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Abstract The objective of this chapter is to present an optimal Fractional Order
Proportional—Integral-Differential (FOPID) controller based upon Reduced Linear
Quadratic Regulator (RLQR) using Particle Swarm Optimization (PSO) algorithm
and compared with PID controller. The controllers are applied to Inverted Pendu-
lum (IP) system which is one of the most exciting problems in dynamics and
control theory. The FOPID or PID controller with a feed-forward gain is respon-
sible for stabilizing the cart position and the RLQR controller is responsible for
swinging up the pendulum angle. FOPID controller is the recent advances
improvement controller of a conventional classical PID controller. Fractional-order
calculus deals with non-integer order systems. It is the same as the traditional
calculus but with a much wider applicability. Fractional Calculus is used widely in
the last two decades and applied in different fields in the control area. FOPID
controller achieves great success because of its effectiveness on the dynamic of the
systems. Designing FOPID controller is more flexible than the standard PID con-
troller because they have five parameters with two parameters over the standard PID
controller. The Linear Quadratic Regulator (LQR) is an important approach in the
optimal control theory. The optimal LQR needs tedious tuning effort in the context
of good results. Moreover, LQR has many coefficients matrices which are designer
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dependent. These difficulties are talked by introducing RLQR. RLQR has an
advantage which allows for the optimization technique to tune fewer parameters
than classical LQR controller. Moreover, all coefficients matrices that are designer
dependent are reformulated to be included into the optimization process. Tuning the
controllers’ gains is one of the most crucial challenges that face FOPID application.
Thanks to the Metaheuristic Optimization Techniques (MOTs) which solves this
dilemma. PSO technique is one of the most widely used MOTs. PSO is used for the
optimal tuning of the FOPID controller and RLQR parameters. The control problem
is formulated to attain the combined FOPID controllers’ gains with a feed forward
gain and RLQR into a multi-dimensions control problem. The objective function is
designed to be multi-objective by considering the minimum settling time, rise time,
undershoot and overshoot for both the cart position and the pendulum angle. It is
evident from the simulation results, the effectiveness of the proposed design
approach. The obtained results are very promising. The design procedures are
presented step by step. The robustness of the proposed controllers is tested for
internal and external large and fast disturbances.

Keywords Fractional order Proportional-Integral-Derivative ⋅ Inverted pendu-
lum ⋅ Linear quadratic regulator ⋅ Particle swarm optimization technique ⋅
Proportional-Integral-Derivative ⋅ Reduced linear quadratic regulator ⋅ Robust-
ness verification

1 Introduction

The Inverted Pendulum (IP) System is a classical benchmark for the control
designers. The IP system is a physical system consists of pendulum carried by a cart
and swinging around the fixed pivot [1]. The concept of the IP system is used in
many modern technological applications like the landing of aircraft, space satellites,
launching and guidance of the missile operations, spacecraft, statistics applications,
and biomechanics [2]. Also, IP system is used on a large scale in many areas and
applications including medical, transportation, robotics, aerospace, and military [3].
The IP system is considered the heart of many industrial applications. Some of these
industrial applications are control of our ankle joint during quiet standing up,
Segway’s, quad rotor helicopters and walking robots [4]. IP system is the subject of
an interesting from the standpoint of control because of their intrinsic nonlinearity
[5]. It is used to illustrate the ideas in the nonlinear control and control of the
chaotic system. The evaluation of various control theories is based on the inverted
pendulum system.

IP system is a physical system consists of a bar which is usually made of
aluminum and swinging around the fixed pivot. This fixed pivot will be installed on
the vehicle which moves in the horizontal direction only. The center of gravity of
the normal pendulum is under the axis of rotation and therefore, his condition is
stable when it is directed to the bottom while the center of gravity of the inverted
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pendulum is over its axis of rotation. In the inverted pendulum problem, the pen-
dulum tried to be in a vertical position to be heading up. The swinging up of the
pendulum makes the situation of the system abnormal. So, the permanent controller
should be applied to the system to keep the pendulum vertically upright. The
nonlinearity and inherently instability of the system adding complexity to the
problem especially when the proposed controllers will apply to the nonlinear sys-
tem without any linearization [6]. Fast swinging up of the pendulum angle and
stabilizing the cart at a certain position is required. The proposed controllers should
be robust against the various system disturbances. Different control techniques are
applied on the inverted pendulum to show the performance and effectiveness of the
techniques [7].

