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Abstract This chapter deals with the design and application of a robust Fractional
Order PID (FOPID) power system stabilizer tuned by Genetic Algorithm (GA). The
system’s robustness is assured through the application of Kharitonov’s theorem to
overcome the effect of system parameter’s changes within upper and lower pounds.
The FOPID stabilizer has been simplified during the optimization using the Ous-
taloup’s approximation for fractional calculus and the “nipid” toolbox of Matlab
during simulation. The objective is to keep robust stabilization with maximum
attained degree of stability against system’s uncertainty. This optimization will be
achieved with the proper choice of the FOPID stabilizer’s coefficients (kp, ki, kd, λ,
and δ) as discussed later in this chapter. The optimization has been done using the
GA which limits the boundaries of the tuned parameters within the allowable
domain. The calculations have been applied to a single machine infinite bus (SMIB)
power system using Matlab and Simulink. The results show superior behavior of
the proposed stabilizer over the traditional PID.
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1 Intoduction

Low or negative damping in a power system can lead to spontaneous appearance of
large power oscillations. Several methods for increasing the damping in a power
system are available such as static voltage condenser (SVC), high voltage direct
current (HVDC) and power system stabilizer (PSS). Operating conditions of a
power system are continually changing due to load patterns, electric generation
variations, disturbances, transmission topology and line switching [18].

To enhance system damping; the generators are equipped with power system
stabilizers that provide supplementary feedback stabilizing signals in the excitation
systems [23]. The control strategy should be capable of manipulating the PSS
effectively. The PSS should provide robust stability over a wide range of operating
conditions, easy to implement, improves transient stability, low developing time
and least cost [18]. Various topologies and many control methods have been pro-
posed for PSS design, such as adaptive controller [33], robust controller [3, 8, 9],
extended integral controller [41], state feedback controller [19], fuzzy logic con-
troller [4] and variable structure controller [11]. In Kothari et al. [15] an adaptive
fuzzy PSS that behaves like a PID controller that provides faster stabilization of the
frequency error signal with less dependency on expert knowledge is proposed. In
Malik et al. [20], an indirect adaptive PSS is designed using two input signals, the
speed deviation and the power deviation to a neural network controller.

The robust PSS has the ability to maintain stability and achieves desired per-
formance while being insensitive to the perturbations. Among the various robust-
ness techniques, H∞ optimal control [5] and the structured singular value (SSV or
μ) technique [31] have received considerable attention. But, the application of μ
technique for controller design is complicated due to the computational require-
ments of μ design. Besides the high order of the resulting controller, also introduces
difficulties with regard to implementation [14, 34].

The H∞ optimal controller design is relatively simpler than the μ synthesis in
terms of the computational burden [5, 35, 36].

Since power systems are highly non-linear, conventional fixed-parameter PSSs
cannot cope with wide changes of the operating conditions. There are two main
approaches to stabilize a power system over a wide range of operating conditions;
namely adaptive control [1, 10, 37] and robust control [3, 19, 35]. However,
adaptive controllers have generally poor performance during the learning phase;
unless they are properly initialized. Successful operation of adaptive controllers
requires the measurements to satisfy strict persistent excitation conditions; other-
wise the adjustment of the controller’s parameters fail [2, 5, 13].

This chapter is organized as follow: In Sect. 2, we present a brief introduction to
fractional calculus and its approximation. Section 3 presents the GA. Section 4
illustrates the system under investigation. Section 5 presents the problem formu-
lation and the problem solution is discussed in Sect. 6. The design procedure of
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FOPID PSS is introduced in Sect. 7 with different loading and working conditions.
Section 8 and some references are given in Sect. 9. The chapter has three
Appendices A, B, and C.

2 Fractional Order PID Controller (PIkDd) Design

The PSS proposed in this chapter belongs to the class of robust controllers. It relies
on the Kharitonov’s theorem and GA optimization. The use of the Kharitonov’s
theorem enables us to consider a finite number of plants to be stabilized. The
resulting controller will be able to stabilize the original system at any operating
point within the design range. We propose to tune the controller’s parameters using
the genetic algorithm optimization technique [11, 12, 16].

Proportional-Integral-Derivative (PID) controllers are widely being used in
industries for process control applications. The merit of using PID controllers lie in
its simplicity of design and good performance including low percentage overshoot
and small settling time for slow industrial processes. The performance of PID
controllers can be further improved by appropriate settings of fractional-I and
fractional-D actions [24, 25, 28, 29].

