume the staying function R(x), x ≥ 0, is monotone non-increasing and
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piecewise continuous. Let L = limx→∞ R(x). A necessary and sufficient
condition for stability is

0 < λ <
μ
L if 0 < L ≤ 1,

0 < λ < ∞ if L = 0.
(3.213)

Proof (Adapted from [90]) By the hypothesis 1 ≥ R(a) ≥ R(b) ≥ 0 when-
ever a < b; hence limx→∞ R(x) := L ∈ (0, 1] exists (see, e.g., Problem *8,
p. 119, in Chap. 8, in [137]). Stability holds iff the discrete state {0} is positive
recurrent iff 0 < P0 ≤ 1. Let

I :=
∫ ∞

x=0
e−μx+λ

∫ x
y=0 R(y)dydx ,

in the denominator of (3.212). Stability holds iff

I < ∞. (3.214)

We now show that the condition (3.214) is equivalent to the condition (3.213)
above. We have L ≤ R(x), x ≥ 0, because L is the greatest lower bound (i.e.,
glb, infimum) of the range of R(·). Hence

λLx = λ

∫ x

y=0
Ldx ≤ λ

∫ x

y=0
R(y)dy

⇐⇒ e−μx+λLx ≤ e−μx+λ
∫ x

y=0 R(y)dy

⇐⇒
∫ ∞

x=0
e−(μ−λL)x dx ≤ I . (3.215)

For a given ε > 0 there exists Mε > 0 such that R(x) < ε + L for x > Mε.
Thus

λ

∫ x

y=0
R(y)dy < λ

∫ Mε

y=0
R(y)dy + λ

∫ x

y=Mε

(ε + L) dy

= C1 + λ (ε + L) x, x > Mε

=⇒ e−μx+λ
∫ x

y=0 R(y)dy
< C2e−μx+λ(ε+L)x , x > Mε

=⇒
∫ ∞

x=Mε

e−μx+λ
∫ x

y=0 R(y)dydx < C2

∫ ∞

x=Mε

e(−μ+λL+λε)x dx

=⇒ I < C3 + C2

∫ ∞

x=Mε

e(−μ+λL+λε)x dx, (3.216)



156 3 M/G/1 Queues and Variants

where C1, C2, C3 are positive constants. Combining inequalities (3.215) and
(3.216) gives

∫ ∞

x=0
e−(μ−λL)x dx ≤ I < C3 + C2

∫ ∞

x=Mε

e(−μ+λL+λε)x dx . (3.217)

In (3.217), if I < ∞ then
∫ ∞

x=0
e−(μ−λL)x dx < ∞ ⇐⇒ μ − λL > 0. (3.218)

If μ − λL > 0 then choose ε so that −μ + λL + λε < 0, i.e., ε <
μ−λL

λ .
Then ∫ ∞

x=Mε

e(−μ+λL+λε)x dx < ∞ =⇒ I < ∞. (3.219)

The stability condition (3.213) is equivalent to (3.218) and (3.219). �

Remark 3.29 To shed additional perspective on the stability condition
(3.213), consider the exponent in the integrand of

I ≡
∫ ∞

x=0
e−μx+λ

∫ x
y=0 R(y)dydx .

The function μx is linear with slope μ > 0. The function of x ,
∫ x

y=0 R(y)dy,

x > 0, is positive and increasing with slope d
dx

∫ x
y=0 R(y)dy = R(x), x > 0.

If R(x), x > 0, is strictly decreasing and differentiable, then
∫ x

y=0 R(y)dy is

concave since d2

dx2

∫ x
y=0 R(y)dy = d

dx R(x) < 0, x > 0. Additionally,

limx→∞ d
dx

∫ x
y=0 R(y)dy = limx→∞ R(x) = L . We compare the graphs of

μx and λ
∫ x

y=0 R(y)dy, x > 0 in Fig. 3.28.

If L > 0 then there exists M ≥ 0 such that μx − λ
∫ x

y=0 R(y)dy > 0 for
all x ≥ M iff μ − λL > 0 iff λ < μ/L . If L = 0, there exists M ≥ 0 such
that μx − λ

∫ x
y=0 R(y)dy > 0 for all x ≥ M iff μ ≥ λ · 0. In that case λ can

assume any positive value, i.e., λ ∈ (0, ∞).

Remark 3.30 If R(x) is piecewise continuous, we can obtain similar per-
spective as in Remark 3.29.

Another Look at Theorem 3.8
We provide an alternative verification of the stability condition, in order
to clarify the intuition behind the result. Consider an optimization problem
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X  

xμ

0 ( )x
y R y dyλ =

slope 

M

Lλ→
slope= 1

*λ λ=

0λ =

1λ =

μ→
slope 

Fig. 3.28 Functions μx and λ
∫ x

y=0 R(y)dy, indicating M such that μx −
λ
∫ x

y=0 R(y)dy > 0 for x ≥ M . Indicates range 0 < λ < λ∗ such that stability holds.

The system is stable for λ if λ
∫ x

y=0 R(y)dy intersects and remains below μx thereafter

where λ is the decision variable. We shall derive a range 0 < λ < λ∗ for
which there exists M ≥ 0 such that μx − λ

∫ x
y=0 R(y)dy > 0 for all x ≥ M ,

thereby making the system stable (see Fig. 3.28). The value λ∗ is the solution
of the following optimization problem P. (Note that μ > 0, L ≥ 0.)

ProblemP
Maximize λ

such that μ − λL ≥ 0

subject to λ > 0.

The solution of problem P is readily seen to be

λ∗ =
{ μ

L if L > 0,

∞ if L = 0,

which is the same result as in Theorem 3.8.

Remark 3.31 The stability condition given in Theorem 3.8 was originally
proved in [16] together with a theorem in which R(y), y ≥ 0 may be other
than monotone non-increasing. That proof is based on the fact that
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∫ ∞

x=0
e−μx+λ

∫ x
y=0 R(y)dydx =

∫ ∞

x=0
e−μx · eλ

∫ x
y=0 R(y)dydx

is the Laplace transform of eλ
∫ x

y=0 R(y)dy evaluated at the parameter μ. A

sufficient condition for the Laplace transform to be finite is that eλ
∫ x

y=0 R(y)dy

is of exponential order. Let L = lim supx→∞ R(x). A sufficient condition for
stability is

λ <
μ

L
if L > 0,

λ < ∞ if L = 0.

3.13.5 M/M/1: Reneging/Balking-Exponential R(·)

We illustrate the M/G/1 model by taking G(·) := Expμ. Let B(x) = e−μx ,
x ≥ 0, and R(y) = e−ry , y > 0, r > 0. Thus R(y) is monotone decreasing
and L = limy→∞ R(y) = 0 in the notation of Sect. 3.13.3. Also, R(0) = 1,
so that all zero-wait customers join the system.

Equation (3.209) becomes

f (x) = λP0e−μx + λ

∫ x

y=0
e−μ(x−y)e−ry f (y)dy. (3.220)

Substituting e−ry for R(y) in (3.211) gives the pdf of wait {P0, f (x)}x>0 as

f (x) = λP0e−μx+ λ
r (1−e−r x ) = λeλ/r P0e−μx− λ

r e−r x
, x > 0. (3.221)

Substituting (3.221) into (3.212) yields

P0 = 1

1 + λeλ/r
∫∞

x=0 e−μx− λ
r e−r x

dx
=

1
λ

1
λ + eλ/r

∫∞
x=0 e−μx− λ

r e−r x
dx

.

(3.222)
In the denominator of P0 the term

∫∞
x=0 e−μx− λ

r e−r x
dx < 1/μ < ∞ for every

trio of positive numbers {λ, μ, r}, since the integrand e−μx− λ
r e−r x

< e−μx ,
x ≥ 0. Thus P0 > 0 for all positive {λ, μ, r}. In particular P0 > 0 for
every arrival rate λ > 0. This adds credence to Theorem 3.8 above when
limx→∞ R(x) = L = 0.
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Expected Busy Period E(B)

In the standard M/G/1 queue, E(B) = E(S)/ (1 − λE(S)). However, in
M/G/1 with balking P0 �= 1 − λE(S). Hence, we use the more fundamental
formula for E(B) in terms of P0. From (3.82) and (3.222),

E(B) = 1 − P0

f (0)
= 1 − P0

λP0

= e
λ
r

∫ ∞

x=0
e−μx− λ

r e−r x
dx =

∫ ∞

x=0
e−μx+ λ

r (1−e−r x )dx . (3.223)

We can infer formula (3.223) immediately since P0 in (3.222) has the form

P0 =
1
λ

1
λ + E(B)

= E(I)

E(I) + E(B)
,

and E(I) = 1/λ, because all zero-wait customers stay for service if R(y) =
e−ry, y ≥ 0.

