
Chapter 1
Origin of Level Crossing Method

1.1 Prologue

This chapter presents a condensed version of the original development of
the level crossing method (LC) for deriving probability distributions of state
variables in stochastic models. I developed LC concomitantly with the more
general system point method (SP method). Thus LC is actually an essential
component of the system point method. A more precise nomenclature for the
overall technique is the system point level crossing method (SPLC). In this
monograph, for simplicity we usually use the abbreviation LC to refer to the
overall procedure.

The LC technique was developed during the period January 1974–August
1974, while I was working on my Ph.D. thesis of a different topic, namely
Multiple Server Queues with Service Time Depending on Waiting Time. The
work, since May 1972, involved analyzing the steady-state distribution of
customer wait in an M/M/c queue with service time depending on wait be-
fore service. This had been my original Ph.D. thesis topic, suggested by my
supervisor M.J.M. Posner. The goal had been to generalize to multiple server
M/M/c queues, the (then) forthcoming paper by M.J.M. Posner [117] on sin-
gle server M/M/1 queues, using the method of embedded Markov chains, a
purely algebraic technique [103]. That analysis formulates Lindley recursions
for successive customer waits and their probability distributions [109]. The
approach utilizes inequalities, conditional probabilities, and the law of total
probability. It also involves multiple integration, transformation of variable,
differentiation, and limit operations.

The embedded Markov-chain analysis can be tedious and time consuming,
especially for complex models. I worked for several thousand hours (about
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2 1 Origin of Level Crossing Method

50 h per week) developing, simplifying and solving “fifty-page” integral
equations on computer paper (the old kind 10"×17") over a two year period.
Much experience and many observations had shown that the analyses of dif-
ferent model variants ultimately converge to a common stage. Each analysis
culminates with its own system of Volterra integral equations of the second
kind with parameter, for the steady-state pdf (probability density function)
of the customer wait. At this point, all of my analyses were purely algebraic.

While I pondered the complexity and tediousness of various embedded
Markov-chain analyses, the question gradually surfaced as to whether there
may exist an alternative, more intuitive technique for deriving the integral
equation(s) for the pdf. After considerable analysis, finally in August 1974,
I discovered the basic LC theorems and the related methodology.

For queues, the LC method starts by constructing a typical sample path
(sample function, realization, trajectory, tracing, orbit) of the virtual wait
process (see Sect. 2.2). Then we apply LC theorems. These theorems utilize
sample-path structure to write an integral equation, or system of integral
equations, for the steady-state pdf, by inspection! The LC approach can save
an enormous amount of time when analyzing complex stochastic models.
LC provides a common systematic procedure for studying a wide variety of
stochastic models. It focuses attention on sample paths. Therefore it often
leads to new insights into the model dynamics and its subtleties. In complex
models, construction of a sample path may itself be a challenge. However,
the benefit of this construction is that it often leads to a deeper understanding
of the model.

In order to construct the integral equation(s), the LC method employs a
one-to-one correspondence between: (1) the set of algebraic terms in the inte-
gral equation(s) for the pdf, and (2) a set of mutually exclusive and exhaustive
sample-path transitions relative to state-space levels or state-space sets (see
Sects. 2.4.3 and 2.4.4).

My original thesis using embedded Markov chains and Lindley recursions
was published in two working papers [48] and [49]. Immediately after my

discovery of LC, I completely rewrote my original Ph.D. thesis using SPLC,
from November 1974 to March 1975. Two additional chapters were added
as well, outlining the System-Point/Level-Crossing theory (Chap. 2 in [11]),
and examples from the literature (Chap. 8 in [11]). The results using LC
corroborated the original results in [48] and [49], and also pointed to a whole
new array of possible applications. The new thesis was called System Point
Theory in Exponential Queues [11] . This led to the subsequent publications
[50–53].

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Two years later in 1976, J.W. Cohen [61] discussed the same level crossing
ideas, as related to regenerative processes (e.g., [134]), and followed that
work with [62]. The resulting regenerative-process connection to LC is useful
for obtaining certain steady-state (limiting) results in a variety of stochastic
models.

