
Distributed Local Search for Elastic Image
Matching

Hongjian Wang(B), Abdelkhalek Mansouri, Jean-Charles Créput,
and Yassine Ruichek

IRTES-SeT, Université de Technologie de Belfort-Montbéliard,
90010 Belfort, France

hongjian3715@gmail.com

Abstract. We propose a distributed local search (DLS) algorithm, which
is a parallel formulation of a local search procedure in an attempt to fol-
low the spirit of standard local search metaheuristics. Applications of dif-
ferent operators for solution diversification are possible in a similar way
to variable neighborhood search. We formulate a general energy function
to be equivalent to elastic image matching problems. A specific example
application is stereo matching. Experimental results show that the GPU
implementation of DLS seems to be the only method that provides an
increasing acceleration factor as the instance size augments, among eight
tested energy minimization algorithms.

Keywords: Parallel and distributed computing · Variable neighbor-
hood search · Stereo matching · Graphics processing unit

1 Introduction

Local search, also referred as hill climbing, descent, iterative improvement, gen-
eral single-solution based metaheuristics and so on, is a metaheuristic algo-
rithm [1]. Starting with a given initial solution, at each iteration the heuristic
replaces the current solution by a neighbor solution that improves the fitness
function. The search stops when all candidate neighbors are worse than the cur-
rent solution, meaning a local optimum is reached. Existing parallelization strate-
gies for local search can be divided into three categories. In the first category, the
evaluation of neighborhood is made in parallel [2,3]; in the second category, the
focus is on the parallel evaluation of a single solution, and the function can be
viewed as an aggregation of partial functions [2,4]; in the third category, several
local search metaheuristics are simultaneously launched for computing robust
solutions [5,6]. In our opinion, an interesting parallel implementation model of
local search should be fully distributed, where each processor carries out its own
neighborhood search based on some parts of the input data, considering only a
local part of the whole solution. Operations on different processors should be sim-
ilar, with no centralized selection procedure, except for final evaluation. A final
solution should be obtained with the partial operations from different processors.
c© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 65–74, 2016.
DOI: 10.1007/978-3-319-50307-3 5



66 H. Wang et al.

Following this idea, we propose a distributed local search (DLS) algorithm and
implement it on GPU parallel computing platforms.

A natural field of applications with GPU processing is image processing,
which is a domain at the origin of GPU development. A lot of image processing
and computer vision problems can be viewed as optimization problems in a more
general way, dealing with brute data distributed in some Euclidean space and
system in relation to the data. More often, these NP-hard optimization problems
involve data distributed in the plane and elastic structures represented by graphs
that must match the data. Such optimization problems can be stated in a generic
framework of graph matching [7,8]. In this paper, we are particularly interested in
moving grids in the plane following the idea of visual correspondence problem,
which is to compute the pairs of pixels from two images that result from the
same scene element. A typical example application is stereo matching, which we
formulate as an elastic image matching problem [9]. We apply the proposed DLS
algorithm to stereo matching by minimizing the corresponding energy function.

The DLS can be used for parallel implementation of elastic matching prob-
lems that include not only visual correspondence problems but also neural net-
work topological maps, or elastic nets approaches [10,11], modeling the behavior
of interacting components inspired by biological systems and collective behav-
iors at a low level of granularity. The framework is based on data decomposition,
with the idea of modeling the geometry of objects using some adaptive (elastic)
structures that move in space and continuously interact with the input data
distribution memorized into a cellular matrix [12]. Then spatial metaphors, as
well as biological metaphors should fit well into the cellular matrix framework.

The rest of this paper is organized as follows. In Sect. 2, we formulate a
general energy function to be equivalent to elastic image matching problems.
In Sect. 3, we present the DLS algorithm in detail, providing basic data struc-
tures and operations in Subsect. 3.1, explaining local evaluation in Subsect. 3.2,
designing two classes of move operators in Subsect. 3.3, and giving the details
of GPU implementation in Subsect. 3.4. Experimental results are reported in
Sect. 4, before some conclusions are drawn in Sect. 5.

