
On the Electronic Realizations
of Fractional-Order Phase-Lead-Lag
Compensators with OpAmps and FPAAs

Carlos Muñiz-Montero, Luis A. Sánchez-Gaspariano,
Carlos Sánchez-López, Víctor R. González-Díaz
and Esteban Tlelo-Cuautle

Abstract It is well known that the fractional-order phase-lead-lag compensators can

achieve control objectives that are not always possible by using their integer-order

counterparts. However, up to now one can find only a few of publications discussing

the strategies for parameters’ tuning of these compensators, with only simulation

results reported. This is due in part to the implicit difficulties on the implementation

of circuit elements with frequency responses of the form s±𝜆 that are named “frac-

tances”. In this regard, there exist approximations with rational functions, but the

drawback is the difficulty to approximate the required values with the ones of the

commercially-available resistances and capacitors. Consequently, fractional com-

pensators have not been appreciated by the industry as it is in the academia. There-

fore, motivated by the lack of reported implementations, this chapter is structured

as a tutorial that deals with the key factors to perform, with the frequency-domain

approach, the design, simulation and implementation of integer-order and fractional-

order phase-lead-lag compensators. The circuit implementations are performed with
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Operational Amplifiers (OpAmps) and with Field Programmable Analog Arrays

(FPAA). Emphasis is focused in the obtaining of commercially-available values

of resistances and capacitors. Therefore, the design procedure starts with the use

of equations that provide the exact and unique solution for each parameter of the

compensator, avoiding conventional trial-and-error procedures. Then, five OpAmp-

based configurations for integer-order and fractional-order realizations are described

in terms of basic analog building blocks, such as integrators or differential ampli-

fiers, among others. The corresponding design equations are also provided. Then,

six examples are presented for both, OpAmp-based and FPAA-based implementa-

tions with the simulation and experimental results discussed regarding other results

reported in the literature.

Keywords Fractional calculus ⋅ Fractional-order lead/lag compensators ⋅ Field

programmable analog array

1 Introduction

Proportional-Integral-Derivative (PID) controllers [4–6], and lead/lag compensators

are the control strategies most used in today’s industry. The phase-lag compen-

sator reduces the static error by increasing the low-frequency gain without any

resulting instability, and increases the phase margin of the system to yield the

desired overshoot [30]. Meanwhile, the phase-lead compensator change the phase

diagram to reduce the percent overshoot and to reduce the peak time [30]. The

design of lead/lag compensators may require four-step and twelve-step trial-and-

error approaches, respectively [30]. Typically, during the design stage the plant is

modeled by its transfer function with integer orders q on the Laplace frequency sq
.

However, experimental evidences show that physical systems can be modeled with

higher accuracy using fractional-order transfer functions [16, 20, 46]. On this direc-

tion, it is known that the fractional-order PID controllers and phase-lead-lag com-

pensators have better performance than their integer counterparts [16, 22, 27, 28,

35]. That is due to the addition of degrees of freedom, which can be used to incorpo-

rate additional control objectives. For instance, in the case of lead/lag compensators

it can be established a constrain in the initial value of the error signal (actuator’s

constraint) [35].

Although fractional calculus has been studied from Leibniz in 1965, its practical

use has been restricted. It was not until the development of new computing envi-

ronments and numerical calculus (e.g. MATLAB) when researchers introduced this

theory to the modeling and control of systems [16, 24, 36, 38]. In fact, those com-

puting environments allowed other complex control strategies such as the reported

in [7–10, 12, 13, 47]. That way, in 1999 Podlubny proposed the first fractional PID

controller [32]. Up to now one can find several realizations for this kind of controller

[22, 24, 27, 28, 32, 38, 41, 46]. In addition, researchers have developed the corre-

sponding rules for parameters’ tuning, some of them considering Ziegler-Nichols

rules [17, 25, 40], optimization methods [29, 36], techniques in the frequency
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domain [18, 25, 39], which offer robustness to the controller facing parametric

uncertainties of the process and presence of external perturbations [2]; or also in

techniques for intelligent computing, such as: neural networks [31], genetic algo-

rithms [14], or fuzzy logic [43, 45]. In general, these techniques can be classified as

analytical, numeric or rules-based ones. A summary of them is given in [29, 41, 42].

Unfortunately, the fractional-order lead/lag compensators have not been reported as

abundantly as the fractional PID controllers. In [29, 34] there have been studied the

following fractional-order lead/lag compensator (and rational-order approximations

for such a compensator)

C(s) = K
(1 + 𝛼𝜏s
1 + 𝜏s

)𝜆

, 𝜆 ∈ (0,∞) (1)

In [35] it was reported a method for the unique solution of the parameters 𝛼, 𝜏

and q of the compensator

C(s) = K
(1 + 𝛼𝜏sq

1 + 𝜏sq

)
, q ∈ (0, 2) (2)

Unfortunately, to the best of the authors’ knowledge, analog implementations of

this compensator have not been reported. As in the case of PID controllers, it is

due to the difficulties to accomplish the design of circuit elements with frequency

responses of the form s−𝜆 or s𝜇 that are named “fractances”. The fractances are cir-

cuit elements with constant phase response at all frequencies [23]. For instance,

very few physical realizations have been reported related to “fractal capacitances”

[11, 21]. Unfortunately, those elements are bulky, require chemical compounds with

difficult manipulation and the order 𝜆 cannot be modified easily. As alternatives,

there exist approximations with rational functions in s for the operators s−𝜆 or s𝜇,

that are obtained from Carlson methods, Oustaloup, continuous fractions expansion

(CFE) [16, 33], among others. The resulting functions are implemented with arrays

of resistances, capacitors and inductors in ladder networks [33]. The drawback of

these realizations is the difficulty to approximate the required values with the ones

of the commercially-available resistances and capacitors [19], in addition they can

require negative impedance converters [3, 33], or inductors [15].

From the difficulties on the implementations mentioned above and motivated by

the lack of reported implementations of (2), this chapter is structured as a tutor-

ial that deals with the key factors to perform the design, simulation and implemen-

tation of integer and fractional-order phase-lead-lag compensators. It is proposed

the use of first-order analog approximations for fractional derivatives and integrals,

with the main advantage of using integrators of integer order, differential ampli-

fiers, two-inputs adder amplifiers, and conventional lead-lag networks, all of them

realized with OpAmps. Most important is that the resulting circuits can be imple-

mented with commercially-available resistances and capacitors, avoiding the use of

negative impedance converters or inductors. Each design is realized obtaining the

parameters of (2) with the procedure reported in [35]. Five configurations for integer
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and fractional-order compensators are verified experimentally from realizations using

OpAmps uA741 and using an Application Specific Integrated Circuit (ASIC) that is

known as Field-programmable Analog Array (FPAA) AN231E04 from Anadigm

[1]. Six design examples of both integer and fractional-order phase-lead-lag com-

pensators are presented.

2 Theoretical Background

This section describes the calculus of derivatives and integrals of fractional order,

the corresponding Laplace transforms, and the fractional order transfer function.

From these concepts fractional order phase-lead-lag compensators are described in

Sect. 2.3.

2.1 Derivative and Integral of Fractional Order

The Riemann-Lieuville definition for calculation of fractional derivatives and inte-

grals establishes [20]

D𝛼

t f (t) = 1
𝛤 (m − 𝛼)

( d
dt

)m

∫
t

0

f (𝜏)
(t − 𝜏)𝛼−m+1d𝜏

(3)

where 𝛼 ∈ ℝ, m − 1 < 𝛼 < m,m ∈ ℕ and 𝛤 (⋅) is Gamma function. For 𝛼 > 0, 𝛼 < 0
and 𝛼 = 0 one gets the fractional derivative, integral and identity function.

2.2 Laplace Fractional Operator and Fractional-Order
Transfer Function

Laplace Transform with initial conditions equal to zero of (3) is given by [20]

L
{
D𝛼

t f (t)
}
= s𝛼F(s) (4)

where F(s) denotes Laplace transform of f (t), and s𝛼 is the Laplace operator of frac-

tional order expressed as

s𝛼 = (j𝜔)𝛼 = 𝜔
𝛼

[
cos

(
𝛼𝜋

2

)
+ j sin

(
𝛼𝜋

2

)]
(5)

Since Laplace transform is a lineal operator, (4) can be applied to a differential

equation of fractional order with coefficients ak, bk ∈ ℝ and input and output signals

u(t) and e(t) to obtain the transfer function [2]
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H(s) = U(s)
E(s)

=
bms𝛽m + bm−1s𝛽m−1 +⋯ + 𝛽0s𝛽0
ans𝛼n + an−1s𝛼n−1 +⋯ + 𝛼0s𝛼0

(6)

where U(s) = L {u(t)} and E(s) = L {e(t)}.