The following abridged version of my development of LC in 1974 deals
with the single server queue. (This preserves the main ideas, which originally
evolved from analyzing complex M/M/c queues with service time depending
on waiting time.) For background, we first derive an integral equation based on
the classical algebraic Lindley-recursion/embedded-Markov-chain method
for GI/G/1 and M/G/1 queues. This was the method used to analyze my
original Ph.D. thesis topic. (Due to multiple servers, that derivation started
with a more general Lindley recursion, employed in working papers [48] and
[49]. It ended with a system of Volterra integral equations for the steady-state
pdf of wait, and its solution.) Then we outline the original development of the
LC method, and use it to derive the same integral equation—by inspection.

1.2 Lindley Recursion for GI/G/1 Wait

Let Wn, Sn, Tn+1 denote respectively the waiting time of customer n before
service, the service time of customer n, and the time interval τn+1−τn between
the arrival instants (epochs) τn, τn+1 of customers n and n + 1 at the system,
n = 1, 2, .... The well-known Lindley recursion for the waiting time is

Wn+1 = max{Wn + Sn − Tn+1, 0}, n = 1, 2, .... (1.1)

Referring to Fig. 1.1, we have the following inequalities. For fixed x ≥ 0,

0 ≤ Wn+1 ≤ x
⇐⇒ Wn + Sn − Tn+1 ≤ x
⇐⇒ y + Sn − z ≤ x
⇐⇒ Sn ≤ x + z − y,

⎫
⎪⎪⎬

⎪⎪⎭

(1.2)

given Wn = y and Tn+1 = z. (Symbol “⇐⇒” is equivalent to “if and only
if” or “iff”.)

Let P(A) denote the probability of an event A.
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Fig. 1.1 Lindley recursion for Wn → Wn+1 geometrically

Definition 1.1 For n = 1, 2, ...

Fn(x) = P(Wn ≤ x), x ≥ 0,

fn(x) = d
dx Fn(x), x > 0, where the derivative exists,

Pn(0) = Fn(0),

B(y) = P(Sn ≤ y), y ≥ 0, n = 1, 2, ...,

B(y) = 1 − B(y), y ≥ 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.3)

Fn(·) is the cdf of Wn; fn(·) is the pdf on the positive part of Wn; Fn(∞) =
Pn (0) + ∫ ∞

x=0 fn(x)dx = 1, n = 1, 2, .... Assume that the parameters of the
queue are such that the steady state cdf F(·) and mixed pdf {P0, f (x)}x>0
of the wait exist, and limn→∞ Fn(x) = F(x), x ≥ 0, limn→∞ Pn(0) = P0,
limn→∞ fn(x) = f (x), x > 0. We define f (·) to be right continuous. Thus
f (x+) = f (x), x > 0. For consistency, we extend the domain of f (·) to
include x = 0, and define f (0+) = f (0). Note that f (0) adds zero probability
to P0.

1.3 Integral Equation for M/G/1 PDF of Wait via Lindley
Recursion

Assume that the arrival process is Poisson at rate λ, and that the random vari-
ables ∪n∈N+{Sn, Tn+1} are mutually independent (where N

+ = {1, 2, ...}).
For this model assume Sn, Wn are independent of each other, n = 1, 2, .... The
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classical approach applies inequalities (1.2) to derive an integral equation,
which expresses Fn+1(·) in terms of Pn(0) and fn(·). The notation P(A|B)

denotes the conditional probability of event A given that event B occurs.
Conditioning on Tn+1 and then on Wn, gives for x ≥ 0,

Fn+1(x)

=
∫ ∞

z=0
P(Wn + Sn − z ≤ x|Tn+1 = z)λe−λzdz

=
∫ ∞

z=0

∫ x+z

y=0−
P(Sn ≤ x + z − y|Wn = y, Tn+1 = z)fn(y)λe−λzdydz.

where 0− emphasizes that the probability of the atom {0} is included in the
integral. (See Sect. 2.4.9 for a definition of atom.) Substituting from (1.3),we
obtain for x ≥ 0,

