
Patrick Siarry
Lhassane Idoumghar
Julien Lepagnot (Eds.)

 123

LN
CS

 1
01

03

Second International Conference, ICSIBO 2016
Mulhouse, France, June 13–14, 2016
Revised Selected Papers

Swarm Intelligence
Based Optimization

Lecture Notes in Computer Science 10103

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Patrick Siarry • Lhassane Idoumghar
Julien Lepagnot (Eds.)

Swarm Intelligence
Based Optimization
Second International Conference, ICSIBO 2016
Mulhouse, France, June 13–14, 2016
Revised Selected Papers

123

Editors
Patrick Siarry
Université Paris-Est Créteil
Vitry-sur-Seine
France

Lhassane Idoumghar
LMIA-INRIA Grand Est
Université de Haute-Alsace
Mulhouse
France

Julien Lepagnot
Université de Haute-Alsace
Mulhouse
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-50306-6 ISBN 978-3-319-50307-3 (eBook)
DOI 10.1007/978-3-319-50307-3

Library of Congress Control Number: 2016958515

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

These proceedings include a selection of the best papers presented at the International
Conference on Swarm Intelligence Based Optimization, ICSIBO 2016, held in
Mulhouse (France).

ICSIBO 2016 was a continuation of the conferences OEP 2003 (Paris), OEP 2007
(Paris), ICSI 2011 (Cergy-Pontoise), and ICSIBO 2014 (Mulhouse).

The aim of ICSIBO 2016 is to highlight the theoretical progress of swarm intelli-
gence metaheuristics and their applications. Swarm intelligence is a computational
intelligence technique involving the study of collective behavior in decentralized
systems. Such systems are made up of a population of simple individuals interacting
locally with one another and with their environment. Although there is generally no
centralized control on the behavior of individuals, local interactions among individuals
often cause a global pattern to emerge. Examples of such systems can be found in
nature, including ant colonies, animal herding, bacteria foraging, bee swarms, and
many more. However, swarm intelligence computation and algorithms are not neces-
sarily nature-inspired.

Authors had been invited to present original work relevant to swarm intelligence,
including, but not limited to: theoretical advances of swarm intelligence metaheuristics;
combinatorial, discrete, binary, constrained, multi-objective, multi-modal, dynamic,
noisy, and large-scale optimization; artificial immune systems, particle swarms, ant
colony, bacterial foraging, artificial bees, fireflies algorithm; hybridization of algo-
rithms; parallel/distributed computing, machine learning, data mining, data clustering,
decision making and multi-agent systems based on swarm intelligence principles;
adaptation and applications of swarm intelligence principles to real-world problems in
various domains.

Each submitted paper was reviewed by three members of the international Program
Committee. Two reviewing processes were undertaken: one before the conference and
one after the conference.

We would like to express our sincere gratitude to our invited speakers: Brigitte Wolf
and Maurice Clerc. The success of the conference resulted from the input of many
people to whom we would like to express our appreciation: the members of Program
Committee and the secondary reviewers for their careful reviews that ensure the quality
of the selected papers and of the conference. We take this opportunity to thank the
different partners whose financial and material support contributed to the organization
of the conference: Université de Haute Alsace, Faculté des Sciences et Techniques et
Institut Universitaire de Technologie de Mulhouse. Last but not least, we thank all the

authors who submitted their research papers to the conference, and the authors of
accepted papers who attended the conference to present their work. Thank you all.

August 2016 P. Siarry
L. Idoumghar
J. Lepagnot

VI Preface

Organization

Organizing Committee Chairs

P. Siarry
L. Idoumghar
J. Lepagnot

Program Chair

M. Clerc

Website/Proceedings/Administration

MAGE Team, LMIA Laboratory

Program Committee

Omar Abdelkafi Université de Haute-Alsace, France
Ajith Abraham Norwegian University of Science and Technology,

Norway
Antônio Pádua Braga Federal University of Minas Gerais, Brazil
Mathieu Brévilliers Université de Haute-Alsace, France
Bülent Catay Sabanci University, Istanbul, Turkey
Amitava Chatterjee University of Jadavpur, Kolkata, India
Rachid Chelouah EISTI, Cergy-Pontoise, France
Raymond Chiong University of Newcastle, Australia
Maurice Clerc Independent Consultant, France
Carlos A. Coello Coello CINVESTAV-IPN, México
Jean-Charles Créput Université de Technologie Belfort-Montbéliard, France
Rachid Ellaia Mohammadia School of Engineering, Morocco
Frederic Guinand Université du Havre, France
Jin-Kao Hao Université d’Angers, France
Vincent Hilaire Université de Technologie de Belfort-Montbéliard, France
Lhassane Idoumghar Université de Haute-Alsace, France
Imed Kacem Université de Lorraine, France
Jim Kennedy Bureau of Labor Statistics, Washington, USA
Peter Korosec University of Primorska, Koper, Slovenia
Abderafiaâ Koukam Université de Technologie Belfort-Montbéliard, France
Nurul M. Abdul Latiff Universiti Teknologi, Johor, Malaysia
Fabrice Lauri Université de Technologie de Belfort-Montbéliard, France

Stephane Le Menec RGNC at EADS/MBDA, France
Julien Lepagnot Université de Haute-Alsace, France
Evelyne Lutton INRA-AgroParisTech UMR GMPA, France
Vladimiro Miranda University of Porto, Portugal
Nicolas Monmarché Université François Rabelais Tours, France
René Natowicz ESIEE, France
Ammar Oulamara Université de Lorraine, France
Yifei Pu Sichuan University, China
Maher Rebai Université de Haute-Alsace, France
Said Salhi University of Kent, UK
René Schott University of Lorraine, France
Patrick Siarry Université de Paris-Est Créteil, France
Ponnuthurai

N. Suganthan
Science and Technology University, Singapore

Eric Taillard University of Applied Sciences of Western Switzerland
El Ghazali Talbi Polytech’Lille, Université de Lille 1, France
Antonios Tsourdos Defence Academy of the United Kingdom, UK
Mohamed Wakrim University of Ibou Zohr, Agadir, Morocco
Rolf Wanka University of Erlangen-Nuremberg, Germany

VIII Organization

Contents

Plenary Talks

Total Memory Optimiser: Proof of Concept and Compromises 3
Maurice Clerc

Inspiration by Swarms . 20
Brigitte Wolf

Regular Papers

Particle Swarm Optimization for Operating Theater Scheduling Considering
Medical Devices Sterilization . 41

Benoit Beroule, Olivier Grunder, Oussama Barakat, Olivier Aujoulat,
and Helene Lustig

Data Exchange Topologies for the DISCO-HITS Algorithm
to Solve the QAP . 57

Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot,
and Mathieu Brévilliers

Distributed Local Search for Elastic Image Matching. 65
Hongjian Wang, Abdelkhalek Mansouri, Jean-Charles Créput,
and Yassine Ruichek

Fast Hybrid BSA-DE-SA Algorithm on GPU . 75
Mathieu Brévilliers, Omar Abdelkafi, Julien Lepagnot,
and Lhassane Idoumghar

A New Parallel Memetic Algorithm to Knowledge Discovery in Data
Mining . 87

Dahmri Oualid and Ahmed Riadh Baba-Ali

Classical Mechanics Optimization for Image Segmentation. 102
Charaf Eddine Khamoudj, Karima Benatchba,
and Mohand Tahar Kechadi

On the Community Identification in Weighted Time-Varying Networks 111
Youcef Abdelsadek, Kamel Chelghoum, Francine Herrmann,
Imed Kacem, and Benoît Otjacques

Author Index . 125

http://dx.doi.org/10.1007/978-3-319-50307-3_1
http://dx.doi.org/10.1007/978-3-319-50307-3_2
http://dx.doi.org/10.1007/978-3-319-50307-3_3
http://dx.doi.org/10.1007/978-3-319-50307-3_3
http://dx.doi.org/10.1007/978-3-319-50307-3_4
http://dx.doi.org/10.1007/978-3-319-50307-3_4
http://dx.doi.org/10.1007/978-3-319-50307-3_5
http://dx.doi.org/10.1007/978-3-319-50307-3_6
http://dx.doi.org/10.1007/978-3-319-50307-3_7
http://dx.doi.org/10.1007/978-3-319-50307-3_7
http://dx.doi.org/10.1007/978-3-319-50307-3_8
http://dx.doi.org/10.1007/978-3-319-50307-3_9

Plenary Talks

Total Memory Optimiser: Proof of Concept
and Compromises

Maurice Clerc(B)

Independent Consultant, Groisy, France
Maurice.Clerc@WriteMe.com

Abstract. For most usual optimisation problems, the Nearer is Better
assumption is true (in probability). Classical iterative algorithms take
this property into account, either explicitly or implicitly, by forgetting
some information collected during the process, assuming it is not use-
ful any more. However, when the property is not globally true, i.e. for
deceptive problems, it may be necessary to keep all the sampled points
and their values, and to exploit this increasing amount of information.
Such a basic Total Memory Optimiser is presented here. We experimen-
tally show that this technique can outperform classical methods on small
deceptive problems. As it gets very computing time expensive when the
dimension of the problem increases, a few compromises are suggested to
speed it up.

1 Motivations

As of today (2016-08), all iterative optimisers do forget some positions they have
previously sampled in the search space, sooner or later. This is true for even a
method like Tabu Search [6]. This is a loss of information about the “shape” of
the landscape of the problem at hand. An obvious drawback is that the same
position may be sampled and evaluated several times, which is useless. In order
to prevent this undesirable behaviour, classical algorithms progressively define
“bad areas” in which the probability to be sampled is null or extremely small.

On the one hand, this may introduce a risk of being wrong, but, on the other
hand, there is no doubt that most of these methods are efficient in practice on
many problems. We claim here that it is because for these problems a “Nearer
is Better in probability” assumption is valid.

But what if it is not true? In such a case, it may be useful to make use of
an algorithm that takes into account all the information that is collected during
the iterative search.

2 Nearer is Better Assumption

The NisB assumption has been studied in [2,3]. Let us just give here a short
definition and a few examples.

c© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-50307-3 1

4 M. Clerc

2.1 Definition

What we call here the NisB correlation can be estimated as follows:

– sample at random (uniform distribution) N times three positions and sort
them so that f(x1) ≤ f(x2) ≤ f(x3);

– let nisB be the number of times we have f(x1) ≤ f(x2) < f(x3) and
distance(x1, x2) < distance(x1, x3).

– then the correlation is defined so that it is in [−1, 1] by

ρ = −1 + 2
nisB

N
(1)

2.2 Examples

For a strictly monotonic function, the NisB correlation is of course equal to 1.
For most usual problems it is positive. However, as we can see from Table 1 it
can easily be negative, as soon as there are some plateaus in the function1. The
precise definitions of these four problems are in the Appendix A.1.

Also, if it is not equal to 1, that means it is sometimes locally negative. For
example, for the Parabola in the Fig. 1 the global correlation is 17/18 = 0.944,
not equal to 1 because of triplets of points “around” the minimum.

Fig. 1. When Nearer is Worse, locally. However, globally, the correlation is positive.

Actually, it may be an interesting exercise to evaluate the correlation as
a function of the vicinity fraction, where we define this vicinity fraction as a
proportion of the search space around each point. So, the global correlation
1 This is an open question: is it possible to define a Lipschitzian function without any

plateau but with a negative NisB correlation?.

Total Memory Optimiser: Proof of Concept and Compromises 5

Table 1. Examples of Nearer is Better correlation.

6 M. Clerc

Fig. 2. NisB correlation vs vicinity fraction.

is given for a vicinity fraction equal to 1. Intuitively, one will expect that the
smaller the vicinity fraction, the higher the correlation; but this does not hold
in a very strong sense, and in fact it is not even true all the time (see the Flash
example) (Fig. 2).

3 Basic Total Memory Optimiser

We now define a Total Memory Optimiser, just a basic one for the moment,
in the hope that it can outperform usual methods on deceptive problems, i.e.
the ones with negative NisB correlation. At first glance, according to Fig. 3, the
components of this algorithm seem quite classical. However, by examining them
in detail we will see some important specific features.

3.1 Initialisation (First Samples)

At the very beginning we know nothing, except the search space. It is then easy
to prove that the first point to sample must be the centre of this search space,
in order to minimise the risk of being wrong (see the Appendix A.2).

After the first point is chosen at the centre of the search space, we need some
more points so that our next step, which is a triangulation of the search space,
can be done efficiently. Ideally, we would like the triangulation to cover the whole
search space, so that, in principle, any point may be then sampled. As the search
space is supposed to be a convex polyhedron, a certain way to achieve that is to

Total Memory Optimiser: Proof of Concept and Compromises 7

Fig. 3. Basic total memory optimiser.

sample all the corners. In practice the search space is a D-rectangle (which can
easily be transformed into a D-square, in order to later simplify strategies like
“search around”). So, finally, the number of initial points is 2D + 1.

Of course, it increases very rapidly with D, and it may be unacceptable for
small computers. But for the moment, to describe this basic TMO, we do not
care. Later, we will look at some possible compromises (Fig. 4).

Fig. 4. Initialisation: centre + corners.

8 M. Clerc

3.2 From Sampling to Triangulation

At a given time step we have sampled N points. We will explain in the next step
that the surrogate function is made of “triangular” facets (interval for D = 1,
real triangles for D = 2, tetrahedron for D = 3, etc.), whose projections on
the search space are of course also “triangles”. An elegant way to ensure no
overlapping between these “triangles” is to define a Delaunay’s triangulation
between these N points [4]. Actually, this is a simplified variant of the approach
described in [1].

The Fig. 5 shows two such triangulations, coming from the Alpine problem
that is described in the Appendix A.1.

Again, this method is very costly when the dimension increases, but as said
before, we do not care for the moment, and, again, there are some possible
cheaper compromises.

Fig. 5. Delaunay’s triangulations (Alpine problem, solution point on (1, 2)).

3.3 From Triangulation to Surrogate Function

Using surrogate functions is not at all new. See for example [7]. However, here,
we modify it after each new sampling and, moreover, we want to use the best one
under as few hypotheses as possible. Indeed, most “aesthetic” surrogate functions
do suppose some superfluous properties like differentiability everywhere, at least
implicitly.

To simplify the reasoning, let us consider a 1D problem whose value space
is [ymin, ymax], two sampled points x1, x2, and their values f (x1), f (x2). We
do not know the values of f between the two points, and we want to estimate
them by using the surrogate function g that minimises the risk of being wrong,
i.e. the risk of sampling x with g (x) �= f(x). We must have g(x1) = f (x1)
and g(x2) = f (x2), but for any other point x in]x1, x2[we just know that we
must have ymin ≤ g(x) ≤ ymax. If we do not make any assumption, it is easy

Total Memory Optimiser: Proof of Concept and Compromises 9

Fig. 6. Choosing the “best” surrogate function. Without any hypothesis, it is a plateau.
With the locally positive NisB correlation hypothesis, it is monotonic. And with the
minimum variability constraint, it is a piece-wise linear one.

to prove that the best g is given by g(x) = ymin+ymax

2 (see the Fig. 6a and the
Appendix A.2). This is not satisfying for this plateau function does not increase
the quantity of information (even if only guessed) we can use.

So, we do make a hypothesis. Here, it is that the NisB correlation between
the two points is locally positive2. It implies that g must be monotonic. But there
is still an infinity of possible functions (Fig. 6b). So, we also apply the Occam’s
razor, or, more formally, we assume that the variability (see the Appendix A.3
for a formal definition) of the function must be minimal. Then, the only possi-
ble function is the linear one. More generally, on D dimensional problems, the
surrogate function is made of “triangular” facets (see Figs. 6c and d).

2 It may seems contradictory with the fact that we want to cope with problems for
which the NisB correlation is globally negative. Even in such a case, it is sometimes
locally positive, and more and more when the number of points increases.

10 M. Clerc

3.4 From Surrogate Function to Estimation of Distribution

This step is of course crucial. TMO is stochastic, and therefore it has to make use
of an estimation of distribution, as all stochastic methods do, either implicitly
or explicitly. Here, it is explicit.

Let us consider the surrogate function of the Fig. 6c. It contains all the infor-
mation collected during the iteration: the sure ones (sampled points), and the
probable ones (interpolations). Let us first suppose that the problem is a maximi-
sation problem. The high values of the surrogate function tell us where probably
the high values of the true function lie. So, it seems reasonable (still because
of the local NisB principle) to sample “around” the points of high value with
high probability, and conversely with less probability “around” the points of low
value.

It means that the probability distribution should have the same “shape”
as that of the surrogate function (see Fig. 7a). And in case of minimisation, it
should be exactly the opposite: it should have an opposite shape (see Fig. 7b).

Fig. 7. Estimations of distribution, derived from the surrogate function of the Fig. 6c.

So, we have a straightforward way to define the estimation of distribution:
just transform the surrogate function into a probability distribution, either
directly, or by taking its opposite (in practice by applying a formula like
minimum + maximum − g).

Note that it is perfectly possible to “distort” the distribution thanks to a
user-defined morphing parameter, which can be either optimistic or pessimistic.
To keep the presentation simple, we will not do that in the examples.

3.5 From Estimation of Distribution to Sampling

This step is a classical one. Moreover, as the distribution is entirely defined by the
sampled points, it is technically easy. In order to improve the efficiency of TMO,
we also make use of “representatives” of the triangular facets. A representative
can for example be:

Total Memory Optimiser: Proof of Concept and Compromises 11

Fig. 8. Sampling from the estimation of distribution.

1. the centre of the facet;
2. a weighted gravity centre (weights depending on the values of the vertices);
3. a random point inside the facet.

In what follows, we simply use method 1 (see the Fig. 8). We virtually put all
the values (of the sure points and of the representatives) along a line, side by
side, draw at random a number (uniform distribution) between 0 and their sum,
and go back to the corresponding value.

If it is a representative, we indeed sample this new point. If it is an already
known point x1,we sample “around” it. In practice, the search space has been
normalised as a D-square (if D ≥ 2), and “around” means “inside a small D-
square centred on the known point”. If D = 1, we of course just consider intervals.

In the examples, “small” is defined as follows:

– find the nearest known point x2;
– the edge of the D-square is 2α ‖x1 − x2‖, where α is a user-defined parameter.

In the examples of this paper α = 1
3 .

Note that instead of using the g(x) values it is perfectly possible to sort them
and to use their ranks. Actually some experiments suggest that it may be a
better way, and this is what is done here.

4 Compromises

As soon as the dimension of the problem increases, it is clear that the computing
cost becomes rapidly unacceptable in practice, as we can see on the Fig. 9.

12 M. Clerc

Fig. 9. Alpine function. Computing time vs dimension.

So it is useful to study some compromises. An easy first one is to replace the
initial set of 2D + 1 positions by a smaller one. Keeping the centre of the search
space is costless, but for the other initial points we may for example:

– sample at random N points (a very usual method, in fact);
– sample at random N points and C corners (typically C = 1).

It means that the “covering” of the search space by triangulation is now just
a partial one, but if we launch several runs, we hope that the solution will be
inside a triangle, and has a non null probability to be found. Actually, it is the
way classical optimisers do work.

A complete re-computation of Delaunay’s triangulation after each new sam-
pled point is introduced is a costly process. Instead, we can replace it by a local
re-triangulation. A very simple one is shown in the Fig. 10. We just subdivide
the “triangle” in which the new point lies.

5 Comparisons

We can now make some comparisons between TMO (basic and some variants
with compromises) and a few classical optimisers. For fair comparisons, we have
to carefully specify two things:

– the budget;
– the user’s demand.

5.1 Budget

A budget for iterative optimisation on a computer has at least three components:

– a maximum number of evaluations E;
– a maximum computing time T ;
– a maximum memory size M .

Total Memory Optimiser: Proof of Concept and Compromises 13

Fig. 10. Simplifying the re-triangulation.

In this paper, we want to check how efficient TMO is in taking into account
all the information collected during the iterative process. So, for comparisons,
we will just use the same E for several methods. Actually, this is a classical
approach.

5.2 Demand

Many studies take the mean result over n runs or the median value as the com-
parison criterion, and perform statistical analyses to estimate to which extent
such values are reliable. But in practice a user does not care about means or
medians. His/her question is (in case of minimisation): “With this budget and
this algorithm, what is the probability of getting a result smaller than ε”?

It is out of the scope of this paper to analyse in detail how to spend a given
budget. We just apply the classical method here: n independent runs of E/n
evaluations. But keep in mind this is far from being the best way always.

To answer the user’s question, we need to estimate the probability distribu-
tion of the results. In practice, it means we need to build an estimation of the
PDF (Probability distribution function) or, easier to use, an estimation of the
CDF (Cumulative Distribution Function). By doing that, when comparing two
algorithms A1 and A2, it often happens that the CDF curves have at least one
cross point, for a given result ε∗. Let us suppose CDF(A1) is “above” CDF(A2)
for results smaller than ε∗, and the contrary for higher values. If the user is very
demanding (i.e. does accept only values smaller than εmax ≤ ε∗), then A1 is the
best choice. But if the user accepts values smaller than εmax > ε∗, then, on the
contrary, A2 is the best choice.

14 M. Clerc

5.3 Some Results

We first compare a few TMO variants, with some compromises, and the basic
TMO. As we will see, some variants may be better than this basic TMO. But to
better highlight the specificity of TMO, i.e. its efficiency on problems of negative
global NisB correlation, we will compare then three classical methods only to
the basic TMO.

TMO variants. On the Fig. 12, “init 2” is for the initialisation method of the
basic TMO (centre + corners), and “init 0” is for centre + random initialisation
(here with 89 positions). And “reTriang k” means Delaunay’s re-triangulation
every k new positions, local simplified re-triangulation otherwise. In particular
“reTriang Inf ” means Delaunay’s triangulation just once, after initialisation,
and then only the simplified method is used. The Fig. 11 shows that then the
computing time is easily far smaller.

Fig. 11. Using simplified retriangulation dramatically reduces the computing time
(Alpine, 150 evaluations).

Moreover, at least for problem with a positive NisB correlation like Alpine,
not only complete and systematic re-triangulation is not necessary, but partial
ones may give better results: higher probability for small values, as we can see
on the Fig. 12.

When the NisB correlation is negative, as for the Brush function, we have
something similar. On the Fig. 13 the three curves with “init 0” are better than
the ones with “init 2”. Note that, though, we are here in a case where the number
of corners is far smaller than the number of random initial points. The conclusion
may not be valid for dimension greater than 6. Unfortunately, the laptop used
for this study can not cope with Delaunay’s triangulations in dimension 7 or
greater.

So, we now consider only the basic TMO for comparisons with classical meth-
ods, i.e. “init 2, reTriang 1”.

Total Memory Optimiser: Proof of Concept and Compromises 15

Fig. 12. Alpine, TMO variants, 100 runs of 150 evaluations, PDFs curves.

Fig. 13. Brush, TMO variants, 100 runs of 150 evaluations, PDFs curves.

TMO vs Others. The Fig. 14 represents the CDFs of four methods on the
Alpine function. As said, the first one is the basic TMO, and the other ones
are GA-MPC3, CMA-ES [8], and APS 11. GA-MPC [5] was the winner of the
CEC 2011 competition, CMA-ES was the winner of the CEC 2005 competition4.
For APS [9], a well-documented MATLAB c© implementation can be downloaded
from http://aps-optim.info. It easily outperforms both GA-MPC and CMA-ES
on the CEC 2011 problems, but the point here is that TMO is clearly the worst
method on Alpine, unless results greater than 0.4 are acceptable: in that case it
outperforms CMA-ES (but still not the other ones).

3 We would like to thank Dr. Saber Elsayed for providing the MATLAB c© code of
GA-MPC.

4 In fact, we used a more recent and better version 3.62, downloaded from https://
www.lri.fr/∼hansen/cmaes inmatlab.html.

http://aps-optim.info
https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://www.lri.fr/~hansen/cmaes_inmatlab.html

16 M. Clerc

Fig. 14. Alpine, TMO vs others, 100 runs of 150 evaluations, CDFs curves. On this
“positive” NisB problem, TMO is the worst method, unless the user is not very demand-
ing, accepting results greater than 0.4. In that case, CMA-ES is the worst.

Fig. 15. Brush, TMO vs others, 100 runs of 150 evaluations, CDFs curves. On this
“negative” NisB problem, TMO is the best method to find good results (smaller than
0.2), but for higher acceptable results, APS11 and even GA-MPC are better. For any
demand, CMA-ES is largely the worst.

The conclusions are different on a very deceptive function like Brush (see the
Fig. 15). Now TMO is the best choice as soon as we accept only good (small)
results. Note that on such a problem CMA-ES is particularly bad.

When and How to Use TMO?

In this study we have given a precise definition of “deceptive problems”, by
saying that these are the ones for which the global NisB correlation is negative.
However, in the field of optimisation, “deceptive problem” usually just implies
that classical algorithms perform worse than random search on it, or even simply
“very difficult” [10]. In particular, combinatorial problems are often said to be
deceptive.

Total Memory Optimiser: Proof of Concept and Compromises 17

Preliminary tests show that for many combinatorial problems, if not all, the
NisB correlation is positive. Of course, this is done by using a specific distance
measure, for example the Kendall tau one’s, or, in a more intuitive way, the
minimum number of transpositions to transform a given “position” (typically a
permutation of K elements) into another one.

On the one hand, we have said that TMO is for problems with negative NisB
correlation, so it is probably not a good tool for combinatorial problems. On the
other hand, for these problems, as the correlation is just slightly positive it may
be nevertheless worth trying to apply it.

Also, TMO could be combined with a classical iterative algorithm A, by using
the following strategy:

– compute the NisB correlation after each new evaluation;
– if positive, use A;
– if negative, use TMO.

Again, nothing proves it will work, but, again, it seems worth trying.
If it appears that TMO, either alone or in combination, indeed gives good

results on some real world problems, it will be necessary to increase its com-
putational efficiency. We already have seen a few possible ways, but more are
possible, and should be tested.

A Appendix

A.1 Problem Definitions

Alpine. For dimension D, the search space is [0, 4D]D. Function f is defined
as:

f (x1, . . . , xD) =
D∑

d=1

|xd,δ sin (xd,δ)| + 0.1 |xd,δ| (2)

with xd,δ = xd − δd. In this case, we have simply chosen δ = 1. This parameter
serves to ensure that the minimum is not at the centre of the search space or on
a diagonal. The problem is multimodal and non-separable.

Deceptive 1 (Flash). The search space is [0, 1]. Function f is defined as:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ≤ 2c1 → f (x) = c2
2c1 < x ≤ 3c1 → f (x) = c2 − c2

c1
(x − 2c1)

3c1 < x ≤ 4c1 → f (x) = 2c2
c1

(x − 3c1)
4c1 < x ≤ 5c1 → f (x) = 2c2 − c2

c1
(x − 4c1)

x ≥ 5c1 → f (x) = c2

⎞

⎟⎟⎟⎟⎠
(3)

with, in this case, c1 = 0.1 and c2 = 0.5. The problem is unimodal, but with
plateaus.

18 M. Clerc

Deceptive 2 (Comb). The search space is [0, 10]. Function f is defined as:

f(x) = min
(

c2, 1 + sin (c1x) +
x

c1

)
(4)

with, in this case, c1 = 10 and c2 = 1. The problem is multimodal, but with
plateaus.

Deceptive 3 (Brush). The search space is [0, 10]2. Function f is defined as:

f (x1, x2) = min

(
c2,

2∑

d=1

|xd sin (xd)| +
xd

c1

)
(5)

with, in this case, c1 = 10 and c2 = 1. The problem is multimodal and non-
separable.

A.2 When we Know Nothing, the Middle is the Best Choice

On the Search Space. Let x∗ be the solution point (we do suppose here it
is unique). If we sample x, the error is ‖x − x∗‖. At the very beginning, as we
know nothing, the probability distribution of x∗ is uniform on the search space.
Roughly speaking, it can be anywhere with the same probability. So, we have
the sample x in order to minimise the risk given by

r =
∫

x∗∈S

‖x − x∗‖ (6)

Let us solve it for D = 1, and S = [xmin, xmax]. We have

r =
∫ x

u=xmin
(x − u) du +

∫ xmax

u=x
(u − x) du

=
[
xu − u2

2

]x

u=xmin

+
[

u2

2 − xu
]
xmax

u=x

= x2 − (xmax + xmin) x + x2
max+x2

min

2

And the minimum of this parabola is given by

x =
xmax + xmin

2
For D > 1 the proof is technically more complicated (a possible way is to use

recurrence and projections), but the result is the same: the less risky first point
is the centre of the search space.

On the Value Space. The same reasoning can be applied to the value space,
when we do not make any hypothesis like say a positive local NisB correlation,
and when we know the lower and upper bounds of the values, respectively ylow

and yup. On any unknown position of the search space the distribution of the
possible values on [ylow, yup] is uniform and therefore the less risky is, again, the
middle, i.e. ylow+yup

2 .

Total Memory Optimiser: Proof of Concept and Compromises 19

A.3 Variability of a Landscape

We use here a specific definition, which is different from the definition of variance
in probability theory. Let f be a numerical function on the search space S. What
we call variability on a subspace s of S is the quantity

v =
∫

s4

∣∣∣∣
f(x2) − f(x1)

‖x2 − x1‖ − f(x3) − f(x1)
‖x3 − x1‖

∣∣∣∣ (7)

where {x1, x2, x3} is an element of s3 = s⊗ s⊗ s (Euclidean product), under
the constraint x3 = x1 + λ (x2 − x1) or, equivalently, (x2 − x1) × (x3 − x2) = 0
(cross product). The definition may seem to be complicated, but it just means
that in any direction the slope of the landscape is constantly the same.