2.3 Integer and Fractional-Order Phase-Lead-Lag
Compensators

The phase-lag compensator reduces the static error by increasing the low-frequency

gain without any resulting instability. This compensator also increases the phase mar-

gin of the system to yield the desired overshoot in the transient response [30]. In

most cases reported in the literature, that design process is a four-step trial-and-error

approach based on graphic approximation (Bode plots) [30]. On the other hand, the

phase-lead compensator is designed, via Bode plots, to change the phase diagram

in order to increase the phase margin, reduce the percent overshoot, and increase

the bandwidth (by increasing the gain crossover frequency) to obtain a faster tran-

sient response with a reduced peak time [30]. Typically, the design procedure of this

compensator requires a twelve-step trial-and-error approach.

In 2003 and 2013 Wang and Tavazoei reported, respectively, exact and unique

solutions for integer-order and fractional-order phase-lead-lag compensators when

the gain and phase that the compensator must provide are known for a given

frequency. The advantage of those methods is that no trial-and-error or other guess-

work is needed. Considering this advantage, in this work are employed the proce-

dures described by Wang and Tavazoei. This way, this section summarizes the design

equations developed in [35, 44]. Examples of the use of these equations are provided

in Sect. 5.

2.3.1 Exact Solution for Integer-Order Phase-Lead-Lag Compensation
[44]

Consider M dB and p rad (−𝜋∕2 ≤ p ≤ 𝜋∕2) as the required magnitude and phase

which should be provided by the integer-order phase-lead-lag compensator at a fre-

quency 𝜔 = 𝜔c to yield the desired transient response. This goal is obtainable by

means of the compensator

C(s) = 1 + 𝛼𝜏s
1 + 𝜏s

(7)

if and only if

c >

√
1 + 𝛿2 and 0 < p < 𝜋∕2 (phase-lead compensation) (8)

c <
1√

1 + 𝛿2
and − 𝜋∕2 < p < 0 (phase-lag compensation) (9)
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where c = 10M∕20
and 𝛿 = tan(p). If (8) or (9) are satisfied, the compensator para-

meters 𝛼 and 𝜏 can be calculated as

𝛼 = c(c
√
1 + 𝛿2 − 1)

c −
√
1 + 𝛿2

and 𝜏 = c −
√
1 + 𝛿2

c𝛿𝜔c
(10)

2.3.2 Exact Solution for Fractional-Order Phase-Lead-Lag
Compensation [35]

Consider M dB and p rad (−𝜋∕2 ≤ p ≤ 𝜋∕2) as the required magnitude and phase

which should be provided by a fractional-order compensator at the frequency 𝜔 =
𝜔

q
c . This objective is obtainable by means of

Cf (s) = K
(1 + 𝛼𝜏sq

1 + 𝜏sq

)
, q ∈ (0, 2) (11)

if and only if

cot
(q𝜋

2

)
<

c cos(p) − 1
c sin(p)

, 0 < p <
𝜋

2
(phase-lead compensation) (12)

cot
(q𝜋

2

)
<

c − cos(p)
sin(p)

, − 𝜋

2
< p < 0 (phase-lag compensation) (13)

If (12) or (13) are satisfied, the parameters 𝛼 and 𝜏 can be calculated as

𝛼 =
uv tan

(q𝜋
2

)
− 1

v tan
(q𝜋

2

)
− 1

, 𝜏 = 1
𝜔

q
c

[
v sin

(q𝜋
2

)
− cos

(q𝜋
2

)]
(14)

where

u = c
c − cos(p)

c cos(p) − 1
, v =

c cos(p) − 1
c sin(p)

(15)

In the case of the fractional-order phase-lead compensator (0 < p < 𝜋∕2), the

value of q is selectable in the range (q∗, 2), where

q∗ = 2
𝜋
tan−1

(
c sin(p)

c cos(p) − 1

)
, for c >

1
cos(p)

(16)

q∗ = 2 + 2
𝜋
tan−1

(
sin(p)

c − cos(p)

)
, for c <

1
cos(p)

(17)

Similarly, for the fractional-order phase-lag compensator (−𝜋∕2 < p < 0), the

value of q is selectable in the range (q∗, 2), where
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q∗ = 2
𝜋
tan−1

(
sin(p)

c − cos(p)

)
, for c < cos(p) (18)

q∗ = 2 + 2
𝜋
tan−1

(
c sin(p)

c cos(p) − 1

)
, for c > cos(p) (19)

2.3.3 Exact Solution for Integer-Order Phase-Lead-Lag Compensation
with Actuator’s Constrains [35]

One advantage of the fractional-order phase-lead and phase-lag compensators regard-

ing their integer-order counterparts is the fact that the order q, selectable in the range

(q∗, 2), represents and additional degree of freedom, which can be used to satisfy

another control objective. This way, the exact value of q can be chosen based on an

acceptable value for the initial peak of the control signal, i.e., establishing an actuator

constraint.

Supposing that it is desired that the initial peak of the control signal be equal to

u0 when the input is a unit step reference, for lead compensation (u0 ∈ (K,∞)) the

exact value of q must be selected as

q =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) > 0

1 if v(u0 − Ku) = 0

2 + 2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) < 0

(20)

and in the case of lag compensation (u0 ∈ (0,K)) the order q must be calculated as

q =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2 + 2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) > 0

1 if v(u0 − Ku) = 0
2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) < 0

(21)

2.4 Realization of Analog Fractances

The challenge in implementing fractional-order transfer functions and, consequently,

fractional-order phase-lead-lag compensators is related to the non-existence of cir-

cuit elements that reproduce the operator (5). Those elements are called fractances

[23], which are characterized by a magnitude response with roll-off ±20𝛼 deci-
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Fig. 1 Method of Cauer for circuit synthesis

bels by decade, and a constant-phase response at all frequencies of ±90𝛼 degrees.

For instance, very few physical realizations have been reported related to “frac-

tal capacitances”, capacitors with impedance Z = 1∕(s𝛼C) [11, 21]. Unfortunately,

those elements are bulky, require chemical compounds with difficult manipulation

and the order 𝛼 cannot be modified easily. Alternatively, the fractances can be

approached in a desired bandwidth with rational functions from the methods of

Newton, Carlson, Muir, Oustaloup, Matsuda, power series expansion (PSE), con-

tinuous fractions expansion (CFE), among others [16, 23, 33]. Once a rational func-

tion is obtained it can be synthesized with ladder networks of Cauer, or Foster [33],

tree structure, or transmission lines [16, 33]. The circuit components can be resis-

tors, inductors [15], capacitors and sometimes negative impedance converters [3,

33]. One example for synthesis by Cauer method is given in Fig. 1. The drawback of

these realizations is the difficulty to approximate the required values with the ones

of the commercially-available resistances and capacitors [19].

Once the procedures to design integer-order and fractional-order phase-lead-lag

compensators have been described, in the following sections will be focused the

problem of circuit implementation.

3 Basic Building Blocks

This section presents the OpAmp-based basic building blocks that will be employed

in Sect. 4 to perform the synthesis of integer-order and fractional-order phase-lead-

lag compensators.
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3.1 Inverting Integrator (IInt)

The OpAmp-based Inverting Integrator of Fig. 2a uses capacitive feedback to inte-

grate the input signal Vin1. The transfer function of this circuit is given by

Vout1

Vin1
= − 1

RgCgs
= −1

s
(22)

where Cg can be used as degree of freedom and Rg = 1∕Cg. Then, magnitude (Zm)

and frequency (𝛺f ) denormalizations can be used to obtain commercially available

values of the passive elements and the desired frequency response.

3.2 Non-inverterting and Inverting Amplifiers (NIA, IA)

The OpAmp-based Non-inverting Amplifier (NIA) and Inverting Amplifier (IA)

depicted in Fig. 2b and c use resistive feedback to amplify the input signals Vin2
and Vin3. The corresponding transfer functions are

Vout2

Vin2
= 1 +

Re2
Re1

,

Vout3

Vin3
= −

Rf2

Rf1
(23)

3.3 Weighted Differential Amplifier and Differential
Amplifier

The Weighted Differential Amplifier (WDA) amplifies the weighted difference

between two voltages. A particular case is the Differential Amplifier (DA), which

amplifies the difference between the two voltages but does not amplify the particular

voltages. Fig. 2d shows an implementation of a WDA with Rg1 and Rg2 used to con-

trol the gains and with Rg as degree of freedom. By nodal analysis the output voltage

Vout4 results

Vout4 =
Rg

Rg1
V1A −

Rg

Rg2
V2A (24)

Alternatively, by omitting in Fig. 2d the landed resistors Rg1 and Rg2 and by choos-

ing Rg1 = Rg2 = Rg3 is obtained the DA of Fig. 2e with output voltage

Vout5 =
Rg

Rg3

(
V1B − V2B

)
(25)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 OpAmp building blocks: a Inverting Integrator (IInt). b Non-inverting Amplifier (NIA).

c Inverting Amplifier (IA). d Two-input weighted differential amplifier (WDA). e Differential

Amplifier (DA). f Two-input weighted adder amplifier (WAA). g Low-Pass Amplifier (LPA).

h Lead/lag network
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3.4 Two-Input Weighted Adder Amplifier (WAA)

It produces an output Vout6 equal to the weighted sum of the two inputs V1C and V2C.