In the IP problem, a lot of control techniques are proposed to make the pendulum
balance in inverted to be heading up. Since this situation is abnormal, the status of
“unbalanced” Basically, a permanent effort is needed to keep it this way, at any
moment this effort is stopped, the system will collapse but return again to put the
natural stability beyond. Normally be inaugurated with a turnover point centered on a
moving vehicle accidentally. If the pendulum starts from a vertical position without
applying any control strategy, it will begin to fall off and the cart will move in the
opposite direction which means that any change in pendulum moving will effect on
the cart and vice versa. The desired objectives of inverted pendulum control are:

(a) Maintaining the pendulum vertically upright.
(b) Stabilizing the cart.

The major objectives of the chapter are:

1 Modeling the IP system and presenting the linearized model at the
certain operating point.

2 Design Reduced Linear Quadratic Regulator (RLQR) with minimum
tuning parameters.

3 Design HybridPID controller in conjunction with feed forward and
RLQR.

4 Design Hybrid Fractional Order PID controller with RLQR.
5 Develop multi-objective function which guarantees overall system sta-

bility in terms of minimum overshoot, settling time and steady state error
for the both outputs of the IPsystem.

6 Propose Particle Swarm Optimization (PSO) technique for tuning the IP
control system parameters.

7 Verify the robustness of the proposed controllers on changing the IP
system parameters.

8 Validate the effectiveness of the proposed controllers using various types
of disturbances.

The rest of the chapter is organized as follows: Sect. 2 illustrates a comprehensive
literature survey of all related works. Section 3 formulates the dynamic model of a
simple IP system. In Sect. 4, different classical and metaheuristic optimization
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techniques are used for optimality regions classification and verification. Addi-
tionally, the selection criteria of the most robust controller is reported. Simulation
results are considered in Sect. 5. The conclusions and the perspectives are drawn in
Sect. 6. Finally, the future work is illustrated in Sect. 7.

2 Related Work

There are many types of control techniques that are applied on the IP which has two
outputs: position and angle. The presented methods for IP control are classified into
seven groups:

• Classical methods such as PID controllers [8].
• Adaptation methods [9].
• Artificial methods such as fuzzy logic control [10], neural network [11], Genetic

Algorithm [12] and PSO [13].
• Hybrid control [14].
• Sliding mode control [15].
• Time optimal control [16].
• Predictive control [17].

Some of these techniques are applied for tuning the angle controller gains while the
position controller gains are constant. These strategies try to find the best gains to
achieve the desired angle response. After that, the same procedures are carried out
for tuning the position controller gains while maintaining the angle controller gains
constant. The old control strategies deal with the IP as a single input single output
system (SISO). In recent years, there are many control strategies deal with the IP as
Single Input Multi Output System (SIMO). Some of control techniques are applied
to the Inverted Pendulum system as follow:

Fuzzy Logic Controller

Fuzzy logic controller is used based on the single input rule modules. The input
terms of the fuzzy controller are: the angle, angular velocity of the pendulum, the
position and velocity of the cart and the output term is driving force. The authors in
[18] represented a nonlinear plant with a Takagi-Sugeno fuzzy model. Each control
rule is derived by using “parallel distributed compensation” in the controller design.
To solve linear matrix inequality problems, Convex programming techniques are
used as the control design problems can be reduced to LMI.

Lyapunov Approach

Lyapunov approach is used in PID adaptive control for self-tuning method for a
class of nonlinear control systems [19]. There are three PID control gains param-
eters are adjustable and updated online with a stable adaptation mechanism. By
introducing a supervisory control and a modified adaptation law with projection, the
stability of closed-loop nonlinear PID control system is analyzed. Finally; a
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tracking control of an inverted pendulum system is used to demonstrate the control
performance. Properties of simple strategies for swinging up an inverted pendulum
are discussed in [20]. It turns out that the inverted pendulum swing behavior
depends mainly on, the ratio of the maximum acceleration of the pivot to the
acceleration of gravity. There are great ideas to minimum time solutions by make a
comparison of energy-based strategies with minimum time strategy.