In a fractional PID controller, the I- and D-actions being fractional have wider
scope of design. Naturally, besides setting the proportional, derivative and integral
constants Kp,Td and Ti respectively, we have two more parameters: the power of s
in integral and derivative actions-λ and δ respectively. Finding [kp, ki, kd, λ, and δ]
as an optimal solution to a given process thus calls for optimization on the
five-dimensional space. Classical optimization techniques cannot be used here
because of the roughness of the objective function surface. We, therefore, use a
derivative-free optimization, guided by the collective behavior of social swarm and
determine optimal settings of kp, ki, kd, λ, and δ [1].

The performance of the optimal fractional PID controller is better than its integer
counterpart. Thus the proposed design will find extensive applications in real
industrial processes. Traces of work on fractional PID are available in the current
literature [1, 7, 22, 24–29, 32] on control engineering. A frequency domain
approach based on the expected crossover frequency and phase margin is men-
tioned in Vinagre et al. [39]. A method based on pole distribution of the charac-
teristic equation in the complex plane was proposed in Petras [24]. A state-space
design method based on feedback poles placement can be viewed in Dorcak et al.
[7]. The fractional controller can also be designed by cascading a proper fractional
unit to an integer-order controller [26].

Moreover, researchers reported that controllers making use of factional order
derivatives and integrals could achieve performance and robustness results superior
to those obtained with conventional (integer order) controllers. The Fractional-order
PID controller (FOPID) controller is the expansion of the conventional PID con-
troller based on fractional calculus [1].
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The differential equation of the PIλDδ controller is described in time domain by

uðtÞ= kpeðtÞ+ kiD− λ
t eðtÞ+ kdDδ

t eðtÞ ð1Þ

The continuous transfer function of the PIλDδ controller is obtained through
Laplace transform as

GcðsÞ= kp + kis− λ + kdsδ ð2Þ

It is obvious that, the FOPID controller does not only need the design three
parameters kp, ki and kd, but also the design of two orders λ, δ of integral and
derivative controllers. The orders λ, δ are not necessarily integer, but any real
numbers [25].

3 Genetic Algorithm Operation

To illustrate the working process of genetic algorithm, the steps to realize a basic
GA are listed below [11, 12, 16]:

Step 1: Represent the problem variable domain as a chromosome of fixed length;
choose the size of the chromosome population N, the crossover proba-
bility Pc and the mutation probability Pm.

Step 2: Define a fitness function to measure the performance of an individual
chromosome in the problem domain. The fitness function establishes the
basis for selecting chromosomes that will be mated during reproduction.

Step 3: Randomly generate an initial population of size N: x1, x2, …, xN.
Step 4: Calculate the fitness of each individual chromosome: f(x1), f(x2), …,

f(xN).
Step 5: Select a pair of chromosomes for mating from the current population.

Parent chromosomes are selected with a probability related to their fit-
ness. High fit chromosomes have a higher probability of being selected
for mating than less fit chromosomes.

Step 6: Create a pair of offspring chromosomes by applying the genetic
operators.

Step 7: Place the created offspring chromosomes in the new population.
Step 8: Repeat Step 5 until the size of the new population equals that of initial

population, N.
Step 9: Replace the initial (parent) chromosome population with the new (off-

spring) population.
Step 10: Go to Step 4, and repeat the process until the termination criterion is

satisfied.
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A GA is an iterative process. Each iteration is called a generation. A typical
number of generations for a simple GA can range from 50 to over 500. A common
practice is to terminate a GA after a specified number of generations and then
examine the best chromosomes in the population. If no satisfactory solution is
found, then the GA is restarted [21, 31].

The GA moves from generation to generation until a stopping criterion is met.
The stopping criterion could be maximum number of generations, population
convergence criteria, lack of improvement in the best solution over a specified
number of generations or target value for the objective function.

Evaluation functions or objective functions of many forms can be used in a GA
so that the function can map the population into a partially ordered set. The
computational flowchart of the GA optimization process employed in the present
study is given in Fig. 1.