3.13.6 M/M/1: Reneging/Balking and Standard M/M/1

Assume λ < μ (stability condition for standard M/M/1). In (3.223), (1 −
e−r x ) < r x , x > 0 and (1 − e−r ·0) = 0. Letting subscript ‘b’ represent M/M/1
with reneging/balking, and subscript ‘s’ the standard M/M/1, we have, since
(1 − e−r x )/r < x , x > 0,

E(Bb) =
∫ ∞

x=0
e−μx+ λ

r (1−e−r x )dx <

∫ ∞

x=0
e−(μ−λ)x dx = 1

μ − λ
= E(Bs).

In (3.222), we again apply the inequality
∫ ∞

x=0
e−μx+ λ

r (1−e−r x )dx <
1

μ − λ
,

which gives

Pb,0 >
1

1 + λ · 1
μ−λ

= 1 − λ

μ
= Ps,0.

The comparisons for E(B) and P0 are intuitive. In the reneging/balking
model, the arrival rate of customers that increase workload is λR(y), y ≥ 0.
In the standard model, it is λ > λR(y), y > 0.
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3.13.7 M/M/1: Reneging/Balking-Number in System

Let Pn , an , dn denote the steady-state probabilities of n stayers in the system
at an arbitrary time point, just before an arrival and just after a departure,
respectively. Then an = dn = Pn , n = 0, 1, 2, . . ., (see Sect. 8.2.2, p. 500 in
[125]); and P0 is given in (3.222). Furthermore, since R(y) = e−ry , y ≥ 0,

dn =
∫ ∞

x=0

(
e−λ

∫ x
0 R(y)dy

) (λ
∫ x

0 R(y)dy
)n−1

(n − 1)! f (x)dx

= λP0

∫ ∞

x=0

(λ
r (1 − e−r x ))n−1

(n − 1)! e−μx dx, n = 1, 2, . . . . (3.224)

(see Eq. (3.76) in Sect. 3.4.8).
In formula (3.224), λR(y) (=λe−ry) is the arrival rate of stayers when the

required wait is y.

Remark 3.32 We outline a derivation of (3.224) using an approximation
of R(x) by a step function. Let [0,�) be a large waiting-time interval in
the state space. Partition [0, �) into m subintervals �i = [xi , xi+1), i = 0,

. . . , m − 1, where x0 = 0, xm = �. We then approximate R(y) by R(y) ≡
R(xi ), y ∈ �i . Thus the arrival rate of stayers is a constant λR(xi ) if the
required wait y ∈ [xi , xi+1) at an arrival instant. The probability that n − 1
stayers arrive during an individual required wait y ∈ �i is approximately

e−λR(xi )x ′
i (λR(xi )x ′

i )
n−1

(n − 1)!
where x ′

i ∈ �i . The probability that n − 1 stayers arrive during (0, �) is
approximately the Riemann sum

m−1∑

i=0

e−λR(xi )x ′
i (λR(xi )x ′

i )
n−1

(n − 1)! f (x ′′
i )�i

where x ′′
i ∈ �i . Let m → ∞ and �i ↓ 0, i = 0,…, m − 1. Then xi , x ′

i , x ′′
i → x

and

lim
m→∞
�i ↓0

m−1∑

i=0

e−λR(xi )x ′
i
(λR(xi )x ′

i )
n−1

(n − 1)! f (x ′′
i )�i

=
∫ �

x=0
e−λR(x)x (λR(x)x)n−1

(n − 1)! f (x)dx .
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Letting � → ∞ implies (3.224), where f (x) is given by (3.221).

3.13.8 Proportion of Customers Served

In M/M/1 with wait-time dependent reneging/balking and R(y) = ery , y ≥
0, from (3.208), (3.221) and (3.222), the proportion of customers that get
complete service is

qS = P0 +
∫ ∞

x=0
e−r x f (x)dx = 1 + λe

λ
r
∫∞

x=0 e−μx− λ
r e−r x−r x dx

1 + λe
λ
r
∫∞

x=0 e−μx− λ
r e−r x

dx
.

(3.225)
The proportion of customers that renege from the waiting line is 1 − qS .

In the expressions for P0, E(B), and qS the integrals do not have closed
forms. They can be evaluated using series expansion or numerical methods,
for given values of λ, μ, and r .

3.14 M/G/1 with Priorities

Assume N types of customers arrive at a single-server system at independent
Poisson rates λi , i = 1, . . . , N . We denote the type-i service time as Si having
cdf Bi (x), x > 0, Bi (x) = 1 − Bi (x), x ≥ 0, and pdf bi (x), x > 0. We assume
type 1 (i = 1) has the highest priority, type 2 the next highest, …, and type
N (i = N ) the lowest priority. The service discipline is FCFS within priority
classes. The priority discipline is non-preemptive, i.e., any customer that
starts service is allowed to complete it without interruption. The customer at
the head of the highest-priority line, among all waiting customers, will start
service immediately after the next service completion.

Denote the steady-state pdf and cdf of wait before service of a type i
customer, by {P0, fi (x)}x>0, and Fi (x), x ≥ 0 respectively. The probability
P0 of a zero wait, is independent of customer type.

3.14.1 Two Priority Classes

For exposition we consider two priority classes, so that N = 2. We will con-
firm the well-known stability condition, λ1 E(S1) + λ2 E(S2) < 1, using an
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Arrival 
Type
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Time  t

1( )W t
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Fig. 3.29 Sample path of virtual wait for high priority type-1 arrivals. Low priority
type-2 arrivals that must wait, start service at the end of a B1 or a B21 (Fig. 3.30)
busy period. All type 2 jumps start at level 0

LC approach. Let {W1(t)}t≥0 be the virtual wait process for type-1 customers;
a sample path is shown in Fig. 3.29. Fix level x > 0 in the state space.

3.14.2 Integral Equation for {P0, fi (x)}x>0

From the sample path, we construct the integral equation

f1(x) = λ1 B1(x)P0 + λ2 B2(x)P0 + λ1
∫ x

y=0 B1(x − y) f1(y)dy

+λ2(1 − P0)B2(x).

(3.226)

To explain (3.226), the left side f1(x) is the SP downcrossing rate of
x (as in Theorem 1.1 in Chap. 1). On the right side, the terms λ1 B1(x)P0
and λ2 B2(x)P0 are respectively the SP upcrossing rates of x due to type-
1 and type-2 arrivals, when the system is empty. The term λ1

∫ x
y=0 B1(x −

y) f1(y)dy is the upcrossing rate of x due to type-1 arrivals that wait a positive
time y ∈ (0, x). The term λ2(1 − P0)B2(x) is the upcrossing rate of x due
to type-2 arrivals that wait positive times before they start service. The first-
in-line of such type 2s must wait until the end of a type 1 busy period to start

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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service. Any other such type 2s wait longer before they start service. Those
type 2s can start service only when the type-1 virtual wait hits level 0. The
corresponding SP jumps of size S2 start at level 0. The long-run rate at which
such type 2s start service is λ2(1 − P0) since all type 2s must eventually get
served in a finite time, due to stability.

3.14.3 Stability Condition

Integrate both sides of (3.226) with respect to x on (0, ∞). Since
∫∞

x=0 f1(x)dx
= 1 − P0, and

∫∞
x=0 Bi (x)dx = E(si ) some algebra yields

P0 = 1 − λ1 E(S1) − λ2 E(S2) = 1 − ρ1 − ρ2, (3.227)

where ρi = λi E(Si ), i = 1, 2. For stability, we must have 0 < P0 < 1, or

0 < ρ1 + ρ2 < 1, (3.228)

which implies both ρ1 < 1 and ρ2 < 1.