Fn+1(x) =
∫ ∞

z=0

∫ x+z

y=0−
B(x + z − y)fn(y)λe−λzdydz

= Pn(0)

∫ ∞

z=0
B(x + z)λe−λzdz

+
∫ ∞

z=0

∫ x+z

y=0
B(x + z − y)fn(y)λe−λzdydz. (1.4)

The transformation w = x + z in (1.4) gives, for x ≥ 0,

Fn+1(x) = Pn(0)

∫ ∞

w=x
B(w)λe−λ(w−x)dw

+
∫ ∞

w=x

∫ w

y=0
B(w − y)fn(y)λe−λ(w−x)dydw. (1.5)

For x > 0, take d
dx on both sides of (1.5) wherever it exists. Then

fn+1(x) = λFn+1(x) − λPn(0)B(x)

− λ

∫ x

y=0
B(x − y)fn(y)dy, x > 0. (1.6)

By definition,

Fn+1(x) = Pn+1 (0) +
∫ x

y=0
fn+1(y)dy, x ≥ 0.

http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Substituting into (1.6) yields

fn+1(x) = λ

(

Pn+1 (0) +
∫ ∞

y=0
fn+1(y)dy

)

− λPn(0)B(x)

− λ

∫ x

y=0
B(x − y)fn(y)dy, x > 0,

which simplifies to

fn+1(x) = λ
[
Pn+1 (0) − Pn(0)B(x)

]

+ λ

∫ x

y=0
(fn+1(y) − B(x − y)fn(y))dy, x > 0. (1.7)

In (1.7), letting n → ∞ gives the desired integral equation for the steady
state pdf, namely,

f (x) = λP0B(x) + λ

∫ x

y=0
B(x − y)f (y)dy, x > 0. (1.8)

The normalizing condition that all probabilities sum to 1, is

P0 +
∫ ∞

x=0
f (x)dx = 1. (1.9)

Equations (1.8) and (1.9) are then solved simultaneously to obtain
the steady-state pdf of wait {P0, f (x)}x>0. Steady-state operating charac-
teristics can be computed from {P0, f (x)}x>0: the cdf F(·); the Laplace-
Stieltjes transform

∫ ∞
y=0− e−sydF(y), s > 0; the expected values of the

waiting time, system time and number in the system, by applying Little’s
theorem L = λ · W [110]; quantiles of F(·); the probability mass function
(pmf) of the number in the system, by conditioning on the wait and applying
the PASTA principle [145]; etc.

When analyzing more general stochastic models, e.g., state-dependent
models, we obtain variations and generalizations of integral equation (1.8).
Examples are: single and multiple server queues with service time or arrival
rate depending on current workload; inventories where demand rate or de-
mand size depends on current inventory level (stock on hand); general storage
systems where input size depends on current content; risk reserve systems in
Insurance where claim size depends on current risk reserve; systems in the
physical and natural sciences with state-dependent parameters.
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The algebraic steps in (1.1)–(1.8) illustrate the classical approach. In com-
plex state-dependent models, the classical approach begins with more general
Lindley recursions than (1.1). Then, significantly more algebra is typically
required to derive an integral equation, or system of integral equations, for
the steady state pdf of the state variable, e.g., [48] and [49].

It is important to note that the classical method based on Lindley recursions
is very useful both theoretically and computationally, for studying the waiting
time in queues, and state variables in many stochastic models.

The following question gradually evolved while continuing to derive inte-
gral equations for the pdf in complex state-dependent M/M/c models using
the classical method [48] and [49]. Does there exist an alternative way to
derive integral equation (1.8), and analogous integral equations in complex
state-dependent models, which: (a) bypasses starting from (1.1); (b) reduces
the amount of accompanying algebra? The goal was to derive equations like
(1.8) in a manner similar to the well-known, intuitively appealing rate into
state = rate out of state balance equations for the state probabilities in discrete-
state, continuous-time Markov chains, e.g., [125]. Persevering with this idea,
while continuing to apply the classical method, ultimately led to the SPLC
methodology. The developmental process is outlined in Sects. 1.4–1.7.