Energy Control Methods

In [21] generalized energy control methods are used to swing-up and stabilization of a
cart–pendulum system with some restriction such, cart track length and control force.
By using energy control principles, the pendulum is swung up to the upright unstable
equilibrium configuration with Starting from a pendant position. In order to prevent
the cart from going outside the limited length, an “energy well” must be built within
the cart track. When getting adequate amount of energy by the pendulum and main-
tained it, it goes into a “cruise” mode. Finally, the stabilizing controller is activated
around a linear zone about the upright configuration when the pendulum is closed to
the upright configuration. This way has workedwell both in simulation and a practical
setup and derived the conditions for stability by using the multiple Lyapunov func-
tions approach. The feedback of an inverted pendulum is not linear although inverted
pendulum is one of the typical examples of nonlinear control systems. A new method
to design back stepping-like controller is proposed by Saeki in [22]. By combining
Saeki’s method with the energy function method, produces a swing-up controller.
Firstly, to prevent the effect of the pendulum, the control input is given of the cart.
Secondly, design the input that guarantees the convergence of the acceleration of the
cart to the desired value. Thirdly, an energy function was used to design the swing-up
control law. The energy function-based controller is used to swing up the pendulum
and the potential function-based controllers used to stabilize the inverted pendulum.

Sliding Mode Control

In [15], the authors developed a Second-order sliding mode control synthesis for
under-actuated mechanical systems and operates it under uncertainty conditions.
The output is specified in such a way that the corresponding zero dynamics is
locally asymptotically stable in order to locally stabilize an under-actuated system
around an unstable equilibrium. And then, provide the desired stability property of
the closed-loop system by applying a quasi-homogeneous second-order sliding
mode controller, driving the system to the zero dynamics manifold in finite time
[23]. It does not rely on the generation of first-order sliding modes, although the
present synthesis exhibits an infinite number of switches on a finite time interval,
while providing robustness features similar to those possessed by their standard
sliding mode counterparts. The performance issues of the proposed method are
illustrated in numerical and experimental studies of a cart–pendulum system.

Optimal Control

Optimal control with time invariant nonlinear controller is presented in [24] for the
inverted pendulum, which is defined for all pendulum angles. The external field is
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calculated by solving the Euler–Lagrange equations backward in time. The
time-optimal feedback control that brings a pendulum to the upper unstable equi-
librium position is obtained in [25]. The technique is based on the maximum
principle and analytical investigations and numerical computations.

The nonlinear model predictive control is applied in [26] to an inverted pen-
dulum apparatus. A standard sequential quadratic programming approach is used to
solve non-convex constrained optimization problem involves 61-variables with
241-constraints.

In this chapter, a new objective function with new artificial intelligent based
technique for tuning the controllers’ gains of SIMO inverted pendulum system is
proposed. The difficulty of the proposed strategy comes from that any change in
angle will effect on the position and vice versa. The tuning process of FOPID
controller and RLQR is not aneasy task as there are five parameters for the FOPID
and two weighting matrices for RLQR. These gains directly affect the angle and cart
response so it is a complicated problem.

3 Mathematical Modeling

Modeling and control of the IP are the prerequisites of autonomous walking. The
primary approach to derive the model is the Euler-Lagrange approach. The IP is one
of the most difficult systems in control theory due to the non-linearity [27]. It is
inherently unstable system with single input and multi-outputs so applying classical
control methods did not lead to good results. If there is a stick on hand and the
objective is to make it always in a vertical position, it is needed to move the hand to
keep the stick in a vertical position. On the other hand, a force is applied to keep the
stick in a vertical position. Similarly in the control of inverted pendulum, a force is
applied to make the pendulum always upright vertical without any deviation about
zero. The IP system has two degrees of freedom of motions as shown in Fig. 1. The
first degree of freedom is the motion of the cart along the x-axis and the second

Fig. 1 Inverted pendulum
system modeling
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degree of freedom is the rotation of the pendulum aboutthex-zplane. The mathe-
matical model can be defined as, a set of mathematical equations representing some
of the phenomena in a way that gives insight into the origins and the consequences
of the behavior of the system. The more accurate the mathematical model is, the
more complex the equations will be. The mathematical model should be easy to
understand. So accuracy and the simplicity are the two main parameters that should
take into consideration while modeling. It can be seen that the equations describing
the system are non-linear. Taylor series expansion is used in order to obtain a linear
model to convert the non-linear equations to linear ones; finally, produce a linear
model that will be helpful in linear control design. The system has two equilibrium
points: one point is stable such as the pendant position and the other point is the
unstable equilibrium point such as the inverted position. For our purpose, the
second is required to make linearization to the model about it. So, a very small
deviation from the vertical is assumed.

The parameters of the IP system are illustrated in Table 1.
The IP System is nonlinear and inherently unstable system. The modeling

equations of the IP system are very important which allow the controller to stabilize
the cart position and swinging up the pendulum angle. The dynamic differential
equation of the system is derived according to the Euler-Lagrange equations. The IP
system is a highly coupling system as it not allowable to derive each output
equation individually. The Euler-Lagrange formula can derive the system as a
multi-outputs system and get the state-space representation of the system states.