2 Elastic Grid Matching

We define a class of visual correspondence problems as elastic grid matching
problems, where we use a two-dimensional grid to represent an image. Given
two input grids with same size and same regular topology, one is a matcher
grid G1 = (V1, E1) where a vertex is a pixel (from the corresponding image)
with a variable location in the plane, while the other is a matched grid G2 =
(V2, E2) where vertices are pixels located in a regular grid. The goal of elastic
grid matching is to find the matcher vertex locations in the plane, so that the
following energy function

E(G1) =
∑

p∈V1

Dp(p − p0) + λ ·
∑

{p,q}∈E1

Vp,q(p − p0, q − q0) (1)



Distributed Local Search for Elastic Image Matching 67

is minimized, where p0 and q0 are the default locations of p and q respectively
in a regular grid. Here, Dp is the data energy that measures how much assigning
label fp to pixel p disagrees with the data, and Vp,q is the smoothness energy
that expresses smoothness constraints on the labelings enforcing spatial coher-
ence [13–15]. A label fp in visual correspondence represents a pixel moving from
its regular position into the direction of its homologous pixel, i.e. fp = p−p0. In
the following sections, we will directly use the notations of labels as relative dis-
placements, as usual with such problems. The energy function is commonly used
for visual correspondence problems, and it can be justified in terms of maximum
a posteriori estimation of a Markov random field (MRF) [16,17].

It has been proven that elastic image matching is NP-complete [9], and find-
ing the global minimum for the energy function even with the simplest smooth-
ness penalty, the piecewise constant prior, is NP-hard [13,14]. We choose the
local search metaheuristics to deal with the energy minimization problem.

3 Distributed Local Search

Based on the cellular matrix model proposed in [12], we design a parallel local
search algorithm, the DLS, to implement many local search operations on dif-
ferent parts of the data in a distributed way. It is a parallel formulation of local
search procedures in an attempt to follow the spirit of standard local search
metaheuristics. Starting from its location in the cellular matrix, each proces-
sor locally acts on the data located in the corresponding cell according to the
cellular decomposition, in order to achieve local evaluation, perform neighbor-
hood search, and select local improvement moves to execute. The many processes
locally interact in the plane, making evolve the current solution into an improved
one. The solution results from the many independent local search operations
simultaneously performed on the distributed data in the plane. Normally, a local
search algorithm with single operator obtains local minima. In order to escape
from local minima, we design several operators. Applications of different opera-
tors for diversification are possible in a similar way to the variable neighborhood
search (VNS).

3.1 Data Structures and Basic Operations

The data structures and direction of operations for DLS algorithms are illus-
trated in Fig. 1. The input data set is deployed on the low level of both matcher
grid and matched grid, represented as regular images in the figure. The honey-
comb cells represent the cellular matrix level of operations. Each cell is a basic
processor that handles a basic local search processing iteration with the three
following steps: neighborhood generation (get); neighbor solution evaluation and
selecting the best neighbor (search); then moving the matcher grid toward the
selected neighbor solution (operate). The nature and size of specific moves and
neighborhoods will depend on the type of used operator and the level of cellular
matrix. The higher is the level, the larger is the local cell/neighborhood. In the



68 H. Wang et al.

Fig. 1. Basic projection for DLS.

cellular matrix model, a solution is composed of many sub-solutions from many
cells. Each sub-solution is evolved from an initial sub-solution based on the dis-
tributed data in a cell. By partitioning the data and solution, the neighborhood
structure is also partitioned at the same time.

