
Chapter 10
Renewal Theory Using LC

In this chapter, Sect. 10.1 gives an LC analysis of a replacement model, which
is structured using two interconnected renewal processes. We derive effi-
ciently, via sample paths and LC, the limiting pdfs of the excess life , the
age, and the total life, of both renewal processes. Section 10.2 gives an LC
analysis of a classical renewal problem with a barrier. Section 10.3 uses LC
to derive the finite time-t probability distributions of the excess, age and total
life, of a renewal process.

10.1 Replacement Model via Renewal Theory

We first describe a replacement model, which is a variant of the GI/G/r(·) dam.
(see Sect. 6.2 for a related M/G/r(·) dam.) Sects. 10.1.3 and 10.1.4 derive the
steady-state (limiting) pdfs of the excess, age and total life of two connected,
renewal processes in the model.

10.1.1 The Model

Let {X (t)}t≥0 denote a continuous-time continuous-state stochastic process
having upward jumps of i.i.d. sizes Xn > 0, all starting at level 0, at times τ−

n ,
where 0 = τ0 < τ1 · · · < τn < · · · , such that X (τn) = Xn, n = 0, 1, 2, . . .
Let the state space be S = [0,∞). Figure 10.1 shows a sample path of
{X (t)}t≥0 (we use X (t) to denote both the state variable and a sample path, for
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Fig. 10.1 Sample path of excess life γX (t), age δX (t), total life βX (t). Also shows
a state-space level x

economy of notation). Assume d X (t)/dt = −r(X (t)), t ∈ [τn, τn+1), n =
0, 1, . . ., where r(x) > 0, x > 0. Thus X (t) is a piecewise, decreasing
deterministic function between jumps. Assume that for all v > 0,

lim
u↓0

∫ v

y=u

1

r(y)
dy < ∞, (10.1)

which guarantees that a sample path X (t), t ≥ 0, starting from any level
v > 0, returns to level 0 in a finite time. The process {X (t)}t≥0 is a variant of
the GI/G/r(·) dam subject to inputs {Xn}n=0,1,.... occurring at all instants τn
when the dam becomes empty, and at no other time points. This mechanism
can be thought of as that of a replacement model. New inputs replace the
immediately preceding used-up inputs. Thus {X (t)}t≥0 is never at level 0 for
a positive duration, and τn, n = 1, 2, . . ., are replacement times.

Denote the inter-replacement times by {Zn}n=0,1,.... The random variables
Zn and Xn are related by

Zn =
∫ Xn

y=0

1

r(y)
dy, n = 0, 1, . . . . (10.2)

From (10.2), Zn is the time required for {X (t)}t≥0 to descend from level Xn
to level 0. The Zn , n = 0, 1, are i.i.d. because Xn , n = 0, 1, are i.i.d.
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10.1.2 Renewal Processes {Zn}n=0,1,... and {Xn}n=0,1,...

{Zn}n=0,1,... is in one-to-one correspondence with {Xn}n=0,1,..., and with
the piecewise deterministic continuous efflux rate r(X (t)), τn < τn+1, n =
0, 1, . . ..

Let Xn =
dis

X and Zn =
dis

Z , n = 0, 1, . . .

Example 10.1 Consider a newly-installed battery at τ0 with initial electrical
charge X0 ≡

dis
X , to power a device. Assume that the charge declines at a rate

that depends on the present charge. That is, d X (t)/dt = −r(X (t)) < 0, t ∈
[τ0, τ1). Suppose the battery’s charge dissipates non-uniformly and descends
to 0 after a time τ1 = Z0 ≡

dis
Z . The battery is immediately replaced by a

new fully-charged one. This procedure is repeated as batteries wear out, at
times τn, n = 2, 3, . . .. Thus Zn ≡

dis
Z , and Xn ≡

dis
X, n = 0, 1, 2, . . ., and

Z =
∫ X

y=0

1

r(y)
dy, (10.3)

is the inter-replacement time (see formula (6.4) in Sect. 6.2.4). The dimension
of Z is [T ime]. The dimension of X is [Coulombs]. The function r (X (t))
has dimension [Coulomb][T ime]−1.

10.1.3 The Renewal Process {Xn}n=0,1,...

Let γX (t) := excess life of content at instant t ≥ 0. The process {γX (t)}t≥0
has the same sample path as {X (t)}t≥0 , since we assume that all input jumps
start at level 0. Then d(γX (t))/dt = −r(γX (t)). Let δX (t) := age of the content
at instant t ≥ 0, i.e., amount of content used up at instant t , from the last
renewed amount prior to t . Then d (δX (t)) /dt = +r(δX (t)). Let βX (t) :=
total life (span) of the latest renewed amount of content at t (Fig. 10.1). (In
Example 10.1, γX (t)), δX (t), βX (t) are respectively, the remaining charge,
the charge used up, and the total charge, of the battery in use at time t .)

In the sample paths of the processes {γ(t)}t≥0, {δ(t)}t≥0, {β(t)}t≥0 all
upward jumps start at level 0 and are =

dis
X . All downward jumps start at a

random level X and end at level 0.

http://dx.doi.org/10.1007/978-3-319-50332-5_6
http://dx.doi.org/10.1007/978-3-319-50332-5_6
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Limiting Distributions in {Xn}n=0,1,... Using LC
We derive the limiting pdfs fγX (x), fδX (x), fβX (x), x > 0, of r.v.s γX (t),
δX (t),βX (t), as t → ∞, assuming E(X) < ∞, which is the condition for
their existence. Consider sample paths of {γX (t)}, {δX (t)}, {βX (t)}, t ≥ 0
(Fig. 10.1).

Let FX (x), fX (x),μX be the cdf, pdf and expected value respectively of
r.v. X. Let F X (x) = 1 − FX (x), x ≥ 0.

Limiting PDF of Excess Life in {Xn}n=0,1,...
Consider a sample path of {γ(t)}t≥0. The long-run SP expected downcrossing
rate of level x > 0, is

lim
t→∞

E(Dt (x))

t
= r(x) fγX (x). (10.4)

(as in Corollary 6.2 in Sect. 6.2.8).
The long-run SP expected upcrossing rate of level x is

lim
t→∞

E(Ut (x))

t
= 1

E(Z)
· F X (x), (10.5)

since the expected time between upward jumps starting from level 0 is
E(Z)(= E(τn+1 − τn), n = 0, 1, . . .), and F X (x) = P(SP jump start-
ing at level 0 is > x). In (10.3), substituting from (10.2), and conditioning
on X = x gives

E(Z) =
∫ ∞

x=0

(∫ x

y=0

1

r(y)
dy

)
fX (x)dx =

∫ ∞

y=0

∫ ∞

x=y

1

r(y)
fX (x)dxdy

=
∫ ∞

y=0

1

r(y)

(∫ ∞

x=y
fX (x)dx

)
dy =

∫ ∞

y=0

F X (y)

r(y)
dy. (10.6)

Equating (10.4) and (10.5) by the principle of rate balance across level x ,
and using (10.6), yields the equation

r(x) fγX (x) = F X (x)

E(Z)
= F X (x)∫ ∞

y=0
FX (y)
r(y) dy

, (10.7)

fγX (x) = F X (x)

r(x)
∫ ∞

y=0
F X (y)
r(y) dy

. (10.8)

The dimension of fγX (x) is [content]−1 (= [Coulomb]−1 in Example 10.1)).

http://dx.doi.org/10.1007/978-3-319-50332-5_6
http://dx.doi.org/10.1007/978-3-319-50332-5_6
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Limiting PDF of Excess Life in {Xn}n=0,1,... when r(x) ≡ 1
If the efflux rate r(x) ≡ 1, formula (10.8) reduces to

fγX (x) = F X (x)∫ ∞
y=0 FX (y)dy

= F X (x)

μX
, (10.9)

since
∫ ∞

y=0 F X (y)dy = E(X) = μX . (γX represents the limiting excess life
of content, having pdf fγX (x).) Formula (10.9) is exactly the same as the
well-known limiting pdf of the excess life in a “standard” renewal process.
However, here the dimension of fγX (x) is [content]−1 instead of [T ime]−1.