3.14.4 Expected Wait of High Priority Customers

We confirm the known formula for the expected wait of type-1 customers
using (3.226). Denote the wait in queue before service of an arbitrary type-1
arrival by Wq,1. Multiplying both sides of (3.226) by x and integrating on
(0, ∞) with respect to x , the left side becomes

∫∞
0 x f1(x)dx = E(Wq1); the

right side results in the equation

E(Wq1) =
(

λ1
E(S2

1 )

2 + λ2
E(S2

2 )

2

)
P0 + λ1 E(S1)E(Wq1)

+λ1(1 − P0)
E(S2

1 )

2 + λ2(1 − P0)
E(S2

2 )

2 .

Simplifying yields the familiar result (e.g., p. 545 in [125])

E(Wq1) = λ1 E(S2
1) + λ2 E(S2

2)

2(1 − ρ1)
. (3.229)
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3.14.5 Equation for PDF of Wait of Type-2 Customers

Let {W2(t)}t≥0 be the virtual wait process of type-2 customers. Let Wq,2 be
the steady-state wait. Denote the pdf of Wq,2 by {P0, f2(x)}x>0, for which
we now develop an integral equation.

Preliminaries
Let B1 denote a an M/G/1 type-1 busy period, consisting of type-1s only,
having cdf B1(x), x > 0 and B1(x) = 1 − B1(x), x ≥ 0. We let B2,1 denote
a busy period in which the first service is type 2, and all subsequent services
are type 1 (Fig. 3.30). Let random variable NS2,1 denote the number of strict
descending ladder points that occur in a sample path of a B2,1 busy period.
Then NS2,1 has the same distribution as the number of type-1 customers that
arrive during a type-2 service time S2. Thus we have

B2,1 =
dis

S2 +
NS2,1∑

i=1

B1,i , (3.230)

where the B1,i s are i.i.d. random variables distributed as an M/G/1 type-1
busy period B1 independent of NS2,1 . Equation (3.230) follows due to the
memoryless property of the type-1 inter-arrival times (=

dis
Expλ1). (A related

discussion of busy period structure is given above in Sect. 3.4.12.)
We illustrate the meaning of NS2,1 in Fig. 3.30, with NS21 = 3. There are

three type-1 sub-busy periods in B2,1. There are four vertical gaps, each
distributed as an inter-arrival time, separating and bordering on these three
sub-busy periods. The basic observation is that the sum of the four gaps is
equal to S2.

From (3.80)

E(B1) = E(S1)

1 − λ1 E(S1)
. (3.231)

Taking expected values in (3.230) we obtain

E(B2,1) = E(S2) + λ1 E(S2)E(B1)

= E(S2) + λ1 E(S2)
E(S1)

1 − λ1 E(S1)

= E(S2)

1 − λ1 E(S1)
= E(S2)

1 − ρ1
. (3.232)
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Fig. 3.30 Busy period B2,1. Initial jump is a type 2 service S2. Each subsequent
jump is a type 1 service S1. B1, j , j = 1, 2, . . . , are M/G/1 type 1 busy periods

Remark 3.33 E(B2,1) is the same as the expected busy period in an M/G/1
queue in which zero-waiting customers receive exceptional service. Thus we
can obtain (3.232) immediately as a special case of (3.147).

Let B2,1(x) denote the cdf of B2,1, and B2,1(x) = 1 − B2,1(x), x ≥ 0.
Consider a sample path of the virtual wait of type-2 customers {W2(t)}t≥0
(Fig. 3.31). The sample path illustrates that type-2 customers may view the
model as a queue with server vacations (see Sect. 3.15). When a type 1 arrives
to an empty system, the server vacation is B1. When a type 2 arrives, the
server vacation consists of NS21B1s. By (3.230), type-2 generated SP jumps
are =

dis
B2,1.

Integral Equation for f2(x)

We now construct the integral equation

f2(x) = λ1 B1(x)P0 + λ2 B2,1(x)P0 + λ2

∫ x

y=0
B2,1(x − y) f2(y)dy.

(3.233)
In (3.233) the left side f2(x) is the sample-path downcrossing rate of level

x (Theorem 1.1 in Chap. 1). On the right side the term λ1 B1(x)P0 is the
SP upcrossing rate of x due to type-1 arrivals when the system is empty. A
potentially arriving type-2 customer, immediately after the initial type-1 starts
service, would wait a type-1 busy period before starting service. The term
λ2 B2,1(x)P0 is the SP upcrossing rate of x due to type-2 arrivals when the

http://dx.doi.org/10.1007/978-3-319-50332-5_1
http://dx.doi.org/10.1007/978-3-319-50332-5_1
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Arrival 
Type
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Fig. 3.31 Sample path of virtual wait for low priority, type 2 arrivals. High priority
type 1’s that arrive when the system is empty generate jumps distributed as B1 busy
periods. All type 2 arrivals generate jumps distributed as B2,1 busy periods (see Fig.
3.30). All type 1’s that must wait, are counted in the B2,1 jumps

system is empty. A potentially arriving type-2 customer, immediately after the
type 2 starts service, would wait a busy period B2,1 before starting service.
It is possible that B2,1 consists of the initial type-2 service only. Possibly
no type 1s arrive during the initial service time. Generally, B2,1 includes an
additional run of NS2,1 B1s (Fig. 3.30). The term λ2

∫ x
y=0 B2,1(x − y) f2(y)dy

is the upcrossing rate of x due to type-2 arrivals that must wait a positive time
y ∈ (0, x). A would-be type-2 customer that arrives immediately after such
a type-2 arrival, would face an additional wait equal to B2,1 before starting
service.

The three terms on the right of (3.233) account for all arrivals to the system.
The type 2s are counted in the last two terms; they include all type 2s that
wait ≥0. The type 1s are counted in all three terms. The type 1s that wait
zero are counted in the first term. The type 1s that wait a positive time are
counted in all three terms.

Both Types Have the Same P0
We test for consistency of integral equations (3.233) and (3.226), by checking
whether they give the same value of P0. It is required to show that (3.227)
results from (3.233). We integrate both sides of (3.233) with respect to x on
(0, ∞). Simplification gives

1 − P0 = λ1 E(B1)P0 + λ2 E(B21)P0 + λ2 E(B21)(1 − P0)

= λ1 E(B1)P0 + λ2 E(B21).
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Substituting for E(B1), E(B21) from (3.231), (3.232) respectively we obtain

1 − P0 = λ1
E(S1)

1 − λ1 E(S1)
P0 + λ2

E(S2)

1 − λ1 E(S1)
,

or
P0 = 1 − λ1 E(S1) − λ2 E(S2) = 1 − ρ1 − ρ2,

which is identical to (3.227) QED.

3.14.6 Expected Wait of Type-2 Customers

We obtain the expected wait E(Wq,2)by multiplying integral equation (3.233)
by x on both sides and integrating with respect to x on (0, ∞). Some algebra
gives

E(Wq2) = λ1
E(B2

1)

2 P0 + λ2
E(B2

21)

2 P0

+λ2
E(B2

21)

2 (1 − P0) + λ2 E(B21)E(Wq2)

or

E(E(Wq2)) = λ1 E(B2
1)P0 + λ2 E(B2

21)

2(1 − λ2 E(B21))
.

Substituting from (3.85), (3.227) and (3.232) gives

E(Wq,2) =

(
λ1

E(S2
1 )

(1−ρ1)3 (1 − ρ1 − ρ2) + λ2 E(B2
21)

)
· (1 − ρ1)

2 (1 − ρ1 − ρ2)
. (3.234)

The term λ2 E(B2
2,1) in the numerator of (3.234) is

λ2 E(B2
2,1) = λ2 E

⎛

⎜⎝

⎛

⎝S2 +
NS2,1∑

i=1

B1,i

⎞

⎠
2
⎞

⎟⎠

= λ2 E(S2
2) + 2λ2 E

⎛

⎝S2

NS21∑

i=1

B1,i

⎞

⎠+ λ2 E

⎛

⎜⎝

⎛

⎝
NS21∑

i=1

B1,i

⎞

⎠
2
⎞

⎟⎠ .

We condition on NS2,1 = n, S2 = s in the last two terms. Then NS2,1 is a
Poisson random variable with parameter λ1s. We then carry out some algebra,
and “uncondition”. This procedure yields
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λ2 E(B2
2,1) = λ2 E(S2

2) + 2λ2 E(S2
2)

ρ1

1 − ρ1

+λ2(λ1 E(S2)E(B2
1) + λ2

1 (E(B1))
2 E(S2

2)).