References

1. Beyhaghi, P., Cavaglieri, D., Bewley, T.: Delaunay-based derivative-free optimiza-
tion via global surrogates, part I: linear constraints. J. Glob. Optim., 1–52 (2015)

2. Clerc, M.: When Nearer is Better, p. 19 (2007). https://hal.archives-ouvertes.fr/
hal-00137320

3. Clerc, M.: Guided Randomness in Optimization. ISTE (International Scientific and
Technical Encyclopedia). Wiley (2015)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try. Springer, Heidelberg (2008)

5. Elsayed, S.M., Sarker, R.A., Essam, D.L.: GA with a New Multi-Parent Crossover
for Solving IEEE-CEC2011 Competition Problems (2011)

6. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)
7. Han, Z.-H., Zhang, K.-S.: Surrogate-based optimization. INTECH Open Access

Publisher (2012)
8. Hansen, N.: The CMA Evolution Strategy: A Tutorial. Technical report (2009)
9. Omran, M.G.H., Clerc, M.: An adaptive population-based simplex method for

continuous optimization. Int. J. Swarm Intell. Res. 7(4), 22–49 (2016)
10. Weise, T., Zapf, M., Chiong, R., Nebro, A.J.: Why is optimization difficult? In:

Kacprzyk, J., Chiong, R. (eds.) Nature-Inspired Algorithms for Optimisation. SCI,
vol. 193, pp. 1–50. Springer, Heidelberg (2009)

https://hal.archives-ouvertes.fr/hal-00137320
https://hal.archives-ouvertes.fr/hal-00137320

Inspiration by Swarms

Brigitte Wolf(&)

University of Wuppertal, Wuppertal, Germany
bwolf@uni-wuppertal.de

For me swarms and most of all swarms of fishes are a fascinating phenomenon.
I am a designer and my area of research is design theory and most of all strategic

design. The task of strategic design is to implement design as the corporate strategy.
During the last years the awareness for design has increased. More and more

companies have realized that they can benefit a lot from design. At the same time the
complexity of design has increased. To make best use of design it needs to be
implemented strategically into the business strategy. Statistics have proved that design
driven companies, which use design in a strategic way are more successful on the long
run (Figs. 1 and 2).

Companies are unique and make different use of design. The Denish Design Center
has created the design ladder to categorize the companies the way the use design.

Quite a number of companies have arrived at level four and are unsure how to
proceed. The great challenge is to move to the next level. The big question is: How to
do that? Unfortunately there is no recipe and no textbook for advice. The facts we have
to take into account:

• our resources and energy sources are limited;
• the development of new technologies is proceeding fast;
• the use of new technologies changes consumption patterns equally fast.

It is in our hands to shape the future in way that our children and grandchildren can
enjoy their lives in dignity and peace. The old methods and strategies are useless to
design the future. The challenge is to consider the contradictory demands regarding
available resources, customer demands, technological development, changes in life-
style, politics and economy. New strategies are needed to create solutions, which
balance the different demands (Fig. 3).

My provocative hypothesis is: Companies need to use design as swarm intelligence
to climb from level four to level five!

That is not an easy task.Changes demand exchange!That iswhy the swarms come into
play. The great challenge for companies is to deal with facts and figures, and with infor-
mation and decisions in highly complex environments under changing conditions. That is
the everyday life of schools offish. For schools offish that seems not be a problem at all.

In my holidays I like to dive in clear blue and warm waters with great visibility. For
me it is extremely fascinating to observe the schools of fish. How they move, how they
interact, how they react and how they organize themselves. The movement of schools
of fish is pure joy for designers’ eyes. The way they move is applied aesthetics. I want
to share my experiences with you for a moment.

© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 20–38, 2016.
DOI: 10.1007/978-3-319-50307-3_2

Fig. 1. Economic development of companies with a high design index compared to S&P (dmi
journal)

Fig. 2. Design ladder (developed by the Denish Design Center)

Inspiration by Swarms 21

One of my greatest experiences was to swim into the center of a big school of fish.
Immediately they made a big tunnel and I swam through the swarm, not getting
touched by any fish. When I turned around the tunnel was already closed.

I asked myself: How do they do that? How does it work? Why do they never bump
into each other? How can they move so elegantly all together? Who is the choreog-
rapher? How do they know? Who tells them where to go too? I was curious and I
definitively wanted to understand the secret of their behavior.

Furthermore I wanted to understand the difference to human beings. Why does it
not work the same way?

Of course sometimes it works and humans behave like a swarm, for example: after a
concert some body stands up to applaud and another one stands up and finally all people
stand up for standing ovations. Compared to schools offish the reaction is quite slow. In
other occasions the human swarms fail, like for example on the hadj in Mekka or at the
love-parade in Duisburg some years ago. The crowd has killed many people – people
were stepping on people. They did not do it deliberately, they did it because they were
pushed by others and had no other chance. That would never happen to fishes.

Technology has learned so much from nature. Bionic is well known. One example:
Shark skin is the most efficient surface in streams and therefore airplanes are equipped
with a surface that is a technical imitation of shark skin to reduce energy consumption.

When technology can learn and benefit so much from nature. What can strategy
learn from nature? What can human organization structures learn from schools of fish?
This question was causing my interest even more when I read the book “The Fish
Inside You”, written by the palaeontologist Neil Shubin [1]. He figured out that we all
stem from fishes. Millions of years ago some fishes started to leave the water to
discover Earth and they decided to live on Earth. They were already bearing inside all

Fig. 3. Design ladder – future development

22 B. Wolf

beginnings of physical body elements, which characterize the diverse beings and
creatures on Earth that have developed throughout the evolution process, like animals,
birds and human beings.

I wanted to understand, how the fishes manage their being together. In the fol-
lowing I want to summarize, what I have learned from the swarms and I would like to
point out the difference to human beings. Then I would like to give some examples
where swarm intelligence is already in use and finally I will talk about my first ideas
how I used swarm behavior as source of inspiration for a real case. The example is a
company that intends to jump from level four to level five on the design ladder. I will
work on this case again with our master students in the winter term 2016/17.

1 Swarm Behavior

Swarms exist since millions of years. Compared to swarms the life of companies is
rather short. Swarms are self-organizing systems. They have no leader and no
master-plan. This system seems to be very sustainable. I know you are all familiar with
the rules of swarm behavior. Please excuse my repetition of basic knowledge, but I use
it to point out the difference to human beings.

Craig Reynolds discovered that fishes follow only a few rules to be able to act as a
swarm [2]:

Fig. 4. Rule No. 1 ‘stay with the others’

Inspiration by Swarms 23

Fig. 5. Rule No. 2 ‘swim to the average of the direction of the others’

Fig. 6. Rule No. 3 ‘keep distance to the ones next to you’

24 B. Wolf

Reynolds used this three rules to instruct his “boids” - boids symbolize fish in
computer simulations. He also assumed that each fish has a rejection zone around and
that the fish reacts as soon as someone enters this zone (Figs. 4, 5, 6 and 7).

The result of his experiment was, that the boids stayed together as a swarm. They
were even able to evade obstacles and to stick together. (These insights are used to plan
emergency escape routes for stadions and event halls.)

Jens Krause [3] confirmed these findings by stating that the rejection zone consists
of different layers:

• attraction;
• orientation;
• rejection.

A fish is in the center of the rejection zone.
Iain Couzin [4] went a step further. He wanted to investigate the role of the distance

between the fishes. Couzin varied the rejection zones in computer simulations.
The behavior of the swarm changed immediately when he reduced or enlarged the

rejection zone. The variation of the rejection zone determined the transition from one
formation to another. Transition happens because the swarm decides to search for food,
to escape from an enemy, to hang around or to move to another place.

Schools of fish have obviously a very efficient way of communication. Fish swarms
with thousands of fishes turn around in the same moment due to perfect communication

Fig. 7. Rejection zone

Inspiration by Swarms 25

system. It is a miracle to observe these movements. I conclude: Communication in
swarms of fish is very efficient – communication in swarms of people is rather poor.

Jens Krause wanted to find out, if people in a crowd move the same way as fishes or
if they behave differently. He started an experiment on the fair ground in Cologne. Two
hundred people participated voluntarily [5].

Two hundred people were instructed with rules similar to swarms:

• move with normal speed and stick to the group;
• keep the distance to persons next to you considering the length of an arm;
• don’t talk and don’t gesticulate.

When the participants did not receive any further instruction the participants started
to walk in a circle – an inner circle in one direction and an outer circle in the other
direction. The same behavior can be observed with barracudas. They swim in an inner
and outer circle and sometimes they cross (Fig. 8).

In the next step of the experiment three people were instructed to move to a certain
destination. Some followed but the crowd remained together.

In the following 10 people – 5% of the group – got the instruction to move to a
certain destination and the whole swarm of people followed them and met at that place.

In further research projects Jens Krause figured out that even in groups bigger than
200 beings10 individuals are sufficient to guide the swarm to a certain destination [5].

Human beings can behave like swarms if they accept to follow similar rules.
But human beings are different from fish. Fishes depend on the well being of the

swarm. Human beings are selfish, they are primarily interested in their own well-being.

Fig. 8. Swarm Experiment in the Cologne Fair organized by Jens Krause and reported in the TV
program Quarks&Co by Ranga Yogeshwar

26 B. Wolf

The experiment of Jens Krause demonstrated further that the independence of
decision is important for swarm behavior. If the participants would have had the chance
to talk to each other, they probably would have behaved differently.

A comfort zone surrounds equal to fishes human beings. As long as the comfort
zone is not disturbed human beings feel ok in a swarm. When the comfort zone is
attacked, humans react different then swarms. Human beings are not able to commu-
nicate efficiently in huge groups. They panic and provoke terrible accidents like for
example in the hadj.

Schools of fish communicate obviously very efficiently. In the ocean environment a
lot of information is just white noise. It is easy to fail and to detect danger where no
danger is. One single fish can fail easily, but the probability that many fishes make the
same mistake is rather unlikely. This phenomenon is well known as the wisdom of the
crowd [6]. That means in case of an enemy attack, a single fish would not particularly
take a good decision, but the bigger the swarm, the bigger the probability that all fishes
together take the right decision and escape.

How exactly the fishes communicate in a swarm remains a secret. Scientists have
discovered the basic rules but they cannot fully explain the decentralized behavior of
swarms:

• how do the fishes know where to go;
• how do the “ten” (5%) get the instructions for guiding.

In his book “Intelligence of the swarms” Peter Miller [7] describes other examples
of swarm intelligence. Besides fishes he also discusses research on bees, termites, ants
and starlings. They all have in common that a single living thing: a fish, a bird, an ant
or a bee is quite stupid, but together they do great things. (We can build an analogy to
our brain. A single brain cell is quite stupid but all together are quite smart.)

Termites are able to construct buildings that are in relation to their size enormous
and related to size much bigger than men made buildings although human beings are
intelligent and have advanced technologies at hand. Furthermore we have to consider
that they build complete eco-systems including food production, ventilation, temper-
ature regulation and so on. Because they care for the overall well being of the swarm.

Termites build a dynamic system and follow simple rules, like put your crumb of
earth close to another crumb of earth. There is a constant exchange between the
“swarm” and their environment and finally they achieve perfect living conditions. If the
building gets damaged, the termites restore within a short time. They have flexible
labor division and the single termite has to work in the position that is used at time.
Catastrophes can damage the system but not destroy it. The swarm adapts to the change
and reorganizes the system just by following their simple rules.

Scientists observed the decision making process of bees, which are looking for a
new place to live after the swarm has split. The collective decision process consists of
several steps: part of the bee swarm flies out and looks for options. When a bee found a
place, she goes back to the others and dances. The duration and intensity of the dance
represents her opinion on the quality of the place. When all bees are back the swarm
decides on the quality of the dances where to live. One important characteristic is, that
the bees act independently and are not influenced by the others.

Inspiration by Swarms 27

Another phenomenon I want to mention are the enormous masses of starlings in
Rome. They come every year and perform spectacular dances in the sky. Andrea
Cavanga has observed the starlings for many years. With different cameras he filmed
their performance again and again until he had enough material for his analysis. He
used computer simulation to find out how they relate and communicate to each other.
He came to the conclusion that each starling has fifteen to sixteen birds in its field of
vision. But a single starling pays attention only to six or seven birds, which are close to
him on the left and right side [8].

It is still an unknown secret, why the starlings do their artistic flights every night
form November to March: If they do it just for fun or if they want to escape the falcons.
Nobody knows.

Summing up, the basic characteristics of swarms are:

• Self-organization
• Simple rules
• Collective vigilance
• Resistance to failure
• Independence of meanings
• Diversity of skills
• Orientation/Adaption

2 Difference to Human Beings

Hans Hass [9] was one of the first behavioral scientist investigating the behavior of fish
and he was one of the first under water filmmakers. He transferred his insights from the
underwater world to the market. He wrote a book about his findings with the title “The
Shark in Management”. And later on he worked as consultant for companies.

He stated that human beings differ from fish and other animals by their intelligence.
Other than animals they are able to build great tools, which help them to multiply their
production capacity, like nowadays computers, robots and so on. To market the mul-
tiplied production money was introduced. In his opinion the introduction of money was
the start point for many problems. (Fishes have no money!) Money became the “must
have”. The more money an individual owes the greater the power and the status. Like
sharks many business people are hunting for money and take advantage when possible.
Fraud and corruption are now part of our reality.

Human beings care for their personal advantage and not for the well being of the
society. The environmental problems can be seen as a result of the activities of the
sharks in management.

The experiments of Jens Krause have proved that human beings can organize
themselves in a swarm, when they follow the rules. Unlike fishes human beings don’t
have the instinct to serve the community. They think about their personal benefit.

We can observe that with public transport. Everybody wants to get on the train and
conquer a seat and therefore tries to get on the train as soon as possible.

Only for Mothers with little kids and old people the crowd respects the rejection
zone.

28 B. Wolf

Companies use a hierarchical structure to organize the crowd. The communication
is basically top down. The president decides and the decisions are passed through the
different levels to the employees. Actually a lot of knowledge, information and
expertise get lost in the communication processes from one level to another or from one
silo to another. Anyhow this organization structure seemed to work well in the past
(Fig. 9).

More and more companies realize that they need to make better use of the skills,
expertise and knowledge of their employees to be able to compete in the future. (Many
years ago the president of a medium sized company commented that his company
would be a smart company, if his company would knew, what his company knows. He
was one of the first to build an intranet to make the knowledge of his employees
accessible to all employees.)

The hierarchical structures of the past don’t fit for the future. They do not work at
all for companies that want to move to level five.

The communication from the bottom to the top is complicated in hierarchical
structures. Mr. Gore realized that when he was an employee at Dupont [10]. He
invented the fibre Gore-Tex and wanted to sell his invention to Dupont. He got lost in
the hierarchy, nobody listened to him properly and nobody was interested in his project
for whatever reason. Therefore he decided to build his own company – but without
hierarchies. He created a company out of different self-organizing teams no bigger than
150 employees. If the company grows a new unit is installed. The employees have two
rules: make money and have fun. The reputation of the employees is based on their
performance and not on status.

Fig. 9. Hierarchial organization structure of enterprises

Inspiration by Swarms 29

Under certain conditions (team work in production, groups with special interests,
spontaneous initiatives for help in case of catastrophes etc.) human beings have con-
firmed the advantages of self-organizing behavior. Contrary to swarms human beings
cannot communicate as efficiently and transmit information to the whole
group. Self-organization of people has a limit to size. When human beings organize
themselves they need to interact with each other verbally. In groups no bigger than 150
human beings everybody gets to know each other and can establish direct communi-
cation without hierarchical borders.

Human beings are social creatures and they want to socialize. Niklas Luhmann [11]
said social systems – human beings – are characterized by the exchange of commu-
nication and senses! Contrary to living beings in swarms human beings make use of
their intelligence. They request and discuss information to understand the sense. Social
relations have a strong impact on the interpretation of sense and consequently on
human behavior. Human beings strive for positive reinforcement and prevent negative
reinforcement from society. They do it consciously and also unconsciously.

They intend to be positively rewarded by their peer group by demonstrating that
they belong to the group. To live in harmony with their fellows, human beings adapt to
the people they are related to or want to be related to. Social groups are kept alive
through the exchange of information, meanings and preferences. (The adaption to
social groups may also happen unconsciously. Scientists in Massachusetts figured out,
that people with a friend, a partner or a relative with adiposity are facing the probability
to suffer from the same problem.)

Similar effects we can observe in the consumption behavior of people. If people
join a party where many guests drinks beer they are more likely to drink beer as well. If
they have friends that are vegetarian, they might probably think about eating less meat
etc. For human beings the acceptance of their social groups, like family, friends,
fellows, colleagues and relatives is important. In their everyday behavior they tend to
swim with the stream, because they think that is a safe way.

In the business environment swimming with the stream can be a disaster. For
example: the hedge fund analysts in 2008 were following the main stream, because
they found it less risky to do what the others do. They were afraid to be blamed in case
they act differently and fail. In the end they all failed. The financial crises showed that
swimming with the stream does not prevent failure and when they group fails, the
group fails great.

3 Learning from Swarm Behavior

• Self-organization:

Build groups without hierarchies and invite agile, enthusiastic and motivated
members.

Limit the amount of participants.
Specify the objective.
Care for the well being of all stakeholders – the whole swarm (inside and outside).

30 B. Wolf

• Diversity:

Combine individuals with diverse expertise, skills, knowledge and experiences
(because diversity is highly important to generate good ideas –

the more diversity of knowledge, the better the quality of the solution.)

• Interaction:

Set a few rules to structure the interaction of the group members.

• Independence:

Group members act independently from each other.
Diverse opinions and ideas are wanted.

• Be yourself:

The group members truly represent themselves and stick to their opinion and do not
imitate others.

• Collective vigilance:

Group member are open and alert to new information.

• Interaction with the environment:

The group interacts and co-creates an exchange with stakeholders outside the
company and with the environment (inside out – outside in).

• Support idea generation:

Provide a creative environment to stimulate the crowd.

• Dynamic system:

React to changes in the environment.

• Selection process:

Develop criteria and an effective process to reduce the generated ideas and options

• Decentralized control:

Accept the decisions taken by the team.

• Rejection zone (Attraction, orientation, rejection):

Consider that the variation of the rejection zone changes the behavior of the group,
like time pressure, change of environmental conditions, different context etc.

• Management of uncertainty:

Acting like a swarm helps to manage uncertainty, a swarm is resistant towards
failure, wrong decisions of a few are balanced by the group.

Inspiration by Swarms 31

4 Examples

New knowledge is generated faster and faster and the Internet gives everybody access
to new knowledge and also to new services. Consequently the lifestyle of people is
changing. Access to use becomes more important than possession. The Internet makes
new services possible, like sharing, bartering and co-creation of products and services.
The use of new technologies provides so many completely new options, that companies
need appropriate methods, structures and procedures to deal with it.

Swarm intelligence is already part of our everyday life. Internet, smart phones,
social media, apps have changed our behavior: One example is car sharing, like for
example car2go [12]. The management of the fleet is self-organizing by its software.
Users have access to mobility through an app and a membership card. In many cities
these cars are always around and accessible.

Another example is the use of the so-called “big data”.
Telephone companies receive signals from activated mobile phones and use the

“big data” to communicate information on traffic jams in time to car drivers. With “big
data” it is now possible to foresee twenty to thirty minutes in advance when people
accumulate to a dense crowd and will probably be in danger shortly. Hopefully acci-
dents like on the hadj and love parade can prevented in the future.

Companies that are thinking ahead act different to solve future problems and
develop appropriate strategies: Working in silos of the hierarchical structures is not the
way to deal with the future challenges. The growing complexity, the more specific
expectations of the customers and the growing influence of the customers demand new
approaches. The time of vertical operation is replaced by horizontal co-operation
(Fig. 10).

Fig. 10. Future oriented organization structures

32 B. Wolf

The methods and strategies of design thinking are very popular, because their
intention is to work across silos, across disciplines and across the company. Design
thinking involves all stakeholders like suppliers, traders and most of all Users.

Now the silo workers got stuck with their business as usual and designers have a
great time. The design awareness in companies has increased a lot. Design is been
taken serious and is discussed on board level. The philosophy has changed from silo
thinking to cross-disciplinary approaches with the task to create ideas, build a proto-
type, test it and fail fast. Fast failure doesn’t affect the company, like the wrong
decision of a single fish doesn’t affect the swarm. Late failure can damage a company,
like a bad decision of a swarm can destroy the swarm.

Failure is no longer seen as a taboo or something very negative instead it is seen as
a rich source for learning.

Companies are still very much concentrated on their mission, their values, their
products, their distribution channels, their marketing and communication but not that
much in the interaction with the ones the are depending on: The end-users!

A remarkable fact on the International European Design Management Congress
201 in Amsterdam was the observation that there is a change in the mindset of com-
panies. Philips is a leading company in design research and in design strategies. The
new aim of the company is: Improve the life of three billion people! People first – that
is a new way of thinking to shape the philosophy and culture of the company [13].

Another example was the brewery Heineken. They live on selling beer – the more
they sell the better. From user research they have learned that moderate drinking is
preferred. Therefore they started a campaign “This one is on us”! [14] In bars in
Amsterdam you get a free glass of water with each bottle of beer and a special glass
fixed to the bottle. The company communicates moderate drinking to support the well
being of the customers. The care for the user comes into focus and corresponds to the
care for the swarm. If the users are fine the Philips and Heineken will be fine as well.
User research, customer insights, co-creation, living labs and open innovation are used
to better exchange with the users.

Prof. Salomão from Florianopolis visited recently presented an interesting project at
Wuppertal University, which made use of swarm intelligence: The Brand “Floripa”.

The task was to create a regional brand for the town Florianopolis in the south of
Brazil. The project is a co-creation process and integrated inhabitants, visitors, officials
and businesses into the process (Fig. 11).

The creation of a regional brand is a prestige job for design agencies. Prof. Salomão
and his institute decided to work differently from the usual design agency processes.
They integrated the crowd into a co-creation process:

40 decision and opinion makers were interviewed;
21 creative events with the community;
900 testimonials about the DNA and the purpose;
30.000+ engaged in person and virtually;
29 design students and professional engaged in the visual identity.
Three alternative solutions were elaborated by the design community of

Florianopolis, students and professionals were working together.

Inspiration by Swarms 33

The inhabitants of Florianopolis were asked to vote on the alternatives. More than
10.000 people took the opportunity to decide about their preferred solution.

I know the city quiet well and when I look at the result I can confirm that the crowd
took the best decision. The selected alternative expresses the awareness of life in the
city in a perfect way. The visual identity will be applied to signage systems, brochures,
merchandise articles, public places and events and so on.

I am not sure, if the lord-mayor by himself would have taken the same best decision
(Fig. 12).

There is a demand for new processes of co-operation and co-creation in complex
processes. Another example I want to mention was elaborated by one of my doctoral
students. His job is to manage the exhibitions of Mercedes Benz on international
automobile fairs. Those of you who have visited such a fair may imagine that it is a
very complex task.

All stakeholders involved have their special interests: the top management, the
engineers, the marketing people, the designers, the people in charge of public relation,
the sales department and finally the interests of visitors and prospect buyers have to be
considered. The challenge is, how to manage the crowd of experts – the swarm. – They
are supposed to stick to the company’s values and not to their individual vanity. My
doctoral student did an intense empirical research and included all stake holders and
their special interests. The final outcome is a tool similar to a compass that enables him
to ask the right question at the right time to the right person to strengthen the
co-operation of the team. (complexity broken down to simple rules to manage the
swarm).

Fig. 11. Co-creation of a brand carried out by Prof. Dr. Salomão Ribas Gomez at Universidade
Federal de Santa Catarina in the city of Florianopolis, Brazil

34 B. Wolf

5 Swarm Intelligence as Inspiration for a Design Strategy
Project

Like a swarm a company is not a closed system. Each swarm and each company is also
part of a bigger system. The collective vigilance plays an important role. The inter-
action with the environment is not only important for swarms it is equally important for
companies and decides about life and death.

Companies realize that design thinking enables them to prepare for the future and to
reach level five of the design ladder. The permanent interaction with the users and the
environment seems the best way to create a sustainable future.

Wera is a medium sized company producing screwdrivers of all types in high
quality, excellent functionality and extremely user friendly. We started to work with
them in the summer term 2013. That time they were on level three of the design ladder
and intended to climb to level four.

Together with my assistants and with our master students I elaborated a design
strategy and a brand strategy for the company. The management was highly motivated.
Our co-operation was good and trustful, although or because we analyzed and
benchmarked the company critically and we always told them truth.

They were happy with the result and used the handbooks to implement the
strategies. In the last three years the company has changed not only its appearance but
also the way they work together. They work together like a swarm, they share the same
DNA and follow the rules and they are enthusiastic. The investments in design have
paid off. Meanwhile they won a lot of design prizes and have doubled their turnover
(Fig. 13 and 14).

Fig. 12. Co-creation of a brand carried out by Prof. Dr. Salomão Ribas Gomez at Universidade
Federal de Santa Catarina in the city of Florianopolis, Brazil

Inspiration by Swarms 35

I visited their fair stand in April and I was surprised: the fair stand was totally
crowded with people and the Wera employees on the fair stand were extremely busy to
handle all requests of the visitors. In compare the fair stands of the competitors were

Fig. 13. Fair stand of Wera at “Internationale Eisenwarenmesse” in Cologne, March 2016

Fig. 14. Application of swarm theory to climb up the design ladder to level five

36 B. Wolf

quite empty. Wera runs ahead of the competitors, but the company knows very well
that the most important competitors will catch up soon. Therefore they decided to
improve further. Their desired goal is to become a public brand, like aspirin. (In almost
ever country of the world aspirin is a synonym for a painkiller, even if it is not the
original.)

They definitively want to reach level five of the design ladder!
To reach level five they need to operate differently and they need to interact with

the environment directly - like swarms do. New technologies provide great options to
interact direct and fast. Close and good relation to the environment and the customers
will be their key for future survival. In my opinion future success will be determined
by:

1. transparent interactions with users and all the other stakeholders;
2. demonstrations of environmentally and socially responsive and sustainable activi-

ties of companies.

My proposal for the process considers what I have learned of swarm behavior:

1. Change your mindset (DNA) from offering to caring

Workshop with the top management to discuss the new aim.
We want to figure out:
What works well and what does not work so well?
What are the problems?
What are the challenges the company is facing today?
What are the aims and objectives of the company for the future?
Result: Clear definition of the future perspective.

2. Design thinking process

Organization of cross-disciplinary workshops as self-organizing groups.
We have to:
Provide the rules how to interact and a friendly setting.
Invite the participants, like employees of all departments, representatives of the

different distribution channels and end users from different production companies.
Guarantee diversity, independence and be yourself.
Results: identification of existing problems, generation of ideas how to solve the

problems the different stakeholder are facing right now, creation of as many ideas as
possible.

3. Orientation

We have to:
Structure the ideas and prepare the selection process.
Consider the aim of the company as the basis for the selection criteria.

4. Evaluation

We have to organize a cross-disciplinary workshop to evaluate and select the most
promising ideas (wisdom of the crowd, swarm behavior).

Inspiration by Swarms 37

5. Testing

Rapid prototyping of selected ideas and test them in real life experiments (inter-
action with the environment).

6. Learn from failure and improve

Cross-disciplinary workshop to rethink the experiment and to find solution for
improvement (swarm decision to balance the wrong decision of an individual).

7. Design process
8. Implementation

When the project succeeds the company will not only act as a swarm internally, the
company will act as swarm in the ocean. The company will sustain shark attacks
because the employees (swarm) are alert to changes in the environment and react
spontaneously, they observe the behavior of other swarms (competitors) and most
important they interact with users and retailers in co-creation processes.

The main motive to join a swarm is the fear to be eaten by an enemy.
The same fear exists in companies, they are afraid to be swallowed by the com-

petition. I am convinced: When they learn from swarm behavior they will be stronger,
climb to level five and have better chances for long lasting success in the market.

References

1. Shubin, N.: Der Fisch in uns: Eine Reise durch die 3,5 Milliarden Jahre alte Geschichte
unseres Körpers (2009)

2. Reynolds, Craig: http://www.red3d.com/cwr/boids/
3. Krause, J., Krause, S.: Kollektives verhalten und schwarmintelligenz. In: Otto, K.-S., Speck, T.

(eds.) Darwin meets Business, pp. 127–134. Springer, Heidelberg (2011)
4. Couzin, I., Miller, P.: The Smart Swarm. Penguin Books, New York (2010)
5. Krause, J.: Swarm Experiment in the Cologne Fair and reported in the TV program

Quarks&Co by Ranga Yogeshwar (2007)
6. Surowiecki, J.: The Wisdom of the Crowd: Why the Many are Smarter Than the Few and

How Collective Wisdom Shapes Business. Society and Nations (Abacus), Economics (2005)
7. Miller, P.: The Smart Swarm. Penguin Books, New York (2010)
8. Cavanga, A., Miller, P.: The Smart Swarm. Penguin Books, New York (2010)
9. Hass, H.: Der Hai im Management, Instinktverhalten erkennen und kontrollieren (1988)
10. DuPont – Wikipedia. https://de.wikipedia.org/wiki/DuPont/
11. Luhmann, N., Systeme, S.: Grundriß einer allgemeinen Theorie, Frankfurt am Main 1984,

neue Auflage (2001)
12. The car2go Web site. https://www.car2go.com/DE/de/
13. Phillips: Company presentation at the European International Design Management Congress,

Amsterdam, Netherlands (2016)
14. Heineken: Company presentation at the European International Design Management

Congress, Amsterdam, Netherlands, during the reception in the Heineken Building (2016)

38 B. Wolf

http://www.red3d.com/cwr/boids/
https://de.wikipedia.org/wiki/DuPont/
https://www.car2go.com/DE/de/

Regular Papers

Particle Swarm Optimization for Operating
Theater Scheduling Considering Medical

Devices Sterilization

Benoit Beroule1(B), Olivier Grunder1, Oussama Barakat2, Olivier Aujoulat3,
and Helene Lustig3

1 Univ. Bourgogne Franche Comté, UTBM, IRTES-SET, 90010 Belfort, France
{benoit.beroule,olivier.grunder}@utbm.fr

2 Nanomedecine Lab, University of Franche Comté, 25000 Besançon, France
oussama.barakat@univ-fcomte.fr

3 GHRMSA, Mulhouse Hospital Center, 68000 Mulhouse, France
{aujoulato,lustigh}@ch-mulhouse.fr

http://www.utbm.fr

http://www.univ-fcomte.fr

http://www.ch-mulhouse.fr

Abstract. The operating theater scheduling problem is one of the main
hospital sector issues of today’s world. Indeed, numerous papers deal-
ing with this subject may be found in the literature. However, the syn-
chronization between the pharmacy (providing the surgical devices and
medicines) and the operating theater is rarely studied. Nevertheless, the
importance of the pharmacy keeps growing because of the creation of
numerous hospital groups composed of several hospital complexes shar-
ing a central pharmacy. In this paper, we focus on the sterilization cycle
of the surgical devices to provide operating theater scheduling methods
taking into account pharmacy issues. We present exact methods with a
mixed integer linear programming model to determine optimal sched-
ules as well as approximate solutions with a particle swarm optimization
based method to solve the most complex cases. These modelings provide
interesting schedules using few quantities of surgical devices boxes even
when considering many procedures. With this study we hope to lay the
foundations of a transverse logistics unifying the operating theater and
the pharmacy in a multi-site context.