Limiting PDF of Age in {Xn}n=0,1,...
For the age process {δX (t)}t≥0, the long-run SP expected upcrossing rate of
level x > 0 is

lim
t→∞

E(Ut (x))

t
= +r(x) fδX (x), (10.10)

(see Corollary 6.2 in Sect. 6.2.8). The long-run SP expected downcrossing
rate of level x is

lim
t→∞

E(Dt (x))

t
= 1

E(Z)

∫ ∞

y=x
fX (y)dy = F X (x)

E(Z)
, (10.11)

because (1) downward jumps occur at rate 1/E(Z), (2) in order for the SP to
downcross level x by a jump at some τ−

n , the upward jump at τn−1 starting
from level 0 must have been such that Xn−1 > x . Moreover, Xn−1 at τn−1 is
also equal to the downward jump size at τ−

n (see Fig. 10.1).
Equating (10.10) and ( 10.15) (rate balance across level x), gives

r(x) fδX (x) = F X (x)

E(Z)
= F X (x)∫ ∞

y=0
F X (y)
r(y) dy

;

fδX (x) = F X (x)

r(x)
∫ ∞

y=0
F X (y)
r(y) dy

. (10.12)

Comparing (10.8) with (10.12) shows that fδX (x) = fγX (x). The dimension
of fδX (x) is [content]−1.

Limiting PDF of Age in {Xn}n=0,1,... when r(x) ≡ 1
If r(x) ≡ 1, we obtain similarly as in (10.9), the limiting pdf

fδX (x) = F X (x)

μX
. (10.13)

http://dx.doi.org/10.1007/978-3-319-50332-5_6
http://dx.doi.org/10.1007/978-3-319-50332-5_6
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The dimension of fδX (x) is [content]−1. It is well known that for an
ordinary renewal process, the limiting distributions of the excess life and
age are identical. In the variant of a GI/G/r(·) dam possessing the renewal
structure outlined here, these distributions are also identical with respect to
the content, even when the efflux rate has a general form r(x), x > 0. That
is, formulas (10.8) and (10.12) are identical.

Limiting PDF of Total Life in {Xn}n=0,1,...
For the process {βX (t)}t≥0, the long-run SP expected downcrossing rate of
level x > 0, is

lim
t→∞

E(Dt (x))

t
=

∫ ∞

y=x

(
1∫ y

u=0
1

r(u)du

)
fβX (y)dy, (10.14)

where we have conditioned on βX (t) = y > x . In (10.14), 1/
∫ y

u=0
1

r(u)du, the
reciprocal of the expected sojourn time of {βX (t)}t≥0 at level y > x , is equal
to the downward jump rate across level x starting from level y (Fig. 10.1). At
the end of a level-y (y > x) sojourn time, the SP jumps downward to level
0, and downcrosses every state-space level in (0, y), including level x .

The SP long-run (expected) upcrossing rate of level x is

lim
t→∞

E(Ut (x))

t
= F X (x)

E(Z)
= 1

E(Z)

∫ ∞

y=x
fX (y)dy, (10.15)

since the expected time between SP upward jumps out of level 0 is E(Z), and
the probability that such an SP jump exceeds level x is F X (x). The SP makes
a double jump in opposite directions at each renewal instant of the sequence
{Zn}n=0,1,.... One jump is downward ending at level 0; the “opposite jump”
is upward starting at level 0.

Equating (10.14) and (10.15) (rate balance across level x), results in the
integral equation for fβX (·),

∫ ∞

y=x

1(∫ y
u=0

1
r(u)du

) fβX (y)dy = FX (x)

E(Z)
. (10.16)

In (10.16), taking d/dx on both sides yields

− 1(∫ x
u=0

1
r(u)du

) fβX (x) = − fX (x)

E(Z)
.



10.1 Replacement Model via Renewal Theory 457

Hence

fβX (x) =
(∫ x

y=0
1

r(y)dy
)

fX (x)

E(Z)
=

(∫ x
y=0

1
r(y)dy

)
fX (x)

∫ ∞
y=0

F(y)
r(y) dy

. (10.17)

The dimension of fβX (x) is [content]−1.

Limiting PDF of Total Life in {Xn}n=0,1,... when r(x) ≡ 1
If r(x) ≡ 1, then Zn = Xn and E(Zn) = E(Xn) = μX in magnitude. (However,
their dimensions differ; since [Xn] = [contentunit] and [Zn] = [T ime].)
Formula (10.17) reduces to the well-known limiting pdf of total life (span)
for an ordinary renewal process,

fβX (x) = x fX (x)

E(Z)
= x fX (x)

μX
, (10.18)

except that the dimension of fβX (x) is [content]−1 instead of [T ime]−1. That
is, in the variant of the GI/G/r(·) dam described here, the “life” is measured
in ‘content’ units.

Remark 10.1 The foregoing variant of GI/G/r(·) exhibits the phenomenon
of SP multiple jumps at the same (renewal) instant. Recall that SP jumps in
the state space do not occur in Time. (See Examples 2.2, 2.3 in Sect. 2.3,
regarding SP multiple jumps.)

Example 10.2 Suppose r(x) = kx , x > 0, where k > 0 is a constant. Then
the inequality (10.1) does not hold because sample paths decay as a negative
exponential function (see Sect. 6.4). The SP returns to every level x > 0,
however small. Let us choose a small level ε > 0 to indicate that it is time
for a new replenishment of content. Thus, whenever the content hits level ε
from above, it increases by an amount =

dis
X . We consider two cases.

Case 1: All replenishments start at level 0.
Whenever the content decays to level ε, a new replenishment starts at level 0.
(We assume that the added amount is greater than ε; otherwise it is discarded.)
Many systems are of this type. For example, heat and smoke alarms make a
beep and/or show a red light, when the charge in the alarm’s battery decays to
a certain level. This signals that the battery needs replacing. In Example 10.1,
this corresponds to replacing a battery with a new one when the preceding
charge decreases to ε Coulombs.

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_6
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Case 2: All replenishments start at level ε > 0
For each positive v > ε, the time to decay to level ε is

∫ v

y=ε

1

kx
dx = 1

k
ln

v

ε
< ∞,

meaning the content returns to level ε in a finite time from any level ε + X .
In this case, {Xn}n=0,1,... is a delayed renewal process, where the first inter-
renewal time is X0 =

dis
X − ε, because all future inputs (replenishments)

will start at level ε. The inter-renewal amounts X1, X2, . . . are =
dis

X . In the

renewal process {Xn}n=0,1,..., the support of X0 equals the support of X minus
ε, because the remaining inputs start at level ε. This model structure is similar
to that in the example in Sect. 10.3.8. We will not continue the analysis here;
the limiting and time-t distributions of the quantities of interest can be derived
from the reasoning given below in Sect. 10.3.8. This model would apply to
cases where it is important to maintain the concentration of a solute in a
solution above a certain level (say ε). Examples include: pharmacokinetics
(see Sect. 11.6); consumer response to nonuniform advertisements (see [40]);
and many others.

10.1.4 The Renewal Process {Zn}n=0,1,...

Limiting Excess Life, Age, Total Life in {Zn}n=0,1,...
Let γZ (t), δZ (t), βZ (t) denote the excess life, age, and total life respectively,
at a fixed time t > 0.