The realization of Fig. 2f uses Rg as degree of freedom and Rh1 and Rh2 to control

the weighted factors by means of

Vout6 =
Rg

Rh1
V1C +

Rg

Rh2
V2C (26)

3.5 Lowpass Amplifier (LPA)

Figure 2g shows a first-order inverting Low Pass Filter Amplifier (LPA) (“bilinear

filter”). The DC gain and corner frequency of this circuit are |H|s=0 = R2p∕R1p and

𝜔c = 1∕(R2pCg) (Cg can be used as degree of freedom), R2p determines the corner

frequency and R1p the DC gain. The transfer function Vout7∕Vin7 results

Vout7

Vin7
= −

1
R1pCg

s + 1
R2pCg

(27)

3.6 Lead/Lag Network (L-L)

The transfer function of the circuit of Fig. 2h, its pole, its zero and its DC gain can

be calculated as
Vout8

Vin8
= −

R2c

R1c

(1 + sR1cCg

1 + sR2cCg

)
(28)

𝜔z =
1

R1cCg
, 𝜔p = 1

R2cCg
, |H|(s=0) =

R2c

R1c
(29)

Clearly, this network provides positive (leading) phase shift if the zero of the

transfer function is closer to the origin of the s-plane than the pole, which occurs if

R1c > R2c. Conversely, with R1c < R2c the pole is closer than the zero to the origin

of the s-plane, and the network provides negative (lagging) phase shift of the output

signal relative to the input signal at all frequencies.
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Fig. 3 First-order

approximation of a

Fractional-order Integrator

(FInt)

3.7 Fractional Integrator (FInt)

As mentioned before, the operator s−q
cannot be implemented directly, it is required

to perform an approximation. Consider the transfer function Vout9∕Vin9 = −s−q
. Then,

an approximation of order one of a Fractional-order Integrator given by

Vout9

Vin9

= − 1
sq ≈ −

(1 − q)s + (1 + q)
(1 + q)s + (1 − q)

= −As + 1
s + A

= − 1
A

⎛
⎜⎜⎝
1 + As
1 + s

A

⎞
⎟⎟⎠
, A =

1 − q
1 + q

(30)

can be implemented with an adequate selection of the capacitors and resistances of

the Lead-Lag network in Fig. 2h, resulting the circuit of Fig. 3.

4 OPAMP-Based Realization of Integer-Order and
Fractional-Order Phase-Lead-Lag Compensators

This section presents OPAMP-based realization of integer-order and fractional-order

phase-lead-lag compensators performed with the basic building blocks of Figs. 2

and 3.

4.1 Integer-Order Phase-Lead-Lag Compensator

A phase-lead-lag compensator with DC unity-gain can be realized by means of the

OpAmp-based network shown in Fig. 4, which consists of a L-L network connected

in series with an IA block (with Rf1 = R1c and Rf2 = R2c). The transfer function of

this network is expressed by

Voc

Vic
=

1 + sR1cCg

1 + sR2cCg
= 1 + 𝛼𝜏s

1 + 𝜏s
(31)
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Fig. 4 Integer-order phase-lead-lag compensator

where

𝜏 = R2cCg, 𝛼 =
R1c

R2c
(32)

Therefore, for 𝛼 > 1 (i.e. with R1c > R2c) and 𝛼 < 1 (i.e. with R2c > R1c) are

obtained, respectively, phase-lead and phase-lag responses.

4.2 Fractional-Order Phase-Lead-Lag Compensator
(𝟏 < q < 𝟐)

Consider the fractional-order phase-lead-lag transfer function given by

Voc(s)
Vic(s)

= 1 + 𝛼𝜏sq

1 + 𝜏sq (33)

where 1< q <2 is assumed. Algebraic manipulation on (33) leads to

Voc(s) + Voc(s)𝜏sq = Vic(s) + Vic(s)𝛼𝜏ssq−1
(34)

and after dividing both sides of (34) by 𝜏sq
and regrouping similar terms, it results

in

Voc(s) =
Vic(s) − Voc(s)

𝜏ssq−1 + 𝛼Vic(s) (35)

This way, the fractional-order phase-lead-lag compensator with 1< q <2 can

be realized starting from the block diagram shown in Fig. 5a. The corresponding

implementation using OpAmps is shown in Fig. 5b. Here, the algebraic operation

(Vic(s) − Voc(s))∕𝜏 is performed by the block DA of Fig. 2e, with Rg3 = 𝜏Rg. The

operation 1∕sq = (1∕s)(1∕sq−1) is realized by means of the series array of an integer-

order Inverter Integrator IInt (with Rg = 1∕Cg) and a Fractional-order Integrator FInt

whit Ã calculated from (30) as
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(a)

(b)

Fig. 5 Fractional-order phase-lead-lag compensator (case 1 < q < 2)

Ã =
1 − (q − 1)
1 + (q − 1)

= 2
q
− 1 (36)

Finally, to complete (35), the output of FInt is added to 𝛼Vic by means of the block

WAA, using Rg∕Rh1 =1 and Rg∕Rh2 = 𝛼.

4.3 Fractional-Order Phase-Lead-Lag Compensator
(𝟎 < q < 𝟏)

For the case of fractional-order phase-lead-lag compensators with 0< q <1, the

block IInt of Fig. 5 must be omitted. Consequently, the block WAA must be changed

by a block WDA to avoid a positive feedback, with the output of the block FInt

connected to the inverting input of the block WDA, resulting the implementation

depicted at Fig. 6. In this circuit, the block DA is designed with Rg3 = 𝜏Rg, the block

WDA is realized with Rg1 = Rg∕𝛼 and Rg2 = Rg, and A is calculated with (30).

Two alternative implementations for fractional-order phase-lead-lag networks

with 0 < q < 1 and with fewer active but more passive elements are presented below.



On the Electronic Realizations of Fractional-Order Phase-Lead-Lag . . . 145

Fig. 6 Fractional-order phase-lead-lag compensator (case 0 < q < 1)

4.4 Fractional-Order Phase-Lead-Lag Compensators
𝟎 < q < 𝟏 (Cauer’s Approximation)

The circuit of Fig. 7a is a well known phase-lead configuration, but with a capacitor

C substituted by a fractal capacitor with fractance 1∕(sqC). It can be easily demon-

strated with nodal analysis that the transfer function of this circuit becomes

Voc(s)
Vic(s)

=
1 + R1caCsq

1 +
(
R1ca||R2ca

)
Csq

= 1 + 𝛼𝜏sq

1 + 𝜏sq (37)

𝜏 =
(
R1ca||R2ca

)
C, 𝛼 = 1 +

R1ca

R2ca
(38)

and the fractal capacitor can be approximated with any of the methods mentioned in

Sect. 2.4 (for a given n-th order of approximation) and, subsequently, implemented

by Cauer networks by means of Continuous Fraction Expansion method.

Analogously, the circuit of Fig. 7b is a well known phase-lag configuration with

the capacitor C substituted by a fractal capacitor with fractance 1∕(sqC). In this case

the transfer function takes the form

Voc(s)
Vic(s)

=
1 + R2caCsq

1 +
(
R1ca + R2ca

)
Csq

= 1 + 𝛼𝜏sq

1 + 𝜏sq (39)

𝜏 =
(
R1ca + R2ca

)
C, 𝛼 =

R2ca

R1ca + R2ca
(40)
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(a) (b)

Fig. 7 Fractional-order compensators with 0 < q < 1 and Cauer networks. a Phase-lead compen-

sator. b Phase-lag compensator

5 Examples of Phase-Lead-Lag Compensated Systems
Implemented with OpAmps

To validate the proposals of implementation of Sect. 4, this Section presents sim-

ulation or experimental results of systems that use the circuits in Figs. 4, 5, and 7

as compensators connected in series with an integer-order plant in unity-gain neg-

ative feedback configuration. Additionally, to explain the procedures described in

Sect. 2.3 to design integer-order and fractional-order phase-lead-lag compensators,

will be employed the system modeled by the following transfer function

G(s) = 100K
s(s + 36)(s + 100)

(41)

This system has been considered as an academic example in [30, 44] for integer-

order compensation, and in [35] for fractional-order compensation. Gains K = 5839
and K = 1440 have been employed in the lag and lead compensators, respectively,

to satisfy steady-state error specifications. Figure 8 shows an OpAmp-based imple-

mentation of G(s) by means of blocks IInv, LPA and IA. By equating the transfer

function of this circuit with (41), results

(
1

R1pCg

)(
1

R1pCg

)

s
(

s + 1
R2pCg

)(
s + 1

R3pCg

) = 100K
s(s + 36)(s + 100)