Substituting from (3.85) into the last equation gives

λ2 E(B2
2,1) = λ2 E(S2

2) + 2λ2 E(S2
2)

ρ1
1−ρ1

+ρ2λ1
E(S2

1 )

(1−ρ1)3 + λ2
ρ2

1
(1−ρ1)2 E(S2

2).
(3.235)

Substituting the expression in (3.235) for λ2 E(B2
2,1) in the numerator of

(3.234) gives

coefficient of E(S2
1) = λ1

(1 − ρ1)
,

coefficient of E(S2
2) = λ2

(1 − ρ1)
.

Hence

E(Wq2) =
λ1

(1−ρ1)
E(S2

1) + λ2
(1−ρ1)

E(S2
2)

2 (1 − ρ1 − ρ2)

= λ1 E(S2
1) + λ2 E(S2

2)

2(1 − ρ1) (1 − ρ1 − ρ2)
, (3.236)

which agrees with the result in the literature (e.g., p. 545 in [125]).

Remark 3.34 We have used LC to derive E(Wq,1) from the integral equation
for f1(x)/, and E(Wq,2) from the integral equation for f2(x). The importance
of this approach is that we essentially have an analytic solution for the pdfs
and cdfs of wait of both priority classes. The LC analysis is in the time domain
without use of transforms. Integral equations (3.226), (3.233) can be solved
analytically in some cases; or else numerically. The LC analysis highlights
conceptual properties of the priority queue that are in common with queues
having: (1) service time depending on wait, (2) multiple Poisson inputs, (3)
server vacations. In addition, the exercise of constructing the sample paths
of wait for the different priority classes, leads to an intuitive understanding
of the model dynamics.
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3.14.7 Exponential Service

We now solve for {P0, f1(x)}x>0 in an M/M/1 queue with two priority types.
Here Si =

dis
Expμi , i = 1, 2. Substituting Bi (x) = e−μi x into (3.226) gives an

integral equation for f1(x),

f1(x) = λ1e−μ1x P0 + λ2e−μ2x P0 + λ1
∫ x

y=0 e−μ1(x−y) f1(y)dy

+λ2(1 − P0)e−μ2x .
(3.237)

We apply differential operator 〈D + μ1〉 〈D + μ2〉 to both sides of (3.237),
obtaining the second order differential equation

〈D + μ2〉 〈D + μ1 − λ〉 f1(x) = 0,

with solution
f1(x) = ae−(μ1−λ1)x + be−μ2x , x ≥ 0, (3.238)

where constants a, b are to be determined.
Letting x ↓ 0 in (3.237) and (3.238) yields

a + b = λ1 P0 + λ2. (3.239)

Taking d
dx on both sides of (3.237) and letting x ↓ 0 gives

f ′
1(0) = −λ1μ1 P0 + λ2

1 P0 + λ1λ2 − λ2μ2. (3.240)

Taking d
dx in (3.238), letting x ↓ 0, and equating to (3.240) gives

− (μ1 − λ1)a − μ2b = −λ1μ1 P0 + λ2
1 P0 + λ1λ2 − λ2μ2. (3.241)

We use (3.238) and the condition P0 + ∫∞
x=0 f1(x)dx = 1 to obtain

P0 + a

μ1 − λ1
+ b

μ2
= 1. (3.242)

We now solve the system of three Eqs. (3.239), (3.241), (3.242) for P0, a,
b to obtain
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P0 = (μ2μ1 − μ2λ1 − μ1λ2)

μ2μ1
, (3.243)

a = λ1(μ2μ
2
1 + 2μ2μ1λ1 + μ2

2μ1 − μ2λ
2
1 − μ2

2λ1 + μ2
1λ2 − μ1λ2λ1)

(−μ1 + λ1 + μ2)μ2μ1
,

(3.244)

b = λ2(μ2 − μ1)

(−μ1 + λ1 + μ2)
. (3.245)

Check on the Values of P0, a, b
We conduct a mild check (indicated by �) on the values of P0, a, b. Set λ2
= 0. The model reverts to a standard Mλ1/Mμ1/1 queue in which f (x) and
P0 are given in (3.112) and (3.113), respectively.

Substituting λ2 = 0 in (3.243), (3.244) and (3.245) yields: P0 = 1 − λ1/μ1;
a = λ1 (1 − λ1/μ1); b = 0. �

3.15 M/G/1 with Server Vacations

There are many M/G/1 server-vacation models. During a server vacation the
server is not available to serve customers. For example, vacations may start
after each service completion, or when the server becomes idle, or both. (See,
e.g., Problems 9.2 and 9.6, pp. 420–422 in [143], and see also [39] in which
consecutive vacations are connected by a Markov chain.)

Here we apply LC to a basic M/G/1 server-vacation model. Let the arrival
rate be λ and service time be S having cdf B(x), x > 0. Assume that after
each service completion the server goes on vacation for a time U having cdf
V (x), x > 0. During U the server may be doing required work after each
service. For example, a doctor updates a record after seeing each patient, a
bank teller does required paper work after serving each customer, an auto
service manager fills out forms after receiving a car for service. Consider the
virtual wait process {W (t)}t≥0 (Fig. 3.32).

Denote the complementary cdf of S + U by B ∗ V (x). An integral equa-
tion for the steady-state pdf of wait {P0, f (x)}x≥0 is

f (x) = λP0 B ∗ V (x) + λ

∫ x

y=0
B ∗ V (x − y) f (y)dy, x ≥ 0. (3.246)

In (3.246) the left side f (x) is the SP downcrossing rate of level x . On the
right side λP0 B ∗ V (x) is the SP upcrossing rate of level x , starting from
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1
τ

2
τ

3
τ

4
τ

W(t)

W2

S1

S2

x

SP

0

Time

U1

U2

server unavailable
no waiting customers

server available
no waiting customers

7τ

Fig. 3.32 Sample path of {W (t)}t≥0 in M/G/1 queue with a server vacation after
each service completion

level 0. The term λ
∫ x

y=0 B ∗ V (x − y) f (y)dy is the SP upcrossing rate of
level x , starting from levels in the state-space interval (0, x).

Comparing (3.246) and (3.34) indicates that the server-vacation and stan-
dard M/G/1 models are equivalent with regard to the integral equation for the
pdf of queue wait; only the “service time” cdfs differ.

3.15.1 Probability of Zero Wait

Since the queue behaves like Mλ/G/1 with common service time S + U
with respect to the customer wait until service, then

P0 = 1 − λE(S + U ) (3.247)

provided λE(S + U ) < 1.

3.15.2 Expected Busy and Idle Period

Define the idle period I as the time interval when the server is available to start
service and no customers are waiting. Then E(I ) = 1/λ. Let Bs := time that
the server is busy serving customers, Bu := time that server is “on vacation”,
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during a “busy period” B, where B = Bs + Bu . Then B is distributed as a
regular busy period in a standard Mλ/G/1 queue with service time S + U .
Applying (3.247)

E(B) = 1 − P0

λP0
= λE(S + U )

λ(1 − λE(S + U ))
. (3.248)

Given the server is “busy”, the pairs {Si , Ui } , i = 1, 2, . . ., form an alter-
nating renewal process (Fig. 3.32). During a “busy” period, the proportion
of time the server is busy serving customers = E(S)

E(S)+E(U )
; “on vacation” =

E(U )
E(S)+E(U )

. Thus

E(Bs) = E(S)

E(S) + E(U )
· E(B), E(Bu) = E(U )

E(S) + E(U )
· E(B);

from (3.248)

E(Bs) = E(S)

1 − λE(S + U )
, E(Bu) = E(U )

1 − λE(S + U )
.

3.15.3 Number in System

Let dn denote the probability of n customers in the system just after the server
returns from vacation. Then (see Eq. (3.76) in Sect. 3.4.8)

dn =
∫ ∞

x=0

e−λx (λx)n−1

(n − 1)! f (x)dx .

Let an denote the probability that an arrival “sees” n customers in the system.
Then an = dn = Pn due to Poisson arrivals, Pn is the long-run proportion of
time there are n customers in the system.

3.15.4 M/M/1 with Server Vacations =
di s

Expν

Let V (x) = e−νx , B(x) = e−μx , x ≥ 0. Assume ν �= μ > 0. Then

B ∗ V (x) = P(S + V > x) = μe−νx − νe−μx

μ − ν
, x ≥ 0,
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and (3.246) reduces to

f (x) = λP0
μe−νx−νe−μx

μ−ν

+λ 1
μ−ν

∫ x
y=0

(
μe−ν(x−y) − νe−μ(x−y)

)
f (y)dy, x ≥ 0.