Define G(x) :=
∫ x

y=0
1

r(y)dy := time for {X (t)}t≥0 to decay from level
x > 0 to level 0. Then G(x) is an increasing differentiable function of
x (since dG(x)/dx = 1/r(x)), which implies the inverse G−1(x) of G(x)
exists, and

d

dx
G−1(x) = 1

d
dx G(x)

= 1
1

r(x)

= r(x), x > 0

(see, e.g., pp. 206–207 in [137], and other Calculus texts). Thus G−1(x) is
also an increasing (differentiable) function of x . Moreover, G−1(x) is that
level in the Time-state space T × �0,∞) from which a descent to level 0
takes time period x , as G(G−1(x)) = x . We now derive the pdfs of γZ , δZ , βZ

from the results for the pdfs of γX , δX , βX , respectively, given in Sect. 10.1.3.

http://dx.doi.org/10.1007/978-3-319-50332-5_11
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Limiting PDF of Excess Life γZ in {Zn}n=0,1,...
The relation between Zn and X (t) implies

γZ ≤ x iff γX ≤ G−1(x)).

(see Fig. 10.1). Hence

FγZ
(x) = FγX

(G−1(x)). (10.19)

Taking d/dx on both sides of (10.19) and substituting from (10.8) gives

fγZ
(x) = fγX (G−1(x)) · d

dx
G−1(x) = fγX (G−1(x)) · r(x)

= r(x) · F X (G−1(x))

r(G−1(x))
∫ ∞

y=0
F X (y)
r(y) dy

. (10.20)

The dimension of fγZ
(x) is [T ime]−1.

If r(y) ≡ 1, then G(x) = G−1(x) = x and

fγZ
(x) = F X (x)/

∫ ∞

y=0
F X (y)dy = F X (x)/μX = fγX (x).

The dimension of fγZ
(x) is [T ime]−1, whereas the dimension of fγX (x) is

[content]−1.

Limiting PDF of Age δZ in {Zn}n=0,1,...
In a similar manner as for the excess life, the age satisfies

δZ ≤ x iff δX ≤ G−1(x).

Thus, FδZ
(x) = FδX

(G−1(x)). Taking d
dx then yields

fδZ (x) = r(x)F X (G−1(x))

r(G−1(x))
∫ ∞

y=0
F X (y)
r(y) dy

. (10.21)

Thus fδZ (x) = fγZ
(x), x > 0. The dimension of fδZ (x) is [T ime]−1.

If r(y) ≡ 1 then G(x) = G−1(x) = x , and

fδZ
(x) = F X (x)/

∫ ∞

y=0
F X (y)dy = fδX (x).
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The dimension of fδZ
(x) is [T ime]−1, whereas the dimension of fδX (x) is

[content]−1.

Limiting PDF of Total Life βZ in {Zn}n=0,1,...}
Since βZ ≤ x iff βX ≤ G−1(x) then we obtain similarly as for fδZ

(x) and
fγX (x) above,

fβZ (x) = fβX (G−1(x)) · d

dx
G−1(x) = fβX (G−1(x)) · r(x).

From (10.17) we get

fβZ (x) =
r(x) ·

(∫ x
y=0

1
r(y)dy

)
fX (G−1(x))

∫ ∞
y=0

F X (y)
r(y) dy

. (10.22)

The dimension of fβZ
(x) is [T ime]−1 whereas the dimension of fβX (x) is

[content]−1. If r(x) ≡ 1 then

fβZ (x) = x fX (x)∫ ∞
y=0 F X (y)dy

= x fX (x)

μX
,

having dimension [T ime]−1.

10.1.5 Limiting PDFs in Ordinary Renewal Process

We now give the steady-state pdfs of excess, age and total life for the ordinary
(i.e., standard) renewal process as a special case of those for the replacement
model above. In the ordinary renewal process, we have Xn = Zn , n = 0, 1, 2,...,
since r(X (t)) ≡ 1 (see Fig. 10.2). The dimensions of Xn and Zn are the same,
usually [T ime]. The pdfs of the excess, age and total life, i.e., fγZ (x), fδZ (x),
fβZ (x), x > 0, are the same as formulas (10.9), (10.13), (10.18) respectively,
and all have dimension [T ime]−1.

Direct Derivation of Limiting PDFs fγZ (x), fδZ (x), fβZ (x)
We can derive these limiting pdfs very simply and directly in the ordi-
nary renewal process. For example, to get fγZ (x), X > 0, we examine
the sample path of γZ (t), t ≥ 0, in Fig. 10.2. The downcrossing rate of
level x is fγZ (x); the upcrossing rate of level x is F Z (x)/E(Z). Rate bal-
ance gives fγZ (x) = F Z (x)/E(Z). Similarly, examining the sample path of
δZ (t), t ≥ 0, gives fδZ (x) = F Z (x)/E(Z), x > 0. To derive fβZ (x), x > 0,
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Fig. 10.2 Sample paths of excess γZ (t), age δZ (t) and total life βZ (t), t ≥ 0, in the
ordinary (standard) renewal process

examine the sample path of βZ (t), t ≥ 0. The downcrossing rate of level x
is

∫ ∞
y=x (1/y) fβZ (y)dy and the upcrossing rate of level x is F Z (x)/E(Z).

Rate balance gives
∫ ∞

y=x (1/y) fβZ (y)dy = F Z (x)/E(Z). Taking d/dx of
both sides yields fβZ (x) = x fZ (x)/E(Z).

Remark 10.2 The LC derivations of the limiting pdfs of excess life, age and
total life, at time t as t → ∞, are relatively easy in the replacement model,
and are much simpler for the ordinary (standard) renewal process.

Remark 10.3 All the derivations in Sect. 10.1 are based directly on the au-
thor’s unpublished notes of June 18–July 26, 1992 [28]. These notes were
motivated by a talk on the ordinary renewal process by van Harn and Steu-
tel (see Partial Bibliography below) at the 21st Conference on Stochastic
Processes and their Applications at York University, Toronto, June 15–19,
1992. Their presented work differs completely from LC conceptually. Results
for the ordinary renewal process using LC were published independently
in Katayama (2002) (see Partial Bibliography).

10.2 A Renewal Problem with Barrier

Consider a renewal process {Zn}n=1,2...., where Zn =
dis

U(0,1) := uniform

random variable on (0, 1) (Fig. 10.3). Let NK denote the number of renewals
required to first exceed a barrier K > 0. In this section we derive the expected
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Fig. 10.3 Renewal process {Zn}n=1,2... showing renewals. N (t) is the number of
renewals within (0, t). N1 = N (1)+1 is number of renewals required to first exceed
barrier K = 1. N1 is a stopping time for the sequence {Zn}n=1,2,... where Zn =

dis
U(0,1)

value E(NK ), K = 1, 2, 3, . . ., and related quantities. It is well known that
E(N1) = e, the base of natural logarithms (see Problem 5, p. 485 in [125]).
Usually, it is shown that E(N1) = e by a standard renewal argument, i.e.,
conditioning on the first renewal distance s (Fig. 10.3), deriving a renewal
equation, and solving it. However, the general formula for E(NK ), K = 2, 3,
... is not well known.

Here we derive E(N1) by an alternative method, which also applies to
derive E(NK ), K = 2, 3, .... The idea is to embed statistically indepen-
dent replicas of the one-dimensional renewal process {Zn}n=1,2,.... into the
cycles of a regenerative process such that the time axis of the embedded
processes is perpendicular to the time axis of the regenerative process. Thus,
the one-dimensional process {Zn}n=1,2,.... becomes transformed into an in-
finite sequence of statistically independent copies of {Zn}n=1,2,..., in a two-
dimensional construct having two different perpendicular time axes. One time
axis is for the regenerative process; the other is for {Zn}n=1,2,.... The type of
construction in this alternative method, facilitates finding the expected num-
ber of renewals required to exceed a barrier or threshold, in other (seemingly
unrelated) stochastic models as well.

10.2.1 Method for E(NK ) Using a Regenerative Process

We construct a continuous-time continuous-state positive recurrent regener-
ative process
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{X (t)}t≥0, X (0) = 0,

which embeds statistically independent reproductions of {Zn}n=1,2,... in
all cycles of {X (t)}t≥0 (Fig. 10.4). A sample path of {X (t)}t≥0 is a non-
decreasing step function, which makes SP upward jumps of size =

dis
U(0,1) at

an arbitrary Poisson rate λ. (We select λ = 1, for convenience.) The upward
jumps are denoted by

bn := Zn: ≡
dis

U(0,1), n = 1, 2, . . . .