(42)

and by choosing 1∕(R2pCg) = 36, 1∕(R3pCg) = 100, 1∕(R1pCg) = 10
√

K,Cg = 1 F

and Rg = 1Ω are obtained: R1p = 1∕
√
100K Ω, R2p = 0.0277Ω and R3p = 0.01Ω.
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Fig. 8 Implementation of the plant G(s) with OpAmps

Table 1 Design details of the plant G(s)
Block Element Theoretical value Employed value (commercially available)

IInt Rg 100 KΩ 100 KΩ
Cg 10 nF 10 nF

LPA1 R1p 130 Ω for K = 5839 120 Ω
260 Ω for K = 1440 270 Ω

R2p 2.77 KΩ 2.7 KΩ
Cg 10 nF 10 nF

LPA2 R1p 130 Ω for K = 5839 120 Ω
260 Ω for K = 1440 270 Ω

R3p 1 KΩ 1 KΩ
Cg 10 nF 10 nF

IA Rg 100 KΩ 100 KΩ

Then, impedance (Zm = 1E5) and frequency (𝛺f = 1000) denormalizations are car-

ried out over this elements to obtain the values detailed in Table 1.

5.1 Example 1: Integer Order Phase-Lag Compensator
(K = 5839)

Figure 9a shows the Bode diagram of G(s) with K = 5839. As can be observed, the

system presents a phase margin of 67◦ and a gain of 22.9 dB at the desired crossover

frequency 𝜔c = 11 rad/s. Assuming a required phase margin PM = 62◦ to yield the

desired transient response, a phase p = −5◦ and a magnitude M = −22.9 dB must be

provided by the phase-lag compensator to obtain a composite Bode diagram that goes

through 0 dB at 𝜔c = 11 rad/s. Therefore, using the procedure presented in Sect. 2.3

for integer-order compensators are calculated c = 10M∕20 = 0.0711 and 𝛿 = tan(p) =
−0.087. Substituting these values of c and 𝛿 in (10) are obtained 𝛼 = 0.0711 and

𝜏 = 14.3472, resulting the integer order phase-lag compensator

C(s) = 1 + 𝛼𝜏s
1 + 𝜏s

= 1 + (0.0711)(14.3472)s
1 + 14.3472s

(43)
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Fig. 9 Bode magnitude and phase plots of G(s) = 100K∕s(s + 36)(s + 100) with a K = 5839; b
K = 1440

Table 2 Design details of the integer-order phase-lag compensator of Fig. 4 and Example 1 with

K = 5839
Block Element Theoretical value Employed value (commercially available)

L-L R1c 100 KΩ 100 KΩ
R2c 1.43 MΩ 1.5 MΩ
Cg 10 nF 10 nF

InvA R1c 100 KΩ 100 KΩ
R2c 1.43 MΩ 1.5 MΩ

Additionally, it can be verified that with 𝛿 = −0.087 and c = 0.0711 the condi-

tion (9) is satisfied, guarantying the existence of the compensator, which is imple-

mented with the circuit of Fig. 4. Therefore, by choosing Cg = 1 and 𝛼 = 0.0711
in (32) are obtained R2c = 14.34Ω and R1c = 1.02Ω. Then, impedance (Zm = 1E5)

and frequency (𝛺f = 1000) denormalizations are carried out to obtain the values of

elements detailed in Table 2.

The system in Fig. 8 in the unity negative feedback structure with the lag-phase

compensator of Fig. 4 was simulated using HSPICE and the model of the OpAmp

uA741. The details of design are listed in Tables 1 and 2. Figure 10 shows the results

for an step-input of 1 V and frequency 166.6 Hz. The resulted overshoot was 9.7%

with a peak time 258.4 µs. This overshoot corresponds to a second order system

with phase margin PM = 58.93◦ and damping factor 𝜁 = 0.596. These results show

a good agreement with the results given in [44] (PM = 62◦, 𝜁 = 0.591, overshoot =
10%) and [30] (overshoot = 9.8%, denormalized peak time = 260µs), validating the

proposal of implementation.
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Fig. 10 Time-domain simulation results of the integer-order phase-lag compensator C(s) = [1 +
(0.0711)(14.3472)s]∕[1 + 14.3472s] realized with the circuit of Fig. 4 with design details of Table 2,

in unity negative feedback configuration, in which the plant G(s) = 583900∕[s(s + 36)(s + 100)]
is implemented with the circuit of Fig. 8 with the design details of Table 1. Denormalizations in

impedance and frequency Zm = 1E5 and 𝛺f = 1000 were also performed

5.2 Example 2: Integer Order Phase-Lead Compensator
(K = 𝟏𝟒𝟒𝟎)

Figure 9b shows the Bode diagram of G(s) with K = 1440. The phase margin and

gain of the system at the expected crossover frequency 𝜔c = 39 rad/s are PM =
180◦–159◦ = 21◦ and M = −3.7668 dB, respectively. Consider a required phase

margin PM = 45.5◦ to yield the desired transient response. Consequently, the

phase-lead compensator must provide a phase of p = 24.5◦ and a gain of M = 3.7668
dB to yield the desired transient response with a Bode diagram that goes through 0
dB at 𝜔c = 39 rad/s. By means of the procedure presented in Sect. 2.3, for integer-

order compensators, are calculated: c = 10M∕20 = 1.5429 and 𝛿 = tan(p) = 0.4473.

Substituting these values of c and 𝛿 in (10) results 𝛼 = 2.3799 and 𝜏 = 0.0166. The

corresponding integer-order phase-lead compensator becomes

C(s) = 1 + 𝛼𝜏s
1 + 𝜏s

= 1 + (2.3799)(0.0166)s
1 + 0.0166s

= 2.3795
( s + 25.31

s + 60.24

)
(44)

and the existence of this phase-lead compensator is guaranteed because of with

𝛿 = 0.4473 and c = 1.54 the condition (8) is satisfied. To proceed with the imple-

mentation it is employed the circuit of Fig. 4. By selecting Cg = 1 F and 𝛼 = 2.3799
in (32) are obtained R2c = 0.0166Ω and R1c = 0.0395Ω. Then, impedance (Zm =
1E5) and frequency (𝛺f = 1000) denormalizations are carried out to obtain the

details of design summarized in Table 3.
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The system in Fig. 8 in the unity negative feedback structure with the integer-order

phase-lead compensator of Fig. 4 was simulated using HSPICE and the model of the

OpAmp uA741. The details of design are listed in Tables 1 and 3. Figure 11 shows

the results for an step-input of 1 V and frequency 166.6 Hz. The resulted overshoot

was 18.2% with a peak time 77.5µs. This overshoot corresponds to a second order

system with phase margin 49.9◦ (compared with the theoretical value of 45.5◦) and

damping factor 𝜁 = 0.476. These results show a good agreement with the results

given in [44] (PM = 45.5◦, 𝜁 = 0.427, overshoot = 22.6%) and [30] (overshoot =
22.6%, denormalized peak time = 72µs), validating the implementation.

Table 3 Design details of the integer-order phase-lead compensator of Fig. 4 and Example 2 with

K = 1440
Block Element Theoretical value Employed value (commercially available)

L-L R1c 3.95 KΩ 3.9 KΩ
R2c 1.66 KΩ 1.2 KΩ + 470Ω
Cg 10 nF 10 nF

InvA R1c 3.95 KΩ 3.9 KΩ
R2c 1.66 KΩ 1.2 KΩ + 470Ω

Fig. 11 Time-domain simulation results of the phase-lead compensator C(s) = [1 +
(2.3799)(0.0166)s]∕[1 + 0.0166s] realized with the circuit of Fig. 4 with design details of Table 3,

in unity negative feedback configuration, in which the plant G(s) = 144000∕[s(s + 36)(s + 100)]
is implemented with the circuit of Fig. 8 with the design details of Table 1. Denormalizations in

impedance and frequency Zm = 1E5 and 𝛺f = 1000 were also performed
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5.3 Example 3: Fractional-Order Phase-Lead Compensator
(𝟏 < q < 𝟐)

Consider the system G(s) given by (41) with K = 1440. As was explained in Example

2, a desired phase margin 45.5◦ with a gain cross-frequency of 39 rad/s

correspond to M = 3.76 dB, c = 1.5429, p = 24.1 and 𝛿 = 0.4473. Using the proce-

dure described in Sect. 2.3 for fractional-order compensators and according to (16),

this goal is achievable by means of a fractional-order phase-lead compensator with

q ∈ (q∗, 2) = (0.6338, 2). By taking advantage of the additional grade of liberty it

can be obtained the exact value of q by establishing a desired value of the initial

peak of the control signal, i.e., by using an actuator constraint. For instance, assum-

ing a desired initial peak of the control signal of u0 = 2500 and according to (20)

and (15) it is obtained q = 1.33. Substituting this value in (14) and (15) the resulting

fractional-order phase-lead compensator is expressed by

C(s) = 1 + 𝛼𝜏sq

1 + 𝜏sq =
1 + (1.736)

(
8.1395 × 10−3

)
s1.33

1 + 8.1395 × 10−3s1.33
(45)

This fractional-order phase-lead compensator satisfies the condition (12) with 𝛿 =
0.4557 and c = 1.5429. The implementation is performed with the circuit of Fig. 5

selecting Rg = 1Ω, 𝛼 = 1.736, 𝜏 = 8.1395 × 10−3 and q̃ = q − 1 = 0.33. This way,

the following results are obtained: Ã = (1 − q̃)∕(1 + q̃) = 0.5037, 𝜏Rg = 8.1395 ×
10−3 Ω,Rg∕Ã = 1.9853Ω, Ã∕Rg = 0.5037 F and Rg∕𝛼 = 0.576Ω.