Keywords: Optimization · Health care · Particle swarm optimization ·
Operating theater scheduling

1 Introduction

The health-care sector must adapt to any economic situation more than any
other public sector to ensure the continuance of every care services. To con-
tinue operating at optimum efficiency, lots of hospital complexes merge to create

c© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 41–56, 2016.
DOI: 10.1007/978-3-319-50307-3 3

42 B. Beroule et al.

groups sharing a common logistics in terms of transportation, medical products,
medical devices and more.

In this work, we study the case of a real pharmacy in a new hospital group
which is intended to become the central pharmacy. In practical terms, it implies
the centralization of the medical devices and drugs storage as well as the ster-
ilization of the medical devices. This study is particularly focused on this sec-
ond aspect. The paper proposes to initiate the creation of a transverse logistics
between the pharmacy and the operating theater to develop scheduling methods
that take into account the local logistics of these two entities [1]. Such an app-
roach implies defining a new performance criterion. More importantly, it should
be possible for this work to be extended to the multi-site context [18]. To the best
of our knowledge, this particular aspect of the operating theater scheduling has
never been studied before. A multi-site context implies an important amount of
surgical procedures to schedule each day. In order to solve the considered oper-
ating scheduling problem with numerous data, we developed a particle swarm
optimization-based method. This paper details the complete PSO method used
as well as an empirical selection and a discussion on the parameters.

There are numerous papers which study the operating theater management.
[10] proposed to use Bin-Packing methods derived from the industrial sector,
and fuzzy constraints to maximize rooms occupancy rate in a multidisciplinary
operating theater scheduling problem.

[14] developed a tabu search adapted to the hospital context to manage the
operating rooms considering the recovery rooms availability. Other authors like
[13] have chosen to propose scheduling tools based on linear models to minimize
the operating cost of the hospitals. [27] studied the importance of reserving a
dedicated operating room in case of emergency to improve responsiveness when
treating non-elective (urgent) patients. The performance criterion selected to
evaluate room scheduling procedures is an important aspect of operating the-
ater scheduling. It may affect the approach used to solve the problem. [4] identify
the eight main performance criteria detailed in the literature which are: wait-
ing time, throughput, utilization leveling, makespan, patient deferrals, finan-
cial measures and preferences. For instance, lots of studies are based on avoid-
ing under-utilization and over-utilization of the operating rooms by elaborating
operational research methods [8–10]. On the other hand, [7] implemented a lin-
ear programming model to maximize the costs induced by the operating theater
to determine the worst possible case. [2,3] consider the NP-hard combinatorial
optimization problem of surgical case sequencing with a multi-objective func-
tion and proposed several methods to solve it in a freestanding ambulatory unit
context by determining the order of the patients. Indeed most of the papers re
centralized on the patients rather than the materials, for instance, [19] proposed
scheduling solutions to decrease the patient makespan that is to say the time
elapsed between the first patient arrival and the last patient departure within
the considering time window.

This paper will be divided into several parts. In the second part, the context
of the study will be presented and the sterilization service relative problems will

Particle Swarm Optimization for Operating Theater Scheduling 43

be detailed. In the third part, the modeling method will be described as well as
a mathematical model. The Fourth part presents the particle swarm optimiza-
tion based algorithm and a parameter determination method. The results are
discussed in the fifth part to compare the different methods in terms of solu-
tion and computation time. At least, we will conclude on the best method to
determine optimal scheduling in this context and suggest some projects.

2 Studied System

The considered study takes place in a hospital pharmacy which needs to face
up to the new economic situation. In this section, the current functioning of the
pharmacy and its future development is presented and the main encountered
logistic problems are highlighted.

2.1 The Multi-site Context

The studied hospital is a part of a recently formed hospital group. Consequently,
the logistics of its pharmacy must be reorganized to become the central pharmacy
of the group. Concerning the sterilization service, this major modification means
that every hospital of the group will send their own medical devices to this
pharmacy to be sterilized then sent back to the hospital (or another hospital
of the group). In this context, we propose methods to avoid congestion in the
sterilization service. We assume that working on a new global surgical procedure
scheduling process which takes into account the resources of the pharmacy may
be relevant. Our final purpose is to provide methods which can be implemented
into decision making tools to determine surgical procedure schedules concerning
an entire hospital group.

2.2 Sterilization Service

The sterilization service of the pharmacy is responsible for the washing, the ster-
ilization and the repackaging of the medical devices into boxes (we simply denote
them “boxes” in the remainder of the paper). When a surgical procedure occurs,
the corresponding box follows a precise cycle (summarized in Fig. 1). Before the
surgical procedure starts, the appropriate box (or boxes) is (are) sent from the
sterilization service to the operating theater with a vehicle (automated or not)
or sometimes directly via a human agent. The box is brought to the appropriate
operating room to be used during the procedure (it can be stored in the service
before the operation starts if necessary). When the surgical procedure is over, the
medical devices are pre-disinfected by immersing them into a disinfectant liquid
during twenty minutes (average duration). Then the instruments are repacked
in the right box and stored in a common dedicated zone before being sent back
to the sterilization service of the pharmacy. When the boxes are received by the
service, they follow several steps to be sterilized. First the medical devices are
divided among automatic washers to be cleaned. When the washing program is

44 B. Beroule et al.

Fig. 1. Medical devices cycle

over, the materials must be repacked in the corresponding boxes. This opera-
tion may be long or less and complex depending on the number of instruments
(which might exceed one hundred) and the complexity of the placement in the
box. The repacked boxes are then stored in a dedicated buffering zone. When
the adequate number of boxes are stored, they are put into autoclaves (steriliza-
tion machines) to be sterilized. This process lasts more than an hour. When it
is over, the boxes are stored while their temperature drops. After this step, the
sterilization process is over and the boxes are available. They may be sent to the
operation theater to continue the cycle when needed. It is important to notice
that this cycle may be interrupted during precise moments (before/after wash-
ing or before/after sterilizating) but under no circumstances during the surgical
procedure.

2.3 Problematics

Currently, there is no ‘transverse logistic’ between the operating theater and the
pharmacy in the studied hospital complex. It means that the surgery operations
are scheduled without taking into account the pharmacy resources. This method
presents two main problems.

First, each box is dedicated to a precise surgery operation type. As a conse-
quence, there must be enough boxes for each surgery procedure to respect any
possible planning. A better scheduling method may reduce the number of needed
boxes implying an important saving in a multi-site context.

Furthermore, the sterilization service must deal with important bursts in
activity when too many procedures end during a short time period (or because of

Particle Swarm Optimization for Operating Theater Scheduling 45

a transportation problem) while sometimes, no box is returned to the operation
theater during a long time period. By balancing the workload, we aim to improve
the efficiency of the service.

3 Modeling

We first identify the difficulties relative to the connection between the pharmacy
and the operating theater. We notice that the problem may be compared to
a standard scheduling problem in industrial context with some particularities.
Consequently, we start our study by using industrial models. Then we implement
two solving methods. On the one hand, we developed a mixed integer linear pro-
gramming model to obtain optimal schedules (minimizing boxes utilization), the
main weakness of the method is a prohibitive computation time when treating
important size problems. To improve the methods, On the other hand we develop
a particle swarm optimization based-model in order to provide schedules even
when considering numerous data.

3.1 Operating Theater Scheduling

The Operating theater scheduling is a complex problem which deals with numer-
ous variables (human resources, material resources, operation rooms, time win-
dow, skills...). In this preliminary study, we simplify the problem and then
will consider afterward the constraints implied by the other operating theater
aspects. This leads us to the following assumptions:

– Each surgical procedure is already assigned to a surgical team.
– The human resources are always available.
– All operating rooms are open simultaneously.
– All patients are ready for the surgical procedure.
– The non-elective patients (urgency) are not considered.
– The problems relative to the recovery room are not considered.
– No transportation problem may occur.

This scheduling problem shares similarities with classical industrial schedul-
ing problem. Hence, it may be interesting to use industrial optimization methods
with proper modifications to identify the problem. [12] proposed a nomenclature
adapted to scheduling models in industrial context, this nomenclature identifies
a scheduling problem by defining three parameters: α, β and γ.

– α is composed of two sub-parameters α = α1α2.
• α1 represents the layout of the actual shop (flow-shop, job-shop, open-

shop...).
• α2 indicates the number of machines in the shop and if this number is fixed

or variable.
– β represents constraints which may be applied to the problem (due dates,

ready dates, deadlines, preemption, precedence relation...).

46 B. Beroule et al.

– γ represents the selected performance criterion. The choice of this parameter
is crucial to determine the aspect that must be improved by the scheduling.

There are a lot of papers that compare the operating theater to an hybrid
flow-shop [11,14,15,23]. These studies assimilate the patients to jobs and the
operating theater steps to machines. In this work, we concentrate on surgical
devices. Consequently, we assimilate surgical procedures to jobs and boxes to
machines. In this context, according to the nomenclature, the problem must be
compared to a “RI/ prec,pmtn/Boxes utilization minimization” problem.

α1 = R means that the operations are parallel and unrelated. Despite the fact
that the machines represent the same type of box, the time needed for a job
depends on other parameters (the patient, the surgeon...).
α2 = I means that the number of machines (or boxes) is fixed.
β = prec,pmtn
prec means ‘precedence’. We separate each job into two sub-jobs. The first sub-
job represents the operating theater and transportation part and the second one
represents the sterilization service part. Hence we add a precedence constraint
between these two sub-jobs (operating theater first then sterilization).
pmtn means ‘preemption’. As said before, the sterilization sub-jobs may be pre-
empted.
γ = “Boxes utilization minimization”. There is no pre-existing parameter which
correctly represents our scheduling problem performance criterion. Indeed, we
try to minimize the number of machines (boxes) which will be used and this
kind of criterion is rarely considered in the literature.

Fig. 2. Example of a four-surgical operation planing

To model the operating theater scheduling problem considering the steril-
ization step, each prescribed surgical procedure is represented by a job j the
duration of which corresponds to the time needed to perform a complete cycle
of the corresponding box (see Sect. 2.2). The job starts simultaneously with the
corresponding surgical procedure. Therefore two distinct surgical procedures can
share a same box only if the corresponding jobs do not overlap. It is then pos-
sible to represent a complete planning for a given procedure type (sharing the
same type of medical devices). This planning may be evaluated by calculating

Particle Swarm Optimization for Operating Theater Scheduling 47

the number of boxes needed to respect it, which is easily identifiable on a graphic
representation, an example of a four-surgical operation planing is presented on
Fig. 2. This example presents the time repartition of the four surgical operations,
the black strip represent the time during which the corresponding box will be
unavailable, it corresponds to a complete box cycle (Fig. 1). In this condition,
the best planning is the one with the lowest evaluation (lower amount of boxes
needed to be respected).

3.2 Mixed Integer Linear Programing Model

As seen before, the scheduling problem considered here is difficult to identify
because of its quite unusual γ parameter. This is why the problem will not be
directly treated as a scheduling problem. Consequently, we propose a mathemat-
ical model based on the bin packing problem. The bins are replaced by the boxes
and the objects by the surgical procedures then we added new time relative con-
straints. We consider here that each surgical procedure implies the creation of a
job representing the corresponding box utilization cycle (see Sect. 2.2)

the parameters of the model are defined:

– n: number of surgical procedures.
– Pi: processing time of the job i in the operating theater and transportation.
– Si: processing time of the job i in the sterilization service.
– S− opening date of the sterilization service.
– S+: closing date of the sterilization service.
– P−: opening date of the Operating theater.
– P+: closing date of the Operating theater.
– T : duration of a sterilization working day (T = P− − P+)

then the relevant indexes:

– i: denote the job/procedure index 1 ≤ i ≤ n.
– j: denote the box index 1 ≤ j ≤ n.
– k: denote the day of the week index 1 ≤ k ≤ 5.

Then the following decision variables are introduced:

Primary

– xi,j,k: a binary variable which is equal to 1 only if the operation i uses the box
j during the day k.

– yj : a binary variable which is equal to 1 only if the box j is used for at least
one job.

Secondary

– t−i ,t+i : date of the beginning and the end of each job i respectively.
– ai,bi,ci: binary variables used to create time relative constraints (see Eqs. (5)

to (8))

48 B. Beroule et al.

We define the objective function as follows:

Minimize
n∑

j=1

yj (1)

Subject to the constraints:

n∑

i=1

xi,j,k × (Pi + Si) ≤ T × yj ∀j ∈ [[1, n]] ∀k ∈ [[1, 5]] (2)

n∑

j=1

5∑

k=1

xi,j,k = 1 ∀i ∈ [[1, n]] (3)

xi1,j,k × xi2,j,k × (t−i1 − t+i2) × (t+i1 − t−i2) ≥ 0 ∀i1, i2, j ∈ [[1, n]] ∀k ∈ [[1, 5]] (4)

T− + ai × T ≤ t−i ≤ T+ + ai × T ∀i ∈ [[1, n]] (5)

T− + ai × T ≤ t−i + Pi ≤ T+ + ai × T ∀i ∈ [[1, n]] (6)

S− + bi × T ≤ t−i + Pi ≤ S+ + bi × T ∀i ∈ [[1, n]] (7)

S− + ci × T ≤ t+i ≤ S+ + ci × T ∀i ∈ [[1, n]] (8)

(k−1)×T ×xi,j,k ≤ t−i ≤ 5×T ×(1−k)×xi,j,k ∀i, j ∈ [[1, n]] ∀k ∈ [[1, 5]] (9)

The purpose here is to minimize the number of used boxes (Eq. (1)). The
Eqs. (2) and (3) are classical bin packing equations, they ensure the jobs to be
assigned to one precise day and one precise box. Equation (4) prevents the jobs
from overlapping when using the same box. The equations from (5) to (8) define
the time windows of the operating theater (when the surgical procedures may
start or end) and of the sterilization service (when the sterilization process may
start or end). Finally, Eq. (9) forces the dates t1i to be within the right time
window depending on the day of the corresponding surgical procedures. Note
that the Eq. (4) can be easily linearized to obtain a MILP model.

4 Particle Swarm Optimization

The particle swarm optimization (PSO) is a parallel evolutionary computation
meta heuristics invented by Kennedy and Eberhart [16,17,24] which is based
on bird-flocking and fish-schooling. Particles are created in the solutions space
and share information to move and converge towards best solutions. Numerous
papers deal with PSO improvements or practical applications [20–22]. A spe-
cific method has been defined to choose PSO parameters in order to improve
convergence rate and identify each parameter utility [5]. Indeed, the parameters
greatly affect the solutions consistency. Consequently, some papers studied their
impact in a mathematical [26] or empirical [25] way. In this section the parti-
cle swarm optimization base algorithm used to solved the problem is described.
This approach is necessary when solving problem with large amount of surgical
operations.

Particle Swarm Optimization for Operating Theater Scheduling 49

4.1 Particle Swarm Optimization Modeling

Implementing a PSO algorithm implies determining the modeling of the particles
which will explore the solutions space. Our purpose is to determine a one week
surgical procedures planning by determining the starting date of each operation.
Furthermore, the duration time of a procedure is not a decision variable and
may mainly depend on the patient physical characteristics, the pathology type
or the surgeon habits. In these conditions, the starting dates are sufficient to
establish a complete planning with approximate duration times.

We define the following PSO relative modeling parameters (some of them
will be detailed afterward).
– m: amount of particles generated for the PSO algorithm.
– l: amount of steps performed by the PSO algorithm.
– Xk

j : position vector of the particle j at step k.
– V k

j : velocity vector of the particle j at step k.
– Lj : best solution found by the particle j.
– Gj : best solution found by the particles of particle j’s neighborhood.
– D: neighboring distance.
– dk

i,j : distance between particle i and j at step k.
– ω: inertia factor.
– φ1: personal memory factor.
– φ2: common knowledge factor.
– Ω1: solutions space.
– Ω2: computation space.
– rk

1 , rk
2 : vectors of random generated float from 0 to 1.

– Σ: set of scenarios.

Hence, each particle is represented by its position and velocity. The position is
a n-tuple as shown in Eq. (10).

Xk
j = (t−1 , t−2 , ..., t−n) (10)

With this modeling, the particles progress in an n dimensional space. A move-
ment along a dimension i represents a modification of the corresponding starting
date t−i . To initialize the PSO, m particles will be generated with random start-
ing dates distributed during the coreponding week and random initial velocities
V 0

j . m must be big enough to create a set of particles covering the entire solution
space. At each step k, a particle represents a particular solution according to its
position in the solution space.

During each step of the PSO algorithm, the particles will communicate to
share information and update their own positions according to their own knowl-
edge and the common knowledge of the best solution. The details of the new
position computation are given in Eqs. (11) and (12) [17].

V k+1
j = ωV k

j + φ1r
k
1 (Lj − Xk

j) + φ2r
k
2 (Gj − Xk

j) (11)

Xk+1
j = Xk

j + V k+1
j (12)

50 B. Beroule et al.

dk
i,j =

√√√√
m∑

η=1

(Xk
j (η) − Xk

i (η))2 (13)

Lj and Gj represent the position vectors of the best solutions found by the
particle j and by the particles in its neighborhood respectively. They are updated
at each step if needed. The neighborhood of a particle j is a set composed of
every other particles i which distance dk

i,j is lesser than D, the distance between
two particles is given by Eq. (13). Here the Euclidian distance is used in order
to create neighborhood composed of slightly similar solutions, that is to say
solutions with some small time offsets. Moreover, it is important to note that here
the distance between two solutions must be expressed in time units (commonly
hours). ω represents the system global inertia. A high inertia value implies a
better solution space exploration at the expense of the convergence speed. φ1

and φ2 represent the personal memory factor and the common knowledge factor
respectively. If φ1 is set to a high value, each particle will be more attracted by
its own best already visited position Lj . If φ2 is set to a high value, each particle
will be more attracted by the best already visited position among every visited
positions of every particles Gj .

When the final step is reached, the solution corresponding to the best visited
position among every particles is considered as the PSO algorithm output. l
must be large enough to allow the particles to converge toward one or several
extrema, but not too big to prevent the machine from prohibitive computation
time.

Among other factors, the PSO efficiency depends on the solution space topol-
ogy and the fitness function behavior. Here we define the solution space Ω1 as
all possible dates combinations in a week (Eq. (14)).

Ω1 = {(t−1 , t−2 , ..., t−n)|∀i ∈ [[1, n]], 0 ≤ t−i ≤ 5 × T, T− ≤ t−i mod T < T+} (14)

In this scheduling problem, the fitness function evaluates the number of needed
boxes to respect a given schedule. The problem is that Ω1 is a discrete subset of
R

n, this topology particularity prevents the particles from moving in a continu-
ous way. To improve the PSO efficiency, we consider a new space, Ω2 (continuous
subset of Rn), that will be called the “computational space” ((15)).

Ω2 = {(t−1 , t−2 , ..., t−n)|∀i ∈ [[1, n]], 0 ≤ t−i < 5 × (T+ − T−)} (15)

There is a bijective function from Ω1 to Ω2 (Eqs. (16) and (17)) to translate
the straight forward readable solution from Ω1 to Ω2 where the computation
is easier. When the computation is over, the solutions may be translated back
from Ω2 to Ω1 (Eqs. (18) and (19)).

f : Ω1 → Ω2

(t−1 , t−2 , ..., t−n) �→ f((t−1 , t−2 , ..., t−n)) = (t′−1 , t′−2 , ..., t′−n) (16)

t′−i = (t−i − T−) −
⌊

di

T

⌋
× (T + T− − T+) (17)

Particle Swarm Optimization for Operating Theater Scheduling 51

f−1 : Ω2 → Ω1

(t′−1 , t′−2 , ..., t′−n) �→ f−1((t′−1 , t′−2 , ..., t′−n)) = (t−1 , t−2 , ..., t−n) (18)

t−i = (t′−i + T−) + (T + T− − T+) × (t′−i mod (T+ − T−)) (19)

4.2 Determining Best Parameters

In order to improve the PSO efficiency, we perform a sensibility analysis on
the ω, φ1 and φ2 factors on the solution provided by the PSO algorithm. We
therefore implement an algorithm to find the best parameters values (Fig. 3).
The purpose of this algorithm is to compute the best solution fitness average for
any parameters triplet (ω, φ1, φ2) considering a scenario σ provided as inputs.
To represent the algorithm outputs, a 3-dimensional data structure Fσ(ω, φ1, φ2)
is set and initialized to 0. The PSO algorithm is then performed several times
(depending on NbIter) with the given parameters and Fσ(ω, φ1, φ2) is updated
at each iteration by adding the fitness of the best found solution (provided
by PSOBestSolutionF itness(i, j, k, σ)). When the final iteration is reached,
Fσ(ω, φ1, φ2) is divided by NbIter to obtain an average result then another
parameters triplet can be evaluated. In this study, this evaluation is maid for
any triplet (ω, φ1, φ2) ∈ P (define in Eqs. (20) to (23))

const

NbIter: Integer;

Sigma: Scenario;

omegaStart, omegaStep, omegaEnd: Real

phi1Start, phi1Step, phi1End: Real

phi2Start, phi2Step, phi2End: Real

var

i := omegaStart; j := phi1Start; k := phi2Start;

it: integer;

Fs: Real 3 dimensional data structure;

begin

repeat

repeat

repeat

it := 1;

Fs(i,j,k) := 0;

repeat

Fs(i,j,k) := Fs(i,j,k) + PSOBestSolutionFitness(i,j,k,Sigma);

it := it + 1;

until it > NbIter

Fs(i,j,k) := F(i,j,k) / NbIter;

k := k + phi2Step

until k > phi2End

j := j + phi1Step

until j > phi1End

i := i + omegaStep;

until i > omegaEnd

end

Fig. 3. PSO best parameters evaluation algorithm

52 B. Beroule et al.

P = Pω × Pφ1 × Pφ2 (20)

Pω = {ω ∈ R|∃i ∈ N, ω = ωstart + i × ωstep, ω ≤ ωend} (21)

Pφ1 = {φ1 ∈ R|∃i ∈ N, φ1 = φ1 start + i × φ1 step, φ1 ≤ φ1 end} (22)

Pφ2 = {φ2 ∈ R|∃i ∈ N, φ2 = φ2 start + i × φ2 step, φ2 ≤ φ2 end} (23)

Therefore, we may define a set of scenarios Σ = {σ1, σ2, ..., σν}. The best
parameters obtained by the algorithm (3) for a set of scenarios Σ are given in
Eq. (24)

(ωbest, φ1 best, φ2 best) = arg min(
∑

σ∈Σ

Fσ(i, j, k)) (24)

Here we define the ranges of value for each parameter with:
ωsart = φ1 start = φ2 start = 0.2,
ωstep = φ1 step = φ2 step = 0.2,
ωend = φ1 end = φ2 end = 2.0,
to obtain the empirical best parameters of the Eq. (25).

(ωbest, φ1 best, φ2 best) = (0.2, 1.6, 1.6) (25)

We do not assure that the previously determined parameters are the best choice
to converge toward the best solution but we assume they are an interesting
alternative considering the fact that only 2 h (with NbIter = 50) were needed
to compute them. Let us consider the consistency of this result. A theoretical
approach leads to define the PSO factors by the equations φ1 = φ2 = φ and
φ = ω × (2/0.97725) [6], this is why we first decided to use the parameters
(ω, φ1, φ2) = (0.8, 1.64, 1.64). From the empirical results of testing, two obser-
vations can be made. First φ1 best = φ2 best = 1.6. However the inertia factor
ωbest = 0.2 is smaller than the expected value (0.8). To understand this result,
let us remember the impact of this parameter on the global system. The inertia
factor represents the particles capacity of “quickly” changing their directions,
therefore, the bigger the inertia factor is, the more the solution space is explored
(but the convergence rate may decrease). Nevertheless, the solution space of the
current problem contains several non-neighboring optimal solutions (for instance,
inverting two surgical procedures of same duration provides an other solution
with identical fitness). Consequently, the exploration of the entire solution space
is not crucial, hence the inertia factor does not need to be set to a high value in
this context.

5 Experimentation

A set of representatives scenarios Σ composed of different number of procedures
is defined. These scenarios are inspired by real data from hospital context, some
of them represent real cases and are extended to create the other ones. Proceed-
ing in this manner allows to obtain a set of scenarios Σ with a large panel of
surgical procedures. Here Σ contains 32 scenarios composed of 6 to 37 surgical

Particle Swarm Optimization for Operating Theater Scheduling 53

Table 1. Number of boxes needed to respect each scenario depending parameters value
and MILP model

Scenario Procedures PSO1 PSO2 MILP

Fit Time(s) Error Fit Time(s) Error Fit Time(s)

1 6 2.00 7.9 0.0% 2.00 7.9 0.0% 2 0.09

2 7 2.00 9.0 0.0% 2.00 8.9 0.0% 2 0.3

3 8 2.00 10.0 0.0% 2.00 10.0 0.0% 2 0.7

4 9 2.01 11.1 0.5% 2.01 11.1 0.5% 2 2.17

5 10 2.83 12.3 41.5% 2.64 12.4 32.0% 2 1.23

6 11 3.00 13.8 0.0% 3.00 13.8 0.0% 3 26.64

7 12 3.00 15.3 0.0% 3.00 15.3 0.0% 3 34.43

8 13 3.00 16.9 0.0% 3.00 17.0 0.0% 3 10.05

9 14 3.36 18.4 12.0% 3.15 18.7 5.0% 3 84.36

10 15 3.93 20.4 31.0% 3.91 20.7 30.3% 3 80.1

11 16 4.00 22.7 0.0% 4.00 23.0 0.0% 4 113.1

12 17 4.00 24.6 0.0% 4.00 25.1 0.0% 4 36.47

13 18 4.06 26.2 1.5% 4.02 26.3 0.5% 4 152.39

14 19 4.57 28.4 14.25% 4.30 28.9 7.5% 4 210.98

15 20 4.99 30.2 24.75% 4.99 30.7 25.0% 4 58.66

16 21 5.00 32.3 0.0% 5.00 33.0 0.0% 5 143.28

17 22 5.12 34.3 2.4% 5.00 35.0 0.0% 5 78.35

18 23 5.63 36.3 12.6% 5.36 37.5 7.2% 5 495.25

19 24 5.93 38.2 18.6% 5.91 39.3 18.2% 5 558.51

20 25 6.00 40.9 20.0% 5.98 41.8 19.6% 5 591.50

21 26 6.03 43.0 0.5% 6.00 44.0 0.0% 6 808.80

22 27 6.19 45.4 3.16% 6.08 46.7 1.3% 6 820.41

23 28 6.75 47.6 12.5% 6.57 49.0 9.5% 6 2413.1

24 29 6.97 50.2 16.17% 6.99 51.9 16.5% 6 2842.1

25 30 7.07 52.5 16.8% 7.00 54.3 16.6% 6 3109.5

26 31 7.33 55.1 - 7.11 57.0 - - ≥3600

27 32 7.80 58.0 - 7.56 59.8 - - ≥3600

28 33 7.93 60.6 - 7.92 62.4 - - ≥3600

29 34 8.03 63.3 - 7.98 65.7 - - ≥3600

30 35 8.15 66.1 - 8.00 68.6 - - ≥3600

31 36 8.49 69.1 - 8.22 71.4 - - ≥3600

32 37 8.76 72.0 - 8.65 74.7 - - ≥3600

54 B. Beroule et al.

procedures, the amount of procedures in a scenario determines its complexity
and therefore the computation time needed to solve it. We evaluate the schedules
provided by two different PSO algorithms.

– PSO1 uses the classical parameters (ω, φ1, φ2) = (0.8, 1.64, 1.64). These values
are standard and respect the rules prescribe in the literature [5,6].

– PSO2 uses the parameters determined by the best parameters determination
method presenting in Sect. 4.2 that is to say (ω, φ1, φ2) = (0.2, 1.6, 1.6).

For each scenario of Σ, the operating theater scheduling problem described in
this paper has been solved using the two methods PSO1 and PSO2 100 times to
evaluate an average fitness and computation time. Then the GUROBITMsolver
has been used to determine the optimal solution fitness according to the Mixed
Integer Linear Problem modeling (see Sect. 3.2). It should be noticed that here
the value of D is fixed to D = 5 h to determine the neighborhoods. The Table 1
summarizes the performances of each algorithm to compare the PSO perfor-
mance to the exact solution provided by the MILP model on the 32 scenarios of
Σ. Here the time limit of GUROBITMwas fixed to 1 h and therefore the solution
is not displayed when the time has been exceeded. It should be also noticed that
each instance is solved with m = 20 particles and l = 1000 cycles. We may eas-
ily observe that in every tested scenario, PSO2 provides better or equal results
than PSO1. Furthermore, we may identify several scenarios with which the two
PSO algorithms provide these optimal results. These particular cases correspond
to simple schedules and create the tapered shapes of the error ratio. In deed,
it appears than for instance most of the time schedule 15 surgical operations
on a working weak (5 days) implies to allocate 3 operations to each day while
schedule 16 surgical operations is not a trivial problem.