(We replace symbol Zn by bn for generality beyond the threshold K = 1,
and because of applicability to other models. See [33]).

Define random variable NK by

NK = min{n|
n∑

i=1

bi > K }, K = 1, 2, . . . ; (10.23)

thus NK is a stopping time for the sequence {bn}n=1,2,....
Let random variable a =

dis
Expλ = Exp1, implying E(a) = 1.

Define random variable c by

c =
NK∑
i=1

ai , where each ai =
dis

a, (10.24)

and the ai s are i.i.d. r.v.s.
Let {cn}n=1,2,... be a renewal process where cn ≡

dis
c; the cns are i.i.d.

Then {cn}n=1,2,... are “compound” cycles of a regenerative process with sub-
components {ai }n=1,2,.... Since there is a one-to-one correspondence between
an and bn , n = 1, 2, . . ., the random variable NK is also a stopping time for
the sequence {ai }n=1,2,.... Taking the expected value in (10.24) yields

E(c) = E(NK )E(α) = E(NK ), (10.25)

by Wald’s equation (e.g., see Exercises 13–24, p. 486–489 in [125]).
Just after each instant when a sample path of {X (t)}t≥0 upcrosses level K ,

the SP jumps downward (rebounds) immediately to level 0, and the process
{X (t)}t≥0 restarts. Our construction guarantees that the limiting distribution
of X (t) exists as t → ∞ (see [132]). Random variable NK equals the num-
ber of SP jumps required for {X (t)}t≥0 to first exceed level K . A simple,
but key observation, is that NK is equal to the number of sub-intervals with
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lengths =
dis

a, comprising a cycle c. The state space of {X (t)}t≥0 is

S = [0, K + 1), because the excess of the jumps that exceed level K is less
than 1 (due to jump sizes =

dis
U(0,1)).

Relation to 〈s, S〉 Inventory with No Decay
Other stochastic models have a related structure. For example, the 〈s, S〉
inventory with no decay in Sect. 6.9 is the “flip” (like �) of the {X (t)}t≥0
process, where K := S − s, and the jump sizes are distributed as Expμ. In
the 〈s, S〉 model E (NK ) (= E(NS−s)) is the expected number of demands
in an ordering cycle.

10.2.2 Derivation of E(N1)

Let the limiting mixed pdf of {X (t)}t≥0 as t → ∞, be {π1, f0(x)}0<x<1.
Consider a sample path of {X (t)}t≥0; fix level x ∈ (0, 1) (Fig. 10.4). SP
upcrossings of level x are due to jumps =

dis
U(0,1) starting at level 0, or starting

at some level y ∈ (0, x). Thus, the SP upcrossing rate of level x is

1 · π1 · P(b > x) + 1 ·
∫ x

y=0
P(b > x − y) · f0(y)dy

where b ≡
dis

U(0,1), and upward jumps occur at rate 1/E(a) = λ = 1. This

leads to the equation

0

1

SP

1c 2c 3c 4c
1a 2a 3a 1a 2a 3a 1a 2a 1a 2a 3a 4a 5a

1b
1b 1b

1b

2b
2b

2b

2b

3b 3b

3b
4b

5b

Time

X(t)

x

Fig. 10.4 Sample path of {X (t)}t≥0, in renewal problem to determine E(N1) when
renewal times are =

dis
U(0,1)

http://dx.doi.org/10.1007/978-3-319-50332-5_6
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1 · π0.1 · P(b > x) + 1 ·
∫ x

y=0
P(b > x − y) · f0(y)dy = π1, x ∈ (0, 1) ,

(10.26)

explained as follows. On the right side of (10.26), π1 is the downcrossing
rate of level x because the rate of SP downward jumps is the same as the rate
of SP entrances into state {0} from above (also called here ‘downcrossings’
of level 0). From the principle of set balance, this entrance rate is equal to
the exit rate of {0}, namely λπ1 = 1 · π1 = π1.

The SP downcrossing rate of every level x ∈ [0, 1) is equal to the total
upcrossing rate of level 1. The SP rebounds into level 0 immediately after it
upcrosses level 1. (The SP makes a double jump. Compare with the 〈s, S〉
inventory with no decay in Example 2.3 in Sect. 2.3; see also Sect. 2.3.) In
the inventory model, whenever the stock on hand jumps below the reorder
point s, it is replenished immediately up to level S.

Letting x = 1 in equation (10.26) gives

π1 · P(b > 1) +
∫ 1

y=0
P(b > 1 − y) · f0(y)dy = π1. (10.27)

Since b =
dis

U(0,1), we substitute P(b > x) = 1 − x , 0 < x < 1, into

(10.26), resulting in

π0,0(1 − x) +
∫ x

y=0
(1 − x + y) f (y)dy = π0,0, 0 < x < 1. (10.28)

Taking d/dx twice in (10.28), and solving the resulting ordinary differen-
tial equation gives

f (x) = π1ex , 0 < x < 1, (10.29)

which we substitute into the normalizing condition π0 + ∫ 1
x=0 f (x)dx = 1,

giving

π1 = 1

e
. (10.30)

The renewal rate of {cn}n=1,2,... is 1/E(c) = SP entrance (or exit) rate of
{0} = π1. Thus E(c) = 1/π1. From (10.25) and (10.30),

E(N1) = E(c) · E(a) = 1

π1
· 1 = e = 2.71828. (10.31)

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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We have derived E(N1) in detail using the compound-cycle regenerative
process structure, to fix ideas. The following values of E(NK ), K = 2, 3, . . .,
in this Section are not well known.

10.2.3 Derivation of E(N2)

Let π2 := limt→∞ P(X (t) = 0). Let the steady-state PDF of {X (t)}t≥0 be

f (x) = f0(x)I (0,1](x) + f1(x)I [1,2)(x), x ∈ (0, 2) ,

where I A(x) = 1 if x ∈ A, and I A(x) = 0 if x /∈ A (the characteristic function
of set A).

Consider a sample path of {X (t)}t≥0 (Fig. 10.5), where the state space is
S = [0, 3). Balancing SP up- and downcrossing rates of x ∈ (0, 1), as in the
case K = 1, gives

π2(1 − x) +
∫ x

y=0
(1 − x + y) f0(y)dy = π2, x ∈ (0, 1). (10.32)

0
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x

2

4b

5b

5a 1a

4b

x

5a

1
( )f x

0
( )f x

Fig. 10.5 Sample path of {X (t)}t≥0 for renewal problem, with state space S = [0, 3).
Facilitates solution for E(N2)
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Fix x ∈ [1, 2) (see Fig. 10.5). Balancing SP up- and downcrossing rates of
x , gives

∫ 1

y=x−1
(1 − x + y) f0(y)dy +

∫ x

y=1
(1 − x + y) f1(y)dy = π2, x ∈ [1, 2) .

(10.33)
In (10.33), the first integral is the upcrossing rate of level x due to jumps
starting in (0, 1). The lower limit is y = x − 1 because an SP jump can
upcross level x ∈ (1, 2) only if it starts in interval (x − 1, 1), which is a
subset of [0, 1). The second integral is the upcrossing rate of level x due to
jumps starting in [1, x).

Taking d/dx in (10.33) gives

−
∫ 1

y=x−1
f0(y)dy − 0 −

∫ x

y=1
f1(y)dy + f1(x) = 0, x ∈ [1, 2). (10.34)

Substituting π2ey from (10.29), for f0(y) in (10.34) with π1 replaced by
π2, and letting x ↓ 1 yields

f1(1
+) = π2 (e − 1) = π2e − π2 = f0(1

−) − π2.

which shows that f (x) has a discontinuity at x = 1 of size π2. (In f0(x), π2
replaces π1 because at this stage we are solving for E(N2)). Taking d/dx in
(10.34) gives

f ′
1(x) − f1(x) = − f0(x − 1) = −π2e(x−1),

d

dx
(e−x f1(x)) = −π2e−1,

f1(x) = −π2e−1xex + Cex , x ∈ [1, 2), (10.35)

where C is a constant, evaluated by letting x ↓ 1 in (10.35), resulting in

f1(1
+) = −π2 + Ce = π2e − π2,

and C = π2.