Then, impedance (Zm = 1E5) and frequency (𝛺f = 1000) denormalizations are car-

ried out to obtain the details of design summarized in Table 4.

The system in Fig. 8 in the unity negative feedback structure with the fractional-

order lead-phase compensator of Fig. 5 was implemented on protoboard with

OpAmps uA741 and the details of design listed in Tables 1 and 4. The experimental

Table 4 Design details of the fractional-order phase-lead compensator of Fig. 4 and Example 3

with K = 1440
Block Element Theoretical value Employed value (commercially available)

DA Rg 100 KΩ 100 KΩ
𝜏Rg 813.9 Ω 820 Ω

IInt Rg 100 KΩ 100 KΩ
Cg 10 nF 10 nF

L-L Rg 100 KΩ 100 KΩ
Rg∕Ã 200 KΩ 200 KΩ
ÃCg 5 nF 5 nF

Cg 10 nF 10 nF

WAA Rg 100 KΩ 100 KΩ
Rg∕𝛼 57.6 KΩ 47 KΩ + 10 KΩ
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(a)

(b)

Fig. 12 a Experimental setup of the fractional-order phase-lead compensator C(s) = [1 +
(1.736)(8.1395 × 10−3)s1.33]∕[1 + 8.1395 × 10−3s1.33] realized with the circuit of Fig. 5 in unity

negative feedback configuration with plant G(s) = 144000∕[s(s + 36)(s + 100)] implemented with

the circuit of Fig. 8. b Time-domain experimental results
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setup is shown in Fig. 12a. It consists of an input square signal of 1 V in ampli-

tude, offset = 0.5 V, and frequency of 100 Hz, supplied from the experimental plat-

form ELVIS II from National Instruments. This device also provides bias voltages

of ±15 V to the OpAmps. Figure 12b shows the measured time response. The output

was measured with an Oscilloscope HD4096 Teledyne Lecroy. The resulted over-

shoot was 21.9%. This overshoot corresponds to a second order system with phase

margin 46.32◦ and damping factor 𝜁 = 0.435. It can be noted that the theoretical

(overshoot = 22.7%, 𝜁 = 0.426, PM = 45.5◦), the simulation (overshoot = 21.13%,

𝜁 = 0.4434, PM = 47.05
◦
), the experimental results (overshoot = 21.9%, 𝜁 = 0.435,

PM = 46.32
◦
) and the results reported in Fig. 7 of [35] are in good agreement, thus

validating the proposal of implementation.

5.4 Example 4: Fractional-Order Phase-Lead Compensator
with 𝟎 < q < 𝟏 and Cauer Approximation

With an unconstrained initial peak of the control signal, the value of q in Example

3 may be any in the range (q∗, 2) = (0.6338, 2). Consider q = 0.7. Substituting this

value in (14) and (15) the fractional-order phase-lead compensator becomes

C(s) = 1 + 𝛼𝜏sq

1 + 𝜏sq =
1 + (7.442)

(
9.5243 × 10−3

)
s0.7

1 + 9.5243 × 10−3s0.7
(46)

and this compensator satisfies the condition (12) with 𝛿 = 0.4557 and c = 1.5429.

In this case, the circuit implementation can be performed with the circuit of Fig. 6.

However, this implementation is similar to the presented in Example 3. Instead,

in this example will be explored the realization with network approximation by

means of the Cauer method. Then, consider the circuit implementation of Fig. 7.

With q = 0.7,C = 1 and a fourth-order approximation of the impedance 1∕sq
is

obtained [23]

1
sq =

Q0s4 + Q1s3 + Q2s2 + Q3s + Q4

Q4s4 + Q3s3 + Q2s2 + Q1s + Q0

= 0.037s4 + 2.324 ∗ s3 + 9.921s2 + 7.8s + 1
s4 + 7.8s3 + 9.92s2 + 2.324s + 0.037

(47)

where

Q0 = q4 − 10q3 + 35q2 − 50q + 24
Q1 = −4q4 + 20q3 + 40q2 − 320q + 384
Q2 = 6q4 − 150q2 + 864 (48)

Q3 = 4q4 − 10q3 + 40q2 + 320q + 384
Q4 = q4 + 10q3 + 35q2 + 50q + 24
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Alternatively, the approximation of 1∕sq
can be obtained by other methods of

approximation, such as Crone, Carlson or Matsuda, employing the Ninteger tool box

of MATLAB [26]. Moreover, the synthesis of the fractance (47) can be obtained with

the repeated division process of terms described in Sect. 2.4 (Continued Fraction

Expansion) by means of the tool box FOMCON of MATLAB and the following

code [26, 37]

≫ a1 = [1 7.807 9.921 2.323 0.037];
≫ b1 = [0.037 2.3239 9.921 7.807 1];
≫ [q, expr] = polycfe(b1, a1)

resulting

1
s0.7

= R1 +
1

sC2 +
1

R3 +
1

sC4 +
1

R5 +
1

sC6 +
1

R7 +
1

sC8 +
1

R9

(49)

The values of R1,C2,R3,C4,R5,C6,R7,C8 and R9 are shown in Table 5.

Impedance (Z = 1E5) and frequency (Ω = 1000) denormalizations were carried out.

Finally, using 𝛼 = 7.442,C = 1 and 𝜏 = 9.5243 × 10−3 are solved simultaneously

both equations in (38) to obtain R1ca = 0.07088Ω and R2ca = 0.011Ω. Again by

using the impedance denormalization Z = 1E5 over these elements are obtained the

values indicated in Table 5.

The system in Fig. 8 in the unity negative feedback structure with the fractional-

order lead-phase compensator with Cauer network approximation of Fig. 7 was

simulated using HSPICE and the model of the OpAmp uA741. The details of design

Table 5 Design details of the fractional-order phase-lead compensator of Fig. 7 and Example 4

with q < 1 and K = 1440
Element Value Element Value

R1 3.7 KΩ R7 534 KΩ
C2 4.9 nF C8 9.8 nF

R3 65.38 KΩ R9 1.87 MΩ
C4 5.6 nF R1ca 7 KΩ
R5 224.8 KΩ R2ca 1.12 KΩ
C6 6.8 nF
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Fig. 13 Time-domain simulation results of the fractional-order phase-lead compensator C(s) =
[1 + (7.442)(9.5243 × 10−3)s0.7]∕[1 + 9.5243 × 10−3s0.7] realized with the circuit of Fig. 7 with

design details of Table 5, in unity negative feedback configuration, in which the plant G(s) =
144000∕[s(s + 36)(s + 100)] is implemented with the circuit of Fig. 8 with the design details of

Table 1. Denormalizations in impedance and frequency Z = 1E5 and 𝛺 = 1000 were also per-

formed

are listed in Tables 1 and 5. Figure 13 shows the results for an step-input of 1 V, off-

set 0.5 V and frequency 100 Hz. The resulted overshoot was 25% with a peak time

75.3 µs. This overshoot corresponds to a second order system with phase margin

43.46◦ and damping factor 𝜁 = 0.4037. These results show a good agreement with

the results given in Example 3 and in Fig. 6 of [35], validating the implementation.

However, in Fig. 13 it can also be observed that the network approximation is not

appropriate in this case when the order of the approximation is less than 4. It is due

to the limited bandwidth where the approximation is valid.

6 Phase-Lead Compensated Systems Implemented
with FPAA

In this section is illustrated, starting from the designs of Examples 2 and 3, the imple-

mentation and experimental validation of integer-order and fractional-order phase-

lead compensators by means of FPAAs, which are processors for analog signals,

equivalents to the digital processors FPGAs (Field Programmable Gate Arrays).