6 Conclusion

The current economic context and the medical sector stakes are conductive to
hospital groups creation. It is clear that these new structures imply rethinking
the hospital context logistics in its entirety. The synchronization between the
operating theater and the sterilization service of the pharmacy constitutes a
large operating research field full of possibilities that must be explored. Indeed,
in a hospital group with central pharmacy, the latter became a major issue of the
complete functioning and must be considered as such. With the study presented
in this paper, we hope to lay the foundations of a hospital transverse logistic
taking into account the issues of these two main structures. The purpose here
is to improve the surgical devices flow which are circulated through the hos-
pital group. The next step is to provide a complete planning creation method
by improving several aspects of the detailed process. First, more operating the-
ater aspects must be considered by adding new constraints and then modifying
the objective function. We contemplate using multi-objective function or Pareto
frontier, the advantage of the latter could be to compute a set of schedules and
let the final decision to the hospital group management department. Moreover,

Particle Swarm Optimization for Operating Theater Scheduling 55

the presented process must be adapted for real time environment. Indeed, in this
paper we detailed a scheduling problem considering that every surgical proce-
dure is already known but in real case the procedures are prescribed time after
time by the surgeons. We may imagine for instance to schedule the operation at
the end of each day considering the ones already planed.

Several aspects of the pharmacy sector can still be studied to improve the
entire hospital complexes functioning as medicines ordering, inter sites trans-
portation, stock managing and so on. By considering more common aspects of
the pharmacy and the hospital we may include each logistic decision into a com-
plete logistic covering the entire hospital group context.

References

1. Beroule, B., Grunder, O., Barakat, O., Aujoulat, O., Lustig, H.: Ordonnancement
des interventions chirurgicales d’un hopital avec prise en compte de l’étape de
stérilisation dans un contexte multi-sites (2016)

2. Cardoen, B., Demeulemeester, E., Beliën, J.: Optimizing a multiple objective sur-
gical case sequencing problem. Int. J. Prod. Econ. 119(2), 354–366 (2009)

3. Cardoen, B., Demeulemeester, E., Beliën, J.: Sequencing surgical cases in a day-
care environment: an exact branch-and-price approach. Comput. Oper. Res. 36(9),
2660–2669 (2009)

4. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and
scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)

5. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

6. Clerc, M., Siarry, P.: Une nouvelle métaheuristique pour l’optimisation difficile: la
méthode des essaims particulaires. J3eA, 3:007 (2004)

7. Dexter, F., Blake, J.T., Penning, D.H., Sloan, B., Chung, P., Lubarsky, D.A.: Use
of linear programming to estimate impact of changes in a hospital’s operating
room time allocation on perioperative variable costs. Anesthesiology 96(3), 718–
724 (2002)

8. Dexter, F., Epstein, R.H.: Scheduling of cases in an ambulatory center. Anesthesiol.
Clin. North Am. 21(2), 387–402 (2003)

9. Dexter, F., Macario, A.: When to release allocated operating room time to increase
operating room efficiency. Anesth. Analg. 98(3), 758–762 (2004)

10. Dexter, F., Macario, A., Traub, R.D.: Which algorithm for scheduling add-on elec-
tive cases maximizes operating room utilization? Use of bin packing algorithms,
fuzzy constraints in operating room management. Anesthesiology 91(5), 1491–1500
(1999)

11. Fei, H., Meskens, N., Chu, C.: A planning and scheduling problem for an operat-
ing theatre using an open scheduling strategy. Comput. Ind. Eng. 58(2), 221–230
(2010)

12. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math.
5, 287–326 (1979)

13. Guinet, A., Chaabane, S.: Operating theatre planning. Int. J. Prod. Econ. 85(1),
69–81 (2003)

56 B. Beroule et al.

14. Hanset, A., Fei, H., Roux, O., Duvivier, D., Meskens, N.: Ordonnancement des
interventions chirurgicales par une recherche tabou: Exécutions courtes vs longues.
Logistique et Transport LT 2007 (2007)

15. Jebali, A., Alouane, A.B.H., Ladet, P.: Operating rooms scheduling. Int. J. Prod.
Econ. 99(1), 52–62 (2006)

16. Kenndy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

17. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Ency-
clopedia of Machine Learning, pp. 760–766. Springer, New York (2011)

18. Klement, N.: Planification et affectation de ressources dans les réseaux de soin:
analogie avec le problème du bin packing, proposition de méthodes approchées.
Ph.D. thesis, Université Blaise Pascal-Clermont-Ferrand II (2014)

19. Marcon, E., Dexter, F.: Impact of surgical sequencing on post anesthesia care unit
staffing. Health Care Manage. Sci. 9(1), 87–98 (2006)

20. Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Dynamic clustering using particle
swarm optimization with application in image segmentation. Pattern Anal. Appl.
8(4), 332–344 (2006)

21. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: 2010 24th IEEE International Conference on Advanced Information Networking
and Applications, pp. 400–407. IEEE (2010)

22. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics.
IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)

23. Saadani, N.H., Guinet, A., Chaabane, S.: Ordonnancement des blocs operatoires.
In: MOSIM: Conference francophone de MOdélisation et SIMulation, vol. 6 (2006)

24. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The 1998 IEEE
International Conference on Evolutionary Computation Proceedings, IEEE World
Congress on Computational Intelligence, pp. 69–73. IEEE (1998)

25. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol.
1447, pp. 591–600. Springer, Heidelberg (1998). doi:10.1007/BFb0040810

26. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

27. Wullink, G., Van Houdenhoven, M., Hans, E.W., van Oostrum, J.M., van der Lans,
M., Kazemier, G.: Closing emergency operating rooms improves efficiency. J. Med.
Syst. 31(6), 543–546 (2007)

http://dx.doi.org/10.1007/BFb0040810

Data Exchange Topologies for the DISCO-HITS
Algorithm to Solve the QAP

Omar Abdelkafi(B), Lhassane Idoumghar, Julien Lepagnot,
and Mathieu Brévilliers

Université de Haute-Alsace (UHA), LMIA (E.A. 3993),
4 Rue des Frères Lumière, 68093 Mulhouse, France

{omar.abdelkafi,lhassane.idoumghar,julien.lepagnot,
mathieu.Brevilliers}@uha.fr

Abstract. Exchanging information between processes in a distributed
environment can be a powerful mechanism to improve results for com-
binatorial problem. In this study, we propose three exchange topolo-
gies for the distance cooperation hybrid iterative tabu search algorithm
called DISCO-HITS. These topologies are experimented on the quadratic
assignment problem. A comparison between the three topologies is per-
formed using 21 well known instances of size between 40 and 150. Our
algorithm produces competitive results and can outperform algorithms
from the literature for many benchmark instances.

Keywords: Metaheuristics · DISCO-HITS · Quadratic assignment
problem · Topologies

1 Introduction

The Quadratic assignment problem (QAP) is an NP-hard problem. It is well
known for its multiple applications. Many practical problems in electronic, chem-
istry, transport, industry and many others can be formulated as QAP. This
problem was first introduced by Koopmans and Beckmann [1] to model a facil-
ity location problem. It can be described as the problem of assigning a set of
facilities to a set of locations with given distance and flow between locations and
facilities, respectively. The objective is to place the facilities on locations in such
a way that the sum of the products between flows and distances is minimized.
The problem can be formulated as follows:

min
p∈P

z(p) =
n∑

i=1

n∑

j=1

fijdp(i)p(j) (1)

where f and d are the flow and distance matrices respectively, p ∈ P represents
a solution where pi is the location assigned to facility i and P is the set of all n
vector permutations. The objective is to minimize z(p), which is the total cost
assignment for the permutation p.
c© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 57–64, 2016.
DOI: 10.1007/978-3-319-50307-3 4

58 O. Abdelkafi et al.

In this work, we propose an experimental analysis of different exchanging
topologies to solve the QAP. The aim of this work is to explore the influence of
these topologies. The parallel level used is the algorithmic level [2].

The rest of the paper is organized as follows. In Sect. 2, we review some of the
best-known distributed approaches to solve the QAP. In Sect. 3, we describe the
different topologies used in this work. Section 4 shows the experimental results
for a set of QAPLIB instances. Finally, in Sect. 5, we conclude the paper and we
propose some perspectives.

2 Background

Since its introduction in 1957 [1], the QAP became an important problem in
theory and practice. It can be considered as one of the hardest combinatorial
problems due to its computational complexity. Different metaheuristics have
been proposed to provide competitive results [3–7].

The parallel and distributed design of metaheuristic approaches has the
capacity to improve the solution quality and to reduce the execution time. The
computational cost of the QAP and its difficult search space make this problem
suitable for parallelization. The parallel and distributed design of metaheuris-
tics to solve the QAP is underexploited. Very few works propose it, such as
the Robust Tabu search (Ro-Ts) [3] which is a parallelization of neighborhood
between different processors.

In 2001, a parallel model of ant colonies is proposed [8]. A central memory to
manage all communications of the search information is implemented in the mas-
ter process. The search information is composed of the pheromone matrix and
the best solution found. At each iteration, the master broadcasts the pheromone
matrix to all the ants. Each process represents one ant and each ant constructs
a complete solution and applies a Tabu Search (TS) in parallel. The process
sends the solution found and the local pheromone matrix to the master. The
master updates the search information. In 2005, a parallel path-relinking algo-
rithm is proposed [9]. This proposition generates different solutions by applying
path-relinking to a set of trial solutions. To improve the solutions created by the
path-relinking procedure, the Ro-Ts algorithm is run in parallel starting with
different trial solutions. It allows the reduction of the execution time but it does
not change the behavior of the sequential algorithm and the solution quality. In
2009, a cooperative parallel TS algorithm for the QAP is introduced [6]. This
approach initializes as many starting solutions as there are available processors.
Each processor executes one independent TS in parallel. The initialization phase
provides good starting solutions while maintaining some level of diversity. After
the initialization, at each iteration, all the processors execute a TS in parallel.
At the end of the generation, the current processor compares its solution with its
neighbor process. If the neighbor process gets better results, the current process
replaces its current solution with a mutated copy of the neighbor solution. In
2015, a parallel hybrid algorithm is proposed [10]. This proposition is composed
of three steps. The first step is the seed generation which consists in using a

Data Exchange Topologies for the DISCO-HITS Algorithm 59

parallel Genetic Algorithm (GA) based on the island model. Each process rep-
resents an island and at each generation, the master broadcasts the global best
solution to all islands. All nodes execute a GA in parallel. The second step is the
TS diversification. This method is applied to all the parallel nodes. Finally, the
global best solution obtained with the first two steps is used as an initial seed
for the Ro-Ts.

3 Topologies to Exchange Information Between Processes

In 2015, a cooperative Iterative Tabu Search (ITS) called DIStance COoperation
between Hybrid Iterative Tabu Search (DISCO-HITS) is proposed [11]. Each
process performs an ITS in which a Ro-Ts is executed at each generation. After
each iteration, each process sends its current solution to the neighbor process.
Then, a distance is computed between the current solution and the solution
received from the neighbor process. According to this distance, the algorithm
takes the decision to apply the uniform crossover (UX), to perturb the solution
or to make a re-localization of this solution. Algorithm 1 presents the DISCO-
HITS version used in this paper.

Algorithm 1. Distance Cooperation Between Hybrid Iterative Tabu Search
1: Input: perturb: % perturbation; n: size of solution; cost: cost of the current solution; Fcost:

best cost found; Scurrent: current solution; Sbest: best solution found; SEX : solution exchanged;
2: Initialization of the solution for the current process;
3: repeat
4: TS algorithm; [3]
5: if cost < Fcost then
6: Fcost = cost;
7: Update the Sbest with Scurrent;
8: end if
9: level = 0; counter = 0;
10: Exchange Scurrent between processes;
11: for i = 0 to n /* Compute distances */ do
12: if Scurrent[i] == SEX [i] then
13: counter ++;
14: end if
15: end for
16: if counter < n

4 then

17: level = 0; /* Big distance between the two processes */
18: else
19: if counter < 3×n

4 then

20: level = 1; /* Processes are relatively close */
21: else
22: level = 2; /* Processes are very close */
23: end if
24: end if
25: if level == 0 then
26: Update Scurrent with the UX of Sbest;
27: else
28: if level == 1 then
29: Perturbation of Scurrent with the perturb parameter;
30: else
31: Re-localization of Scurrent;
32: end if
33: end if
34: until (Stop condition)

60 O. Abdelkafi et al.

Exchanging information between processes (Algorithm1 line 10) is performed
according to a topology. Algorithm1 sends its current solution to one process
and receives the current solution of another process. We propose three topologies
in this paper. All the topologies are defined with a sequence. Process with index
i sends to process with index i+1 and receives from index i−1. The last index
sends its information for the first index to close the circle of exchange. This
method ensures the sending and receipt of only one solution.

The first topology is the classical ring architecture implemented in the variant
called DISCO-RING-UX. Each process sends its current solution to the next
process and receives from the previous process. For example, if we use four
processes, the sequence of exchange is {0; 1; 2; 3}. with this sequence, process 2
sends to process 3 and process 3 sends to process 0. This sequence is constant
from the beginning of the execution to the end. The aim of this topology is to
experiment a constant impact between two processes.

The second topology is the random architecture implemented in the variant
called DISCO-RANDOM-UX. Each process sends its current solution to a ran-
dom process and receives from a random process. For example if we use four
processes the sequence of exchange can be {1; 2; 0; 3}. This sequence is randomly
perturbed before each exchange. The aim of this topology is to experiment a
dynamic impact between two processes. The random exchange allows a better
diversification.

The last topology is a learning sequence architecture based on the fast ant
algorithm implemented in the variant called DISCO-LEARNING-UX. In this
case, our ant is the sequence of exchange. If the previous sequence allows the algo-
rithm to improve, a quantity of pheromone is deposited for the pair of processes
which exchange the current solution. Otherwise, the quantity of pheromone
deposited is significantly reduced. Before the exchanging step, the pheromone
matrix is updated and the ant is reconstructed. After the reconstruction, a step
of evaporation is performed. The aim is to learn the best topology to exchange
information by converging to the best sequence.

4 Experimental Results

4.1 Platform and Tests

In our experimentation, the algorithm is written in C/C++. It runs on a clus-
ter of 8 machines Intel Core processor i5-3330 CPU (3.00GHz) with 4 GB of
RAM and an NVIDIA GeForce GTX680 GPU. The proposed algorithm is exper-
imented on benchmark instances from the QAPLIB [13]. The size of the instances
varies between 40 and 150. Every instance is executed 10 times and the aver-
age results of these executions are given in the experiments. All the results
are expressed as a percentage deviation from the best known solutions (BKS)
(Eq. 2).

deviation =
(solution − BKS) × 100

BKS
(2)

Data Exchange Topologies for the DISCO-HITS Algorithm 61

Table 1. Parameter of DISCO-HITS

Parameters Value

TSiteration 1000 × n

Global iteration 200

Aspiration criteria n× n× 5

Percentage of perturbation 25 %

Table 2. Comparison of different topologies

Instance(21) BKS DISCO-RING-UX DISCO-RANDOM-UX DISCO-LEARNING-UX

Deviation Time Deviation Time Deviation Time

tai40a 3139370 0.067(1) 3.59 0.059(2) 3.4 0.067(1) 3.6

tai50a 4938796 0.317(0) 6.65 0.344(0) 6.6 0.308(0) 6.7

tai60a 7205962 0.401(0) 11.6 0.400(0) 11.4 0.317(0) 11.4

tai80a 13515450 0.605(0) 27.2 0.613(0) 27.1 0.590(0) 27.2

tai100a 21052466 0.493(0) 53.9 0.478(0) 53.8 0.462(0) 53.8

tai50b 458821517 0.000(10) 6.5 0.000(10) 6.5 0.000(10) 6.6

tai60b 608215054 0.000(10) 11.3 0.000(10) 11.2 0.000(10) 11.3

tai80b 818415043 0.000(10) 27 0.000(10) 26.9 0.000(10) 27

tai100b 1185996137 0.000(10) 53.2 0.000(10) 53 0.000(10) 53.2

tai150b 498896643 0.151(0) 190 0.129(0) 189 0.139(0) 196.1

sko72 66256 0.001(8) 19.6 0.000(10) 19.5 0.001(9) 19.7

sko81 90998 0.004(6) 28 0.004(6) 28 0.002(8) 28.1

sko90 115534 0.001(8) 38.5 0.000(10) 38.6 0.001(8) 38.6

sko100a 152002 0.005(6) 53.5 0.004(8) 53.5 0.005(8) 53.5

sko100b 153890 0.002(8) 53.5 0.001(9) 53.3 0.002(8) 53.5

sko100c 147862 0.002(1) 53.5 0.001(6) 53.3 0.001(2) 53.5

sko100d 149576 0.004(4) 53.5 0.002(5) 53.4 0.005(4) 53.5

sko100e 149150 0.002(6) 53.7 0.002(8) 53.3 0.002(7) 53.4

sko100f 149036 0.004(3) 53.6 0.006(3) 53.8 0.003(4) 53.4

wil100 273038 0.003(1) 53.6 0.003(2) 53.5 0.002(3) 53.6

tho150 8133398 0.016(0) 198.1 0.030(0) 189.3 0.021(0) 191.4

Average type 2 0.3766(1) 20.6 0.3788(2) 20.5 0.3488(1) 20.5

Average type 3 0.0302(40) 57.6 0.0258(40) 57.3 0.0278(40) 58.8

Average type 4 0.0040(51) 59.9 0.0048(67) 59 0.0041(61) 59.3

Average 0.099(92) 50 0.099(109) 49.5 0.092(102) 49.9

The QAPLIB archive comprises 136 instances that can be classified into four
types: real life instances (type 1); unstructured randomly generated instances
based on a uniform distribution (type 2); randomly generated instances similar
to real life instances (type 3); instances in which distances are based on the
Manhattan distance on a grid (type 4).

62 O. Abdelkafi et al.
T
a
b
le

3
.
C

o
m

p
a
ri

so
n

w
it

h
th

e
li
te

ra
tu

re

In
st
a
n
ce
(1
9
)

B
K
S

D
IS
C
O
-R

IN
G
-U

X
D
IS
C
O
-R

A
N
D
O
M
-U

X
D
IS
C
O
-L

E
A
R
N
IN

G
-U

X
T
L
B
O
-R

T
S

C
P
T
S

D
ev

ia
ti
o
n

T
im

e
D
ev

ia
ti
o
n

T
im

e
D
ev

ia
ti
o
n

T
im

e
D
ev

ia
ti
o
n

T
im

e
D
ev

ia
ti
o
n

T
im

e

ta
i4
0
a

3
1
3
9
3
7
0

0
.0
6
7
(1
)

3
.5
9

0
.0
5
9
(2
)

3
.4

0
.0
6
7
(1
)

3
.6

0
.0
0
0

2
9

0
.1
4
8
(1
)

3
.5

ta
i5
0
a

4
9
3
8
7
9
6

0
.3
1
7
(0
)

6
.6
5

0
.3
4
4
(0
)

6
.6

0
.3
0
8
(0

)
6
.7

0
.3
6
0

5
5

0
.4
4
0
(0
)

1
0
.3

ta
i6
0
a

7
2
0
5
9
6
2

0
.4
0
1
(0
)

1
1
.6

0
.4
0
0
(0
)

1
1
.4

0
.3
1
7
(0

)
1
1
.4

0
.4
1
0

9
5
.3

0
.4
7
6
(0
)

2
6
.4

ta
i8
0
a

1
3
5
1
5
4
5
0

0
.6
0
5
(0
)

2
7
.2

0
.6
1
3
(0
)

2
7
.1

0
.5
9
0
(0

)
2
7
.2

0
.8
7
0

2
3
9
.5

0
.6
9
1
(0
)

9
4
.8

ta
i1
0
0
a

2
1
0
5
2
4
6
6

0
.4
9
3
(0
)

5
3
.9

0
.4
7
8
(0
)

5
3
.8

0
.4
6
2
(0

)
5
3
.8

0
.5
9
6

4
8
3
.3

0
.5
8
9
(0
)

2
6
1
.2

ta
i8
0
b

8
1
8
4
1
5
0
4
3

0
.0
0
0
(1
0
)

2
7

0
.0
0
0
(1
0
)

2
6
.9

0
.0
0
0
(1
0
)

2
7

0
.0
0
0

2
3
9

0
.0
0
0
(1
0
)

1
1
0
.9

ta
i1
0
0
b

1
1
8
5
9
9
6
1
3
7

0
.0
0
0
(1
0
)

5
3
.2

0
.0
0
0
(1
0
)

5
3

0
.0
0
0
(1
0
)

5
3
.2

0
.0
0
0

5
0
8
.2

0
.0
0
1
(8
)

2
4
1

ta
i1
5
0
b

4
9
8
8
9
6
6
4
3

0
.1
5
1
(0
)

1
9
0

0
.1
2
9
(0
)

1
8
9

0
.1
3
9
(0
)

1
9
6
.1

0
.0
1
5

4
2
8
.5

0
.0
7
6
(0
)

7
3
7
7
.8

sk
o
7
2

6
6
2
5
6

0
.0
0
1
(8
)

1
9
.6

0
.0
0
0
(1
0
)

1
9
.5

0
.0
0
1
(9
)

1
9
.7

0
.0
0
0

1
7
2
.8

0
.0
0
0
(1
0
)

6
9
.6

sk
o
8
1

9
0
9
9
8

0
.0
0
4
(6
)

2
8

0
.0
0
4
(6
)

2
8

0
.0
0
2
(8
)

2
8
.1

0
.0
0
0

3
4
8
.2

0
.0
0
0
(1
0
)

1
2
1
.4

sk
o
9
0

1
1
5
5
3
4

0
.0
0
1
(8
)

3
8
.5

0
.0
0
0
(1
0
)

3
8
.6

0
.0
0
1
(8
)

3
8
.6

0
.0
0
0

3
4
2
.8

0
.0
0
0
(1
0
)

1
9
3
.7

sk
o
1
0
0
a

1
5
2
0
0
2

0
.0
0
5
(6
)

5
3
.5

0
.0
0
4
(8
)

5
3
.5

0
.0
0
5
(8
)

5
3
.5

0
.0
0
3

5
9
4
.3

0
.0
0
0
(1

0
)

3
0
4
.8

sk
o
1
0
0
b

1
5
3
8
9
0

0
.0
0
2
(8
)

5
3
.5

0
.0
0
1
(9
)

5
3
.3

0
.0
0
2
(8
)

5
3
.5

0
.0
0
5

4
8
2
.6

0
.0
0
0
(1

0
)

3
0
9
.6

sk
o
1
0
0
c

1
4
7
8
6
2

0
.0
0
2
(1
)

5
3
.5

0
.0
0
1
(6
)

5
3
.3

0
.0
0
1
(2
)

5
3
.5

0
.0
0
0

5
0
8
.5

0
.0
0
0
(1
0
)

3
1
6
.1

sk
o
1
0
0
d

1
4
9
5
7
6

0
.0
0
4
(4
)

5
3
.5

0
.0
0
2
(5
)

5
3
.4

0
.0
0
5
(4
)

5
3
.5

0
.0
0
9

5
0
9
.4

0
.0
0
0
(1

0
)

3
0
9
.8

sk
o
1
0
0
e

1
4
9
1
5
0

0
.0
0
2
(6
)

5
3
.7

0
.0
0
2
(8
)

5
3
.3

0
.0
0
2
(7
)

5
3
.4

0
.0
0
5

6
1
4
.5

0
.0
0
0
(1

0
)

3
0
9
.1

sk
o
1
0
0
f

1
4
9
0
3
6

0
.0
0
4
(3
)

5
3
.6

0
.0
0
6
(3
)

5
3
.8

0
.0
0
3
(4
)

5
3
.4

0
.0
0
5

4
8
2
.6

0
.0
0
3
(4
)

3
1
0
.3

w
il
1
0
0

2
7
3
0
3
8

0
.0
0
3
(1
)

5
3
.7

0
.0
0
3
(2
)

5
3
.5

0
.0
0
2
(3
)

5
3
.6

0
.0
0
0

4
8
2
.6

0
.0
0
0
(1
0
)

3
1
6
.6

th
o
1
5
0

8
1
3
3
3
9
8

0
.0
1
6
(0
)

1
9
8
.1

0
.0
3
0
(0
)

1
8
9
.3

0
.0
2
1
(0
)

1
9
1
.4

0
.0
3
0

5
5
6
.6

0
.0
1
3
(0

)
1
9
9
1
.7

A
v
er
a
g
e
ty
p
e
2

0
.3
7
6
6
(1
)

2
0
.6

0
.3
7
8
8
(2
)

2
0
.5

0
.3
4
8
8
(1

)
2
0
.5

0
.4
4
7
2

1
8
0
.4
2

0
.4
6
8
8
(1
)

7
9
.2

A
v
er
a
g
e
ty
p
e
3

0
.0
5
0
3
(2
0
)

9
0

0
.0
4
3
0
(2
0
)

8
9
.6

0
.0
4
6
3
(2
0
)

9
2
.1

0
.0
0
5
0

3
9
1
.9

0
.0
2
5
7
(1
8
)

2
5
7
6
.6

A
v
er
a
g
e
ty
p
e
4

0
.0
0
4
0
(5
1
)

5
9
.9

0
.0
0
4
8
(6
7
)

5
9

0
.0
0
4
1
(6
1
)

5
9
.3

0
.0
0
5
2

4
6
3
.2

0
.0
0
1
4
(9

4
)

4
1
3
.9

A
v
er
a
g
e

0
.1
0
9
(7
2
)

5
4
.3

0
.1
0
9
(8
9
)

5
3
.7

0
.1
0
1
(8

2
)

5
4
.3

0
.1
2
1

3
7
7
.5

0
.1
2
8
(1
1
3
)

6
6
7
.3

A
v
er
a
g
e
N
O
F
E

1
.4
8
e+

0
8

1
.4
8
e+

0
8

1
.4
8
e+

0
8

7
.5
5
e+

1
0

9
.2
3
e+

0
8

Data Exchange Topologies for the DISCO-HITS Algorithm 63

4.2 Parameters

DISCO-HITS contains a set of parameters. A set of experimentation is executed
to fix all the parameters. Table 1 shows the parameters used in the experimen-
tation, where n is the size of the problem and rank is the index of the current
process.

4.3 Experimentation of the Three Topologies

Table 2 contains the results for the three variants proposed in this work. The
same number of objective function evaluations and the same machines are used
(equivalent computing power). The time is expressed in minutes. The number
within brackets is the number of times each algorithm gets the BKS among the
10 trials.

Through the 21 benchmark instances presented in this work, DISCO-RING-
UX outperforms all the variants for only one instance (tho150 in type 2).
DISCO-RANDOM-UX outperforms all the variants for 9 instances especially
from type 4. Finally, DISCO-LERNING-UX outperforms all the variants for 7
instances especially from type 3. DISCO-LERNING-UX gets the best global
average of 0.092 %. This variant shows the most stable results for the 3 types.

4.4 Literature Comparison

Table 3 presents several comparisons with two distributed algorithms from the
literature. Cooperative parallel tabu search (CPTS) [6] (2009) and Teaching-
Learning-Based Optimization (TLBO) [12] (2015).

The average number of objective function evaluation (NOFE in Table 3) used
in our 3 variants is much lower than for the literature algorithms. CPTS algo-
rithm uses 5.8 times more objective function evaluations and TLBO uses 523.5
times more evaluations. We use 19 well-known benchmark instances from the
QAPLIB which are difficult to solve. DISCO-LERNING-UX outperforms all
the algorithms on 4 instances from type 3. TLBO outperforms all the algorithms
on 2 instances (tai40a and tai150b). CPTS outperforms all the algorithms on
5 instances from type 4. DISCO-LERNING-UX gets the best global average
of 0.101 % against 0.128 % for CPTS and 0.121 % for TLBO. Considering the
difference of NOFE, the results obtained by our 3 variants are very competitive.

5 Conclusion and Perspectives

In this work, we have presented and experimented three variants of the DISCO-
HITS algorithm with different topologies to solve the QAP. The results show
that the proposed variants perform efficiently. We evaluated our variants on 19
benchmark instances from the QAPLIB and they get the best average results
compared to two leading distributed algorithms from the literature.

64 O. Abdelkafi et al.

In summary, the main contributions of this work are the proposition of these
variants and the experimentation of three different topologies to exchange infor-
mation in a distributed environment. The automatically learnt topology, used in
the DISCO-LERNING-UX variant, shows the best average results.

In future works, there are several possible ways to extend this work. One pos-
sibility is to experiment other parameters to get better results on large neighbor-
hood instances. An experimental analysis can also be made using some instances
which are not explored in literature, such as tai729eyy. Finally, this approach
can be experimented for other combinatorial problems to analyze its behavior
with other kinds of problems.

References

1. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica 25(1), 53–76 (1957)

2. Talbi, E.G.: Metaheuristics: From Design to Implementation. University of Lille -
CNRS - INRIA, John wiley and sons Inc. (2009)

3. Taillard, E.: Robust taboo search for the quadratic assignement problem. Parallel
Comput. 17, 443–455 (1991)

4. James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strate-
gies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. Part
A Syst. Hum. 39 (3), 579–596 (2009)

5. Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignement problem.
Appl. Math. Comput. 219, 4800–4815 (2013)

6. James, T., Rego, C., Glover, F.: A cooperative parallel tabu search algorithm for
the quadratic assignment problem. Eur. J. Oper. Res. 195, 810–826 (2009)

7. Czapinski, M.: An effective parallel multistart tabu search for quadratic assignment
problem on CUDA platform. J. Parallel Distrib. Comput. 73, 1461–1468 (2013)

8. Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for the
quadratic assignment problem. Future Gener. Comput. Syst. 17, 441–449 (2001)

9. James, T., Rego, C., Glover, F.: Sequential and parallel path relinking algorithms
for the quadratic assignment problem. IEEE Intell. Syst. 20(4), 58–65 (2005)

10. Tosun, U.: On the performance of parallel hybrid algorithms for the solution of the
quadratic assignment problem. Eng. Appl. Artif. Intell. 39, 267–278 (2015)

11. Abdelkafi, O., Idoumghar, L., Lepagnot, J.: Comparison of two diversification
methods to solve the quadratic assignment problem. Procedia Comput. Sci. 51,
2703–2707 (2015)

12. Dokeroglu, T.: Hybrid teaching-learning-based optimization algorithms for the
quadratic assignment problem. Comput. Ind. Eng. 85, 86–101 (2015)

13. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem
library. J. Glob. Optim. 10(4), 391–403 (1997)

Distributed Local Search for Elastic Image
Matching

Hongjian Wang(B), Abdelkhalek Mansouri, Jean-Charles Créput,
and Yassine Ruichek

IRTES-SeT, Université de Technologie de Belfort-Montbéliard,
90010 Belfort, France

hongjian3715@gmail.com

Abstract. We propose a distributed local search (DLS) algorithm, which
is a parallel formulation of a local search procedure in an attempt to fol-
low the spirit of standard local search metaheuristics. Applications of dif-
ferent operators for solution diversification are possible in a similar way
to variable neighborhood search. We formulate a general energy function
to be equivalent to elastic image matching problems. A specific example
application is stereo matching. Experimental results show that the GPU
implementation of DLS seems to be the only method that provides an
increasing acceleration factor as the instance size augments, among eight
tested energy minimization algorithms.