Fig. 1 The computational flowchart of the GA
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4 System Investigated

A single machine-infinite bus (SMIB) system is considered for the present inves-
tigations. A machine connected to a large system through a transmission line may
be reduced to a SMIB system, by using Thevenin’s equivalent of the transmission
network external to the machine. Because of the relative size of the system to which
the machine is supplying power, the dynamics associated with machine will cause
virtually no change in the voltage and frequency of the Thevenin’s voltage (infinite
bus voltage). The Thevenin’s equivalent impedance shall henceforth be referred to
as equivalent impedance (i.e. Re + jXe) [6].

Figure 2 shows the system under study which consists of a single machine
connected to an infinite bus through a tie-line. The machine is equipped with a static
exciter. The non-linear equations of the system are

ω ̇=
Tm −Te

M
δ ̇=ω0ω

E ̇′q =
1

T ′do
Efd −

xd + xe
xd′+ xe

E′q +
xd + x′d
xd′+ xe

V cosδ
� �

Eḟd =
1
TE

ðkEEref − kEVt −EfdÞ

ð3Þ

The synchronous machine is described as the fourth order model. The two-axis
synchronous machine representation with a field circuit in the direct axis but
without damper windings is considered for the analysis. The equations describing
the steady state operation of a synchronous generator connected to an infinite bus
through an external reactance can be linearized about any particular operating point
as follows:

Fig. 2 The block diagram for closed loop SMIB System
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ΔTm −ΔP=M
d2Δδ
dt2

ð4Þ

ΔP=K1Δδ+K2ΔE′q ð5Þ

ΔE′q =
K3

1 + sT ′d0K3
ΔEfd −

K3K4

1 + sT′d0K3
Δδ ð6Þ

ΔVt =K5Δδ+K6ΔE′q ð7Þ

The synchronous machine is described by Heffron-Philips model as described in
Fig. 2. The K-constants are given in Appendix A. The data definitions are given in
Appendix B. The system data are illustrated in Appendix C.

The interaction between the speed and voltage control equations of the machine
is expressed in terms of six constants k1–k6. These constants with the exception of
k3, which is only a function of the ratio of impedance, are dependent upon the
actual real and reactive power loading as well as the excitation levels in the machine
[6].

The system equation can be expressed in the following state variable form:

X ̇ðtÞ=AXðtÞ+BuðtÞ
yðtÞ=CxðtÞ ð8Þ

XðtÞ= Δδ Δω ΔE′q ΔEfd½ �T ,

A=

0 ω0 0 0
− k1
M 0 − k2

M 0

− k4
TT′do

0 − 1
T − 1

T′do

− k5 kE
TE

0 − k6 kE
TE

− 1
TE

2
66664

3
77775 ,

B= 0 0 0 kE
TE

h i
′,C= 0 1 0 0½ �.

ð9Þ

5 Problem Formulation

The system can be represented by the block diagram proposed by deMello and
Concordia [40] which can be cast as shown in Fig. 2. The parameters of the model
are load dependent, thus, they have to be calculated at each operating point.
Analytical expressions for the parameters k1–k6, as derived in Soliman et al. [35],
Soliman and Sakr [36], are listed in Appendix A. The parameters, k1–k6, are
functions of the loading condition (P and Q). By varying P and/or Q to cover a wide
range of system loading, the parameters K1–K6 are computed.
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The use of the high-gain voltage regulators usually destabilizes the system. This
effect is usually complemented compensated by the inclusion of a stabilizing signal
generated by the PSS to provide the required damping. In most cases, the speed
deviation signal Δω is used as an input to the PSS.

To design the PSS, it is convenient to represent the system in the transfer
function form as shown in Fig. 3. An analytical expression for the transfer function
is derived based on the obtained parameters by using Mason’s rule. The resulting
transfer function is

Δω
U

ðsÞ= bs
a4s4 + a3s3 + a2s2 + a1s+ a0

ð10Þ

The transfer-function coefficients expressed in terms of the k-parameters are:

a4 =MTTE
a3 =MðT + TEÞ
a2 =M =314k1TTE + kEk3k6M

a1 = 314k1ðT +TEÞ− 314k2k3k4TE
a0 = 314ðk1 − k2k3k4 + kEk1k3k6Þ
b= kEk2k3

ð11Þ

The coefficients of the transfer function are load-dependent. So, the PSS has to
be adjusted at different loads. To scan the whole range of operation, the load
dependency may require the analysis of a large number of points with a new model
generated at each operating condition.