(3.249)

In (3.249), applying differential operator 〈D + ν〉〈D + μ〉 to both sides
results in the differential equation

f ′′(x) + (ν + μ − λ) f ′(x) + (νμ − λμ − λν) f (x) = 0,

with solution
f (x) = c1eR1x + c2eR2x , x ≥ 0,

where roots R1, R2 are the (negative) roots of the characteristic equation

z2 + (ν + μ − λ)z + (νμ − λμ − λν) = 0.

Applying the initial conditions f (0) = λP0, f ′(0) = λ2 P0, and the normal-
izing condition P0 + ∫∞

y=0 f (x)dx = 1 yields

c1 = λP0
λ − R2

R1 − R2
, c2 = −λP0

−R1 + λ

R1 − R2
, P0 = c1 R2 + c2 R1 + R1 R2

R1 R2
.

Busy Period
The expected values of B, Bs , Bu are

E(B) =
1
μ + 1

ν

1 − λ
(

1
μ + 1

ν

) , E(Bs) =
1
μ

1
μ + 1

ν

E(B), E(Bu) =
1
ν

1
μ + 1

ν

E(B).

Number in System
The probability that the server finds n in the system just after a vacation is
for n = 1, 2, . . .,

dn =
∫ ∞

x=0

e−λx (λx)n−1

(n − 1)!
(

c1eR1x + c2eR2x
)

dx

= 1

λ

((
λ

λ − R1

)n

c1 +
(

λ

λ − R2

)n

c2

)
,

where Ri , ci , i = 1, 2 are given above. The probability that an arrival “sees”
n customers in the system is an = dn = Pn .
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3.16 M/G/1 with Bounded Workload

We look at three M/G/1 variants with a finite barrier K > 0 on the virtual
wait (workload) process. These and related models (e.g., risk models with
a dividend barrier in actuarial science) have been discussed widely in the
literature (e.g., [78]; Example 5.5.2, p. 213 and Exercise 9.9, p. 423 in [143],
and also in [25]; M/M/c queues with bounded wait in Example 1, p. 44
in [52], and also in [54, 79, 100]; and others). They are also useful in the
proof of Proposition 9.1 in Sect. 9.4, Chap. 9 on level crossing estimation. As
K → ∞, variants 1–3 tend to a standard M/G/1 queue with infinite waiting
buffer, under mild conditions. We illustrate this property with M/M/1 in
Sects. 3.16.2, 3.16.4, and 3.16.6. In all three variants, we denote the arrival
rate by λ; the requested full service time for each arrival, by S having cdf B(x),
x > 0, B(x) = 1 − B(x), x ≥ 0; and the virtual wait (workload) process as
{WK (t)}t≥0.

3.16.1 Variant 1

All customers join the system, and all waiting times (before start of service)
are in [0, K ). Each arrival gets either full service S, or truncated service if
S causes {WK (t)}t≥0 to exceed K , i.e., customers in service must renege
if and when their total system time reaches K . We define the service time
SK due the level-K barrier, in terms of S as follows. If a customer must wait
y ≥ 0 then SK = min(S, K − y). Thus for all customers, wait + service time
≤ K . Consider a sample path of {WK (t)}t≥0 (Fig. 3.33). Let the mixed pdf

0

Time t 

x

K

Truncated service time
( )KW t

K K

Fig. 3.33 Variant 1. Sample path of {WK (t)}t≥0 in M/G/1 with bounded workload.
CK := busy cycle, BK := busy period

http://dx.doi.org/10.1007/978-3-319-50332-5_9
http://dx.doi.org/10.1007/978-3-319-50332-5_9
http://dx.doi.org/10.1007/978-3-319-50332-5_9
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of wait be
{

PK ,0, fK (x)
}

x>0. Rate balance across level x gives immediately
Eq. (3.250) for fK (x), where the left and right sides are the SP down- and
upcrossing rates, respectively:

fK (x) = λPK ,0 B(x) + λ

∫ x

y=0
B(x − y) fK (y)dy, 0 < x < K , (3.250)

PK ,0 +
∫ K

y=0
fK ,0(x)dx = 1. (3.251)

If K ∈ (0, ∞) then
{

PK ,0, fK (x)
}

x>0 exists for all values of λ > 0 (see
Sect. 2.1 in [25]). Also, [25] gives the pdf of SK and shows the important result
that E(SK ) = (1 − PK ,0

)
/λ, equivalently PK ,0 = 1 − λE(SK ). (Interest-

ingly, this is similar to P0 = 1 − λE(S) in the standard no-barrier M/G/1
queue in steady state.) If there exists M > 0 such that PK ,0 > 0 for all K
> M , and we assume λE(S) < 1 then

{
PK ,0, fK (x)

}
x>0 → {P0, f (x)}x>0

in the standard no-barrier M/G/1, since Eqs. (3.250), (3.251) would converge
to Eqs. (3.34)–(3.36).

3.16.2 Variant 1: M/M/1 Model

In the Mλ/Mμ/1 model B(x) = e−μx ; the solution of (3.250) and (3.251) is

fK (x) = λPK ,0e−(μ−λ)x , 0 < x < K ,

PK ,0 = μ − λ

μ + e−(μ−λ)K
.

⎫
⎪⎬

⎪⎭
(3.252)

If we assume λ < μ so that the no-barrier M/M/1 is stable, and let K → ∞,
then PK ,0 → 1 − λ/μ and the domain (0, K ) of fK (·), tends to (0, ∞).
This results in the solution for the standard no-barrier Mλ/Mμ/1 queue (see
formulas (3.112) and (3.113)).

3.16.3 Variant 2

Upon arrival customers balk and are cleared if their system times would
exceed K . We assume that the workload WK (t−) and the service time S of
a would-be time-t arrival are known to a “system manager” by some means.
A time-t arrival joins the system only if WK (t−) + S < K . We define the
service time SK due the level-K barrier in terms of S as follows. If a customer
must wait y ≥ 0 then
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SK =
{

S if y + S ≤ K ,

0 if y + S > K .

Customers that are allowed to join receive full service S, and depart upon
completing service. Consider a sample path of {WK (t)}t≥0 (Fig. 3.34). We
obtain via LC the integral equation for fK (x):

fK (x) = λPK ,0
(
B(x) − B(K )

)

+λ
∫ x

y=0

(
B(x − y) − B(K − y)

)
fK (y)dy, 0 < x < K ,

(3.253)

with normalizing condition PK ,0 + ∫ K
y=0 fK (x)dx = 1. In (3.253), the term

B(x) − B(K ) = P(x < S < K ) and the term B(x − y) − B(K − y)

= P(x − y < S < K − y). Using the technique in [25] for Variant 1, we can
also find in Variant 2, the pdf of SK and show that E(SK ) = (1 − PK ,0)/λ.

3.16.4 Variant 2: M/M/1 Model

In the Mλ/Mμ/1 queue with B(x) = e−μx , we obtain immediately the solution
of (3.253) for

{
PK ,0, fK (x)

}
x∈(0,K )

as a special case of the M/M/c queue with
bounded system time. (In Example 1, p. 44 in [52], we set number of servers
= 1.) We get

0

Time t 

x

( )KW t

× × × × × × ×

K

K K

Fig. 3.34 Variant 2. Sample path of {WK (t)}t≥0 in M/G/1 with bounded workload.
‘×’ indicates arrivals who balk because wait+ S > K . CK := busy cycle, BK := busy
period
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fK (x) = λeρβ PK ,0eμ(ρ−1)x (1 − βeμx )e−μβeμx
, 0 < x < K ,

PK ,0 = 1

1 + λeρβ
∫ K

x=0 eμ(ρ−1)x (1 − βeμx )e−μβeμx dx
,

⎫
⎪⎪⎬

⎪⎪⎭
(3.254)

where ρ = λ/μ, β = e−μK . The solution in (3.254) checks with the single-
server Markovian result obtained in [78], and is more complex than the solu-
tion (3.252) for variant 1.

If K → ∞ then β ↓ 0. Additionally, if λ < μ then (3.254) becomes

f (x) = λP0e−(μ−λ)x , x > 0, P0 = 1 − λ

μ
,

as in the standard no-barrier M/M/1 queue.