Substituting C = π2 into (10.35) gives

f1(x) = π2
(−e−1x + 1

)
ex , x ∈ [1, 2).

Thus we obtain
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f0(x) = π2ex , x ∈ (0, 1) ,

f1(x) = π2(1 − e−1x)ex , x ∈ [1, 2. (10.36)

From (10.36) we check the discontinuity at x = 1,

f1(1
+) = π2e − π2 = f0(1

−) − π2,

Fig. 10.6 shows that the discontinuity stays in place at x = 1 for K = 2, 3, . . .,
but with the sizes πK , K = 2, 3, . . . respectively.

The normalizing condition is

π2 +
∫ 1

x=0
f0(x)dx +

∫ 2

x=1
f (x)dx = 1. (10.37)

Substituting from (10.36) into (10.37) gives

π2 = 1

−e + e2. . (10.38)

From (10.25),

E(N2) = E(c)E(a) = 1

π2
· 1 = −e + e2 = 4.67077. (10.39)

10.2.4 Derivation of E(N3)

We now explore further the pattern of E(NK ), K = 1, 2,.... For deriving
E(N3), the state space is S = [0, 4). Let π3 := limt→∞ P(X (t) = 0). Let the
steady state pdf of {X (t)}t≥0 be

f (x) = f0(x)I (0,1](x) + f1(x)I [1,2)(x) + f2(x)I [2,3)(x), x ∈ (0, 3),

(plotted as f (x)/π3 in Fig. 10.6 since π3 is a factor of each f j (x), j =
0, 1, 2—see (10.43) below). We now balance SP up- and downcrossing rates
across arbitrary levels x ∈ (0, 1); x ∈ [1, 2); x ∈ [2, 3), which gives respec-
tively, integral equations

π3(1 − x) +
∫ x

y=0
(1 − x + y) f0(y)dy = π3, (10.40)
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3

( )f x

π

Fig. 10.6 Plot of f (x)/π3, x ∈ (0, 3).E(N3) = 1/π3 = 1 + ∫ 3
0 f (x)dx = 1+∑2

j=0

∫ j+1

j
f j (x)dx . The only discontinuity of f (x) is at x = 1, of size = π3; f (x)

is continuous for all x ∈ (1, 3)

∫ 1

y=x−1
(1 − x + y) f0(y)dy +

∫ x

y=1
(1 − x + y) f1(y)dy = π3, (10.41)

∫ 2

y=x−1
(1 − x + y) f1(y)dy +

∫ x

y=2
(1 − x + y) f2(y)dy = π3. (10.42)

Solving integral equations (10.40), (10.41) in a similar manner as for K =
1, 2 above, gives

f0(x) =π3ex , x ∈ (0, 1) ,

f1(x) =π3(1 − e−1x)ex , x ∈ [0, 1,

f2(x) =1

2
π3(−2xe−2 + e−2x2 − 2xe−1 + 2)ex , x ∈ [2, 3). (10.43)

The normalizing condition is

π3 +
∫ 1

x=0
f0(x)dx +

∫ 2

x=1
f1(x)dx +

∫ 3

x=2
f2(x)dx = 1, (10.44)
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yielding

π3 = 1
1
2 e − 2e2 + e3

.

Substituting from (10.43) into (10.44) gives

E(N3) = 1

π3
= 1

2
e − 2e2 + e3 = 6.66656563. (10.45)

The form of f (x) is reminiscent of the pdf of wait in the M/D/1 queue in
Fig. 3.18 in Sect. 3.10.2. In both models, the pdf has a discontinuity at exactly
one point: at x = 1 in the present renewal problem, and at x = D in the M/D/1
queue.

10.2.5 Derivation of E(NK ) f for General K

Repeating the foregoing procedure for several more values of K with the aid
of mathematical software (e.g., Maple) gives, for x ∈ [3, 4)

f3(x) = π4

(
1 − e−1x − 3

2
e−3x − e−2x + 1

2
e−2x2

−1

6
e−3x3 + e−3x2ex

)
,

and for x ∈ [4, 5)

f4(x) = π5

(
1 + 1

24
e−4x4 − 1

2
e−4x3 + 2e−4x2 − e−2x − 3

2
e−3x

−8

3
e−4x − 1

6
e−3x3 + e−3x2 + 1

2
e−2x2 + e−1x

)
ex .

Applying the normalizing conditions for K = 4 and 5 respectively then results
in

E(N4) = 1

π4
= −1

6
e + 2e2 − 3e3 + e4,

E(N5) = 1

π5
= 1

24
e − 4

3
e2 + 9

2
e3 − 4e4 + e5.

The author hypothesized that E(NK ) is the sum of powers of e, e2 , …, ek ,
with coefficients given in the series

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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1

πK
= E(NK ) =

K∑
j=1

(− j)K−i

(K − j)!e
j , K = 1, 2, . . . . (10.46)

This can be verified by mathematical induction, carried out by first deriving
the formulas for f j (x), j = 0, . . . , K , in the same way as for those in (10.43).
Then we obtain (10.46) in a similar manner as for the derivation of (10.45).

10.2.6 Asymptotic Formula for E(NK ) as K → ∞

We now show that in (10.46),

E(NK ) ≈ 2K + 2/3,

i.e.,

lim
K→∞

E(NK )

2K + 2
3

= 1. (10.47)

For example, using (10.47) with the “large” number K = 20, we immediately
have the approximation E(N20) ≈ 2(20) + 2/3 = 40.6667. The analytical
value up to the same number of decimals using (10.46) is also 40.6667, whose
accuracy depends on the number of digits carried, and on the computational
algorithm used.

Remarkably, from the analytical values of E(N2) and E(N3) given in
(10.39) and (10.45), the approximation (10.47) is very accurate for K =
2, 3, . . .. Even for K = 1, the “asymptotic” approximation 2K + 2

3 = 2.6666,
which is within 1.90% of e = 2.71828.

Derivation of Asymptotic Formula (10.47)
Let γ denote the excess life at an arbitrary point x ∈ S, as x → ∞. Then
fγ(y) = 1

μ (1 − B(y)), y > 0, where B(y) is the common cdf of the inter-
renewal time, having mean μ (formula (10.9) above; see also Example 7.24,
p. 453 in [125]. Here, the inter-renewal times are =

dis
U(0,1). Thus B(y) =

y, 0 < y < 1, μ = 1/2, and

E(γ) = 1

μ

∫ ∞

y=0
y · fγ(y)dy = 2

∫ 1

y=0
y (1 − y) dy = 1

3
. (10.48)

Let γK denote the excess life at K ; if K is large then E(γK ) ≈ 1
3 . If K is

finite then

http://dx.doi.org/10.1007/978-3-319-50332-5_7
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K + γK =
NK∑
j=1

Z j , (10.49)

where the Z j s are i.i.d. ≡
dis

U(0,1), and NK is a stopping time for
{

Z j
}

j=1,2,....

Taking expected values in (10.49) yields

K + E(γK ) = E(NK ) · 1

2
,

implying E(NK ) = 2K + 2 · E(γK ).

If K is large, E(γK ) ≈ E(γ); substituting from (10.48) gives

E(NK ) ≈ 2K + 2

3
,

which is equivalent to formula (10.47). Also, if α > 0 is a “large” real number
then E(Nα) ≈ 2α + 2

3 , where Nα is the number of renewals required to first
exceed α.

10.2.7 Number of Renewals Within an Arbitrary Interval

Let N (α,β) denote the number of renewals within an interval (α,β) ⊆
(0, K ), during a single cycle cn , n ∈ {1, 2, . . .}, of {X (t)}t≥0. Without loss
of generality, X (0) = 0, and we stop after NK subintervals of {an}n=1,2,....
Then

N (0, K ) = NK − 1, and E(N (0, K )) = E(NK ) − 1.