Fig. 3 System response to 0.2 pu torque disturbance at (P = 0.8, Q = 0.3)
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A proposed technique, based on the Kharitonov’s theorem and GA, is used to
design a fixed parameters robust FOPID controller to stabilize the non-linear system
over the specified range of operating conditions [Pmin, Pmax] and [Qmin, Qmax]. In
this technique, the problem is transformed to simultaneous stabilization of a finite
number of extreme plants. We will show in the next section that we need to stabilize
exactly eight characteristic polynomials.

5.1 Mathematical Tools and Problem Solution

5.1.1 Kharitonov’s Theorem

The Kharitonov’s theorem studies the robust stability of an interval polynomial
family [40]. A polynomial

p= ansn + an− 1sn− 1 +⋯+ a0 ð12Þ

is said to be an interval polynomial if each coefficient ai is independent of the others
and varies within an interval having lower and upper bounds that is,

ai = ½a−
i , a+

i � ð13Þ

The Kharitonov’s theorem states that “An interval polynomial

p = ∑n
i=0 a−

i , a+
i

� �
si ð14Þ

is robustly stable if and only if the following four Kharitonov’s polynomials

p1 = a−
0 + a−

1 s+ a+
2 s2 + a+

3 s3 + a−
4 s4 +⋯

p2 = a+
0 + a+

1 s+ a−
2 s2 + a−

3 s3 + a+
4 s4 +⋯

p3 = a+
0 + a−

1 s+ a−
2 s2 + a+

3 s3 + a+
4 s4 +⋯

p4 = a−
0 + a+

1 s+ a+
2 s2 + a−

3 s3 + a−
4 s4 +⋯

ð15Þ

are stable”.
Assuming that the coefficient function ai depends continuously on the vec-

tor = [P Q]T(machine loading P and Q), we define the bounds

a* −
i = min

r
ðaiÞ

a* +
i = min

r
ðaiÞ

ð16Þ

and simply construct the polynomial described by
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p*ðsÞ= ∑n
i=0 ½a* −

i , a* +
i �si ð17Þ

Then the robust stability of polynomial (17) implies the robust stability of (12),
El-Metwally et al. [10].

5.1.2 Oustaloup’s Recursive Filter to Approximate FOPID

Some continuous filters have been summarized in [36]. Among the filters, the
well-established Oustaloup recursive filter has a very good fitting to the
fractional-order differentiators. Assume that the expected fitting range is (ωb, ωh).
The filter can be written as

Gf ðsÞ=K ∏
N

K = −N

s+ω′k
s+ωk

ð18Þ

where the poles, zeros, and gain of the filter can be evaluated such that

ω′k =ωb
ωh

ωb

� �k+N + 1
2ð1− γÞ

2N + 1

ωk =ωb
ωh

ωb

� �k+N + 1
2ð1+ γÞ

2N + 1

ð19Þ

and

K =ωγ
h

Thus, the any signal y(t) signal can be filtered through this filter and the output of
the filter can be regarded as an approximation for the derivative term of the FOPID
with γ = δ or the integral counterpart with γ = −λ. The resulted transfer function of
the FOPID is the sum of the proportional term kp plus the filter approximation of the
integral term (kis− λ) plus the derivative term ðkDsδÞ. The result will be the
approximated transfer function of the FOPID controller GcðsÞ as given by Eq. (2).

In general GcðsÞ can be assumed to be in the form:

GcðsÞ= NðsÞ
DðsÞ ð20Þ

As shown in Fig. 3, the closed loop characteristic equation can be written as

1 +GcðsÞGpðsÞ =0 ð21Þ

where GpðsÞ= Δω
U (s) is the plant transfer function [10].
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5.1.3 The 16 Kharitonov’s Polynomials

Given the plant family with Kharitonov’s polynomials N1, …, N4 and D1, …, D4

for the numerator and denominator, respectively, we define the 16 Kharitonov’s
plants as El-Metwally et al. [10].

Gi
cðsÞ=

Ni1ðsÞ
Di2ðsÞ

, i1 = 1, 2, . . . , 4 and i2 = 1, 2, . . . , 4 ð22Þ

where i = 1, 2, …, 16. If the controller can stabilize all the 16 closed loop poly-
nomials given as

1 +Gi
cðsÞGpðsÞ=0 ð23Þ

Then the closed loop system (23) is robustly stable, where
i1 = 1, 2, . . . , 4 and i2 = 1, 2, . . . , 4, El-Metwally et al. [10].