FPAAs are devices of specific purpose with the characteristics of being recon-

figurable electrically. They are used to implement a variety of analog functions,

such as: integration, derivation, weighted sum/subtraction, filtering, rectification,

comparator, multiplication, division, analog-digital conversion, voltage references,

signal conditioning, amplification, nonlinear functions, generation of arbitrary sig-

nals, among others. Since FPAAs are reconfigurable, one can implement complex
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prototypes in a short time. In this work the FPAA AN231E04 from Anadigm [1],

is used. It uses technology of switched capacitors and it is organized into four con-

figurable analog blocks (CABs). Those CABs are distributed in a matrix of size 2× 2,

supported by resources of programmable interconnections, seven configurable

analog cells of input-output with active elements for amplification and dynamic

reduction of offset and noise, an on-chip generator of multiple non-overlapped

clock-signals and internal voltage references to eliminate temperature effects. It also

includes a look-up table (LTU) of 8× 256 bits for function synthesis and nonlin-

ear signals, and for analog-digital conversion. The configuration data is saved into

an internal SRAM, which allows reprogramming the device without interrupting its

operation. The circuits are designed using the software Anadigmdesigner2, in which

the user has access to a library of functional circuits CAMs (Configurable Analog

Modules). Those CAMs are mapped in a portion for each CAB. The CABs have

matrices of switches and capacitors, two OpAmps, a comparator, and digital logic

for programming.

6.1 Example 5: FPAA Implementation of the Integer-Order
Phase-Lead Compensator of Example 2

Figure 14a shows an implementation, using the FPAA AN231E04, equivalent to the

closed-loop system designed in Example 2. The corresponding experimental setup

is illustrated in the same figure. Details of the design and the corresponding transfer

functions of every employed building block are listed in Table 6. The comparator

producing the signal error e(t) = Vin(t) − Vout(t) is realized using a CAM “SumDiff”

(adder-subtractor) with gains 1 and−1 at each input. The integer order lead controller

(44) is implemented by CAM “FilterBilinear 1” (Bilinear filter), designed to produce

a transfer function with DC gain 2.3795, and one pole (𝜔p = 60.24 rad/s) and one

zero (𝜔z = 25.31 rad/s), both denormalized by a factor 𝛺f = 1000 (fp = 9.57 kHz,

fz = 4.02 kHz).

On the other hand, the plant (41) with K = 1440 is modeled by two low-pass filters

H2(s) = −36∕(s + 36) and H3(s) = −100∕(s + 100) (CAM “Bilinear Filter 2” and

CAM “Bilinear Filter 3”, respectively), and by an “integrator” CAM, H1(s) = −40∕s,

in series with a block of gain -1 (CAM “GainInv1”). The frequency denormalization

𝛺f = 1000 was realized by substituting in each block s by s∕𝛺f .

The experimental configuration of Fig. 14a has a differential input of 0.5 V in

amplitude and frequency 500 Hz, and a common-mode component of 1.5 V. It is

provided by the array of three OpAmps and the target ELVIS II from National Instru-

ments. This device also provides bias voltages of ±15 V to the

OpAmps. The output is converted from differential mode to simple mode with a

differential amplifier. The output is measured with an Oscilloscope HD4096 Tele-

dyne Lecroy (see Fig. 14b). The resulted overshoot was 21.1%. This overshoot corre-
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Table 6 Details of the design in FPAA of the closed-loop system conformed by the plant (41) and

the integer-order phase-lead controller (44) with 𝛺f = 1000
Operation CAM Transfer function Characteristics

Comparator SumDiff

(Sum/difference)

Vo = Vin − Vout G1 = 1
G2 = −1

Lead controller Filter bilinear 1

(pole-zero filter)

−G
( 1 + s∕𝜔z

1 + s∕𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (60.24)(1000)

2𝜋
=

9.57 kHz

fz =
𝜔z𝛺f

2𝜋
= (25.31)(1000)

2𝜋
=

4.02 kHz

Plant Filter bilinear 2

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (36)(1000)

2𝜋
=

5.74 kHz

Filter bilinear 3

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (100)(1000)

2𝜋
=

15.9 kHz

Integrator
Kint

s
Kint ∗ 𝛺f = 40 ∗ 1000 =
40000 = 0.04∕µs

GainHold (Inverter

amplifier)

−G G = 1

Gi: gain of the CAM. f : corner frequency of the CAM. Kint: integration constant of the CAM

sponds to a second order system with phase margin 47◦ (compared with the theoreti-

cal value of 45.5◦) and damping factor 𝜁 = 0.443. The simulation results of Example

2 and the experimental results of the system of Fig. 14a are in good agreement, thus

validating this proposal of implementation.

6.2 Example 6: FPAA Implementation of the
Fractional-Order Phase-Lead Compensator of Example 3

Consider the fractional-order phase-lead compensator with q = 1.33 presented in

Example 3 (see (45)). This controller can be reformulated by using a first-order

approximation of the fractional derivator sq̃ = (Bs + 1)∕(s + B), with 0< q̃ < 1,

resulting
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(a)

(b)

Fig. 14 a Experimental setup of the integer-order phase-lead compensator C(s) = [1 +
(2.3799)(0.0166)s]∕[1 + 0.0166s] realized with an FPAA, in unity negative feedback configuration,

with plant G(s) = 144000∕[s(s + 36)(s + 100)] also implemented in the FPAA. A denormalization

in frequency 𝛺f = 1000 was performed. b Time-domain experimental results
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C(s) = 1 + 𝛼𝜏sq

1 + 𝜏sq = 1 + 𝛼𝜏s1+q̃

1 + 𝜏s1+q̃
=

1 + 𝛼𝜏s
(Bs + 1

s + B

)

1 + 𝜏s
(Bs + 1

s + B

)

= 𝛼

⎛
⎜⎜⎜⎜⎝

s2 +
𝜔z

Qz
s + 𝜔

2
z

s2 +
𝜔p

Qp
s + 𝜔

2
p

⎞
⎟⎟⎟⎟⎠

(50)

where

q̃ = q − 1, sq̃ ≈ Bs + 1
s + B

, B =
1 + q̃
1 − q̃

(51)

and

Table 7 Details of the design in FPAA of the closed-loop system conformed by the plant (41)

and the fractional-order lead controller (50) with 𝛼 = 1.736, 𝜏 = 8.1395 × 10−3, q = 1.33 and 𝛺f =
3000
Operation CAM Transfer function Characteristics

Comparator SumDiff

(Sum/Difference)

Vo = Vin − Vout G1 = 1
G2 = −1

Lead controller Filter biquad

(pole-zero filter)

G

⎛
⎜⎜⎜⎜⎝

s2 +
𝜔z

Qz
s + 𝜔

2
z

s2 +
𝜔p

Qp
s + 𝜔

2
p

⎞
⎟⎟⎟⎟⎠

G = 1.736
fp =

𝜔p𝛺f

2𝜋
= (11.084)(3000)

2𝜋
=

5.29 kHz

Qp = 0.1776

fz =
𝜔z𝛺f

2𝜋
= (8.4122)(3000)

2𝜋
=

4.016 kHz

Qz = 0.2326

Plant Filter bilinear 2

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (36)(3000)

2𝜋
=

17.22 kHz

Filter bilinear 3

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (100)(3000)

2𝜋
=

47.7 kHz

Integrator
Kint

s
Kint ∗ 𝛺f = 40 ∗ 3000 =
120000 = 0.12∕µs

GainHold

(Inverter

amplifier)

−G G = 1

Gi: gain of the CAM. f : corner frequency of the CAM. Kint: integration constant of the CAM
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𝜔p = 1√
𝜏

, Qp =
√
𝜏B

𝜏 + 1
, 𝜔z =

1√
𝛼𝜏

, Qz =
√
𝛼𝜏B

𝛼𝜏 + 1
(52)

This way, the fractional-order phase-lead compensator with 1 < q < 2 can be

realized by means of a biquad filter. Based on this idea, Fig. 14a shows the imple-

mentation in FPAA AN231E04 of the closed-loop controlled system designed in

Example 3. Details of the design and the transfer functions of every building block

are listed in Table 7. The comparator producing the signal error e(t) = Vin(t) − Vout(t)
is realized using a CAM “SumDiff” (adder-subtractor). The fractional-order lead

controller (50) is implemented by CAM “FilterBiquad1” (Biquad filter, see Fig. 14a).

The parameters of this block are calculated using (51) and (52) with 𝛼 = 1.736, 𝛼𝜏 =
1.4131 × 10−2, 𝜏 = 8.1395 × 10−3 and q̃ = 0.33, been obtained: 𝜔p = 11.084 rad/s,

𝜔z = 8.412 rad/s, Qp = 0.1776 and Qz = 0.2326. Then, a frequency denormalization

𝛺f = 3000 is realized, resulting fp = 5.29 kHz and fz = 4.02 kHz. The same denor-

malization is performed in the plant, which is designed as in the Example 5 (see

Fig. 14a). The design details are summarized in Table 7.