Thus the values of E(N1); E(N2); E(N3) lead to the expected number of
renewals within intervals (0, 1); (0, 2), (0, 3), (1, 2); (2, 3), as follows:

E(N (0, 1)) = E(N1) − 1 = e − 1 ≈ 1.7183,

E(N (0, 2)) = E(N2) − 1 = −e + e2 − 1 ≈ 3.6708,

E(N (0, 3)) = E(N3) − 1 = 1

2
e − 2e2 + e3 − 1 ≈ 5.6666,

E(N (1, 2)) = E(N (0, 2)) − E(N (0, 1)) = E(N2) − E(N1) ≈ 1.9525,

E(N (2, 3)) = E(N (0, 3)) − E(N (0, 2)) = E(N3) − E(N2) ≈ 1.9958.
(10.50)

For large K ,
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E(N (K , K + 1) = E(0, K + 1) − E(0, K ) = E(NK+1) − E(NK ) ≈ 2.0.

In (10.50), the values of E(N (1, 2)), E(N (2, 3)) are already within 2.38%
and 1.40% of the limiting value 2.0, respectively.

If 0 < α < β < 1, where α and β are arbitrary real numbers then E(Nα) =
eα, and E(Nβ) = eβ , obtained similarly as in the solution for E(N1). Hence,
E(N (0,α)) = eα −1, E(N (0,β)) = eβ −1, implying the expected number
of renewals within (α,β) is

E(N (α,β)) = E(Nβ) − E(Nα) = eβ − eα, 0 < α < β < 1. (10.51)

In particular,

E

(
N

(
2

3
, 1

))
= e − e

2
3 ≈ 0.77055,

E

(
N

(
1

3
,

2

3

))
= e

2
3 − e

1
3 ≈ 0.55212,

E

(
N

(
0,

1

3

))
= e

1
3 − e0 ≈ 0.39561.

Thus, approximately 44.84% of the renewals occur in the top third, 32.13% in
the middle third and 23.02% in the bottom third, of interval (0, 1), indicating
renewal instants tend to accumulate in the top portion of (0, 1). For a possible
intuitive explanation of this phenomenon, fix the length of a “sliding interval”
Ih using |Ih|= h, 0 < h < 1. As we slide Ih steadily from position (0, h) to
position (1−h, 1), the expected number of renewals in Ih increases steadily.

We can extend the analysis to determine the expected number of renewals
within an arbitrary interval (α,β), 0 ≤ α < β < ∞.

10.2.8 Discussion

We can apply the compound-cycle regenerative process model of this section,
to an arbitrary renewal process {bn}n=1,2,..., where bn is a non-lattice positive
r.v. The analysis can also be extended to models where −∞ < bn < ∞,
so that {bn}n=1,2,... is not a renewal process, but the cycles {cn}n=1,2,... and
subintervals {an}n=1,2,... are inter-renewal times of renewal processes.

Possible applications are to problems where it is required to determine the
expected number of events until a stopping criterion is satisfied. Examples
are the number of: customers served in a busy period of a queue; demands
in an ordering cycle of an inventory system; inputs until overflow of a dam;



474 10 Renewal Theory Using LC

shocks until failure of a machine part; claims until ruin in an actuarial model;
doses of a prescription drug until an overdose occurs; advertisements until a
favorable consumer response occurs for a product.

10.3 The Time-t PDFs of a Renewal Process

We now apply LC to obtain the pdfs of the excess life, age and total life at an
arbitrary finite time t > 0, based on concepts in [34]. The time-t probability
distributions have been analyzed classically in [66, 99, 123, 135], and in
many other studies.

Consider an ordinary renewal process {Zn}n=1,2,... with continuous inter-
arrival times Zn =

dis
Z having cdf B(·), pdf b(·), ccdf (the complementary cdf)

B̄(·)= 1−B(·), and support (0,U), U > 0. We transform the one-dimensional
process {Zn}n=1,2,...into a regenerative process {X (s)}s≥0 having state space
[0,∞) with upward jumps =

dis
Z occurring at an arbitrary Poisson rate, and

with regenerative epochs at instants of level-t exceedance (see the first sub-
section of Sect. 10.2; Sect. 10.2.1; Figs. 10.3 and 10.4). The limiting pdf of
{X (s)}s≥0 as s → ∞, exists (see, e.g., [132]), and is concentrated on the
state-space interval [0, t). Knowledge of this limiting pdf leads directly to
the finite time-t distributions of {Zn}n=1,2,....

10.3.1 Structure of Regenerative Process {X (s)}s≥0

The process {X (s)}s≥0 is built up from i.i.d. replicas of {Zn}n=1,2,... and
an independent Poisson process of arbitrary rate λ (λ := 1 for simplicity).
Let X (0) = 0. Sample paths of {X (s)}s≥0 make upward jumps at Poisson
rate 1, with inter-jump times ai =

dis
a and E(a) ≡ 1. The jumps originate

in state-space subset [0, t) and are in one-to-one correspondence with the
horizontal intervals {ai }i=1,2,...(see Fig. 10.7). When a jump upcrosses level t
the SP immediately jumps downward to level 0 (double jumps—see Example
2.2 in Sect. 2.3 and subsequent material therein). At that instant {X (s)}s≥0
restarts (Fig. 10.7). (Fig. 10.8 depicts the regenerative process when Zn ≡

dis
U(0,1), and t ∈ (1, 2).)

Let
{
π(t), f (t)(x)

}
0<x<t be the limiting mixed pdf of {X (s)}s≥0 as s →

∞, where π(t) = lims→∞ P(X (s) = 0). Then
{
π(t), f (t)(x)

}
0<x<t is a time-

average pdf since upward jumps occur at a Poisson rate, implying the arrival-

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Fig. 10.7 Sample path of regenerative process {X (s)}s≥0. Indicates embedded re-
newal process {Zn}n=1,2,,..., the fixed time t , cycles c1, c2, . . ., interarrival times
between upward jumps ai =

dis
Exp1, a fixed state-space level x , SP motion
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Fig. 10.8 Sample path of {X (s)}s≥0, where Zn ≡
dis

U(0,1) and t ∈ (1, 2). In each

cycle having at least j upward jumps Z j =
dis

U(0,1), but the Z j ’s in different cycles

have different sizes. (See Fig. 10.4.)
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point pdf is the same as the time-average pdf (e.g., [145]). A rate-balance
equation for

{
π(t), f (t)(x)

}
0<x<t is

lim
s→∞

U j
s (x)

s
= lim

s→∞
D j

s (x)

s
, x ∈ [0, t). (10.52)

Substituting the formulas for the rates in (10.52) gives

π(t) B̄(x) +
∫ x

0
B(x − y) f (t)(y)dy = π(t), x ∈ [0, t), (10.53)

which is to be solved with the normalizing condition

π(t) +
∫ t

0
f (t)(y)dy = 1. (10.54)

10.3.2 Solution of Equation for
{
π(t), f (t)(x)

}
0<x<t

The study [34] shows that the solution of (10.53) and (10.54) is

f (t)(x) = M ′(x)
M(t) + 1

, 0 < x < t, (10.55)

π(t) = 1

M(t) + 1
, (10.56)

where

M(x) =
∞∑

n=1

B∗n(x); M ′(x) =
∞∑

n=1

b∗n(x), x ∈ (0, t], (10.57)

and B∗n(x), b∗n(x) are the n-fold convolutions of B(·) and b(·), respectively.
M(x) is the renewal function for {Zn}n=1,2,...; M(x) = E( number of renewals
up to time x)—see pp. 167–169 in [99]. (Step 1 in Sect. 10.3.8 has a more
detailed derivation of

{
π(t), f (t)(x)

}
0<x<t in a particular modified renewal

process.) From (10.56)

1

π(t)
= M(t) + 1 = E(number of renewals required to exceed x).