Keywords: Parallel and distributed computing · Variable neighbor-
hood search · Stereo matching · Graphics processing unit

1 Introduction

Local search, also referred as hill climbing, descent, iterative improvement, gen-
eral single-solution based metaheuristics and so on, is a metaheuristic algo-
rithm [1]. Starting with a given initial solution, at each iteration the heuristic
replaces the current solution by a neighbor solution that improves the fitness
function. The search stops when all candidate neighbors are worse than the cur-
rent solution, meaning a local optimum is reached. Existing parallelization strate-
gies for local search can be divided into three categories. In the first category, the
evaluation of neighborhood is made in parallel [2,3]; in the second category, the
focus is on the parallel evaluation of a single solution, and the function can be
viewed as an aggregation of partial functions [2,4]; in the third category, several
local search metaheuristics are simultaneously launched for computing robust
solutions [5,6]. In our opinion, an interesting parallel implementation model of
local search should be fully distributed, where each processor carries out its own
neighborhood search based on some parts of the input data, considering only a
local part of the whole solution. Operations on different processors should be sim-
ilar, with no centralized selection procedure, except for final evaluation. A final
solution should be obtained with the partial operations from different processors.
c© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 65–74, 2016.
DOI: 10.1007/978-3-319-50307-3 5

66 H. Wang et al.

Following this idea, we propose a distributed local search (DLS) algorithm and
implement it on GPU parallel computing platforms.

A natural field of applications with GPU processing is image processing,
which is a domain at the origin of GPU development. A lot of image processing
and computer vision problems can be viewed as optimization problems in a more
general way, dealing with brute data distributed in some Euclidean space and
system in relation to the data. More often, these NP-hard optimization problems
involve data distributed in the plane and elastic structures represented by graphs
that must match the data. Such optimization problems can be stated in a generic
framework of graph matching [7,8]. In this paper, we are particularly interested in
moving grids in the plane following the idea of visual correspondence problem,
which is to compute the pairs of pixels from two images that result from the
same scene element. A typical example application is stereo matching, which we
formulate as an elastic image matching problem [9]. We apply the proposed DLS
algorithm to stereo matching by minimizing the corresponding energy function.

The DLS can be used for parallel implementation of elastic matching prob-
lems that include not only visual correspondence problems but also neural net-
work topological maps, or elastic nets approaches [10,11], modeling the behavior
of interacting components inspired by biological systems and collective behav-
iors at a low level of granularity. The framework is based on data decomposition,
with the idea of modeling the geometry of objects using some adaptive (elastic)
structures that move in space and continuously interact with the input data
distribution memorized into a cellular matrix [12]. Then spatial metaphors, as
well as biological metaphors should fit well into the cellular matrix framework.

The rest of this paper is organized as follows. In Sect. 2, we formulate a
general energy function to be equivalent to elastic image matching problems.
In Sect. 3, we present the DLS algorithm in detail, providing basic data struc-
tures and operations in Subsect. 3.1, explaining local evaluation in Subsect. 3.2,
designing two classes of move operators in Subsect. 3.3, and giving the details
of GPU implementation in Subsect. 3.4. Experimental results are reported in
Sect. 4, before some conclusions are drawn in Sect. 5.

2 Elastic Grid Matching

We define a class of visual correspondence problems as elastic grid matching
problems, where we use a two-dimensional grid to represent an image. Given
two input grids with same size and same regular topology, one is a matcher
grid G1 = (V1, E1) where a vertex is a pixel (from the corresponding image)
with a variable location in the plane, while the other is a matched grid G2 =
(V2, E2) where vertices are pixels located in a regular grid. The goal of elastic
grid matching is to find the matcher vertex locations in the plane, so that the
following energy function

E(G1) =
∑

p∈V1

Dp(p − p0) + λ ·
∑

{p,q}∈E1

Vp,q(p − p0, q − q0) (1)

Distributed Local Search for Elastic Image Matching 67

is minimized, where p0 and q0 are the default locations of p and q respectively
in a regular grid. Here, Dp is the data energy that measures how much assigning
label fp to pixel p disagrees with the data, and Vp,q is the smoothness energy
that expresses smoothness constraints on the labelings enforcing spatial coher-
ence [13–15]. A label fp in visual correspondence represents a pixel moving from
its regular position into the direction of its homologous pixel, i.e. fp = p−p0. In
the following sections, we will directly use the notations of labels as relative dis-
placements, as usual with such problems. The energy function is commonly used
for visual correspondence problems, and it can be justified in terms of maximum
a posteriori estimation of a Markov random field (MRF) [16,17].

It has been proven that elastic image matching is NP-complete [9], and find-
ing the global minimum for the energy function even with the simplest smooth-
ness penalty, the piecewise constant prior, is NP-hard [13,14]. We choose the
local search metaheuristics to deal with the energy minimization problem.

3 Distributed Local Search

Based on the cellular matrix model proposed in [12], we design a parallel local
search algorithm, the DLS, to implement many local search operations on dif-
ferent parts of the data in a distributed way. It is a parallel formulation of local
search procedures in an attempt to follow the spirit of standard local search
metaheuristics. Starting from its location in the cellular matrix, each proces-
sor locally acts on the data located in the corresponding cell according to the
cellular decomposition, in order to achieve local evaluation, perform neighbor-
hood search, and select local improvement moves to execute. The many processes
locally interact in the plane, making evolve the current solution into an improved
one. The solution results from the many independent local search operations
simultaneously performed on the distributed data in the plane. Normally, a local
search algorithm with single operator obtains local minima. In order to escape
from local minima, we design several operators. Applications of different opera-
tors for diversification are possible in a similar way to the variable neighborhood
search (VNS).

3.1 Data Structures and Basic Operations

The data structures and direction of operations for DLS algorithms are illus-
trated in Fig. 1. The input data set is deployed on the low level of both matcher
grid and matched grid, represented as regular images in the figure. The honey-
comb cells represent the cellular matrix level of operations. Each cell is a basic
processor that handles a basic local search processing iteration with the three
following steps: neighborhood generation (get); neighbor solution evaluation and
selecting the best neighbor (search); then moving the matcher grid toward the
selected neighbor solution (operate). The nature and size of specific moves and
neighborhoods will depend on the type of used operator and the level of cellular
matrix. The higher is the level, the larger is the local cell/neighborhood. In the

68 H. Wang et al.

Fig. 1. Basic projection for DLS.

cellular matrix model, a solution is composed of many sub-solutions from many
cells. Each sub-solution is evolved from an initial sub-solution based on the dis-
tributed data in a cell. By partitioning the data and solution, the neighborhood
structure is also partitioned at the same time.

3.2 Local Evaluation with Mutual Exclusion

During the parallel operation, the coherence of local evaluation with mutual
exclusion is violated by conflict operations. A conflict operation occurs when a
same pixel or two neighboring pixels is/are being evaluated and moved simulta-
neously by two threads. Conflict operations only happen on frontier pixels, which
are the pixels on the cell frontiers according to the cellular matrix partition of
the image. In order to eliminate the conflict operations in DLS, we propose a
strategy, called dynamic change of cell frontiers (DCCF), by which we limit the
move to the internal pixels of a cell only. Cell frontier pixels remain at fixed
locations, and they are not concerned by local moves so that exclusive access
of the thread to its internal region delimited by the cell is guaranteed. A prob-
lem that arises is how to manage cell frontier pixels and make them participate
in the optimization process. As a solution, the cellular matrix decomposition is
dynamically changeable from the CPU side before the application of a round of
DLS operations. At different moments, the cellular matrix decomposition slightly
shifts on the input image in order to change the cell frontiers and consequently
the fixed pixels. For a given cellular matrix decomposition, cell frontier pixels
are then fixed and not allowed to be moved by current DLS operations.

3.3 Neighborhood Operators

We design different neighborhood operators for the DLS algorithm applied to
elastic grid matching. We use the notations of labeling problems to present these

Distributed Local Search for Elastic Image Matching 69

operators. Move operations in a given neighborhood structure correspond to
changing labels of pixels in the corresponding labeling space. Operators are clas-
sified between small moves and large moves. In the first case, only a single pixel
from a given cell moves at a time; in the second case, larger sets of pixels from
a given cell can simultaneously move.

Small move operators. In a move operation, if only one pixel moves, meaning
that only one pixel’s label is changed, this kind of operation is called small
move operation. We design two small move operators: local move operator that
applies an increment/decrement to the current label of the considered pixel;
propagation operator that takes the labels of the considered pixel’s neighboring
pixels, as candidate labels, and then replaces the current label with the best one
found in a propagation window.

Large move operators. They consider multiple pixels. We design six large
move operators: random pixels move operator randomly picks several pixels in the
considered cell, and then assigns a same candidate label to these pixels; random
pixels jump operator randomly picks several pixels in the considered cell, and
then applies a same increment/decrement to the current labels of the considered
pixels; random pixels expansion operator randomly picks two groups of pixels,
where pixels in the same group have the same label, and then “expands” the
label of one group to the other, setting the labels of all the pixels in the second
group with the same label as the first group; random pixels swap operator picks
pixels in the same way as the random pixels expansion operator does, and then
“swaps” the labels of the two groups, setting the labels of all the pixels in the
second group with the label of the first group, meanwhile setting the labels
of all the pixels in the first group with the label of the second group; random
window move operator picks a fixed-sized window of pixels at a random position
within the considered cell, and then assigns a same candidate label to all the
pixels in this picked window; random window jump operator picks pixels in the
same way as the random window move operator does, and then applies a same
increment/decrement to the current labels of all the pixels in this picked window.
More details about these operators can be found in [12].

3.4 GPU Implementation Under VNS Framework

We implement the DLS algorithm on GPU platforms in Compute Unified Device
Architecture (CUDA). The CUDA kernel calling sequence from the CPU side
enables the application of different operators in the spirit of VNS and man-
ages dynamic changes of cellular matrix frontiers. According to our previous
experiments, the repartition of tasks between host (CPU) and device (GPU) is
actually the best compromise we found to exploit the GPU CUDA platform at
a reasonable level of computation granularity.

The flow chart executed from CPU side is presented in Fig. 2. The data
transfer between CPU side and GPU side only occurs at the beginning and the
end of the algorithm. The two kernels that are called from CPU side and executed

70 H. Wang et al.

Fig. 2. Flowchart of DLS implementation.

on GPU are: the random number generation kernel and the DLS kernel. On
GPU side, random numbers are needed for random move operators. The random
numbers are generated in advance by the random number generation kernel
which is regularly called during the algorithm according to the random number
generation rate. It is the CPU side that controls DLS kernel calls with different
operators executed within the DCCF pattern for frontier cells management. With
several neighborhood operators in hand, we use them under the VNS framework
in order to enhance the solution diversification.

4 Experimental Study

We apply the DLS algorithm to stereo matching, viewing the problem as energy
minimization problem. We follow in the footsteps of Boykov et al. [14], Tappen
and Freeman [18], and Szeliski et al. [15], using a simple energy function, applied
to benchmark images from the widely used Middlebury stereo data set [19]. The
labels are the disparities, and the data costs are the absolute color differences
between corresponding pixels for each disparity. For the smoothness term in the
energy function, we use a truncated linear cost as the piecewise smooth prior
defined in [13]. We focus on the performance of DLS when input size augments.
We experiment on the Middlebury 2005 stereo benchmark [19] including 18 pairs

Distributed Local Search for Elastic Image Matching 71

of images with sizes from the smallest 458× 370 to the largest 1374× 1110 in
average. We uniformly set the disparity range to 64 pixels, for all the sizes. We
denote our DLS GPU implementation as DLS-gpu. We also test the counterpart
CPU sequential version which is denoted by DLS-cpu. We compare DLS with
six other methods1: iterated conditional modes (ICM) [16] which is an old app-
roach using a deterministic “greedy” strategy to find a local minimum; sequential
tree-reweighted message passing (TRW-S) [15] which is an improved version of
the original tree-reweighted message passing algorithm [20]; BP-S and BP-M
[15] which are two updated version of the max-product loopy belief propagation
(LBP) implementation of [18]; GC-swap and GC-expansion which are two graph
cuts based algorithms proposed in [14]. Instead of reporting the absolute energy
values, we report the percentage deviation from the best known solution (lowest
energy) of the mean solution value over 10 runs, denoted as %PDM value. We
choose the best known solution from the executions of all tested methods.

Fig. 3. Results of eight tested methods: (a) energy value as %PDM ; (b) execution
time, (c) acceleration factor of each method relative to the slowest method (DLS-cpu);
(d) acceleration factor of each method relative to the method (GC-expansion) that gets
the lowest energy.

The results of different methods are reported in Fig. 3. From (a) to (d) are
respectively reported energy value as %PDM , execution time, acceleration fac-
tor of each method relative to the slowest method (DLS-cpu), and acceleration
factor of each method relative to the method (GC-expansion) that gets the low-
est energy. The ICM method runs fastest but generates very high energies, while
1 For all the tested energy minimization algorithms, we use the original codes from
http://vision.middlebury.edu/MRF/code/ .

http://vision.middlebury.edu/MRF/code/

72 H. Wang et al.

DLS-gpu runs a little slower than ICM but generates much lower energies with
more acceptable %PDM values smaller than 5%. An important observation
from Fig. 3 is that, among all the tested methods, only the DLS-gpu has an
acceleration factor which increases according to the augmentation of input size.
This means that further improvement could be carried on only by the use of
multi-processor platform with more effective cores.

(a) Ground Truth (b) ICM (c) BP-S (d) BP-M

(e) GC-Swap (f) GC-Expansion (g) TRW-S (h) DLS

Fig. 4. Disparity maps for the Art (463× 370) benchmark obtained with different
energy minimization methods. The disparity range is set to 64 pixels.

In Fig. 4 are displayed the disparity maps for the Art benchmark. Note that
during our experiments, we choose the stereo matching application but only view
it as an energy minimization problem, just focusing on minimizing energies. The
disparity maps obtained from all the tested methods are the raw results after
energy minimization, without any additional post-treatments such as left-right
consistency check, occlusion detection, or disparity smoothing, which are all
treatments specific to stereo matching in order to minimize the errors compared
with ground truth disparity maps. Moreover, as pointed out in [15], the ground
truth solution may not always be strictly related to the lowest energy.

5 Conclusion

We have proposed a parallel formulation of local search procedure, called dis-
tributed local search (DLS) algorithm. We have applied the algorithm to stereo
matching problem. The main encouraging result is that the GPU implemen-
tation of DLS on stereo matching seems to be the only method that provides
an increasing acceleration factor as the instance size augments, for a result of
quality less than 5% deviation to the best known energy value. For all the other
approaches, the acceleration factor, against the slowest sequential version of DLS,
is decreasing, except for the ICM method, which however only produces poor

Distributed Local Search for Elastic Image Matching 73

result of about 45% deviation to the best known energy. Graph cuts based algo-
rithms and belief propagation based algorithms are well-performing approaches
concerning quality, however the computation time increases quickly along with
the instance size. That is why we hope for further improvements or improved
accelerations of the DLS approach with the availability of new multi-processor
platforms with more independent cores.

It is a well-known fact that the minimum energy level does not necessarily
correlate to the best real-case matching. Here, we only address energy mini-
mization discarding too much complex post-treatments necessary for the “true”
ground truth matching. It should follow that many tricks are certainly not yet
implemented to make energy minimization coincide to ground truth evaluation.
In order to improve the matching quality in terms of minimizing the errors to
ground truth only, specially designed terms for detecting typical situations in
vision, such as occlusion, slanted surfaces, and the aperture problem, need to be
added in the formulation of energy function.

References

1. Talbi, E.G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley,
Hoboken (2009)

2. Van Luong, T., Melab, N., Talbi, E.G.: Gpu computing for parallel local search
metaheuristic algorithms. IEEE Trans. Comput. 62, 173–185 (2013)

3. Delévacq, A., Delisle, P., Krajecki, M.: Parallel gpu implementation of iterated
local search for the travelling salesman problem. In: Hamadi, Y., Schoenauer, M.
(eds.) LION 6. LNCS, vol. 7219, pp. 372–377. Springer, Heidelberg (2012)

4. Fosin, J., Davidović, D., Carić, T.: A gpu implementation of local search operators
for symmetric travelling salesman problem. PROMET Traffic Transp. 25, 225–234
(2013)

5. Luong, T., Melab, N., Talbi, E.-G.: GPU-based multi-start local search algorithms.
In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 321–335. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25566-3 24

6. Sánchez-Oro, J., Sevaux, M., Rossi, A., Mart́ı, R., Duarte, A.: Solving dynamic
memory allocation problems in embedded systems with parallel variable neighbor-
hood search strategies. Electron. Notes Discrete Math. 47, 85–92 (2015)

7. Bengoetxea, E.: Inexact graph matching using estimation of distribution algo-
rithms. Ph.D. thesis, Ecole Nationale Supérieure des Télécommunications, Paris,
France (2002)

8. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph
matching. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1048–1058 (2009)

9. Keysers, D., Unger, W.: Elastic image matching is np-complete. Pattern Recogn.
Lett. 24, 445–453 (2003)

10. Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem
using an elastic net method. Nature 326, 689–691 (1987)

11. Créput, J.C., Hajjam, A., Koukam, A., Kuhn, O.: Self-organizing maps in popula-
tion based metaheuristic to the dynamic vehicle routing problem. J. Comb. Optim.
24, 437–458 (2012)

12. Wang, H.: Cellular matrix for parallel k-means and local search to Euclidean grid
matching. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard (2015)

http://dx.doi.org/10.1007/978-3-642-25566-3_24

74 H. Wang et al.

13. Veksler, O.: Efficient graph-based energy minimization methods in computer vision.
Ph.D. thesis, Cornell University (1999)

14. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

15. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods for
markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal.
Mach. Intell. 30, 1068–1080 (2008)

16. Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. Ser. B
(Methodological) 48(3), 259–302 (1986)

17. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

18. Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propaga-
tion for stereo, using identical mrf parameters. In: 2003 Ninth IEEE International
Conference on Computer Vision. IEEE (2003)

19. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light.
In: 2003 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1,
pp. 195–202. IEEE (2003)

20. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement
on trees: message-passing and linear programming. IEEE Trans. Inf. Theor. 51,
3697–3717 (2005)

Fast Hybrid BSA-DE-SA Algorithm on GPU

Mathieu Brévilliers(B), Omar Abdelkafi, Julien Lepagnot,
and Lhassane Idoumghar

Université de Haute-Alsace (UHA), LMIA (E.A. 3993),
4 rue des frères Lumière, 68093 Mulhouse, France

{mathieu.brevilliers,omar.abdelkafi,julien.lepagnot,
lhassane.idoumghar}@uha.fr

Abstract. This paper introduces a hybridization of Backtracking
Search Optimization Algorithm (BSA) with Differential Evolution (DE)
and Simulated Annealing (SA) in order to improve the convergence speed
of BSA. An experimental study, conducted on 20 benchmark problems,
shows that this approach outperforms BSA and two other hybridiza-
tions [4,18], in terms of solution quality and convergence speed. We
also describe our CUDA implementation of this algorithm for graph-
ics processing unit (GPU). Experimental results are reported for 10
high-dimensional benchmark problems, and it highlights that significant
speedup can be achieved.

Keywords: Continuous optimization · Hybrid metaheuristic · Back-
tracking search optimization algorithm · Differential evolution ·
Simulated annealing · Graphics processing unit · CUDA

1 Introduction

Optimization consists in finding the set of parameters that leads to the best pos-
sible value for a given cost function. Metaheuristics refer to a class of methods
that are often inspired by analogies (for example, with physics or biology), and
that are designed to solve hard optimization problems without any knowledge of
the practical context. In this class, evolutionary algorithms are population-based
algorithms that use evolution mechanisms (such as mutation and crossover),
in order to approximate the best solution. Following this idea, several efficient
approaches have emerged, such as artificial bee colony algorithms [8], particle
swarm optimization algorithms [6,19], the covariance matrix adaptation evolu-
tion strategy [5], or differential evolution algorithms [15,17].

Among all existing evolutionary strategies, it has been shown that Backtrack-
ing Search Optimization Algorithm (BSA) [3] can also find high-quality solutions
for a large number of continuous optimization problems. Several extensions of
this algorithm have been proposed to improve either solution quality or conver-
gence speed [2,18]. As BSA mainly focuses on exploration, it can be quite slow
converging on the global best solution, and it would be challenging to speed up
its convergence without loss of quality.
c© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 75–86, 2016.
DOI: 10.1007/978-3-319-50307-3 6

76 M. Brévilliers et al.

In this context, we present a hybrid algorithm that uses differential evolu-
tion (DE) and simulated annealing (SA) techniques together with BSA princi-
ples. The aim of this work is to speed up the convergence of BSA, that is to
significantly reduce the number of function evaluations needed to achieve high-
quality solutions. We also propose an implementation for graphics processing
unit (GPU) to investigate the benefit in terms of runtime speedup for high-
dimensional instances.

Section 2 presents the BSA algorithm and two BSA-DE hybridizations pro-
posed in the literature. Section 3 introduces our BSA-DE-SA hybrid approach
and experimental results are reported to show the superiority of this approach.
The design of our algorithm for a GPU implementation is described in Sect. 4,
and an experimental study shows to what extent the execution of the algorithm
can be accelerated. Finally, concluding remarks and perspectives are given in
Sect. 5.

2 Related Work

2.1 Backtracking Search Optimization Algorithm

Backtracking Search Optimization Algorithm (BSA) [3] is an evolutionary algo-
rithm for continuous optimization. It has a classical structure where a population
evolves from generation to generation according to the operators listed below.
In the following, let N denote the number of individuals in the population, and
D the number of dimensions in the considered optimization problem.

1. Selection-I. As a backtracking strategy, BSA has a memory to store a his-
torical population, that consists of the individuals of a previous generation.
Selection-I updates this memory with probability 0.5, by replacing the whole
historical population with a random permutation of the current population.

2. Mutation. A new mutant population M is created from the current popula-
tion P and from the historical population oldP by using the following equation:

∀i ∈ {1, ..., N},∀j ∈ {1, ...,D},Mi,j = Pi,j + FBSA × (oldPi,j − Pi,j) (1)

where FBSA = 3 × randn, and randn is a real value randomly generated with
the standard normal distribution. A new value of FBSA is generated for each
generation.

3. Crossover. Two crossover strategies are randomly used (with probability
0.5) to get a new trial population T from M and P . The first strategy depends
on a user-defined parameter called mixrate, that controls how many dimensions
(at most) of a mutant individual will be incorporated in a trial individual. The
second strategy ensures that, for each trial individual, only one randomly chosen
dimension will come from the corresponding mutant individual.

4. Confinement. The boundary control mechanism checks if any trial individ-
ual is outside the search space (due to Eq. 1). In such a case, the concerned
dimensions are randomly regenerated inside the appropriate bounds.

Fast Hybrid BSA-DE-SA Algorithm on GPU 77

5. Selection-II. Each trial individual Ti is evaluated and, if Ti is better than
Pi, then Pi is replaced with Ti in P .

Experimental study and statistical tests [3] have shown that BSA is gen-
erally better than SPSO2011 [19], CMAES [5], ABC [8], JDE [1], CLPSO [9],
and SADE [14]. The main advantages of BSA are that it has few user-defined
parameters (the population size N , and mixrate) and that it can solve a wide
range of optimization problems, due to its good exploration ability. However,
BSA main shortcoming is that it can be quite slow converging on the global best
solution. Since then, BSA has been applied, improved, or hybridized in several
ways [2,4,10,16,18].

2.2 Hybrid BSA-DE Algorithms

We present here two hybridizations that inspired the algorithm proposed in
Sect. 3, and that will be used for comparison.

BSA-DE. Das et al. [4] replaced Eq. 1 of BSA in the following way, by adding
a term coming from the DE/target-to-best/1 mutation scheme [13]:

∀i ∈ {1, ..., N},∀j ∈ {1, ...,D},
Mi,j = Pi,j + FBSA × (oldPi,j − Pi,j) + FDE × (Pbest,j − Pi,j) (2)

where FBSA is defined as in Eq. 1, FDE is the scaling factor of DE, and best ∈
{1, ..., N} is the index of the best individual in P . In contrast with BSA, a new
value of FBSA is generated for each individual. It has been shown that this
BSA-DE hybridization generally performs better and converges faster than BSA
and DE.

HBD. Wang et al. [18] proposed a hybridization where DE follows BSA in the
generation loop: for each generation, a BSA iteration is firstly applied, and then
DE is applied to improve only 1 bad individual of the current population. This
bad individual is randomly chosen with respect to its fitness: the worse the fit-
ness, the higher the probability. Then, the DE/best/1 mutation scheme [15] and
a binomial crossover are used to generate a trial individual, that will replace the
current individual if it performs better. Comparing this so-called HBD algorithm
with BSA, it has been shown that HBD outperforms BSA in terms of solution
quality and convergence speed.

3 Contribution to Speed up BSA Convergence

3.1 Hybrid BSA-DE-SA Algorithm

The proposed hybrid approach is based on a two-level BSA-DE combination and
on a SA schedule to gradually decrease the range of BSA scaling factor. The aim
is to improve the convergence of the basic BSA algorithm. More precisely, we
merge the two ideas given in Sect. 2.2: for each generation, a BSA iteration with

78 M. Brévilliers et al.

a DE-inspired mutation equation is firstly applied (individual-level of hybridiza-
tion), and then DE is used to optimize a few bad individuals in the population
(generation-level of hybridization).

Individual-level BSA-DE hybridization. We define 2 new scaling factors.
The first one, called intensification factor, and denoted F I , is defined by the user
in [0, 1]. The second one, called exploration factor, and denoted FE

i , is generated
for each individual i during the mutation process:

∀i ∈ {1, ..., N}, FE
i = C × randn, (3)

where C is a coefficient decreasing with time from generation to generation
(see below), and randn is a real value randomly generated with the standard
normal distribution. Then, Eq. 1 is modified as follows, in a slightly different way
from [4], in order to instill the DE/target-to-best/1 scheme into BSA mutation
operator:

∀i ∈ {1, ..., N},∀j ∈ {1, ...,D},
Mi,j = Pi,j + Fi × (oldPi,j − oldPk,j) + FDE × (Pbest,j − Pi,j), (4)

where k is randomly chosen in {1, ..., N} such that k �= i. The factor Fi replaces
FBSA, and is defined by the equation:

Fi =

{
FE
i if rand > 1

16 ,
F I otherwise,

(5)

where rand is a random value uniformly generated in [0, 1].

SA schedule for C . According to the temperature cooling schedule in SA, the
coefficient C is gradually decreased from 3 to 1 with a geometric law during the
first third of the algorithm (in terms of number of function evaluations).

Generation-level BSA-DE hybridization. The HBD method proposed in
[18] is applied after each iteration of the individual-level BSA-DE hybridization.
For reasons of scalability, the number of bad individuals selected to be optimized
in this stage is related to the population size: 1 individual is selected if N < 30,
and �N/30� otherwise.

Equation 5 together with the range of C and F I show that a few individuals
are used to intensify the search with a low Fi, while the major part explores the
search space with a larger Fi. Furthermore, the SA schedule for decreasing C
allows to use the full exploration ability of the algorithm at the beginning, and
to develop its exploitation ability at a later stage. Finally, the two-level BSA-DE
hybridization allows to combine in the same algorithm the DE/best/1 scheme
(generation-level) with a DE/target-to-best/1-like scheme (individual-level), in
order to speed up the convergence of the algorithm.

Fast Hybrid BSA-DE-SA Algorithm on GPU 79

3.2 Experimental Results

We realized an experimental study in order to compare our hybrid BSA-DE-SA
approach with BSA [3], BSA-DE [4], and HBD [18]. Specifically, two versions of
BSA-DE-SA have been implemented: BDS-1 that only uses the individual-level
BSA-DE hybridization with a SA schedule for C, and BDS-2 that uses all fea-

Table 1. List of benchmark problems (ID: function identifier; Low, Up: limits of search
space; D: dimension).

ID Name Low Up D

F1 Schwefel 1.2 −100 100 30

F2 Schwefel 2.22 −10 10 30

F3 Sphere −100 100 30

F4 Ackley −32 32 30

F5 Griewank −600 600 30

F6 Rastrigin −5.12 5.12 30

F7 Rosenbrock −30 30 30

F8 Schaffer f6 −100 100 2

F9 Weierstrass −0.5 0.5 10

F10 Shifted sphere −100 100 10

F11 Shifted Schwefel 1.2 −100 100 10

F12 Shifted rotated high conditioned elliptic function −100 100 10

F13 Shifted Schwefel 1.2 with noise −100 100 10

F14 Schwefel 2.6 −100 100 10

F15 Shifted Rosenbrock −100 100 10

F16 Shifted rotated Griewank 0 600 10

F17 Shifted rotated Ackley −32 32 10

F18 Shifted Rastrigin −5 5 10

F19 Shifted rotated Rastrigin −5 5 10

F20 Shifted rotated Weierstrass −0.5 0.5 10

Table 2. Control parameter settings for the compared algorithms.