3.2 Local Evaluation with Mutual Exclusion

During the parallel operation, the coherence of local evaluation with mutual
exclusion is violated by conflict operations. A conflict operation occurs when a
same pixel or two neighboring pixels is/are being evaluated and moved simulta-
neously by two threads. Conflict operations only happen on frontier pixels, which
are the pixels on the cell frontiers according to the cellular matrix partition of
the image. In order to eliminate the conflict operations in DLS, we propose a
strategy, called dynamic change of cell frontiers (DCCF), by which we limit the
move to the internal pixels of a cell only. Cell frontier pixels remain at fixed
locations, and they are not concerned by local moves so that exclusive access
of the thread to its internal region delimited by the cell is guaranteed. A prob-
lem that arises is how to manage cell frontier pixels and make them participate
in the optimization process. As a solution, the cellular matrix decomposition is
dynamically changeable from the CPU side before the application of a round of
DLS operations. At different moments, the cellular matrix decomposition slightly
shifts on the input image in order to change the cell frontiers and consequently
the fixed pixels. For a given cellular matrix decomposition, cell frontier pixels
are then fixed and not allowed to be moved by current DLS operations.

3.3 Neighborhood Operators

We design different neighborhood operators for the DLS algorithm applied to
elastic grid matching. We use the notations of labeling problems to present these



Distributed Local Search for Elastic Image Matching 69

operators. Move operations in a given neighborhood structure correspond to
changing labels of pixels in the corresponding labeling space. Operators are clas-
sified between small moves and large moves. In the first case, only a single pixel
from a given cell moves at a time; in the second case, larger sets of pixels from
a given cell can simultaneously move.

Small move operators. In a move operation, if only one pixel moves, meaning
that only one pixel’s label is changed, this kind of operation is called small
move operation. We design two small move operators: local move operator that
applies an increment/decrement to the current label of the considered pixel;
propagation operator that takes the labels of the considered pixel’s neighboring
pixels, as candidate labels, and then replaces the current label with the best one
found in a propagation window.

Large move operators. They consider multiple pixels. We design six large
move operators: random pixels move operator randomly picks several pixels in the
considered cell, and then assigns a same candidate label to these pixels; random
pixels jump operator randomly picks several pixels in the considered cell, and
then applies a same increment/decrement to the current labels of the considered
pixels; random pixels expansion operator randomly picks two groups of pixels,
where pixels in the same group have the same label, and then “expands” the
label of one group to the other, setting the labels of all the pixels in the second
group with the same label as the first group; random pixels swap operator picks
pixels in the same way as the random pixels expansion operator does, and then
“swaps” the labels of the two groups, setting the labels of all the pixels in the
second group with the label of the first group, meanwhile setting the labels
of all the pixels in the first group with the label of the second group; random
window move operator picks a fixed-sized window of pixels at a random position
within the considered cell, and then assigns a same candidate label to all the
pixels in this picked window; random window jump operator picks pixels in the
same way as the random window move operator does, and then applies a same
increment/decrement to the current labels of all the pixels in this picked window.
More details about these operators can be found in [12].

3.4 GPU Implementation Under VNS Framework

We implement the DLS algorithm on GPU platforms in Compute Unified Device
Architecture (CUDA). The CUDA kernel calling sequence from the CPU side
enables the application of different operators in the spirit of VNS and man-
ages dynamic changes of cellular matrix frontiers. According to our previous
experiments, the repartition of tasks between host (CPU) and device (GPU) is
actually the best compromise we found to exploit the GPU CUDA platform at
a reasonable level of computation granularity.

The flow chart executed from CPU side is presented in Fig. 2. The data
transfer between CPU side and GPU side only occurs at the beginning and the
end of the algorithm. The two kernels that are called from CPU side and executed



70 H. Wang et al.

Fig. 2. Flowchart of DLS implementation.

on GPU are: the random number generation kernel and the DLS kernel. On
GPU side, random numbers are needed for random move operators. The random
numbers are generated in advance by the random number generation kernel
which is regularly called during the algorithm according to the random number
generation rate. It is the CPU side that controls DLS kernel calls with different
operators executed within the DCCF pattern for frontier cells management. With
several neighborhood operators in hand, we use them under the VNS framework
in order to enhance the solution diversification.