(10.58)
Formula (10.58) connects M(t) to 1/π1 in formula (10.31) when K = 1 in
Sect. 10.2.2 (and also to 1/πK when K = 2, 3, . . ., in Sects. 10.2.3–10.2.5).
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10.3.3 Time-t Probability Distributions of {Zn}n=1,2,...

We look separately at the two cases: t ≤ U , and t > U , where (0,U) is the
support of the inter-renewal pdf b(·). (See Sect. 4, pp. 191–195, in [34]).

10.3.4 PDF of Excess Life γt

Case t ≤ U
If t ≤ U then U is finite or infinite. Integral equation (10.59) below for
the ccdf Fγt (x) equates two different upcrossing rates of level t + x (see
Sect. 3.16.5 for similar reasoning in an M/G/1 queue with bounded virtual
wait). For 0 < x < U ,

π(t)Fγt (x) = π(t)B(t + x) +
∫ t

y=(t+x−U,0)+
B(t + x − y) f (t)(y)dy,

(10.59)

Fγt (x) = B(t + x) +
∫ t

y=(t+x−U,0)+
B(t + x − y)

f (t)(y)

π(t)
dy.

(10.60)

where (t + x − U, 0)+ := max(t + x − U, 0).
Taking d/dx in (10.60) gives, since B(t + x − (t + x − U )) = B(U ) = 0,

fγt (x) = b(t + x) +
∫ t

y=(t+x−U,0)+
b(t + x − y)

f (t)(y)

π(t)
dy, 0 < x < U .

(10.61)
From (10.61) we obtain

fγt (x) =
{

b(t + x) + ∫ t
y=0 b(t + x − y) f (t)(y)

π(t) dy, 0 < x < U − t ,∫ t
y=t+x−U b(t + x − y) f (t)(y)

π(t) dy,U − t < x < U .
(10.62)

If U = ∞, only the first formula in (10.62) applies; if U < ∞, both formulas
in (10.62) apply.

Remark 10.4 If t < U < ∞ then fγt (x) has a jump discontinuity at x =
U−t of magnitude fγt

(
(U − t)+

)− fγt

(
(U − t)−

)
= −b(U−). This follows

by letting x ↓ (U − t) in the second formula of (10.62), and x ↑ (U − t) in
the first formula of (10.62), and subtracting.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
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Case t > U
If t > U , then U must be finite; assume t ∈ [NU, (N + 1)U ) for some
integer N ≥ 1. Upward jumps starting below t + x −U , cannot upcross level
t + x . Thus, an equation analogous to (10.60) is

Fγt (x) =
∫ t

y=t+x−U
B(t + x − y)

f (t)(y)

π(t)
dy, 0 < x < U. (10.63)

Taking d/dx in (10.63) and noting that B(U ) = 0, gives

fγt (x) =
∫ t

y=t+x−U
b(t + x − y)

f (t)(y)

π(t)
dy, 0 < x < U . (10.64)

From (10.64), with

f (t)n (y) := f (t)(y) · I (nU,(n+1))U (y), y > 0, n = 0, . . . , N ,

we get

fγt (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ NU
y=t+x−U b(t + x − y)

f (t)N−1(y)

π(t) dy

+ ∫ t
y=N U b(t + x − y)

f (t)N (y)
π(t) dy, 0 < x < (N + 1)U − t,

∫ t
y=t+x−U b(t + x − y)

f (t)N (y)
π(t) dy, (N + 1)U − t < x < U .

10.3.5 PDF of {X (s)}s≥0 Just Before a Jump Over t

Let X (t)
J B := ordinate of {X (s)}s≥0 just before the jump that first exceeds level

t . Denote its mixed pdf by
{
π
(t)
J B, f (t)J B(x)

}
0<x<t

where π
(t)
J B = P(X (t)

J B = 0).

(X (t)
J B is an important random variable in various stochastic models, such as

actuarial ruin models – see, e.g., [79] and [54].) We now state the results for{
π
(t)
J B, f (t)J B(x)

}
0<x<t

. (For detailed derivations see [34].)

Case t ≤ U
Considering a sample path of {X (s)}s≥0 (Fig. 10.7), and applying Bayes’
rule, leads to
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f (t)J B(x) = B(t − x)
f (t)(x)

π(t)
, 0 < x < t . (10.65)

π
(t)
J B = B(t). (10.66)

Case t > U

f (t)J B(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(t − x)
f (t)N−1(x)

π(t)
, t − U ≤ x < NU ,

B(t − x)
f (t)N (x)

π(t)
, NU ≤ x < t .

(10.67)

Random variable X (t)
J B is related to the age δt .

10.3.6 PDF of Age δt

We get the mixed pdf
{
πδt , fδt (x)

}
0<x<t using (10.65)–(10.67). Since δt =

t − X (t)
J B , πδt = P(δt = t) = P(X (t)

J B = 0) = π
(t)
J B , and fδt (x) = f (t)J B(t − x),

0 < x < t .

Case t ≤ U
Using (10.65) and (10.66) yields

πδt = B(t), fδt (x) = B(x)
f (t)(t − x)

π(t)
, 0 < x < t . (10.68)

Case t > U
Probability πδt = 0 since t > U . Using (10.67) and applying fδt (x) = f (t)J B(t −
x), yields

fδt (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(x) f (t)N (t − x)

π(t)
, 0 < x < t − N U,

B(x) f (t)N−1(t − x)

π(t)
, t − N U < x < U .

(10.69)

10.3.7 PDF of Total life βt

The total life is βt := γt + δt . Hence P(βt = x)dx = P(γt = x − δt )dx ,
x > δt .
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Case t ≤ U

fβt (x |δt = y)dx = P(Z = x |Z > y)dx = P(Z = x)dx

P(Z > y)
= b(x)dx

B(y)
.

Unconditioning fβt (x |δt = y) with respect to fδt (y), and substituting for
fδt (y) from (10.68), gives

fβt (x) =
∫ x

y=0

b(x)

B(y)
fδt (y)dy =

∫ x

y=0

b(x)

B(y)
B(y)

f (t)(t − y)

π(t)
dy

= b(x)
∫ x

y=0

f (t)(t − y)

π(t)
dy, 0 < x < t . (10.70)

Similar reasoning yields

fβt (x) = b(x)

B(t)
πδt + b(x)

∫ t

y=0

f (t)(t − y)

π(t)
dy

= b(x)

(
1 +

∫ t

y=0

f (t)(t − y)

π(t)
dy

)
, t < x < U . (10.71)

Formulas (10.70) and (10.71) imply fβt (x) has a jump discontinuity at
x = t of magnitude

fβt (t
+) − fβt (t

−) = b(t). (10.72)

If U = ∞ then limt→∞ b(t) = 0 in (10.72).

Check on limt→∞ fβt (x)
Formula (10.70) gives the known result limt→∞ fβt (x) = xb(x)/E(Z), x >

0, since (10.55) and (10.56) imply f (t)(t − y)/π(t) = M ′(t − y), and (10.70)
gives

fβt (x) = b(x)
∫ x

y=0
M ′(t − y)dy = b(x) (M(t) − M(t − x)) , 0 < x < t .

Applying Blackwell’s theorem (p. 191 in [99]) implies

lim
t→∞ (M(t) − M(t − x)) = x

E(Z)
, x > 0 =⇒ lim

t→∞ fβt (x) = xb(x)

E(Z)
, x > 0.
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Case t > U
Expressing fβt (x) in terms of fβt (x |δt = y) and substituting for fδt (y) from
(10.69) yields

fβt (x) = b(x)
∫ x

y=0

f (t)N (t − y)

π(t)
dy, 0 < x < t − N U . (10.73)

Reasoning as for (10.73) and using also (10.69), yields

fβt (x) = b(x)

(∫ t−NU

y=0

f (t)N (t − y)

π(t)
dy +

∫ x

y=t−NU

f (t)N−1(t − y)

π(t)
dy

)
,

t − N U < x < U .
(10.74)

10.3.8 Example—A Modified Renewal Process

Consider a modified renewal process {Zn}n=1,2,... where Z1 =
dis

U(0,1) and

Zn =
dis

Expμ, n = 2, 3, . . . This is also called a delayed renewal process

(see pp. 197–199 in [99]; pp. 27–29 in [66]). Thus B0(x) := P(Z1 > x) =
1 − x, x ∈ (0, 1), and B1(x) := P(Zn > x) = e−μx , x ∈ (0,∞). We now
derive fγt (·), fδt (·) and fβt (·), for the case t ∈ (0, 1). The support of Z1
is (0,U0), where U0 = 1, and that of Zn, n = 2, 3, . . ., is (0,U1), where
U1 = ∞. Therefore, this example deals with the case 0 < tU0 < U1, and
differs from the three examples in Sect. 5, pp. 195–200 in [34].