Algorithm Parameters

BSA [3] N = 30, mixrate = 1

BSA-DE [4] N = 30, mixrate = 1, FDE = 0.5

HBD [18] N = 30, mixrate = 1, scaling factor F = 0.8, crossover rate Cr = 0.9,
DE applied on �N/30� = 1 individual

BDS-1 N = 30, mixrate = 1, FDE = 0.5,
F I = 0.5 applied for each individual with probability 1/16,
C decreased from 3 to 1 during the first 1/3 of the allowed function
evaluations

BDS-2 BDS-1 settings together with HBD settings

80 M. Brévilliers et al.

Table 3. Basic statistics of the two versions of BSA-DE-SA, and comparison with
BSA [3], BSA-DE [4], and HBD [18] (Mean: mean error; Std: standard deviation; Best:
best error). Best values are depicted in bold font.

ID Statistics BDS-1 BDS-2 BSA [3] BSA-DE [4] HBD [18]

F1
Mean 0 0 3.45331725e-1 0 4.69223633e-5
Std 0 0 3.56207055e-1 0 4.87788549e-5
Best 0 0 4.65828600e-2 0 1.74837295e-6

F2
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F3
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F4
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F5
Mean 2.21758219e-3 1.97145704e-3 0 7.55217402e-3 4.93069355e-4
Std 4.81315491e-3 4.16365025e-3 0 7.53723631e-3 1.87643557e-3
Best 0 0 0 0 0

F6
Mean 0 0 3.31653019e-2 0 1.65826509e-1
Std 0 0 1.81653839e-1 0 5.27993560e-1
Best 0 0 0 0 0

F7
Mean 9.30325416e-1 1.32887461 2.35616889e+1 6.64437376e-01 8.01149354e-1
Std 1.71491464 1.91143983 2.90306080e+1 1.51112585 1.62101635
Best 0 0 5.31405876e-7 0 0

F8
Mean 3.37430650e-4 1.09433786e-6 2.73248252e-3 7.65013736e-4 2.60244739e-3
Std 1.77204503e-3 5.99392266e-6 4.04657848e-3 2.47492459e-3 4.36309515e-3
Best 0 0 0 0 0

F9
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F10
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F11
Mean 0 0 8.12184166e-7 0 0
Std 0 0 1.18619825e-6 0 0
Best 0 0 0 0 0

F12
Mean 1.88063034e+3 6.70067111e+2 1.62772681e+4 6.63797991e+3 5.12822952e+3
Std 4.09511408e+3 8.99497851e+2 2.63103587e+4 5.96963034e+3 6.89120964e+3
Best 6.85806410 1.69290665e-1 3.23132561e+2 1.23221979e+2 1.28697388e+1

F13
Mean 0 0 3.52038638e-3 0 0
Std 0 0 1.00832481e-2 0 1.41395434e-8
Best 0 0 1.16021564e-5 0 0

F14
Mean 0 0 1.63586845e-2 0 5.28382701e-5
Std 0 0 3.29592107e-2 0 6.56037241e-5
Best 0 0 1.06714993e-4 0 2.68750955e-6

F15
Mean 1.32885971e-1 0 2.31962945e-1 1.32889360e-1 5.79353282e-4
Std 7.27846435e-1 0 5.86248030e-1 7.27845795e-1 3.01367607e-3
Best 0 0 0 0 0

F16
Mean 5.42895964e-2 4.61309502e-2 6.56037488e-2 1.14081123e-1 3.33610373e-2
Std 4.71316146e-2 2.29246572e-2 3.49897515e-2 5.14108950e-2 2.15975637e-2
Best 7.52199899e-3 9.85728587e-3 3.43988696e-4 3.66388264e-2 0

F17
Mean 2.03415389e+1 2.03230528e+1 2.03225585e+1 2.03462701e+1 2.03325172e+1
Std 7.02011419e-2 8.34903645e-2 8.21386118e-2 7.14983620e-2 7.80534782e-2
Best 2.01888263e+1 2.00865221e+1 2.01202686e+1 2.02124186e+1 2.02032472e+1

F18
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F19
Mean 6.84981566 6.49766160 1.14543047e+1 5.72620112 1.10771999e+1
Std 2.71890009 2.90703990 4.08944890 2.40672118 3.94305927
Best 2.25212064 1.98991811 4.97479545 2.98487717 4.97479528

F20
Mean 4.83483045 4.47945956 4.39522547 4.36457606 2.89661069
Std 9.79152736e-1 1.30055492 1.11792825 1.49610439 1.31134257
Best 2.66166689 1.15061555 1.32751014 4.46557673e-1 3.08726178e-1

tures described above. All these algorithms have been tested on the benchmark
functions listed in Table 1, and Table 2 shows the values of the control parameters
for each algorithm. Each algorithm has been run 30 times on each benchmark
function. 10 000 ×D function evaluations per run are allowed, and a benchmark
problem is considered as solved when a fitness lower than fopt + 10−8 is reached,
where fopt denotes the corresponding optimal fitness.

Fast Hybrid BSA-DE-SA Algorithm on GPU 81

Table 3 reports basic statistics for the compared algorithms. We can see that
BDS-2 gets 14 times the first place in terms of mean error, whereas BSA-DE,
BDS-1, HBD and BSA make it respectively 13, 11, 10, and 8 times. BDS-2

0 10,000 20,000

10−6

10−5

10−4

10−3

10−2

10−1

100

F8 - Schaffer f6

0 10,000 20,000
10−9

10−7

10−5

10−3

10−1

101

103

105

F10 - Sh. Sphere

0 50,000 1 · 105
10−9

10−7

10−5

10−3

10−1

101

103

105

F13 - Sh. Schwefel 1.2 with noise

0 50,000 1 · 105
10−9

10−7

10−5

10−3

10−1

101

103

105

F14 - Schwefel 2.6

0 50,000 1 · 105
10−9

10−6

10−3

100

103

106

109

F15 - Sh. Rosenbrock

0 50,000
10−9

10−7

10−5

10−3

10−1

101

103

F18 - Sh. Rastrigin

Fig. 1. The curves show how many function evaluations (x-axis) are needed to reach
a certain mean error (y-axis in log scale) for selected benchmark problems of Table 1.
BSA is depicted with empty circles, BSA-DE with empty triangles, HBD with filled
diamonds, BDS-1 with crosses, and BDS-2 with empty squares.

82 M. Brévilliers et al.

beats BSA on 11 functions (F1, F6–8, F11–16, F19), HBD on 8 functions (F1,
F6, F8, F12, F14, F15, F17, F19), and BSA-DE on 6 functions (F5, F8, F12,
F15–17). Conversely, BDS-2 loses to HBD on 4 functions (F5, F7, F16, F20), to
BSA-DE on 3 functions (F7, F19, F20), and to BSA on 3 functions (F5, F17,
F20). We can notice similar results when comparing BDS-1 to BSA, BSA-DE,
and HBD, but BDS-2 performs better than BDS-1 on 8 functions (F5, F8, F12,
F15–17, F19, F20). From these observations, we can conclude that our BSA-
DE-SA approach clearly outperforms BSA, and gives slightly better results than
BSA-DE and HBD.

Figure 1 shows the convergence curves for some of the benchmark problems
and it highlights that our hybrid approach leads to faster convergence: we can
see that BDS-2 saves about 50% of function evaluations compared to BSA and
HBD for F10, between 45% and 70% compared to BSA-DE and HBD for F13,
about 40% compared to BSA-DE for F14, and between 25% and 45% compared
to BSA-DE and HBD for F18. We can also notice that when BDS-1 is combined
with HBD, which corresponds to BDS-2, then a significant convergence speedup
is obtained for F8 and F15.

4 Contribution to Speed up BSA Runtime

The graphics processing unit (GPU) has a highly parallel architecture, and it
can be easily programmed for general purpose computations with high-level
languages, thanks to dedicated parallel computing platforms like CUDA for
NVIDIA GPU devices. The CUDA platform allows to realize heterogeneous par-
allel computations, which means that the program is launched on the CPU, that
delegates parallel subroutines (so-called kernels) to the GPU. In CUDA pro-
gramming, each kernel is a piece of code called from the CPU and duplicated
on the GPU to be executed in parallel on multiple data (the GPU has a SIMD
architecture, i.e. single-instruction multiple-data). Each kernel duplicate is exe-
cuted by a CUDA thread, and all these threads are organized as follows: each
kernel call creates a grid composed of thread groups, called blocks, that all con-
tain the same number of threads. Thus, in order to take advantage of the GPU
performance, any evolutionary algorithm should be adapted, in terms of data
decomposition, to be processed in parallel by blocks of threads [7,11,12].

4.1 Design of the GPU Implementation

The first feature of our proposed CUDA implementation is that we delegate to
the GPU the most time-consuming part of the algorithm, that is the evaluation
of the population. This can be done with two levels of parallelization as follows.
Firstly, the evaluations of all individuals can be done in parallel. And secondly,
since for the most part of the benchmark functions we need to perform the same
computations on each dimension before aggregating the results (for example,
with a sum), the dimensions can also be processed in parallel. Getting back to

Fast Hybrid BSA-DE-SA Algorithm on GPU 83

CUDA programming, it means that the evaluation workload can be divided into
N blocks of D threads, that each deals with 1 dimension of 1 individual.

However, as already noticed in the literature [12], if the evaluation is the only
task entrusted to the GPU, the algorithm has to transfer the whole population
from CPU memory to GPU in every generation, which is very slow compared to
arithmetic computations on GPU. Therefore, we choose to store the population
in the GPU global memory in order to minimize the time lost in data transfer.
It means that all steps of the algorithm are processed by the GPU, while the
generation loop is done by the CPU, that launches a GPU kernel for each step
with the ad-hoc data decomposition (in terms of CUDA blocks and threads).
As much as possible, we divide the processings into N blocks of D threads: as
seen above, this is particularly suited to evaluate the population, but also, for
example, to generate the initial population, to apply the mutation equation,
or to perform the boundary control. In addition to that, other decompositions
are sometimes needed, depending on the processing to be realized: for example,
1 block of N threads to find the best individual, or 1 block of D threads to
update the global best solution.

4.2 Experimental Results

We realized an experimental study in order to compare our GPU implementa-
tions of BDS-1 and BDS-2 with their sequential versions and with the original
sequential BSA [3]. For reasons of dimensional scalability, these algorithms have
been tested on the benchmark functions F1–9 of Table 1 and on Michalewics
function (denoted as F21, and defined on [0, 3.1416], according to [3]). The con-
trol parameters of each algorithm have been set as shown in Table 2, except the
population size that now depends on the problem dimension as follows: N = D.
Several experiments have been conducted with D = 128, D = 256, and D = 512.
For a given value of D, each algorithm has been run 15 times on each benchmark
problem, and 3 000 × D function evaluations per run were allowed. For these
experimentations, all the compared algorithms are written in C/C++, and the
corresponding programs are compiled on an Intel Core processor i5-3330 CPU
(3.00 GHz) with 4 GB of RAM and a NVIDIA GeForce GTX680 GPU.

Table 4 reports basic statistics for the compared algorithms. First of all, it
seems that BSA tends to find better solutions than BDS-1 and BDS-2 when N
and D increase: BSA beats BSA-DE-SA approaches on 3 functions out of 10
when N = D = 128, on 4 functions when N = D = 256, and on 6 functions
when N = D = 512. However, all compared results almost always have the same
order of magnitude. Secondly, we can see that BDS-2 clearly outperforms BDS-1
in terms of solution quality: both CPU and GPU versions of BDS-2 win against
BDS-1 on 20 experiments out of the 30 listed in Table 4. Thirdly, the resulting
mean runtimes show that BDS-1 GPU version can lead up to a 40 time speedup
with regard to BDS-1 CPU version. It sounds that the acceleration mainly comes
from the evaluation of the population, and that it directly depends on the com-
putation complexity of the considered benchmark function. Fourthly, we can
notice that BDS-2 speedup is much lower than that of BDS-1. It is due to the

84 M. Brévilliers et al.

Table 4. Comparison of BSA [3], BDS-1, and BDS-2 in high dimensions (Mean: mean
solution; Time: mean runtime in seconds). Best values are depicted in bold font.

N=D ID Statistics BSA [3] BDS-1 BDS-2
CPU CPU GPU Speedup CPU GPU Speedup

128

F1 Mean 3.2531e+3 2.3844e+3 2.6854e+3 1.9063e+3 2.0242e+3
Time 11.13 11.25 2.89 3.90 11.53 19.49 0.59

F2 Mean 1.3430e-1 2.1966e-3 9.4546e-3 3.4180e-3 1.5114e-3
Time 1.94 2.17 2.94 0.74 2.33 19.43 0.12

F3 Mean 2.2080e-1 3.6920e-8 4.3224e-8 3.4427e-10 3.0185e-10
Time 1.89 2.08 2.89 0.72 2.24 19.35 0.12

F4 Mean 4.5019e-2 2.6885 2.7312 2.4161 2.5679
Time 3.41 3.61 2.97 1.22 3.71 19.45 0.19

F5 Mean 8.2368e-2 8.6823e-3 3.9421e-3 3.7734e-3 3.7751e-3
Time 3.82 3.80 2.98 1.27 3.93 19.46 0.20

F6 Mean 1.6949e+2 1.1462e+2 1.1045e+2 1.2092e+2 1.2230e+2
Time 3.80 3.88 2.64 1.47 4.07 19.58 0.21

F7 Mean 5.2074e+2 3.5942e+2 3.2152e+2 2.7981e+2 2.5426e+2
Time 2.87 3.05 3.03 1.01 3.23 19.50 0.17

F8 Mean 4.5822e-1 4.6930e-1 4.6597e-1 4.6448e-1 4.6425e-1
Time 1.90 2.04 2.64 0.77 2.21 19.24 0.11

F9 Mean 1.2849 1.1354e+1 1.1646e+1 1.1436e+1 1.1518e+1
Time 63.67 64.41 3.71 17.37 64.80 20.39 3.18

F21 Mean -9.3241e+1 -9.8617e+1 -9.8456e+1 -9.8065e+1 -9.8098e+1
Time 9.34 9.45 2.74 3.45 9.65 19.65 0.49

256

F1 Mean 7.4732e+3 1.5148e+4 1.5590e+4 1.4160e+4 1.4756e+4
Time 80.87 81.20 6.49 12.51 82.47 73.08 1.13

F2 Mean 3.4245 1.5047 1.6753 8.2807e-1 1.2669
Time 7.73 8.43 6.16 1.37 9.04 72.78 0.12

F3 Mean 3.5056e+1 1.9425e-1 1.1156e-1 1.2587e-2 4.2498e-3
Time 7.39 8.11 6.09 1.33 8.74 72.68 0.12

F4 Mean 1.1330 4.4814 4.6626 4.4919 4.2836
Time 14.96 15.04 6.35 2.37 15.65 72.97 0.21

F5 Mean 1.3237 4.5771e-2 5.4828e-2 2.1115e-2 1.5127e-2
Time 15.56 15.35 6.39 2.40 15.75 73.00 0.22

F6 Mean 6.2993e+2 6.0159e+2 5.9217e+2 6.1518e+2 6.2133e+2
Time 15.23 15.63 5.63 2.78 16.33 73.55 0.22

F7 Mean 2.0790e+3 1.2885e+3 1.3246e+3 8.8510e+2 9.3211e+2
Time 11.38 12.02 6.58 1.83 12.70 73.09 0.17

F8 Mean 4.8217e-1 4.9603e-1 4.9605e-1 4.9582e-1 4.9573e-1
Time 7.36 7.90 5.48 1.44 8.51 72.23 0.12

F9 Mean 1.3822e+1 7.6411e+1 7.6420e+1 7.7453e+1 7.7002e+1
Time 256.59 262.90 8.65 30.40 263.94 75.39 3.50

F21 Mean -1.4556e+2 -1.5584e+2 -1.5502e+2 -1.5358e+2 -1.5336e+2
Time 37.74 37.57 5.97 6.29 38.42 73.97 0.52

512

F1 Mean 1.2895e+4 6.0397e+4 6.6561e+4 5.8543e+4 5.9229e+4
Time 613.77 614.39 20.46 30.02 620.01 289.71 2.14

F2 Mean 2.4369e+1 3.8593e+1 4.5054e+1 3.0485e+1 4.0408e+1
Time 31.32 33.58 17.45 1.92 36.01 286.69 0.13

F3 Mean 5.0457e+2 1.6084e+2 1.3988e+2 9.6491e+1 5.4097e+1
Time 29.80 32.26 16.41 1.97 34.78 285.44 0.12

F4 Mean 2.7341 7.2895 7.0967 6.9065 6.9606
Time 61.69 61.76 18.05 3.42 63.96 286.98 0.22

F5 Mean 5.1719 2.4347 2.3131 1.5618 1.6490
Time 61.89 63.38 18.21 3.48 64.72 287.26 0.23

F6 Mean 1.8488e+3 2.0890e+3 1.9805e+3 2.1301e+3 1.8501e+3
Time 60.65 63.28 15.60 4.06 66.01 286.14 0.23

F7 Mean 8.4335e+3 1.6159e+4 1.3098e+4 5.9431e+3 6.0513e+3
Time 45.65 47.92 18.31 2.62 50.77 287.76 0.18

F8 Mean 4.9049e-1 4.9967e-1 4.9964e-1 4.9962e-1 4.9959e-1
Time 29.44 31.36 15.43 2.03 33.96 284.72 0.12

F9 Mean 6.1091e+1 2.6234e+2 2.6643e+2 2.6058e+2 2.5402e+2
Time 1027.70 1062.34 26.48 40.12 1066.46 295.91 3.60

F21 Mean -2.1917e+2 -2.3382e+2 -2.3394e+2 -2.3102e+2 -2.3067e+2
Time 151.40 151.35 16.87 8.97 155.07 290.21 0.53

HBD part of BDS-2: one level of parallelization is lost in this part of the GPU
algorithm, since Sect. 3.1 and Table 2 point out that all HBD evolutionary oper-
ators are applied only for a few individuals (N/30). So, almost all the speedup
gained from BSA iteration is then lost in the DE iteration needed for the HBD
part of BDS-2. In a word, we can conclude that BDS-1 GPU version seems to be
the most suitable in terms of runtime speedup for the selected high-dimensional
benchmark problems.

Fast Hybrid BSA-DE-SA Algorithm on GPU 85

5 Conclusion

A hybrid BSA-DE-SA algorithm has been presented and an experimental study
on 20 benchmark problems shows that it performs well in terms of solution
quality and convergence speed. Then, the design of our GPU implementation has
been explained, and experimental results point out that a significant speedup
can be achieved, up to 40 times with regard to sequential program.

In future work, we will consider comparing our approach to other algorithms
(for example, PSO, CMAES, SHADE) with additional benchmark functions.
As we introduce new user-defined parameters, another perspective would be to
improve the proposed algorithm with a self-adaptive technique, in order to be
less user-dependent and to achieve possibly better results. Finally, in the longer
term, it would be interesting to compare this hybridization with existing large-
scale optimization methods.

References

1. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

2. Brévilliers, M., Abdelkafi, O., Lepagnot, J., Idoumghar, L.: Idol-guided backtrack-
ing search optimization algorithm. In: 12th International Conference on Artificial
Evolution (EA 2015), Lyon, France, October 2015

3. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimiza-
tion problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

4. Das, S., Mandal, D., Kar, R., Ghoshal, S.P.: A new hybridized backtracking search
optimization algorithm with differential evolution for sidelobe suppression of uni-
formly excited concentric circular antenna arrays. Int. J. RF Microwave Comput.
Aided Eng. 25(3), 262–268 (2015)

5. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

6. Idoumghar, L., Idrissi-Aouad, M., Melkemi, M., Schott, R.: Metropolis particle
swarm optimization algorithm with mutation operator for global optimization
problems. In: 2010 22nd IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), vol. 1, pp. 35–42, October 2010

7. Kalivarapu, V., Winer, E.: A study of graphics hardware accelerated particle swarm
optimization with digital pheromones. Struct. Multidisc. Optim. 51(6), 1281–1304
(2015)

8. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3),
459–471 (2007)

9. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning parti-
cle swarm optimizer for global optimization of multimodal functions. IEEE Trans.
Evol. Comput. 10(3), 281–295 (2006)

10. Lin, Q., Gao, L., Li, X., Zhang, C.: A hybrid backtracking search algorithm for
permutation flow-shop scheduling problem. Comput. Ind. Eng. 85, 437–446 (2015)

11. Luo, G.-H., Huang, S.-K., Chang, Y.-S., Yuan, S.-M.: A parallel bees algorithm
implementation on GPU. J. Syst. Archit. 60(3), 271–279 (2014)

86 M. Brévilliers et al.

12. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA archi-
tecture. In: Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp.
442–451. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12239-2 46

13. Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd., Lon-
don (1999)

14. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for
numerical optimization. In: The 2005 IEEE Congress on Evolutionary Compu-
tation, vol. 2, pp. 1785–1791 (2005)

15. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

16. Syed, M.S., Injeti, S.K.: Simultaneous optimal placement of DGs and fixed capac-
itor banks in radial distribution systems using BSA optimization. Int. J. Comput.
Appl. 108(5), 28–35 (2014)

17. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differ-
ential evolution. In: 2013 IEEE Congress on Evolutionary Computation (CEC),
pp. 71–78, June 2013

18. Wang, L., Zhong, Y., Yin, Y., Zhao, W., Wang, B., Xu, Y.: A hybrid backtracking
search optimization algorithm with differential evolution. Math. Probl. Eng. 2015,
16 (2015). doi:10.1155/2015/769245. Article ID 769245

19. Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisa-
tion: a baseline for future PSO improvements. In: 2013 IEEE Congress on Evolu-
tionary Computation, pp. 2337–2344, June 2013

http://dx.doi.org/10.1007/978-3-642-12239-2_46
http://dx.doi.org/10.1155/2015/769245

A New Parallel Memetic Algorithm
to Knowledge Discovery in Data Mining

Dahmri Oualid1(&) and Ahmed Riadh Baba-Ali2

1 Computer Science Department, FEI, USTHB,
BP 32 El Alia, Bab Ezzouar, Algeria
dahmri_oualid_39@yahoo.fr

2 Research Laboratory LRPE, FEI, USTHB,
BP 32 El Alia, Bab Ezzouar, Algeria

riadhbabaali@yahoo.fr

Abstract. This paper presents a new parallel memetic algorithm (PMA) for
solving the problem of classification in the process of Data Mining. We focus
our interest on accelerating the PMA. In most parallel algorithms, the tasks
performed by different processors need access to shared data, this creates a need
for communication, which in turn slows the performance of the PMA. In this
work, we will present the design of our PMA, In which we will use a new
replacement approach, which is a hybrid approach that uses both Lamarckian
and Baldwinian approaches at the same time, to reduce the quantity of infor-
mations exchanged between processors and consequently to improve the
speedup of the PMA. An extensive experimental study performed on the UCI
Benchmarks proves the efficiency of our PMA. Also, we present the speedup
analysis of the PMA.

Keywords: Parallel memetic algorithm � Classification � Extraction of rules �
Lamarckian approach � Baldwinian approach � Hybridization

1 Introduction

Nowadays there is a huge amount of data being collected and stored in databases
everywhere across the globe, and there are invaluable informations and knowledge
“hidden” in such databases, and without automatic methods for extracting this infor-
mations, it is practically impossible to use them.

Data mining [1], was born for this need. Among the tasks of this process, we find the
supervised classification [2] is one of the most important. It consists of predicting a
certain outcome based on a given input. In order to predict the outcome, the algorithm
processes a training set containing a set of attributes and the respective outcome, usually
called goal or prediction attribute. The algorithm tries to discover relationships between
the attributes that would make it possible to predict the outcome. Next, the algorithm is
given a data set not seen before, called prediction set, which contains the same set of
attributes, except for the prediction attribute – not yet known. The algorithm analyses the
input and produces a prediction. The prediction accuracy defines how “good” the

© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 87–101, 2016.
DOI: 10.1007/978-3-319-50307-3_7

algorithm is. This problem is NP-hard [3] and for that reason an exponential complexity
making impossible the use of exact methods when the data size is large.

Meta-heuristics [4, 5] are algorithms that can provide a satisfactory solution in a
relatively short time on this class of problems. Among these methods, we are partic-
ularly interested in the Memetic Algorithms [18] (hybridization of a local search [7]
and genetic algorithm [6]). The genetic algorithm is so widely used to solve data
mining classification problems is the fact that prediction rules are very naturally rep-
resented in GA. Additionally, GA has proven to produce good results with global
search problems like classification. But this kind of algorithms requires considerable
computation time and amount of memory which are closely related to the size of the
problem and to the quality of the solution to obtain.

Therefore, these algorithms become interesting to parallelize. In general, paral-
lelism is used to solve complex problems requiring expensive algorithms in terms of
execution time. But in most parallel algorithms, the tasks performed by different
processors need access to shared data, this creates a need for communication which in
turn slows the performance of the parallel algorithm. These communications are even
more influential, in the case where processors require data generated by other pro-
cessors. So the objective of this work is to minimize communications in terms of data
volume and frequency of exchanges without penalizing the quality of the solution.

2 Related Work

Genetic Algorithms are those among which have been the subject of the greatest number
of parallelization work, particularly because of their fundamental parallel nature [8].
Cantú-Paz [9] presented a review of the main publications related to parallel genetic
algorithms. They distinguish three main categories of parallel genetic algorithms:

• Parallelization form master-slave on a single population
• Parallelization Fine-grained on a single population (diffusion model)
• Parallelization Coarse-grained on multiple populations (migration model)

In the first model, there is only one population residing on a single processor called
the master. This one makes the different genetic operators of the algorithm on popu-
lation and then distributes the evaluation of individuals to slave processors.

In the second model, which is suitable for massively parallel computers, the
individuals in the population are distributed on processors, preferably at a rate of one
individual per processor. Selection and reproduction of individuals operators are lim-
ited to their respective neighborhoods. However, as the neighborhoods overlap (an
individual may be part of the vicinity of several other individuals), a certain degree of
interaction between all individuals is possible.

The third category, more sophisticated and more popular, consists of several
populations that are distributed over processors. These can evolve independently of
each other with only occasional exchanges of individuals. This optional exchange
called the migration phenomenon, is controlled by various parameters and generally
provides a better performance of this algorithm type. This category is also called
“parallel genetic algorithms islands”.

88 D. Oualid and A.R. Baba-Ali

2.1 Hybrid Parallelization of Metaheuristics

Each metaheuristic has its own characteristics and its own way to look for solutions.
Therefore, it may be interesting to hybridize several different metaheuristics to create
new research behaviors. In this regard, Bachelet et al. [10] identified three main forms
of hybrid algorithms:

• Sequential hybrid, where two algorithms are executed one after the other, the results
provided by the first being the initial solutions of the second.

• Synchronous parallel hybrid, where a search algorithm is used in place of an
operator. An example of this type is to replace the mutation operator of genetic
algorithm with a tabu search.

• Asynchronous parallel hybrid, where several search algorithms work concurrently
and exchange informations.

2.2 Measuring Performance of Parallel Algorithms

In general, it’s hard to make fair comparisons between algorithms such as meta-
heuristics. The reason is that we can infer different conclusions from the same results
depending on the metrics we use and how they are applied. This comparison become
more complex when compared parallel metaheuristics, it’s way is necessary to qualify
some metrics, or even to adjust them to better compare parallel metaheuristics between
them. Alba et al. [11] indicate that for non-deterministic algorithms, such as
meta-heuristics, it is the average time of sequential and parallel versions which must be
taken into account. It offers different definitions of speedup. Strong speedup which
compares the parallel algorithm with the result of the best known sequential algorithm.
This is what is closest to the true definition of speedup but considering the difficulty of
finding each time the best existing algorithm, this standard is not used much. Speedup
is called weak if we compare the parallel algorithm with the sequential version
developed by the same researcher. It can then present its progress both in terms of
quality and in pure speedup. Barr and Hickman [12] presented a different taxonomy
consisting of relative speedup and absolute speedup. The relative speedup is the ratio
between the parallel version running on a single processor and that performed on the
set of processors. Finally, the absolute speedup, which is the ratio of the fastest
sequential version on any machine and the execution time of the parallel version.

Speedup. The first and probably most important performance measure of a parallel
algorithm is the speedup [11]. It is the ratio of the execution time of the best algorithm
known on 1 processor and that of the parallel version. Its general formula is:

Speedup ¼ Sequential execution time
Parallel execution time

Efficiency. Another popular metric is efficiency. It gives an indication of the rate of use
of the requested processors. Its value is comprised between 0 and 1 and it can be

A New Parallel Memetic Algorithm to Knowledge Discovery 89

expressed as a percentage. The more the value of efficiency is close to 1, the better is the
performance. Efficiency equal to 1 matches to a linear speedup. Its general formula is:

Efficiency ¼ Speedup
P

Pis the number of processorsð Þ

Other measures. Among other metrics used to measure the performance of parallel
algorithms, we find the “scaled speedup” (expandable speedup) [11] which measures
the use of available memory. We also find the “scaleup” (scalability) [11] to measure
the ability of the program to increase its performance when the number of processors
increases.

2.3 Impact of Communication on the Performance of Parallel Algorithms

The measure of parallel performance is a complex metric. This is mainly due to the fact
that the parallel performance factors are dynamic and distributed. [13] The commu-
nication factor is among the most influential on the performance of the algorithm. In
many parallel programs, the tasks performed by different processors need access to
shared data. This creates a need for communication and slows the performance of the
algorithm. These communications are more important in the case where processors
require data generated by other processors. These communications are minimized in
terms of data volume and frequency of exchanges when we used our new replacement
approach, which is a hybrid approach that uses both Lamarckian and Baldwinian
approaches at the same time, and this is the object of the next section.