3.16.5 Variant 3

All arrivals that “see” a wait < K join the system and receive full ser-
vice S. Some of these service tines will cause jumps that upcross level
K (Fig. 3.35). (In variant 3 we call level K a threshold rather than a bar-
rier, because sample-path conditions switch at level K .) Arrivals that “see”
a wait > K , are blocked from joining, and are cleared. (Effectively, they
balk upon arrival. With respect to the arrival-point waiting time Variant 3
is identical to M/G/1 with reneging/balking and having a staying function

0

Time t 

x

( )KW t

× × × ×

K

× ×
KK

Fig. 3.35 Variant 3. Sample path of {WK (t)}t≥0 in M/G/1 with threshold at level K .
‘×’ indicates arrivals who balk because WK (·) > K upon their arrival. CK := busy
cycle, BK := busy period
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R(y) = 1 · I [0,k) (Wι) + 0.I [k,∞) (Wι), where Wι := arrival-point wait …
see Fig. 3.35 and Sect. 3.13, which analyzes the renege/balk M/G/1 queue.
We define the service time SK due to the level-K threshold, in terms of S as
follows. If a customer must wait y then

SK =
{

S if y ∈ [0, K ) ,

0 if y ∈ [K , ∞) ,

which may be written as SK = S · I [0,k) (Wι) + 0.I [k,∞) (Wι), where I A(·)
is the characteristic function of set A.

We denote the mixed pdf of wait as
{

PK ,0, fK ,i (x)
}

i=0,1 where the domain
of fK ,0(x) is (0, K ) and the domain of fK ,1(x) is [K , ∞). Using LC we can
write integral equations for fK ,i (x), i = 1, 2, by inspection of Fig. 3.35, as
follows.

fK ,0(x) = λPK ,0 B(x) + λ
∫ x

y=0 B(x − y) fK ,0(y)dy, x ∈ (0, K ) ,

fK ,1(x) = λPK ,0 B(x) + λ
∫ K

y=0 B(x − y) fK ,0(y)dy, x ∈ [K , ∞) ,

PK ,0 + ∫ K
y=0 fK ,0(x)dx + ∫∞

x=K fK ,1(x)dx = 1.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.255)
We infer from Fig. 3.35 and Theorem 1.1, the continuity condition at K

fK ,1(K +) = fK ,0(K −), (3.256)

noting limt→∞ Dt (x)/t = limt→∞ Dt (x−)/t , and there are no SP tangents
at level K . (Contrast this property with that at level D in M/D/1 where there
is a discontinuity; see Proposition 3.9 Part (2) in Sect. 3.10.1.)

Expected Sojourn Above Level K
Let γK := excess of a jump over level K , aK := sojourn above level K .
Then aK = γK , and E(aK ) = E(γK ). Let FγK (z) := P(γK ≤ z), z > 0. Two
different expressions for limt→∞ Ut (K + z)/t are

(
1 − FγK (z)

)
fK ,0(K −)

and λPK ,0 B(K + z) + λ

∫ K

y=0
B(K + z − y) fK ,0(y)dy.

In the first expression fK ,0(K −) is the upcrossing rate (also the downcrossing
rate) of level K , and 1 − FγK (z) is the upcrossing rate of level K + z given
the SP upcrosses level K . The second term is the upcrossing rate of level
K + z due to upward jumps that start in [0, K ). Thus

http://dx.doi.org/10.1007/978-3-319-50332-5_1
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1 − FγK (z) = λPK ,0 B(K + z) + λ
∫ K

y=0 B(K + z − y) fK ,0(y)dy

fK , 0(K −)

= λPK ,0 B(K + z) + λ
∫ K

y=0 B(K + z − y) fK ,0(y)dy

λPK ,0 B(K ) + λ
∫ K

y=0 B(K − y) fK ,0(y)dy

and
E(aK ) = E(γK ) = ∫∞

z=0

(
1 − FγK (z)

)
dz

= ∫∞
z=0

[
λPK ,0 B(K+z)+λ

∫ K
y=0 B(K+z−y) fK ,0(y)dy

λPK ,0 B(K )+λ
∫ K

y=0 B(K−y) fK ,0(y)dy

]
dz.

(3.257)

Using the technique in [25] for Variant 1, we can also find in Variant 3, the
pdf of SK and show that E(SK ) = (1 − PK ,0)/λ.

3.16.6 Variant 3: M/M/1 Model

Setting B(x) = e−μx in (3.255), and solving by converting to differential
equations, gives

fK ,0(x) = λPk,0e−(μ−λ)x , x ∈ (0, K ) ,

fK ,1(x) = λPk,0e−(μx−λK ), x ∈ [K , ∞) ,

PK ,0 = 1
1+ λ

μ−λ (1−e−(μ−λ)K )+ λ
μ e−(μ−λ)K .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(3.258)

In (3.258) if x > (λK ) /μ then μx − λK > 0 and
∫∞

x=K fK ,1(x)dx is finite.
If additionally λ < μ then as K → ∞ the denominator of PK ,0 → 1

1+λ/(μ−λ)

= 1 − λ/μ, which is P0 in the no-threshold M/M/1 queue. Also fK ,0(x) →
λP0e−(μ−λ)x , x ∈ (0, ∞) which is f (x), x > 0 in the no-threshold M/M/1
queue.

From (3.257), E(aK ) = ∫∞
z=0 e−μzdz = 1/μ.

3.17 Generalized Beneš Series for PDF of Wait

In this Section we use LC to generalize the Beneš series for the pdf of wait
in M/G/1 (see formula (3.71) in Sect. 3.4.5). We use LC, the busy-period
structure (Fig. 3.6 in Sect. 3.4.12), the multiplicative structure (Fig. 3.36), and
the renewal reward theorem (see references following Eq. (3.79)) to develop
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a series for the pdf of wait (Wq). Combining LC and the renewal reward
theorem facilitates creating more general series for the pdf of Wq in MG/1
variants as well. We illustrate the more generalized series in an M/G/1 model
where zero-wait arrivals receive exceptional service (see Sect. 3.6.1).

3.17.1 Model Description

The arrival rate is λ. Zero-wait arrivals (initiators of busy periods) receive
service time S0. Positive-wait arrivals receive service time S1 (�=dis S0). We
denote: the cdf of Si as Bi (x), x > 0, Bi (x) = 1 − Bi (x), x ≥ 0, i = 0, 1;
the steady-state pdf of wait as {P0, f (x)}x>0; the limiting excess of Si as
γSi ;; the pdf of γSi by gi (x), x ∈ (0, ∞)∩(domain of Si ). It is well known
that gi (x) = (1/E(Si )) Bi (x), i = 0, 1 (see Example 7.24, p. 453 in [125] ;
formula (6.2), p. 193 in [99]). Also ρi := λE(Si ), i = 0, 1.

Examining a busy period of the virtual wait process {W (t)}t≥0 (Fig. 3.36)
and applying LC rate balance across level x (>0), yields Eq. (3.143) of
Sect. 3.6.1 (repeated here for handy reference)

f (x) = λP0 B0(x) + λ

∫ x

y=0
B1(x − y) f (y)dy, x > 0. (3.259)

Integrating both sides of (3.259) with respect to x ∈ (0, ∞) and simplifying
leads to formula (3.144) for P0, whose form implies P0 ∈ (0, 1) iff ρ1 < 1.

W(t)

Gen-1

Time

0S

1S
1S 1S

Level x

1S
Gen-2 SBP

Gen-3 SBP
Gen-5 SBP

Gen-4 SBP

Gen-3 SBP

0

Fig. 3.36 Multiplicative structure of B of {W (t)}t≥0 for Beneš series analysis. Each
arrival generates the initial jump of a B or sub-busy period (SBP). Initial jumps of
all busy/sub-busy periods account for all arrivals (Gen := generation)
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3.17.2 Applying the Renewal Reward Theorem

Consider the gen-1 (abbreviation for generation-1) busy period B in Fig. 3.36.
Fix level x > 0. Let: E(Ugen-k (x)) := E(number of upcrossings of x by gen-
k initiated jumps in B); E(Ugen-k,t (x)) := E(number of upcrossings of x by
gen-k initiated jumps during (0, t)). Then

E(Ugen-1 (x)) = 1 × B0(x); E(C) = 1/ (λP0)

(for E(C) see formula (3.81) in Sect. 3.4.10). All jumps during C (busy cycle)
occur during its embedded B. By the renewal reward theorem, the long-run
upcrossing rate of x due to gen-1 busy period initiated jumps is

limt→∞ Ugen-1,t (x)

t
= E(Ugen-1 (x))

E(C)

= B0(x)
1/(λP0)

= λP0 B0(x) = P0ρ0g0(x).