The experimental configuration is equal to the reported in Fig. 14a, but with the

CAM “FilterBiquad1” instead of the CAM “FilterBilinear1”. It has a differential

input of 0.5 V in amplitude, offset 0.25 V and frequency 500 Hz, and a common-

mode component of 1.5 V from the array of three OpAmps and target ELVIS II

from National Instruments. This device also provides bias voltages of ±15V to the

OpAmps. The output is converted from differential mode to simple mode with a

Fig. 15 Time-domain experimental result of the fractional-order phase-lead compensator C(s) =
[1 + (1.736)(8.1395 × 10−3)s1.33]∕[1 + (8.1395 × 10−3)s1.33] realized with an FPAA, in unity

negative feedback configuration, with plant G(s) = 144000∕[s(s + 36)(s + 100)] also implemented

in the FPAA. A denormalization in frequency 𝛺f = 3000 was performed
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differential amplifier. The output is measured with an Oscilloscope HD4096 Tele-

dyne Lecroy (see Fig. 15). The resulted overshoot was 16.2%, compared with the

21.9% obtained with the implementation of Example 3. This overshoot corresponds

to a second order system with phase margin 51.9◦ and damping factor 𝜁 = 0.5. The

simulation results of Example 3 and the experimental results of Example 6 are simi-

lar, but with a difference of 5% regarding the overshoot. This difference is attributed

to the different amplitudes and frequencies of the input signals (the FPAA has swing

limits), the resolution of the programmable gains that can be implemented with the

FPAA and the different denormalization frequencies.

7 Conclusion

The OPAMP-based and FPAA-based design of integer-order and fractional-order

phase-lead-lag compensators for the case of q ∈ (0, 1) and q ∈ (1, 2), have been

introduced. Each design was realized considering: (i) the parameters obtained with

the procedures reported in [44] (integer-order) and [35] (fractional-order) when

the gain and the phase required at a particular frequency are known for a desired

time-domain response; (ii) Five configurations of compensators realized with basic

OPAMP building blocks and (iii) Two more configurations (fractional and integer

orders) with FPAAs. The OPAMP building blocks employed include inverter inte-

grators, inverter and non-inverter amplifiers, differential amplifiers, weighted adders,

first order low-pass filters, fractional-order phase-lead-lag ladders and fractional

integrators. With all those blocks, the design equations were established taking care

that some resistor and all capacitor values were chosen like degrees of freedom. Six

design examples of both integer and fractional-order phase-lead-lag compensators

were presented. In order to compare the performance of the different compensators,

an integer-order plant was used. The compensation was made in series with the plant

in a unity feedback loop. Simulation and experimental results agree with theory. An

interesting result is the fact that the proposed solutions are good enough for the case

of q ∈ (1, 2) when the order of the approximation of sq
is one; however, those are

not adequate when q ∈ (0, 1). In those cases is necessary employ an approximation

of higher order. It was evident with the third example that when the Cauer ladders

are not employed, it is possible to synthesize realizations with commercial values

of capacitors and resistors based on frequency and impedance transformations. Nev-

ertheless, according with the fourth example, when q ∈ (0, 1), the number of active

elements can rise significantly since the approximation of the operator s±𝛼 is required

to be of high-order. In this case, the Cauer ladder solution might be an option despite

of its inherent complexity for the computation of the commercial element values. To

the author’s knowledge, there very few (two) fractional-order phase lead-lag com-

pensators reported in the literature. Therefore, the circuit solutions presented in this

chapter offer useful alternatives that can be occupied for diverse controllers. Further-

more, some other applications such as memristors, filters and chaotic systems might

benefit from the proposed strategies of implementation.



162 C. Muñiz-Montero et al.

Acknowledgements This work was supported in part by the National Council for Science and

Technology (CONACyT), Mexico, under Grant 181201, 222843 and 237991; in part by the Uni-

versidad Autónoma de Tlaxcala (UATx), Tlaxcala de Xicothencatl, TL, Mexico, under Grant

CACyPI-UATx-2015; and in part by the Program to Strengthen Quality in Educational under Grant

P/PROFOCIE-2015-29MSU0013Y-02

References

1. AN231E04 Datasheet Rev 1.2. (2012). http://www.anadigm.com/an231e04.asp

2. Angel, L., & Viola, J. (2015). Design and statistical robustness analysis of FOPID, IOPID and

SIMC PID controllers applied to a motor-generator system. IEEE Latin America Transactions,

13(12), 3724–3734. doi:10.1109/TLA.2015.7404900.

3. Antoniou, A. (1972). Floating negative-impedance converters. IEEE Transactions on Circuit
Theory, 19(2), 209–212.

4. Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with

gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995.

doi:10.1007/s00521-014-1560-x.

5. Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers.

In Q. Zhu, A. T. Azar (Eds.), Complex system modelling and control through intelligent soft
computations. Germany: Springer. doi:10.1007/978-3-319-12883-21.

6. Azar, A. T., & Serrano, F. E. (2016). Stabilization of mechanical systems with backlash by PI

loop shaping. International Journal of System Dynamics Applications, 5(3), 20–47.

7. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design (Vol. 581).

Studies in computational intelligence. Germany: Springer.

8. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling
and control (Vol. 575). Studies in computational intelligence. Germany: Springer. ISBN 978-

3-319-11016-5.

9. Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent con-
trol engineering and automation. Advances in computational intelligence and robotics (ACIR)

book series. USA: IGI Global. ISBN 978-1-466-67248-2.

10. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control.
Studies in fuzziness and soft computing. Germany: Springer.

11. Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its

performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems II:
Express Briefs, 53(9), 802–806. doi:10.1109/TCSII.2006.879102.

12. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchroniza-

tion of uncertain fractional-order chaotic systems. Advances in chaos theory and intelligent
control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer.

13. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchroniza-

tion of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intel-
ligent control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer.

14. Cao, J., Liang, J., & Cao, B. (2005). Optimization of fractional order PID controllers based on

genetic algorithms. In 2005 International Conference on Machine Learning and Cybernetics
(Vol. 9, pp. 5686–5689). doi:10.1109/ICMLC.2005.1527950.

15. Charef, A. (2006). Analogue realization of fractional-order integrator, differentiator and frac-

tional PI𝜆D𝜇
controller. IEE Proceedings—Control Theory and Applications, 153(6), 714–

720.

16. Chen, Y., Petras, I., & Xue, D. (2009). Fractional order control—a tutorial. In 2009 American
Control Conference (pp. 1397–1411). doi:10.1109/ACC.2009.5160719.

17. Deepak, V. D., & Kumari, U. S. (2014). Modified method of tuning for fractional PID con-

trollers. In 2014 International Conference on Power Signals Control and Computations,
EPSCICON 2014 (pp. 8–10). doi:10.1109/EPSCICON.2014.6887481.

http://www.anadigm.com/an231e04.asp
http://dx.doi.org/10.1109/TLA.2015.7404900
http://dx.doi.org/10.1007/s00521-014-1560-x
http://dx.doi.org/10.1007/978-3-319-12883-21
http://dx.doi.org/10.1109/TCSII.2006.879102
http://dx.doi.org/10.1109/ICMLC.2005.1527950
http://dx.doi.org/10.1109/ACC.2009.5160719
http://dx.doi.org/10.1109/EPSCICON.2014.6887481


On the Electronic Realizations of Fractional-Order Phase-Lead-Lag . . . 163

18. Dobra, P., Trusca, M., & Duma, R. (2012). Embedded application of fractional order control.

Electronics Letters, 48(24), 1526–1528. doi:10.1049/el.2012.1829.

19. Dorcák, L., Terpák, J., Petrá, I., Valsa, J., & González, E. (2012). Comparison of the electronic

realization of the fractional-order system and its model. In Carpathian Control Conference
(ICCC), 2012 13th International (pp. 119–124). doi:10.1109/CarpathianCC.2012.6228627.

20. Herrmann, R. (2011). Fractional calculus (1st ed.). World Scientific publishing Co.

21. Jesus, I. S., & Tenreiro, J. A. (2009). Development of fractional order capacitors

based on electrolyte processes. Nonlinear Dynamics, 56(1–2), 45–55. doi:10.1007/s11071-

008-9377-8.

22. Khubalkar, S., Chopade, A., Junghare, A., Aware, M., & Das, S. (2016). Design and realization

of stand-alone digital fractional order PID controller for buck converter fed DC motor. Circuits,
Systems, and Signal Processing, 35(6), 2189–2211. doi:10.1007/s00034-016-0262-2.

23. Krishna, B. T. (2011). Studies on fractional order differentiators and integrators: A survey.

Signal Processing, 91(3), 386–426. doi:10.1016/j.sigpro.2010.06.022.