1.4 Observations and Questions

The following elementary observations and simple questions considered to-
gether, lead to a very powerful approach for analyzing stochastic models.

1. For each x ≥ 0, the cdf F(x) ∈ [0, 1]. Thus F(x) is a dimensionless
quantity. It is a real number without associated units.

2. For each x > 0, the pdf f (x)
(
= dF(x)

dx

)
, has dimension 1/ [Time]. This

follows because �x has the same dimension as x, namely [Time] be-
cause f (x) is the pdf of waiting time, in the defining formula f (x) =
lim�x→0

F(x+�x)−F(x)
�x .

3. In integral equation (1.8), the dimension of both left and right hand sides
is

[ 1
Time

]
. Note that the parameter λ has dimension

[ 1
Time

]
.

4. A number having dimension [1/Time] is the measure of a rate, a notion
from Physics.

5. Each side of integral equation (1.8) is the measure of some unknown (in
1974) rate.

6. In integral equation (1.8), the left hand side f (x) and the right hand side
λP0B(x)+λ

∫ x
y=0 B(x−y)f (y)dy, may represent two different rates, which

have the same value.
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7. Question: What geometric or physical rate, if any, does f (x) measure?
8. Question: What geometric or physical rate, if any, does λP0B(x) +

λ
∫ x

y=0 B(x − y)f (y)dy measure?

Remark 1.1 The classical approach, starting from Lindley recursions , is a
completely algebraic technique. There was no inkling whatsoever in 1974,
of the geometric picture that was about to emerge, as described in Sect. 1.5.

1.5 Further Properties of Integral Equation for PDF
of Waiting Time in M/G/1

To answer Questions 7 and 8 of Sect. 1.4, we study (1.8) further. Let x ↓ 0
on both sides of ( 1.8). This yields

f (0+) = λP0. (1.10)

Observation: For the M/G/1 queue in steady state (equilibrium), consider
two discrete states that the system may present from the viewpoint of an
arriving customer: {0}: no wait; {1}: wait. Over time the system alternates
between presenting states {0} and {1} to the arrival stream. An arrival waits:
(a) zero time iff the server is idle at the arrival instant; (b) a positive time iff
the server is busy at the arrival instant. Thus we may equivalently redefine
the states from the viewpoint of the system (or server) as: {0} : idle; {1}:busy.

The rate at which busy periods start is λP0, due to Poisson arrivals, and
the rate out of state {0} = λP0, as in continuous-time, discrete-state Markov
chains. By conservation of rates out of and into {0}, the rate at which busy
periods end must also be λP0. Furthermore, a connection is made to integral
equation (1.8) via the relation (1.10), f (0+) = λP0.

Figure 1.2 depicts the motion between the two states {0}, {1}. The sojourn
times of visits to {0} are i.i.d. (independently and identically distributed)
random variables distributed as an idle period. An idle period is exponentially
distributed with mean 1/λ. The sojourn times of visits to {1} are i.i.d. random
variables distributed as a busy period. A sample path corresponds to that of a
two-state alternating renewal process. It is a special case of a Markov renewal
process or semi-Markov process with 2 × 2 Markov transition matrix

∥
∥Pij

∥
∥

where P01 = P10 = 1 (see pp. 457–460 in [125]). Let {A(t)}t≥0 denote this
two-state process, where A(t) = 0 if t ∈ idle period and A(t) = 1 if t ∈ busy
period. A sample path consists of alternating horizontal, right-continuous line
segments (Fig. 1.2).
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Fig. 1.2 Sample path of alternating renewal process {A(t)}t≥0