(3.260)

A similar analysis of gen-2 sub-busy period initiated upcrossings of x gives

E(Ugen-2 (x)) = λE(S0)

∫ x

y=0
B1(x − y)g0(y)dy,

since E(number of gen-2 jumps during C – same as number in B) = λE(S0).
Thus

E(Ugen-2 (x)) = (1/μ1)λE(S0)

∫ x

y=0
μ1 B1(x − y)g0(y)dy

= (1/μ1)ρ0
(
g1(1) ∗ g0

)
(x).

By the renewal reward theorem

limt→∞ Ugen-2,t (x)

t = E(Ugen-2(x))

E(C)

= (1/μ1)ρ0(g1(1)∗g0)(x)

1/(λP0)
= P0ρ0ρ1

(
g1(1) ∗ g0

)
(x),

(3.261)

where
(
g1(1) ∗ g0

)
(x) =

∫ x
y=0 g1(1)(x − y)g0(y)dy.
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Similarly, for gen-3 sub-busy period initiated upcrossings of x ,

E(Ugen-3 (x)) = (λE(S1)) (λE(S0))
∫ x

y=0 B1(x − y)
(
g1(1) ∗ g0

)
(y)dy

= (1/μ1) (λE(S1)) (λE(S0))
∫ x

y=0 μ1 B1(x − y)
(
g1(1) ∗ g0

)
(y)dy

= (1/μ1) ρ0ρ1
(
g1(2) ∗ g0

)
(x);

the factor λE(S1) occurs because each gen-2 sub-busy period initiated jump
is =

dis
S1—the initial service time of a gen-3 sub-busy period. By the renewal

reward theorem

limt→∞ Ugen-3,t (x)

t
= E(Ugen-3 (x))

E(C)

= (1/μ1) ρ0ρ1
(
g1(2) ∗ g0

)
(x)

1/ (λP0)
= P0ρ0ρ

2
1

(
g1(2) ∗ g0

)
(x), x > 0.

Similar reasoning for gen-k sub-busy period initiated upcrossings of x ,
yields

limt→∞ Ugen-k,t (x)

t
= E(Ugen-k (x))

E(C)

= P0ρ0ρ
k−1
1

(
g1(k−1) ∗ g0

)
(x), k = 1, 2, . . . ,

(3.262)

where g1(k−1)(·) is the (k − 1)-fold self-convolution of g1(·), and g1(0) ≡ 1.
The principle of rate balance across level x gives

limt→∞ Dt (x)
t =∑∞

k=1
limt→∞ Ugen-k,t (x)

t , x > 0,

f (x) = P0ρ0
∑∞

k=1 ρk−1
1

(
g1(k−1) ∗ g0

)
(x), x > 0,

(3.263)

upon applying formula (3.262). In (3.263) the right side is the total upcrossing
rate of level x ; term 1 is the upcrossing rate of x due to gen-1 busy period
initiated jumps, and term k is the upcrossing rate of x due to gen-(k − 1)

sub-busy period initiated jumps, k = 2, 3, . . ..

3.17.3 LC Equation for {P0, f (x)}x≥0 via a Series

In (3.263) term k is the SP upcrossing rate of level x due to the gen-k busy/sub-
busy period initiated jumps, where

(
g1(0) ∗ g0

)
(x) ≡ g0 (x). From Fig. 3.36
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every arrival is the initiator of some gen-1 busy period or some gen-k sub-busy
period, k = 2, 3, . . . Hence, the initial jumps of all the gen-k busy/sub-busy
periods, k = 1, 2, . . ., account for all arrivals to the system. In (3.263) the left
and right sides are the SP down- and upcrossing rates of level x , respectively.
Hence, (3.263) is an alternative way of viewing the LC balance equation for
f (x). Due to the geometric factors ρk−1

1 , k = 1, 2, . . . , (ρ1 < 1), the series
converges geometrically fast, to f (x). Formula (3.263) is a series solution of
the standard Volterra integral equation for the pdf given by (3.259). More-
over, because (3.263) is the sum of gen-k initiated upcrossing rates of level x ,
(3.263) is an alternative LC equation for {P0, f (x)}x>0. (In fact, the right side
of (3.259) is the series expansion of the integral in (3.259)). Interestingly, we
now have a geometric/physical interpretation of each term via LC. By com-
puting or approximating the convolutions

(
g1(k−1) ∗ g0

)
(x), k = 1, 2, . . .,

we can quickly estimate f (x) by summing the first N appropriate terms of
(3.263).

In the standard M/G/1 queue, g0(x) ≡ g1(k−1)(x) and the series (3.263)
simplifies to the well-known Beneš series (3.71) (see [8]; formula (5.111), p.
201 in [104]).

Example 3.12 In M/M/1 where zero-wait arrivals get exceptional service
gi (y) = μi e−μi y , and E(Si ) =1/μi , ρi = λ/μi , i = 0, 1. Then

g0(y) = e−μ0 yμ0 ≡ g1(0), g1(k−1)(y) = e−μ1 y (μ1 y)k−2 μ1

(k − 2)! , k = 2, 3, . . . ,

so that
(
g1(k−1) ∗ g0

)
(x)

=
⎧
⎨

⎩

e−μ0xμ0, k = 1,

∫ x
y=0

e−μ1(x−y)(μ1(x−y))k−2μ1
(k−2)! · e−μ0 yμ0dy, k = 2, 3, . . .

(3.264)

where k − 2 := (k − 1) − 1 (see formula (3.39) for the pdf of Erlk,μ). Sub-
stituting from (3.264) into (3.263) gives the first term of the series as

P0ρ0e−μ0xμ0 = P0λe−μ0x .
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The sum of the subsequent terms of the series is

P0ρ0
∑∞

k=2 ρk−1
1

∫ x
y=0

e−μ1(x−y)(μ1(x−y))k−2μ1
(k−2)! · e−μ0(y)μ0dy

= P0ρ0e−μ1x
∫ x

y=0 λμ0eμ1 y ·∑∞
k=2

(λ(x−y))k−2

(k−2)! · e−μ0 ydy

= P0ρ0e−μ1x
∫ x

y=0 λμ0eμ1 y · eλ(x−y) · e−μ0 ydy

= P0ρ0λμ0e−(μ1−λ)x
∫ x

y=0 e(μ1−λ−μ0)yd ẏ

= P0λ
2 e−μ0x−e−(μ1−λ)x

μ1−λ−μ0
.

Summing all the terms gives

f (x) = P0λe−μ0x + P0λ
2 e−μ0x − e−(μ1−λ)x

μ1 − λ − μ0

= P0

( −λ2

μ1 − λ − μ0
e−(μ1−λ)x + λ (μ1 − μ0)

μ1 − λ − μ0
e−μ0x

)
,

P0 = μ1 − λ

μ1 − λ − μ0
,

which is identical to formulas (3.148) and (3.149) in Sect. 3.6.1, which were
obtained by converting an integral equation to a differential equation, solv-
ing the latter, and then using initial conditions to obtain the constants of
integration.

The foregoing example illustrates important properties of the level crossing
method.

1. We can partition the sample-path jumps of {W (t)}t≥0 into subsets, such
as jumps that initiate generation-k sub-busy periods, in order to obtain
new views of the queueing kinetics directly from the structure of the
sample path. In this Section the partition into gen-k jumps results in a
generalization of the Beneš series for M/G/1.

2. Once the convolutions in the series are specified, it is straightforward in
many cases to derive the pdf f (x), x > 0. Comparing the above example
with the solution method for f (x), x > 0 in Sect. 3.6.1 shows that the
LC-derived generalized Beneš series approach is more straightforward,
and computes the coefficients of e−(μ1−λ)x and e−μ0x directly without
resorting to differential equations and using initial conditions.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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3.17.4 Brief Discussion

We have indicated how to apply LC to derive transient and steady-state prop-
erties of the waiting time in several M/G/1 and M/M/1 queues, emphasizing
steady-state results. Many of the LC-derived properties have been obtained
in the literature by different methods, but some properties and results given
in Chap. 3 are new.