24. Lachhab, N., Svaricek, F., Wobbe, F., & Rabba, H. (2013). Fractional order PID controller

(FOPID)-toolbox. In Control Conference (ECC), 2013 European (pp. 3694–3699).

25. Ltifi, A., Ghariani, M., & Neji, R. (2013). Performance comparison on three parameter deter-

mination method of fractional PID controllers. In 2013 14th International Conference on Sci-
ences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 453–460).

doi:10.1109/STA.2013.6783171.

26. Mahmood, A. K., & Saleh, S. A. R. (2015). Realization of fractional order differentiator by

analogue electronic circuit. International Journal of Advances in Engineering and Technology,

1, 1939–1951.

27. Marzaki, M. H., Rahiman, M. H. F., Adnan, R., & Tajjudin, M. (2015). Real time performance

comparison between PID and fractional order PID controller in SMISD plant. In 2015 IEEE 6th
Control and System Graduate Research Colloquium (ICSGRC) (pp. 141–145). doi:10.1109/

ICSGRC.2015.7412481.

28. Mehta, S., & Jain, M. (2015). Comparative analysis of different fractional PID tuning meth-

ods for the first order system. In 2015 International Conference on Futuristic Trends on
Computational Analysis and Knowledge Management (ABLAZE) (pp. 640–646). doi:10.1109/

ABLAZE.2015.7154942.

29. Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order
systems and controls, fundamentals and applications (1st ed.). Advances in industrial control.

Springer.

30. Nise, N. S. (2011). Control systems engineering (6th ed.). Wiley. ISBN 978-0-470-91373-4.

31. Ou, B., Song, L., & Chang, C. (2010). Tuning of fractional PID controllers by using radial

basis function neural networks. In 2010 8th IEEE International Conference on Control and
Automation (ICCA) (pp. 1239–1244). doi:10.1109/ICCA.2010.5524367.

32. Podlubny, I. (1999). Fractional-order systems and PI𝜆D𝜇
-controllers. IEEE Transactions on

Automatic Control, 44(1), 208–214. doi:10.1109/9.739144.

33. Podlubny, I., Petras, I., Vinagre, B. M., O’Leary, P., & Dorcak, L. (2002). Analogue realizations

of fractional-order controllers. Nonlinear Dynamics, 29(1), 281–296.

34. Raynaud, H. F., & Zergainoh, A. (2000). Brief state-space representation for fractional order

controllers. Automatica, 36(7), 1017–1021. doi:10.1016/S0005-1098(00)00011-X.

35. Tavazoei, M. S., & Tavakoli-Kakhki, M. (2014). Compensation by fractional-order phase-

lead/lag compensators. IET Control Theory and Applications, 8(5), 319–329. doi:10.1049/iet-

cta.2013.0138.

36. Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and

control toolbox for MATLAB. In Mixed Design of Integrated Circuits and Systems (MIXDES),
2011 Proceedings of the 18th International Conference (pp. 684–689).

37. Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and

control toolbox for MATLAB. In Proceedings of the 18th International Conference Mixed
Design of Integrated Circuits and Systems—MIXDES 2011 (Vol. 4, pp. 684–689).

http://dx.doi.org/10.1049/el.2012.1829
http://dx.doi.org/10.1109/CarpathianCC.2012.6228627
http://dx.doi.org/10.1007/s11071-008-9377-8
http://dx.doi.org/10.1007/s11071-008-9377-8
http://dx.doi.org/10.1007/s00034-016-0262-2
http://dx.doi.org/10.1016/j.sigpro.2010.06.022
http://dx.doi.org/10.1109/STA.2013.6783171
http://dx.doi.org/10.1109/ICSGRC.2015.7412481
http://dx.doi.org/10.1109/ICSGRC.2015.7412481
http://dx.doi.org/10.1109/ABLAZE.2015.7154942
http://dx.doi.org/10.1109/ABLAZE.2015.7154942
http://dx.doi.org/10.1109/ICCA.2010.5524367
http://dx.doi.org/10.1109/9.739144
http://dx.doi.org/10.1016/S0005-1098(00)00011-X
http://dx.doi.org/10.1049/iet-cta.2013.0138
http://dx.doi.org/10.1049/iet-cta.2013.0138


164 C. Muñiz-Montero et al.

38. Tepljakov, A., Petlenkov, E., & Belikov, J. (2012). A flexible MATLAB tool for optimal

fractional-order PID controller design subject to specifications. In Control Conference (CCC),
2012 31st Chinese (pp. 4698–4703).

39. Truong, V., & Moonyong, L. (2013). Analytical design of fractional-order proportional-

integral controllers for time-delay processes. ISA Transactions, 52(5), 583–591. doi:10.1016/

j.isatra.2013.06.003.

40. Valerio, D., & da Costa, J. (2006). Tuning of fractional PID controllers with Ziegler Nichols-

type rules. Signal Processing, 86(10), 2771–2784. doi:10.1016/j.sigpro.2006.02.020.

41. Valerio, D., & Da Costa, J. S. (2006). Tuning-rules for fractional PID controllers. In Proceed-
ings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications FDA06,
Porto, Portugal.

42. Valerio, D., & Da Costa, J. S. (2010). A review of tuning methods for fractional PIDs. In

Preprints, IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain.

43. Varshney, P., & Gupta, S. K. (2014). Implementation of fractional Fuzzy PID controllers for

control of fractional-order systems. In Proceedings of the 2014 International Conference on
Advances in Computing, Communications and Informatics, ICACCI 2014 (pp. 1322–1328).

doi:10.1109/ICACCI.2014.6968376.

44. Wang, F. Y. (2003). The exact and unique solution for phase-lead and phase-lag compensation.

IEEE Transactions on Education, 46(2), 258–262. doi:10.1109/TE.2002.808279.

45. Xue, D., Liu, L., & Pan, F. (2015). Variable-order fuzzy fractional PID controllers for net-

worked control systems. In 2015 IEEE 10th Conference on Industrial Electronics and Appli-
cations (ICIEA) (pp. 1438–1442). doi:10.1109/ICIEA.2015.7334333.

46. Zhong, J., & Li, L. (2015). Tuning fractional-order PI𝜆D𝜇
controllers for a solid-core magnetic

bearing system. IEEE Transactions on Control Systems Technology, 23(4), 1648–1656.

47. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft

computations. In Studies in fuzziness and soft computing (Vol. 319). Germany: Springer. ISBN

978-3-319-12882-5.

http://dx.doi.org/10.1016/j.isatra.2013.06.003
http://dx.doi.org/10.1016/j.isatra.2013.06.003
http://dx.doi.org/10.1016/j.sigpro.2006.02.020
http://dx.doi.org/10.1109/ICACCI.2014.6968376
http://dx.doi.org/10.1109/TE.2002.808279
http://dx.doi.org/10.1109/ICIEA.2015.7334333

	On the Electronic Realizations  of Fractional-Order Phase-Lead-Lag Compensators with OpAmps and FPAAs
	1 Introduction
	2 Theoretical Background
	2.1 Derivative and Integral of Fractional Order
	2.2  Laplace Fractional Operator and Fractional-Order Transfer Function
	2.3 Integer and Fractional-Order Phase-Lead-Lag Compensators
	2.4 Realization of Analog Fractances

	3 Basic Building Blocks
	3.1 Inverting Integrator (IInt)
	3.2 Non-inverterting and Inverting Amplifiers (NIA, IA)
	3.3 Weighted Differential Amplifier and Differential Amplifier
	3.4 Two-Input Weighted Adder Amplifier (WAA)
	3.5 Lowpass Amplifier (LPA)
	3.6 Lead/Lag Network (L-L)
	3.7 Fractional Integrator (FInt)

	4 OPAMP-Based Realization of Integer-Order and Fractional-Order Phase-Lead-Lag Compensators
	4.1 Integer-Order Phase-Lead-Lag Compensator
	4.2 Fractional-Order Phase-Lead-Lag Compensator (1<q<2)
	4.3 Fractional-Order Phase-Lead-Lag Compensator (0<q<1)
	4.4 Fractional-Order Phase-Lead-Lag Compensators 0<q<1 (Cauer's Approximation)

	5 Examples of Phase-Lead-Lag Compensated Systems Implemented with OpAmps
	5.1 Example 1: Integer Order Phase-Lag Compensator  (K = 5839)
	5.2 Example 2: Integer Order Phase-Lead Compensator (K = 1440)
	5.3 Example 3: Fractional-Order Phase-Lead Compensator (1<q<2)
	5.4 Example 4: Fractional-Order Phase-Lead Compensator with 0<q<1 and Cauer Approximation

	6 Phase-Lead Compensated Systems Implemented  with FPAA
	6.1 Example 5: FPAA Implementation of the Integer-Order Phase-Lead Compensator of Example 2
	6.2 Example 6: FPAA Implementation of the Fractional-Order Phase-Lead Compensator of Example 3

	7 Conclusion
	References