Applying the above mathematical tools to the single machine–infinite bus sys-
tem (Fig. 1), we have the vector r which is composed of two independent
components.

r= P Q½ �T ð24Þ

In the system under study, the numerator of the transfer function is a first order
polynomial (bs). Thus, the coefficient b has two extreme values b+ and b−; that is,
the 16 plants corresponding to (23) are reduced to 8 plants only.

6 Problem Solution

To stabilize the system over the required ranges of P and Q, the following eight
polynomials must be stable.

We will use the genetic algorithm to find the values of kp, ki, kd, λ, and δ that
correspond to the following optimization problem

min
kp, ki, kd, λ, andδ

ðmax ðλeÞ ð25Þ

Subject to

kminp ≤ kp ≤ kmaxp

kmini ≤ ki ≤ kmaxi

kminD ≤ kD ≤ kmaxD

λmin ≤ λ≤ λmax

γmin ≤ γ ≤ γmax

ð26Þ
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where λe is a vector containing the real parts of the roots of the eight equations
resulting from (25). This means that the parameters k, z and p must stabilize the
eight polynomials in Eq. (25). On the other hand, the swarm optimization algorithm
attempts to push the closed loop poles to the left as far as possible by minimizing
the maximum real part of the roots resulting from (25). The problem can be tackled
using a different approach. If we divide the range of P and Q into small steps, the
resulting grid will represent the possible operating points.

For each point on the grid, a model can be derived. Applying the genetic
algorithm optimization technique to stabilize such systems is possible. However,
there is no guarantee that stability is preserved for intermediate points inside the
grid. The proposed technique eliminates this shortcoming via the Kharitonov’s
theorem.

7 PSS Design for Different Machine Loadability

The design objective, in this chapter, is to implement the machine loadability, of the
system under study, over the range Q ∈ [− 0.4, 0.4] and P ∈ [0.2, 1.2]. The design
procedure can be summarized as follows:

• Develop the linearized model as shown in Fig. 2. The machine parameters and
the k-parameter calculations are given in the Appendices A and C.

• Based on the analytical expressions for a0, a1, . . . , a4 and b in (11), calculate the
maximum and minimum values of the aforementioned parameters using any
standard optimization technique. Note that a3 and a4 do not depend on the
values of P and Q.

• Using (29) and replacing ai by a*i , construct the four Kharitonov’s polynomials
as in (15). Compute the roots of the 8 extreme polynomials and take the largest
real part of the roots as the objective function to be minimized.

• Use the GA to find a solution for the optimization problem (26) such that the
roots of (25) lie in the left hand side of the s-plane away from the imaginary axis
as much as possible. Thus the shortest settling time of oscillations is achieved

The above procedure is applied to the system under study as follows: Consider
the system transfer function (10). The extreme values of its coefficients are cal-
culated as

a* −
i = min

P,Q
ðaiÞ and a* +

i = max
P,Q

ða*i Þ
b* −
i = min

P,Q
ðbiÞ and b* +

i = max
P,Q

ðb*i Þ
ð27Þ
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The results of the above calculations are

a*4 = 1, a*3 = 22, a*2 ∈ ½64 106�, a*1 ∈ ½388 1002�,
a*0½392 2624� and b* ∈ ½2.7 12.4�

Then, the four Kharitonov’s polynomials are:

p1 = 392+ 388s+106s2 + 22s3 + s4

p2 = 2624+ 1003s+64s2 + 22s3 + s4

p3 = 2624+ 388s+64s2 + 22s3 + s4

p4 = 392+ 1003s+106s2 + 22s3 + s4

ð28Þ

7.1 Design of a Robust PSS Using GA

The plant transfer function (10) is analyzed using eight extreme plants given by

Gp sð Þ= Δω
U

ðsÞ= b− s
pi

, i=1, 2, . . . , 4

Gp sð Þ= Δω
U

ðsÞ= b+ s
pi

, i=1, 2, . . . , 4
ð29Þ

To reach the optimization goal, proper adjustment of the GA parameters are
needed. This requires the determination of population size (N = 100 is sufficient),
the bit size for each binary parameter (16 is reasonable size), and the upper and
lower bounds of the optimization of FOPID PSS (for kp, ki, and kd, [0 100] is an
acceptable range but for λ and δ [0 1.5] is found to be a proper choice in our case
[38].