4 Experimental Study

We apply the DLS algorithm to stereo matching, viewing the problem as energy
minimization problem. We follow in the footsteps of Boykov et al. [14], Tappen
and Freeman [18], and Szeliski et al. [15], using a simple energy function, applied
to benchmark images from the widely used Middlebury stereo data set [19]. The
labels are the disparities, and the data costs are the absolute color differences
between corresponding pixels for each disparity. For the smoothness term in the
energy function, we use a truncated linear cost as the piecewise smooth prior
defined in [13]. We focus on the performance of DLS when input size augments.
We experiment on the Middlebury 2005 stereo benchmark [19] including 18 pairs



Distributed Local Search for Elastic Image Matching 71

of images with sizes from the smallest 458× 370 to the largest 1374× 1110 in
average. We uniformly set the disparity range to 64 pixels, for all the sizes. We
denote our DLS GPU implementation as DLS-gpu. We also test the counterpart
CPU sequential version which is denoted by DLS-cpu. We compare DLS with
six other methods1: iterated conditional modes (ICM) [16] which is an old app-
roach using a deterministic “greedy” strategy to find a local minimum; sequential
tree-reweighted message passing (TRW-S) [15] which is an improved version of
the original tree-reweighted message passing algorithm [20]; BP-S and BP-M
[15] which are two updated version of the max-product loopy belief propagation
(LBP) implementation of [18]; GC-swap and GC-expansion which are two graph
cuts based algorithms proposed in [14]. Instead of reporting the absolute energy
values, we report the percentage deviation from the best known solution (lowest
energy) of the mean solution value over 10 runs, denoted as %PDM value. We
choose the best known solution from the executions of all tested methods.

Fig. 3. Results of eight tested methods: (a) energy value as %PDM ; (b) execution
time, (c) acceleration factor of each method relative to the slowest method (DLS-cpu);
(d) acceleration factor of each method relative to the method (GC-expansion) that gets
the lowest energy.

The results of different methods are reported in Fig. 3. From (a) to (d) are
respectively reported energy value as %PDM , execution time, acceleration fac-
tor of each method relative to the slowest method (DLS-cpu), and acceleration
factor of each method relative to the method (GC-expansion) that gets the low-
est energy. The ICM method runs fastest but generates very high energies, while
1 For all the tested energy minimization algorithms, we use the original codes from
http://vision.middlebury.edu/MRF/code/ .

http://vision.middlebury.edu/MRF/code/


72 H. Wang et al.

DLS-gpu runs a little slower than ICM but generates much lower energies with
more acceptable %PDM values smaller than 5%. An important observation
from Fig. 3 is that, among all the tested methods, only the DLS-gpu has an
acceleration factor which increases according to the augmentation of input size.
This means that further improvement could be carried on only by the use of
multi-processor platform with more effective cores.

(a) Ground Truth (b) ICM (c) BP-S (d) BP-M

(e) GC-Swap (f) GC-Expansion (g) TRW-S (h) DLS

Fig. 4. Disparity maps for the Art (463× 370) benchmark obtained with different
energy minimization methods. The disparity range is set to 64 pixels.

In Fig. 4 are displayed the disparity maps for the Art benchmark. Note that
during our experiments, we choose the stereo matching application but only view
it as an energy minimization problem, just focusing on minimizing energies. The
disparity maps obtained from all the tested methods are the raw results after
energy minimization, without any additional post-treatments such as left-right
consistency check, occlusion detection, or disparity smoothing, which are all
treatments specific to stereo matching in order to minimize the errors compared
with ground truth disparity maps. Moreover, as pointed out in [15], the ground
truth solution may not always be strictly related to the lowest energy.

5 Conclusion

We have proposed a parallel formulation of local search procedure, called dis-
tributed local search (DLS) algorithm. We have applied the algorithm to stereo
matching problem. The main encouraging result is that the GPU implemen-
tation of DLS on stereo matching seems to be the only method that provides
an increasing acceleration factor as the instance size augments, for a result of
quality less than 5% deviation to the best known energy value. For all the other
approaches, the acceleration factor, against the slowest sequential version of DLS,
is decreasing, except for the ICM method, which however only produces poor



Distributed Local Search for Elastic Image Matching 73

result of about 45% deviation to the best known energy. Graph cuts based algo-
rithms and belief propagation based algorithms are well-performing approaches
concerning quality, however the computation time increases quickly along with
the instance size. That is why we hope for further improvements or improved
accelerations of the DLS approach with the availability of new multi-processor
platforms with more independent cores.