1.5.1 Connection with Virtual Wait Process

Reflecting on the structure of the alternating renewal process {A(t)}t≥0, led to
the recognition of a close correspondence with the well-known virtual wait
process (thanks to [140] which the author had become aware of in 1964).
The virtual wait represents how long a customer that arrives at time t must
wait to start service (same as the workload at time t in standard M/G/1). For
the standard M/G/1 queue, the virtual wait {W (t)}t≥0 is a continuous-time,
continuous-state process with state space [0, ∞). Sample paths of {W (t)}t≥0
are real-valued, non-negative, right-continuous functions on [0, ∞). Charac-
teristically,

dW (t)

dt
=

{−1 if W (t) > 0,

0 if W (t) = 0

(Fig. 1.3). Jumps occur at Poisson rate λ. Jump sizes are distributed as the
service time. Table 1.1 shows the correspondence between {A(t)}t≥0 and
{W (t)}t≥0.
Observation: Sample paths of {W (t)}t≥0 are strictly positive during busy

periods and equal to zero during idle periods. Sample paths of {A(t)}t≥0
have the same property, if we make the correspondence as in Table 1.1.

Interestingly, for the process {A(t)}t≥0 state {1} can be viewed as a “black
box” containing all possible busy periods. Whenever the sample path enters
{1}, a random busy period is generated.
Observation: For the M/G/1 queue, it is well known that the cdf and pdf of

W (t) as t → ∞ are respectively equal to the cdf and pdf of Wn as n → ∞,

provided the limits exist (e.g., [140] ).
The above discussion leads to the following observation.
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Fig. 1.3 Sample path of virtual wait {W (t)}t≥0 in M/G/1 showing: actual waits
{Wn}n=1,2,...; busy and idle periods; system point SP; fixed level x

Table 1.1 Correspondence Between {A(t)} and {W(t)}

Time t ≥ 0 A(t) W (t)

t ∈ idle period 0 0

t ∈ busy period 1 ∈ (0,∞)

Observation: f (0+) = rate at which a typical sample path of {W (t)}t≥0
hits level 0 from above at a 45◦ angle (Fig. 1.3). Hits of level 0 from above
occur at the ends of busy periods.
Insight: Shift attention to sample paths of the virtual wait {W (t)}t≥0! Focus

on the geometry of a typical sample path of {W (t)}t≥0!
The last observation provides an alternative interpretation of Eq. (1.10).

In complex systems, this observation may lead to extra conditions to help
solve for unknown constants of integration arising in the solution of a sys-
tem of integral (or differential) equations. More importantly, the foregoing
considerations suggest the key question and conjecture given in Sect. 1.5.2.

1.5.2 Looking Upward from Level Zero

Key Question: At what rate does a typical sample path of {W (t)}t≥0 hit any
state-space level x ≥ 0 , from above?
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To answer the key question, imagine, temporarily, that the M/G/1 model
under consideration were really an M/M/1 model with service rate μ. The
jump sizes of the virtual wait process (Fig. 1.3) would then be exponentially
distributed with mean 1/μ. Fix level x > 0 in the state space. Consider a jump
that starts at some level y < x and ends above x. By the memoryless property
of the exponential distribution, the excess jump above x would have the same
distribution as the total service time. That is, P(Sn > x −y+ z|Sn > x −y) =
e−μz, n = 1, 2, ..., independent of y and x . This implies that each sojourn
time of a sample path above every x ≥ 0, would be statistically identical to a
busy period, independent of x! Thus, the picture during sojourns above level
x would be a probabilistic replica of Fig. 1.3 during busy periods above level
0. However, the sojourns at or below level x, would be of different durations
depending on x (see Sect. 3.4.16). This leads to the key conjecture. Recall
that f (0) = f (0+).
Key Conjecture: For each x ≥ 0, f (x) is the rate at which a sample path

of {W (t)} hits level x from above.

The key conjecture generalizes the last observation in Sect. 1.5.1. The con-
jecture is readily confirmed mathematically for M/M/1, M/G/1 and GI/G/1
queues. Furthermore, in many general, state-dependent stochastic models,
analogous results connect sample-path hits of a state-space level, and the pdf
of the state variable at that level. The notions of sample-path smooth hits
of a level and jumps across a level, naturally suggest the concept of level
crossings: in particular, downcrossings and upcrossings.