2.4 Lamarckianism vs. Baldwinian Effect

When integrating local search with genetic algorithm we are faced with the dilemma of
what to do with the improved solution that is produced by the local search. That is,
suppose that individual i belongs to the population P in generation t and that the fitness
of i is f(i). Furthermore, suppose that the local search produces a new individual i’ with
f(i’) < f(i) for a minimisation problem. The designer of the algorithm must now choose
between two alternative options. Either (option 1) he replaces i with i’, in which case
P = P −{i} + {i’} and the genetic information in i is lost and replaced with that of i’, or
(option 2) the genetic information of i is kept but its fitness altered: f(i) = f(i’). The first
option is commonly known as Lamarckian learning while the second option is referred
to as Baldwinian learning. The issue of whether natural evolution was Lamarckian or
Baldwinian was hotly debated in the nineteenth century until Baldwin suggested a very
plausible mechanism whereby evolutionary progress can be guided towards favorable
adaptation without the inheritance of life-time acquired features. Unlike in natural
systems, the designer of a Memetic Algorithm may want to use either of these adap-
tation mechanisms. Baldwin effect could be used to improve the evolution of artificial

90 D. Oualid and A.R. Baba-Ali

neural networks, and a number of researchers have studied the relative benefits of
Baldwinian versus Lamarckian algorithms. Most recent work, however, favored either
a fully Lamarckian approach, or a stochastic combination of the two methods. It is a
priori difficult to decide what method is best, and probably no one is better in all cases.
Lamarckianism tends to substantially accelerate the evolutionary process with the
caveat that it often results in premature convergence. On the other hand, Baldwinian
learning is more unlikely to bring a diversity crisis within the population but it tends to
be much slower than Lamarckianism.

In our PMA, in each slave machine, when the Tabu Search algorithm runs on
individuals sent by the master machine, and before returning improved individuals, we
have to decide which replacement strategies will be applied. This decision will be taken
according to the fitness value of the improved individual. When this fitness is lower
than predefined threshold, we don’t need to the genetic information of the individual,
but we have to send his fitness to the master, in this case, we will send just the fitness
value of the individual without its genetic information to the master to replace it in
population with the Baldwinian approach, otherwise if the fitness value of the improved
individual is above then the predefined threshold, in this case, we need to send the
genetic information and the fitness value of the individual to the master to replace it in
population with the Lamarckian approach.

3 Adaptive Memetic Algorithm

We present the adaptation of the Memetic Algorithm (MA) [14, 15] for the Classifi-
cation problem. In the literature, there are two different approaches to extract rules
using a genetic algorithm: the Pittsburgh approach and the Michigan one [15]. In our
work we have chosen the Michigan approach where a classification rule presents the
following form:

A C

A is the premise or antecedent of the rule and C the predicted class. The A part of
the rule is a conjunction of terms that are of the form:

Attribue Operator Value

The rule coding involves a sequence of genes arranged in the same order as the
attributes of the studied data except for the last gene of the individual or chromosome
which contains the predicted value of class [16]. Each condition is coded by a genome
and consists of a triplet of the form (Ai op Vij), where Ai is the ith table attribute on
which the algorithm is applied. The term op is one of the operators ‘ = ’, ‘ < ’ or ‘ > ’
and Vij is the Ai attribute value belonging to its values domain. To each genome is
associated a boolean field that indicates whether the premise is activated or not, in order
to maintain the chromosome size fixed. Even if individuals have the same length, the

A New Parallel Memetic Algorithm to Knowledge Discovery 91

rules associated with them are of variable length. The structure of an individual is
shown in Fig. 1, where m is the total number of attributes.

The initial population is randomly generated to give it some diversity. Each indi-
vidual (or rule) is a potential solution to the problem to solve. However, these solution
do not all have same relevance degree. The rule coding involves a sequence of genes
arranged in the same order as the attributes of the studied data except for the last gene
of the individual of chromosome which contains the predicted value of the class. This is
why the following criteria have been chosen [16]:

• To maximize the rule converge;
• To maximize the accuracy rate of the rule;
• To minimize the rule size because the comprehensibility of the rule is measured by

the number of premises;

Fitness =
ʎ1 * Coverage/Total number of instance
+ ʎ2 * TP/Coverage
− ʎ3 * Rule size/Total number of attributes
where ʎi is a real value that verifies

P
ʎi = 1

In our Memetic Algorithm, we used hybridization of the tabu search with a genetic
algorithm. we used the tournament selection and the classical genetic crossover and
mutation operators. The individual resulting from crossover and mutation operators is
the initial solution (a rule) for the tabu search, then the best individual found by the tabu
search will replace the worst individual in term of accuracy in the population of the
genetic algorithm and so on.

In the tabu search approach, the neighborhood of the initial solution consists of all
solutions obtained by performing a one-movement operator which is applied to the
current individual as many times as the number of attributes of the considered training
set. So the created neighbors are evaluated by computing the same fitness as in the
genetic algorithm. Then the best solution in the vicinity of the current individual is
added to tabu list. Thus, the worst individual in term of accuracy is destroyed if the size
of tabu list is exceeded and so on.

4 The Proposed PMA Architecture

We present in this section the design of our synchronous parallel Memetic Algorithm
(PMA). It is a synchronous parallel model based on master-slave form uses a unique
population residing on a single processor called the master. The latter performs the
different genetic operations of the algorithm and then distributes the Tabu Search on the
slave processors.

Fig. 1. Structure of an individual

92 D. Oualid and A.R. Baba-Ali

4.1 Replacement Strategy Used

In our PMA we hybridized the Lamarckian and Baldwinian approaches together to
create a new approach in order to reduce the genetic information exchanged between
the Genetic algorithm and the Tabu Search algorithm without penalizing the accuracy
of the classifier based on our PMA. This hybrid approach is defined as follows:

• If the local search produces an individual i’ with f(i’) > Threshold, in this case the
Lamarckian approach is used, therefore P = P - (i) + (i’) and f(i) = f(i’)

• If the local search produces an individual i’ with f(i’) <= Threshold, in this case, the
Baldwinian approach is used, therefore, P still the same and f(i) = f(i’)

The Threshold is a variable parameter, its value determines the number of indi-
viduals which will be replaced with the Lamarckian approach, and the number of
individuals that will be replaced with the Baldwinian approach.

4.2 Our Synchronous PMA Using Master-Slave Model

In this model, we have a master machine and the others are slave machines. In each
slave machine, the Tabu Search algorithm runs on individuals sent by the master
machine and before returning improved individuals we compare the fitness value of
each individual to a predefined threshold. If the fitness value of the individual is more
than the threshold then the genetic information and the fitness value of the individual
are both sent to the master, otherwise, if the fitness value of the individual is lower than
the threshold, we will send just the fitness value of the individual without its genetic
information.

The memetic algorithm runs in the master processor, and the master is the only
machine that has the overall population in its own memory. The master processor
performs the selection, the crossover and the mutation of individuals and then distribute
them to the slaves. Each slave processor receives the individuals, performs the tabu
search and returns the optimized individuals to the master. When the master processor
receives all results from slaves, he performed the replacement operation. If the master
processor receives the fitness value of the an improved individual with his genetic
information, then he replaced it in a population with the Lamarckian approach, else if
he receives the fitness value of the improved individual without his genetic informa-
tion, then he replaced it in a population with the Baldwinian approach.

The learning database is the only common data between the master and slaves.
Consequently, we find the same learning database in all slaves. In order to always have
the same learning database anywhere, the master machine sends the best individual
selected after each generation of the Memetic Algorithm to all slave machines, for that
they can update their learning database.

Master/Slave communication. The different types of communication can be sum-
marized as follows:

A New Parallel Memetic Algorithm to Knowledge Discovery 93

From master to slave. The different informations sent from the master to a slave are:

• The individual resulting from the selection, crossover and mutation operators;
• The threshold value after each iteration;
• The best individual of each generation (Fig. 2);

From slave to master. The different informations sent from a slave to the master are:

• The fitness value of the improved individual with its genetic information.
• The fitness value of the improved individual without its genetic information

(Fig. 3).

Synchronization. In this model the synchronization is launching of different slave
processors. At first, the master launches them all, then each time the master needs to

Individual

resulting from the se-
lection, crossover and
mutation operators

After each iteration

Threshold value

After each generation

Best individual

Master
(Memetic
Algoritm)

Slaves
(Tabu

search)

Fig. 2. Communication from master to slave

Master
(Memetic
Algoritm)

Slaves
(Tabu

search)

with fitness value and
genetic information

Improved individual

Improved individual

with fitness value only

Fig. 3. Communication from slave to master

94 D. Oualid and A.R. Baba-Ali

perform the Tabu Search on a set of the individuals distributes them on slave pro-
cessors and waits for all results, then it replaces them in the population.

Slaves algorithm.

A New Parallel Memetic Algorithm to Knowledge Discovery 95

Master algorithm.

96 D. Oualid and A.R. Baba-Ali

5 Results

5.1 UCI Benchmarks

The UCI is a very large database library of Benchmarks selected by the University of
California Irvine (UCI) [17]. The latter was made available to the research community
in Data Mining. These benchmarks that are widely used and considered as a reference.
Hence the importance of using them to evaluate algorithms and compare their per-
formance with other algorithms. Table 1 gives a summary of the databases used in our
tests.

5.2 Results Obtained by Our Synchronous PMA

The efficiency of our synchronous PMA is determined by the threshold value. In order
to find the best threshold value, we conducted a series of experiments with three
different thresholds:

• Threshold1: Is equal to the worst fitness value in the population for each iteration;
• Threshold2: Is equal to the best fitness value in the population for each iteration;
• Threshold3: Is equal to the average of all fitness values of the population for each

iteration;

We run the classifier based on our synchronous PMA 10 times successively on the
UCI benchmarks given above, for each threshold. We give every time the accuracy
obtained, and the percentage of individuals returned without the genetic information
compared to individuals returned with the genetic information.

The parameters PC and PM of Memetic Algorithm are PC = 0.025 and PM = 0.8
and the parameters k1, k2 and k3 of the objective function of classifier are k1 = 0.1,
k2 = 0.8 and k3 = 0.1 and the parameters memory size and the number of iterations of
the Tabu search are 5 and 300.

We have regrouped the average accuracy and the average percentage of individuals
exchanged without their genetic information, obtained from all databases for each
threshold in the following tables:

We observe from Tables 2 and 3, that the percentage of individuals returned
without their genetic information for the threshold1 is between 0.08% and 0.36%
maximum, so most individuals are returned with their genetic information and are

Table 1. Databases used

DataBases Instances number Attributes number Class number

hepatitis 155 20 2
heart-statlog 270 14 2
segment-challenge 1500 20 7
ionosphere 351 35 2
kdd-train 11419 42 2
diabetes 768 9 2

A New Parallel Memetic Algorithm to Knowledge Discovery 97

replaced with the Lamarckian approach in the population. So with the threshold1, our
hybrid approach converges to the Lamarckian approach and we could not reduce the
genetic information exchanged between master and slaves. On the other hand, the
percentage of individuals returned without their genetic information for the threshold2
is between 99.42% and 99.90%, so most individuals are returned without their genetic
information and are replaced with the Baldwinian approach in the population. So with
the threshold2, our hybrid approach converges to the Baldwinian approach and we
reduced by 50% the genetic information exchanged between the master and his slaves,
but on the other hand we obtained bad results in the accuracy of the classifier, for this
threshold. For the threshold3 the percentage of individuals returned without their
genetic information is between 40.42% and 44.58%, so almost half of the individuals
are returned without their genetic information, and also we have obtained very good
results in terms of accuracy of the classifier. So with the PMA based on the threshold3,
we could decrease by 20% the genetic information exchanged between the master and
his slaves without penalizing the accuracy of the classifier.

Furthermore to evaluate the performance of our PMA designed, we have performed
a series of tests on a network of 10 computers. The speedup, defined as the quotient
between the time Ts to run the sequential algorithm and the time Tp for the parallel
version, is used as the performance criterion.

Table 2. Averages accuracies

Database Average accuracy (%)
Threshold 1 Threshold 2 Threshold 3

hepatitis 84,57 73,30 84,39
heart-statlog 83,79 72,57 83,62
segment-challenge 94,81 83,39 96,06
ionosphere 90,35 87,24 90,14
kdd-train 99,29 86,62 99,79
diabetes 81,46 70,57 81,31

Table 3. Percentage of individuals returned without their genetic information

Database Average percentage of individuals
returned without their genetic
information (%)
Threshold 1 Threshold 2 Threshold 2

hepatitis 0,28 99,84 41,98
heart-statlog 0,16 99,90 40,42
segment-challenge 0.08 99,42 42,36
ionosphere 0,28 99,74 44,58
kdd-train 0,36 99,84 42,48
diabetes 0,06 99,62 43,90

98 D. Oualid and A.R. Baba-Ali

To test the speedup of our PMA based on the threshold 3, we’ll run it on the two
databases hepatitis (20 attributes) and kdd-train (42 attributes) and each time we
increase the number of slave processors, then we will compare it with the results of
another simple PMA(is PMA without the new approach of replacement). The results
found are in the following table:

From the viewpoint of speedup, we observe from Table 4 and both Figs. 4 and 5
that the simple PMA and the PMA with threshold3 give both good results, every time
we increase the number of slave processors, the speedup also increases. But if we
compare the speedup of the two algorithms, we observe that they have almost the same
speedup when the number of slaves is between 1 and 4, but once the number of slaves
exceeds 4 the speedup of PMA with threshold3 becomes better than that of simple

Table 4. Results obtained with a different number of slaves

Number of slave
processors

Speedup

hepatitis kdd-train
Simple
PMA

PMA with
threshold3

Simple
PMA

PMA with
threshold3

1 1,00 1,00 1,00 1,00
2 1,84 1,93 1,65 1,73
3 2,85 2,99 2,56 2,69
4 4,17 4,37 3,75 3,94
5 5,18 5,69 4,14 4,76
6 5,47 6,01 4,37 5,03
7 6,06 6,66 4,52 5,42
8 6,46 7,42 4,68 5,81
9 6,69 7,69 4,80 5,95
10 6,77 7,78 4,84 6,12

Fig. 4. Speedup of the two algorithms for hepatitis database

A New Parallel Memetic Algorithm to Knowledge Discovery 99

PMA for both databases hepatitis and kdd-train, which can be justified by the increase
in the cost of communication between the slaves and the master for the simple PMA,
the fact that the number of slaves increases the size of exchanged messages also
increases, therefore, the communication costs slow the speedup. On the other hand the
speedup of the PMA with threshold3 is better because the size of the messages
exchanged is reduced by 20%, therefore, the cost of communications is reduced too,
and the speedup is increased.

We also observe that the speedup of the two algorithms for hepatitis database is
better than their speedup for kdd-train database, which can be justified by the number
of attributes of the two databases. The fact that the number of attributes of kdd-train
database (42 attributes) is twice the number of attributes of hepatitis database (20
attributes), the size of exchanged messages and the cost of communications is also
double.

6 Conclusion

In this work, we presented the design of our parallel Memetic Algorithm for building a
classifier. In which we used a new replacement approach, which is a hybrid approach
that uses both Lamarckian and Baldwinian approaches at the same time, to reduce the
quantity of information exchanged between the master and his slaves.

In order to see the effectiveness of this new hybrid approach of replacement and
their effect on the quantity of information exchanged and on the accuracy of the
classifier, we performed a series of tests on the UCI Benchmarks, and through the tests,
it was found that we have decreased by 20% the quantity of information exchanged
between the master and his slaves without penalizing the accuracy of the classifier.

To show the performance of our parallel Memetic Algorithm, we performed a series
of tests on a network of 10 computers. Then we compared the speedup obtained by our
parallel Memetic Algorithm with the speedup of another simple parallel Memetic
Algorithm. It was observed that once the number of slaves exceeds 4, the speedup of

Fig. 5. Speedup of the two algorithms for kdd-train database

100 D. Oualid and A.R. Baba-Ali

our parallel algorithm is better than the simple parallel algorithm, because the number
of messages exchanged in our parallel algorithm decreased by 20%, therefore the
communication costs are reduced and the speedup is increased. It was also noted that if
the number of attributes in the database used increases, therefore, the size of exchanged
messages and the cost of communications also increases, hence the importance of our
work in minimizing the quantity of exchanged individuals.

References

1. Cios, K.J., Pedryecz, W., Swinniarsky, R.W., Kurgan, A., et al.: Data Mining: A Knowledge
Discovery Approach. Editions Springer Science (2007)

2. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Editions Prentice Hall Advanced
Reference Series. Prentice Hall, New Jersey (1988)

3. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Métaheuristiques pour l’optimisation difficile.
Eyrolles (2005)

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

5. Hao, J.-K., Galinier, P., Habib, M.: Métaheuristiques pour l’optimisation combinatoire et
l’affectation sous contraintes. Revue d’intelligence artificielle (1999)

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, Massachusetts (1989)

7. Glover, F.: Tabu search - Part I. ORSA J. Comput. 1(3), 190–206 (1989)
8. Crainic, T.G., Toulouse, M., et al.: Parallel Metaheuristics. In: Crainic, T.G.¸ Laporte, G.

(eds.) Fleet Management and Logistics, pp. 205–251. Kluwer Academic, Norwell (1998)
9. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs parallèles, réseaux et

systèmes répartis 10(2), 141–171 (1998)
10. Bachelet, V., Hafidi, Z., Preux, P., Talbi, E.-G.: Vers la coopération des métaheuristiques.

Calculateurs parallèles, réseaux et systèmes répartis 10(2) (1998)
11. Alba, E., Luque, G.: IV leasuring the performance of parallel metaheuristics. In: Parallel

Metaheuristics: A new Class of Algorithms. Wiley-Interscience (2005)
12. Barr, R., Hickman, B.: Reporting Computational Experiments with ParaUel Algorithms:

Issues, Measures, and Experts’ Opinions. Dept. of Computer Science and Engineering,
Southern Tvlethodist University (1992)

13. Malony, A.: Tools for Parallel Computing: A Performance Evaluation Perspective, ch. VII,
p. 342. Springer (2000)

14. Bacardit, J.: Pittsburgh Genetic-Based Machine Learning in the Data Mining era:
Representations, Generalization, and Run-time. Ph.d. Thesis, Universitat Ramon LIul,
Spain (2004)

15. Witten, I.H.: Data Mining: Practical Machine Learning Tools and Techniques with JAVA
Implementations. Morgan Kaufman Publishers, San Mateo (2003)

16. Tan, K.C., Yu, Q., Ang, J.H.: A dual-objective evolutionary algorithm for rules extraction in
data mining. Comput. Optim. Appl. 34, 273–294 (2006)

17. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
18. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts:

Towards memetic algorithms. Caltech concurrent computation program, C3P Report 826
(1989)

A New Parallel Memetic Algorithm to Knowledge Discovery 101

Classical Mechanics Optimization for Image
Segmentation

Charaf Eddine Khamoudj1(&), Karima Benatchba1,
and Mohand Tahar Kechadi2

1 Laboratoire des Méthodes de Conception de Systèmes, Ecole nationale
Supérieure d’Informatique, Oued Smar, Algiers, Algeria

{c_khamouj,k_benatchba}@esi.dz
2 School of Computer Science, University College Dublin, Dublin, Ireland

tahar.kechadi@ucd.ie

Abstract. In this work, we focus on image segmentation by simulating the
natural phenomenon of the bodies moving through space. For this, a subset of
image pixels is regularly selected as planets and the rest as satellites. The
attraction force is defined by Newton’s third law (gravitational interaction)
according to the distance and color similarity. In the first phase of the algorithm,
we seek an equilibrium state of the earth-moon system in order to achieve the
second phase, in which we search an equilibrium state of the earth-apple system.
As a result of these two phases, bodies in space are constructed; they represent
segments in the image. The objective of this simulation is to find and then
extract the multiple segments from an image.

Keywords: Image segmentation � Combinatorial optimization � Artificial
intelligence � Metaheuristic � Classical mechanics optimization

1 Introduction

Segmentation is an important step in the image processing; it extracts segments from
images. Each segment represents a set of pixels (each pixel is defined by its coordinates
and color).

Image segmentation can be seen as a combinatory optimization problem, because
the goal is to find combinations of assigning pixels to segments. To find optimal
partitioning in K groups of an n pixels image, all the possible partitions must be
browsed. The number of possible partitions is given by the Stirling numbers of the
second kind [1]:

S(n,k) = 1
k!

Pk

i¼1
ð�1Þk�iðki Þin Where : ðki Þ¼ k!

i!(k - i)! ð1Þ

If the optimal number of partitions is unknown, Stirling numbers are calculated for
k = 1 to k = n. The number of possible partitions is given by Bell number [1]:

© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 102–110, 2016.
DOI: 10.1007/978-3-319-50307-3_8

B(n) =
Xn

k¼1

Sðn; kÞ ð2Þ

The Bell number quickly becomes very big (example: B(10) = 115975). The
heuristic approaches for solving a combinatorial problem is to find a good solution in a
bounded time among an exponential number of possibilities. So they are based on
finding a good compromise between the calculation time and the quality of the best
solution found so far.

The objective is to use the state of bodies’ equilibrium in the space as a heuristic to
tackle the image segmentation problem. We have proposed and implemented an image
segmentation method based on a new metaheuristic inspired by the natural phe-
nomenon of the bodies’ movement in space. The proposed metaheuristic is based on
the impact of the attractive forces between the bodies during their movements.

To simulate this problem as a natural phenomenon of the bodies’ movement in
space, we need to define the planets, the satellites, and what the attraction force. For
this, m pixels of the image are uniformly selected. These pixels represent the planets,
the remaining pixels represent the satellites and the attraction force is defined by the
color similarity and the distance between the planet and the satellite.

The earth-moon system equilibrium is to find a situation, in which every single
satellite is in rotation over the planet that applies on it the strongest attraction force. The
earth-apple system equilibrium is to find a situation, in which all the bodies are far from
colliding on each other, the resulting bodies represent the segments of an image.

2 Metaheuristics Inspired from the Interaction Force

In the universe, attraction forces are divided into two types: Gravity is an attractive
force between the bodies, which depends on their masses. The electromagnetic inter-
action is an attractive force that acts on the elements with electrical charges. Some
researchers have proposed metaheuristics based on the forces of attraction between
bodies. These forces are generated either from the physical mass or the electric charge.
Here are some examples of this type of metaheuristic:

2.1 Gravitational Search Algorithm (GSA)

The gravitational search algorithm [2] uses Newton’s third law to calculate the forces of
attraction and Newton’s second law to deduce the speed of a body. The diversification
of the search in ensured by attraction force; To intensify the search, the gravitational
constant is linearly decreased with time. GSA algorithm is combined with Particle
Swarm Optimization (PSO) to solve the image segmentation problem [3]; The result
algorithm is used in the second phase to search for the optimal threshold estimation
used as a search procedure in the first phase.

Classical Mechanics Optimization for Image Segmentation 103

2.2 Charge Search System (CSS)

The search system based on the electric charge [4] is inspired by the electrostatic;
attributing electrical charges to the particles. The algorithm is used as a step of local
search to improve the founded solutions in PSO algorithm [5] to solve the image
segmentation problem.

2.3 Gravitational Interactions Optimization (GIO)

Optimization by gravitational interactions [6] called particle swarm optimization with
gravitational interactions. Each body stores its current position and its best position.
The interactions of bodies follow the Newton’s third law and move each body to a new
location so that the whole population tends to reach the optimum. This method uses the
Newton’s second law to calculate the speed of a body. To intensify the search, authors
use a mass unit placed in space to exert forces on other bodies to move them. When the
bodies are close to each other, the resulting forces are strong, and there are many
displacements.

2.4 Fusion-Fission Metaheuristic

The fusion-fission metaheuristic [7] is inspired from nuclear physics. It is applied on
the graph partitioning problem, the clustering of documents and image segmentation.
The atom is formed of electrons with a negative charge and nucleons which form the
atomic core. There are two kinds of Nucleons: protons, positively charged and neu-
trons, neutrally charged. The cohesion of the atomic core is ensured by their strong
interactions. During the fission of an atom, the core divides into two fragments, along
with several ejected neutrons. An atom can split either spontaneously if its core is too
heavy, or because of being hit by a neutron. To merge, atoms must have sufficiently
high speeds. He considers a cloud of nucleons. It is subjected to high temperature and
pressure, so that the nucleons have great chances of collision. It is the fusion of these
nucleons together that forms the resulting atoms, which will help achieve an equilib-
rium state of the system. Fission is used to explode the biggest or non stable atoms.

3 Classical Mechanics Optimization (CMO)

As mentioned earlier, metaheuristics based on the gravitational interaction are hybri-
dized with other metaheuristics, such as GSA algorithm with simulated annealing, and
GIO algorithm that is hybridized with the particle swarm optimization. The proposed
method is independent; it relies on applying the laws of classical mechanics.

The CMO simulates the natural phenomenon of the bodies’ movement in a space
by considering the pixels as bodies. m of these pixels are selected as planets and the
n remaining are considered satellites, the attraction force is defined by Newton’s third
law (gravitational interaction).

104 C.E. Khamoudj et al.

After the simulation of the problem as a system of bodies in space, we execute the
algorithm in two main phases: The first phase is to find an equilibrium of the rotating
satellites around planets by applying the earth-moon system. The second phase is to
group the segments formed in the first phase by applying the earth-apple system.

3.1 Transformation of the Problem into a System of Bodies in Space

The planets represent a subset S of the set E (E is the global set that contain all pixels of
image), and satellites represent the subset N representing the complement of S in
E. Rules (3) and (4) are to calculate the number of planets and the number of satellites:

m = PixelNbr � PlanetNbr
PlanetNbrþ SatelliteNbr

ð3Þ

n = PixelNbr - m ð4Þ

The following figure shows the image to segment, the black pixels represent the
planets, the remaining are satellites (Fig. 1).

The number of pixels of each segment defines their mass:

ClassMass ¼ UnitMass� ClassPixel Nbr

Where: UnitMass ¼ SystemMass
PixelNbr

ð5Þ

Newton’s third law (gravitational interaction) is used to define the attraction force.

Fab ¼ g
mamb

d2ab
ð6Þ

Fig. 1. Planets selection.

Classical Mechanics Optimization for Image Segmentation 105

Where ma, mb represent masses and dab represents distance between pixels a and b.
The distance dab is calculated by Euclidean distance, after the simulation of the

spatial distance from a triangular rule:

GreatestPixelDistance GPDð Þ ! GreatestBodiesDistance GBDð Þ
PixelDistance PDð Þ ! BodiesDistance BDð Þ

So the distance ratio becomes:

Distance Ratio = GBD/GPD ð7Þ

The image is composed by a matrix of pixels; each pixel is defined by its coor-
dinates and its color. After experimentation, the equation of attraction is improved as
follows:

Fab ¼ mamb

dabe
ffiffiffiffiffiffiffiffiffiffiffi
ca�cbj j

p ð8Þ

Where ca and cb represent the color of the pixel a and the pixel b.
The gravitational fields earth-moon system GFem and earth-apple system GFea are

derived from the mechanic laws in rule (9) and rule (10) respectively:

GFem ¼ 1:068 � mass� 10�21 ð9Þ

GFea = GFem/200 ð10Þ

3.2 Finding a Body Equilibrium by Applying the Earth-Moon System

We look in space for an equilibrium of the bodies, to stabilize the movement of
satellites around planets. The movement of the satellites is caused by the gravitational
attraction exerted by the planets.

A body a is rotating around the body b with a force Fab. If there is a body c where:
Fac > Fab, then the body a leave its path around b and follows a new path around c.

For each combination, we calculate the attraction force for planets. The gravity
center becomes the center of all satellites around this planet.

We repeat the two previous steps until the system equilibrium is verified. The
algorithm of this step is described as follows:

The following figure shows a stable distribution of the satellites around the planets
(Fig. 2).

106 C.E. Khamoudj et al.

Fig. 2. System equilibrium for earth-moon system and grouping of bodies.

Classical Mechanics Optimization for Image Segmentation 107

3.3 Construction of Segments by Applying the Earth-Apple System

After the stabilization of satellites around planets, each planet-moon system is con-
sidered as one body. Then the gravitational fields of bodies (earth-apple system) is
calculated. Each body situated in the gravitational field of another body falls (fusion of
two segments) and the two bodies are considered as a single body. After the fusion, we
repeat the previous two steps until the overall system is stable (all the found segments
are too far to be fused). The algorithm of this phase is as follows:

The following figure shows the bodies gravitational fields and fusion (earth-apple
system) (Fig. 3).

Fig. 3. Bodies gravitational fields and fusion (earth-apple system).

108 C.E. Khamoudj et al.

3.4 Tests and Results

We applied the CMO approach on real images by simulating the solar system. The
number of pixels planets m is calculated as follows:

m ¼ the number of pixels in the image � 8=ð167þ 8Þ

Because in the solar system there are one hundred and sixty seven (167) satellites
and eight (08) planets. The results of the segmentation are:

The segmentation of the two images provides three segments that represent the
objects of each image, that the dice coefficient of the approach is 88,65. There are small
segments that are not displayed, it is the influence of light or stains. This is positive
because these pixels or smaller segments can be treated isolated segments which are
used to solve other problems such as the detection of tumors in medical imaging
(Fig. 4).

4 Conclusion

In this work, we developed an image segmentation method based on the simulation of
the natural phenomenon of bodies’ movement in space, called Classical Mechanics
Optimization. It consisted on two phases. As a first step, we seek an equilibrium of the
bodies in the earth-moon system (satellites assignment to the planets that apply more
attraction force). The second step is to group the most similar segments, applying an
earth-apple system.

The simulation is made by the extraction of a pixels subset as planets and the
remaining pixels represent the satellites. The attraction force equation is defined by the
rule (8) that represents Newton’s third law according to the pixels’ color, considering
the importance of color in image segmentation.

Fig. 4. Image segmentation results by using CMO.

Classical Mechanics Optimization for Image Segmentation 109

In CMO, intensification and diversification are provided by the distance ratio that
transforms the distance between pixels in the spatial distance. When it is small, the
algorithm becomes more intensive because the gravitational field increases. However,
if the distance ratio is very small, all the bodies may fall into a black hole which
represents a segment that includes all pixels. Otherwise, if it is very large, grouping
objects is not assured, because of the decrease in the gravitational field.