3.1 Applying Lagrangian to Inverted Pendulum System

The following steps should be followed to put the IP system in Lagrangian formula
[28]:

(a) Obtain the kinetic and potential energies.
(b) Substitute in the Lagrangian formula L=K −P
(c) Find ∂L ∂̸q
(d) Find ∂L ∂̸q ̇ then find d

dt ð∂L∂q̇Þ.
(e) Solve the Euler-Lagrange equation with the generalized force d

dt ð∂L∂q ̇Þ− ∂L
∂q =Qq

Table 1 Inverted pendulum system parameters

Symbol Parameter Value Unit

M Mass of the cart 0.455 Kg
m Mass of the pendulum 0.21 Kg
l The distance from the pivot to the mass center of the pendulum 0.61/2 m
g The acceleration of gravity 9.8 m/s2
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where:

Qq The generalized forces
q The generalized coordinates

The nonlinear differential equations of the motion are as follow:

X ̈=
Fx −mg cos θ sin θ+mlθ

2
sin θ

M +m sin2 θ
ð1Þ

θ ̇=
ðM +mÞg sin θ−mlθ

2
sin θ cos θ−Fx cos θ

Ml+ml sin2 θ
ð2Þ

Here, the states of the system are defined as the following to represent the state
space on the inverted pendulum:

X1 =X ̸X2 =X ̇ ̸X3 = θ ̸X4 = θ;

where:

X The position of the cart that move along the x-axis
X ̇ The velocity of the cart that moves along x-axis
θ The angle position from the vertical position
θ The velocity of the pendulum that swings along Z-axis

When the system is linearized, the state space representation could easily be
obtained as:

x1̇
x2̇
x3̇
x4̇

2
664

3
775=

0 1 0 0
0 0 − 4.5231 0
0 0 0 1
0 0 46.9609 0

2
664

3
775

x1
x2
x3
x4

2
664

3
775+

0
2.1978

0
− 7.2059

2
664

3
775F ð3Þ

y=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

X1

X2

X3

X4

2
664

3
775+

0
0
0
0

2
664

3
775FX ð4Þ

4 The Proposed Control Techniques:

The proposed control techniques for the IP system in this chapter are:

• Linear Quadratic Regulator.
• Proportional Integral Derivative Controller.
• Fractional Order Proportional Integral Derivative Controller.
• Particle Swarm Optimization based PI/RLQR and FOPID/RLQR.
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(a) Linear Quadratic Regulator

Given a linear time-invariant state-space model of the system:

x ̇=Ax+B ð5Þ

y=Cx+Du ð6Þ

The LQR is used to minimize the following cost function [29]:

J =
1
2

Z∞

0

½xTQx+ uTRu�dt ð7Þ

where:
Q and R are weighting matrices which are selected by the designer.

This selection process depends on the experience of the designer which in turn is
a tedious effort in multi-dimensions problems. In LQR, the following Riccati
equation should be solved [29]:

PA+ATP−PBRTBTP+Q=0 ð8Þ

The matrix P is obtained by solving the above equation so the controller gain can
be calculated according to Eq. (9) as explained in [14]:

K =R− 1BTP ð9Þ

The Q and R matrices are the main design parameters which greatly affect on the
controller gain. In this chapter; PSO technique is used to get Q and R matrices
according to specific constraints.

(b) Proportional Integral Derivative Controller

The proportional-integral-derivative (PID) controller is used in most control sys-
tems. It consists of three gains: proportional gain (Kp), integral gain (Ki) and
derivative gain (Kd). Each of the PID controller gains has an action on the error.
The error is the difference between a setpoint designed by the user and some
measured process variables. The continuous form of a PID controller, with input e
and output U, is presented in Eq. (10).

UPID =KPeðtÞ+Ki

Z t

0

eðtÞdt+Kd
d
dt
eðtÞ ð10Þ
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(c) Fractional Order PID Controller with Feed Forward Gain (FOPID)

Fractional Order Proportional-Integral-Derivative (FOPID) controller is the recent
advances improvement controller of a conventional classical PID controller [30].
The earliest studies concerning fractional calculus presented in the 19th century
made by some researchers such as Liouville (1832), Holmgren (1864), and Rie-
mann (1953) as introduced in [31], and others made some contributions in this field
in the past. Fractional-order calculus deals with non-integer order systems. It is the
same as the traditional calculus but with a much wider applicability. Fractional
Calculus is used widely in the last two decades and applied in different fields in the
control area.