Remark 1.2 Various areas of real analysis and stochastic processes utilize
level crossing concepts. In stochastic processes most work deals with level
crossings of processes having continuous sample paths. Prior to 1974, level
crossings had not been directly connected with, or used to obtain integral
equations to solve for probability distributions of state random variables. The
level crossing method is particularly useful in continuous-time continuous-
state stochastic models where sample paths have discontinuous jumps. It is
also applicable to processes with strictly continuous sample paths, as in a
dam with alternating influx and efflux (see Sect. 11.8).

In this monograph, we shall regularly use the terms: level crossing, down-
crossing, upcrossing. In the present context it is sufficient to use their intuitive
meaning, as in Fig. 1.4. Roughly speaking, for the virtual wait of a standard
M/G/1 queue, a downcrossing of a level at instant t0 is a smooth or left-
continuous hit of that level from above at t0. An upcrossing at instant t0 is
made by a jump, which starts below, and ends above the level, at t0. These
concepts are discussed more precisely in Chap. 2.

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_11
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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Busy Period
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Time t

x

x
y

Idle Period

0

Fig. 1.4 Sample path of {W (t)}t≥0 indicating downcrossings of level x and hits of
level 0

1.5.3 Integral Equation in Light of the Sample Path

Consider the left side of (1.8). For each x > 0, f (x) is equal to the sample-
path downcrossing rate of level x. That is, f (x) corresponds to the rate of a
particular type of sample-path transition across level x. This correspondence
has an intuitive appeal, which we now explore further.

Question: Does the right side of Eq. (1.8), λP0B(x)+λ
∫ x

y=0 B(x −y)f (y)dy,
correspond to the rate of a particular type of sample-path transition across
level x?

The last question prompts consideration of the idea conservation law,
or principle of set balance (rate balance across a boundary separating two
disjoint state-space sets). Referring to W (t), t ≥ 0, (Fig. 1.4), let x0 = W (0),
and fix x > 0. The state space is S = [0, ∞) = [0, x] ∪ (x, ∞) (union of two
disjoint sets). The long-run sample-path exit and entrance rates of state-space
set (x, ∞) are equal, independent of the initial state x0. Exits and entrances of
(x, ∞) alternate in time, and correspond to sample-path downcrossings and
upcrossings of level x, respectively. Set balance (rate balance across level x)
suggests interpreting λP0B(x) + λ

∫ x
y=0 B(x − y)f (y)dy as the sample-path

upcrossing rate of level x. We now show that this interpretation is correct.
For the process {W (t)}t≥0 the following property holds for a sample-path

jump starting at level y < x (Fig. 1.4):

P(end of jump > x | start of jump = y < x)

= P(service time > x − y)

= B(x − y). (1.11)
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If a jump upcrosses x, it starts either at level 0 or at a level y ∈ (0, x).
Setting y = 0 in (1.11) shows that the rate of upcrossings of x, starting at
level 0, is λP0B(x). The rate of jumps starting in a small interval (y, y + dy)
is λf (y)dy. From (1.11), the rate of upcrossings of x, starting in (0, x) is
λ

∫ x
y=0 B(x − y)f (y)dy. Thus, there is a one-to-one correspondence between

the set of three algebraic terms of (1.8) and the set of three mutually exclusive
and exhaustive sample-path crossing rates of level x (see Fig. 1.6).

1.6 Basic Level Crossing Theorem for M/G/1

The foregoing notions lead to the basic level crossing theorem for the steady-
state pdf of wait in the standard M/G/1 queue, namely Theorem 1.1 below.
Assume λE(S) < 1, where λ is the arrival rate and E(S) is the expected value
of the service time. Consider a sample path of the virtual wait process.

1.6.1 Downcrossing and Upcrossing Rates

For fixed x > 0 and fixed t > 0, let Dt(x), Ut(x) denote the number of
down- and upcrossings of level x during (0, t), respectively. The average
rates of down- and upcrossings during (0, t) are Dt(x)

t and Ut(x)
t , respectively.