It is a well-known fact that the minimum energy level does not necessarily
correlate to the best real-case matching. Here, we only address energy mini-
mization discarding too much complex post-treatments necessary for the “true”
ground truth matching. It should follow that many tricks are certainly not yet
implemented to make energy minimization coincide to ground truth evaluation.
In order to improve the matching quality in terms of minimizing the errors to
ground truth only, specially designed terms for detecting typical situations in
vision, such as occlusion, slanted surfaces, and the aperture problem, need to be
added in the formulation of energy function.

References

1. Talbi, E.G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley,
Hoboken (2009)

2. Van Luong, T., Melab, N., Talbi, E.G.: Gpu computing for parallel local search
metaheuristic algorithms. IEEE Trans. Comput. 62, 173–185 (2013)

3. Delévacq, A., Delisle, P., Krajecki, M.: Parallel gpu implementation of iterated
local search for the travelling salesman problem. In: Hamadi, Y., Schoenauer, M.
(eds.) LION 6. LNCS, vol. 7219, pp. 372–377. Springer, Heidelberg (2012)

4. Fosin, J., Davidović, D., Carić, T.: A gpu implementation of local search operators
for symmetric travelling salesman problem. PROMET Traffic Transp. 25, 225–234
(2013)

5. Luong, T., Melab, N., Talbi, E.-G.: GPU-based multi-start local search algorithms.
In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 321–335. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25566-3 24

6. Sánchez-Oro, J., Sevaux, M., Rossi, A., Mart́ı, R., Duarte, A.: Solving dynamic
memory allocation problems in embedded systems with parallel variable neighbor-
hood search strategies. Electron. Notes Discrete Math. 47, 85–92 (2015)

7. Bengoetxea, E.: Inexact graph matching using estimation of distribution algo-
rithms. Ph.D. thesis, Ecole Nationale Supérieure des Télécommunications, Paris,
France (2002)

8. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph
matching. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1048–1058 (2009)

9. Keysers, D., Unger, W.: Elastic image matching is np-complete. Pattern Recogn.
Lett. 24, 445–453 (2003)

10. Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem
using an elastic net method. Nature 326, 689–691 (1987)

11. Créput, J.C., Hajjam, A., Koukam, A., Kuhn, O.: Self-organizing maps in popula-
tion based metaheuristic to the dynamic vehicle routing problem. J. Comb. Optim.
24, 437–458 (2012)

12. Wang, H.: Cellular matrix for parallel k-means and local search to Euclidean grid
matching. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard (2015)

http://dx.doi.org/10.1007/978-3-642-25566-3_24


74 H. Wang et al.

13. Veksler, O.: Efficient graph-based energy minimization methods in computer vision.
Ph.D. thesis, Cornell University (1999)

14. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

15. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods for
markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal.
Mach. Intell. 30, 1068–1080 (2008)

16. Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. Ser. B
(Methodological) 48(3), 259–302 (1986)

17. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

18. Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propaga-
tion for stereo, using identical mrf parameters. In: 2003 Ninth IEEE International
Conference on Computer Vision. IEEE (2003)

19. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light.
In: 2003 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1,
pp. 195–202. IEEE (2003)

20. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement
on trees: message-passing and linear programming. IEEE Trans. Inf. Theor. 51,
3697–3717 (2005)


	Distributed Local Search for Elastic Image Matching
	1 Introduction
	2 Elastic Grid Matching
	3 Distributed Local Search
	3.1 Data Structures and Basic Operations
	3.2 Local Evaluation with Mutual Exclusion
	3.3 Neighborhood Operators
	3.4 GPU Implementation Under VNS Framework

	4 Experimental Study
	5 Conclusion
	References