Fractional order Proportional-Integral-Derivative controller achieves great suc-
cess because of its effectiveness on the dynamic of the systems. Designing FOPID
Controller is more flexible than the standard PID Controller because they have five
parameters with two parameters over the standard PID controller. The operator aD

q
t

is commonly used in fractional calculus which is defined as the differentiation
integration operator and discussed as presented in Eq. (11):

aD
q
i =

dq
dtq q>0
1 q=0Rt

a
ðdτÞ− q q<0

8>><
>>:

9>>=
>>;

ð11Þ

where:

q Fractional order (can be complex)
a and t The limits of operation

There are different definitions for fractional derivatives. The widely used defi-
nitions are as following:

(a) Grunwald–Letnikov definition.
(b) Riemann–Liouville definition.
(c) Caputo definition.

These definitions will be discussed below:

(a) Grunwald–Letnikov definition

The Grunwald–Letnikov definition is given by Eq. (12):

aDq
t f ðtÞ=

dqf ðtÞ
dðt− aÞq = lim

N→∞

t− a
N

h i
∑
N − 1

j=0
ð− 1Þ j q

j

� �
f ðt− j

t− a
N

h i
Þ ð12Þ

(b) Riemann–Liouville definition

The Riemann–Liouville definition is the easiest definition and defined as presented
in Eq. (13):
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aDa
t f ðtÞ=

dqf ðtÞ
dðt− aÞq =

1
Γðn− qÞ

dn

dtn

Z t

0

ðt− τÞn− q− 1f ðτÞdτ ð13Þ

where:

n The first integer (n− 1≤ q< n)
Γ

The Gamma function (ΓðzÞ= R∞
0
tz− 1e− tdt)

(c) Caputo definition

The Caputo definition is given by Eq. (14):

aDq
t f ðtÞ=

1
Γðm− qÞ

Rt
0

f ðmÞ

ðt− τÞq+1−m dτ m− 1< q<m

dm
dtm f ðtÞ q=m

8<
:

9=
; ð14Þ

where:
m: The first integer larger than q

Fractional differential equation simulation is not easy as compared with the ordinary
differential ones. Approximation and numerical methods are used for solving
fractional order differential equations Fractional order control calculus presented by
Tustin for the position control of massive objects a half century ago. Provided some
of the other researches were presented by Manabe around (1960). However, the
fractional-order control was not included in the control engineering because of the
major limitations of the possibilities and a lack of adequate amount of mathematical
knowledge and computational power at this. The researchers have concluded in the
past decades that the (fractional order differential equations) could model diverse
systems fuller than integer-order ones and provide an excellent instrument for
describing dynamic processes. In fractional order controllers, in addition to
parameters of the classical proportional-integral-derivative constants, there are two
extra parameters (λ and μ) as discussed in [32]. The parameters λ and μ are the order
of s in integral and derivative respectively so a specific algorithm is required to
make tuning for the parameters of the FOPID Controller. This will improve the
system performance in terms of flexibility and durability better than the classical
PID controller.

The differential equation of the FOPID controller is described as:

UðtÞ=KPeðtÞ+KiD− λeðtÞ+KdDμeðtÞ ð15Þ

After the introduction of this definition, it became easy to see that the classical
types of PID controller such as integral order PID, PI, or PD become special cases
of the most general fractional order PID controller. In other words, the FOPID
controller expands the integer-order PID controller from point to plane, as shown in
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Fig. 2. Taking Laplace Transform of Eq. (15), the controller expression in
s-domain is obtained as:

CðsÞ= UðsÞ
EðsÞ =KP +

Ki

sλ
+Kdsμ ð16Þ

(d) Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization technique devel-
oped by Eberhart and Kennedy in 1995 as given in [33]. The PSO algorithm is
inspired by social behavior of bird flocking, animal hoarding, or fish schooling.
In PSO, the potential solutions, called particles, fly through the problem space by
following the current optimum particles as explained in [34]. PSO has been suc-
cessfully applied in many areas [35, 36], [37] and [38, 39].