Let E(X) denote the expected value of a generic random variable X. The
average rates of the expected number of down- and upcrossings during (0, t)
are E(Dt(x))

t and E(Ut(x))
t , respectively. Note that the singleton discrete state

{0} is an atom having steady-state probability P0 > 0. (See Sect. 2.4.9 for
a definition of atom.) Let Ot({0}) denote the number of exits out of, and
It({0}) the number of entrances into, the discrete state {0} during (0, t). Here,
an intuitive notion of exit and entrance suffices. Define Dt(0) = It ({0})
and limt→∞ Dt(0)

t = limt→∞ It({0}
t . These notions are specified further in

Chap. 2.

Theorem 1.1 (P.H. Brill, 1974) For the virtual wait process {W(t)}t≥0 in the
stable M/G/1 queue (ρ = λE(S) < 1)

lim
t→∞

E(Dt(x))

t
= f (x), x ≥ 0, (1.12)

lim
t→∞

Dt(x)

t
=
a.s.

f (x), x ≥ 0, (1.13)

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2


14 1 Origin of Level Crossing Method

0

W(t)

Time  t

x
x+h

0
x

h <h h h h>h>h h <h

Fig. 1.5 Sample path of virtual wait in M/G/1 queue. Shows levels x and x + h and
various sojourn times in interval (x, x + h), used in proof of Theorem 1.1

lim
t→∞

E(Ut(x))

t
= λP0B(x) + λ

∫ x

y=0
B(x − y) f (y)dy, x > 0, (1.14)

lim
t→∞

Ut(x)

t
=
a.s.

λP0B(x) + λ

∫ x

y=0
B(x − y) f (y)dy, x > 0, (1.15)

where ‘ =
a.s.

’ means ‘equal almost surely’ or ‘with probability 1’.

Proof (Note: A different proof is given in Corollary 3.6 of Theorem 3.4 in
Sect. 3.2.7 for the transient pdf of {W (t)}t≥0. Also see [50], [11], [52])

Here we demonstrate some of the simple intuition underlying the SPLC
methodology. Consider a sample path of the virtual wait on (0, t), i.e.,
{W (s)}0<s<t and fix levels x > 0 and x + h, where h > 0 is small (Fig. 1.5 ).

Sojourns in (x, x+ h) after downcrossing of level x+ h

The contribution to the expected sojourn time in (x, x + h) due to sojourn
times = h is

h · e−λh = h · [1 − λh + o(h)] = h + o(h)

due to the memoryless property of exponential interarrivals. The sample
path spends a shorter or longer time than h in (x, x + h) with probability
less than [λh + o(h)] because in either case a jump must occur before the
sample path exits (x, x + h). That jump ends either above or below x + h.
Thus the contribution to the expected sojourn time in (x, x + h) is less than
h · [λh + o(h)] = o(h).

Sojourns in (x, x + h) after upcrossings of x that end in (x, x+ h)

http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
http://dx.doi.org/10.1007/978-3-319-50332-5_3
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The probability that a jump upcrosses level x and ends in (x, x + h) is
b(x − y)h for some y ∈ [0, x). We assume b(·) is bounded. The contri-
bution to the expected value of the subsequent sojourn in (x, x + h) is: (a)
less than h · b(x − y)h = o(h) if there is no arrival before the sample path
falls to level x, or (b) less than A ·b(x −y)h [λh + o(h)] = o(h) if the sojourn
time in (x, x + h) is extended due to an arrival, where 0 < A < t. (We use
the fact that

(
A · b(x − y)h [λh + o(h)]

t

)

< b(x − y)h [λh + o(h)] = o(h)

below to get the left side of (1.16).)
Thus, the contributions to the expected sojourn times in (x, x + h), that

are �=h is o(h). Hence during the interval (0, t), t > 0, the expected total
time spent in (x, x + h) is E(Dt−h(x + h)) · [h + o(h)]. The limiting expected
proportion of time that the sample path spends in (x, x + h) is

lim
t→∞

E(Dt−h(x + h)) · [h + o(h)]

t
= F(x + h) − F(x), (1.16)

by the definition of F(x), x > 0. Dividing both sides of (1.16) by h and letting
h ↓ 0 gives

lim
t→∞

E(Dt(x+))

t
= f (x),

since E(Dt−(x+)) = E(Dt(x+)). At downcrossing instants the sample path
is continuous from the left, so that E(Dt(x+)) = E(Dt(x)). Hence

lim
t→∞

E(Dt(x))

t
= f (x), x > 0.