References

1. Benzaghou, B., Barsky, D.: Nombres de Bell et somme de factorielles. Journal de Théorie des
Nombres de Bordeaux 16, 1–17 (2004)

2. Rashedi, E., Nezamabadi, H., Saryazdi, S.: Gsa. A gravitational search algorithm. Information
Sciences, 179(13): 2232–2248 (2009)

3. Amandeep, K., Charanjit, S., Amandeep, S.B.: SAR image segmentation based on hybrid
PSOGSA optimisation algorithm, vol. 4, issue 9 (2014). ISSN 2248-9622

4. Barrera, J., Coello Coello, C.A.: A particle swarm optimization method for multimodal
optimization based on electrostatic interaction. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R.
(eds.) MICAI 2009. LNCS, vol. 5845, pp. 622–632. Springer, Heidelberg (2009)

5. Dahiya, A., Dubey, R.B.: Survey of some multilevel thresolding techniques for medical
imaging, vol. 3 issue 7 (2015). ISSN 2347-3878

6. Flores, J.J., López, R., Barrera, J.: Particle swarm optimization with gravitational interactions
for multimodal and unimodal problems. In: Sidorov, G., Hernández Aguirre, A., Reyes Garc
\’ıa, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438, pp. 361–370. Springer, Heidelberg
(2010)

7. Bichot, C.: Elaboration d’une nouvelle métaheuristique pour le partitionnement de graphe
Doctoral thesis. The Polytechnic National Institute of Toulouse (2007)

110 C.E. Khamoudj et al.

On the Community Identification in Weighted
Time-Varying Networks

Youcef Abdelsadek1(B), Kamel Chelghoum1, Francine Herrmann1,
Imed Kacem1, and Benôıt Otjacques2

1 Laboratoire de Conception, Optimisation et Modélisation des Systèmes,
Université de Lorraine, Metz, France

{youcef.abdelsadek,kamel.chelghoum,francine.herrmann,
imed.kacem}@univ-lorraine.fr

2 e-Science Research Unit, Environmental Research and Innovation Luxembourg,
Institute of Science and Technology, Belvaux, Luxembourg

benoit.otjacques@list.lu

Abstract. The community detection play an important role in under-
standing the information underlying to the graph structure, especially,
when the graph structure or the weights between the linked entities
change over time. In this paper, we propose an algorithm for the commu-
nity identification in weighted and dynamic graphs, called Dyci. The lat-
ter takes advantage from the previously detected communities. Several
changes’ scenarios are considered like, node/edge addition, node/edge
removing and edge weight update. The main idea of Dyci is to track
whether a connected component of the weighted graph becomes weak
over time, in order to merge it with the “dominant” neighbour commu-
nity. In order to assess the quality of the returned community structure,
we conduct a comparison with a genetic algorithm on real-world data of
the ANR-Info-RSN project. The conducted comparison shows that Dyci
provides a good trade-off between efficiency and consumed time.

Keywords: Dynamic networks · Community detection · Genetic algo-
rithm · Weighted graphs · Twitter’s networks

1 Introduction

With the popularization of social networks like Twitter, an exponential quantity
of data is generated. These data are increasing each day, and the existing algo-
rithms which are not considering the dynamic nature of data would suffer from
the scalability issue. Graphs are well-known to be appropriate to represent rela-
tionships between entities. For example, we can cite social relationships like the
friendship, the follow in social blogs or the information sharing in social media.
Additionally, these relationships can change over time with, appearing and/or
disappearing relationships for binary relationships (e.g., friendship) or increasing
and/or decreasing for weighted relationships (e.g., the number of times where
two persons share information). This evolving complex network is called dynamic
c© Springer International Publishing AG 2016
P. Siarry et al. (Eds.): ICSIBO 2016, LNCS 10103, pp. 111–123, 2016.
DOI: 10.1007/978-3-319-50307-3 9

112 Y. Abdelsadek et al.

graph. In this paper, we consider edge weighted dynamic graphs, where a weight
is assigned to each edge of the graph. Furthermore, the community detection in
dynamic graphs enhances our understanding of the underlying semantic behind
the graph. The changes that might occur can be, either structural, attributes
(i.e., weights) or also both of them [1]. Consequently, how to analyse the evolu-
tion of the communities structure over time? To answer this question, one need to
devise an algorithm which relies on the graph features and which takes advantage
from the previously identified communities by avoiding the community identi-
fication from scratch at each instant. As a concrete example, an analyst needs
to understand how the information is shared in Twitter by understanding the
role of each Twitter user within its community and outside of its community. To
fulfil this need, one have to detect the communities of the analyst’s time point
of interest and to follow the community’s member evolution with new members
joining/leaving the studied communities. In this context, a trade-off between
efficiency and response time is necessary to detect the community evolution over
time.

More formally, a dynamic graph of an initial graph G0 can be seen as a
sequence of static graphs [2], denoted by Gs = (G0 ,G1 , . . . ,Gf) with f snapshots
giving rise to Css = (Cs0 ,Cs1 , . . . ,Csf) community partitions as results of Us =
(U0 ,U1 , . . . ,Uf −1) updates as illustrated in Fig. 1. We denote by Nt , Et , Ew

t ,
Ns and Es respectively, the set of nodes of size v at instant t, the set of edges at
instant t, the set of edge weights at instant t of Gt , the set of nodes of the whole
Gs and the set of edges of the whole Gs . Furthermore, the set of updates Ut

varies in terms of the impact they cause to the current set of communities. As an
instance, the impact of adding a new node and those of updating the weight of
an existing edge differ. We point out that weights can be assigned to the nodes
also, with node weight update scenario for the dynamic context, which is not
considered in this paper. The following updates cases describes the repercussion
on Nt , Et and Ew

t after each update scenario.

Fig. 1. The graph sequence of a dynamic graph

On the Community Identification in Weighted Time-Varying Networks 113

1. Structural updates:
(a) Node removing: An old node on is removed, Nt+1 ← Nt \ {on} with

the related edges.
(b) Edge removing: An old edge oe is removed, Et+1 ← Et \ {oe}.
(c) Node addition: A new node nv is added, Nt+1 ← {nv} ∪ Nt with the

related edges.
(d) Edge addition: A new edge ne is added, Et+1 ← {ne} ∪ Et.

2. Attributes updates:
(a) Edge weight updating: An new edge weight new of an old edge weight

oew is updated, Ew
t+1 ← (Ew

t \ {oew}) ∪ {new}.

The outlines of the remaining sections of this paper are as follow: In Sect. 2,
the related works of the addressed topic are presented. Section 3 introduces the
Dyci algorithm for community identification in weighted and dynamic graphs.
Section 4 describes the genetic algorithm. In Sect. 5, the conducted assessments
and the obtained results are discussed. Finally, Sect. 6 concludes this paper and
gives the perspectives.

2 Related Work

This section presents some related works for the dynamic community detection.
There are more algorithms for the static version of this problem in the literature
compared to the dynamic case, especially, for those considering weighted edges.
The static community detection algorithms can be divided into two families
of algorithms: the divisive family (top-down) [3] and the agglomerative family
(bottom-up) [4]. Concerning the dynamic community detection problem, in [5]
it was proved to be NP -complete and APX -hard. For the unweighed dynamic
community detection, the authors of [6] propose a matching algorithm to detect
similar communities over the snapshots of the graph sequence, forming a meta-
community which is the sequence of these identical communities. Agglomerative
modularity-based approach are considered in [7–9]. The authors of [9] use a
physical metaphor with forces, which retains a node to stay in its community
against attracting forces of the other communities. Furthermore, game-theory
analogy is used in [10]. In the latter, each node of the graph is considered as
an agent, which maximizes its utility function. A set of predefined agent actions
is set initially. The system ends when all agents choose their best community
belonging (i.e., which maximizes the utility function). Relying on the colouring
problem, a constant-approximation algorithm was proposed in [11]. The authors
of [12] deal with changes tracking of communities in large networks. They propose
an approach which uses agglomerative clustering to examine the evolution of the
community structure over time by identifying stable communities after several
cluster running. In [13] a model is described which tracks communities over time,
those are characterised by a set of events. Regarding the weighted version of this
problem, label propagation is used [14]. The idea of this algorithm is to allow
a specific node to change its community label taking into account its adjacent
nodes labels.

114 Y. Abdelsadek et al.

3 Dynamic Community Detection Algorithm

3.1 Notations and Definitions

Let us define cni
, IW, INW,WD and WI which, respectively, represent the com-

munity of the node ni, the intra-community weight, the inter-community weight,
the weighted degree of a node and the weighted community-incidence of a node.
These are presented in the following equations:

IWcg =
∑

ni∈cg

∑

nj∈cg

ewni,nj

2
(1)

INWcg,ch =
∑

ni∈cg

∑

nj∈ch

ewni,nj
(2)

WDni
=

v∑

j=1

ewni,nj
(3)

WI(node, cg) =

∑
ni∈cg

ewnode,ni

WDnode
(4)

3.2 Dyci algorithm

First, an improved version of the algorithm proposed in [15] is applied on G0

as a starting point Cs0 of Dyci. The main idea of this algorithm consists in
using a collection of pairwise node-disjoint triangles as a starting point to detect
community structure of the graph. Then, adjacent communities are iteratively
compared in terms of weights and merged when a merging condition holds. This
iterative process ends when no community merging is observed. After, for each
snapshot of the graph sequence Dyci reacts depending on the update scenario
that occurs as presented in the Algorithm 1.

The following subsections show how Dyci reacts depending on the update
scenario, each update case is considered and presented in detail.

Algorithm 1. Dyci algorithm
Input: Cst and Ut ;
Output: Cst+1 .

BEGIN
for each oldNode in Ut.nodeToRemove do

Cst ← NodeRemoving (oldNode,Cst);
end for
for each oldEdge in Ut.edgeToRemove do

Cst ← EdgeRemoving (oldEdge,Cst);
end for
for each newNode in Ut.nodeToAdd do

Cst ← NodeAddition (newNode,Cst);
end for

On the Community Identification in Weighted Time-Varying Networks 115

for each newEdge in Ut.edgeToAdd do
Cst ← EdgeAddition (newEdge,Cst);

end for
for each edgeWeightUpdate in Ut.edgeWeightUpdate do

Cst ←EdgeWeightUpdating (newEdgeWeight,Cst);
end for
Return Cst ;
END.

3.3 NodeRemoving (oldNode):

The main idea of the node removing case is to check whether the deletion of
oldNode generates several connected components or reduces the IW (coldNode).
To this end, Dyci tests for each resulting connected component, noted CC,
whether it can form a community by it self or would be merged with an adjacent
community, noted com. In other words, Dyci verifies whether Eq. 5 holds or not.
Figure 2 gives an example of the node removing update scenario.

INWcom,CC � IWCC (5)

(a) Before removing the red node (b) After removing the red node

Fig. 2. Node removing scenario example (Color figure online)

3.4 EdgeRemoving (oldEdge):

When an inter-community edge is removed, this reduces the inter-community
weight leading to more community-like structure. However, the other case might
lead to intra-community dividing in two connected components or a significant
weight loss. To handle this case, Dyci compares weights between each resulting
connected component of oldEdge deletion and their adjacent communities by
Eq. 5. The edge removing update scenario is illustrated with an example in Fig. 3.

116 Y. Abdelsadek et al.

(a) Before removing the red edge (b) After removing the red edge

Fig. 3. Edge removing scenario example (Color figure online)

3.5 NodeAddition (newNode):

Two subcases can occur for node addition. The first one is the subcase where
newNode has no community edge incidence leading to an isolated community. In
the second subcase, newNode comes with many edges. For the latter, newNode
is added to the community with the greatest WI(newNode, c),∀c ∈ communities
adjacent to newNode. Figure 4 gives an example of the node addition update
scenario.

(a) Before adding the green nodes (b) After adding the green nodes

Fig. 4. Node addition scenario example (Color figure online)

3.6 EdgeAddition (newEdge):

For this case, if newEdge is inserted inside a community, this will not affect the
community partition in terms of weights. Unlike, an inter-community edge could
increase the inter-community weight, noted c1 and c2, aggregating them in one
community. To handle this case, Dyci verifies whether Eq. 6 holds or not. The
edge addition update scenario is illustrated with an example in Fig. 5.

INWc1,c2 � IWc1 or INWc1,c2 � IWc2 (6)

On the Community Identification in Weighted Time-Varying Networks 117

(a) Before adding the green edges (b) After adding the green edges

Fig. 5. Edge addition scenario example (Color figure online)

3.7 EdgeWeightUpdating (edgeWeightUpdate):

The last case be partitioned into two subcases, illustrated in Fig. 6. The first
subcase is when the edgeWeightUpdate is an inter-community edge with weight
greater than the old edge weight. For this scenario Dyci verifies whether Eq. 6
holds or not. The second subcase rises when edgeWeightUpdate is an intra-
community edge with weight lower than the old edge weight. The algorithm
checks whether this weight loss leads to an adjacent community merging by
Eq. 5.

(a) Before updating the red edges weights
(b) After updating the red edges weights

Fig. 6. Edge weight update scenario example (Color figure online)

4 Genetic Algorithm

Genetic algorithms (GA) can provide very good results if they are well set. In
order to evaluate the quality of the obtained communities of Csf , a comparison
is conducted between Dyci and the following GA.

118 Y. Abdelsadek et al.

– Chromosome encoding: The Locus-based Adjacency Representation [16]
(LAR) is used to encode the community detection problem, like in [17,18]. In
the LAR a |Nf | sized array is used, where the couples (gene, allele) express an
associative community membership. Indeed, each gene takes its allele value
from the set of its node neighbours ensuring feasible solutions. Figure 7 shows
an example with the related individual decoding.

– Fitness function: Modularity ϕ of [19] is used for individual evaluation:

ϕ =
1

2M

∑

ni

∑

nj

(
ewni,nj

− WDni
WDnj

2M

)
δ
(
cni

, cnj

)
(7)

Where, M =
∑

i<j

ewni,nj
and δ

(
cni

, cnj

)
= 1, if cni

= cnj
, 0 otherwise.

The modularity expresses whether the detected community structure is well
defined or not, corresponding to the density of the detected communities
minus the density of these communities for the random case with the same
characteristics.

– Population initialization: A random population of size 100 is generated
and sorted in a decreasing fitness function order.

– Crossover: Uniform crossover with probability 0.9 is performed, as illus-
trated in Fig. 8a.

– Mutation: Random allele flipping with probability 0.1 is performed, as
showed in Fig. 8b.

– Parent selection and child insertion: Random selection from the 20%
eliteness individuals. Weakest individuals are excluded from the population.

– Stopping condition: Number of generations reaches 50.

Fig. 7. An individual example using LAR encoding

On the Community Identification in Weighted Time-Varying Networks 119

(a) Uniform crossover
(b) Mutation

Fig. 8. Reproduction operators

5 Experiments and Results Discussion

This section discusses the obtained results of the conducted comparison between
the above GA and Dyci on four data sets from real-world data of the ANR-Info-
RSN project. The ANR-Info-RSN project deals with the community detection in
a collected set of tweets from social media. To this end, a graph is used as model
leading to a weighted graph, where each Twitter’s user of the collected data is
represented by a node and an edge represents a retweet relationship between two
Twitter’s users. In this context, the edge weight is equal to the number of times
where a retweet is observed between two Twitter’s users. The experiments are
conducted using our tool NLCOMS [20]. Table 1 presents the data sets charac-
teristics where the unit of snapshot generation is one day. Figures 9 and 10 show,
respectively, the obtained results for the data sets at tf and the averages values
of the results for the whole Css.

From Fig. 9a, we remark that Dyci and the GA have almost the same results
(GA is slightly better than Dyci), taking into account the fact that the obtained
communities Csf of Dyci are highly influenced by the f previous choices made
during the whole graph sequence. One could say that Dyci obtains satisfactory
results. Further, from Fig. 9c, we remark that Dyci is relatively fast compared to
the GA, due to the fact that Dyci takes advantage from the previous identified
community avoiding relaunching the process at each snapshot. From Fig. 10, we
notice that the averages values are almost the same by comparing to the values
of the last snapshot tf , except for DS3 where Dyci takes more time and provides
less modularity for the previous snapshots but has relatively a good result for
the last snapshots tf .

Table 1. The ANR-Info-RSN data sets characteristics

Data sets t0 tf |Ns| |Es| |Nf | |Ef |
DS1 July 17, 2014 July 31,2014 10569 14121 801 997

DS2 August 3, 2014 August 15,2014 6162 8069 390 451

DS3 August 17, 2014 August 31,2014 10189 12263 424 508

DS4 September 3, 2014 September 30,2014 8224 10371 412 535

120 Y. Abdelsadek et al.

(a) Obtained modularity

(b) Identified number of communities

(c) Running time

Fig. 9. The results for the ANR-Info-RSN data sets at tf

On the Community Identification in Weighted Time-Varying Networks 121

(a) Obtained modularity

(b) Identified number of communities

(c) Running time

Fig. 10. The results for the ANR-Info-RSN data sets for the whole Css

122 Y. Abdelsadek et al.

6 Conclusion

To conclude, community identification in time-varying networks enhances our
understanding of the graph structure over time. In this paper, a community
detection algorithm for weighted and dynamic graphs, called Dyci, is proposed.
The main idea of Dyci is to track whether a connected component of the weighted
graph becomes weak (i.e., in terms of weight) over time, in order to merge it
with the “dominant” neighbour community. In order to assess the quality of
the identified communities by Dyci, a computational comparison is conducted
with GA on real-world data sets of the ANR-Info-RSN project. The latter shows
that Dyci obtains satisfying results with relatively short time. As perspectives,
we project to extend this work to multi-graphs with several edges types linking
two nodes. As an instance, considering retweet edges and mention edges at the
same time. The latter exists when a Twitter’s user mention another Twitter’s
user in its tweet. In this context, community detection algorithm could consider
overlapping communities.

Acknowledgments. This research has been supported by the Agence Nationale de
la Recherche (ANR, France) during the Info-RSN Project (ANR-13-SOIN-0008).

References

1. Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79–
87 (1997). http://dx.doi.org/10.1016/S0895-7177(97)00050-2

2. Diehl, S., Görg, C.: Graphs, they are changing. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–31. Springer, Heidelberg (2002).
doi:10.1007/3-540-36151-0 3

3. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69, 26113 (2004)

4. Blondel, V., Guillaume, J., Lambiotte, R., Mech, E.: Fast unfolding of communities
in large networks. J. Stat. Mech. 10, 10008 (2008)

5. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for commu-
nity identification in dynamic social networks. In: KDD 2007: Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 717–726. NY, USA (2007). http://portal.acm.org/citation.cfm?
doid=1281192.1281269

6. Takaffoli, M., Sangi, F., Fagnan, J., Zane, O.R.: Community evolution min-
ing in dynamic social networks. Procedia Soc. Behav. Sci. 22, 49–58 (2011).
dynamics of Social Networks 7th Conference on Applications of Social
Network Analysis-ASNA2010. http://www.sciencedirect.com/science/article/pii/
S1877042811013784

7. Bansal, S., Bhowmick, S., Paymal, P.: Fast community detection for dynamic com-
plex networks. In: F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds.)
CompleNet 2010. CCIS, vol. 116, pp. 196–207. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25501-4 20

8. Aktunc, R., Toroslu, I.H., Ozer, M., Davulcu, H.: A dynamic modularity based
community detection algorithm for large-scale networks: Dslm. In: Pei, J., Silvestri,
F., Tang, J. (eds.) ASONAM, pp. 1177–1183. ACM (2015). http://dblp.uni-trier.
de/db/conf/asunam/asonam2015.html#AktuncTOD15

http://dx.doi.org/10.1016/S0895-7177(97)00050-2
http://dx.doi.org/10.1007/3-540-36151-0_3
http://portal.acm.org/citation.cfm?doid=1281192.1281269
http://portal.acm.org/citation.cfm?doid=1281192.1281269
http://www.sciencedirect.com/science/article/pii/S1877042811013784
http://www.sciencedirect.com/science/article/pii/S1877042811013784
http://dx.doi.org/10.1007/978-3-642-25501-4_20
http://dx.doi.org/10.1007/978-3-642-25501-4_20
http://dblp.uni-trier.de/db/conf/asunam/asonam2015.html#AktuncTOD15
http://dblp.uni-trier.de/db/conf/asunam/asonam2015.html#AktuncTOD15

On the Community Identification in Weighted Time-Varying Networks 123

9. Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detect-
ing community structure in dynamic social networks. In: INFOCOM, pp. 2282–
2290. IEEE (2011). http://dblp.uni-trier.de/db/conf/infocom/infocom2011.html#
NguyenDXT11

10. Alvari, H., Hajibagheri, A., Sukthankar, G.R.: Community detection in dynamic
social networks: A game-theoretic approach. In: Wu, X., Ester, M., Xu, G. (eds.)
ASONAM, pp. 101–107. IEEE Computer Society (2014). http://dblp.uni-trier.de/
db/conf/asunam/asonam2014.html#AlvariHS14

11. Tantipathananandh, C., Berger-Wolf, T.Y.: Constant-factor approximation algo-
rithms for identifying dynamic communities. In: Iv, J.F.E., Fogelman-Souli, F.,
Flach, P.A., Zaki, M. (eds.) KDD, pp. 827–836. ACM (2009). http://dblp.uni-trier.
de/db/conf/kdd/kdd2009.html#TantipathananandhB09

12. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in
large linked networks. In: PNAS (2004)

13. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in
dynamic social networks. In: Proceedings of the 2010 International Conference on
Advances in Social Networks Analysis and Mining, pp. 176–183. ASONAM 2010,
(2010). http://dx.doi.org/10.1109/ASONAM.2010.17

14. Xie, J., Chen, M., Szymanski, B.K.: Labelrankt: Incremental community detection
in dynamic networks via label propagation. CoRR abs/1305.2006 (2013). http://
dblp.uni-trier.de/db/journals/corr/corr1305.html#abs-1305-2006

15. Abdelsadek, Y., Chelghoum, K., Herrmann, F., Kacem, I., Otjacques, B.: Com-
munity detection algorithm based on weighted maximum triangle packing. In:
Proceedings of International Conference on Computer and Industrial Engineering
CIE45 (2015)

16. Park, Y., Song, M.: A genetic algorithm for clustering problems. In: Koza, J.R.,
Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H.,
Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings
of the Third Annual Conference, pp. 568–575. Morgan Kaufmann, University of
Wisconsin, Madison, Wisconsin, USA, 22–25 July 1998

17. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social net-
works. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN
2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87700-4 107

18. Jin, D., He, D., Liu, D., Baquero, C.: Genetic algorithm with local search for
community mining in complex networks. In: ICTAI (1), pp. 105–112. IEEE Com-
puter Society (2010). http://dblp.uni-trier.de/db/conf/ictai/ictai2010-1.html#
JinHLB10

19. Newman, M.: Modularity and community structure in networks. Proc. Nat. Acad.
Sci. 103(23), 8577–8582 (2006)

20. Abdelsadek, Y., Chelghoum, K., Herrmann, F., Kacem, I., Otjacques, B.: Visual
interactive approach for mining twitter’s networks. In: Tan, Y., Shi, Y. (eds.) Data
Mining and Big Data. LNCS, vol. 9714, pp. 342–349. Springer, Heidelberg (2016)

http://dblp.uni-trier.de/db/conf/infocom/infocom2011.html#NguyenDXT11
http://dblp.uni-trier.de/db/conf/infocom/infocom2011.html#NguyenDXT11
http://dblp.uni-trier.de/db/conf/asunam/asonam2014.html#AlvariHS14
http://dblp.uni-trier.de/db/conf/asunam/asonam2014.html#AlvariHS14
http://dblp.uni-trier.de/db/conf/kdd/kdd2009.html#TantipathananandhB09
http://dblp.uni-trier.de/db/conf/kdd/kdd2009.html#TantipathananandhB09
http://dx.doi.org/10.1109/ASONAM.2010.17
http://dblp.uni-trier.de/db/journals/corr/corr1305.html#abs-1305-2006
http://dblp.uni-trier.de/db/journals/corr/corr1305.html#abs-1305-2006
http://dx.doi.org/10.1007/978-3-540-87700-4_107
http://dx.doi.org/10.1007/978-3-540-87700-4_107
http://dblp.uni-trier.de/db/conf/ictai/ictai2010-1.html#JinHLB10
http://dblp.uni-trier.de/db/conf/ictai/ictai2010-1.html#JinHLB10

Author Index

Abdelkafi, Omar 57, 75
Abdelsadek, Youcef 111
Aujoulat, Olivier 41

Baba-Ali, Ahmed Riadh 87
Barakat, Oussama 41
Benatchba, Karima 102
Beroule, Benoit 41
Brévilliers, Mathieu 57, 75

Chelghoum, Kamel 111
Clerc, Maurice 3
Créput, Jean-Charles 65

Grunder, Olivier 41

Herrmann, Francine 111

Idoumghar, Lhassane 57, 75

Kacem, Imed 111
Kechadi, Mohand Tahar 102
Khamoudj, Charaf Eddine 102

Lepagnot, Julien 57, 75
Lustig, Helene 41

Mansouri, Abdelkhalek 65

Otjacques, Benoît 111
Oualid, Dahmri 87

Ruichek, Yassine 65

Wang, Hongjian 65
Wolf, Brigitte 20

	Preface
	Organization
	Contents
	Plenary Talks
	Total Memory Optimiser: Proof of Concept and Compromises
	1 Motivations
	2 Nearer is Better Assumption
	2.1 Definition
	2.2 Examples

	3 Basic Total Memory Optimiser
	3.1 Initialisation (First Samples)
	3.2 From Sampling to Triangulation
	3.3 From Triangulation to Surrogate Function
	3.4 From Surrogate Function to Estimation of Distribution
	3.5 From Estimation of Distribution to Sampling

	4 Compromises
	5 Comparisons
	5.1 Budget
	5.2 Demand
	5.3 Some Results

	A Appendix
	A.1 Problem Definitions
	A.2 When we Know Nothing, the Middle is the Best Choice
	A.3 Variability of a Landscape

	References

	Inspiration by Swarms
	1 Swarm Behavior
	2 Difference to Human Beings
	3 Learning from Swarm Behavior
	4 Examples
	5 Swarm Intelligence as Inspiration for a Design Strategy Project
	References

	Regular Papers
	Particle Swarm Optimization for Operating Theater Scheduling Considering Medical Devices Sterilization
	1 Introduction
	2 Studied System
	2.1 The Multi-site Context
	2.2 Sterilization Service
	2.3 Problematics

	3 Modeling
	3.1 Operating Theater Scheduling
	3.2 Mixed Integer Linear Programing Model

	4 Particle Swarm Optimization
	4.1 Particle Swarm Optimization Modeling
	4.2 Determining Best Parameters

	5 Experimentation
	6 Conclusion
	References

	Data Exchange Topologies for the DISCO-HITS Algorithm to Solve the QAP
	1 Introduction
	2 Background
	3 Topologies to Exchange Information Between Processes
	4 Experimental Results
	4.1 Platform and Tests
	4.2 Parameters
	4.3 Experimentation of the Three Topologies
	4.4 Literature Comparison

	5 Conclusion and Perspectives
	References

	Distributed Local Search for Elastic Image Matching
	1 Introduction
	2 Elastic Grid Matching
	3 Distributed Local Search
	3.1 Data Structures and Basic Operations
	3.2 Local Evaluation with Mutual Exclusion
	3.3 Neighborhood Operators
	3.4 GPU Implementation Under VNS Framework

	4 Experimental Study
	5 Conclusion
	References

	Fast Hybrid BSA-DE-SA Algorithm on GPU
	1 Introduction
	2 Related Work
	2.1 Backtracking Search Optimization Algorithm
	2.2 Hybrid BSA-DE Algorithms

	3 Contribution to Speed up BSA Convergence
	3.1 Hybrid BSA-DE-SA Algorithm
	3.2 Experimental Results

	4 Contribution to Speed up BSA Runtime
	4.1 Design of the GPU Implementation
	4.2 Experimental Results

	5 Conclusion
	References

	A New Parallel Memetic Algorithm to Knowledge Discovery in Data Mining
	Abstract
	1 Introduction
	2 Related Work
	2.1 Hybrid Parallelization of Metaheuristics
	2.2 Measuring Performance of Parallel Algorithms
	2.3 Impact of Communication on the Performance of Parallel Algorithms
	2.4 Lamarckianism vs. Baldwinian Effect

	3 Adaptive Memetic Algorithm
	4 The Proposed PMA Architecture
	4.1 Replacement Strategy Used
	4.2 Our Synchronous PMA Using Master-Slave Model

	5 Results
	5.1 UCI Benchmarks
	5.2 Results Obtained by Our Synchronous PMA

	6 Conclusion
	References

	Classical Mechanics Optimization for Image Segmentation
	Abstract
	1 Introduction
	2 Metaheuristics Inspired from the Interaction Force
	2.1 Gravitational Search Algorithm (GSA)
	2.2 Charge Search System (CSS)
	2.3 Gravitational Interactions Optimization (GIO)
	2.4 Fusion-Fission Metaheuristic

	3 Classical Mechanics Optimization (CMO)
	3.1 Transformation of the Problem into a System of Bodies in Space
	3.2 Finding a Body Equilibrium by Applying the Earth-Moon System
	3.3 Construction of Segments by Applying the Earth-Apple System
	3.4 Tests and Results

	4 Conclusion
	References

	On the Community Identification in Weighted Time-Varying Networks
	1 Introduction
	2 Related Work
	3 Dynamic Community Detection Algorithm
	3.1 Notations and Definitions
	3.2 Dyci algorithm
	3.3 NodeRemoving (oldNode):
	3.4 EdgeRemoving (oldEdge):
	3.5 NodeAddition (newNode):
	3.6 EdgeAddition (newEdge):
	3.7 EdgeWeightUpdating (edgeWeightUpdate):

	4 Genetic Algorithm
	5 Experiments and Results Discussion
	6 Conclusion
	References

	Author Index