PSO simulates the behavior of bird flocking. When a group of birds flying in the
sky searching for the food. The food is located at the specific place through the
searching area but not all the birds know where the food is. Each bird estimates a
position of the food and the bird which have the least distance from the food
position, will follow the group. By iterations, the birds can reach to the food easily.
PSO started with random values for the particles and searching for the optimal
solution that achieves the minimum values of the objective functions. During each
iteration, the best value of the objective functions obtained in each iteration is called
local best (pbest). The best value of the local best values obtained through the
iterations is called global best (gbest) as explained in [40]. After finding the local
best and global best values in each iteration, the particles update its velocity and
position according to Eqs. (17)–(18) respectively as introduced in [33].

Fig. 2 Schematic view of PID for all probabilities
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Fig. 3 Flowchart of the PSO
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Vi
k+1 =wvik + c1r1ðpbesti − xikÞ+ c2r2ðgbest− xikÞ ð17Þ

xik+1 = xik + vik+1 ð18Þ

where:

vik Velocity of ith particle at kth iteration
xik Current position of the ith particle,
r1 and r2 random numbers generated uniformly between 0 and 1
c1 Self-confidence (cognitive) factor
c2 swarm confidence (social) factor
w is the inertia weight factor

The 1st term in Eq. (18) represents the effect of the inertia of the particle, the 2nd
term represents the particle memory influence, and the 3rd term represents the
swarm (society) influence. The flow chart of the procedure is illustrated in Fig. 3.
The velocities of the particles on each dimension may be clamped to a maximum
velocity Vmax, which the parameter is specified by the user. If the sum of the
accelerations causes the velocity on that dimension to exceed Vmax, then the
velocity is limited to Vmax.

4.1 Control Strategy:

Various control strategies are applied to the IP. PID controller is one of the most
popular ones among them. Some researches concentrate on swinging up the angle
in vertical upright without considering the dynamics of the cart. Employing two
PID controllers to stabilize the cart position and swinging up the pendulum angle
was presented in [41]. The tuning of two PID controllers is atedious effort by using
conventional methods. Recently, the artificial intelligent computational techniques
were used to tune the PID parameters. Linear Quadratic Regulator (LQR) is sug-
gested as a replacement for one of the two PID controllers [42] for swinging up the
pendulum angle. LQR design is depending on solving the Riccati equation. Riccati
equation is based on two designing matrices Q and R which have seventeen
parameters.

They must be positive definite and positive semi-definite respectively. Tuning of
seventeen parameters of LQR, feedforward gain, and in addition to the three
parameters of FOPID or PID controller is time-consuming and more complex. The
reduction of tuning parameters is one of the most important topics in the compu-
tational evolutionary field [43]. A reduced order LQR with FOPID and with PID
controller was presented in this chapter. In this proposed technique the tuning
parameters were reduced to be thirteen instead of twenty-one in the case of using
PID and reduced from twenty-three to fifteen in the case of using FOPID. It sim-
plifies the optimization problem and has a great effect on the computation time.

238 M.E. Mousa et al.



Designing the gains of LQR is mainly depending on the choice of the Q and R
matrices which selected by the designer. This may take a long time to obtain the best
values of the two matrices parameters. Therefore, trial and error method is
time-consuming. The process of selecting the matrices becomes more difficult when
the system has a large dimension of system state space matrices. In this chapter, an
evolutionary optimization based RLQR controller, FOPID controller and compen-
sating gain (Kf ) design for an inverted pendulum system is introduced and compared
to another one with PID controller. The weighting matrices Q and R are positive
semi-definite and positive-definite respectively. This means that the term xTQx in
Eq. (7) is always positive or zero at each time t for all functions x(t). Furthermore,
the second term in Eq. (7) is always positive at each time t for all values of u(t).
Therefore J is always positive at each time. To ensure that the weighting matrices Q
and R are positive semi-definite and positive-definite respectively and to reduce the
dimension of Q and R matrices as explained in [43], it is assumed that:

Q=WT *W ð19Þ

R=VT *V ð20Þ

where:

W amatrixof m * n dimension
V matrix of k * l dimension

In this chapter, It is assumed that: m = 2, n = 4, k = 1, l = 1.
So the modified Riccati equation is given by Eq. (21):

PA+ATP−PBðVT *VÞTBTP+ ðWT *WÞ=0 ð21Þ

The proposed optimization technique is used to tune the W and V matrices to
guarantee that Q and R will be positive semi-definite and positive-definite
respectively. After that, the modified Riccati equation is solved to find the reduced
Linear Quadratic Regulator gains according to the following equation:

K = ðVT *VÞ− 1BTP ð22Þ

Hint: The modified Riccati equation can be solved in Matlab by using the
command lqr (A, B, Q, R)
where:
A and B: System State-space matrices.
Q and R: weighting matrices of RLQR gains.
K: RLQR gain (K = ½K1K2K3K4])