This proves (1.12). The counting process {Dt(x)}t≥0 is a renewal process due
to Poisson arrivals. Therefore limt→∞ E(Dt(x))

t =
a.s.

limt→∞ Dt(x)
t [125], and

(1.13) follows.
An intuitive proof of (1.14) and (1.15) follows from the discussion in

Sect. 1.5.3. �
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Corollary 1.1 For the M/G/1 queue in equilibrium

lim
t→∞

E(Dt(0))

t
= f (0+) = f (0) = λP0, (1.17)

lim
t→∞

Dt(0)

t
=

(a.s.)
f (0+) = f (0) = λP0. (1.18)

Proof Let x ↓ 0 in (1.12)–(1.15) and apply (1.10) �
Note that (1.17) and (1.18) equate the sample-path: (1) downcrossing rate

of level 0 (= entrance rate into discrete state {0}); (2) exit rate from {0};
(3) the pdf f (0) at level 0. An important notion is that sample-path rates into
and out of a discrete state, are equal to a particular value of the pdf of a
continuous random variable! This relation connects {0}, which is a boundary
of [0, ∞), to the state-space interval of continuous states (0, ∞).

Formula (1.19) below, gives the principle of set balance for a state-space
set (x, ∞), x > 0, in terms of rate balance across level x.

Principle of Rate Balance for Level x

This is the same as set balance for (x, ∞), i.e.,

limt→∞ Dt(x)
t = limt→∞ Ut(x)

t , x > 0, (a.s),
limt→∞ E(Dt(x))

t = limt→∞ E(Ut(x))
t , x > 0.

}

(1.19)

Formula (1.19) means that for each x, the (long-run) SP down- and upcrossing
rates of level x are equal, independent of the initial state W (0) = x0 at t = 0.
Rate balance for levels (set balance for sets having the level as a boundary)
is discussed more fully in Chap. 2, Sect. 2.4.7.

1.7 Integral Equation for M/G/1 Waiting Time Using Level
Crossing Method

We now derive (1.8) using LC, by applying Theorem 1.1 and rate balance
(1.19). Start with a typical sample path of {W (t)}t≥0. Fix level x > 0.

Apply the one-to-one correspondence that exists between the set of mutually
exclusive and exhaustive sample-path crossing rates of level x, and the set of
algebraic expressions which contain {P0, f (x)}x>0. Write integral equation
(1.8) as a rate-balance equation using (1.19), by inspection of the sample
path (Fig. 1.6)! Note that starting from level 0, the upcrossing rate of level
x > 0 is

lim
t→∞

E(Ot({0}))
t

· B(x) = λP0B(x).

http://dx.doi.org/10.1007/978-3-319-50332-5_2
http://dx.doi.org/10.1007/978-3-319-50332-5_2
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0

0

( ) ( ) ( ) ( )
x

y

f x B x P B x y f y dy
=

= + −λ λ

Downcrosssing 
rate of level x

Upcrosssing
 rate of level x,
from level 0

Upcrosssing rate 
of level x, from 
levels in (0,x)

Fig. 1.6 One-to-one correspondence between virtual-wait sample-path rates of
crossing level x and terms of integral equation (1.8) for f (x)

Summary of Steps in LC Derivation of Integral Equation (1.8)

1. Construct a sample path of {W (t)}t≥0 (Fig. 1.4).
2. Substitute from (1.12) and (1.14) term by term into (1.19).
3. Write integral equation (1.8) (Fig. 1.6).

This completes an abbreviated outline of the original development in 1974,
of the system-point level-crossing method for analyzing stochastic models.
Note that the SPLC method was developed first for multiple-server M/M/c
queues and then for M/G/1 queues immediately after. For the M/M/c case,
the method of sheets (or pages), was developed simultaneously, since it is
a vital component of the SPLC method (see Sect. 4.5.7, and Refs. [11] and
[52]).

http://dx.doi.org/10.1007/978-3-319-50332-5_4
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