Step 1. Derive pdf
{
π
(t)
0 , f (t)(x)

}
x∈(0,t) for process

{X (s)}s≥0.

Since t ∈ (0, 1), equating up- and downcrossing rates of level x ∈ (0, t)
gives

π
(t)
0 (1 − x) +

∫ x

0
e−μ(x−y) f (t)(y)dy = π

(t)
0 , x ∈ (0, t) .

Taking d/dx results in

−π
(t)
0 − μ

(
π
(t)
0 − π

(t)
0 (1 − x)

)
+ f (t)(x) = 0,

f (t)(x) = π
(t)
0 (μx + 1), x ∈ (0, t) . (10.75)

The law of total probability (normalizing condition) (10.54) gives
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π
(t)
0 = 2

μt2 + 2t + 2
. (10.76)

Step 2. Derive fγt (z), z > 0, using (10.75) and (10.76)
Equating two different expressions for the upcrossing rate of level t + z gives

π
(t)
0 Fγt (z) = π

(t)
0 B0(t + z) + ∫ t

0 B1(t + z − y)π(t)
0 (μy + 1) dy

= π
(t)
0 (1 − t − z) + ∫ t

0 e−μ(t+z−y)π
(t)
0 (μy + 1) dy, z ∈ (0, 1 − t) ,

and
π
(t)
0 Fγt (z) = ∫ t

0 B1(t + z − y)π(t)
0 (μy + 1) dy

= ∫ t
0 e−μ(t+z−y)π

(t)
0 (μy + 1) dy, z ∈ (1 − t,∞) .

Thus

Fγt (z) = 1 − t − z +
∫ t

0
e−μ(t+z−y) (μy + 1) dy, z ∈ (0, 1 − t) ,

Fγt (z) =
∫ t

0
e−μ(t+z−y) (μy + 1) dy, z ∈ (1 − t,∞) ;

taking d/dz in both equations gives

fγt (z) = 1 + μ

∫ t

0
e−μ(t+z−y) (μy + 1) dy, z ∈ (0, 1 − t) ,

fγt (z) = μ

∫ t

0
e−μ(t+z−y) (μy + 1) dy, z ∈ (1 − t,∞) ,

implying, respectively,

fγt (z) = 1 + μte−μz, z ∈ (0, 1 − t) , (10.77)

fγt (z) = μte−μz, z ∈ (1 − t,∞) , (10.78)

which satisfies the normalizing condition

∫ t−1

0
fγt (z)dz +

∫ ∞

t−1
fγt (z)dz = 1.

The pdf fγt (z) has a discontinuity at z = 1 − t of size

fγt ((1 − t)+) − fγt ((1 − t)−) = −1 = −b0
(
U−

0

)
.

(See Remark 10.4 in Sect. 10.3.4 for a similar discontinuity in the ordinary
renewal process.)
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Step 3. Derive
{
πδt , fδt (x)

}
x∈(0,t) , t ∈ (0, 1) using (10.75) and (10.76)

Substituting
{
π
(t)
0 , f (t)(x)

}
x∈(0,t) from Step 1 above into (10.68) gives

πδt = B0(t) = 1 − t, (10.79)

fδt (x) = B1(x)
f (t)(t − x)

π(t)
= e−μx (μ (t − x) + 1) , x ∈ (0, t). (10.80)

The normalizing condition πδt + ∫ t
0 fδt (x)dx = 1 is readily checked.

Step 4. Derive fβt (x), x > 0, t ∈ (0, 1) using (10.75) and (10.76)
Using similar reasoning as for (10.70) in Sect. 10.3.7, we obtain

fβt (x) = b1(x)
∫ x

y=0

1

B(y)
B(y)

f (t)t − y)

π(t)
dy

= μe−μx
∫ x

y=0
(μ (t − y) + 1) dy

= μe−μx
[
(μt + 1) x − μ

x2

2

]
, x ∈ (0, t). (10.81)

Since Z1 =
dis

U(0,1) has support in (0, 1) (and substituting B0(t) = πδt from

(10.79)), we get

fβt (x) = b0(x)

B0(t)
πδt + b1(x)

∫ t

y=0

1

B(y)
B(y)

f (t)t − y)

π(t)
dy

= b0(x) + b1(x)
∫ t

y=0

1

B(y)
B(y)

f (t)t − y)

π(t)
dy, x ∈ (t, 1),

which differs from formula (10.71) for the ordinary renewal process. Thus

fβt (x) = b0(x) + e−μx
[
(μt + 1) t − μ

t2

2

]

= 1 + e−μx
[
(μt + 1) t − μ

t2

2

]
, x ∈ (t, 1). (10.82)

Subtracting (10.81) at t− from (10.82) at t+ gives fβt (t
+) − fβt (t

+) =
1 = b0(U

−
0 ). The magnitude of this jump discontinuity is similar to that

in formula (10.72) for the ordinary renewal process, but in this particular
delayed renewal process, only the support of Z1 contributes to the size of the
discontinuity.

Since jumps starting from level 0 cannot upcross level x = 1, we obtain
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fβt (x) = b1(x)
∫ t

y=0

1

B(y)
B(y)

f (t)t − y)

π(t)
dy

= e−μx
[
(μt + 1) t − μ

t2

2

]

= e−μx
[
(μt + 1) t − μ

t2

2

]
, x ∈ (1,∞). (10.83)

The formula for fβt (x), x > 0, satisfies the normalizing condition, since

∫ t

0
fβt (x)dx = t − 1

2
e−μtμt2 − e−μt t ,

∫ 1

t
fβt (x)dx +

∫ ∞

1
fβt (x)dx = 1 − t + 1

2
e−μtμt2 + e−μt t ,

implying
∫ ∞

0 fβt (x)dx = 1.


	10 Renewal Theory Using LC
	10.1 Replacement Model via Renewal Theory
	10.1.1 The Model
	10.1.2 Renewal Processes {Zn}n=0,1,� and {Xn}n=0,1,�
	10.1.3 The Renewal Process  { Xn} n=0,1,�
	10.1.4 The Renewal Process  {Zn}n=0,1,�
	10.1.5 Limiting PDFs in Ordinary Renewal Process

	10.2 A Renewal Problem with Barrier
	10.2.1 Method for E(NK) Using a Regenerative Process
	10.2.2 Derivation of E(N1)
	10.2.3 Derivation of E(N2)
	10.2.4 Derivation of E(N3)
	10.2.5 Derivation of E(NK)f for General K
	10.2.6 Asymptotic Formula for E(NK) as Krightarrowinfty
	10.2.7 Number of Renewals Within an Arbitrary Interval
	10.2.8 Discussion

	10.3 The Time-t PDFs of a Renewal Process
	10.3.1 Structure of Regenerative Process { X(s)} s0
	10.3.2 Solution of Equation for { π(t),f(t)(x)}0<x<t
	10.3.3 Time-t Probability Distributions of { Zn} n=1,2,�
	10.3.4 PDF of Excess Life γt
	10.3.5 PDF of { X(s)} s0 Just Before a Jump Over t
	10.3.6 PDF of Age δt
	10.3.7 PDF of Total life βt
	10.3.8 Example---A Modified Renewal Process