The four gains ðK1,K2,K3,K4Þ of the RLQR will be calculated. The states that
affect the pendulum angle are cart velocity, pendulum position, and the pendulum
velocity so the feedback from the angle output having these states. Hence, there is
no necessity to use the controller gain K1 which controls the cart position state.
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4.2 Problem Formulation

The optimization problem has 15 variables ðKP,Ki,Kd , λ, μ,KF ,Wmatrix and
VmatrixÞ in the case of using FOPID controller. Also, it has 13 variables
ðKP,Ki,Kd,KF ,Wmatrix and VmatrixÞ in the case of using PID controller. PSO run
to find the best values for all variables that achieve the minimum Overshoot, Steady
state error and Settling Time. The difficulty of the algorithm is to achieve the
minimum Overshoot, Steady state error and settling time for both the cart position
and the pendulum angle at the same time as presented in Eq. (23). In this chapter,
the algorithm runs according to a Multi-objective function that has the constraints
which give an acceptable response to the two outputs.

The global _best_ Fitness is determined according to:

Global− best− fitness=minðess, o.s, TsÞ ð23Þ

Fig. 4 The flow chart of the proposed control strategy
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The steps of the proposed algorithm are illustrated in Fig. 4 as follow:

Step1: Generating the inverted pendulum system parameters.
Step2: Initialize values of PSO particles.
Step3: Solve Riccati equation.
Step4: Obtain the proposed RLQR gain.
Step5: Consider last three values only of the RLQR gain.
Step6: Run the Simulink model.
Step7: Computing the objective function of the algorithm.
Step8: Check achieving minimum value for steady state error, settling time and

overshoot.
Step9: Stop the algorithm when achieving minimization for the objective

function or exceeding the maximum iteration number.

5 Simulation and Results:

The IP is among the most difficult systems to control in the field of control engi-
neering. It consists of two control loops as presented in Fig. 5. For the purpose of
effective comparison, the system is equipped with FOPID with RLQR and PID with
RLQR. The first one is FOPID with RLQR (FOPID/RLQR) controller. The
(FOPID/RLQR) gains are responsible for stabilizing the cart and swinging up the
pendulum to be in a vertical position. The second one is PID with RLQR
(PID/RLQR) controller. In the first control loop there is a feedback signal from the
cart position output to the summing point with the input signal (unit step) then a
feed forward controller is applied. The feedback in the second control loop is
extremely different as the factors that effect on swinging up the angle are the speed
of the cart, the pendulum angle and the angular velocity of the pendulum. A feed-
forward estimator is used to estimate the speed of the cart and the angular velocity
of the pendulum as presented in the model as illustrated in Fig. 5. The estimations
for the speed and angular velocity are collected and then introduced into the
inverted pendulum. A feed forward amplifier (Kf) affects the dynamic response of
the inverted pendulum.

Fig. 5 Block diagram of inverted pendulum system
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The obtained gains from PSO are given in Table 2. The results are presented in
Figs. 6 and 7.

The RLQR gains for both FOPID/RLQR and PID/RLQR are Klqr = [−50.03
−353.79 −85.9] and Klqr=[−62.03 −251.45 −72.69] respectively.

The simulation results illustrate that both controllers had succeeded in stabilizing
the cart position and swinging up the pendulum angle effectively. Although,
FOPID/RLQR controller stabilized the angle of the inverted pendulum with less
over shoot and under shoot than PID/RLQR. Moreover, PID/RLQR controller
stabilized the inverted pendulum position with less settling time than
FOPID/RLQR. Tables 3 and 4 presented the output specifications of the cart
position and the pendulum angle respectively.

To ensure that the proposed controllers are robust, three robustness tests are
performed to measure the effectiveness of the system. The cases are as follows:

(a) Set points with different amplitudes.
(b) Increasing the step input with different ranges.
(c) System parametersperturbation.

Table 2 The obtained gains from PSO

KP Ki Kd λ μ Kf

FOPID/RLQR 10 19.4 −2.1 −1 1.6 55.7
PID/RLQR 10 0.009 −29.2320 1 1 −50

Fig. 6 System response of cart position with different controllers
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(a) Set points with different amplitudes

A series of set points as shown in Fig. 8 are applied to the IP system to validate the
effectiveness of the proposed controllers. It is evident from the results the effec-
tiveness of the controllers in stabilizing the cart position and swinging up the
pendulum angle. Both controllers are succeeded in stabilizing the cart position and
swinging up the pendulum angle as shown in Figs. 9 and 10.