The results obtained using the GA on FOPID PSS design procedure mentioned
in this chapter are delineated in Table 1. The same procedure can be successfully
applied to the case of PID PSS considering the limits of λ and δ of the FOPID PSS
as [1 1]. Results of this case are also shown in Table 1.

The proposed PSS is tested over three operating condition.

Table 1 GA estimated parameters for PID and FOPID PSS

Controller kp ki kd δ λ
PID
(minimum = −1.3961)

45.36 45.452 62.2 N/A N/A

FOPID
(minimum = −1.3849)

48.50 93.666 79.8 0.61 1.3
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7.2 The Normal Loading Test

The first operating point is P = 0.8 pu and Q = 0.3 pu represents the normal
loading conditions. The system was exposed to a 0.20 p.u step increase in the input
torque reference at 0.5 s. The disturbance was removed at 15 s, .e. the signal
duration is 14.5 s, and the system returned to the original operating point by the end
of disturbance. The regulated system without a stabilizer is stable at this point [10].
However, the mechanical disturbance pushes the system close to the stability
bound. Figure 3 shows the machine speed deviation and the machine power angle
(δ). It is clear that if the power system stabilizer is not employed, the rotor angle
oscillation will have a very slow damping behavior. On the other hand, the pro-
posed FOPID stabilizer successfully suppresses and damps the oscillations in
almost three seconds. The controller signal is shown in Fig. 3. It is clear that the
controller is utilizing the full control range limited by the maximum standard power
system stabilizer signal ±0.1 pu.

The Simulink models for the FOPID PSS applications are illustrated in Figs. 4
and 5. The FOPID PSS block is represented by “NIPID” block of “ninteger”
blockset of Matlab [14, 38].

Fig. 4 Matlab/Simulink Model with FOPID PSS and Torque Disturbance Signal
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7.3 Overload Test

In this test, the machine was operating at P = 1.2 pu and Q = 0.2 pu. The machine
speed deviation is unstable at this operating point [10]. Figure 6 shows the effec-
tiveness of the proposed FOPID PSS to stabilize the system during over loading
conditions [17].

7.4 Full Load with Leading Power Factor Test

The second operating point is P = 1 pu and Q = −0.4 pu. This point lies in the
unstable region for the regulated system without a stabilizer as illustrated in Fig. 7a.
The system at this operating point was exposed to a three phase to ground short
circuit at 3 s and this will stay only for 100 m s and then cured. Figure 7b illustrates
that the proposed FOPID stabilizer can damp the power angle and angular fre-
quency oscillations within a short period of time with the same value of tuned
parameters given in Table 1.

Finally, for the more illustration, the effect of the PID and FOPID PSSs on the
stabilization of the SMIB power system described herein is shown in Figs. 8 and 9
for only the case of normal operation with P = 0.8 pu and Q = 0.3 pu without
disturbance. It is clear that The damping effect of the FOPID PSS is noticeable
compared with that of the PID PSS. The control effort in both PID and FOPID PSSs
are shown in Fig. 10a, b. Obviously, the control effort of the FOPID PSS is much
less than that of the PID in both magnitude and mean square error.

Fig. 5 Matlab/Simulink Model of SMIB with FOPID PSS
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Fig. 6 Δδ and Δω after adding FOPID PSS type in normal operation at (P = 1.2, Q = 0.2)

Fig. 7 a Δδ without Controller (P = 1, Q = −0.4). b Δδ and Δω due to a three line to ground
fault at 3 s staying for 100 ms after adding FOPID PSS type (P = 1, Q = −0.4)
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Fig. 8 Δδ and Δω after adding PID PSS type in normal operation (P = 0.8, Q = 0.3)

Fig. 9 Δδ and Δω after adding FOPID PSS type in normal operation (P = 0.8, Q = 0.3)

Fig. 10 a Control Effort of the FOPID PSS in normal operation (P = 0.8, Q = 0.3) b Control
Effort of the PID PSS in normal operation (P = 0.8, Q = 0.3)

Towards a Robust Fractional Order PID Stabilizer … 269



Moreover, the minimum negative eigenvalue of the stabilized SMIB system
using the PID and FOPID PSS is almost the same as shown in Table 1. The change
of this value for the case of FOPID PSS with iteration is delineated if Fig. 11.