A vast array of additional models and variants have been analyzed using
LC, since 1976. For example, M/G/1 queues with Markov-generated server
vacations [39] generalizes the standard M/G/1 server-vacation model. The
vacation time following a service completion depends on the length of the
immediately preceding vacation, via a Markov chain. Such dependency arises
in many situations. A teller in a bank may do paper work following each
service. After the next service completion, the paper work required may
depend on the quality and quantity of the paperwork completed during the
preceding vacation. Similar remarks apply to workers who write a report
after completing a service, e.g., medical practitioners after seeing a patient;
dentists after treating a patient; repairmen after completing a job; salesmen
after completing a sale; and so forth.

Variants of the M/G(a,b)/1 queue with bulk service were analyzed using
LC in [20, 93]. The model utilizes a two-dimensional state {W (t), M(t)}t≥0
where W (t) is the virtual wait. Random variable M(t) is discrete; it represents
at time t , the number of ‘customers in the waiting line confirmed’ to form
a service group, where M(t) ∈ {a, . . . , b} and b is the maximum service-
group size. M(t) is called the system configuration, which is explained for
M/M/c queues in Sects. 4.4 and 4.5 in Chap. 4. The idea of system configu-
ration was introduced by the author in [11] (see also Sect. 2 in [52]). System
configurations are very useful in many stochastic models, by giving the LC
method much flexibility for modelling various situations (see, e.g., the effec-
tive system configuration due to L. Green in [38]). A system configuration
introduces sufficient detailed information, to make a model Markov ian. Cre-
ating a useful system configuration requires thinking through the system
dynamics carefully.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_4
http://dx.doi.org/10.1007/978-3-319-50332-5_4
http://dx.doi.org/10.1007/978-3-319-50332-5_4

	3 M/G/1 Queues and Variants
	3.1 Introduction
	3.2 Transient Distribution of Wait
	3.2.1 Derivative E(mathcalDt(x))/t,x0
	3.2.2 Derivative E(mathcalUt(x))/t,x0
	3.2.3 Level Crossings and Transient CDF of Wait
	3.2.4 Relating the Transient CDF and Level Crossings
	3.2.5 Downcrossings and Transient PDF of Wait
	3.2.6 Alternative Proof of limtrightarrowinftyE(mathcalD t(x))/t=f(x)
	3.2.7 Upcrossings and Transient PDF of Wait
	3.2.8 Integro-differential Equation for PDF of Wait
	3.2.9 PDF When Arrivals and Service Are Time Dependent
	3.2.10 Steady-State PDF of Wait from Transient PDF

	3.3 Steady-State Distribution of Wait
	3.3.1 Alternative LC Equations for PDF of Wait
	3.3.2 Relating System and Waiting Times Using LC

	3.4 Waiting Time Properties in Steady State
	3.4.1 Probability of Zero Wait
	3.4.2 Pollaczek-Khinchine (P-K) Formula
	3.4.3 Expected Number in Queue and in System
	3.4.4 Laplace-Stieltjes Transform (LST) of a PDF
	3.4.5 Series for PDF of Wq by Inverting widetildef(s)
	3.4.6 Another Look at System Time
	3.4.7 Connecting PDFs of System and Waiting Times
	3.4.8 Number in System Probability Distribution
	3.4.9 Renewal Reward Theorem: Statement
	3.4.10 Expected Busy Period in M/G/1
	3.4.11 Equation for f(x) via Renewal Reward Theorem
	3.4.12 Busy Period Structure in Standard M/G/1
	3.4.13 Probability Distribution of the Busy Period
	3.4.14 Expected Number Served in Busy Period
	3.4.15 Inter-Downcrossing Time of a State-Space Level
	3.4.16 Sojourn Below a Level of { W(t)} t0
	3.4.17 Sojourn Above a Level of { W(t)} t0
	3.4.18 Hazard Rate of PDF of Waiting Time
	3.4.19 Sojourn Above a Level and Distribution of Wait
	3.4.20 Computing F(x) via E(ax)
	3.4.21 Events During an Inter-downcrossing Time
	3.4.22 Boundedness of PDF in Steady State

	3.5 M/M/1 Queue
	3.5.1 Waiting Time PDF and CDF
	3.5.2 System Time PDF and CDF
	3.5.3 Number in System Probability Distribution
	3.5.4 Expected Busy Period
	3.5.5 CDF and PDF of Busy Period in M/M/1
	3.5.6 Geometric Derivation of CDF and PDF of Wait
	3.5.7 Inter-crossing Time of Level x
	3.5.8 Number of Crossings of a Level in a Busy Cycle
	3.5.9 Downcrossings at Different Levels
	3.5.10 Number Served in a Busy Period
	3.5.11 Relationship Between M/M/1 and M/M/1/1

	3.6 M/G/1: Service Time Depending on Wait
	3.6.1 M/G/1: Zero-Wait Arrivals Get Special Service
	3.6.2 M/M/1: Zero-Wait Arrivals Get Special Service

	3.7 Expected Sojourn Above Level x in M/G/1
	3.8 M/G/1 with Multiple Poisson Inputs
	3.8.1 Integral Equation for PDF of Wait
	3.8.2 Expected Wait Before Service
	3.8.3 Expected Number in Queue
	3.8.4 Expected Busy Period
	3.8.5 M/M/1 with Multiple Poisson Inputs
	3.8.6 Expected Sojourn Above Level x - E(ax)

	3.9 M/G/1: Wait-Number Dependent Service
	3.9.1 Sample Path of { W(t)} t0
	3.9.2 Integral Equation for PDF of Virtual Wait
	3.9.3 Exponential Service
	3.9.4 Workload

	3.10 M/D/1 Queue
	3.10.1 Properties of PDF and CDF of Wait
	3.10.2 Integral Equation for PDF of Wait
	3.10.3 Analytic Solution for CDF and PDF of Wait
	3.10.4 Probability Distribution of Number in System

	3.11 M/Discrete/1 Queue Aka M/Dn/1
	3.11.1 Properties of PDF and CDF of Wait
	3.11.2 Expected Busy Period
	3.11.3 Integral Equation for PDF of Wait
	3.11.4 Solution for CDF of Wait
	3.11.5 Alternative Approach for CDF of Wait

	3.12 M/{i D}/1 Queue
	3.12.1 Integral Equation for CDF of Wait
	3.12.2 Recursion for CDF of Wait
	3.12.3 Solution for CDF and PDF of Wait

	3.13 M/G/1: Wait Related Reneging/Balking
	3.13.1 The Staying Function overlineR(y),y0
	3.13.2 Sample Path of { W(t)} t0
	3.13.3 M/M/1: Wait Dependent Reneging/Balking
	3.13.4 M/M/1: Reneging/Balking-Stability Condition
	3.13.5 M/M/1: Reneging/Balking-Exponential overlineR(cdot)
	3.13.6 M/M/1: Reneging/Balking and Standard M/M/1
	3.13.7 M/M/1: Reneging/Balking-Number in System
	3.13.8 Proportion of Customers Served

	3.14 M/G/1 with Priorities
	3.14.1 Two Priority Classes
	3.14.2 Integral Equation for { P0,fi(x)} x>0
	3.14.3 Stability Condition
	3.14.4 Expected Wait of High Priority Customers
	3.14.5 Equation for PDF of Wait of Type-2 Customers
	3.14.6 Expected Wait of Type-2 Customers
	3.14.7 Exponential Service

	3.15 M/G/1 with Server Vacations
	3.15.1 Probability of Zero Wait
	3.15.2 Expected Busy and Idle Period
	3.15.3 Number in System
	3.15.4 M/M/1 with Server Vacations =disExpν

	3.16 M/G/1 with Bounded Workload
	3.16.1 Variant 1
	3.16.2 Variant 1: M/M/1 Model
	3.16.3 Variant 2
	3.16.4 Variant 2: M/M/1 Model
	3.16.5 Variant 3
	3.16.6 Variant 3: M/M/1 Model

	3.17 Generalized Beneš Series for PDF of Wait
	3.17.1 Model Description
	3.17.2 Applying the Renewal Reward Theorem
	3.17.3 LC Equation for {P0,f(x)} x0 via a Series
	3.17.4 Brief Discussion