Fig. 7 System response of pendulum angle with different controllers

Table 3 The output specifications of the cart position

Time response specifications PID/RLQR using PSO FOPID/RLQR using PSO

Rise time (s) 1.5638 2.58
Settling time (s) 2.7873 4.6234
Overshoot (%) 1.2% 0.00072206%
Undershoot (%) 2.4988% 0.8306%

Table 4 The output specifications of the pendulum angle

Time response specifications PID/RLQR using PSO FOPID/RLQR using PSO

Maximum value (rad.) 0.1109 0.0312
Minimum value (rad.) −0.0432 −0.0191
Settling time (s) 3.5758 5.6728
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Fig. 8 Series of set points with different amplitudes

Fig. 9 System cart position response of different controllers with series of set points
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Robustness Verification

(a) Increasing the step input with different ranges.

To measure the effectiveness of the system, the step input is increased with different
ranges. The controller which cannot withstand the increasing of the step input will
be not a robust controller design. Firstly, step input is increased with 10% then it
will be increased by 20%. Figures 11 and 12 illustrate dynamic responses of the cart
position and the pendulum angle respectively when the step input increased with
10%. It is noted that the two proposed controllers succeeded in keeping balance to
the inverted pendulum system when the step input increased with 10%.

The step input increased with 20% from its value. Although PID/RLQR con-
troller using PSO can stabilize the inverted pendulum system with 10% increasing
of the step input, it cannot keep the system in balance with 20% increase.
FOPID/RLQR controllers using PSO only the controller that succeeded in the
robustness test related to the increasing of the step input. Figure 13 presented the
response of the cart position. Figures 14 and 15 illustrated the pendulum angle
response in case of PID/RLQR and FOPID/RLQR using PSO.

(b) System parameters perturbation.

This test is one of the most important tests in checking the robustness of the inverted
pendulum system. In this test, inverted pendulum parameters are increased with 10%
from their values. Each controller will be applied to the nonlinear systemwith the new
parameters. If the FOPID/RLQR controller is succeeded in controlling the same
system with the new parameters, the controller will be very robust. Table 5 Illustrates

Fig. 10 System pendulum angle response of different controllers with series of set points
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the IP system parameters with 10% increasing. It is noted that the FOPID/RLQRusing
PSO can stabilize the cart position and swing up the pendulum angle while
PID/RLQR using PSO failed in balancing the system (Figs. 16, 17 and 18)

Fig. 12 Dynamic response of pendulum angel with 10% increase of step input

Fig. 11 Dynamic response of cart position with 10% increase of step input
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Fig. 14 Dynamic response of pendulum angel with 20% increase of step input using PID/RLQR
controller

Fig. 13 Dynamic response of cart position with 20% increase of step input
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Fig. 15 Dynamic response of pendulum angel with 20% increase of step input using
FOPID/RLQR controller

Table 5 Parameters of the inverted pendulum system with 10% increasing

System
parameters

Mass of the
cart (M)

Mass of the
pendulum (m)

Distance from the pivot to the mass
center of the pendulum (l)

Parameters
values

0.455 0.21 0.61/2

Increasing
with 10%

0.5005 0.2310 0.3355

Fig. 16 Dynamic response of cart position (10% Increase of System Parameters)
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Fig. 17 Dynamic response of pendulum angle using PID/RLQR controller (10% increase of
system parameters)

Fig. 18 Dynamic response of pendulum angle using FOPID/RLQR Controller (10% increase of
system parameters)
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6 Conclusion

In this chapter, a new effective control method integrating both PSO-based Frac-
tional Order Proportional Integral Derivative (FOPID) and Reduced Linear Quad-
ratic Regulator (RLQR) was introduced. This chapter demonstrates that PSO can
solve searching and tune the controller parameters more efficiently than conven-
tional ones. The inherited instabilities in the inverted pendulum were treated
effectively. Modeling of the inverted pendulum was performed using MATLAB.
The simulation was conducted in order to cover the full range of operating con-
ditions and severe disturbances. The application of the proposed control method
showed its ability to stabilize the inverted pendulum. The obtained results are very
promising.

7 Future Work

In control system engineering there are a lot of techniques for balancing the
inverted pendulum system. PSO is one of the evolutionary computational tech-
niques which proposed in this chapter. Balancing the inverted pendulum system
with other techniques is left as a future work. Adaptive control and using other
computational techniques can be used for this purpose.
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