It is apparent that the presented tuning algorithm for the fractional order PID
controllers has been found robust at different loading conditions of a single machine
connected to an infinite bus (SMIB) power system. The convergence rate of the
presented algorithm is noticeable which encourage the application of the fractional
order PID (FOPID) controllers on some other industrial applications.

8 Conclusion

The design of a robust FOPID PSS using the Kharitonov’s theorem has been
proposed. The k-parameters of the model are parameterized in terms of the oper-
ating point (P, Q). Accordingly, the coefficients ‘bounds of the transfer function
relating the stabilizing control signal to the speed deviation have been calculated
over the whole range of operating points. The design is based on simultaneous
stabilization of eight extreme plants to achieve a satisfactory dynamic performance.
The calculations are based on the GA optimization algorithm. Simulation results
based on a non-linear model of the power system confirm the ability of the pro-
posed compensator to stabilize the system over a wide range of operating points as
illustrated with various examples.

Fig. 11 The Objective Function vs. Iterations in case of FOPID PSS
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The performance of the conventional PID PSS, designed with the same proce-
dure, as compared with the FOPID PSS shows less oscillation damping of both the
changes in angle δ and the angular speed ω.

For future work, authors recommend the extension of the method to the case of
multi machines power systems. Also some other evolutionary techniques such as
bat inspiration, gravitational techniques and imperialist colony may be tried to
determine the best tuning of the fractional order PID controllers.

Appendix A: Derivation of k-Constants

All the variables with subscript 0 are values of variables evaluated at their
pre-disturbance steady-state operating point from the known values of P0, Q0

and Vt0.

iq0 =
P0Vtoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP0xqÞ2 + ðV2
t0 +Q0xqÞ2

q ðA1Þ

vd0 = iq0xq ðA2Þ

vqo =
ffiffiffiffiffiffi
V2
t0

q
− v2t0 ðA3Þ

id0 =
Q0 + xqi2q0

vq0
ðA4Þ

Eq0 = vq0 + id0xq ðA5Þ

E0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvd0 + xeiq0Þ2 + ðvq0 − xeid0Þ2

q
ðA6Þ

δ0 = tan− 1 ðvd0 + xeiq0Þ
ðvq0 − xeid0Þ ðA7Þ

K1 =
xq − x′d
xe + x′d

iq0E0 sin δ0 +
Eq0E0 cos δ0

xe + xq
ðA8Þ

K2 =
E0 sin δ0
xe + x′d

ðA9Þ

K3 =
x′d + xe
xd + xe

ðA10Þ
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K4 =
xq − x′d
xe + x′d

E0 sin δ0 ðA11Þ

K5 =
xq

xe + xq

vd0
Vt0

E0 cos δ0 −
x′d

xe + x′d

vq0
Vt0

E0 sin δ0 ðA12Þ

K6 =
xe

xe + x′d

vq0
Vt0

ðA13Þ

Appendix B

Nomenclature

All quantities are per unit on machine base.

D Damping Torque Coefficient
M Inertia constant
ω Angular speed
δ Rotor angle
Id, Iq Direct and quadrature components of armature current
xd and xq Synchronous reactance in d and q axis
x′d and x′q Direct axis and Quadrature axis transient reactance
Efd Equivalent excitation voltage
KE Exciter gain
TE Exciter time constant
Tm and Te Mechanical and Electrical torque
T ′do Field open circuit time constant
Vd and Vq Direct and quadrature components of terminal voltage
K1 Change in Te for a change in δ with constant flux linkages in the d axis
K2 Change in Te for a change in d axis flux linkages with constant δ
K3 Impedance factor
K4 Demagnetizing effect of a change in rotor angle
K5 Change in Vt with change in rotor angle for constant E′q
K6 Change in Vt with change in E′q constant rotor angle
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Appendix C

The system data are as follows:
Machine (p.u):

xd =1.6 x′d =0.32

xq =1.55 T ′d0 = 6 s

D= 0.0 M =10 s

ðC1Þ

Transmission line (p.u):

re = 0.0 xe = 0.4 ðC2Þ

Exciter:

KE = 25.00 TE = 0.05 s ðC3Þ

Nominal Operating point:

Vt0 = 1.0 P0 = 0.8

Q0 = 0.3 δ0 = 45◦

ω0 = 314

ðC4Þ

Others

k3 = 1 2̸.78

v= 1.0

Tw = 5

ðC5Þ
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